
UIMA Asynchronous Scaleout
Written and maintained by the Apache

UIMA™ Development Community

Version 2.10.2



Copyright © 2006, 2018 The Apache Software Foundation

License and Disclaimer.  The ASF licenses this documentation to you under the Apache
License, Version 2.0 (the "License"); you may not use this documentation except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks.  All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such terms in this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date January, 2018

http://www.apache.org/licenses/LICENSE-2.0


UIMA Asynchronous Scaleout iii

Table of Contents
1. Overview - Asynchronous Scaleout .................................................................................  1

1.1. Terminology ....................................................................................................... 1
1.2. AS versus CPM .................................................................................................. 2
1.3. Design goals for Asynchronous Scaleout ...............................................................  3
1.4. AS Concepts ......................................................................................................  4

1.4.1. Threading ................................................................................................  4
1.4.2. AS Component wrapping ..........................................................................  4
1.4.3. Parallel Flows ..........................................................................................  6
1.4.4. Deployment alternatives ............................................................................  6
1.4.5. Limits .....................................................................................................  8
1.4.6. Compatibility ...........................................................................................  8

1.5. Application Concepts ..........................................................................................  8
1.5.1. Application API .......................................................................................  9
1.5.2. Collection Process Complete .....................................................................  9

1.6. Monitoring & Controlling ....................................................................................  9
1.7. JMS Service Descriptor .......................................................................................  9
1.8. Life cycle ......................................................................................................... 10

2. Error Handling for Asynchronous Scaleout .....................................................................  13
2.1. Basic concepts ..................................................................................................  13
2.2. Associating Errors with incoming commands .......................................................  13

2.2.1. Error handling - CAS Multipliers .............................................................  14
2.3. Error handling overview ....................................................................................  14
2.4. Error results .....................................................................................................  16
2.5. Error Recovery actions ......................................................................................  16

2.5.1. Aggregate Error Actions .......................................................................... 16
2.6. Thresholds for Terminate and Disable .................................................................  17
2.7. Terminate Action ..............................................................................................  17
2.8. Commands and allowed actions ..........................................................................  18

3. Asynchronous Scaleout Deployment Descriptor ............................................................... 19
3.1. Descriptor Organization .....................................................................................  19
3.2. Deployment Descriptor ......................................................................................  19
3.3. CAS Pool ......................................................................................................... 20
3.4. Service ............................................................................................................  21
3.5. Customizing the deployment ..............................................................................  21
3.6. Input Queue .....................................................................................................  21
3.7. Top Level AE Descriptor ...................................................................................  22
3.8. Setting Environment Variables ...........................................................................  22
3.9. Analysis Engine ................................................................................................  23
3.10. Error Configuration descriptors .........................................................................  25
3.11. Error Configuration defaults .............................................................................  27

4. Asynchronous Scaleout Application Interface .................................................................. 29
4.1. Async Client API .............................................................................................. 29
4.2. The UimaAsynchronousEngine Interface .............................................................. 29
4.3. Application Context Map ...................................................................................  31
4.4. Status Callback Listener ....................................................................................  32
4.5. Error Results ....................................................................................................  33
4.6. Asynchronous Client API Usage Scenarios ..........................................................  33

4.6.1. Instantiating a Client API Object ..............................................................  33
4.6.2. Calling an Existing Service ...................................................................... 33
4.6.3. Retrieving Asynchronous Results .............................................................  34
4.6.4. Deploying a Service with the Client API ...................................................  34



UIMA Asynchronous Scaleout

iv UIMA Asynchronous Scaleout UIMA Version 2.10.2

4.7. Targeting specific service instance with the Client API ..........................................  35
4.8. Undeploying a Service with the Client API ..........................................................  35
4.9. Recovering from broker failure ...........................................................................  35
4.10. Generating Deployment Descriptor Programmatically ..........................................  36
4.11. Sample Code ..................................................................................................  37

5. Monitoring, Tuning and Debugging ...............................................................................  39
5.1. Monitoring .......................................................................................................  39

5.1.1. JMX .....................................................................................................  39
5.1.2. JMX Information from UIMA AS ............................................................  40

5.2. Logging Sampled JMX information at intervals ....................................................  45
5.2.1. Configuring JVM to run the monitor ......................................................... 45
5.2.2. Running the Monitor program standalone ..................................................  46
5.2.3. Monitoring output ..................................................................................  46

5.3. Disabling JMX in UIMA-AS JUnit tests ..............................................................  47
5.4. Tuning .............................................................................................................  47

5.4.1. Tuning procedure ...................................................................................  47
5.4.2. Tuning Settings ......................................................................................  48

5.5. Debugging .......................................................................................................  49
5.5.1. Error Reporting and Tracing ....................................................................  49
5.5.2. CAS Logging ......................................................................................... 50

6. Asynchronous Scaleout Camel Driver ............................................................................  53
6.1. Overview .........................................................................................................  53
6.2. How does it work? ............................................................................................  53
6.3. URI Format ......................................................................................................  53
6.4. Sample ............................................................................................................  54
6.5. Implementation .................................................................................................  55

7. Asynchronous Scaleout Tools .......................................................................................  57
7.1. Overview .........................................................................................................  57
7.2. Starting a broker ...............................................................................................  57
7.3. Deploying a UIMA-AS Service ..........................................................................  57
7.4. Running a UIMA-AS Client ...............................................................................  57
7.5. Querying for a service's metadata .......................................................................  58



Overview - Asynchronous Scaleout 1

Chapter 1. Overview - Asynchronous Scaleout
UIMA Asynchronous Scaleout (AS) is a set of capabilities supported in the UIMA Framework
for achieving scaleout that is more general than the approaches provided for in the Collection
Processing Manager (CPM). AS is a second generation design, replacing the CPM and Vinci
Services. The CPM and Vinci are still available and are not being deprecated, but new designs are
encouraged to use AS for scalability, and current designs reaching limitations may want to move to
AS.

AS is integrated with the flow controller architecture, and can be applied to both primitive and
aggregate analysis engines.

1.1. Terminology
Terms used in describing AS capabilities include:

AS
Asynchronous Scaleout - a name given to the capability described here

AS-JMS/AMQ/Spring
A variety of AS, based on JMS (Java Messaging Services), Active MQ, an Apache Open
Source implementation of JMS, and the Spring framework. This variety is the one described in
detail in this document.

Queue
Queues are the basic mechanism of asynchronous communication. One or more "producers"
send messages to a queue, and a queue can have one or more "consumers" that receive
messages. Messages in UIMA AS are usually CASes, or references to CASes. Some queues
are simple internal structures; others are JMS queues which are identified by a 2 part name: the
first part is the Queue Broker; the second part is a Queue Name.

AS Component
An AS client or service. AS clients send requests to AS service queues and receive back
responses on reply queues. AS services can be AS Primitives or AS aggregates (see following).

AS Primitive
An AS service that is either a Primitive Analysis Engine or an Aggregate AE whose Delegates
are  not AS-enabled

AS Aggregate
An AS service that is an Aggregate Analysis Engine where the Delegates are also AS
components.

AS Client
A component sending requests to AS services. An AS client is typically an application using
the UIMA AS client API, a JMS Service Client Proxy, or an AS Aggregate.

co-located
two running pieces of code are co-located if they run in the same JVM and share the same
UIMA framework implementation and components.

Queue Broker
Queue brokers manage one or more named queues. The brokers are identified using a URL,
representing where they are on the network. When the queue broker is co-located with the AS
client and service, CASes are passed by reference, avoiding serialization / deserialization.



AS versus CPM

2 Overview - Asynchronous Scaleout UIMA Version 2.10.2

Transport Connector
AS components connect to queue brokers via transport connectors. UIMA AS will typically
use "tcp" connectors. "http" connectors are also available, and are useful for tunneling through
firewalls via an existing public web server.

1.2. AS versus CPM
It is useful to compare and contrast the approaches and capabilities of AS and CPM.

 AS CPM

Putting
components
together

Provides a consistent, single, unified way
to put components together, using the base
UIMA "aggregate" capability.

Two methods of putting components
together

1. CPE (Collection Processing Engine)
descriptor, which has sections
specifying a Collection Reader, and
a set of CAS Processors

2. Each CAS Processor can, as well, be
an aggregate

Kinds of
Aggregates

An aggregate can be run asynchronously
using the AS mechanism, with a queue
in front of each delegate, or it can by run 
synchronously.

When run asynchronously, all of the
delegates will have queues in front of them,
and delegates which are AS Primitives can
be individually scaled out (replicated) as
needed. Also, multiple CASes can be in-
process, at different steps in the pipeline,
even without replicating any components.

All aggregates are run synchronously. In an
aggregate, only one component is running
at a time; there is only one CAS at a time
being processed within the aggregate.

CAS flow
Any, including custom user-defined
sequence using user-provided flow
controller. Parallel flows are supported.

Fixed linear flow between CAS processors.
A single CAS processor can be an
aggregate, and within the aggregate, can
have any flow including custom user-
defined sequence using user-provided flow
controller.

Threading

Each instance of a component runs in its
own thread; the same thread used to call
initialize() for a particular instance
of a component is used when calling
process().

One thread for the collection reader, one
for the CAS Consumers, "n" threads for the
main pipeline, with no guarantees that the
same thread for the initialize() call is
used for the process() call.

Delegate
deployment

Co-located or remote. Co-located or remote.

Life cycle
management

Scripts to launch services, launch Queue
Brokers.

Scripts to launch services, start Vinci Name
Service.

In addition, CPE "managed" configuration
provides for automatic launching of UIMA



Design goals for Asynchronous Scaleout

UIMA Version 2.10.2 Overview - Asynchronous Scaleout 3

 AS CPM

Vinci services in same machine, in different
processes.

Error recovery

Similar capabilities as the CPM provides
for CAS Processors, but at the finer
granularity of each AS component. The
support includes customizable behavior
overrides and extensions via user code.

Error detection, thresholding, and
recovery options at the granularity of CAS
Processors (which are CPM components,
not delegates of aggregates), with some
customizable callback notifications

Firewall
interactions

Enables deployment of AS services behind
a firewall using a public broker. Enables
deployment of a public broker through
single port, or using HTTP "tunneling".

When using Vinci protocol, requires
opening a large number of ports for each
deployed service. SOAP connected services
require one open port.

Monitoring and
Tuning

JMX (Java Management Extensions)
are enabled for recording many kinds of
statistical information, and can be used to
monitor (and control) the operations of AS
configured systems. Statistics are provided
and summarized from remote delegates, to
aid in tuning scaled-out deployments.

Some JMX information

Collection
Reader

Supported for backwards compatibility.
New programs should use the CAS
Multiplier instead, which is more general,
or have the application pass in CASes to be
processed. The compatibility support wraps
Collection Readers as Cas Multipliers.
Note: this is supported and implemented in
base UIMA.

Is always first element in linear CPE
sequence chain

1.3. Design goals for Asynchronous Scaleout
The design goals for AS are:

1. Increased flexibility and options for scaleout (versus CPM)
a. scale out parts independently of other parts, to appropriate degree
b. more options for protocols for remote connections, including some that don't require

many ports through firewalls
c. support multiple CASes in process simultaneously within an aggregate pipeline

2. Build upon widely accepted Apache-licensed open source middleware
3. Simplification:

a. Standardize on single approach to aggregate components
b. More uniform Error handling / recovery / monitoring for all AS managed

components.
c. No changes to existing annotator code or descriptors. An additional deployment

descriptor is used to augment the conventional descriptors.



AS Concepts

4 Overview - Asynchronous Scaleout UIMA Version 2.10.2

1.4. AS Concepts

1.4.1. User written components and multi-threading

AS provides for scaling out of annotators - both aggregates and primitives. Each of these can
specify a user-written implementation class. For primitives, this is the annotator class with the
process() method that does the work. For aggregates, this can be an (optional) custom flow
controller class that computes the flow.

The classes for annotators and flow controllers do not need to be "thread-safe" with respect to their
instance data - meaning, they do not need to be implemented with synchronization locks for access
to their instance data, because each instance will only be called using one thread at a time. Scale out
for these classes is done using multiple instances of the class.

However, if you have class "static" fields shared by all instances, or other kinds of external data
shared by all instances (such as a writable file), you must be aware of the possibility of multiple
threads accessing these fields or external resources, running on separate instances of the class, and
do any required synchronization for these.

1.4.2. AS Component wrapping

Components managed by AS

1. have an associated input queue (this may be internal, or explicit and externalized).

They receive work units (CASes) from this queue, and return the updated CASes to an
output queue which is specified as part of the message delivering the input work unit (CAS).

2. have a container which wraps the component and provides the following services (see
Figure 1.1, “AS Primitive Wrapper” [5]):

• A connection to an input queue of CASes to be processed
• Scale-out within the JVM for components at the bottom level - the AS Primitives.

Scaleout creates multiple instances of the annotator(s), and runs each one on its own
thread, all drawing work from the same input queue.

• (For AS Aggregates) connections to input queues of the delegates
• A "pull" mechanism for the component to pull new CASes (to be processed) from

their associated input queue
• (For AS Aggregates) A separate, built-in internal queue to receive CASes back from

delegates. These are passed to the aggregate's flow controller, which then specifies
where they go next.

• A connection to user-specified error handlers. Error conditions are communicated to
the flow controller, to enable user / dynamically determined recovery or termination
actions.



AS Component wrapping

UIMA Version 2.10.2 Overview - Asynchronous Scaleout 5

Figure 1.1. AS Primitive Wrapper

As shown in the next figure, when the component being wrapped is an AS Aggregate, the container
will use the aggregate's flow controller (shown as "FC") to determine the flow of the CASes among
the delegates. The next figure shows the additional output queue configured for aggregates to
receive CASes returning from delegates. The dashed lines show how the queues are associated with
the components.

Figure 1.2. AS Aggregate wrapper

The collection of parts and queues is wired together according to a deployment specification,
provided by the deployer. This specification is a collection of one or more deployment descriptors.



Parallel Flows

6 Overview - Asynchronous Scaleout UIMA Version 2.10.2

1.4.3. Parallel Flows
A Flow Controller Parallel Step will actually run in parallel, when using remote delegates with xmi
serialization (the default) sepecified. For colocated delegates, or for remote delegates running with
binary serialization, the parallel steps will be run serially in some arbitrary unspecified order. For
the parts running in parallel on remotes, existing Feature Structures may not be modified - only
new ones can be added. This is checked for, when the results from the remote parallel steps are
merged.

