UIMA Asynchronous Scaleout

Written and maintained by the Apache
UIMA™ Development Community

Version 2.10.2

Copyright © 2006, 2018 The Apache Software Foundation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date January, 2018

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Overview - ASYNCHIONOUS SCAIEOULcceeiiiiiiiiiiiiei i 1
00 = 101 o T PR 1
1.2, AS VEISUS CPIM ..ttt e e e e et e e e bbb e e e e e e e e e erbba e e e e e e e 2
1.3. Design goals for ASynchronous SCAlEOULuuuuiiieeiiieiiiiiiiinee e eeeeeiiiias e e e eeeeees 3
NN @0 o= o L= PP 4

O I = o [Vo 4
1.4.2. AS COmMpPONENt WIEPPING «..eeeeeeerteieeeeaeeeeetiiias e e e e e eeeearte e e e e eeaessrnnaaeaeaas 4
143, Parallel FIOWS ... 6
1.4.4. Deployment alternatiVESccouuuiiiiii e 6
O T T 11 £ PP 8
1.4.6. ComMPAELiDIITY ..oeeeeeeeee e 8
SN /o)L Tor= (7o gl @] = o (= 8
ST AN oo o= o] o 1 AN = R 9
1.5.2. Collection Process COMPIELEeeviiviiiiiiiiiiiiiiieieeeeeeeee ettt 9
1.6. Monitoring & CONrOHINGieeeeieieiics e e e e e e e eeeeee 9
1.7. IMS SEIVICE DESCITPION ..uvvtvttttiittiiiitiiititiiiitittetbbeaebebebbaeeeebbbbeseeesebeaebeebebaeneeeneeenne 9
1.8, LT CY IO e 10

2. Error Handling for ASynchronous SCAl@0ULuuuiiiiieiiieeiiiiisie e e e 13
A I T Lol oo o1 o £ SR 13
2.2. Associating Errors with incoming COmMmMaNdsceevvueiniieeiieeeiiiiin e 13

2.2.1. Error handling - CAS MUIIPIIENS «..cvvveiiieeieeeeeee e 14
2.3. Error handling OVENVIEWoii i e e e 14
P 4 (o R (== U | £ PP 16
2.5. ErrOr RECOVEIY @CHIONSuuiiieiiiieiiiiiisie et e e e e s e e e e e e e eeanna e e e e e eeeeenne 16

2.5.1. Aggregate Error ACHONScccevieeiiiie e e e 16
2.6. Thresholds for Terminate and DiSabIeuuuuuiiiiiiiiiiiiiiiiiiiieeees 17
A = 1 0014z (= o o] o SRR 17
2.8. Commands and allOWed @CLIONSuuuurururuiiiiiiiiiiiiiibibiiebibbb bbb eeeeeeeeeeeeee 18

3. Asynchronous Scaleout Deployment DESCHIPLOrcoooeeeeeieeieee e 19
3.1. Descriptor OrganiZalionuiieeeeieeeiiiiinie e e e eeeetiia e eeeeeetbia e e e e e eeeerea s 19
I DT= o o)V 001 0 L= ot 1 (] 19
R T 07 N o TR 20
B, SEIVICR ..ttt e e et e e e e e et e e aaaaeae 21
3.5. Customizing the deplOyMENtcoviiiiiiiiiii e 21
3.6, INPUE QUEUEottt e et e et s e e et e e e et e e e et e e e e eaan s 21
3.7. TOp LeVel AE DESCIPLOr ..coceeiieiiiieieeeee et 22
3.8. Setting Environment Variallesooooeiiieiiiiiie e 22
3.9. ANAIYSIS ENGINE . .oiiieiiiiie it s e e e e e e et s e e e e e e e e e e e e e eeannae 23
3.10. Error Configuration AESCITPLONSvuuurerureriiitiiiiiiiiiietaeitiieenbabneeeneeeeeneneaenenenenees 25
3.11. Error Configuration defaultsoviiieiiiiiiiiiin e 27

4. Asynchronous Scaleout Application INtErfaceccoveveiiiieiiiiiiie e 29
A0 ASYNC CHENE AP . bnbeeneeee 29
4.2. The UimaAsynchronousENnging INterfaceooovvvveiiiiiinie e 29
VAN oo ITor= o] g I @e a1 = q A 1Y "o 31
4.4. Status Calback LIStENErcoeiviiiiiiiiiiiiiiiiiiieeeeeee e 32
A5, EXTOr RESUITS ...ttt ettt e e e e e e e et e e e e e e aeeeees 33
4.6. Asynchronous Client APl USage SCENAMOSeovveveririiineeeeeeeeiiiianseeeeeeeeeanennns 33

4.6.1. Instantiating a Client APl ODJECtcovvviiiiiiiieeeee e, 33
4.6.2. Caling an EXiSting SErVIiCecooeeeiiieieie e, 33
4.6.3. Retrieving Asynchronous RESUITScovviviiiiiiiiieeeiicceee e 34
4.6.4. Deploying a Service with the Client APlcoovvvviiiiiii e 34

UIMA Asynchronous Scaleout iii

UIMA Asynchronous Scaleout

4.7. Targeting specific service instance with the Client APlcceeiiiiiiiiiiiiii e 35
4.8. Undeploying a Service with the Client APlooovviiiii e 35
4.9. Recovering from broKer fallureueeeueieiiiiiiiiiiiiiiieiiiiiiieeiieireeeeeeeeee. 35
4.10. Generating Deployment Descriptor Programmaticallycoevvviiiiiieiiiieiiiinnnnnn. 36
= 11 o =T o L= PR 37
5. Monitoring, Tuning and DEDUGGINGeeeeeieieiiiiieiiiiiiiiiie ettt 39
L300 I Y/ o g T (o oo P SSUPPRRRRI 39
B.LL IMX 39
5.1.2. IMX Information from UIMA AS ..., 40

5.2. Logging Sampled IMX information at intervalsccccccvviiiiiiii 45
5.2.1. Configuring VM 10 run the MONItOrccovvveeiiiiiii e 45
5.2.2. Running the Monitor program standaloneveeeiieeeiiieiiiiiiie e 46
5.2.3. MONITONNG OULPULcevvviiieeeei ettt ettt e e e e eenaean s 46

5.3. Disabling IMX in UIMA-AS JUNIT tESISuuuuiiiiiiiiiiiiiiiiiii e 47
30 A IV 0 o 47
5.4.1. TUNING PrOCEUUIEuuueetueueeetiteteeenteeeeueeeneesneeeeenenesesenenesseenenenesennnenneennnnes 47
5.4.2. TUNING SEELINGS ©.vunniieeeeiieeeiiies e et e e e e e e et s e e e e e e e eeeaaa s e e eeeaeeeees 48

LRI I o oo] oo R 49
5.5.1. Error Reporting and TraCing «......ceeeveieiiieiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeee e 49
5.5.2. CAS LOGGING rrttttuiieeeiiiiiiiiiiate e e e et eeetit s e s e e et eeeaetaa s s s e eeseseesseanaeeeaeeeeees 50

6. Asynchronous Scaleout Camel DIIVErcuuueiiiieieiieeiee e ee e e e e e e e e e eeeee 53
LI O Y= VR 53
6.2, HOW dOBS It WOIK? .. e e 53
6.3, URI FOMEL ...t e e e e e e e e e e e e e e ennnnnaas 53
B.4. SAMPIE ...t e e e e e e et aaaaaan 54
6.5, IMPIEMENTELIONvuiiiiiii e e e e e e e e 55
7. AsynNchronoUS SCAlEOUL TOOISuuuuiieeeiiieiiiiie e e e e e e e et e s e e e e e e e e e s e e e e e e eeeenna e s e e eeeeeanenns 57
7. L. OVEIVIEI .ttt etttk 57
FAZ2S -] To = oo PPN 57
7.3. Deploying @ UIMA-AS SEIVICE ..ooeuiiiiii i e e e et n e e e aeeees 57
7.4. RUNNING @ UIMA-AS ClIENE .o e e e e e 57
7.5. Querying for aservice's metadataoooeeeeeieiii 58

UIMA Asynchronous Scaleout UIMA Version 2.10.2

Chapter 1. Overview - Asynchronous Scaleout

UIMA Asynchronous Scaleout (AS) is aset of capabilities supported in the UIMA Framework

for achieving scaleout that is more general than the approaches provided for in the Collection
Processing Manager (CPM). ASis asecond generation design, replacing the CPM and Vinci
Services. The CPM and Vinci are still available and are not being deprecated, but new designs are
encouraged to use AS for scalability, and current designs reaching limitations may want to move to
AS.

ASisintegrated with the flow controller architecture, and can be applied to both primitive and
aggregate analysis engines.

1.1. Terminology

Terms used in describing AS capabilities include:

AS
Asynchronous Scaleout - a name given to the capability described here

AS-IMS/AMQ/Spring
A variety of AS, based on IM S (Java Messaging Services), Active MQ, an Apache Open
Source implementation of IM S, and the Spring framework. This variety is the one described in
detail in this document.

Queue
Queues are the basic mechanism of asynchronous communication. One or more "producers’
send messages to a queue, and a queue can have one or more "consumers' that receive
messages. Messagesin UIMA AS are usually CASes, or references to CA Ses. Some queues
are smple internal structures; others are IM S queues which are identified by a 2 part name: the
first part is the Queue Broker; the second part is a Queue Name.

AS Component
An ASclient or service. AS clients send reguests to AS service queues and receive back
responses on reply queues. AS services can be AS Primitives or AS aggregates (see following).

ASPrimitive
An AS servicethat is either a Primitive Analysis Engine or an Aggregate AE whose Delegates
are not AS-enabled

AS Aggregate
An AS servicethat is an Aggregate Analysis Engine where the Delegates are also AS
components.

ASClient
A component sending requests to AS services. An ASclient is typically an application using
the UIMA ASclient API, aJMS Service Client Proxy, or an AS Aggregate.

co-located
two running pieces of code are co-located if they run in the same JVM and share the same
UIMA framework implementation and components.

Queue Broker
Queue brokers manage one or more named queues. The brokers are identified using a URL,
representing where they are on the network. When the queue broker is co-located with the AS
client and service, CA Ses are passed by reference, avoiding seriaization / deserialization.

Overview - Asynchronous Scal eout 1

ASversus CPM

Transport Connector
AS components connect to queue brokers via transport connectors. UIMA ASwill typically
use "tcp" connectors. "http" connectors are also available, and are useful for tunneling through
firewalls viaan existing public web server.

1.2. AS versus CPM

It is useful to compare and contrast the approaches and capabilities of AS and CPM.

AS CPM
Two methods of putting components
together
Putting Provides a consistent, single, unified way L SPE“(C,[OLI e\?vt;]?nhPr:OCt?gnEngl ne)
components to put components together, using the base sp%i fSi (rjlg a C;I&iielgegd:r and
together UIMA "aggregate" capability. 256t Of CAS Processors
2. Each CAS Processor can, aswell, be
an aggregate
An aggregate can be run asynchronously
using the AS mechanism, with a queue
in front of each delegate, or it can by run
synchronoudly.
All aggregates are run synchronously. In an
Kinds of When run asynchronously, all of the aggregate, only one component is running
Aggregates delegates will have queuesin front of them, | at atime; thereisonly one CASat atime
and delegates which are AS Primitivescan | being processed within the aggregate.
beindividually scaled out (replicated) as
needed. Also, multiple CASes can bein-
process, at different stepsin the pipeline,
even without replicating any components.
Fixed linear flow between CAS processors.
Any, including custom user-defined A single CAS Processor can be an
. ! aggregate, and within the aggregate, can
CASflow sequence using user-provided flow . .
have any flow including custom user-
controller. Parallel flows are supported. . X .
defined sequence using user-provided flow
controller.
Each instance of acomponent runsin its One thread for the collection reader, one
own thread; the same thread used to call for the CAS Consumers, "n" threads for the
Threading initialize() foraparticular instance main pipeline, with no guarantees that the
of acomponent is used when calling samethread for thei ni ti al i ze() calis
process(). used for the process() call.
(Ij)elegate Co-located or remote. Co-located or remote.
eployment
Scriptsto launch services, start Vinci Name
Lifecycle Scripts to launch services, launch Queue Service.
management Brokers. In addition, CPE "managed" configuration
provides for automatic launching of UIMA

Overview - Asynchronous Scal eout

UIMA Version 2.10.2

Design goals for Asynchronous Scaleout

AS

CPM

Vinci servicesin same machine, in different
processes.

Error recovery

Similar capabilities as the CPM provides
for CAS Processors, but at the finer
granularity of each AS component. The
support includes customizabl e behavior
overrides and extensions via user code.

Error detection, thresholding, and
recovery options at the granularity of CAS
Processors (which are CPM components,
not delegates of aggregates), with some
customizable callback notifications

Firewall
interactions

Enables deployment of AS services behind
afirewall using a public broker. Enables
deployment of a public broker through
single port, or using HTTP "tunneling”.

When using Vinci protocol, requires
opening alarge number of portsfor each
deployed service. SOAP connected services
reguire one open port.

Monitoring and
Tuning

JMX (Java Management Extensions)

are enabled for recording many kinds of
statistical information, and can be used to
monitor (and control) the operations of AS
configured systems. Statistics are provided
and summarized from remote del egates, to
aid in tuning scaled-out deployments.

Some JM X information

Collection
Reader

Supported for backwards compatibility.
New programs should use the CAS
Multiplier instead, which is more general,
or have the application passin CASesto be
processed. The compatibility support wraps
Collection Readers as Cas Multipliers.
Note: thisis supported and implemented in
base UIMA.

Isalwaysfirst element in linear CPE
seguence chain

1.3. Design goals for Asynchronous Scaleout

The design goalsfor AS are;
1. Increased flexibility and options for scaleout (versus CPM)

a. scale out parts independently of other parts, to appropriate degree

b. more options for protocols for remote connections, including some that don't require

many ports through firewalls

¢. support multiple CASesin process simultaneously within an aggregate pipeline
2. Build upon widely accepted A pache-licensed open source middieware
3. Simplification:
a. Standardize on single approach to aggregate components
b. More uniform Error handling / recovery / monitoring for all AS managed

components.

¢. No changes to existing annotator code or descriptors. An additional deployment
descriptor is used to augment the conventional descriptors.

UIMA Version 2.10.2

Overview - Asynchronous Scal eout

AS Concepts

1.4. AS Concepts

1.4.1. User written components and multi-threading

AS provides for scaling out of annotators - both aggregates and primitives. Each of these can
specify a user-written implementation class. For primitives, thisis the annotator class with the
process() method that does the work. For aggregates, this can be an (optional) custom flow
controller class that computes the flow.

The classes for annotators and flow controllers do not need to be "thread-safe" with respect to their
instance data - meaning, they do not need to be implemented with synchronization locks for access
to their instance data, because each instance will only be called using one thread at atime. Scale out
for these classesis done using multiple instances of the class.

However, if you have class "static” fields shared by all instances, or other kinds of external data
shared by all instances (such as awritable file), you must be aware of the possibility of multiple
threads accessing these fields or external resources, running on separate instances of the class, and
do any required synchronization for these.

1.4.2. AS Component wrapping

Components managed by AS
1. have an associated input queue (this may be internal, or explicit and externalized).

They receive work units (CASes) from this queue, and return the updated CASes to an
output queue which is specified as part of the message delivering the input work unit (CAS).

