UIMA Tutorial and Developers' Guides

Written and maintained by the Apache
UIMA™ Development Community

Version 2.10.2

Copyright © 2006, 2017 The Apache Software Foundation
Copyright © 2004, 2006 | nternational Business Machines Corporation

Licenseand Disclaimer. The ASF licenses this documentation to you under the Apache

License, Version 2.0 (the "License"); you may not use this documentation except in compliance

with the License. Y ou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents
are distributed under the License on an "AS1S' BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Trademarks. All terms mentioned in the text that are known to be trademarks or service marks
have been appropriately capitalized. Use of such termsin this book should not be regarded as
affecting the validity of the the trademark or service mark.

Publication date October, 2017

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

1. Annotator & AE DeVElOPE'S GUIARcooieieieieee e 1
O = 1 o TS = 11 (o 2
112 DEfINING TYPES .o 3
1.1.2. Generating Java Source Files for CAS TYPES ...uvvviiiiiiiiiiiiiii e 4
1.1.3. Developing Your ANNOLEIOr COUEccvveeirieieeeeee et e e e e e 5
1.1.4. Creating the XML DESCIIPLOrccvvvviiiiiieeeiieeeeies e e e 8
1.1.5. Testing Y Our ANNOTAIOLoceiiieeeiiiie e e eeeeeetiie e e e e e eetai e e e e e eeaaee s 10

1.2. Configuration and LOGGING «....cceeeeuurueiiieeeeieeiiiinieseeereeeeeinnasseeeseeenessnanaeeeseeennne 13
1.2.1. Configuration Parametersoiiieeeieeeiiiiiiis e e e e e e eearr e e e 13
B2 o o o1 o PSP 16

1.3. Building Aggregate ANalySiS ENQINESccovveiiiueiinieeeiereiiiiiee e e e e e e eeeeeeeees 19
1.3.1. CombiNiNGg ANNOLELOISuuuieeeeieeeiiiie e e e e e et e e e e e et e e e e e e eeeeen s 19
1.3.2. AAEs can aso contain CAS CONSUMENSccoeeieieieieieaeeeeeeeee e 22
1.3.3. Reading the Results of Previous ANNOLEEOrSccooeeeeerei 22

O @ 1 g e o) = 24
1.5, AdditioNal TOPICS - 25
1.5.1. Annotator MethodsScooiiiiiiiiiii e 25
1.5.2. Reporting errors from ANNOLELOIScevvvriiiieeeee i e e e e e 26
1.5.3. Throwing Exceptions from ANNOtatOrScccevvuviviiiiiieerieeiiiie e 27
1.5.4. Accessing EXternal RESOUICESccceuuuiiiiiieieieeiiiii e eeeees 29
1.5.5. ReSUIt SPECITICAIONS ... cceeeieeeiiiie e eeeeeees 36
1.5.6. Class path setup When USING JCaSccvvveiiiieeeeeeiiiceis e e e e e e e e eeeans 38
1.5.7. Using the Shell SCriPtScoovviiiiiiiii 38

1.6. CommON PitfallScoooiiiiii 39
1.7. UIMA Objects in EClipSE DEDUGGENuuoiiieeiieeiiiiie i e et eeeeenees 39
1.8. Analysis Engine XML DeSCIPLONccvvvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 40
1.8.1. Header and Annotator Class Identificationuceiiiieiiiiiiiiiiiiiieeeeeeees 40
1.8.2. Simple Metadata AttribDULEScoovviiiii i 41
1.8.3. Type System Definitioncccoooeeiioiiiiee e 41
1.8.4. CapabilitieS .coeeeeeieeeeeee e 41
1.8.5. Configuration Parameters (Optional)cooovevvieeeiiiiinini e e eeeeeeens 42

2. CPE DeVEIOPEr'S GUITEcevviieiiieeeiee ettt e e e e et e e e e e e e e et e e s e e e e e e eanennnns 45
2.1, CPE CONCEPLS .ttt eeeeti ettt ettt ettt ettt et et e et e eaean 46
2.2. CPE Configurator and CAS VIEWEScccoveuieiiiieeeeeieeeiiie s e e e eeeeeeeeinn s s eeeeeeeannnnnns 47
2.2.1. Using the CPE CoNfigUIaloruuuiiiieeiieieiiiiis e e ee e e ettt e e e e e e eeennnnnnns 47
2.2.2. Running the CPE Configurator from EClipSe ..., 51

2.3. Running a CPE from Your Own Java Applicationceeiiieiiieiiiiiiineeeeeeeeeiiens 52
P I U L= oo I (= P 52

2.4. Developing Collection Processing COMPONENTSuuuueerueueuneneinieeeiennineneeenenenenens 53
2.4.1. Developing Collection REAHEN'Sccuvvuiiiiiieiiiiiiiiiiie e 53
2.4.2. Developing CAS INItTAlIZErSuei e e e e e 58
2.4.3. DevelOping CAS CONSUIMIENSuuuuurururururnrntnnntnrntnenrnnerererenesesereeeeerererereeee 59