1.4.4. Deployment alternatives
Deployment is concerned with the following kinds of parts, and allocating these parts (possibly
replicated) to various hosts:

• Application Drivers. These represent the top level caller of UIMA functionality. Examples
include: stand-alone Java applications, such as the example document analyzer tool, a
custom Web servlet, etc.

• AS Services. AS primitive or AS aggregate services deployed on one or more nodes as
needed to meet scalability requirements.

• Queue Brokers. Each Queue Broker manages and provides the storage facility for one or
more named queues.

Parts can be co-located or not; when they're not, we say they're remote. Remote includes running
on the same host, but in a different process space, using a different JVM or other native process.
Connections between the non-co-located parts are done using the JMS (Java Messaging Service)
protocols, using ActiveMQ from apache.org.

Note: For high availability, the Queue Brokers can be, themselves, replicated over many
hosts, with fail-over capability provided by the underlying ActiveMQ implementation.

1.4.4.1. Configuring multiple instances of components

AS components can be replicated; the replicated components can be co-located or distributed
across different nodes. The purpose of the replication is to allow multiple work units (CASes) to
be processed in parallel, in multiple threads, either in the same host, or using different hosts. The
vision is that the deployment is able to replicate just those components which are the bottleneck in
overall system thruput.

There are two ways replication can be specified.

1. In the deployment descriptor, for an AS Primitive component, set the numberOfInstances
attribute of the <scaleout> element to a number bigger than one.

2. Deploy the same service on many nodes, specifying the same input service queue

The first way is limited to replicating an AS Primitive. An AS Primitive can be the whole
component of the service, or it can be at the bottom of an aggregate hierarchy of co-located parts.

Replicating an AS Primitive has the effect of replicating all of its nested components (if it is an
aggregate), since no queues are used below its input queue.

1.4.4.2. Queues

Asynchronous operation uses queues to connect components. For co-located components, the
UIMA AS framework uses custom very-lightweight queuing mechanisms. For non-co-located



Deployment alternatives

UIMA Version 2.10.2 Overview - Asynchronous Scaleout 7

components, it uses JMS queues, managed by ActiveMQ Queue Brokers, which can be running on
the other nodes in a network.

AS Aggregate delegates specified as <analysisEngine> elements (or by default) are co-located, and
use custom lightweight queuing. AS Aggregate delegates specified using <remoteAnalysisEngine>
are not co-located, and use JMS queuing.

For JMS queues, each queue is defined by a queue name and the URL of its Queue Broker. AS
services register as queue consumers to obtain CASes to work on (as input) and to send CASes
they're finished with (as output) to a reply queue connected to the AS client.

The queue implementation for JMS is provided by ActiveMQ queue broker. A single Queue Broker
can manage multiple queues. By default UIMA AS configures the Queue Broker to use in-memory
queues; the queue is resident on the same JVM as its managing Queue Broker. ActiveMQ offers
several failsafe options, including the use of disk-based queues and redundant master/slave broker
configurations.

The decisions about where to deploy Queue Brokers are deployment decisions, made based on
issues such as domain of control, firewalls, CPU / memory resources, etc. Of particular interest for
distributed applications is that a UIMA AS service can be deployed behind a firewall but still be
publicly available by using a queue broker that is available publicly.

When components are co-located, an optimization is done so that CASes are not actually sent as
they would be over the network; rather, a reference to the in-memory Java object is passed using
the queue.

Warning: Do not hook up different kinds of services to the same input queue. The
framework expects that multiple services all listening to a particular input queue are
sharing the workload of processing CASes sent to that queue. The framework does not
currently verify that all services on a queue are the same kind, but likely will in a future
release.

1.4.4.3. Deployment Descriptors

Each deployment descriptor specifies deployment information for one service, including all of its
co-located delegates (if any). A service is an AS component, having one top level input queue, to
which CASes are sent for processing.

Each deployment descriptor has a reference to an associated Analysis Engine descriptor, which can
be an aggregate, or a primitive (including CAS Consumers).

AS Components can be co-located (this is the default); the deployment descriptor specifies remote
queues (queue-brokers and queue-names) for non-co-located components.

All services need to be manually started using an appropriate deployment descriptor
(describing the things to be set up on that server). There are several scripts provided including
deployAsyncService, that do this. The client API also supports a deploy method for doing this
within the same JVM.

Deploying UIMA aggregates

UIMA aggregates can either be run asynchronously as AS Aggregates, or synchronously (as AS
Primitives). AS Aggregates have an input and a reply queue associated with each delegate, and
can process multiple CASes at a time. UIMA aggregates that are run as AS Primitives send CASes
synchronously, one a time, to each delegate, without using any queuing mechanism.



Limits

8 Overview - Asynchronous Scaleout UIMA Version 2.10.2

Each delegate in an AS Aggregate can be specified to be local or remote. Local means co-located
using internal queues; remote means all others, including delegates running in a different JVM,
or in the same JVM but that can be shared by multiple clients. For each delegate which is remote,
the deployment descriptor specifies the delegate's input queue; a corresponding reply queue is
also automatically set up. If the delegate is local, internal input and reply queues are automatically
created for that delegate.

1.4.5. Current design limitations
This section describes limitations of the current support for AS.

1.4.5.1. Sofa Mapping limits

Sofa mapping works for co-located delegates, only. As with Vinci and SOAP, remote delegates
needing sofa mapping need to respecify sofa mappings in an aggregate descriptor at the remote
node.

1.4.5.2. Parameter Overriding limits

Parameter overrides only work for co-located delegates. As with Vinci and SOAP, remote
delegates needing parameter overrides need to respecify the overrides in an aggregate descriptor at
the remote node.

1.4.5.3. Resource Sharing limits

Resource Sharing works for co-located delegates, only.

1.4.6. Compatibility with earlier version of remoting and
scaleout

There is a new type of client service descriptor for an AS service, the JMS service descriptor
(see Section 1.7, “JMS Service Descriptor” [9]), which can be used along with Vinci and/
or SOAP services in base UIMA applications. Conversely, Vinci services cannot be used within
a UIMA AS service because they do not comply to the UIMA standard requiring preservation of
feature structure IDs. SOAP service calls currently use a binary serialization of the CAS which
does preserve IDs and therefore can be called from a UIMA AS service.

To use SOAP services within a UIMA AS deployment, wrap them inside another aggregate (which
might contain just the one SOAP service descriptor), where the wrapping aggregate is deployed as
an AS Primitive.

1.5. Application Concepts
When UIMA is used, it is called using Application APIs. A typical top-level driver has this basic
flow:

1. Read UIMA descriptors and instantiate components
2. Do a Run
3. Do another Run, etc.
4. Stop

A "run", in turn, consists of 3 parts:



Application API

UIMA Version 2.10.2 Overview - Asynchronous Scaleout 9

1. initialize (or reinitialize, if already run)
2. process CASes
3. finish (collectionProcessComplete is called)

Initialize is called by the framework when the instance is created. The other methods need to
be called by the driver. collectionProcessComplete should be called when the driver
determines that it is finished sending input CASes for processing using the process() method.
reinitialize() can be called if needed, after changing parameter settings, to get the co-located
components to reinitialize.

1.5.1. Application API
See Chapter 4, Asynchronous Scaleout Application Interface [29] and the sample code.

1.5.2. Collection Process Complete
An application may want to signal a chain of annotators that are being used in a particular "run"
when all CASes for this run have been processed, and any final computation and outputting is to be
done; it calls the collectionProcessComplete method to do this. This is frequently done when using
stateful components which are accumulating information over multiple documents.

It is up to the application to determine when the run is finished and there are no more CASes
to process. It then calls this method on the top level analysis engine; the framework propagates
this method call to all delegates of this aggregate, and this is repeated recursively for all delegate
aggregates.

This call is synchronous; the framework will block the thread issuing the call until all processing of
CASes within the service has completed and the collectionProcessComplete method has returned
(or timed out) from every component it was sent to.

Components receive this call in a fixed order taken from the <fixedFlow> sequence information in
the descriptors, if that is available, and in an arbitrary order otherwise.

If a component is replicated, only one of the instances will receive the collectionProcessComplete
call.

1.6. Monitoring and Controlling an AS application
JMX (Java Management Extensions) are used for monitoring and controlling an AS application.
As of release 2.3.0, extensive monitoring facilities have been implemented; these are described in
a separate chapter on Chapter 5, Monitoring, Tuning and Debugging [39]. The only controlling
facility provided is to stop a service.

In addition, a configurable Monitoring program is provided which works with the JMX provided
measurements and aggregates and samples these over specified intervals, and creates monitoring
entries in the UIMA log, for tuning purposes. You can use this to detect overloaded and/or idle
services; see the Chapter 5, Monitoring, Tuning and Debugging [39] chapter for details.

1.7. JMS Service Descriptor
To call a UIMA AS Service from Document Analyzer or any other base UIMA application, use a
descriptor such as the following:



Life cycle

10 Overview - Asynchronous Scaleout UIMA Version 2.10.2

<customResourceSpecifier xmlns="http://uima.apache.org/resourceSpecifier">
  <resourceClassName>
    org.apache.uima.aae.jms_adapter.JmsAnalysisEngineServiceAdapter
  </resourceClassName>
  <parameters>
    <parameter name="brokerURL" 
               value="tcp://uima17.watson.ibm.com:61616"/>
    <parameter name="endpoint" 
               value="uima.as.RoomDateMeetingDetectorAggregateQueue"/>
    <parameter name="timeout" 
               value="xxx"/>  
    <parameter name="getmetatimeout" 
               value="yyy"/>
    <parameter name="cpctimeout" 
               value="zzz"/>
  </parameters>
</customResourceSpecifier>

The resourceClassName must be set exactly as shown. Set the brokerURL and endpoint parameters
to the appropriate values for the UIMA AS Service you want to call. These are the same settings
you would use in a deployment descriptor to specify the location of a remote delegate. Note that
this is a synchronous adapter, which processes one CAS at a time, so it will not take advantage
of the scalability that UIMA AS provides. To process more than one CAS at a time, you must
use the Asynchronous UIMA AS Client API Chapter 4, Asynchronous Scaleout Application
Interface [29].

The three timeouts are all expressed in milliseconds. The getmetatimeout is typically short, but if
the service is just starting, and initialization takes a while, it may need to be longer, because the
service won't reply to the getmeta request until it is finished initializing. The cpctimeout is the
Collection Processing Complete timeout. Defaults are taken if the value is omitted, or is 0.

Other parameters may be specified:

binary_serialization
Set to true to specify binary serialization (faster, but requires that the service have exactly the
same type system as the client). The default is false => XMI serialization.

ignore_process_errors
Set to true to specify that any processing errors should be ignored. In order for this to be
reasonable, your calling environment must be able to continue somehow, if the service fails.
The default is false.

retry
Set to the number of times to retry the process call in case of errors. The default is 0 => no
retries.

For more information on the customResourceSpecifier see Section 2.8, “Custom Resource
Specifiers”.

1.8. Life cycle
Running UIMA AS applications involves deploying (starting) UIMA AS service instances, perhaps
on many machines. Over the life cycle of a service it can be useful to dynamically change the
number of service instances. Additional UIMA AS service instances can be started at any time
and the new instance will connect to the input queue when initialization is complete. However,



Life cycle

UIMA Version 2.10.2 Overview - Asynchronous Scaleout 11

a new instance may be much slower than instances that are "warmed up". In order to prevent a
new instance from degrading overall service latency, UIMA AS offers a warmup option that runs
a specified set of CASes thru the service instance after initialization but before connecting to the
service input queue. See Section 5.4.2, “Tuning Settings” [48] for more information on service
warmup.

UIMA AS offers a few simple tools to help with starting and stopping services.

• The UIMA AS client API (see Chapter 4, Asynchronous Scaleout Application
Interface [29]) can deploy UIMA AS services within the same JVM.

• The deployAsyncService command will start up a UIMA AS Service in a new JVM.

• deployAsyncService opens a keyboard listener after starting which listens for a "s" or "q"
keystroke. An "s" stops the service immediately, and a "q" quiesces the service by detaching
from the input queue and letting any in-process requests finish before stopping.

• The UIMA AS service will initiate quiesce on SIGINT and SIGTERM, and also offers JMX
bean based control options to stop and quiesce the service.





Error Handling for Asynchronous Scaleout 13

Chapter 2. Error Handling for Asynchronous
Scaleout

This chapter discusses the high level architecture for Error Handling from the user's point of view.

2.1. Basic concepts
This chapter describes error configuration for AS components.

The AS framework manages a collection of component parts written by users (user code) which
can throw exceptions. In addition, the AS framework can run timers when sending commands to
user code deployed in a remote service which can create timeouts.

An AS component is either an AS aggregate or an AS primitive. AS aggregates can have multiple
levels of aggregation; error configuration is done for each level of aggregation. The rest of this
chapter focuses on the error configuration one level at a time (either for one particular level in an
aggregate hierarchy, or for an AS primitive).

There is a small number of commands which can be sent to an AS component. When a component
returns the result, if an error occurs, an error result is returned instead of the normal result.

Configuration and support is provided for three classes of errors:

1. Exceptions thrown from code (component or framework) at this level

2. error messages received from delegates.

3. timeouts of commands sent to remote delegates.

The second and third class of errors is only possible for AS aggregates.

When errors happen, the framework provides a standard set of configurable actions. See
Section 2.8, “Commands and allowed actions” [18] for a summary table of the actions available
in different situations.

2.2. Associating Errors with incoming commands
Components managed by AS may generate errors when they are sent a command. The error is
associated with the command that was running to produce the error.

There are three incoming message commands supported by the AS framework:
1. getMetadata - sent by the framework when initializing connection to an AS component
2. processCas - sent once for each CAS
3. collectionProcessComplete - sent when an application calls this method

Error handling actions are associated with these various commands. Some error handling actions
make sense only if there is an associated CAS object, and are therefore only allowed with the
processCas command.



Error handling - CAS Multipliers

14 Error Handling for Asynchronous Scaleout UIMA Version 2.10.2

2.2.1. Error handling for CASes generated in an Aggregate
by CAS Multipliers

CASes that are generated by a CAS Multiplier are called child CASes, and their parent CAS is the
CAS that originally came into the CAS Multiplier which caused the child CASes to be created.
Each child CAS always has one associated parent CAS.

The flow of CASes is constrained to always block returning the parent CAS until all of its children
have been generated by the CAS Multiplier. In addition, the framework (currently) blocks the flow
of the parent CAS until all of its children have finished all processing, including any processing of
the children in outer, containing aggregates (which can even be on other network-connected nodes).
(There is some discussion about relaxing this condition, to allow more asynchronicity.)