2. have a container which wraps the component and provides the following services (see
Figure 1.1, “AS Primitive Wrapper” [5]):
¢ A connection to an input queue of CA Sesto be processed

« Scae-out within the VM for components at the bottom level - the AS Primitives.
Scaleout creates multiple instances of the annotator(s), and runs each one on its own
thread, all drawing work from the same input queue.

» (For AS Aggregates) connections to input queues of the delegates

« A "pull" mechanism for the component to pull new CASes (to be processed) from
thelr associated input queue

» (For AS Aggregates) A separate, built-in internal queue to receive CA Ses back from
delegates. These are passed to the aggregate's flow controller, which then specifies
where they go next.

A connection to user-specified error handlers. Error conditions are communicated to

the flow controller, to enable user / dynamically determined recovery or termination
actions.

4 Overview - Asynchronous Scal eout UIMA Version 2.10.2

AS Component wrapping

Controller

& :
Input Queue : 3 Output Queue

Legend

Provided by ActiveMQ

Provided by UIMA Framework
Provided by User

i

Figure 1.1. AS Primitive Wrapper

As shown in the next figure, when the component being wrapped is an AS Aggregate, the container
will use the aggregate's flow controller (shown as"FC") to determine the flow of the CASes among
the delegates. The next figure shows the additional output queue configured for aggregates to
receive CA Ses returning from delegates. The dashed lines show how the queues are associated with
the components.

Delegate 1

________________ _— Inpu’émueue

— | Controller .
Aggregate : '
Controller @ Utput Queue™ ...

'. —
»Input Quedie | ¢ Output Que

-. : Delegate 2 ;
) Input Queue |
T ' Controller
Legend . 5

Provided by ActiveMQ R LT LT P PP ‘

Provided by UIMA Framewark
Provided by User

i

Figure 1.2. AS Aggregate wrapper

The collection of parts and queues iswired together according to a deployment specification,
provided by the deployer. This specification is a collection of one or more deployment descriptors.

UIMA Version 2.10.2 Overview - Asynchronous Scal eout 5

Parallel Flows

1.4.3.

Parallel Flows

A Flow Controller Parallel Step will actualy runin parallel, when using remote delegates with xmi
serialization (the default) sepecified. For colocated delegates, or for remote delegates running with
binary serialization, the parallel stepswill be run serially in some arbitrary unspecified order. For
the parts running in parallel on remotes, existing Feature Structures may not be modified - only
new ones can be added. Thisis checked for, when the results from the remote parallel steps are
merged.

1.4.4.

Deployment alternatives

Deployment is concerned with the following kinds of parts, and allocating these parts (possibly
replicated) to various hosts:

» Application Drivers. These represent the top level caller of UIMA functionality. Examples
include: stand-alone Java applications, such as the example document analyzer tool, a
custom Web servlet, etc.

» AS Services. AS primitive or AS aggregate services deployed on one or more hodes as
needed to meet scalability requirements.

» Queue Brokers. Each Queue Broker manages and provides the storage facility for one or
more named queues.

Parts can be co-located or not; when they're not, we say they're remote. Remote includes running
on the same host, but in a different process space, using a different VM or other native process.

Connections between the non-co-located parts are done using the IMS (Java Messaging Service)
protocols, using ActiveM Q from apache.org.

Note: For high availahility, the Queue Brokers can be, themselves, replicated over many
hosts, with fail-over capability provided by the underlying ActiveMQ implementation.

1.4.4.1. Configuring multiple instances of components

AS components can be replicated; the replicated components can be co-located or distributed
across different nodes. The purpose of the replication is to allow multiple work units (CASes) to
be processed in parallel, in multiple threads, either in the same host, or using different hosts. The
vision is that the deployment is able to replicate just those components which are the bottleneck in
overall system thruput.

There are two ways replication can be specified.

1. Inthe deployment descriptor, for an AS Primitive component, set the numberOflnstances
attribute of the <scaleout> element to a number bigger than one.

2. Deploy the same service on many nodes, specifying the same input service queue

Thefirst way islimited to replicating an AS Primitive. An AS Primitive can be the whole
component of the service, or it can be at the bottom of an aggregate hierarchy of co-located parts.

Replicating an AS Primitive has the effect of replicating all of its nested components (if it isan
aggregate), since no queues are used below its input queue.

1.4.4.2. Queues

Asynchronous operation uses queues to connect components. For co-located components, the
UIMA AS framework uses custom very-lightweight queuing mechanisms. For non-co-located

Overview - Asynchronous Scal eout UIMA Version 2.10.2

Deployment alternatives

components, it uses JIM S queues, managed by ActiveM Q Queue Brokers, which can be running on
the other nodes in a network.

AS Aggregate delegates specified as <analysisEngine> elements (or by default) are co-located, and
use custom lightweight queuing. AS Aggregate del egates specified using <remoteAnalysisEngine>
are not co-located, and use IM S queuing.

For IMS queues, each queue is defined by a queue name and the URL of its Queue Broker. AS
services register as queue consumers to obtain CASes to work on (as input) and to send CASes
they're finished with (as output) to areply queue connected to the AS client.

The queue implementation for IMSis provided by ActiveMQ queue broker. A single Queue Broker
can manage multiple queues. By default UIMA AS configures the Queue Broker to use in-memory
gueues, the queue is resident on the same VM as its managing Queue Broker. ActiveMQ offers
several failsafe options, including the use of disk-based queues and redundant master/slave broker
configurations.

The decisions about where to deploy Queue Brokers are deployment decisions, made based on
issues such as domain of control, firewalls, CPU / memory resources, etc. Of particular interest for
distributed applicationsisthat a UIMA AS service can be deployed behind afirewall but still be
publicly available by using a queue broker that is available publicly.

When components are co-located, an optimization is done so that CASes are not actually sent as
they would be over the network; rather, areference to the in-memory Java object is passed using
the queue.

Warning: Do not hook up different kinds of services to the same input queue. The
framework expects that multiple services all listening to a particular input queue are
sharing the workload of processing CA Ses sent to that queue. The framework does not
currently verify that all services on a queue are the same kind, but likely will in afuture
release.

1.4.4.3. Deployment Descriptors

Each deployment descriptor specifies deployment information for one service, including al of its
co-located delegates (if any). A serviceisan AS component, having one top level input queue, to
which CASes are sent for processing.

Each deployment descriptor has a reference to an associated Analysis Engine descriptor, which can
be an aggregate, or a primitive (including CAS Consumers).

AS Components can be co-located (this is the default); the deployment descriptor specifies remote
gueues (queue-brokers and queue-names) for non-co-located components.

All services need to be manually started using an appropriate deployment descriptor
(describing the things to be set up on that server). There are several scripts provided including
deployAsyncService, that do this. The client API also supports a deploy method for doing this
within the same VM.

Deploying UIMA aggregates

UIMA aggregates can either be run asynchronously as AS Aggregates, or synchronously (as AS
Primitives). AS Aggregates have an input and areply queue associated with each delegate, and

can process multiple CASes at atime. UIMA aggregates that are run as AS Primitives send CASes
synchronously, one atime, to each delegate, without using any queuing mechanism.

UIMA Version 2.10.2 Overview - Asynchronous Scal eout 7

Limits

Each delegate in an AS Aggregate can be specified to be local or remote. Local means co-located
using internal queues; remote means all others, including delegates running in a different VM,

or in the same JVM but that can be shared by multiple clients. For each delegate which is remote,
the deployment descriptor specifies the delegate's input queue; a corresponding reply queueis
also automatically set up. If the delegateislocal, internal input and reply queues are automatically
created for that delegate.

1.4.5. Current design limitations

This section describes limitations of the current support for AS.

1.4.5.1. Sofa Mapping limits

Sofa mapping works for co-located delegates, only. Aswith Vinci and SOAP, remote delegates
needing sofa mapping need to respecify sofa mappings in an aggregate descriptor at the remote
node.

1.4.5.2. Parameter Overriding limits

Parameter overrides only work for co-located delegates. As with Vinci and SOAP, remote
delegates needing parameter overrides need to respecify the overrides in an aggregate descriptor at
the remote node.

1.4.5.3. Resource Sharing limits

Resource Sharing works for co-located del egates, only.

1.4.6. Compatibility with earlier version of remoting and
scaleout

Thereisanew type of client service descriptor for an AS service, the IM S service descriptor
(see Section 1.7, “JMS Service Descriptor” [9]), which can be used along with Vinci and/

or SOAP servicesin base UIMA applications. Conversely, Vinci services cannot be used within
aUIMA AS service because they do not comply to the UIMA standard requiring preservation of
feature structure IDs. SOAP service calls currently use a binary serialization of the CAS which
does preserve | Ds and therefore can be called from a UIMA AS service.

To use SOAP serviceswithin aUIMA AS deployment, wrap them inside another aggregate (which
might contain just the one SOAP service descriptor), where the wrapping aggregate is deployed as
an AS Primitive.

1.5. Application Concepts

When UIMA isused, itis called using Application APIs. A typical top-level driver has this basic
flow:

1. Read UIMA descriptors and instantiate components

2. DoaRun

3. Do another Run, etc.

4. Stop

A "run", in turn, consists of 3 parts:

8 Overview - Asynchronous Scal eout UIMA Version 2.10.2

Application AP

1. initialize (or reinitiaize, if already run)
2. process CASes
3. finish (collectionProcessComplete is called)

Initialize is called by the framework when the instance is created. The other methods need to

be called by the driver. col | ecti onProcessConpl et e should be called when the driver
determinesthat it is finished sending input CASes for processing using the pr ocess() method.
reinitialize() canbecaledif needed, after changing parameter settings, to get the co-located
components to reinitialize.

1.5.1. Application API

See Chapter 4, Asynchronous Scaleout Application Interface [29] and the sample code.

1.5.2. Collection Process Complete

An application may want to signal a chain of annotators that are being used in a particular "run”
when all CASesfor this run have been processed, and any final computation and outputting is to be
doneg; it calls the collectionProcessCompl ete method to do this. Thisis frequently done when using
stateful components which are accumulating information over multiple documents.

It is up to the application to determine when the run is finished and there are no more CASes
to process. It then calls this method on the top level analysis engine; the framework propagates
this method call to all delegates of this aggregate, and thisis repeated recursively for al delegate

aggregates.

This call is synchronous; the framework will block the thread issuing the call until al processing of
CASes within the service has completed and the collectionProcessCompl ete method has returned
(or timed out) from every component it was sent to.

Components receive this call in afixed order taken from the <fixedFlow> sequence information in
the descriptors, if that is available, and in an arbitrary order otherwise.

If acomponent is replicated, only one of the instances will receive the collectionProcessComplete
call.

1.6. Monitoring and Controlling an AS application

JMX (Java Management Extensions) are used for monitoring and controlling an AS application.
As of release 2.3.0, extensive monitoring facilities have been implemented; these are described in
a separate chapter on Chapter 5, Monitoring, Tuning and Debugging [39]. The only controlling
facility provided isto stop a service.

In addition, a configurable Monitoring program is provided which works with the IMX provided
measurements and aggregates and samples these over specified intervals, and creates monitoring
entriesin the UIMA log, for tuning purposes. Y ou can use thisto detect overloaded and/or idle
services; see the Chapter 5, Monitoring, Tuning and Debugging [39] chapter for details.

1.7. IMS Service Descriptor

To cal aUIMA AS Service from Document Analyzer or any other base UIMA application, use a
descriptor such as the following:

UIMA Version 2.10.2 Overview - Asynchronous Scal eout 9

Lifecycle

<cust onResour ceSpeci fi er xm ns="http://ui ma. apache. org/ resour ceSpeci fier">
<r esour ceCl assNanme>
or g. apache. ui ma. aae. j ms_adapt er . JnsAnal ysi SEngi neSer vi ceAdapt er
</ r esour ceC assNane>
<par anet er s>
<par anet er nane="br oker URL"
val ue="tcp://ui mal7. wat son.i bm com 61616"/ >
<par anet er nane="endpoi nt"
val ue="ui ma. as. RoonDat eMeet i ngDet ect or Aggr egat eQueue"/ >
<par aneter nane="ti neout"
val ue="xxx"/>
<par anet er nane="get net ati meout "
val ue="yyy"/ >
<par anet er nanme="cpcti neout "
val ue="zzz"/ >
</ par anet er s>
</ cust omResour ceSpeci fi er>

The resourceClassName must be set exactly as shown. Set the brokerURL and endpoint parameters
to the appropriate values for the UIMA AS Service you want to call. These are the same settings
you would use in a deployment descriptor to specify the location of aremote delegate. Note that
thisis a synchronous adapter, which processes one CAS at atime, so it will not take advantage

of the scalability that UIMA AS provides. To process more than one CAS at atime, you must

use the Asynchronous UIMA AS Client API Chapter 4, Asynchronous Scaleout Application
Interface [29].

The three timeouts are all expressed in milliseconds. The getmetatimeout is typically short, but if
the service isjust starting, and initialization takes awhile, it may need to be longer, because the
service won't reply to the getmeta request until it is finished initializing. The cpctimeout is the
Coallection Processing Complete timeout. Defaults are taken if the value is omitted, or isO.

Other parameters may be specified:

binary serialization
Set to true to specify binary serialization (faster, but requires that the service have exactly the
same type system as the client). The default isfalse => XMI seridlization.

ignore_process_errors
Set to true to specify that any processing errors should be ignored. In order for thisto be
reasonable, your calling environment must be able to continue somehow, if the service fails.
The default isfalse.

retry
Set to the number of times to retry the process call in case of errors. The default isO => no
retries.

For more information on the customResourceSpecifier see Section 2.8, “ Custom Resource
Specifiers’.

1.8. Life cycle

Running UIMA AS applications involves deploying (starting) UIMA AS service instances, perhaps
on many machines. Over the life cycle of aservice it can be useful to dynamically change the
number of service instances. Additional UIMA AS service instances can be started at any time

and the new instance will connect to the input queue when initialization is complete. However,

10

Overview - Asynchronous Scal eout UIMA Version 2.10.2

Lifecycle

anew instance may be much slower than instances that are "warmed up”. In order to prevent a
new instance from degrading overall service latency, UIMA AS offers awarmup option that runs
a specified set of CA Ses thru the service instance after initialization but before connecting to the
service input queue. See Section 5.4.2, “ Tuning Settings’ [48] for more information on service
warmup.

UIMA AS offers afew simple tools to help with starting and stopping services.

» The UIMA ASclient API (see Chapter 4, Asynchronous Scaleout Application
Interface [29]) can deploy UIMA AS services within the same JVM.

* Thedepl oyAsyncSer vi ce command will start up aUIMA AS Servicein anew JVM.

» depl oyAsyncSer vi ce opens akeyboard listener after starting which listensfor a"s" or "

qn

keystroke. An"'s' stops the service immediately, and a"q" quiesces the service by detaching

from the input queue and letting any in-process requests finish before stopping.

* The UIMA AS service will initiate quiesce on SIGINT and SIGTERM, and also offers IMX

bean based control options to stop and quiesce the service.

UIMA Version 2.10.2 Overview - Asynchronous Scal eout

11

Chapter 2. Error Handling for Asynchronous
Scaleout

This chapter discusses the high level architecture for Error Handling from the user's point of view.

2.1. Basic concepts

This chapter describes error configuration for AS components.

The AS framework manages a collection of component parts written by users (user code) which
can throw exceptions. In addition, the AS framework can run timers when sending commands to
user code deployed in aremote service which can create timeouts.