2.5. DEPIOYING @ CPEuiiiiii et 61
2.5.1. Deploying Managed CAS PrOCESSOISuuuiieeeieeeriiiaiseeeeeeeeennnnaneeeeeaeennnns 63
2.5.2. Deploying Non-managed CAS PrOCESSOISccvvvvvriuiiiiieeereeeviiiiinseeeeeeennnns 64
2.5.3. Deploying Integrated CAS PrOCESSOIScoivieieiiiiiiieeeeeeeeeiiiaa e e e e eeeaeiaannns 65

2.6. Collection Processing EXAMPIESuuuuiiiiiiiiiiiiieiei et e e e e e e e e eannnes 66
3. Application DeVEOPENr'S GUITEcccvieeiiiiiie s ee e e e e e e e e e e eeaaar e e e e e e aeeanne 69
3.1. The UIMAFramework Classcoooiiiiiiieie e 69
3.2. USINg ANAIYSIS ENQINESccoeeiiiiiiiee e et e e e e e e e e e e e eeeena s 69
3.2.1. Instantiating an ANalySiS ENQINEiviiiiiiiiiiie e 70

UIMA Tutoria and Developers Guides iii

UIMA Tutoria and Developers Guides

3.2.2. Analyzing Text DOCUMENESccuuvurnieieeeieeiieiieie e e e eee et e e e e e e eeereenn e e e 70
3.2.3. Analyzing NON-Text ArtifaCtScooviiiiiiiiiii e 71
3.2.4. Accessing AnalySiS RESUILScoooeeieei i 71
3.2.5. Multi-threaded APPIICALTIONSccoeiieeiiiiieee e 72
3.2.6. Multiple AEs & Creating Shared CASESccovvvvvviiiiieeeieeeeie e 74
3.2.7. Saving CASes to file systems or general Streams...........c.cvvceeeeeeeeeiieiiiinnnnnn. 75

3.3. Using Collection Processing ENQINESuuuuiiiieeiiiiiiiiiiinieeeeee et eeeeeeieis 78
3.3.1. Running a CPE from a DESCHPLONuiiieeiiieeeiiiie e ee e e e 78
3.3.2. Configuring a CPE Descriptor ProgrammatiCallyevvvvviiviiiiiiiiinennnns 78

3.4. Setting Configuration Parametersuuuuererereiiiiiiiiieiireie e 80
3.5. Integrating Text Analysisand Searchceeviiiiiiiieiiiii e 81
3.5.1. BUIlAiNg @N INAEX ... e 81
3.5.2. Semantic Search QUENY TOOIuvviiiiiiiiiieeii e 84

3.6. Working with REMOLE SEIVICESvvueiiii e e e e e e e eeeees 86
3.6.1. Deploying as SOAP SEIVICEccovvvviiiiii et e e 86
3.6.2. Deploying as aVinCi SErVICEoooeeiiiiiiiiiee 88
3.6.3. Calling @ UIMA SEIVICE ..uuuiiie e e e e e eananneas 89
3.6.4. Restrictions on remotely deployed SErVICESccevvvveiiiieeeiieeiiiie e 20
3.6.5. The Vinci Naming Services (VNS) ... 91
3.6.6. Configuring TiMEOUL SELINGSccvvvrruiiieeieieieiiiinn e e e et e e e e eeene s 93

3.7. Increasing performance using parallelismccooviiieiiiiiiiii e 95
3.8. Monitoring AE Performance using IMXccoiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 96
3.9. Performance TUNiNg OPLIONSuuuuuuuriririiiiiiiiiiiiiei e 98
4. Flow Controller DevelOper's GUITEccvviuuiueiriie e e e eeeir e e e e e et e e 101
4.1. Developing the Flow Controller Codevvviviieiiiiiiiiiiie e 101
4.1.1. Flow Controller Interface OVEIVIEWcoiiieiiiiiiiiiiiinieee e 101
N A e 4] o] L= 0o (= 102

4.2. Creating the Flow Controller DESCIIPLONuuiiieeeieeeeiiiiie e e eeee e e e e e 104
4.3. Adding Flow Controller t0 an AQQregateuuueeeeereeeeeeieieeieeeeeeieeeaeeeeeeeeeeeeeeeees 105
4.4. Adding FlIow Controller t0 CPEuvuiiiiee i 106
4.5. Using Flow Controllers with CAS MUItipliersveeviiiiiiiiiiee e 106
4.6. Continuing the Flow When EXceptions OCCUFcoeeiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 107
5. Annotations, ArtifactS & SOf8Scevviiiiiiiiiii 109
L300 I 1= 1 21T o PPN 109
LT 0 Y 1) o TR 109
5.1.2. Subject of ANAlYSIS — SOF@evvveriiiiiiiiiiiiiieii i 109