A child CAS may only exist for a part of the flow, and not returned all the way back up to the top.
Because of this, errors which occur on a child CAS and are not recovered are reported on both the
child CAS, and on its parent. The parent CAS is not processed further, and an error is reported
against the parent.

The parent CAS may have other outstanding children currently being processed. It is not yet
specified what happens (if anything) to these CASes.

2.3. Error handling overview
When an error happens, it is either "recovered", or not; only errors from delegates of an AS
aggregate can be recovered. Recovery may be achieved by retrying the request or by skipping the
delegate.

Commands normally return results; however if an non-recoverable error occurs, the command
returns an error result instead.

For AS aggregates, each level in aggregate hierarchy can be configured to try to recover the error.
If a particular AS aggregate level does not recover, the error is sent up to the next level of the
hierarchy (or to the calling client, if a top level). The error result is updated to reflect the actions the
framework takes for this error.

Non-recovered errors can optionally have an associated "Terminate" or "Disable" action (see
below), triggered by the error when a threshold is reached. "Disable" applies to the delegate that
generated the error while "Terminate" applies to the aggregate and any co-located aggregates it is
contained within.



Error handling overview

UIMA Version 2.10.2 Error Handling for Asynchronous Scaleout 15

Figure 2.1. Basic error handling chain for AS Aggregates for errors from delegates

The basic error handling chain starts with an error, and can attempt to recover using retry. If this
fails (or is not configured), the error count is incremented and checked against the thresholds for
this delegate. If the threshold has been reached the specified action is taken, disabling the delegate
or terminating the entire component. If the Terminate error is not taken, recovery by the Continue
action can be attempted. If that fails, an error result is returned to the caller.

For AS primitives, only the Terminate action is available, and Retry and Continue do not apply.

Figure 2.2. Basic error handling chain for AS Primitives



Error results

16 Error Handling for Asynchronous Scaleout UIMA Version 2.10.2

2.4. Error results
Error results are returned instead of a CAS, if an error occurs and is not recovered.

If the application uses the synchronous sendAndReceive() method, an Error Result is passed back
to the client API in the form of a Java exception. The particular exception varies, depending on
many factors, but will include a complete stack trace beginning with the cause of the error. If the
application uses an asynchronous API, the exception is wrapped in a EntityProcessStatus object
and delivered via a callback listener registered by the application. See section 4.4 Status Callback
Listener for details.

2.5. Error Recovery actions
When errors occur in delegates, the aggregate containing them can attempt to recover. There are
two basic recovery actions: retrying the same command and continuing past (skipping) the failing
component.

Every command sent to a remote delegate can have an associated (configurable) timeout. If the
timeout occurs before the delegate responds, the framework creates an error representing the
timeout.

Note: If, subsequently, a response is (finally) received corresponding to the command that
had timed-out, this is logged, but the response is discarded and no further action is taken.

When errors occur in delegates, retry is attempted (if configured), some number of times. If that
fails, error counts are incremented and thresholds examined for Terminate/Disable actions. If not
reached, or if the action is Disable, Continue is attempted (if configured); if Continue fails, the
error is not recovered, and the aggregate returns the error result from the delegate to the aggregate's
caller. On Terminate, the error is returned to the caller.

2.5.1. Aggregate Error Actions

This section describes in more detail the error actions valid only for AS aggregates.

2.5.1.1. Retry

Retry is an action which re-sends the same command that failed back to the input queue of the
delegate. (Note: It may be picked up by a different instance of that delegate, which may have
a better chance of succeeding.) The framework will keep a copy of the CAS sent to remote
components in order to have it to send again if a retry is required.

Retry is not allowed for colocated delegates.

The "collectionProcessComplete" command is never retried.

Retry is done some number of times, as specified in the deployment descriptor.



Thresholds for Terminate and Disable

UIMA Version 2.10.2 Error Handling for Asynchronous Scaleout 17

2.5.1.2. Disable Action

Figure 2.3. Disable action

When this action is taken the framework marks the particular delegate causing the error as
"disabled" so it will be skipped in subsequent calls. The framework calls the flow controller, telling
it to remove the particular delegate from the flow.

2.5.1.3. Continue Option on Delegate Process CAS Failures

For processCas commands, the Continue action causes the framework to give the flow controller
object for that CAS the error details, and ask the flow controller if processing can continue. If
the flow controller returns "true", the flow controller will be called asking for the next step; if
"false", the framework stops processing the CAS, returning an error to the client reply queue, or
just returning the CAS to the casPool of the CAS multiplier which created it.

For "collectionProcessComplete" commands, Continue means to ignore the error, and continue as if
the collectionProcessComplete call had returned normally.

This action is not allowed for the getMetadata command.

2.6. Thresholds for Terminate and Disable
The Terminate and Disable actions are conditioned by testing against a threshold.

Thresholds are specified as two numbers - an error count and a window. The threshold is reached
if the number of errors occurring within the window size is equal to or greater than "the error
count". A value of 0 disables the error threshold so no action can be taken. A window of 0 means
no window, i.e. all errors are counted

Errors associated with the processCas command are the only ones that are counted in the threshold
measurements.

2.7. Terminate Action
When this action is taken the service represented by this component sends an error reply and then
terminates, disconnecting itself as a listener from its input queue, and cleaning itself up (releasing
resources, etc.). During cleanup, the component analysis engine's destroy method is called.

Note: The termination action applies to the entire aggregate service. Remote delegates are
not affected.



Commands and allowed actions

18 Error Handling for Asynchronous Scaleout UIMA Version 2.10.2

Note: By default, the service will self-destruct by calling System.exit(0) if the shutdown
doesn't finish within 40 seconds. To disable calling System.exit(0) define System property
-DdontKill=true.

Figure 2.4. Terminate action

If the threshold is not exceeded, the error counts associated with the threshold are incremented.

Note: Some errors will always cause a terminate: for instance, framework or flow
controller errors cause immediate termination.

2.8. Commands and allowed actions
All of the allowed actions are optional, and default to not being done, except for getMetadata being
sent to a delegate that is remote - this has a default timeout of 1 minute.

Here's a table of the allowed actions, by command. In this table, the Retry, Continue, and Disable
actions apply to the particular Delegate associated with the error; the Terminate action applies to
the entire component.

The framework returns an Error Result to the caller for errors that are not recovered.

Table 2.1. Error actions by command type

Error actions allowed
Command

AS Aggregate AS Primitive

getMetadata Retry, Disable, Terminate Terminate

processCas Retry, Continue, Disable, Terminate Terminate

collection
Processing
Complete

Continue, Disable, Terminate Terminate

The rationale for providing the terminate action for primitive services is that only the service
can know that it is no longer capable of continued operation. Consider a scaled component with
multiple service instances, where one of them goes "bad" and starts throwing exceptions: the clients
of this service have no way of stopping new requests from being delivered to this bad service
instance. The teminate action allows the bad service to remove itself from further processing; this
could allow life cycle management to restart a new instance.



Asynchronous Scaleout Deployment Descriptor 19

Chapter 3. Asynchronous Scaleout
Deployment Descriptor

3.1. Descriptor Organization
Each deployment descriptor describes one service, associated with a single UIMA descriptor
(aggregate or primitive), and describes the deployment of those UIMA components that are co-
located, together with specifications of connections to those subcomponents that are remote.

The deployment descriptor is used to augment information contained in an analysis engine
descriptor. It adds information concerning

• which components are managed using AS
• queue names for connecting components
• error thresholds and recovery / terminate action specifications
• error handling routine specifications

The application can include both Java and non-Java components; the deployment descriptors are
slightly different for non-Java components.

Since the UIMA system property uima.framework_impl can be used to provide a custom
implementation of the UIMAFramework class which may include an XML parser for pre-
processing descriptors, it may be necessary to provide a custom parser for Saxon to use
when processing the UIMA-AS descriptors. This can be accomplished by including in the
classpath a class whose name is formed by adding the suffix _SAXParser to the name of the
class specified in the uima.framework_impl system property. If such a class exists it will
be passed to the Saxon Transform class via the -x option. The class should implement the
org.xml.sax.XMLReader or the javax.xml.parsers.SAXParserFactory interface, or
extend org.xml.sax.XMLFilterImpl.

3.2. Deployment Descriptor
Each deployment descriptor describes components associated with one UIMA descriptor. The basic
structure of a Deployment Descriptor is as follows:

<analysisEngineDeploymentDescription 
      xmlns="http://uima.apache.org/resourceSpecifier">

  <!-- the standard (optional) header -->
  <name>[String]</name>
  <description>[String]</description>
  <version>[String]</version>
  <vendor>[String]</vendor>

  <deployment protocol="jms" provider="activemq">

    <casPool                    <!--optional -->
      numberOfCASes="xxx"       <!--optional -->     
      initialFsHeapSize="nnn"   <!--optional -->
      disableJCasCache=         <!--optional --> 
         "[true/false]"/>

    <service>         <!-- must have only 1 -->



CAS Pool

20 Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

      <!-- 0 or more of the following -->
      <!-- name required, value optional -->
      <custom name="..." value="..."/>

      <inputQueue .../>

      <topDescriptor .../> 

      <environmentVariables .../>  <!--optional -->

      <analysisEngine key="key name" async="[true/false]"
             internalReplyQueueScaleout="nn1" <!-- optional -->
             inputQueueScaleout="nn2">        <!-- optional -->

        <scaleout numberOfInstances="1"/>       <!-- optional -->
                                                <!-- optional --> 
        <casMultiplier 
             poolSize="5"                       <!-- optional --> 
             initialFsHeapSize="nnn"            <!-- optional -->
             processParentLast="[true/false]"   <!-- optional -->
             disableJCasCache="[true/false]/>   <!-- optional -->
             
        <asyncPrimitiveErrorConfiguration .../> <!-- optional -->

        <delegates>    <!-- optional, only for aggregates -->
                                       <!-- 0 or more -->
          <analysisEngine key="key name" async="[true/false]"
               internalReplyQueueScaleout="nn1"
               inputQueueScaleout="nn2">
  
                ...    <!-- optional nested specifications -->
          </analysisEngine>
                . . .
          <remoteAnalysisEngine key="key name"  <!-- 0 or more -->
               remoteReplyQueueScaleout="nn1">  <!-- optional -->
  
            <!-- next is either required or must be omitted -->
            <casMultiplier 
                    poolSize="5" 
                    initialFsHeapSize="nnn"
                    processParentLast="[true/false]"     <!-- optional -->
                    disableJCasCache="[true/false]/>     <!-- optional -->
            <inputQueue ... />
            <serializer method="xmi"/>
            <asyncAggregateErrorConfiguration ... />
          </remoteAnalysisEngine>
                . . .
        </delegates>
      </analysisEngine>
    </service> 
  </deployment>
</analysisEngineDeploymentDescription>

3.3. CAS Pool
This element specifies information for managing CAS pools. Having more CASes in the pools
enables more AS components to run at the same time. For instance, if your application had four
components, but one was slow, you might deploy 10 instances of the slow component. To get all
10 instances working on CASes simultaneously, your CAS pool should be at least 10 CASes. The
casPool size should be small enough to avoid paging.



Service

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 21

This element and all its attributes are optional; if not specified, the values take their defaults (see
below).

If the numberOfCASes is not specified, it is set to either 1 or, for top level asynchronous
deployments, the scaleout numberOfInstances.

The initialFsHeapSize attribute allows setting the size of the initial CAS Feature Structure heap.
This number is specified in bytes, and the default is approximately 2 megabytes for Java top-level
services, and 40 kilobytes for C++ top level services. The heap grows as needed; this parameter
is useful for those cases where the expected heap size is much smaller than the default. If not
specified, its default value is 2,000,000 words.

The disableJCasCache attribute on the <casMultiplier> element is optional, and allows disabling of
JCas cache. The JCas cache is an internal datastructure that caches any JCas object created by the
CAS. This may result in better performance for applications that make extensive use of the JCas,
but also incurs a steep memory overhead. If you're processing large documents and have memory
issues, you should disable this option. In general, just try running a few experiments to see what
setting works better for your application. The JCas cache is enabled by default.

3.4. Service
This section is required and specifies the deployment information for the service.

3.5. Customizing the deployment
The <custom> element(s) are optional. Each one, if specified, requires a name parameter, and can
have an optional value parameter. They are intended to provide additional information needed for
particular kinds of deployment.

The following lists the things that can be specified here.

• name="run_top_level_CPP_service_as_separate_process"

(no value used)

Causes the top level component, which must be a component specified as using
<frameworkImplementation>org.apache.uima.cpp</frameworkImplementation> and which
must be specified as async="false" (the default), to be run in a separate process, rather than
via using the JNI.

3.6. Input Queue
The inputQueue element is required. It identifies the input queue for the service.

<inputQueue brokerURL="tcp://x.y.z:portnumber"
    endpoint="queue_name"
    prefetch="1"/>

The brokerURL attribute is optional. When omitted, a default value of tcp://localhost:61616 will
be used. A different brokerURL can be provided as an override when launching a service. Consult
README that provides an example of brokerURL override. The queue broker address includes
a protocol specification, which should be set to either "tcp", or "http". The brokerURL attribute
specifies the queue broker URL, typically its network address and port. .



Top Level AE Descriptor

22 Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

The http protocol is similar to the tcp protocol, but is preferred for wide-area-network connections
where there may be firewall issues, as it supports http tunnelling.

Warning: When remote delegates are being used, the brokerURL value used for this
remote delegate is used also for the remote reply Queue, and must be valid for both the
client to send requests and the remote service to send replies to. The URL to use for the
reply is resolved on the remote system when sending a reply. Using "localhost" will not
work, nor will partially specified URLs unless they resolve to the same URL on all nodes
where services are running. The recommended best practice is to use fully qualified URL
names.

The queue name is used to uniquely identify a queue belonging to a particular broker.

The prefetch attribute controls prefetching of messages for an instance of the service. It can be
0 - which disables prefetching. This is useful in some realtime applications for reducing latency.
In this case, when a new request arrives, any available instance will take the request; if prefetching
was set above 0, the request might be prefetched by a busy service. The default value if not
specified is 0.

Note: The prefetch attribute is only used with the top inputQueue element for the
service.

3.7. Top level Analysis Engine descriptor
Each service must indicate some analysis engine to run, using this element.

<topDescriptor>
  <import location="..." /> <!-- or name="..." -->
</topDescriptor>

This is the standard UIMA import element. Imports can be by name or by location; see Section 2.2,
“Imports”.

3.8. Setting Environment Variables
This element is optional, and provides a way to set environment variables.

Note: This element is only allowed and used for top level Analysis Engines specifying
<frameworkImplementation>org.apache.uima.cpp</frameworkImplementation> and
running using the <custom name="run_top_level_CPP_service_as_separate_process">; it
is not supported for Java Analysis Engines.