An AS component is either an AS aggregate or an AS primitive. AS aggregates can have multiple
levels of aggregation; error configuration is done for each level of aggregation. The rest of this
chapter focuses on the error configuration one level at atime (either for one particular level in an
aggregate hierarchy, or for an AS primitive).

Thereisasmall number of commands which can be sent to an AS component. When a component
returns the result, if an error occurs, an error result is returned instead of the normal result.

Configuration and support is provided for three classes of errors:
1. Exceptions thrown from code (component or framework) at this level
2. error messages received from delegates.
3. timeouts of commands sent to remote delegates.
The second and third class of errorsisonly possible for AS aggregates.
When errors happen, the framework provides a standard set of configurable actions. See

Section 2.8, “Commands and allowed actions’ [18] for a summary table of the actions available
in different situations.

2.2. Associating Errors with incoming commands

Components managed by AS may generate errors when they are sent acommand. The error is
associated with the command that was running to produce the error.

There are three incoming message commands supported by the AS framework:
1. getMetadata - sent by the framework when initializing connection to an AS component
2. processCas - sent once for each CAS
3. collectionProcessComplete - sent when an application calls this method

Error handling actions are associated with these various commands. Some error handling actions
make sense only if thereis an associated CAS object, and are therefore only allowed with the
processCas command.

Error Handling for Asynchronous Scal eout 13

Error handling - CAS Multipliers

2.2.1. Error handling for CASes generated in an Aggregate
by CAS Multipliers

CASesthat are generated by a CAS Multiplier are called child CASes, and their parent CASisthe
CAS that originally came into the CAS Multiplier which caused the child CASesto be created.
Each child CAS aways has one associated parent CAS.

The flow of CASesis constrained to always block returning the parent CAS until al of its children
have been generated by the CAS Multiplier. In addition, the framework (currently) blocks the flow
of the parent CAS until all of its children have finished all processing, including any processing of
the children in outer, containing aggregates (which can even be on other network-connected nodes).
(There is some discussion about relaxing this condition, to allow more asynchronicity.)

A child CAS may only exist for apart of the flow, and not returned all the way back up to the top.
Because of this, errors which occur on achild CAS and are not recovered are reported on both the
child CAS, and on its parent. The parent CAS s not processed further, and an error is reported
against the parent.

The parent CAS may have other outstanding children currently being processed. It is not yet
specified what happens (if anything) to these CA Ses.

2.3. Error handling overview

When an error happens, it is either "recovered”, or not; only errors from delegates of an AS
aggregate can be recovered. Recovery may be achieved by retrying the request or by skipping the
delegate.

Commands normally return results; however if an non-recoverable error occurs, the command
returns an error result instead.

For AS aggregates, each level in aggregate hierarchy can be configured to try to recover the error.

If aparticular AS aggregate level does not recover, the error is sent up to the next level of the
hierarchy (or to the calling client, if atop level). The error result is updated to reflect the actions the
framework takes for this error.

Non-recovered errors can optionally have an associated "Terminate" or "Disable" action (see
below), triggered by the error when athreshold is reached. "Disable" applies to the delegate that
generated the error while "Terminate” applies to the aggregate and any co-located aggregatesit is
contained within.

14 Error Handling for Asynchronous Scal eout UIMA Version 2.10.2

Error handling overview

&/

l Contlnue’?

Terminate
(—[Teminate/Disable]

component ‘_

[Exceeds Threshcld'?]

Figure 2.1. Basic error handling chain for AS Aggregates for errors from delegates

The basic error handling chain starts with an error, and can attempt to recover using retry. If this
fails (or is not configured), the error count is incremented and checked against the thresholds for
this delegate. If the threshold has been reached the specified action is taken, disabling the delegate
or terminating the entire component. If the Terminate error is not taken, recovery by the Continue
action can be attempted. If that fails, an error result is returned to the caller.

For AS primitives, only the Terminate action is available, and Retry and Continue do not apply.

Terminate

< [Exceeds Threshcld'?]

component i

Figure 2.2. Basic error handling chain for ASPrimitives

UIMA Version 2.10.2 Error Handling for Asynchronous Scal eout 15

Error results

2.4. Error results

Error results are returned instead of a CAS, if an error occurs and is not recovered.

If the application uses the synchronous sendAndReceive() method, an Error Result is passed back
to the client APl in the form of a Java exception. The particular exception varies, depending on
many factors, but will include a complete stack trace beginning with the cause of the error. If the
application uses an asynchronous API, the exception is wrapped in a EntityProcessStatus object
and delivered via a callback listener registered by the application. See section 4.4 Status Callback
Listener for details.

2.5. Error Recovery actions

When errors occur in delegates, the aggregate containing them can attempt to recover. There are
two basic recovery actions: retrying the same command and continuing past (skipping) the failing
component.

Every command sent to a remote delegate can have an associated (configurable) timeout. If the
timeout occurs before the del egate responds, the framework creates an error representing the
timeout.

Note: If, subsequently, aresponseis (finally) received corresponding to the command that
had timed-out, this islogged, but the response is discarded and no further action is taken.

When errors occur in delegates, retry is attempted (if configured), some number of times. If that
fails, error counts are incremented and thresholds examined for Terminate/Disable actions. If not
reached, or if the action is Disable, Continue is attempted (if configured); if Continue fails, the
error is not recovered, and the aggregate returns the error result from the del egate to the aggregate's
caller. On Terminate, the error isreturned to the caller.

2.5.1. Aggregate Error Actions

This section describesin more detail the error actions valid only for AS aggregates.

2.5.1.1. Retry

Retry is an action which re-sends the same command that failed back to the input queue of the
delegate. (Note: It may be picked up by a different instance of that delegate, which may have
a better chance of succeeding.) The framework will keep a copy of the CAS sent to remote
componentsin order to haveit to send again if aretry isrequired.

Retry isnot allowed for colocated delegates.

The "collectionProcessComplete” command is never retried.

Retry is done some number of times, as specified in the deployment descriptor.

16

Error Handling for Asynchronous Scal eout UIMA Version 2.10.2

Thresholds for Terminate and Disable

2.5.1.2. Disable Action

Figure 2.3. Disable action

When this action is taken the framework marks the particular delegate causing the error as
"disabled" so it will be skipped in subsequent calls. The framework calls the flow controller, telling
it to remove the particular delegate from the flow.

2.5.1.3. Continue Option on Delegate Process CAS Failures

For processCas commands, the Continue action causes the framework to give the flow controller
object for that CAS the error details, and ask the flow controller if processing can continue. If
the flow controller returns “true”, the flow controller will be called asking for the next step; if
"false", the framework stops processing the CAS, returning an error to the client reply queue, or
just returning the CAS to the casPool of the CAS multiplier which created it.

For "collectionProcessComplete” commands, Continue means to ignore the error, and continue as if
the collectionProcessComplete call had returned normally.

This action is not allowed for the getM etadata command.

2.6. Thresholds for Terminate and Disable

The Terminate and Disable actions are conditioned by testing against a threshold.

Thresholds are specified as two numbers - an error count and awindow. The threshold is reached
if the number of errors occurring within the window sizeis equal to or greater than "the error
count". A value of 0 disables the error threshold so no action can be taken. A window of 0 means
no window, i.e. dl errors are counted

Errors associated with the processCas command are the only ones that are counted in the threshold
measurements.

2.7. Terminate Action

When this action is taken the service represented by this component sends an error reply and then
terminates, disconnecting itself as alistener from its input queue, and cleaning itself up (releasing
resources, etc.). During cleanup, the component analysis engine'sdest r oy method is called.

Note: The termination action applies to the entire aggregate service. Remote delegates are
not affected.

UIMA Version 2.10.2 Error Handling for Asynchronous Scal eout 17

Commands and allowed actions

Note: By default, the service will self-destruct by calling System.exit(0) if the shutdown
doesn't finish within 40 seconds. To disable calling System.exit(0) define System property
-DdontKill=true.

Input
gueue

Disconnect

Figure 2.4. Terminate action
If the threshold is not exceeded, the error counts associated with the threshold are incremented.

Note: Some errors will aways cause aterminate: for instance, framework or flow
controller errors cause immediate termination.

. Commands and allowed actions

All of the allowed actions are optional, and default to not being done, except for getM etadata being
sent to a delegate that is remote - this has a default timeout of 1 minute.

Here's atable of the alowed actions, by command. In this table, the Retry, Continue, and Disable
actions apply to the particular Delegate associated with the error; the Terminate action applies to
the entire component.

The framework returns an Error Result to the caller for errors that are not recovered.

Table 2.1. Error actions by command type

Error actions allowed

Command
AS Aggregate AS Primitive

getMetadata Retry, Disable, Terminate Terminate
processCas Retry, Continue, Disable, Terminate | Terminate
collection Continue, Disable, Terminate Terminate
Processing
Complete

Therationae for providing the terminate action for primitive servicesisthat only the service

can know that it is no longer capable of continued operation. Consider a scaled component with
multiple service instances, where one of them goes "bad" and starts throwing exceptions: the clients
of this service have no way of stopping new requests from being delivered to this bad service
instance. The teminate action allows the bad service to remove itself from further processing; this
could alow life cycle management to restart a new instance.

Error Handling for Asynchronous Scal eout UIMA Version 2.10.2

Chapter 3. Asynchronous Scaleout
Deployment Descriptor

3.1. Descriptor Organization

Each deployment descriptor describes one service, associated with asingle UIMA descriptor
(aggregate or primitive), and describes the deployment of those UIMA components that are co-
located, together with specifications of connections to those subcomponents that are remote.

The deployment descriptor is used to augment information contained in an analysis engine
descriptor. It adds information concerning

» which components are managed using AS

 queue names for connecting components

* error thresholds and recovery / terminate action specifications

« error handling routine specifications

The application can include both Java and non-Java components; the deployment descriptors are
dlightly different for non-Java components.

Since the UIMA system property ui ma. f r amewor k_i npl can be used to provide a custom
implementation of the UIMAFramework class which may include an XML parser for pre-
processing descriptors, it may be necessary to provide a custom parser for Saxon to use

when processing the UIMA-AS descriptors. This can be accomplished by including in the
classpath a class whose name is formed by adding the suffix _SAXPar ser to the name of the
class specified in the ui ma. f r amewor k_i npl system property. If such aclass exists it will
be passed to the Saxon Transform class via the -x option. The class should implement the
org. xnml . sax. XM_Reader or thej avax. xnl . par ser s. SAXPar ser Fact or y interface, or
extend or g. xml . sax. XMLFi | ter | npl

3.2. Deployment Descriptor

Each deployment descriptor describes components associated with one UIMA descriptor. The basic
structure of a Deployment Descriptor is as follows:

<anal ysi sEngi neDepl oynment Descri ption
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">

<!-- the standard (optional) header -->
<name>[St ri ng] </ nane>
<description>[String] </ description>
<versi on>[String] </ versi on>
<vendor >[St ri ng] </ vendor >

<depl oynment protocol ="jnms" provider="activeny">
<casPool <l--optional -->
nunmber OF CASes="xxx" <!--optional -->
initial FsHeapSi ze="nnn" <!--optional -->

di sabl eJCasCache= <l--optional -->

"[true/fal se]"/>

<servi ce> <l-- npust have only 1 -->

Asynchronous Scaleout Deployment Descriptor 19

CAS Poal

<!-- 0 or nore of the following -->

<!-- npame required, value optional -->
<custom nane="..." value="..."/>

<i nput Queue .../>

<topDescriptor .../>

<environment Variables .../> <!--optional -->

<anal ysi séngi ne key="key nane" async="[true/fal se]"

i nt er nal Repl yQueueScal eout ="nnl1" <!-- optional -->

i nput QueueScal eout =" nn2" > <l-- optional -->
<scal eout nunber O | nst ances="1"/> <l-- optional -->

<l-- optional -->

<casMul tiplier

pool Si ze="5" <l-- optional -->

initial FsHeapSi ze="nnn" <l-- optional -->

processParent Last="[true/fal se]" <l-- optional -->

di sabl eJCasCache="[true/fal se]/> <!-- optional -->
<asyncPrimtiveErrorConfiguration .../> <l-- optional -->
<del egat es> <!-- optional, only for aggregates -->

<l-- 0 or nore -->

<anal ysi séngi ne key="key nane" async="[true/fal se]"
i nt er nal Repl yQueueScal eout ="nn1"
i nput QueueScal eout =" nn2" >

.. <!-- optional nested specifications -->
</ anal ysi sEngi ne>

<r enot eAnal ysi sEngi ne key="key name" <!-- 0 or nore -->
r enot eRepl yQueueScal eout ="nnl1"> <!-- optional -->

<I-- next is either required or nust be onmtted -->
<casMul tiplier
pool Si ze="5"
initial FsHeapSi ze="nnn"
processParent Last ="[true/fal se]" <!-- optional -->
di sabl eJCasCache="[true/fal se]/> <!-- optional -->
<i nput Queue ... />
<serializer method="xm"/>
<asyncAggr egat eError Configuration ... />
</ r enot eAnal ysi SEngi ne>

</ del egat es>
</ anal ysi sEngi ne>
</ service>
</ depl oyment >
</ anal ysi sEngi neDepl oynent Descri pti on>

. CAS Pool

This element specifies information for managing CAS pools. Having more CASesin the pools
enables more AS components to run at the same time. For instance, if your application had four
components, but one was slow, you might deploy 10 instances of the slow component. To get all
10 instances working on CA Ses simultaneously, your CAS pool should be at least 10 CASes. The
casPool size should be small enough to avoid paging.

Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

Service

Thiselement and all its attributes are optional; if not specified, the values take their defaults (see
below).

If the nunmber OF CASes is not specified, it is set to either 1 or, for top level asynchronous
deployments, the scal eout nunber O | nst ances.

The initial FsHeapSi ze attribute allows setting the size of theinitial CAS Feature Structure heap.
This number is specified in bytes, and the default is approximately 2 megabytes for Javatop-level
services, and 40 kilobytes for C++ top level services. The heap grows as needed; this parameter
is useful for those cases where the expected heap size is much smaller than the default. If not
specified, its default value is 2, 000, 000 words.

The disableJCasCache attribute on the <casMultiplier> element is optional, and allows disabling of
JCas cache. The JCas cacheis an internal datastructure that caches any JCas object created by the
CAS. Thismay result in better performance for applications that make extensive use of the JCas,
but also incurs a steep memory overhead. If you're processing large documents and have memory
issues, you should disable this option. In general, just try running afew experiments to see what
setting works better for your application. The JCas cache is enabled by default.

3.4. Service

This section is required and specifies the deployment information for the service.

3.5. Customizing the deployment

The <custom> element(s) are optional. Each one, if specified, requires a name parameter, and can
have an optional value parameter. They are intended to provide additional information needed for
particular kinds of deployment.

The following lists the things that can be specified here.
e name="run_top level CPP_service as separate process'
(no value used)

Causes the top level component, which must be a component specified as using
<frameworkl mplementati on>org.apache.uima.cpp</frameworkl mplementation> and which
must be specified as async="false" (the default), to be run in a separate process, rather than
viausing the JNI.

3.6. Input Queue

The inputQueue element is required. It identifies the input queue for the service.