Components written in C++ can be run as a top level service. These components are launched
in a separate process, and by default, all the environment variables of the launching process are
passed to the new process. This element allows the environment variables of the new process to be
augmented.

<environmentVariables>
<!-- one or more of the following element -->
<environmentVariable name="xxx">value goes here</environmentVariable>
</environmentVariables>

Usually, the value will replace any existing value. As a special exception, for the environment
variables used as the PATH (for Windows) or LD_LIBRARY_PATH (for Linux) or



Analysis Engine

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 23

DYLD_LIBRARY_PATH (for MacOS), the value will be "prepended" with a path separator
character appropriate for the platform, to any existing value.

3.9. Analysis Engine
This is used to describe an element which is an analysis engine. It is optional and only needed if
the defaults are being overridden. The async attribute is only used for aggregates, and specifies
that this aggregate will be run asynchronously (with input queues in front of all of its delegates)
or not. If not specified, the async property defaults to "false" except in the case where the
deployment descriptor includes the <delegates> element, when it defaults to "true". If you specify
async="false", then it is an error to specify any <delegates> in the deployment descriptor.

The key attribute must have as its value the key name used in the containing aggregate descriptor
to uniquely identify this delegate. Since the top level aggregate is not contained in another
aggregate, this can be omitted for that element. Deployment information is matched to delegates
using the key name specified in the aggregate descriptor to identify the delegate.

<analysisEngine key="key name" async="true"
             internalReplyQueueScaleout="nn1"  <!-- optional -->
             inputQueueScaleout="nn2">         <!-- optional -->

  <scaleout numberOfInstances="1"/>        <!-- optional  -->
  <!-- casMultiplier is either required, or must be omitted-->
  <casMultiplier 
       poolSize="5"                        <!-- optional  -->
       initialFsHeapSize="nn"              <!-- optional  -->   
       processParentLast="[true/false]"    <!-- optional  -->          
       disableJCasCache="[true/false]/>    <!-- optional -->   

    <!-- next two are optional, but only one allowed -->
  <asyncAggregateErrorConfiguration .../>  <!-- optional  -->
  <asyncPrimitiveErrorConfiguration .../>  <!-- optional  -->

  <delegates>                              <!-- optional  -->
    <analysisEngine key="key name" ...>    <!-- 0 or more -->
            ...       <!-- optional nested specifications -->
    </analysisEngine>
            . . . 
    <remoteAnalysisEngine key="key name"   <!-- 0 or more -->
             remoteReplyQueueScaleout="nn1"> <!-- optional -->

      <!-- next is either required or must be omitted -->
      <casMultiplier 
           poolSize="5"                        <!-- optional  -->
           initialFsHeapSize="nnn"             <!-- optional  -->
           processParentLast="[true/false]"    <!-- optional  -->   
           disableJCasCache="[true/false]/>    <!-- optional -->          
      
      <inputQueue ... />
      <serializer method="[xmi|binary]"/>              <!-- optional -->
      <asyncAggregateErrorConfiguration .../> <!-- optional -->
    </remoteAnalysisEngine>
            . . . 
  </delegates>                . . .        
</analysisEngine>

<analysisEngine> is used to specify deployment details for an analysis engine. It is optional, and if
omitted, defaults will be used: The analysis engine will be run synchronously (processing only one
CAS at a time), with a scaleout of 1, using the default error configuration.



Analysis Engine

24 Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

The attributes internalReplyQueueScaleout and inputQueueScaleout only have meaning
and are allowed when async="true" is specified (which in turn can only be set true for aggregates)
or is the default ( which happens when the aggregate has delegate deployment options specified in
the deployment descriptor). These attributes default to 1. For asynchronous aggregates, they control
the number of threads used to do the work of the aggregate outside of running the delegates. This
work can include one or more of the following:

• deserializing an input CAS (only on the input Queue), or serializing the resulting CAS back
to a remote requester (only if the requester is remote).

• running the flow controller

• serializing CASes being sent to remote delegates (only useful if one or more of the delegates
is remote).

These attributes provide a way to scale out this work on multi-core machines, if these tasks become
a bottleneck.

Note that if an aggregates flow controller specifies that the first delegate the CAS should flow to
is a remote, the work of serializing the CAS to that remote is done using the inputQueue thread,
and the scaleout parameter that would apply would be the inputQueueScaleout. For subsequent
delegates, the work is done on the internalReplyQueueScaleout threads.

The <scaleout ...> element specifies, for co-located primitive or non-AS aggregates (async="false")
at the bottom of an aggregate tree, how many replicated instances are created.

The <casMultiplier> element inside an <analysisEngine> element is required if the analysis engine
component is a CAS multiplier, and is an error if specified for other components. It specifies for
CAS multipliers the size of the pool of CASes used by that CAS multiplier for generating extra
CASes.

Note: The actual CAS pool size can be bigger than the size specified here. The custom
CAS multiplier code specifies how many CASes it needs access to at the same time; the
actual CAS pool size is the value in the deployment descriptor, plus the value in custom
CM code, minus 1.

The initialFsHeapSize attribute on the <casMultiplier> element is optional, and allows setting the
size of the initial CAS Feature Structure heap for CASes in this pool. This number is specified in
bytes, and the default is approximately 2 megabytes for Java top-level services, and 40 kilobytes
for C++ top level services. The heap grows as needed; this parameter is useful for those cases
where the expected heap size is much smaller than the default.

The disableJCasCache attribute on the <casMultiplier> element is optional, and allows disabling of
JCas cache. The JCas cache is an internal datastructure that caches any JCas object created by the
CAS. This may result in better performance for applications that make extensive use of the JCas,
but also incurs a steep memory overhead. If you're processing large documents and have memory
issues, you should disable this option. In general, just try running a few experiments to see what
setting works better for your application. The JCas cache is enabled by default.

The processParentLast attribute on the <casMultiplier> element is optional, and specifies
processing order of an input CAS relative to its children. If true, a flow of an input CAS will be
suspended after it is returned from a Cas Multiplier delegate until all its child CASes have finished
processing. If false, an input CAS can be processed in parallel with its children.

The <remoteAnalysisEngine> elements are used to specify that the delegate is not co-located, and
how to connect to it. The remoteReplyQueueScaleout is optional; if not specified it defaults



Error Configuration descriptors

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 25

to 1. This scaleout is the number of threads that will be used to do the work of the containing
aggregate when replies are returned from this remote delegate. This work is described above. It
may be useful to set this to > 1 if, for instance, there are many CASes coming back from a remote
delegate (perhaps the remote is a CAS Multiplier), and each one has to be deserialized.

The <serializer> element describes what method of serialization to use. This element is optional
and it may be set to either binary or xmi. If omitted, xmi serialization will be used by default.
Xmi serialization can be quite verbose and produce large output for CASes containing many
annotations; on the plus side, it supports serialization between components where the type systems
may not be exactly identical (for instance, they could be different subsets of larger, common
type systems). Binary serialization produces a smaller output size and is more efficient; on the
minus side, it requires that the type systems for both components have exactly the same type and
feature codes - which in practice means that the type systems have to be identical. Also, the binary
serialization format is new with 2.3.0 release, and is not always available. For example, C++
services do not (currently) support this format.

The <inputQueue> element specifies the remote's input queue. The casMultiplier element inside a
remoteAnalysisEngine element is only specified if the remote component is a CAS Multiplier, and
it specifies the size of a pool of CASes kept to receive the new CASes from the remote component,
and the initial size of those CASes. Its poolSize must be equal to or larger than the casMultiplier
poolSize specified for that remote component.

Note: As of release 2.3.1, the previous restrictions limiting remote CAS Multiplier to just
one have been lifted; you can have any number, and they can be scaled out as well.

Note: The brokerURL value used for this remote delegate must be valid for both the client
to send requests and the remote service to send replies.

Services may be running on nodes with firewalls, where the only port open is the one for http. In
this case, you can use the http protocol.

The <asyncPrimitiveErrorConfiguration> element is only allowed within a top-level analysis
engine specification (that is, one that is not a delegate of another, containing analysis engine).

3.10. Error Configuration descriptors
Error Configuration descriptors can be included directly in the deployment descriptors, or they may
use the <import> mechanism to import another file having the specification.

For AS Aggregates, the configuration applicable to delegates goes in
<asyncAggregateErrorConfiguration> elements for the delegate.

For AS Primitives, there is one <asyncPrimitiveErrorConfiguration> element that configures
threshold-based termination. The other kinds of error configuration are not applicable for AS
Primitives.

See ???? for a complete overview of error handling.

The Error Configuration descriptor for AS Aggregates is as follows; note that all the elements are
optional:

<asyncAggregateErrorConfiguration 
      xmlns="http://uima.apache.org/resourceSpecifier">

  <!-- the standard (optional) header -->
  <name>[String]</name>



Error Configuration descriptors

26 Asynchronous Scaleout Deployment Descriptor UIMA Version 2.10.2

  <description>[String]</description>
  <version>[String]</version>
  <vendor>[String]</vendor>

  <import ... />  <!-- optional -->   

  <getMetadataErrors
          maxRetries="n" 
          timeout="xxx_milliseconds"
          errorAction="disable|terminate"/> 

  <processCasErrors
          maxRetries="n" 
          timeout="xxx_milliseconds"
          continueOnRetryFailure="true|false"
          thresholdCount="xxx"
          thresholdWindow="yyy"
          thresholdAction="disable|terminate"/>

  <collectionProcessCompleteErrors
          timeout="xxx_milliseconds"
          additionalErrorAction="disable|terminate"/>

</asyncAggregateErrorConfiguration>

For an AS Primitive, the <asyncPrimitiveErrorConfiguration> element appears at the top level, and
has this form:

<asyncPrimitiveErrorConfiguration 
      xmlns="http://uima.apache.org/resourceSpecifier">

  <!-- the standard (optional) header -->
  <name>[String]</name>
  <description>[String]</description>
  <version>[String]</version>
  <vendor>[String]</vendor>

  <import ... />  <!-- optional -->   

  <processCasErrors
          thresholdCount="xxx"
          thresholdWindow="yyy"
          thresholdAction="terminate"/>

  <collectionProcessCompleteErrors
          additionalErrorAction="terminate"/>
          
</asyncPrimitiveErrorConfiguration>

The maxRetries attribute specifies the maximum number of retries to do. If this is set to 0 (the
default), no retries are done.

The continueOnRetryFailure attribute, if set to 'true' causes the framework to ask the aggregate's
flow controller if the processing for the CAS can continue. If this attribute is 'false' or if the flow
controller indicates it cannot continue, further processing on the CAS is stopped and an error is
returned from the aggregate. Warning: there are some conditions in the current implementation
where this is not yet being done; this is a known issue.

Warning:  If maxRetries > 0 or the continueOnRetryFailure attribute is 'true', the CAS
will be saved before sending it to remote delegates, to enable these actions. For co-located



Error Configuration defaults

UIMA Version 2.10.2 Asynchronous Scaleout Deployment Descriptor 27

delegates, the CAS is not copied and a process failure may cause it to become corrupt.
Even though this may be true, the continue option is supported. It is the Flow Controller's
responsibility to determine what to do with a CAS that failed during processing.

The timeout attribute specifies the timeout values used when sending commands to remote
delegates. The units are milliseconds and a value of 0 has the special meaning of no timeout.

The thresholdCount and thresholdWindow attributes specify the threshold at which the
thresholdAction is taken. If xxx errors occur within a window of size yyy, the framework takes
the specified action of either disabling this delegate, or terminating the containing AS Aggregate
(or if not an AS Aggregate, terminating the AS Primitive). A thresholdCount of 0 (the default) has
the special meaning of no threshold, i.e. errors ignored, and a thresholdWindow of 0 (the default)
means no window, i.e. all errors counted.

An action of 'disable' applies to the specified delegate, removing it from the flow so the
containing aggregate will no longer send it commands. The 'terminate' action applies
to the entire service containing this component, disconnecting it from its input queue
and shutting it down. Note that when disabling, the framework asks the flow controller
to remove the delegate from the flow, but if the flow controller cannot reasonably
operate without this component it can convert the action to 'terminate' by throwing an
AnalysisEngineProcessException.FLOW_CANNOT_CONTINUE_AFTER_REMOVE exception.

Note that the only action for an AS Primitive on getMetadata failure is to terminate, and this is
always the case, so it is not listed as an configuration option. This is also the default action for an
AS Aggregate getMetadata failure.

3.11. Error Configuration defaults
If the <errorConfiguration> element is omitted, or if some sub elements of this are omitted, the
following defaults are used:

• The maxRetries parameter is set to 0.

• Timeout defaults are set to 0, meaning no timeout, except for the getMetadata command for
remote delegates; here the default is 60000 (1 minute)

• The continueOnRetryFailure action is set to "false".

• The thresholdCount value is set to 0, meaning no threshold, errors are ignored.

• The thresholdWindow value is set to 0, meaning no window, all errors are counted.

• No disable or terminate action will be done (i.e. errors ignored), except for the getMetadata
command where the default is to terminate.





Asynchronous Scaleout Application Interface 29

Chapter 4. Asynchronous Scaleout
Application Interface

4.1. Asynchronous Client API Overview
The Asynchronous Client API provides Java applications the capability to connect to and make
requests to UIMA-AS services. ProcessCas and CollectionProcessingComplete requests are
supported.

It provides four kinds of capabilities:

• sending requests, receiving replies, asynchronously (or synchronously)

• setting timeouts and limits on the number of simultaneous requests in process (via setting the
CAS Pool size)

• using an optionally provided collection reader to obtain items to process

• deploying services as part of the startup process

An application can use this API to prepare and send each CAS to a service one at a time, or
alternately can use a UIMA collection reader to prepare the CASes to be delivered.

The application normally provides a listener class to receive asynchronous replies. For individual
CAS requests a synchronous sendAndReceive call is available. As an alternative for this
synchronous call, instead of using this client API, the standard UIMA Analysis Engine APIs can
be used with an analysis engine instantiated from a JMS Service Descriptor. See Section 1.7, “JMS
Service Descriptor” [9].

As a convenience, the Asynchronous Client API can also be used to deploy (i.e., "start") services.
Java services deployed by the API are instantiated in the same JVM. Logging for all UIMA
components in the same JVM are merged; class names and thread IDs can be used to distinguish
log entries from different services. All services in the JVM can be monitored by a single JMX
console. Native C++ UIMA services can be called from the JVM via the JNI or optionally be
launched as separate processes on the same machine. In either case logging and JMX monitoring
for native services are integrated with the other UIMA components in the JVM.

4.2. The UimaAsynchronousEngine Interface
An application developer's starting point for accessing UIMA-AS services is the
UimaAsynchronousEngine Interface. For each service an application wants to use, it must
instantiate a client object:

UimaAsynchronousEngine uimaAsEngine = 
        new BaseUIMAAsynchronousEngine_impl();

The following is a short introduction to some important methods on this interface.

• void initialize(Map anApplicationContext): Initializes an asynchronous
client. Using configuration provided in the given Map object, this method creates a
connection to the UIMA-AS Service queue, creates a response queue, and retrieves



The UimaAsynchronousEngine Interface

30 Asynchronous Scaleout Application Interface UIMA Version 2.10.2

the service metadata. This method blocks until a reply is received from the service or a
timeout occurs. If a collection reader has been specified, its typesystem is merged with that
from the service. The combined typesystem is used to create a Cas pool. On success the
application is notified via the listener's initializationComplete() method, which is called
prior to the original call unblocking. Asynchronous errors are delivered to the listener's
entityProcessComplete() method. See Section 4.3, “Application Context Map” [31] for
more about the ApplicationContext map.

• void addStatusCallbackListener(UimaASStatusCallbackListener
aListener): Plugs in an application-specific listener. The application receives callbacks
via methods in this listener class. More than one listener can be added.

• CAS getCAS(): Requests a new CAS instance from a CAS pool. This method blocks until
a free instance of CAS is available in the CAS pool. Applications that use synchronous
sendAndReceive() and getCAS() need to call CAS.reset() before reusing the CAS,
or CAS.release() to return it to the CAS pool. Applications that use asynchronous
sendCAS() and getCAS() must not call CAS.release() nor CAS.reset() unless
sendCAS() throws an exception. If sendCAS() call is successful, the UIMA AS framework
code releases each CAS automatically when a reply is received. The framework releases a
CAS right after a callback listener entityProcessComplete() completes.

• void sendCAS(CAS aCAS): Sends a given CAS for analysis to the UIMA-AS Service.
The application is notified of responses or timeouts via entityProcessComplete()
method.

• void sendCAS(CAS aCAS, String serviceTargetId): Sends a given CAS
for analysis to a specific instance of a UIMA-AS Service. This instance is identified
by a serviceTargetId. The application is notified of responses or timeouts via
entityProcessComplete() method.

• void setCollectionReader(CollectionReader aCollectionReader): Plugs
in an instantiated CollectionReader instance to use. This method must be called before
initialize.

• void process(): Starts processing a collection using a collection reader. The method
will block until the CollectionReader finishes processing the entire collection. Throws
ResourceProcessException if a CollectionReader has not been provided or initialize has not
been called.

• void collectionProcessingComplete(): Sends a Collection Processing Complete
request to the UIMA-AS Analysis Service. This call is cascaded down to all delegates;
however, if a particular delegate is scaled-out, only one of the instances of the delegate
will get this call. The method blocks until all of the components that received this call
have returned, or a timeout occurs. On success or failure, the application is notified via the
statusCallbackListener's collectionProcessComplete() method.

• void sendAndReceiveCAS(CAS aCAS): Send a CAS, wait for response. On success
aCAS contains the analysis results. Throws an exception on error. Note that this interface
cannot be used to interface to a CAS Multiplier service, because it will block until the parent
comes back, and any child CASes will be ignored.

• void sendAndReceiveCAS(CAS aCAS,
List<AnalysisEnginePerformanceMetrics> componentMetricsList):
Send a CAS, wait for response. On success aCAS contains the analysis results and
componentMetricsList contains per Analysis Engine performance breakdown. This



Application Context Map

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface 31

breakdown shows how much time each Analysis Engine took to analyze the CAS. The
method throws an exception on error. Note that this interface cannot be used to interface to
a CAS Multiplier service, because it will block until the parent comes back, and any child
CASes will be ignored.

• void sendAndReceiveCAS(CAS aCAS,
List<AnalysisEnginePerformanceMetrics> componentMetricsList, String
serviceTargetId): Send a CAS to a specified instance of UIMA-AS service and wait for
response. On success aCAS contains the analysis results and componentMetricsList contains
per Analysis Engine performance breakdown. This breakdown shows how much time each
Analysis Engine took to analyze the CAS. The method throws an exception on error. Note
that this interface cannot be used to interface to a CAS Multiplier service, because it will
block until the parent comes back, and any child CASes will be ignored.

• String aHandle deploy( String aDeploymentDescriptor, Map
anApplicationContext): Deploys the UIMA-AS service specified by the given
deployment descriptor in this JVM, and returns a handle for this service. The application
context map must contain DD2SpringXsltFilePath and SaxonClasspath entries. This
call blocks until the service is ready to process requests, or an exception occurs during
deployment. If an exception occurs, the callback listener's

• void undeploy(String aHandle): Tells the specified service to terminate. The handle
is the same handle that is returned by the corresponding deploy(...) method.

• void stop(): Stops the asynchronous client. Removes the Cas pool, drops the connection
to the UIMA-AS service queue and stops listening on its response queue. Terminates and
undeploys any services which have been started with this client.

This is an asynchronous call, and can be called at any time.

• void stopProducingCases(): Send stop signals for all CASes that are currently in
process (where the API is expecting responses). If a CAS is a parent of child CASes being
produced by a CAS Multiplier, this operation will also signal the CAS Multiplier to stop
producing new CASes.

• void stopProducingCases(String aCasReferenceId): send a stop request to a
UIMA-AS Service for a particular CAS-id. If that CAS is a parent of child CASes being
produced by a CAS Multiplier, this operation will also signal the CAS Multiplier to stop
producing new CASes.

4.3. Application Context Map
The application context map is used to pass initialization parameters. These parameters are
itemized below.

• DD2SpringXsltFilePath: Required for deploying services.

• SaxonClasspath: Required for deploying services.

• ServerUri: Broker connector for service. Required for initialize.

• Endpoint: Service queue name. Required for initialize.

• Resource Manager: (Optional) a UIMA ResourceManager to use for the client.



Status Callback Listener

32 Asynchronous Scaleout Application Interface UIMA Version 2.10.2

• CasPoolSize: Size of Cas pool to create to send to specified service. Default = 1.

• CAS_INITIAL_HEAPSIZE: (Optional) the initial CAS heapsize, in 4-byte words. Default =
500,000.

• Application Name: optional name of the application using this API, for logging.

• Timeout: Process CAS timeout in ms. Default = no timeout.

• GetMetaTimeout: Initialize timeout in ms. Default = 60 seconds.

• CpcTimeout: Collection process complete timeout. Default = no timeout.

• SerializationStrategy:(Optional) xmi or binary serialization. Default = xmi

• userName:(Optional) to authenticate user with ActiveMQ broker. Default = null

• password:(Optional) to authenticate user with ActiveMQ broker. Default = null

• TargetServiceId:(Optional) to target specific service instance. Default = null

4.4. Status Callback Listener
Asynchronous events are returned to applications via methods in classes registered to the
Client API object with addStatusCallbackListener(). These classes must extend the class
org.apache.uima.aae.client.UimaAsBaseCallbackListener.

• initializationComplete(EntityProcessStatus aStatus): The callback used to
inform the application that the initialization request has completed. On success aStatus will
be null; on failure use the UimaASProcessStatus class to get the details.

• entityProcessComplete(CAS aCas, EntityProcessStatus aStatus): The
callback used to inform the application that a processCas request has completed. On success
aCAS object will contain result of analysis; on failure the CAS will be in the same state as
before it was sent to a service and aStatus will contain the cause of failure. When calling this
method, UIMA AS passes an object of type UimaASProcessStatus as a second argument.
This class extends EntityProcessStatus and provides 5 additional methods: getCAS(),
getCasReferenceId(), getParentCasReferenceId(),getServiceTargetId(),
& getPerfomanceMetricsList(). The getServiceTargetId() returns an id of a service
that this client targeted for processing a CAS. Targeting is optional and typically used for
checking if a service is viable. The last method provides the per component performance
breakdown as reported by the UIMA Analysis Engine which includes the elapsed time each
component spent analyzing the CAS. The AnalysisEnginePerformanceMetrics class
provides the following API:

• public String getName(): identifies component by name

• public String getUniqueName(): identifies component by unique name

• public long getAnalysisTime(): time (in millis) component spent analyzing
the CAS

• public long getNumProcessed(): total number of CASes processed so far by
the component

See Section 4.6.3, “Retrieving Asynchronous Results” [34] for a usage example.



Error Results

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface 33

• collectionProcessComplete(EntityProcessStatus aStatus): The callback used
to inform the application that the CPC request has completed. On success aStatus will be
null; on failure use the UimaASProcessStatus class to get the details.

• onBeforeMessageSend(UimaASProcessStatus status): The callback used to
inform the application that a CAS is about to be sent to a service. The status object has
getCasReferenceId() method that returns a unique CAS id assigned by UIMA AS. This
reference id may be used to associate arbirary information with a CAS, and is also returned
in the callback listener as part of the status object.

• onBeforeProcessCAS(UimaASProcessStatus status, String nodeIP, String
pid): The callback used to inform the application that a CAS has been delivered to UIMA
AS service and is about to be processed. The status object has getCasReferenceId()
method that returns a unique CAS id assigned by UIMA AS. The nodeIP contains IP address
of a machine where UIMA AS service is running. The pid contains UIMA AS service PID
and a thread id. Its syntax is:<PID>:<thread id>. The thread id identifies which thread in
UIMA AS service analyzes a CAS.

• onBeforeProcessMeta( String nodeIP, String pid): The callback used to
inform the application that a GetMeta request has been delivered to UIMA AS service
and is about to be processed. The nodeIP contains IP address of a machine where UIMA
AS service is running. The pid contains UIMA AS service PID and a thread id. Its syntax
is:<PID>:<thread id>. The thread id identifies which thread in UIMA AS service will
process GetMeta request.

4.5. Error Results
Errors are delivered to the callback listeners as an EntityProcessStatus or
UimaASProcessStatus object. These objects provide the methods:

• isException(): Indicates the error returned is in the form of exception messages.

• getExceptions(): Returns a List of exceptions.

4.6. Asynchronous Client API Usage Scenarios

4.6.1. Instantiating a Client API Object
A client API object must be instantiated for each remote service an application will directly connect
with, and a listener class registered in order to process asynchronous events:

//create Asynchronous Client API
uimaAsEngine = new BaseUIMAAsynchronousEngine_impl();
uimaAsEngine.addStatusCallbackListener(new MyStatusCallbackListener());
    

4.6.2. Calling an Existing Service
The following code shows how to establish connection to an existing service:

//create Map to pass server URI and Endpoint parameters
Map<String,Object> appCtx = new HashMap<String,Object>();
 // Add Broker URI on local machine



Retrieving Asynchronous Results

34 Asynchronous Scaleout Application Interface UIMA Version 2.10.2

 appCtx.put(UimaAsynchronousEngine.ServerUri, "tcp://localhost:61616");
 // Add Queue Name
 appCtx.put(UimaAsynchronousEngine.Endpoint, "RoomNumberAnnotatorQueue");
 // Add the Cas Pool Size
 appCtx.put(UimaAsynchronousEngine.CasPoolSize, 2);

//initialize
uimaAsEngine.initialize(appCtx);
    

Prepare a Cas and send it to the service:

//get an empty CAS from the Cas pool
CAS cas = uimaAsEngine.getCAS();
// Initialize it with input data
cas.setDocumentText("Some text to pass to this service.");
// Send Cas to service for processing
uimaAsEngine.sendCAS(cas);
    

4.6.3. Retrieving Asynchronous Results
Asynchronous events resulting from the process Cas request are passed to the registered listener.

// Callback Listener. Receives event notifications from UIMA-AS.
class MyStatusCallbackListener extends UimaAsBaseCallbackListener {

  // Method called when the processing of a Document is completed.
  public void entityProcessComplete(CAS aCas, EntityProcessStatus aStatus) {
    if (aStatus != null && aStatus.isException()) {
      List exceptions = aStatus.getExceptions();
      for (int i = 0; i < exceptions.size(); i++) {
        ((Throwable) exceptions.get(i)).printStackTrace();
      }
      uimaAsEngine.stop();
      return;
    }

    // Process the retrieved Cas here
    if ( aStatus instanceof UimaASProcessStatus ) {
      String casReferenceId = 
        ((UimaASProcessStatus)aStatus).getCasReferenceId();
      List<AnalysisEnginePerformanceMetrics> metrics = 
        ((UimaASProcessStatus)aStatus).getPerformanceMetricsList();
    }
    // ...
  }

  // Add other required callback methods below...
}
    

4.6.4. Deploying a Service with the Client API
Services can be deployed from a client object independently of any service connection. The main
motivation for this feature is to be able to deploy a service, connect to it, and then remove the
service when the application is done using it.



Targeting specific service instance with the Client API

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface 35

// create Map to hold required parameters
Map<String,Object> appCtx = new HashMap<String,Object>();
appCtx.put(UimaAsynchronousEngine.DD2SpringXsltFilePath, 
           System.getenv("UIMA_HOME") + "/bin/dd2spring.xsl");
appCtx.put(UimaAsynchronousEngine.SaxonClasspath, 
           "file:" + System.getenv("UIMA_HOME") + "/saxon/saxon8.jar");
uimaAsEngine.deploy(service, appCtx);
    

4.7. Targeting specific service instance with the
Client API

Service targeting allows an application client to send CASes to a specific instance of UIMA-AS
service. This new feature can be used to determine if a service is viable or not and is capable of
processing a CAS. When a service starts, it creates a listener on its input queue which handles
messages containing property 'TargetServiceId'. By default, the property value has a format
<IP>:<PID>. If an incoming message contains the property with a value matching service
<IP>:<PID>, the listener will dequeue the message and process a CAS contained therein.
Optionally, the UIMA-AS service deployer may choose a custom value for the 'TargetServiceId'
property. To override the default include -DTargetServiceId=<value> on the service command
line. The <value> may be an arbitrary string with no spaces. The following shows how a client can
target specific instance of a service deployed with a default targeting support:

//get an empty CAS from the Cas pool
CAS cas = uimaAsEngine.getCAS();
// Initialize it with input data
cas.setDocumentText("Some text to pass to this service.");
// Send Cas to a service running on 127.0.0.1 with PID 4444. 
uimaAsEngine.sendCAS(cas, "127.0.0.1:4444");
    

The above example uses an asynchronous client API method. For synchronous invocations use

sendAndReceiveCAS(cas, componentMetricsList, "127.0.0.1:4444")

4.8. Undeploying a Service with the Client API
Services can be undeployed from a client object as follows:

// create Map to hold required parameters
Map<String,Object> appCtx = new HashMap<String,Object>();
appCtx.put(UimaAsynchronousEngine.DD2SpringXsltFilePath, 
           System.getenv("UIMA_HOME") + "/bin/dd2spring.xsl");
appCtx.put(UimaAsynchronousEngine.SaxonClasspath, 
           "file:" + System.getenv("UIMA_HOME") + "/saxon/saxon8.jar");
String id = uimaAsEngine.deploy(service, appCtx);
uimaAsEngine.undeploy(id);
    

4.9. Recovering from broker failure
The Client API has a built in recovery strategy to handle cases where a broker fails or becomes
unreachable, and then, later becomes available again.