<i nput Queue broker URL="tcp://X.y.z:portnunber"
endpoi nt =" queue_nane"
prefetch="1"/>

The brokerURL attribute is optional. When omitted, a default value of tcp://localhost:61616 will
be used. A different brokerURL can be provided as an override when launching a service. Consult
README that provides an example of brokerURL override. The queue broker address includes
aprotocol specification, which should be set to either "tcp", or "http". The brokerURL attribute
specifies the queue broker URL, typically its network address and port. .

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 21

Top Level AE Descriptor

The http protocol is similar to the tcp protocol, but is preferred for wide-area-network connections
where there may be firewall issues, asit supports http tunnelling.

Warning: When remote delegates are being used, the brokerURL value used for this
remote delegate is used also for the remote reply Queue, and must be valid for both the
client to send requests and the remote service to send replies to. The URL to use for the
reply is resolved on the remote system when sending areply. Using "localhost” will not
work, nor will partially specified URLs unless they resolve to the same URL on all nodes
where services are running. The recommended best practice is to use fully qualified URL
names.

The queue name is used to uniquely identify a queue belonging to a particular broker.

The pr ef et ch attribute controls prefetching of messages for an instance of the service. It can be
0 - which disables prefetching. Thisis useful in some realtime applications for reducing latency.

In this case, when a new request arrives, any available instance will take the request; if prefetching
was set above 0, the request might be prefetched by abusy service. The default value if not
specified is 0.

Note: Thepr ef et ch attribute is only used with the top inputQueue element for the
service.

3.7. Top level Analysis Engine descriptor

Each service must indicate some analysis engine to run, using this element.

<t opDescri pt or >
<inport location="..." /> <l-- or name="..." -->
</t opDescri pt or >

Thisisthe standard UIMA import element. Imports can be by name or by location; see Section 2.2,
“Imports’.

3.8. Setting Environment Variables

This element is optional, and provides a way to set environment variables.

Note: Thiselement isonly allowed and used for top level Analysis Engines specifying
<frameworkl mplementati on>org.apache.uima.cpp</frameworkl mplementation> and
running using the <custom name="run_top_level_CPP_service_as _separate_process'>; it
is not supported for Java Analysis Engines.

Components written in C++ can be run as atop level service. These components are launched

in a separate process, and by default, al the environment variables of the launching process are
passed to the new process. This element allows the environment variables of the new process to be
augmented.

<envi ronment Vari abl es>

<I-- one or nore of the follow ng el enent -->

<envi ronment Vari abl e nane="xxx">val ue goes here</environnentVari abl e>
</ envi ronnent Vari abl es>

Usually, the value will replace any existing value. As a special exception, for the environment
variables used asthe PATH (for Windows) or LD_LIBRARY_PATH (for Linux) or

22

Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

Anaysis Engine

DYLD_LIBRARY_PATH (for MacOS), the value will be "prepended" with a path separator
character appropriate for the platform, to any existing value.

3.9. Analysis Engine

Thisis used to describe an element which is an analysis engine. It is optional and only needed if
the defaults are being overridden. The async attributeis only used for aggregates, and specifies
that this aggregate will be run asynchronously (with input queues in front of al of its delegates)
or not. If not specified, the async property defaultsto "false" except in the case where the
deployment descriptor includes the <delegates> element, when it defaults to "true”. If you specify
async="false", then it is an error to specify any <delegates> in the deployment descriptor.

Thekey attribute must have as its value the key name used in the containing aggregate descriptor
to uniquely identify this delegate. Since the top level aggregate is not contained in another
aggregate, this can be omitted for that element. Deployment information is matched to delegates
using the key name specified in the aggregate descriptor to identify the delegate.

<anal ysi séngi ne key="key nane" async="true"

i nt er nal Repl yQueueScal eout ="nnl1" <!-- optional -->
i nput QueueScal eout =" nn2" > <l-- optional -->
<scal eout nunber O | nst ances="1"/> <!-- optional -->
<I-- casMultiplier is either required, or nust be omtted-->
<casMul tiplier
pool Si ze="5" <!-- optional -->
initial FsHeapSi ze="nn" <l-- optional -->
processParent Last="[true/fal se]" <l-- optional -->
di sabl eJCasCache="[true/fal se]/> <l-- optional -->
<l-- next two are optional, but only one allowed -->
<asyncAggr egat eError Configuration .../> <!-- optional -->
<asyncPrimtiveErrorConfiguration .../> <!-- optional -->
<del egat es> <l-- optional -->
<anal ysi sengi ne key="key nane" ...> <l-- 0 or nore -->
<I-- optional nested specifications -->

</ anal ysi sEngi ne>

<r enot eAnal ysi sengi ne key="key nange" <I-- 0 or nore -->
r enot eRepl yQueueScal eout ="nnl"> <!-- optional -->
<I-- next is either required or nmust be omtted -->
<casMul tiplier
pool Si ze="5" <l-- optional -->
initial FsHeapSi ze="nnn" <l-- optional -->
processParent Last ="[true/fal se]" <l-- optional -->
di sabl eJCasCache="[true/fal se]/> <l-- optional -->
<i nput Queue ... />
<serializer method="[xm | binary]"/> <l-- optional -->
<asyncAggr egat eError Configuration .../> <l-- optional -->

</ r enot eAnal ysi SEngi ne>

</ del egat es>
</ anal ysi sEngi ne>

<analysisEngine> is used to specify deployment details for an analysis engine. It is optional, and if
omitted, defaults will be used: The analysis engine will be run synchronously (processing only one
CAS at atime), with ascaleout of 1, using the default error configuration.

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 23

Anaysis Engine

The attributesi nt er nal Repl yQueueScal eout andi nput QueueScal eout only have meaning
and are allowed when async="true" is specified (which in turn can only be set true for aggregates)
or isthe default (which happens when the aggregate has del egate deployment options specified in
the deployment descriptor). These attributes default to 1. For asynchronous aggregates, they control
the number of threads used to do the work of the aggregate outside of running the delegates. This
work can include one or more of the following:

* deseriaizing an input CAS (only on the input Queue), or serializing the resulting CAS back
to aremote requester (only if the requester is remote).

* running the flow controller

« seridizing CASes being sent to remote delegates (only useful if one or more of the delegates
isremote).

These attributes provide away to scale out this work on multi-core machines, if these tasks become
abottleneck.

Note that if an aggregates flow controller specifies that the first delegate the CAS should flow to
isaremote, the work of serializing the CASto that remote is done using the inputQueue thread,
and the scaleout parameter that would apply would be the inputQueueScal eout. For subsequent
delegates, the work is done on the internal ReplyQueueScal eout threads.

The <scaleout ...> element specifies, for co-located primitive or non-AS aggregates (async="false")
at the bottom of an aggregate tree, how many replicated instances are created.

The <casMultiplier> element inside an <analysisEngine> element is required if the analysis engine
component isa CAS multiplier, and isan error if specified for other components. It specifies for
CAS multipliers the size of the pool of CASes used by that CAS multiplier for generating extra
CASes.

Note: The actual CAS pool size can be bigger than the size specified here. The custom
CAS multiplier code specifies how many CASes it needs accessto at the same time; the
actual CAS pool sizeisthe valuein the deployment descriptor, plus the value in custom
CM code, minus 1.

The initial FsHeapSi ze attribute on the <casMultiplier> element is optional, and allows setting the
size of theinitial CAS Feature Structure heap for CASesin this pool. This number is specified in
bytes, and the default is approximately 2 megabytes for Java top-level services, and 40 kilobytes
for C++ top level services. The heap grows as needed; this parameter is useful for those cases
where the expected heap size is much smaller than the default.

The disableJCasCache attribute on the <casMultiplier> element is optional, and allows disabling of
JCas cache. The JCas cache is an internal datastructure that caches any JCas object created by the
CAS. Thismay result in better performance for applications that make extensive use of the JCas,
but also incurs a steep memory overhead. If you're processing large documents and have memory
issues, you should disable this option. In general, just try running a few experiments to see what
setting works better for your application. The JCas cache is enabled by default.

The processParentL ast attribute on the <casMultiplier> element is optional, and specifies
processing order of an input CAS relativeto its children. If true, aflow of an input CAS will be
suspended after it is returned from a Cas Multiplier delegate until all its child CASes have finished
processing. If false, an input CAS can be processed in parallel with its children.

The <remoteAnalysisEngine> elements are used to specify that the delegate is not co-located, and
how to connect to it. Ther enot eRepl yQueueScal eout isoptional; if not specified it defaults

24

Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

Error Configuration descriptors

to 1. This scaleout is the number of threads that will be used to do the work of the containing
aggregate when replies are returned from this remote delegate. Thiswork is described above. It
may be useful to set thisto > 1 if, for instance, there are many CA Ses coming back from aremote
delegate (perhaps the remote isa CAS Multiplier), and each one has to be deserialized.

The <seriaizer> element describes what method of serialization to use. This element is optional
and it may be set to either bi nary or xni . If omitted, xmi serialization will be used by default.
Xmi serialization can be quite verbose and produce large output for CA Ses containing many
annotations; on the plus side, it supports serialization between components where the type systems
may not be exactly identical (for instance, they could be different subsets of larger, common

type systems). Bi nar y serialization produces a smaller output size and is more efficient; on the
minus side, it requires that the type systems for both components have exactly the same type and
feature codes - which in practice means that the type systems have to be identical. Also, the binary
serialization format is new with 2.3.0 release, and is not always available. For example, C++
services do not (currently) support this format.

The <inputQueue> element specifies the remote's input queue. The casMultiplier element inside a
remoteAnalysisEngine element is only specified if the remote component isa CAS Multiplier, and
it specifies the size of a pool of CASes kept to receive the new CA Ses from the remote component,
and the initial size of those CASes. Its pool Size must be equal to or larger than the casM ultiplier
pool Size specified for that remote component.

Note: Asof release 2.3.1, the previous restrictions limiting remote CAS Multiplier to just
one have been lifted; you can have any number, and they can be scaled out as well.

Note: The brokerURL value used for this remote delegate must be valid for both the client
to send requests and the remote service to send replies.

Services may be running on nodes with firewalls, where the only port open is the one for http. In
this case, you can use the http protocol.

The <asyncPrimitiveErrorConfiguration> element is only allowed within atop-level analysis
engine specification (that is, one that is not a delegate of another, containing analysis engine).

3.10.

Error Configuration descriptors

Error Configuration descriptors can be included directly in the deployment descriptors, or they may
use the <import> mechanism to import ancther file having the specification.

For AS Aggregates, the configuration applicable to delegates goesin
<asyncAggregateErrorConfiguration> elements for the delegate.

For AS Primitives, there is one <asyncPrimitiveErrorConfiguration> element that configures
threshold-based termination. The other kinds of error configuration are not applicable for AS
Primitives.

See ?7?7?7? for acomplete overview of error handling.

The Error Configuration descriptor for AS Aggregates is as follows; note that all the elements are
optional:

<asyncAggr egat eError Confi gurati on
xm ns="http://ui ma. apache. or g/ r esour ceSpeci fier">

<I-- the standard (optional) header -->
<name>[St ri ng] </ nane>

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 25

Error Configuration descriptors

<descri ption>[String] </ descri ption>
<version>[String] </ ver si on>
<vendor >[Stri ng] </ vendor >

<import ... /> <!-- optional -->

<get Met adat aErrors
maxRetri es="n"
timeout="xxx_mlliseconds"
errorActi on="di sabl e|term nate"/>

<processCasErrors
maxRetries="n"
timeout ="xxx_mlliseconds"
conti nueOnRetryFai l ure="true|fal se"
t hr eshol dCount =" xxx"
t hr eshol dW ndow="yyy"
t hreshol dActi on="di sabl e| term nate"/>

<col | ecti onProcessConpl et eErrors
timeout ="xxx_mlliseconds"
addi tional Error Acti on="di sabl e|termi nate"/>

</ asyncAggr egat eErr or Confi gur ati on>

For an AS Primitive, the <asyncPrimitiveErrorConfiguration> element appears at the top level, and
has this form:

<asyncPrimtiveErrorConfiguration
xm ns="htt p://ui ma. apache. or g/ r esour ceSpeci fier">

<!-- the standard (optional) header -->
<name>[St ri ng] </ nane>

<description>[String] </ description>
<versi on>[String] </ versi on>

<vendor >[Stri ng] </ vendor >

<import ... /> <!-- optional -->
<processCasErrors

t hr eshol dCount =" xxx"

t hr eshol dW ndow="yyy"

t hreshol dActi on="term nate"/>

<col | ecti onProcessConpl et eErrors
addi tional Error Action="term nate"/>

</asyncPrimtiveErrorConfiguration>

The maxRetries attribute specifies the maximum number of retriesto do. If thisis set to O (the
default), no retries are done.

The continueOnRetryFailure attribute, if set to 'true’ causes the framework to ask the aggregate's
flow controller if the processing for the CAS can continue. If this attribute is 'false’ or if the flow
controller indicates it cannot continue, further processing on the CASis stopped and an error is
returned from the aggregate. Warning: there are some conditionsin the current implementation
where thisis not yet being done; thisis a known issue.

Warning: If maxRetries > 0 or the continueOnRetryFailure attribute is 'true/, the CAS
will be saved before sending it to remote del egates, to enabl e these actions. For co-located

26 Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

Error Configuration defaults

delegates, the CASis not copied and a process failure may cause it to become corrupt.
Even though this may be true, the continue option is supported. It is the Flow Controller's
responsibility to determine what to do with a CAS that failed during processing.

The timeout attribute specifies the timeout values used when sending commands to remote
delegates. The units are milliseconds and a value of 0 has the special meaning of no timeout.

The thresholdCount and thresholdWindow attributes specify the threshold at which the
thresholdAction istaken. If xxx errors occur within awindow of size yyy, the framework takes
the specified action of either disabling this delegate, or terminating the containing AS Aggregate
(or if not an AS Aggregate, terminating the AS Primitive). A thresholdCount of O (the default) has
the special meaning of no threshold, i.e. errorsignored, and a thresholdWindow of O (the default)
means no window, i.e. al errors counted.

An action of 'disable’ applies to the specified delegate, removing it from the flow so the
containing aggregate will no longer send it commands. The ‘terminate’ action applies

to the entire service containing this component, disconnecting it from itsinput queue

and shutting it down. Note that when disabling, the framework asks the flow controller

to remove the delegate from the flow, but if the flow controller cannot reasonably

operate without this component it can convert the action to ‘terminate’ by throwing an
AnalysisEngineProcessException.FLOW_CANNOT_CONTINUE_AFTER_REMOVE exception.

Note that the only action for an AS Primitive on getMetadata failure is to terminate, and thisis
alwaysthe case, so it isnot listed as an configuration option. Thisis also the default action for an
AS Aggregate getMetadata failure.

3.11.

Error Configuration defaults

If the <errorConfiguration> element is omitted, or if some sub elements of this are omitted, the
following defaults are used:

» The maxRetries parameter is set to 0.

» Timeout defaults are set to 0, meaning no timeout, except for the getM etadata command for
remote del egates; here the default is 60000 (1 minute)

» The continueOnRetryFailure action is set to "false”.
» ThethresholdCount value is set to 0, meaning no threshold, errors are ignored.
» ThethresholdWindow valueis set to 0, meaning no window, all errors are counted.

» No disable or terminate action will be done (i.e. errorsignored), except for the getM etadata
command where the default is to terminate.