Generating Deployment Descriptor Programmatically

36 Asynchronous Scaleout Application Interface UIMA Version 2.10.2

Before sending a new request to a broker, the client checks the state of its connection. If the
connection has failed, the client enters a loop where it will attemp to reconnect every 5 seconds.
One message is logged to notify this is happening. The recovery attempt stops when the the
connection is recovered, or when all UIMA AS clients that are sharing this failed connection,
terminate.

During the recovery attempt, any CASes that are submitted via the client APIs will fail or timeout.
If the application uses the sendAndReceive() synchronous API, the failure will be delivered by
an exception. If the application client uses the sendCAS() asynchronous API, the failure will be
delivered via the normal callback listener that the application registered with the UIMA AS client.

4.10. Generating Deployment Descriptor
Programmatically

The uima-as includes a Deployment Descriptor Factory to facilitate programmatic creation of both
Primitive and Aggregate Deployment Descriptors. The factory and its supporting classes provide
an API to manipulate all aspects of the Deployment Descriptor, including scaleout, error handling,
etc. The following is a snippet of java code showing how to generate a Primitive Deployment
Descriptor, override default scaleout and error handling settings, and deploy a service.

// Set up a context object containing basic service deployment information
ServiceContext context = 
 new ServiceContextImpl("PersonTitle", 
               "PersonTitle Annotator Description",
               "c://PersonTitleAnnotator.xml", 
               "PersonTitleQueue", "tcp://localhost:61616");
            
// create DD with default settings
UimaASPrimitiveDeploymentDescriptor dd =
 DeploymentDescriptorFactory.
  createPrimitiveDeploymentDescriptor(context);

// Get default Error Handler for Process        
dd.getProcessErrorHandlingSettings().setThresholdCount(4);
   
// Two instances of AE in a jvm
dd.setScaleup(2);
   
// Generate deployment descriptor in xml format
String ddXML = dd.toXML(); 
// Write the DD to a temp file
File tempFile = 
 File.createTempFile("Deploy_PersonTitle", ".xml");
BufferedWriter out = 
 new BufferedWriter(new FileWriter(tempFile));
out.write(ddXML);
out.close();   
            
// create a Map to hold required parameters
Map<String,Object> appCtx = 
 new HashMap<String,Object>();
appCtx.put(UimaAsynchronousEngine.DD2SpringXsltFilePath, 
 System.getenv("UIMA_HOME") + "/bin/dd2spring.xsl");
appCtx.put(UimaAsynchronousEngine.SaxonClasspath, 
 "file:" + System.getenv("UIMA_HOME") + "/saxon/saxon8.jar");
            
// Deploy service 



Sample Code

UIMA Version 2.10.2 Asynchronous Scaleout Application Interface 37

uimaAsEngine.deploy(tempFile.getAbsolutePath(), appCtx);   
   
       

4.11. Sample Code
See $UIMA_HOME/examples/src/org/apache/uima/examples/as/RunRemoteAsyncAE.java





Monitoring, Tuning and Debugging 39

Chapter 5. Monitoring, Tuning and Debugging
UIMA AS deployments can involve many separate parts running on many different machines.
Monitoring facilities and tools built into UIMA AS help in collecting information on the
performance of these parts. You can use the monitoring information to identify deployment issues,
such as bottlenecks, and address these with various approaches that alter the deployment choices;
this is what we mean by "tuning the deployment".

Monitoring happens in several parts:

• Each node running a JVM hosting UIMA AS services or clients provides JMX information
tracking many items of interest.

• UIMA AS services include some of these measurements in the information passed back
to its client, along with the returned CAS. This allows clients to collect and aggregate
measurements over a cluster of remotely-deployed components.

Tuning a UIMA AS application is done using several approaches:

• changing the topology of the scaleout - for instance, allocating more nodes to some parts,
less to others

• adjusting deployment parameters, such as the number of CASes in a CasPool, or the number
of threads assigned to do various tasks

In addition, tuning can involve changing the actual analytic algorithms to tune them - but that is
beyond the scope of this chapter.

UIMA AS scale out configurations add multithreaded and out-of-order execution complexities
to core UIMA applications. Debugging a UIMA AS application is aided by UIMA's modular
architecture and an approach that exercises the code gradually from simpler to more complex
configurations. Two useful built-in debug features are:

• Java errors at any component level are propagated back to the component originating
the request, with a full call chain of UIMA AS components, within colocated aggregate
components and across remote services which are shared by multiple clients.

• CASes can be saved before sending to any local or remote delegate and later used to
reproduce problems in a simple unit testing environment.

5.1. Monitoring

5.1.1. JMX

JMX (Java Management Extensions) is a standard Java mechanism that is used to monitor and
control Java applications. A standard Java tool provided with most Javas, called jconsole, is a
GUI based application that can connect to a JVM and display the information JMX is providing,
and also control the application in application-defined specific ways.

JMX information is provided by a hierarchy of JMX Beans. More background and information on
JMX and the jconsole tool is available on the web.



JMX Information from UIMA AS

40 Monitoring, Tuning and Debugging UIMA Version 2.10.2

5.1.2. JMX Information from UIMA AS
JMX information is provided by every UIMA AS service or client as it runs. Each item provided
is either an instantaneous measurement ( e.g. the number of items in a queue) or an accumulating
measurement ( e.g. the number of CASes processed). Accumulating measures can be reset to 0
using standard JMX mechanisms.

JMX information is provided on a JVM basis; a JVM can be hosting 0 or more UIMA AS Services
and/or clients. A UIMA AS Service is defined as a component that connects to a queue and accepts
CASes to process. A UIMA AS Client, in contrast, sends CASes to be processed; it can be a top
level client, or a UIMA AS Service having one or more AS Aggregate delegates, to which it is
sending CASes to be processed.

UIMA AS Services send some of their measurements back to the UIMA AS Clients that sent
them CASes; those clients incorporate these measurements into aggregate statistics that they
provide. This allows accumulating information among components deployed over many nodes
interconnected on a network.

Some JMX measurement items are constant, and document various settings, descriptors, names,
etc., in use by the (one or more) UIMA AS services and/or clients running on this JVM.

Some time measurements are associated with running some process. These, where possible, are cpu
times, as measured by the thread or threads running the process, using the ThreadMXBean class.
On some Javas, thread-based cpu time may not be supported, however. In that case, wall-clock time
is used instead.

If the process is multi-threaded, and the cpu has multiple cores, you can get time measurements
which exceed the wall clock interval, due to the process consuming cpu time on multiple threads at
once.

Timing information not associated with running code, such as idle time, is measured as wall-clock
time.

The following sections describe the JMX Beans implemented by UIMA AS. The Notes in the
tables include the following flags:

• inst/acc/const - instantaneous, accumulating, or constant measurement

• sent - sent up to the invoking client with returning CAS

5.1.2.1. UIMA AS Services JMX measures

The next 4 tables detail the JMX measures provided by UIMA AS services.

Service information

Name Description Units Notes

state The state of the service (Running, Initializing,
Disabled, Stopping, Failed)

string inst

input queueName The name of the input queue string const

reply queueName The internally generated name of the reply queue string const (but
could change



JMX Information from UIMA AS

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 41

Name Description Units Notes

due to
reconnection
recovery)

broker URL The URL of the JMS queue broker string const

deployment
descriptor

The path to the deployment descriptor for this
service

string const

is CAS Multiplier is this Service a CAS Multiplier boolean const

is top level is this Service a top level service, meaning that it
connects to an input queue on a queue broker

boolean const

service key The key name used in the associated Analysis
Engine aggregate that specifies this as a delegate

string const

is Aggregate is this service an AS Aggregate (i.e., has delegates
and is marked async="true")

boolean const

analysisEngine
instance count

The number of replications of the AS Primitive count const

Service Performance Measurements

Name Description Units Notes

number of CASes
processed

The number of CASes processed by a component count -
CASes

acc

cas deserialization
time

The thread time spent deserializing CASes
(receiving, either from client, or replies from
delegates)

milli
seconds

acc

cas serialization
time

The thread time spent serializing CASes (sending,
either to delegates or back to client)

count -
CASes

acc

analysis time The thread time spent in AS Primitive analytics milli
seconds

acc

idle time The wall clock time a service has been idle. Measure
starts after a reply is sent until the next request is
receives, and excludes serialization/deserialization
times.

milli
seconds

acc

cas pool wait time The time spent waiting for a CAS to become
available in the CAS Pool

milli
seconds

acc

shadow cas pool
wait time

A shadow cas pool is established for services which
are Cas Multipliers. This is the time spent waiting for
a CAS to become available in the Shadow CAS Pool.

milli
seconds

acc

time spent in CM
getNext

The time spent inside Cas Multipliers, getting
another CAS. This time (doesn't include /
includes ????) the time spent waiting for a CAS to

milli
seconds

acc



JMX Information from UIMA AS

42 Monitoring, Tuning and Debugging UIMA Version 2.10.2

Name Description Units Notes

become available in the CAS Pool waiting for a CAS
to become available in the CAS Pool

process thread
count

The number of threads available to process requests
(number of instances of a primitive)

count const

reply thread count The number of threads available to process replies count const

Co-located Service Queues

Co-located services use light-weight, internal (not JMS) queues. These have similar measures as
are used with JMS queues, and include these measures for both the input queues and the reply
(output) queues:

Name Description Units Notes

consumer count The number of threads configured to read the queue count const

dequeue count The number of CASes that have been read from this
queue

count acc

queue size The number of CASes in the queue count inst

Service Error Measurements

Name Description Units Notes

process Errors The number of process errors count acc

getMetadata Errors The number of getMetadata errors count acc

cpc Errors The number of Collection Process Complete (cpc)
errors

count acc

5.1.2.2. Application Client information

This section describes monitoring information provided by the UIMA AS Client APIs. Any
code that uses the Section 4.1, “Async Client API” [29], such as the example application client
RunRemoteAsyncAE, will have a set of these JMX measures. Currently no additional tooling
(beyond standard tools like jconsole) are provided to view these.

Client Measures

Name Description Units Notes

application Name A user-supplied string identifying the application string const

service queue name The name of the service queue this client connects to string const

serialization
method

either xmi or binary. This is the serialization the
client will use to send CASes to the service, and also
tells the service which serialization to use in sending
the CASes back.

string const



JMX Information from UIMA AS

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 43

Name Description Units Notes

cas pool size This client's cas pool size, limiting the number of
simultaneous outstanding requests in process

count const

total number of
CASes processed

count of the total number of CASes sent from this
client. Note: in the case where the service is a Cas
Multiplier, the "child" CASes are not included in this
count.

count acc

total time to
process

total thread time spent in processing all CASes,
including time in remote delegates

milli
seconds

acc

average process
time

total number of CASes processed / total time to
process

milli
seconds

inst

max process time maximum thread time spent in processing a CAS,
including time in remote delegates

milli
seconds

inst

total serialization
time

total thread time spent in serializing, both to
delegates (and recursively, to their delegates) and
replies back to senders

milli
seconds

acc

average
serialization time

average thread time spent in serializing a CAS, both
to delegates (and recursively, to their delegates) and
replies back to senders

milli
seconds

inst

max serialization
time

maximum thread time spent in serializing a CAS,
both to delegates (and recursively, to their delegates)
and replies back to senders

milli
seconds

inst

total deserialization
time

total thread time spent in deserializing, both
replies from delegates and CASes from upper level
components being sent to lower level ones.

milli
seconds

acc

average
deserialization time

average thread time spent in deserializing, both
replies from delegates and CASes from upper level
components being sent to lower level ones.

milli
seconds

inst

max deserialization
time

maximum thread time spent in deserializing, both
replies from delegates and CASes from upper level
components being sent to lower level ones.

milli
seconds

inst

total idle time total wall clock time a top-level service thread has
been idle since the thread was last used. If there is
more than one service thread, this number is the sum.

milli
seconds

acc

average idle time average wall clock time all top-level service threads
have been idle since they were last used

milli
seconds

inst

max idle time maximum wall clock time a top-level service thread
has been idle since the thread was last used

milli
seconds

inst

total time waiting
for reply

total wall clock time, measured from the time a
CAS is sent to the top-level queue, until that CAS is
returned. Any generated CASes from Cas Multipliers
are not counted in this measurement.

milli
seconds

acc



JMX Information from UIMA AS

44 Monitoring, Tuning and Debugging UIMA Version 2.10.2

Name Description Units Notes

average time
waiting for reply

average wall clock time from the time a CAS is sent
to the reply is received

milli
seconds

inst

max time waiting
for reply

maximum wall clock time from the time a CAS is
sent to the reply is received

milli
seconds

inst

total response
latency time

total wall clock time, measured from the time
a CAS is sent to the top-level queue, including
the serialization and deserialization times at the
client, until that CAS is returned. Any generated
CASes from Cas Multipliers are not counted in this
measurement.

milli
seconds

acc

average response
latency time

average wall clock time, measured from the time
a CAS is sent to the top-level queue, including the
serialization and deserialization times at the client,
until that CAS is returned.

milli
seconds

inst

max response
latency time

maximum wall clock time, measured from the time
a CAS is sent to the top-level queue, including the
serialization and deserialization times at the client,
until that CAS is returned.

milli
seconds

inst

total time waiting
for CAS

total wall-clock time spent waiting for a free CAS to
be available in the client's CAS pool, before sending
the CAS to input queue for the top level service.

milli
seconds

acc

average time
waiting for CAS

average wall-clock time spent waiting for a free CAS
to be available in the client's CAS pool

milli
seconds

inst

max time waiting
for CAS

maximum wall-clock time spent waiting for a free
CAS to be available in the client's CAS pool

milli
seconds

inst

total number of
CASes requested

total number of CASes fetched from the CAS pool count acc

Client Error Measurements

Name Description Units Notes

getMeta Timeout
Error Count

number of times a getMeta timed out count acc

getMeta Error
Count

number of times a getMeta request returned with an
error

count acc

process Timeout
Error Count

number of times a process call timed out count acc

process Error Count number of times a process call returned with an error count acc



Logging Sampled JMX information at intervals

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 45

5.2. Logging Sampled JMX information at intervals
A common tuning procedure is to run a deployment for a fairly long time with a typical load, and
to see what and where hot spots develop. During this process, it is sometimes useful to convert
accumulating measurements into averages, perhaps averages per CAS processed.