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 27

Chapter 4. Asynchronous Scaleout
Application Interface

4.1. Asynchronous Client API Overview

The Asynchronous Client API provides Java applications the capability to connect to and make
requests to UIMA-AS services. ProcessCas and CollectionProcessingComplete requests are
supported.

It provides four kinds of capabilities:
 sending requests, receiving replies, asynchronously (or synchronously)

* setting timeouts and limits on the number of simultaneous requests in process (via setting the
CAS Pool size)

* using an optionally provided collection reader to obtain items to process
« deploying services as part of the startup process

An application can use this API to prepare and send each CAS to aservice one at atime, or
aternately can use a UIMA collection reader to prepare the CASes to be delivered.

The application normally provides a listener class to receive asynchronous replies. For individual
CAS requests a synchronous sendAndReceive call is available. As an aternative for this
synchronous call, instead of using this client API, the standard UIMA Analysis Engine APIs can
be used with an analysis engine instantiated from a JIMS Service Descriptor. See Section 1.7, “JMS
Service Descriptor” [9].

As a convenience, the Asynchronous Client API can also be used to deploy (i.e., "start") services.
Java services deployed by the API are instantiated in the same JVM. Logging for al UIMA
componentsin the same VM are merged; class names and thread 1Ds can be used to distinguish
log entries from different services. All servicesin the VM can be monitored by asingle IM X
console. Native C++ UIMA services can be called from the VM viathe JNI or optionally be
launched as separate processes on the same machine. In either case logging and JIM X monitoring
for native services are integrated with the other UIMA componentsin the VM.

4.2. The UimaAsynchronousEngine Interface

An application developer's starting point for accessing UIMA-AS servicesis the
UimaAsynchronousEngine Interface. For each service an application wantsto use, it must
instantiate a client object:

U maAsynchr onousEngi ne ui maAsEngi ne =
new BaseUl MAAsynchr onousEngi ne_i npl () ;

The following is a short introduction to some important methods on thisinterface.

e« void initialize(Map anApplicati onContext): Initializes an asynchronous
client. Using configuration provided in the given Map object, this method creates a
connection to the UIMA-AS Service queue, creates a response queue, and retrieves

Asynchronous Scaleout Application Interface 29

The UimaA synchronousEngine Interface

the service metadata. This method blocks until areply isreceived from the service or a
timeout occurs. If a collection reader has been specified, its typesystem is merged with that
from the service. The combined typesystem is used to create a Cas pool. On success the
application is notified via the listener's initializationCompl ete() method, which is called
prior to the original call unblocking. Asynchronous errors are delivered to the listener's
entityProcessComplete() method. See Section 4.3, “ Application Context Map” [31] for
more about the ApplicationContext map.

* voi d addSt at usCal | backLi st ener (U naASSt at usCal | backLi st ener
aLi st ener) : Plugsin an application-specific listener. The application receives callbacks
viamethods in this listener class. More than one listener can be added.

* CAS get CAS() : Requests anew CAS instance from a CAS pool. This method blocks until
afreeinstance of CASisavailable in the CAS pool. Applications that use synchronous
sendAndRecei ve() and get CAS() needto call CAS. reset () beforereusing the CAS,
or CAS. r el ease() toreturnit to the CAS pool. Applications that use asynchronous
sendCAS() and get CAS() must not call CAS. r el ease() nor CAS. reset () unless
sendCAS() throws an exception. If sendCAS() call issuccessful, the UIMA AS framework
code releases each CAS automatically when areply is received. The framework releases a
CASrright after acallback listener ent i t yPr ocessConpl et e() completes.

» voi d sendCAS(CAS aCAS) : Sendsagiven CASfor analysisto the UIMA-AS Service.
The application is notified of responses or timeoutsviaent i t yPr ocessConpl et e()
method.

* voi d sendCAS(CAS aCAS, String serviceTarget!d): Sendsagiven CAS
for analysisto a specific instance of aUIMA-AS Service. Thisinstance isidentified
by a serviceTargetld. The application is notified of responses or timeouts via
entityProcessConpl et e() method.

» void set Col | ecti onReader (Col | ecti onReader aCol | ecti onReader) : Plugs
in an instantiated CollectionReader instance to use. This method must be called before
initialize.

» voi d process(): Starts processing a collection using a collection reader. The method
will block until the CollectionReader finishes processing the entire collection. Throws
ResourceProcessException if a CollectionReader has not been provided or initialize has not
been called.

» void col | ecti onProcessi ngConpl et e() : Sends a Collection Processing Complete
reguest to the UIMA-AS Analysis Service. This call is cascaded down to all delegates;
however, if aparticular delegate is scaled-out, only one of the instances of the delegate
will get this call. The method blocks until al of the components that received this call
have returned, or atimeout occurs. On success or failure, the application is notified viathe
statusCallbackL istener's collectionProcessComplete() method.

» voi d sendAndRecei veCAS(CAS aCAS) : Send aCAS, wait for response. On success
aCAS contains the analysis results. Throws an exception on error. Note that thisinterface
cannot be used to interface to a CAS Multiplier service, because it will block until the parent
comes back, and any child CASeswill beignored.

* voi d sendAndRecei veCAS(CAS aCAS,
Li st <Anal ysi sEngi nePer f or manceMet ri cs> conponent Metri csLi st):
Send a CAS, wait for response. On success aCAS contains the analysis results and
componentMetricsList contains per Analysis Engine performance breakdown. This

30 Asynchronous Scaleout Application Interface UIMA Version 2.10.2

Application Context Map

breakdown shows how much time each Analysis Engine took to analyze the CAS. The
method throws an exception on error. Note that this interface cannot be used to interface to
a CAS Multiplier service, because it will block until the parent comes back, and any child
CASeswill beignored.

voi d sendAndRecei veCAS(CAS aCAS,

Li st <Anal ysi sengi nePerf or manceMetri cs> conponent Metri csList, String
servi ceTar get 1 d) : Send a CASto a specified instance of UIMA-AS service and wait for
response. On success aCAS contains the analysis results and componentMetricsList contains
per Analysis Engine performance breakdown. This breakdown shows how much time each
Analysis Engine took to analyze the CAS. The method throws an exception on error. Note
that this interface cannot be used to interface to a CAS Multiplier service, because it will
block until the parent comes back, and any child CASeswill be ignored.

String aHandl e depl oy(String aDepl oynent Descri ptor, Map

anAppl i cati onCont ext) : Deploysthe UIMA-AS service specified by the given
deployment descriptor in this VM, and returns a handle for this service. The application
context map must contain DD2SpringX sltFilePath and SaxonClasspath entries. This

call blocks until the service is ready to process requests, or an exception occurs during
deployment. If an exception occurs, the callback listener's

voi d undepl oy(String aHandl e) : Tellsthe specified service to terminate. The handle
is the same handle that is returned by the corresponding depl oy(. . .) method.

voi d stop() : Stops the asynchronous client. Removes the Cas pool, drops the connection
to the UIMA-AS service queue and stops listening on its response queue. Terminates and
undeploys any services which have been started with this client.

Thisis an asynchronous call, and can be called at any time.

voi d st opProduci ngCases() : Send stop signasfor all CASesthat are currently in
process (where the API is expecting responses). If a CASisa parent of child CASes being
produced by a CAS Multiplier, this operation will also signal the CAS Multiplier to stop
producing new CA Ses.

voi d stopProduci ngCases(String aCasRef erencel d) : send astop request to a
UIMA-AS Service for aparticular CAS-id. If that CASisaparent of child CASesbeing
produced by a CAS Multiplier, this operation will also signal the CAS Multiplier to stop
producing new CA Ses.

4.3. Application Context Map

The application context map is used to passinitialization parameters. These parameters are
itemized below.

DD2SpringXdltFilePath: Required for deploying services.
SaxonClasspath: Required for deploying services.

ServerUri: Broker connector for service. Required for initialize.
Endpoint: Service queue name. Required for initialize.

Resource Manager: (Optiona) aUIMA ResourceManager to use for the client.

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface 31

Status Callback Listener

CasPoolSize: Size of Cas pool to create to send to specified service. Default = 1.

CAS_INITIAL_HEAPSIZE: (Optional) the initial CAS heapsize, in 4-byte words. Default =
500,000.

Application Name: optional name of the application using this AP, for logging.
Timeout: Process CAS timeout in ms. Default = no timeout.

GetMetaTimeout: Initialize timeout in ms. Default = 60 seconds.

CpcTimeout: Collection process complete timeout. Default = no timeout.
SeridizationStrategy:(Optional) xmi or binary serialization. Default = xmi
userName: (Optional) to authenticate user with ActiveMQ broker. Default = null
password: (Optional) to authenticate user with ActiveM Q broker. Default = null

TargetServiceld:(Optional) to target specific service instance. Default = null

4.4. Status Callback Listener

Asynchronous events are returned to applications via methods in classes registered to the
Client API object with addStatusCallbackListener(). These classes must extend the class
org.apache.uima.aze.client.UimaAsBaseCallbackL istener.

e initializationConplete(EntityProcessStatus aStatus): The calback usedto

inform the application that the initialization request has completed. On success aStatus will
be null; on failure use the UimaA SProcessStatus class to get the details.

entityProcessConpl et e(CAS aCas, EntityProcessStatus aStatus):The
callback used to inform the application that a processCas request has completed. On success
aCAS object will contain result of analysis; on failure the CAS will be in the same state as
before it was sent to a service and aStatus will contain the cause of failure. When calling this
method, UIMA AS passes an object of type Ui maASPr ocess St at us as a second argument.
Thisclass extendsEnt i t yPr ocessSt at us and provides 5 additional methods. get CAS() ,
get CasRef erencel d(), getParent CasReferencel d(), get Servi ceTarget!|d(),
& get Per f omanceMet ri csLi st (). ThegetServiceTargetld() returnsan id of aservice
that this client targeted for processing a CAS. Targeting is optional and typically used for
checking if aserviceisviable. The last method provides the per component performance
breakdown as reported by the UIMA Analysis Engine which includes the el apsed time each
component spent analyzing the CAS. The Anal ysi sEngi nePer f or manceMet ri cs class
provides the following API:

e public String getNane():identifiescomponent by name
e public String getUni queNane() : identifies component by unique name

e public long getAnalysisTinme():time(inmillis) component spent analyzing
the CAS

e public | ong get NunProcessed(): total number of CASes processed so far by
the component
See Section 4.6.3, “ Retrieving Asynchronous Results’ [34] for a usage example.

Asynchronous Scaleout Application Interface UIMA Version 2.10.2

Error Results

e col | ecti onProcessConpl et e(EntityProcessStatus aStatus): The callback used
to inform the application that the CPC request has completed. On success aStatus will be
null; on failure use the Ui maASPr ocessSt at us classto get the details.

» onBef or eMessageSend(Ui maASPr ocessSt at us st at us) : The callback used to
inform the application that a CAS is about to be sent to a service. The status object has
get CasRef er encel d() method that returns aunique CASid assigned by UIMA AS. This
reference id may be used to associate arbirary information with a CAS, and is also returned
in the callback listener as part of the status object.

* onBef or eProcessCAS(U naASProcessStatus status, String nodelP, String
pi d) : The callback used to inform the application that a CAS has been delivered to UIMA
AS service and is about to be processed. The status object has get CasRef er encel d()
method that returns a unique CASid assigned by UIMA AS. The nodel P contains | P address
of amachine where UIMA AS serviceisrunning. The pid contains UIMA AS service PID
and athread id. Its syntax is.<PID>:<thread id>. The thread id identifies which thread in
UIMA AS service analyzesa CAS.

e onBeforeProcessMeta(String nodel P, String pid): Thecalback usedto
inform the application that a GetMeta request has been delivered to UIMA AS service
and is about to be processed. The nodel P contains | P address of a machine where UIMA
AS serviceisrunning. The pid contains UIMA AS service PID and athread id. Its syntax
is.<PID>:<thread id>. The thread id identifies which thread in UIMA AS service will
process GetM eta request.

4.5. Error Results

Errors are delivered to the callback listenersasan Ent i t yPr ocessSt at us or
Ui maASPr ocessSt at us object. These objects provide the methods:

* i sException(): Indicates the error returned isin the form of exception messages.

e get Exceptions(): Returnsalist of exceptions.

4.6. Asynchronous Client APl Usage Scenarios

4.6.1. Instantiating a Client API Object

A client APl object must be instantiated for each remote service an application will directly connect
with, and alistener class registered in order to process asynchronous events:

/lcreate Asynchronous Cient API
ui meAsEngi ne = new BaseU MAAsynchr onousEngi ne_i npl () ;
ui mAsEngi ne. addSt at usCal | backLi st ener (new MySt at usCal | backLi st ener());

4.6.2. Calling an Existing Service
The following code shows how to establish connection to an existing service:

/lcreate Map to pass server URI and Endpoi nt paraneters
Map<Stri ng, Obj ect > appCt x = new HashMap<Stri ng, Obj ect >();
/1 Add Broker URI on |ocal machine

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface 33

Retrieving Asynchronous Results

appC x. put (Ui maAsynchr onousEngi ne. ServerUri, "tcp://local host: 61616");
/1 Add Queue Name

appCt x. put (Ui maAsynchr onousEngi ne. Endpoi nt, "RoonNunber Annot at or Queue") ;
/1 Add the Cas Pool Size

appC x. put (Ui maAsynchr onousEngi ne. CasPool Si ze, 2);

/[linitialize
ui mAsEngi ne.initialize(appCx);

Prepare a Cas and send it to the service:

//get an enpty CAS fromthe Cas pool

CAS cas = ui maAsEngi ne. get CAS() ;

/1 Initialize it with input data

cas. set Docunment Text (" Sone text to pass to this service.");
/1l Send Cas to service for processing

ui mAsEngi ne. sendCAS(cas) ;

4.6.3. Retrieving Asynchronous Results

Asynchronous events resulting from the process Cas request are passed to the registered listener.

/| Callback Listener. Receives event notifications from U MA-AS.
cl ass MyStatusCal | backLi st ener extends U maAsBaseCal | backLi st ener {

/1 Method call ed when the processing of a Docunent is conpl et ed.
public void entityProcessConpl ete(CAS aCas, EntityProcessStatus aStatus) {
if (aStatus != null && aStatus.isException()) {
Li st exceptions = aStatus. get Exceptions();
for (int i = 0; i < exceptions.size(); i++) {
((Throwabl e) exceptions.get(i)).printStackTrace();

ui mAsEngi ne. stop();
return;

}

/'l Process the retrieved Cas here
if (aStatus instanceof U maASProcessStatus) {
String casReferenceld =
((Ui maASPr ocessSt at us) aSt at us) . get CasRef erencel d() ;
Li st <Anal ysi seEngi nePer f or manceMetri cs> metrics =
((Ui nmaASPr ocessSt at us) aSt at us) . get Per f or manceMetri csLi st () ;

/1
}

/1 Add ot her required call back nmet hods bel ow. ..

}

4.6.4. Deploying a Service with the Client API

Services can be deployed from a client object independently of any service connection. The main
motivation for this feature is to be able to deploy a service, connect to it, and then remove the
service when the application is done using it.

34 Asynchronous Scaleout Application Interface UIMA Version 2.10.2

Targeting specific service instance with the Client API

/1 create Map to hold required paraneters
Map<Stri ng, Obj ect > appCt x = new HashMap<Stri ng, Obj ect >();
appCt x. put (Ui maAsynchr onousEngi ne. DD2Spri ngXsl t Fi | ePat h,
System getenv(" U MA_HOVE") + "/bin/dd2spring.xsl");
appCt x. put (Ui maAsynchr onousEngi ne. SaxonC asspat h,
"file:" + Systemgetenv("U MA HOVE") + "/saxon/saxon8.jar");
ui mAsEngi ne. depl oy(service, appCx);

4.7. Targeting specific service instance with the
Client API

Service targeting alows an application client to send CA Ses to a specific instance of UIMA-AS
service. This new feature can be used to determine if a serviceisviable or not and is capable of
processing a CAS. When a service starts, it creates alistener on its input queue which handles
messages containing property ‘TargetServiceld'. By default, the property value has a format
<IP>:<PID>. If an incoming message contains the property with a value matching service
<IP>:<PID>, the listener will dequeue the message and process a CA S contained therein.
Optionally, the UIMA-AS service deployer may choose a custom value for the "TargetServiceld'
property. To override the default include -DTargetServicel d=<value> on the service command
line. The <value> may be an arbitrary string with no spaces. The following shows how a client can
target specific instance of a service deployed with a default targeting support:

//get an enpty CAS fromthe Cas pool

CAS cas = ui maAsEngi ne. get CAS() ;

/1 Initialize it with input data

cas. set Docunment Text (" Sone text to pass to this service.");
/1 Send Cas to a service running on 127.0.0.1 with Pl D 4444.
ui mAsEngi ne. sendCAS(cas, "127.0.0. 1: 4444");

The above example uses an asynchronous client APl method. For synchronous invocations use

sendAndRecei veCAS(cas, conponent MetricsList, "127.0.0.1:4444")

4.8. Undeploying a Service with the Client API

Services can be undeployed from a client object asfollows:

/1 create Map to hold required paraneters
Map<String, Obj ect > appCt x = new HashMap<Stri ng, Obj ect >();
appC x. put (Ui maAsynchr onousEngi ne. DD2Spri ngXsl t Fi | ePat h,
System getenv(" U MA_ HOVE") + "/bin/dd2spring.xsl");
appC x. put (Ui maAsynchr onousEngi ne. SaxonC asspat h,
"file:" + Systemgetenv("U MA HOVE') + "/saxon/saxon8.jar");
String id = ui maAsEngi ne. depl oy(service, appCtx);
ui mAsEngi ne. undepl oy(i d);

4.9. Recovering from broker failure

The Client API has a built in recovery strategy to handle cases where a broker fails or becomes
unreachable, and then, later becomes available again.

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface 35

Generating Deployment Descriptor Programmatically

Before sending a new request to a broker, the client checks the state of its connection. If the
connection has failed, the client enters aloop where it will attemp to reconnect every 5 seconds.
One message is logged to notify thisis happening. The recovery attempt stops when the the
connection is recovered, or when all UIMA AS clients that are sharing this failed connection,
terminate.

During the recovery attempt, any CA Sesthat are submitted via the client APIswill fail or timeout.
If the application uses the sendAndReceive() synchronous AP, the failure will be delivered by

an exception. If the application client uses the sendCAS() asynchronous AP, the failure will be
delivered viathe normal callback listener that the application registered with the UIMA ASclient.

4.10. Generating Deployment Descriptor
Programmatically

The uima-as includes a Deployment Descriptor Factory to facilitate programmatic creation of both
Primitive and Aggregate Deployment Descriptors. The factory and its supporting classes provide
an API to manipulate all aspects of the Deployment Descriptor, including scaleout, error handling,
etc. The following is a snippet of java code showing how to generate a Primitive Deployment
Descriptor, override default scaleout and error handling settings, and deploy a service.

/1 Set up a context object containing basic service deploynent information
Servi ceCont ext context =
new Servi ceCont ext | npl (" PersonTitle",
"PersonTitl e Annotator Description",
"c://PersonTitl eAnnot at or. xm ",
"PersonTitl eQueue", "tcp://local host: 61616");

/] create DD with default settings
U maASPri mti veDepl oynent Descri ptor dd =
Depl oynent Descri pt or Factory.
createPrimtiveDepl oyment Descri pt or (cont ext);

/1 Get default Error Handl er for Process
dd. get ProcessErrorHandl i ngSetti ngs(). set Threshol dCount (4);

/1 Two instances of AE in a jvm
dd. set Scal eup(2);

/'l Cenerate depl oynent descriptor in xm format
String ddXM. = dd.toXM();

/!l Wite the DDto a tenp file

File tenpFile =

File.createTenpFil e("Depl oy_PersonTitle", ".xm");
Buf feredWiter out =

new Buf feredWiter(new FileWiter(tenmpFile));
out.wite(ddXWM);

out. close();

/1 create a Map to hold required paraneters

Map<String, Qbj ect> appCtx =
new HashMap<Stri ng, oj ect>();

appC x. put (Ui maAsynchr onousEngi ne. DD2Spri ngXsl t Fi | ePat h,
System getenv(" U MA HOVE") + "/bin/dd2spring.xsl");

appC x. put (Ui maAsynchr onousEngi ne. SaxonC asspat h,
"file:" + Systemgetenv("U MA HOVE') + "/saxon/saxon8.jar");

/1 Depl oy service

36 Asynchronous Scaleout Application Interface UIMA Version 2.10.2

Sample Code

ui meAsEngi ne. depl oy(t enpFi | e. get Absol ut ePat h(), appCtx);

4.11. Sample Code

See SUIMA_HOM E/exampl es/src/org/apache/uimalexamples/as’/RunRemoteAsyncAE.java

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface

37

Chapter 5. Monitoring, Tuning and Debugging

UIMA AS deployments can involve many separate parts running on many different machines.
Monitoring facilities and tools built into UIMA AS help in collecting information on the
performance of these parts. Y ou can use the monitoring information to identify deployment issues,
such as bottlenecks, and address these with various approaches that ater the deployment choices;
thisis what we mean by "tuning the deployment".

Monitoring happensin severa parts.

» Each node running a VM hosting UIMA AS services or clients provides IMX information
tracking many items of interest.

* UIMA AS servicesinclude some of these measurements in the information passed back
toits client, along with the returned CAS. This alows clients to collect and aggregate
measurements over a cluster of remotely-deployed components.

Tuning aUIMA AS application is done using several approaches.

» changing the topology of the scaleout - for instance, allocating more nodes to some parts,
lessto others

* adjusting deployment parameters, such as the number of CASesin a CasPool, or the number
of threads assigned to do various tasks

In addition, tuning can involve changing the actual analytic algorithms to tune them - but that is
beyond the scope of this chapter.

UIMA AS scale out configurations add multithreaded and out-of-order execution complexities
to core UIMA applications. Debugging aUIMA AS application is aided by UIMA's modular
architecture and an approach that exercises the code gradually from simpler to more complex
configurations. Two useful built-in debug features are:

» Javaerrors at any component level are propagated back to the component originating
the request, with afull call chain of UIMA AS components, within colocated aggregate
components and across remote services which are shared by multiple clients.

» CASes can be saved before sending to any local or remote delegate and later used to
reproduce problemsin a simple unit testing environment.

5.1. Monitoring

5.1.1. IMX

JMX (Java Management Extensions) is a standard Java mechanism that is used to monitor and
control Java applications. A standard Javatool provided with most Javas, caledj consol e, isa
GUI based application that can connect to a VM and display the information IMX is providing,
and also control the application in application-defined specific ways.

JMX information is provided by a hierarchy of IMX Beans. More background and information on
JMX and the jconsole tool is available on the web.

Monitoring, Tuning and Debugging 39

IJMX Information from UIMA AS

5.1.2. IMX Information from UIMA AS

JMX information is provided by every UIMA AS service or client asit runs. Each item provided
is either an instantaneous measurement (e.g. the number of itemsin a queue) or an accumulating
measurement (e.g. the number of CASes processed). Accumulating measures can bereset to 0
using standard IM X mechanisms.

JMX information is provided on aJVM basis; a JVM can be hosting 0 or more UIMA AS Services
and/or clients. A UIMA AS Serviceis defined as a component that connects to a queue and accepts
CASesto process. A UIMA AS Client, in contrast, sends CA Ses to be processed; it can be atop
level client, or aUIMA AS Service having one or more AS Aggregate delegates, to which it is
sending CA Ses to be processed.

UIMA AS Services send some of their measurements back to the UIMA AS Clients that sent
them CA Ses; those clients incorporate these measurements into aggregate statistics that they
provide. This alows accumulating information among components deployed over many nodes
interconnected on a network.

Some JM X measurement items are constant, and document various settings, descriptors, names,
etc., in use by the (one or more) UIMA AS services and/or clients running on this VM.

Some time measurements are associated with running some process. These, where possible, are cpu
times, as measured by the thread or threads running the process, using the ThreadM X Bean class.
On some Javas, thread-based cpu time may not be supported, however. In that case, wall-clock time
is used instead.

If the process is multi-threaded, and the cpu has multiple cores, you can get time measurements
which exceed the wall clock interval, due to the process consuming cpu time on multiple threads at
once.

Timing information not associated with running code, such asidle time, is measured as wall-clock
time.

The following sections describe the IMX Beans implemented by UIMA AS. The Notesin the
tables include the following flags:

* inst/acc/const - instantaneous, accumulating, or constant measurement

 sent - sent up to the invoking client with returning CAS

5.1.2.1. UIMA AS Services JMX measures

The next 4 tables detail the IMX measures provided by UIMA AS services.

Service information

Name Description Units Notes

state The state of the service (Running, Initializing, string inst
Disabled, Stopping, Failed)

input queueName | The name of the input queue string const

reply queueName | Theinternally generated name of the reply queue | string const (but

could change

40

Monitoring, Tuning and Debugging UIMA Version 2.10.2

IJMX Information from UIMA AS

Name Description Units Notes
dueto
reconnection
recovery)

broker URL The URL of the IMS queue broker string const
deployment The path to the deployment descriptor for this string const
descriptor service
isCAS Multiplier | isthisServicea CAS Multiplier boolean | const
istop level isthis Service atop level service, meaning that it | boolean | const
connects to an input queue on a queue broker
service key The key name used in the associated Analysis string const
Engine aggregate that specifies this as a delegate
is Aggregate isthis service an AS Aggregate (i.e., has delegates | boolean | const
and is marked async="true")
analysisEngine The number of replications of the AS Primitive count const
instance count
Service Performance Measurements
Name Description Units Notes
number of CASes | The number of CA Ses processed by a component count- | acc
processed CASes
cas deserialization | Thethread time spent deserializing CASes milli acc
time (receiving, either from client, or replies from seconds
delegates)
cas serialization The thread time spent serializing CA Ses (sending, count- | acc
time either to delegates or back to client) CASes
analysistime The thread time spent in AS Primitive analytics milli acc
seconds
idletime Thewall clock time a service has been idle. Measure | milli acc
starts after areply is sent until the next request is seconds
receives, and excludes serialization/deserialization
times.
cas pool wait time | The time spent waiting for a CAS to become milli acc
availablein the CAS Pool seconds
shadow cas pool A shadow cas poal is established for serviceswhich | milli acc
wait time are Cas Multipliers. Thisis the time spent waiting for | seconds
a CASto become available in the Shadow CAS Pool.
time spent in CM The time spent inside Cas Multipliers, getting milli acc
getNext another CAS. Thistime (doesn't include / seconds
includes ??7?) the time spent waiting for a CASto
UIMA Version 2.10.2 Monitoring, Tuning and Debugging 41

IJMX Information from UIMA AS

Name Description Units Notes

become available in the CAS Pool waiting for aCAS
to become available in the CAS Pool

process thread The number of threads available to process requests | count const
count (number of instances of a primitive)

reply thread count | The number of threads available to process replies count const

Co-located Service Queues

Co-located services use light-weight, internal (not IMS) queues. These have similar measures as
are used with IM S queues, and include these measures for both the input queues and the reply
(output) queues:

Name Description Units Notes
consumer count The number of threads configured to read the queue | count const
degueue count The number of CASes that have been read from this | count acc

queue
gueue size The number of CASesin the queue count inst

Service Error Measurements

Name Description Units Notes
process Errors The number of process errors count acc
getMetadata Errors | The number of getMetadata errors count acc
cpc Errors The number of Collection Process Complete (cpc) count acc

errors

5.1.2.2. Application Client information

This section describes monitoring information provided by the UIMA AS Client APIs. Any
code that uses the Section 4.1, “Async Client API” [29], such as the example application client
RunRenot eAsyncAE, will have a set of these IMX measures. Currently no additional tooling
(beyond standard tools likej consol e) are provided to view these.

Client Measures

Name Description Units Notes

application Name | A user-supplied string identifying the application string const

service queue name | The name of the service queue this client connectsto | string const

serialization either xmi or binary. Thisisthe serialization the string const
method client will use to send CASes to the service, and also

tells the service which serialization to use in sending

the CA Ses back.

42 Monitoring, Tuning and Debugging UIMA Version 2.10.2

IJMX Information from UIMA AS

Name Description Units Notes
cas pool size This client's cas pool size, limiting the number of count const
simultaneous outstanding requests in process
total number of count of the total number of CASes sent from this count acc
CA Ses processed client. Note: in the case where the serviceisa Cas
Multiplier, the "child" CASes are not included in this
count.
total timeto total thread time spent in processing all CA Ses, milli acc
process including time in remote delegates seconds
average process total number of CA Ses processed / total timeto milli inst
time process seconds
max processtime | maximum thread time spent in processing a CAS, milli inst
including time in remote delegates seconds
total serialization total thread time spent in serializing, both to milli acc
time delegates (and recursively, to their delegates) and seconds
replies back to senders
average average thread time spent in serializing a CAS, both | milli inst
serialization time to delegates (and recursively, to their delegates) and | seconds
replies back to senders
max serialization maximum thread time spent in serializing a CAS, milli inst
time both to delegates (and recursively, to their delegates) | seconds
and replies back to senders
total deseridization | total thread time spent in deserializing, both milli acc
time replies from delegates and CA Ses from upper level seconds
components being sent to lower level ones.
average average thread time spent in deserializing, both milli inst
deserialization time | replies from delegates and CA Ses from upper level | seconds
components being sent to lower level ones.
max deserialization | maximum thread time spent in deserializing, both milli inst
time replies from delegates and CA Ses from upper level seconds
components being sent to lower level ones.
total idletime total wall clock time atop-level servicethread has milli acc
been idle since the thread was | ast used. If thereis seconds
more than one service thread, this number is the sum.
averageidletime average wall clock time all top-level service threads | milli inst
have been idle since they were last used seconds
max idletime maximum wall clock time atop-level servicethread | milli inst
has been idle since the thread was last used seconds
total timewaiting | total wall clock time, measured from thetime a milli acc
for reply CASissent to the top-level queue, until that CASis | seconds
returned. Any generated CA Ses from Cas Multipliers
are not counted in this measurement.
UIMA Version 2.10.2 Monitoring, Tuning and Debugging 43

IJMX Information from UIMA AS

Name Description Units Notes
averagetime average wall clock time from thetimea CASissent | milli inst
waiting for reply to the reply isreceived seconds
max time waiting maximum wall clock time from thetimea CASis milli inst
for reply sent to the reply isreceived seconds
total response total wall clock time, measured from the time milli acc
latency time aCAS s sent to the top-level queue, including seconds

the serialization and deserialization times at the
client, until that CASisreturned. Any generated
CASesfrom Cas Multipliers are not counted in this

measurement.
average response average wall clock time, measured from the time milli inst
latency time a CASis sent to the top-level queue, including the seconds

serialization and deserialization times at the client,
until that CASis returned.

max response maximum wall clock time, measured from thetime | milli inst
latency time aCASis sent to the top-level queue, including the seconds
serialization and deserialization times at the client,
until that CASis returned.

total timewaiting | total wall-clock time spent waiting for afree CASto | milli acc
for CAS be available in the client's CAS pool, before sending | seconds
the CAS to input queue for the top level service.

averagetime average wall-clock time spent waiting for afree CAS | milli inst
waiting for CAS to be availablein the client's CAS pool seconds

max time waiting maximum wall-clock time spent waiting for afree milli inst
for CAS CASto beavailablein the client's CAS pool seconds

total number of total number of CA Ses fetched from the CAS pool count acc
CA Ses requested

Client Error Measurements

Name Description Units Notes
getMeta Timeout number of times a getM eta timed out count acc
Error Count
getMeta Error number of times a getMeta request returned with an | count acc
Count error
process Timeout number of times a process call timed out count acc

Error Count

process Error Count | number of times a process call returned with an error | count acc

Monitoring, Tuning and Debugging UIMA Version 2.10.2

Logging Sampled IMX information at intervals

5.2. Logging Sampled JMX information at intervals

A common tuning procedure isto run a deployment for afairly long time with atypical load, and
to see what and where hot spots devel op. During this process, it is sometimes useful to convert
accumulating measurements into averages, perhaps averages per CA S processed.