UIMA AS includes a monitor component, org.apache.uima.aae.jmx.monitor.JmxMonitor, to
sample JMX measures at specified intervals, compute various averages, and write the results
into the UIMA Log (or on the console if no log is configured). The monitor program can be
automatically enabled for any deployed service by specifying -D parameters on the JVM command
line which launches the service, or, it can be run stand-alone; when run stand-alone, you provide an
argument specifying the JVM it is to connect to to get the JMX information. It only connects to one
JVM per run; typically, you would connect it to the top-level service.

The monitor outputs information for that service and its immediate delegates (local or remote);
however, it includes information from the complete recursive chain of delegates when computing
its measures. You can get detailed monitoring for sub-services by starting or attaching a monitor to
those sub-services.

ActiveMQ uses Queue Brokers to manage the JMS queues used by UIMA AS. These brokers have
JMX information that is useful in tuning applications. The Monitor program identifies the Queue
Broker being used by the service, and connects to it and incorporates information about queue
lengths (both the input queue and the reply queue) into its measurements.

5.2.1. Configuring JVM to run the monitor

Specify the following JVM System Variable parameters to configure a UIMA AS Client or Service
to enable sampling and logging of JMX measures:

• -Duima.jmx.monitor.interval=1000 - (default is 1000) specifies the sampling interval
in milliseconds

• -Duima.jmx.monitor.formatter=<CustomFormatterClassName>

• -Dcom.sun.management.jmxremote - enable JMX (only needed for local monitoring,
not needed if port is specified)

• -Dcom.sun.management.jmxremote.port=8009

• -Dcom.sun.management.jmxremote.authenticate=false

• -Dcom.sun.management.jmxremote.ssl=false

This configures JMX to run on port 8009 with no authentication, and sets the sampling interval to 1
second, and specifies a custom formatter class name.

There are two formatter-classes provided with UIMA AS:

• org.apache.uima.aae.jmx.monitor.BasicUimaJmxMonitorListener -  this is a
multi-line formatter that formats for human-readable output

• org.apache.uima.aae.jmx.monitor.SingleLineUimaJmxMonitorListener
-  this is a formatter that produces one line per interval, suitable for importing into a
spreadsheet program.



Running the Monitor program standalone

46 Monitoring, Tuning and Debugging UIMA Version 2.10.2

Both of these log to the UIMA log at the INFO log level.

You can also write your own formatter. The monitor provides an API to plug in a custom formatter
for displaying service metrics. A custom formatter must implement JmxMonitorListener interface.
See the method startMonitor in the class UIMA_Service for an example of how custom JMX
Listeners are plugged into the monitor.

5.2.2. Running the Monitor program standalone

The monitor program can be started separately and pointed to a running UIMA AS Client or
Service. To start the program, invoke Java with the following classpath and parameters:

• ClassPath:

• %UIMA_HOME%/lib/uimaj-as-activemq.jar

• %UIMA_HOME%/lib/uimaj-as-core.jar

• %UIMA_HOME%/lib/uima-core.jar

• %UIMA_HOME%/apache-activemq/activemq-all-5.6.0.jar

• Parameters:

• -Djava.util.logging.config.file=%UIMA_HOME%/config/
MonitorLogger.properties - specifies the logging file where the information is
written to

• org.apache.uima.aae.jmx.monitor.JmxMonitor - the class whose main
method is invoked

• uri - the URI of the jmx instance to monitor.

• interval - the (optional) sampling interval, in milliseconds (default = 1000)

When run in this manner, it is not (currently) possible to specify the log message formatting class;
the multi-line output format is always used.

5.2.3. Monitoring output

The monitoring program combines information from the JMX measures, including the associated
Queue Broker, sampling accumulating measurements at the specified sampling interval, and
produces the following outputs:

Name Description Units

Input queue depth number of CASes waiting to be processed by a service count

Reply queue depth number of CASes returned to the client but not yet picked
up by the client

count

CASes processed in
interval

Number of CASes processed in this sampling interval count



Disabling JMX in UIMA-AS JUnit tests

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 47

Name Description Units

Idle time in interval The total time this service has been idle during this interval milli
seconds

Analysis time in
interval

The sum of the times spent in analysis by the service during
this interval, including analysis time spent in delegates,
recursively

milli
seconds

Cas Pool free Cas
Count

Number of available CASes in the Cas Pool at the end of
the interval

count

In addition to the performance metrics the monitor also provides basic service information:

• Service name

• Is service top level

• Is service remote

• Is service a cas multiplier

• Number of processing threads

• Service uptime (milliseconds)

5.3. Disabling JMX in UIMA-AS JUnit tests
When opening JMX RMI port is not possible due to security concerns, the UIMA-AS can
start without JMX support. To disable JMX please add the following as a JVM argument -
Duima.as.enable.jmx=false

5.4. Tuning

5.4.1. Tuning procedure
This section is a cookbook of best practices for tuning a UIMA AS deployment. The summary
information provided by the Monitor program is used to guide the tuning.

The main metric for detecting an overloaded service is the input queue depth. If it is growing or
high, the service is not able to keep up with the load. There are more CASes arriving at the queue
than the service can process. Consider increasing number of instances of the services within the
JVM (if on a multi-core machine having additional capacity), or deploy additional instances of the
service.

The main metric for detecting idle service is the idle time. If it is high, it can indicate that the
service is not receiving enough CASes. This can be caused by a bottleneck in the service's client;
supporting evidence for this can be a high reply queue depth for the client - indicating the client
is overloaded. If the idle time is zero, the service may be saturated; adding more instances could
relieve a bottleneck.

A CasPool free Cas Count of 0 can point to a bottleneck in a service's client; supporting evidence
for this can be a high idle time. In this case, the service does not have enough CASes in its pool and
is forced to wait. Remember that a CAS is not returned to the Service's CAS pool until the client



Tuning Settings

48 Monitoring, Tuning and Debugging UIMA Version 2.10.2

(which can be a parent asynchronous aggregate) signals it can be. A typical reason is a slow client
(look for evidence such as a high reply queue depth). Consider incrementing service's Cas pool and
check the client's metrics to determine a reason why it is slow.

An asynchronous system must have something that limits the generation of new work to do.
CasPools are the mechanism used by UIMA AS to do this. Also, because CASes can have large
memory requirements, it is important to limit the number and sizes of CASes in a process.

5.4.2. Tuning Settings
This section has a list of the tuning parameters and a description of what they do and how they
interact.

Name Description

number of service instances You can adjust the number of service processes assigned to a
particular service, even dynamically, by just starting / stopping
additional servers that specify the same input queue.

number of pipeline threads in a
service instance

Similar to the number of service processes above, this specifies
replication of an AS Primitive within each JVM process. This
allows multiple processing threads to share large in-heap objects
and thus utilize more CPU in multi-core machines without
running out of RAM.

CAS pool size This size limits the number of CASes being processed
asynchronously.

casMultiplier poolSize This size limits the number of CASes generated by a CAS
Multiplier that are being processed asynchronously.

service instance warm up Allow warm up of each JVM process before attaching
to the service input queue by processing a collection
of input CASes. This feature is enabled by specifying -
DWarmUpDataPath=zipFile, where the zipFile contains
CASes in Xmi or compressed binary formats. If the zipFile
name ends in '.zip' the name is assumed to be a fully rooted
or relative file path, else the name is assumed to be in the
classpath with '.zip' appended. For compressed binary, the first
entry in the zipfile must be typesystem.xml containing the full
typesystem of the serialized CASes.

Service input queue prefetch If set greater than 0, allows up to "n" CASes to be pulled into
one service provider, at a time. This can increase throughput,
but can hurt latency, since one service may have several CASes
pulled into it, queued up, while another instance of the service
could be "starved" and be sitting there idle.

Specifying
async="true"/"false" on an
aggregate

The default is false, because there is less overhead (no queues
are set up, etc.). Setting this to "true" allows multiple CASes to
flow simultaneously in the aggregate.

remoteReplyQueueScaleout This parameter indicates the number of threads that will be
deployed to read from the remote reply queue. Set to > 1 if
deserialization time of replies is a bottleneck.



Debugging

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 49

5.5. Debugging
One of the strongest UIMA features is the ability to develop and debug components in isolation
from each other, and then to incrementally combine components and scaleout complexity. All that
is needed to exercise each configuration are one or more appropriate input CASes.

It is strongly advised to first test UIMA components in the core UIMA environment with a variety
of input CASes. If the entire application will not fit in a single process, deploy remote delegates
as UIMA AS primitives with only a single instance (see Section 1.4.4.1, “Multiple Instances” [6]),
and access them via JMS service descriptors (see Section 1.7, “JMS Service Descriptor” [9]).
Run as much input data thru this "single-threaded" configuration as needed to eliminate most
"algorithmic" errors and to measure performance against analysis time objectives. Thread safety
and analysis ordering issues can then be addressed separately.

Thread safety bugs. Components intended to be run multi-threaded should first be deployed as
a multiple instance UIMA AS service (again see Section 1.4.4.1, “Multiple Instances” [6]), and
fed their input CASes with a driver capable of keeping all instances busy at the same time. A good
application is the sample driver $UIMA_HOME/bin/runRemoteAsyncAE; use the -p argument
to increase the number of outstanding CAS requests sent to the target service. When looking for
threading problems try using http://findbugs.sourceforge.net/. In addition to looking for exceptions
caused by thread unsafe code, check that the single and multi-threaded analysis results are the
same.

Analysis ordering bugs. In a core UIMA aggregate CASes are processed by each delegate in input
order. This relationship changes for the same aggregate deployed asynchronously if one of the
delegates is replicated, as CASes are progressed in parallel and then progress thru the subsequent
aggregate flow in a different order then they are received. Similarly with a delegate CasMultiplier
in a core UIMA aggregate each child CAS is processed to completion before the next child CAS
is started and the parent CAS is processed last. When running asynchronously the parent CAS
can arrive at downstream components ahead of its children because the parent is released from a
CasMultiplier immediately after the last child is created. For applications which require all children
to be processed before their parent, use the processParentLast flag (see Section 3.9, “Analysis
Engine” [23]).

Timing issues. Invariably with complex analytics, some components will be slower and some
artifacts will take longer to process than desired. Making performance improvements relies on
identifying components running slower than expected and capturing the slow-running artifacts to
study in detail.

5.5.1. Error Reporting and Tracing
After the system is scaled out and substantially more data is being processed it is likely that
additional errors will occur.

Java errors at any component level are propagated back to the component originating the request
(unless suppressed by UIMA AS error handling options, see Section 2.3, “Error handling
overview” [14]). The error stack traces the call chain of UIMA AS components, within colocated
aggregate components and across remote services which are shared by multiple clients. Some errors
can be resolved with this information alone.

If process timeouts are not used (see Section 3.10, “Error Configuration descriptors” [25]) an
asynchronous system can hang if one analysis step somewhere in the system has hung. Given many
CASes in process at the same time it can be useful to create a custom trace of CAS activity by
appropriate logging in a custom flow controller. Such logging would have a unique identifier in



CAS Logging

50 Monitoring, Tuning and Debugging UIMA Version 2.10.2

every CAS, usually a singleton FeatureStructure with a unique String feature. Identifiers for child
CASes should include some reference to the CasMultiplier they were created from as well as their
parent CAS.

The flow controller is also the ideal place to measure timing statistics for components of interest.
Global stats can easily be measured using the time between flow steps, and time thresholds used to
flag specific CASes causing problems. Again the unique CAS identifier can be quite useful here.

5.5.2. CAS Logging
Within a UIMA AS asynchronous aggregate, CASes can be saved before sending to any local
or remote delegate and later used to reproduce a problem in a simple unit testing environment.
Logging is currently not supported for delegates of a UIMA aggregate deployed synchronously.

CASes are stored in XmiCas format in a separate directory for each delegate with logging enabled.
Along with the CAS files in each directory is a file "typesystem.xml" containing the complete CAS
type system. A delegate's directory name is the full delegate context with '/' chars converted to '-'. If
not specified, the base CAS logging directory is the process current directory. By default the name
of each CAS file is the time in milliseconds after CAS logging begins for a delegate. If a string
exists in the CAS that should be used as the file name, it can be specified by {type, feature} found
in a specific view.

A list of delegates to enable for CAS logging can be specified as a Java property. Logging
can also be enabled/disabled dynamically via JMX. CAS logging control is enabled in the
"Annotator_Service Info" bean for each asynchonous delegate.

Java properties used for CAS logging:

Property Description

UIMA_CASLOG_BASE_DIRECTORY optional; this is the directory under which sub-
directories with XmiCas files will be created.
If not specified, the process's current directory
will be the base.

UIMA_CASLOG_COMPONENT_ARRAY This is a space separated list of delegates
keys. If a delegate is nested inside a co-
located async aggregate, the name would
include the key name of the aggregate,
e.g. "someAggName/someDelName". The
XmiCas files will then be written into directory
$UIMA_CASLOG_BASE_DIRECTORY/
someAggName-someDelName. Note that
delegates for the top level aggregate do not
require an aggregate name context.

UIMA_CASLOG_TYPE_NAME optional; this is the name of a FeatureStructure
in the CAS containing a unique string to use
to name each XmiCas file. If not specified,
XmiCas file name will be N.xmi, where N is
the time in microseconds since the component
was initialized.

UIMA_CASLOG_FEATURE_NAME optional unless the TYPE_NAME is specified;
this parameter gives the string feature to use.



CAS Logging

UIMA Version 2.10.2 Monitoring, Tuning and Debugging 51

Property Description

If the string value contains one or more "/"
characters only the text after the last "/" will be
used.

UIMA_CASLOG_VIEW_NAME optional; if the TYPE_NAME and
FEATURE_NAME parameters are specified
this string selects the CAS view used to access
the FeatureStructure with unique string feature.