UIMA ASincludes a monitor component, org.apache.uima.aae.jmx.monitor.JmxMonitor, to
sample IMX measures at specified intervals, compute various averages, and write the results

into the UIMA Log (or on the console if no log is configured). The monitor program can be
automatically enabled for any deployed service by specifying - D parameters on the VM command
line which launches the service, or, it can be run stand-alone; when run stand-alone, you provide an
argument specifying the VM it isto connect to to get the IMX information. It only connects to one
JVM per run; typically, you would connect it to the top-level service.

The monitor outputs information for that service and its immediate delegates (local or remote);
however, it includes information from the complete recursive chain of delegates when computing
its measures. Y ou can get detailed monitoring for sub-services by starting or attaching a monitor to
those sub-services.

ActiveMQ uses Queue Brokers to manage the IM S queues used by UIMA AS. These brokers have
JMX information that is useful in tuning applications. The Monitor program identifies the Queue
Broker being used by the service, and connectsto it and incorporates information about queue
lengths (both the input queue and the reply queue) into its measurements.

5.2.1. Configuring JVM to run the monitor

Specify the following VM System Variable parameters to configure a UIMA AS Client or Service
to enable sampling and logging of IMX measures:

* -Dui ma. j nx. noni tor.interval =1000 - (default is 1000) specifies the sampling interval
in milliseconds

e -Duima.jnmx.monitor.formatter=<Custonformatterd assName>

* -Dcom sun. nanagenent . j nxr enot e - enable IMX (only needed for local monitoring,
not needed if port is specified)

e -Dcom sun. managenent . j nxr enot e. port =8009
* -Dcom sun. managenent . j nxr enot e. aut henti cat e=f al se

e -Dcom sun. managenent . j nxr enot e. ssl =f al se
This configures IMX to run on port 8009 with no authentication, and sets the sampling interval to 1
second, and specifies a custom formatter class name.

Therearetwof or mat t er - cl asses provided with UIMA AS:

e org.apache. ui ma. aae. j nx. noni t or . Basi cUi maJnmxMoni t or Li st ener - thisisa
multi-line formatter that formats for human-readable output

* org. apache. ui ma. aae. j nx. noni t or. Si ngl eLi neU maJmxMoni t or Li st ener
- thisisaformatter that produces one line per interval, suitable for importing into a
spreadsheet program.

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 45

Running the Monitor program standalone

Both of theselog to the UIMA log at the INFO log level.

Y ou can also write your own formatter. The monitor provides an API to plug in a custom formatter
for displaying service metrics. A custom formatter must implement JmxMonitorListener interface.
See the method st ar t Moni t or intheclassUl MA_Ser vi ce for an example of how custom JM X
Listeners are plugged into the monitor.

5.2.2. Running the Monitor program standalone
The monitor program can be started separately and pointed to arunning UIMA AS Client or
Service. To start the program, invoke Java with the following classpath and parameters:
¢ ClassPath:
¢ %UIMA_HOME%/lib/uimaj-as-activemq.jar
¢ %UIMA_HOME%/lib/uimaj-as-core.jar
e %UIMA_HOME%/lib/uima-core.jar
¢ %UIMA_HOME%/apache-activemg/activemg-all-5.6.0.jar
» Parameters:
e -Diava. util.logging.config.file=%J M\ HOVEY confi g/
Moni t or Logger . properti es - specifies the logging file where the information is
written to
e org.apache. ui ma. aae. j nx. noni t or . JnxMbni t or - the classwhose main
method is invoked
e uri -theURI of the jmx instance to monitor.
e interval -the(optional) sampling interval, in milliseconds (default = 1000)
When run in this manner, it is not (currently) possible to specify the log message formatting class;
the multi-line output format is always used.
5.2.3. Monitoring output
The monitoring program combines information from the JM X measures, including the associated
Queue Broker, sampling accumul ating measurements at the specified sampling interval, and
produces the following outputs.
Name Description Units
Input queue depth number of CASes waiting to be processed by a service count
Reply queue depth number of CASes returned to the client but not yet picked | count
up by the client
CASes processed in Number of CASes processed in this sampling interval count
interval
46 Monitoring, Tuning and Debugging UIMA Version 2.10.2

Disabling IMX in UIMA-AS JUnit tests

Name Description Units
Idletimeininterval Thetotal time this service has been idle during thisinterval | milli
seconds
Anadysistimein The sum of the times spent in analysis by the service during | milli
interval thisinterval, including analysis time spent in delegates, seconds
recursively
Cas Pool free Cas Number of available CASesin the Cas Pool at the end of count
Count the interval

In addition to the performance metrics the monitor also provides basic service information:
* Service name
* Isservicetop level
* Isservice remote
* Isserviceacas multiplier
» Number of processing threads

* Service uptime (milliseconds)

5.3. Disabling JMX in UIMA-AS JUnit tests

When opening IMX RMI port is not possible due to security concerns, the UIMA-AS can
start without IMX support. To disable IMX please add the following asa VM argument -
Duima.as.enable.jmx=false

5.4. Tuning
5.4.1. Tuning procedure

This section is a cookbook of best practices for tuning a UIMA AS deployment. The summary
information provided by the Monitor program is used to guide the tuning.

The main metric for detecting an overloaded service is the input queue depth. If it is growing or
high, the serviceis not able to keep up with the load. There are more CASes arriving at the queue
than the service can process. Consider increasing number of instances of the services within the
JVM (if on a multi-core machine having additional capacity), or deploy additional instances of the
service.

The main metric for detecting idle serviceistheidletime. If it ishigh, it can indicate that the
service is not receiving enough CASes. This can be caused by a bottleneck in the service's client;
supporting evidence for this can be a high reply queue depth for the client - indicating the client
isoverloaded. If the idle timeis zero, the service may be saturated; adding more instances could
relieve a bottleneck.

A CasPool free Cas Count of 0 can point to a bottleneck in a service's client; supporting evidence
for this can be ahigh idle time. In this case, the service does not have enough CASesin its pool and
isforced to wait. Remember that a CASis not returned to the Service's CAS pool until the client

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 47

Tuning Settings

(which can be a parent asynchronous aggregate) signalsit can be. A typical reason isaslow client
(look for evidence such as a high reply queue depth). Consider incrementing service's Cas pool and
check the client's metrics to determine areason why it is slow.

An asynchronous system must have something that limits the generation of new work to do.
CasPoals are the mechanism used by UIMA ASto do this. Also, because CASes can have large
memory requirements, it isimportant to limit the number and sizes of CASesin a process.

5.4.2. Tuning Settings

This section has alist of the tuning parameters and a description of what they do and how they

interact.

Name

Description

number of service instances

Y ou can adjust the number of service processes assigned to a
particular service, even dynamically, by just starting / stopping
additional serversthat specify the sameinput queue.

number of pipelinethreadsin a
service instance

Similar to the number of service processes above, this specifies
replication of an AS Primitive within each JVM process. This
alows multiple processing threads to share large in-heap objects
and thus utilize more CPU in multi-core machines without
running out of RAM.

CAS pool size

This size limits the number of CA Ses being processed
asynchronously.

casMultiplier pool Size

This size limits the number of CASes generated by aCAS
Multiplier that are being processed asynchronously.

service instance warm up

Allow warm up of each JVM process before attaching

to the service input queue by processing a collection

of input CASes. Thisfeatureis enabled by specifying -
DWarmUpDataPath=zi pFi | e, where the zipFile contains
CASesin Xmi or compressed binary formats. If the zipFile
name endsin ".zip' the name is assumed to be afully rooted

or relative file path, else the nameis assumed to bein the
classpath with '.zip' appended. For compressed binary, the first
entry in the zipfile must be typesystem.xml containing the full
typesystem of the serialized CA Ses.

Service input queue prefetch

If set greater than 0, allows up to "n" CASesto be pulled into
one service provider, at atime. This can increase throughput,
but can hurt latency, since one service may have several CASes
pulled into it, queued up, while another instance of the service
could be "starved" and be sitting thereidle.

Specifying
async="true"/"false" on an

aggregate

The default is false, because there is less overhead (no queues
are set up, etc.). Setting thisto "true" allows multiple CASesto
flow simultaneously in the aggregate.

remoteReplyQueueScal eout

This parameter indicates the number of threads that will be
deployed to read from the remote reply queue. Set to > 1 if
deserialization time of repliesis a bottleneck.

48

Monitoring, Tuning and Debugging UIMA Version 2.10.2

Debugging

5.5. Debugging

One of the strongest UIMA features is the ability to develop and debug componentsin isolation
from each other, and then to incrementally combine components and scaleout complexity. All that
is needed to exercise each configuration are one or more appropriate input CA Ses.

It isstrongly advised to first test UIMA components in the core UIMA environment with a variety
of input CASes. If the entire application will not fit in asingle process, deploy remote delegates
as UIMA AS primitives with only a single instance (see Section 1.4.4.1, “Multiple Instances’ [6]),
and access them via JM S service descriptors (see Section 1.7, “JM S Service Descriptor” [9]).

Run as much input data thru this "single-threaded" configuration as needed to eliminate most
"agorithmic" errors and to measure performance against analysis time objectives. Thread safety
and analysis ordering issues can then be addressed separately.

Thread safety bugs. Components intended to be run multi-threaded should first be deployed as
amultiple instance UIMA AS service (again see Section 1.4.4.1, “Multiple Instances’ [6]), and
fed their input CASes with a driver capable of keeping all instances busy at the same time. A good
application is the sample driver SUIMA_HOM E/bin/runRemoteAsyncAE; use the -p argument

to increase the number of outstanding CAS requests sent to the target service. When looking for
threading problems try using http://findbugs.sourceforge.net/. In addition to looking for exceptions
caused by thread unsafe code, check that the single and multi-threaded analysis results are the
same.

Analysisordering bugs. In acore UIMA aggregate CA Ses are processed by each delegate in input
order. This relationship changes for the same aggregate deployed asynchronoudly if one of the
delegatesis replicated, as CASes are progressed in parallel and then progress thru the subsequent
aggregate flow in adifferent order then they are received. Similarly with adelegate CasMultiplier
in acore UIMA aggregate each child CASis processed to completion before the next child CAS

is started and the parent CAS is processed last. When running asynchronously the parent CAS

can arrive at downstream components ahead of its children because the parent isreleased from a
CasMultiplier immediately after the last child is created. For applications which require al children
to be processed before their parent, use the processParentL ast flag (see Section 3.9, “Analysis
Engine’ [23]).

Timing issues. Invariably with complex analytics, some components will be slower and some
artifacts will take longer to process than desired. Making performance improvements relies on
identifying components running slower than expected and capturing the slow-running artifacts to
study in detail.

5.5.1.

Error Reporting and Tracing

After the system is scaled out and substantially more datais being processed it is likely that
additional errorswill occur.

Javaerrors at any component level are propagated back to the component originating the request
(unless suppressed by UIMA AS error handling options, see Section 2.3, “Error handling

overview” [14]). The error stack traces the call chain of UIMA AS components, within colocated
aggregate components and across remote services which are shared by multiple clients. Some errors
can be resolved with this information alone.

If process timeouts are not used (see Section 3.10, “Error Configuration descriptors’ [25]) an
asynchronous system can hang if one analysis step somewhere in the system has hung. Given many
CASesin process at the same time it can be useful to create a custom trace of CAS activity by
appropriate logging in a custom flow controller. Such logging would have a unique identifier in

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 49

CASLogging

every CAS, usualy asingleton FeatureStructure with a unique String feature. Identifiers for child
CA Ses should include some reference to the CasMultiplier they were created from as well astheir
parent CAS.

The flow controller is also the ideal place to measure timing statistics for components of interest.
Global stats can easily be measured using the time between flow steps, and time thresholds used to
flag specific CA Ses causing problems. Again the unique CAS identifier can be quite useful here.

5.5.2. CAS Logging

Within aUIMA AS asynchronous aggregate, CA Ses can be saved before sending to any local
or remote delegate and later used to reproduce a problem in a simple unit testing environment.
Logging is currently not supported for delegates of a UIMA aggregate deployed synchronously.

CASes are stored in XmiCas format in a separate directory for each delegate with logging enabled.
Along with the CASfilesin each directory isafile "typesystem.xml" containing the complete CAS
type system. A delegate's directory name is the full delegate context with /' chars converted to '-'. If
not specified, the base CAS logging directory is the process current directory. By default the name
of each CASfileisthe timein milliseconds after CAS logging begins for a delegate. If astring
existsin the CAS that should be used as the file name, it can be specified by {type, feature} found
in a specific view.

A list of delegatesto enable for CAS logging can be specified as a Java property. Logging
can also be enabled/disabled dynamically viaJMX. CAS logging control is enabled in the
"Annotator_Service Info" bean for each asynchonous del egate.

Java properties used for CAS logging:

Property Description

UIMA_CASLOG BASE DIRECTORY optional; thisisthe directory under which sub-
directories with XmiCas files will be created.
If not specified, the process's current directory
will be the base.

UIMA_CASLOG_COMPONENT_ARRAY Thisis a space separated list of delegates

keys. If adelegate is nested inside a co-

located async aggregate, the name would
include the key name of the aggregate,

e.g. "someAggName/someDelName". The
XmiCas files will then be written into directory
$UIMA_CASLOG _BASE_DIRECTORY/
someAggName-someDelName. Note that
delegates for the top level aggregate do not
require an aggregate name context.

UIMA_CASLOG_TYPE_NAME optional; thisisthe name of a FeatureStructure
in the CAS containing a unigque string to use
to name each XmiCasfile. If not specified,
XmiCas file name will be N.xmi, where N is
the time in microseconds since the component
was initialized.

UIMA_CASLOG FEATURE NAME optional unlessthe TYPE_NAME is specified;
this parameter gives the string feature to use.

50 Monitoring, Tuning and Debugging UIMA Version 2.10.2

CASLogging

Property

Description

If the string value contains one or more /"
characters only the text after the last "/ will be
used.

UIMA_CASLOG_VIEW_NAME

optional; if the TYPE_NAME and
FEATURE_NAME parameters are specified
this string selects the CAS view used to access
the FeatureStructure with unique string feature.

UIMA Version 2.10.2

Monitoring, Tuning and Debugging

51

Chapter 6. Asynchronous Scaleout Camel
Driver

6.1. Overview

Apache Camelt is an integration framework based on Enterprise Integration Patterns® which uses
routes for rule-based message routing and mediation. The camel project has a large number of
components which provide access to awide variety of technologies and are the building blocks of
the routes. The Asynchronous Scaleout Camel Driver is a component to integrate UIMA ASinto
Camdl.

6.2. How does it work?

The Asynchronous Scaleout Camel Driver sends the camel message body (without headers) to a
specified UIMA AS processing pipeline. Accessing the analysis results which are written into the
CASisnot possible from a camel route. There are basically two usage scenarios. The Camel Driver
can be used to drive the processing of aUIMA AS cluster in which each server instance runs a

cas multiplier to fetch the actual document from a database. In this scenario the camel route only
sends an ID of the document to the cas multiplier which does the actua fetching of the document.
In the second usage scenario the Camel Driver is used to send a document in a one way fashion to a
UIMA AS processing pipeline which then takes care of processing it. In case an error occurs inside
the processing pipeline the exception is forwarded to camel and set on the message as response.
Error handling is described in the Error handling in Camel® documentation.

The camel driver expects a string message body; if it is not of the type string it might be
automatically converted by camel type converters. The string message body is set asthe CAS's
document text. An Analysis Engine calls CAS CAS.getDocumentText() to retrieve the string.

6.3. URI Format

The Asynchronous Scaleout Camel Driver is configured with a configuration string. The
configuration string must contain the broker location and name of the IM S queue used to
communicate with UIMA AS. It has the following format

ui madri ver : br oker URL?queue=naneof queue&CasPool Si ze=n&Ti meout =t

which could for example be specified as

ui madri ver:tcp://local host: 61616?queue=Text Anal ysi sQueue

. The CasPool Size parameter is optional but if it is present n must be an integer which is larger
than zero, otherwise the UIMA AS default will be used. The Timeout parameter is optional but if
present t in milliseconds must zero or larger.

L http://camel .apache.org
2 } . .

http://camel .apache.org/enterprise-integration-patterns.html
3 http://camel .apache.org/error-handling-in-camel .html

Asynchronous Scaleout Camel Driver 53

http://camel.apache.org
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/error-handling-in-camel.html

Sample

6.4. Sample

Camel enables adeveloper to create quickly all kinds of applications out of existing and

custom components. The sample demonstrates how UIMA ASisintegrated with other

technol ogies. Readers who are new to camel should read the Getting Started* chapter in the camel
documentation.

First asimple sample: A user wantsto test aUIMA AS processing pipeline, sending it a set of test
documents to process. The plain text test documents are located in afolder "/test-data’. A camel
route for this defined with Java DSL® could look like this:

from("file://test-data?noop=true").
to("ui madriver:tcp://1ocal host: 61616?queue=Text Anal ysi sQueue") ;

In the route above the file component sends a message for every file to the uimadriver component.
The message contains a reference to the file but not the content of the file itself. The uimadriver
component expects a message with string body as input. An internal camel type converter will read
in the bytes of the file, decode them into characters with the default platform encoding and then
create a string object which is passed to the uimadriver component. The uimadriver then puts the
string into a CAS and sends it viathe UIMA AS Client API to a processing pipeline. Note that
results from the returned CAS cannot be retrieved in a camel route.

A more complex sample. A web site has an area where people can upload pictures. The pictures
must be checked for appropriate content. The pictures are pushed to the site via http, stored in

a database and assigned to the human controllersto classify them either as appropriate or non-
appropriate. That is achieved with an existing camel route and a servlet which receives the images
and sends them to the camel route.

from"direct:start").
to("imagewiter").
to("j ms: queue: HumanPi ct ur eAnal ysi sQueue") ;

The message containing the image is received by the direct:start endpoint, the image is written to a
database and replaced with a string identifier by the "imagewriter" component, in the last step the
camel jms component posts the identifier on aJMS queue to notify the reception of a new image.
The notification is received by a client tool which the human controllers use to classify an image.

To lessen the workload on the human reviewers, a system should automatically classify the pictures
and only assign questionable cases to human reviewers. The automatic classification is done by an
UIMA Analysis Engine. The AE can mark an image with one of three classes appropriate, non-
appropriate and unknown. In the case of unknown the AE is not confident enough which of the first
two classesis correct. To be scalable, the processing pipeline is hosted by UIMA AS and contains
three AEs, one to fetch the image from the database, a classification AE and an AE to write the
class of the image back to the database. Thefirst AE istypical acas multiplier and receives a

CAS which only contains the string identifier but not the actual image. The cas muliplier usesthe
identifer to fetch the image from the database and outputs a new CAS with the actual image. The
Camel route blocks until the CAS is processed by the following two AEs and depending on the
classin the database the picture is assigned to a human controller or not.

http://camel .apache.org/book-getting-started. html
5 http://camel .apache.org/dsl.html

54 Asynchronous Scaleout Camel Driver UIMA Version 2.10.2

http://camel.apache.org/book-getting-started.html
http://camel.apache.org/dsl.html
http://camel.apache.org/book-getting-started.html
http://camel.apache.org/dsl.html

Implementation

from"direct:start").

to("imgewiter").

to("uimadriver:tcp://1ocal host: 61616?queue=U maPi ct ur eAnal ysi sQueue").
to("class-retriever").

/1 filters nessages with class appropriate and non-appropriate
filter(header("picture-class").isEqual To("unkown")).

to("j ms: queue: HumanPi ct ur eAnal ysi sQueue");

Thefirst part isidentical, after the imagewriter the string identifier is send to the UIMA AS
processing pipeline which writes the image class back to the database. The classis retrieved with
the custom class-retriever component and written to a message header field, only if the classis
unknown the image is assigned for human classification.

Note: instead of using a CAS multiplier, a more straight-forward approach would use just one CAS,
having 2 views. one view would contain the string identifier of the image, and the other view would
have the image to be analyzed (or areferenceto it in the DB).

6.5. Implementation

The Asynchronous Scaleout Camel Driver isatypical camel component. The camel documentation
Writing Components6 describes how camel components are written. The source code can be

found in the uimaj-as-camel project. The implementation defines an asynchronous producer
endpoint, which isimplemented in the or g. apache. ui ma. canel . Ui maAsPr oducer class. The
Ui maAsPr oducer . pr ocess method gets the string body of the message, wrapsit in a CAS object
and sendsit to UIMA AS. Since the producer is asynchronous the camel message is registered with
the referenceid of the sent CASin an intermediate map, when the CAS comes back from UIMA
AS, the camel message is looked up with the referenceid of the CAS and the processing of the
camel message is completed. For further details please read the Ui maAsPr oducer implementation
code.

8 http://camel .apache.org/writing-components.html

UIMA Version 2.10.2 Asynchronous Scaleout Camel Driver 55

http://camel.apache.org/writing-components.html
http://camel.apache.org/writing-components.html

Chapter 7. Asynchronous Scaleout Tools

7.1. Overview

Several tools are avail able to use with UIMA-AS, including tools to start a IMS Broker, deploy a
UIMA-AS service, start up atrivia client that reads documents from a directory and sends them to
aremote service, and query anamed service for its meta data.

Additionally, there is an extension to the Component Descriptor Editor that gives a form-based
editor capability to edit deployment descriptors, along with wizards to enable creating these kinds
of descriptors.

7.2. Starting a broker

Thest art Br oker script starts an ActiveMQ broker that can then be used to connect UIMA-AS
clientsto UIMA-AS Services.

All arguments are optional; if none are given, the broker is started on the same machine using
defaults. See the script for details on how this can be configured.

7.3. Deploying a UIMA-AS Service

Thedepl oyAsyncSer vi ce script deploys one or more UIMA-AS services. Its arguments are one
or more paths to deployment descriptors.

The Java source code that does the deploying isin the class
or g. apache. ui ma. adapt er. j nms. servi ce. U MA_Ser vi ce, in the uimaj-as-activemq project.

7.4. Running a UIMA-AS Client

The runRemoteAsyncAE script is a sample application that calls a Remote Asynchronous Analysis
Engine on a collection of artifacts, represented by filesin adirectory.

The command takes several arguments:
» brokerUrl - the url of the broker to use to connect to the service

* service name - thisis the endpoint name of the service, and must match what isin the
service's deployment descriptor.

Therest of the arguments are optional:

* -d Specifies a deployment descriptor. The specified service will be deployed before
processing begin, and the service will be undeployed after processing completes. Multiple -d
entries can be given.

» -c Specifies a CollectionReader descriptor. The client will read CASes from the
CallectionReader and send them to the service for processing. If this option is omitted, one
empty CAS will be sent to the service (useful for services containing a CAS Multiplier
acting as a collection reader).

Asynchronous Scaleout Tools 57

Querying for a service's metadata

» -p Specifies CAS pool size, which determines the maximum number of requests that can be
outstanding.

» -f Specifiestheinitia FS heap size in bytes of each CASin the pool.

» -0 Specifies an Output Directory. All CASesreceived by the client's CallbackListener will
be serialized to XMI in the specified OutputDir. If omitted, no XMl files will be outpuit.

» -t Specifies atimeout period in seconds. If a CAS does not return within thistime period it is
considered an error. By default there is no timeout, so the client will wait forever.

 -i Causesthe client to ignore errors returned from the service. If not specified, the client
terminates on thefirst error.

* -log Output details on each process reguest.

 -uimaEeDebug true causes various debugging things to happen, including not deleting
the generated spring file generated by running dd2spring. This parameter only affects
deployments specified using the -d parameter that follow it in the command line sequence.

» -TargetServiceld specifiesidentifier of a service which should processa CAS. Thisidentifier
must match service'sidentifier. By default a serviceis launched with an IP:PID identifier but
the identifier can be an arbitrary String.

The source code for thisisin the class
or g. apache. ui ma. exanpl es. as. RunRenot eAsyncAE. j ava in the project ui maj - as-
activenqg.

7.5. Querying for a service's metadata

The get Met aRequest script connects to an Active MQ broker and attempts to query a particular
named service's metadata. This can be useful to confirm that a service actually exists and is started,
on aparticular broker.

This takes several arguments:
* broker Uri - the Uri of the IMS broker used by the UIMA-AS Service
* service name - the name of the UIMA-AS service, same as the "endpoint” name.

* [optional] -verbose - to output more information
There are other arguments which are normally not given; if needed, they are specified as Java-D
(defined properties) arguments:

 -Dactivemq.broker.jmx.port=xxx - override the port being used for IMX (defaults to 1099)

» -Dactivemq.broker.jmx.domain=xxx - use xxx asthe IMX domain. This normally never
needs to be done unless multiple brokers are run on the same node as is sometimes done for
unit tests.

This command will connect to the specified broker at its IMX port and query to verify that this
broker has the named service registered. It then will send aget Met a request to the named service
and retrieve its metadata.

The source code for thisisin the classor g. apache. ui ma. exanpl es. as. Get Met aRequest in
the project ui nmgj - as- acti veny.

58

Asynchronous Scaleout Tools UIMA Version 2.10.2

	UIMA Asynchronous Scaleout
	Table of Contents
	Chapter 1. Overview - Asynchronous Scaleout
	1.1. Terminology
	1.2. AS versus CPM
	1.3. Design goals for Asynchronous Scaleout
	1.4. AS Concepts
	1.4.1. User written components and multi-threading
	1.4.2. AS Component wrapping
	1.4.3. Parallel Flows
	1.4.4. Deployment alternatives
	1.4.4.1. Configuring multiple instances of components
	1.4.4.2. Queues
	1.4.4.3. Deployment Descriptors
	Deploying UIMA aggregates

	1.4.5. Current design limitations
	1.4.5.1. Sofa Mapping limits
	1.4.5.2. Parameter Overriding limits
	1.4.5.3. Resource Sharing limits

	1.4.6. Compatibility with earlier version of remoting and scaleout

	1.5. Application Concepts
	1.5.1. Application API
	1.5.2. Collection Process Complete

	1.6. Monitoring and Controlling an AS application
	1.7. JMS Service Descriptor
	1.8. Life cycle

	Chapter 2. Error Handling for Asynchronous Scaleout
	2.1. Basic concepts
	2.2. Associating Errors with incoming commands
	2.2.1. Error handling for CASes generated in an Aggregate by CAS Multipliers

	2.3. Error handling overview
	2.4. Error results
	2.5. Error Recovery actions
	2.5.1. Aggregate Error Actions
	2.5.1.1. Retry
	2.5.1.2. Disable Action
	2.5.1.3. Continue Option on Delegate Process CAS Failures

	2.6. Thresholds for Terminate and Disable
	2.7. Terminate Action
	2.8. Commands and allowed actions

	Chapter 3. Asynchronous Scaleout Deployment Descriptor
	3.1. Descriptor Organization
	3.2. Deployment Descriptor
	3.3. CAS Pool
	3.4. Service
	3.5. Customizing the deployment
	3.6. Input Queue
	3.7. Top level Analysis Engine descriptor
	3.8. Setting Environment Variables
	3.9. Analysis Engine
	3.10. Error Configuration descriptors
	3.11. Error Configuration defaults

	Chapter 4. Asynchronous Scaleout Application Interface
	4.1. Asynchronous Client API Overview
	4.2. The UimaAsynchronousEngine Interface
	4.3. Application Context Map
	4.4. Status Callback Listener
	4.5. Error Results
	4.6. Asynchronous Client API Usage Scenarios
	4.6.1. Instantiating a Client API Object
	4.6.2. Calling an Existing Service
	4.6.3. Retrieving Asynchronous Results
	4.6.4. Deploying a Service with the Client API

	4.7. Targeting specific service instance with the Client API
	4.8. Undeploying a Service with the Client API
	4.9. Recovering from broker failure
	4.10. Generating Deployment Descriptor Programmatically
	4.11. Sample Code

	Chapter 5. Monitoring, Tuning and Debugging
	5.1. Monitoring
	5.1.1. JMX
	5.1.2. JMX Information from UIMA AS
	5.1.2.1. UIMA AS Services JMX measures
	Service information
	Service Performance Measurements
	Co-located Service Queues
	Service Error Measurements

	5.1.2.2. Application Client information
	Client Measures
	Client Error Measurements

	5.2. Logging Sampled JMX information at intervals
	5.2.1. Configuring JVM to run the monitor
	5.2.2. Running the Monitor program standalone
	5.2.3. Monitoring output

	5.3. Disabling JMX in UIMA-AS JUnit tests
	5.4. Tuning
	5.4.1. Tuning procedure
	5.4.2. Tuning Settings

	5.5. Debugging
	5.5.1. Error Reporting and Tracing
	5.5.2. CAS Logging

	Chapter 6. Asynchronous Scaleout Camel Driver
	6.1. Overview
	6.2. How does it work?
	6.3. URI Format
	6.4. Sample
	6.5. Implementation

	Chapter 7. Asynchronous Scaleout Tools
	7.1. Overview
	7.2. Starting a broker
	7.3. Deploying a UIMA-AS Service
	7.4. Running a UIMA-AS Client
	7.5. Querying for a service's metadata