Asynchronous Scaleout Camel Driver 53

Chapter 6. Asynchronous Scaleout Camel
Driver

6.1. Overview
Apache Camel1 is an integration framework based on Enterprise Integration Patterns2 which uses
routes for rule-based message routing and mediation. The camel project has a large number of
components which provide access to a wide variety of technologies and are the building blocks of
the routes. The Asynchronous Scaleout Camel Driver is a component to integrate UIMA AS into
Camel.

6.2. How does it work?
The Asynchronous Scaleout Camel Driver sends the camel message body (without headers) to a
specified UIMA AS processing pipeline. Accessing the analysis results which are written into the
CAS is not possible from a camel route. There are basically two usage scenarios. The Camel Driver
can be used to drive the processing of a UIMA AS cluster in which each server instance runs a
cas multiplier to fetch the actual document from a database. In this scenario the camel route only
sends an ID of the document to the cas multiplier which does the actual fetching of the document.
In the second usage scenario the Camel Driver is used to send a document in a one way fashion to a
UIMA AS processing pipeline which then takes care of processing it. In case an error occurs inside
the processing pipeline the exception is forwarded to camel and set on the message as response.
Error handling is described in the Error handling in Camel3 documentation.

The camel driver expects a string message body; if it is not of the type string it might be
automatically converted by camel type converters. The string message body is set as the CAS's
document text. An Analysis Engine calls CAS CAS.getDocumentText() to retrieve the string.

6.3. URI Format
The Asynchronous Scaleout Camel Driver is configured with a configuration string. The
configuration string must contain the broker location and name of the JMS queue used to
communicate with UIMA AS. It has the following format

uimadriver:brokerURL?queue=nameofqueue&CasPoolSize=n&Timeout=t

which could for example be specified as

uimadriver:tcp://localhost:61616?queue=TextAnalysisQueue

. The CasPoolSize parameter is optional but if it is present n must be an integer which is larger
than zero, otherwise the UIMA AS default will be used. The Timeout parameter is optional but if
present t in milliseconds must zero or larger.

1 http://camel.apache.org
2 http://camel.apache.org/enterprise-integration-patterns.html
3 http://camel.apache.org/error-handling-in-camel.html

http://camel.apache.org
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/error-handling-in-camel.html


Sample

54 Asynchronous Scaleout Camel Driver UIMA Version 2.10.2

6.4. Sample
Camel enables a developer to create quickly all kinds of applications out of existing and
custom components. The sample demonstrates how UIMA AS is integrated with other
technologies. Readers who are new to camel should read the Getting Started4 chapter in the camel
documentation.

First a simple sample: A user wants to test a UIMA AS processing pipeline, sending it a set of test
documents to process. The plain text test documents are located in a folder "/test-data". A camel
route for this defined with Java DSL5 could look like this:

     from("file://test-data?noop=true").
     to("uimadriver:tcp://localhost:61616?queue=TextAnalysisQueue");
    

In the route above the file component sends a message for every file to the uimadriver component.
The message contains a reference to the file but not the content of the file itself. The uimadriver
component expects a message with string body as input. An internal camel type converter will read
in the bytes of the file, decode them into characters with the default platform encoding and then
create a string object which is passed to the uimadriver component. The uimadriver then puts the
string into a CAS and sends it via the UIMA AS Client API to a processing pipeline. Note that
results from the returned CAS cannot be retrieved in a camel route.

A more complex sample. A web site has an area where people can upload pictures. The pictures
must be checked for appropriate content. The pictures are pushed to the site via http, stored in
a database and assigned to the human controllers to classify them either as appropriate or non-
appropriate. That is achieved with an existing camel route and a servlet which receives the images
and sends them to the camel route.

    from("direct:start").
    to("imagewriter").
    to("jms:queue:HumanPictureAnalysisQueue");
    

The message containing the image is received by the direct:start endpoint, the image is written to a
database and replaced with a string identifier by the "imagewriter" component, in the last step the
camel jms component posts the identifier on a JMS queue to notify the reception of a new image.
The notification is received by a client tool which the human controllers use to classify an image.

To lessen the workload on the human reviewers, a system should automatically classify the pictures
and only assign questionable cases to human reviewers. The automatic classification is done by an
UIMA Analysis Engine. The AE can mark an image with one of three classes appropriate, non-
appropriate and unknown. In the case of unknown the AE is not confident enough which of the first
two classes is correct. To be scalable, the processing pipeline is hosted by UIMA AS and contains
three AEs, one to fetch the image from the database, a classification AE and an AE to write the
class of the image back to the database. The first AE is typical a cas multiplier and receives a
CAS which only contains the string identifier but not the actual image. The cas muliplier uses the
identifer to fetch the image from the database and outputs a new CAS with the actual image. The
Camel route blocks until the CAS is processed by the following two AEs and depending on the
class in the database the picture is assigned to a human controller or not.

4 http://camel.apache.org/book-getting-started.html
5 http://camel.apache.org/dsl.html

http://camel.apache.org/book-getting-started.html
http://camel.apache.org/dsl.html
http://camel.apache.org/book-getting-started.html
http://camel.apache.org/dsl.html


Implementation

UIMA Version 2.10.2 Asynchronous Scaleout Camel Driver 55

    from("direct:start").
    to("imagewriter").
    to("uimadriver:tcp://localhost:61616?queue=UimaPictureAnalysisQueue").
    to("class-retriever").
    // filters messages with class appropriate and non-appropriate
    filter(header("picture-class").isEqualTo("unkown")).
    to("jms:queue:HumanPictureAnalysisQueue");
    

The first part is identical, after the imagewriter the string identifier is send to the UIMA AS
processing pipeline which writes the image class back to the database. The class is retrieved with
the custom class-retriever component and written to a message header field, only if the class is
unknown the image is assigned for human classification.

Note: instead of using a CAS multiplier, a more straight-forward approach would use just one CAS,
having 2 views: one view would contain the string identifier of the image, and the other view would
have the image to be analyzed (or a reference to it in the DB).

6.5. Implementation
The Asynchronous Scaleout Camel Driver is a typical camel component. The camel documentation
Writing Components6 describes how camel components are written. The source code can be
found in the uimaj-as-camel project. The implementation defines an asynchronous producer
endpoint, which is implemented in the org.apache.uima.camel.UimaAsProducer class. The
UimaAsProducer.process method gets the string body of the message, wraps it in a CAS object
and sends it to UIMA AS. Since the producer is asynchronous the camel message is registered with
the reference id of the sent CAS in an intermediate map, when the CAS comes back from UIMA
AS, the camel message is looked up with the reference id of the CAS and the processing of the
camel message is completed. For further details please read the UimaAsProducer implementation
code.

6 http://camel.apache.org/writing-components.html

http://camel.apache.org/writing-components.html
http://camel.apache.org/writing-components.html




Asynchronous Scaleout Tools 57

Chapter 7. Asynchronous Scaleout Tools

7.1. Overview
Several tools are available to use with UIMA-AS, including tools to start a JMS Broker, deploy a
UIMA-AS service, start up a trivial client that reads documents from a directory and sends them to
a remote service, and query a named service for its meta data.

Additionally, there is an extension to the Component Descriptor Editor that gives a form-based
editor capability to edit deployment descriptors, along with wizards to enable creating these kinds
of descriptors.

7.2. Starting a broker
The startBroker script starts an ActiveMQ broker that can then be used to connect UIMA-AS
clients to UIMA-AS Services.

All arguments are optional; if none are given, the broker is started on the same machine using
defaults. See the script for details on how this can be configured.

7.3. Deploying a UIMA-AS Service
The deployAsyncService script deploys one or more UIMA-AS services. Its arguments are one
or more paths to deployment descriptors.

The Java source code that does the deploying is in the class
org.apache.uima.adapter.jms.service.UIMA_Service, in the uimaj-as-activemq project.

7.4. Running a UIMA-AS Client
The runRemoteAsyncAE script is a sample application that calls a Remote Asynchronous Analysis
Engine on a collection of artifacts, represented by files in a directory.

The command takes several arguments:

• brokerUrl - the url of the broker to use to connect to the service

• service name - this is the endpoint name of the service, and must match what is in the
service's deployment descriptor.

The rest of the arguments are optional:

• -d Specifies a deployment descriptor. The specified service will be deployed before
processing begin, and the service will be undeployed after processing completes. Multiple -d
entries can be given.

• -c Specifies a CollectionReader descriptor. The client will read CASes from the
CollectionReader and send them to the service for processing. If this option is omitted, one
empty CAS will be sent to the service (useful for services containing a CAS Multiplier
acting as a collection reader).



Querying for a service's metadata

58 Asynchronous Scaleout Tools UIMA Version 2.10.2

• -p Specifies CAS pool size, which determines the maximum number of requests that can be
outstanding.

• -f Specifies the initial FS heap size in bytes of each CAS in the pool.

• -o Specifies an Output Directory. All CASes received by the client's CallbackListener will
be serialized to XMI in the specified OutputDir. If omitted, no XMI files will be output.

• -t Specifies a timeout period in seconds. If a CAS does not return within this time period it is
considered an error. By default there is no timeout, so the client will wait forever.

• -i Causes the client to ignore errors returned from the service. If not specified, the client
terminates on the first error.

• -log Output details on each process request.

• -uimaEeDebug true causes various debugging things to happen, including not deleting
the generated spring file generated by running dd2spring. This parameter only affects
deployments specified using the -d parameter that follow it in the command line sequence.

• -TargetServiceId specifies identifier of a service which should process a CAS. This identifier
must match service's identifier. By default a service is launched with an IP:PID identifier but
the identifier can be an arbitrary String.

The source code for this is in the class
org.apache.uima.examples.as.RunRemoteAsyncAE.java in the project uimaj-as-
activemq.

7.5. Querying for a service's metadata
The getMetaRequest script connects to an Active MQ broker and attempts to query a particular
named service's metadata. This can be useful to confirm that a service actually exists and is started,
on a particular broker.

This takes several arguments:

• broker Uri - the Uri of the JMS broker used by the UIMA-AS Service

• service name - the name of the UIMA-AS service, same as the "endpoint" name.

• [optional] -verbose - to output more information
There are other arguments which are normally not given; if needed, they are specified as Java -D
(defined properties) arguments:

• -Dactivemq.broker.jmx.port=xxx - override the port being used for JMX (defaults to 1099)

• -Dactivemq.broker.jmx.domain=xxx - use xxx as the JMX domain. This normally never
needs to be done unless multiple brokers are run on the same node as is sometimes done for
unit tests.

This command will connect to the specified broker at its JMX port and query to verify that this
broker has the named service registered. It then will send a getMeta request to the named service
and retrieve its metadata.

The source code for this is in the class org.apache.uima.examples.as.GetMetaRequest in
the project uimaj-as-activemq.


	UIMA Asynchronous Scaleout
	Table of Contents
	Chapter 1. Overview - Asynchronous Scaleout
	1.1. Terminology
	1.2. AS versus CPM
	1.3. Design goals for Asynchronous Scaleout
	1.4. AS Concepts
	1.4.1. User written components and multi-threading
	1.4.2. AS Component wrapping
	1.4.3. Parallel Flows
	1.4.4. Deployment alternatives
	1.4.4.1. Configuring multiple instances of components
	1.4.4.2. Queues
	1.4.4.3. Deployment Descriptors
	Deploying UIMA aggregates


	1.4.5. Current design limitations
	1.4.5.1. Sofa Mapping limits
	1.4.5.2. Parameter Overriding limits
	1.4.5.3. Resource Sharing limits

	1.4.6. Compatibility with earlier version of remoting and scaleout

	1.5. Application Concepts
	1.5.1. Application API
	1.5.2. Collection Process Complete

	1.6. Monitoring and Controlling an AS application
	1.7. JMS Service Descriptor
	1.8. Life cycle

	Chapter 2. Error Handling for Asynchronous Scaleout
	2.1. Basic concepts
	2.2. Associating Errors with incoming commands
	2.2.1. Error handling for CASes generated in an Aggregate by CAS Multipliers

	2.3. Error handling overview
	2.4. Error results
	2.5. Error Recovery actions
	2.5.1. Aggregate Error Actions
	2.5.1.1. Retry
	2.5.1.2. Disable Action
	2.5.1.3. Continue Option on Delegate Process CAS Failures


	2.6. Thresholds for Terminate and Disable
	2.7. Terminate Action
	2.8. Commands and allowed actions

	Chapter 3. Asynchronous Scaleout Deployment Descriptor
	3.1. Descriptor Organization
	3.2. Deployment Descriptor
	3.3. CAS Pool
	3.4. Service
	3.5. Customizing the deployment
	3.6. Input Queue
	3.7. Top level Analysis Engine descriptor
	3.8. Setting Environment Variables
	3.9. Analysis Engine
	3.10. Error Configuration descriptors
	3.11. Error Configuration defaults

	Chapter 4. Asynchronous Scaleout Application Interface
	4.1. Asynchronous Client API Overview
	4.2. The UimaAsynchronousEngine Interface
	4.3. Application Context Map
	4.4. Status Callback Listener
	4.5. Error Results
	4.6. Asynchronous Client API Usage Scenarios
	4.6.1. Instantiating a Client API Object
	4.6.2. Calling an Existing Service
	4.6.3. Retrieving Asynchronous Results
	4.6.4. Deploying a Service with the Client API

	4.7. Targeting specific service instance with the Client API
	4.8. Undeploying a Service with the Client API
	4.9. Recovering from broker failure
	4.10. Generating Deployment Descriptor Programmatically
	4.11. Sample Code

	Chapter 5. Monitoring, Tuning and Debugging
	5.1. Monitoring
	5.1.1. JMX
	5.1.2. JMX Information from UIMA AS
	5.1.2.1. UIMA AS Services JMX measures
	Service information
	Service Performance Measurements
	Co-located Service Queues
	Service Error Measurements

	5.1.2.2. Application Client information
	Client Measures
	Client Error Measurements



	5.2. Logging Sampled JMX information at intervals
	5.2.1. Configuring JVM to run the monitor
	5.2.2. Running the Monitor program standalone
	5.2.3. Monitoring output

	5.3. Disabling JMX in UIMA-AS JUnit tests
	5.4. Tuning
	5.4.1. Tuning procedure
	5.4.2. Tuning Settings

	5.5. Debugging
	5.5.1. Error Reporting and Tracing
	5.5.2. CAS Logging


	Chapter 6. Asynchronous Scaleout Camel Driver
	6.1. Overview
	6.2. How does it work?
	6.3. URI Format
	6.4. Sample
	6.5. Implementation

	Chapter 7. Asynchronous Scaleout Tools
	7.1. Overview
	7.2. Starting a broker
	7.3. Deploying a UIMA-AS Service
	7.4. Running a UIMA-AS Client
	7.5. Querying for a service's metadata