5.2. FOrMALS Of SOFA DAAvvvvvveiiiiiiiiiiiiiiiiiieieieeeeeeeeeee ettt eeeeaeeeeeeeeeeeeeeeeees 109
5.3. Setting and Accessing Sofa Datacoooeeeieiiiii 110
5.3.1. Setting SOfa D@cccvveiiiiiiiiie ettt 110
5.3.2. ACCESSING SOfA DALAevvvueieeeeeeeeiiiiie e e e e e e et e e e e e enennenas 110
5.3.3. Accessing Sofa Data using a Java Streamveeeiieeeeeveeiiiiiie e eeeeeeennns 110

5.4. The Sofa FEIUrE SIIUCIUIEuuerereieiiieriieietieeieeeeeeeeeneneeeeenenerereneneneeeeenenenenennes 111
5.5, ANNOLAIIONS ...ttt e bbb be e nnenee 111
5.5.1. BUilt-in ANNOLELioN tYPES .ovvvvveiiii e eeeeeeiiie e et 111
5.5.2. Annotations have an associated SOfacoevvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 112

5.6. ANNOLALTIONBASEuuiiiiiiiiiiiiiiiit bbb 112
6. MUIIPIE CAS VIBIWS ... ittt s e e e e e e e ettt s e e e e e e e e e aetaaeseeeeeeeannnns 113
B.1. CAS ViIews and SOfaScoooeveiei e 113
6.1.1. Naming CAS Views and SOfaSccooveeiiiiiiiieee 113
6.1.2. Multi/Single View parts in AppliCationSccuuveiiiiieeeiieeiiiiein e eeeeenenns 114

6.2. MUIti-View COMPONENES ... e 114
6.2.1. DeCiding: MUITI-VIBWiiiiiieieiice e 114
6.2.2. Multi-View: additional capabilitieSc..coevvviiiiiieiiieeiee e, 114

UIMA Tutoria and Developers Guides UIMA Version 2.10.2

UIMA Tutoria and Developers Guides

6.2.3. Component XML Metadatacoeeevireiiiiiinieeereeeeiiiis e e 114

6.3. Sofa Capabilities & APIS fOr APPS ..vvveeiiiieeiiiiiiee e 115
6.4. Sofa Name MapPinNgcoooviiiiii 115
6.4.1. Name Mapping in an Aggregate DeSCriptorccuvviiiieeeiiieiiiiiiiieeeeeneeens 116
6.4.2. Name Mapping in @ CPE DESCIIPLONuvvuiieieeeeeeeiiiie e e e eeeeeeeiiinseeeeeeeeens 116
6.4.3. CAS View receiVed DY ProCESS 117
6.4.4. Name Mapping in a UIMA APPlCAioNcovvvieiiiiiiiiinieeeeeeeceiiin e 117
6.4.5. Name Mapping for REMOE SErVICEScuvviiiieeiiieeiicis e 118

6.5. JCas extensions for MUltiple VIeWs ..o, 118
6.6. Sample Multi-View APPIICAHION ... 118
(X 2N g To = (o gl B 1= o] o o S 119
6.6.2. APPlICALION SEIUD ...coovveiiiiie i 119
6.6.3. ANNOLALOr PrOCESSINGiieiiieiiiiiie e ettt e e e 119
6.6.4. Accessing the results of analySiSccovvvviiiiiiiiiieiiiecee e 120

6.7. VIeWS APl SUMIMANYcoeiiiiiiiie et e e e e e e e e e e e e e e e st eeeas 121
6.8. Sofa Incompatibilities: V1 and V2uuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiieiiinieeieeeneeenenennnee 121
T CAS MU DI O e 123
7.1. Developing the CAS Multiplier Codeuvviiiiieiiiieiiiie e 123
7.1.1. CAS Multiplier Interface OVENVIEWceevviiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeee 123
7.1.2. Getting an empty CAS INSLANCEcoevvvviniiieeeieieiiiiiis e e e eeeeees 124
7.1.3. EXaMPIE COUEceveeeeii ittt e e e e 124

7.2. CAS MUIIPliEr DESCIIPLON ... eenenenee 127
7.3. Using CAS MUItIpliers in AQQregalesuuurrururrrrriiiiieieiiiiieneneeeseeeneeieenenenenennes 128
7.3.1. Aggregate: Adding the CAS MUItIPHErcovvvvviiiiiiieeeieeeeeee e 128
7.3.2. CAS Multipliers and FlIow Controlovieiiiieeiiiiiiee e 129
7.3.3. Aggregate CAS MUITIPHEIS ..ooveeiiiieieee e 130

7.4. CAS MUIIPHEIS 1N CPE'S ..oeeiviiie et s s e e e e e et e e e e e e e eeanennn s 131
7.5. Applications: Calling CAS MUIIPIIErScoieeeiiieic e 131
7.5. 1. OULPUL CASES ...ueutuiiiiiiiiiiittutititatteeaataeeeeeebeeeeeeebeeebeeebeeebeeeeeeebsseeesesennrees 131
7.5.2. CAS Multipliers with other AESciiiiiiiiiiiieiee e 132

7.6. Merging With CAS MUIPIIENSooeeiieeecie e 133
7.6.1. CAS Merging OVEIVIEWccevviiiiiiiiiiiiiiiieee ettt 133
7.6.2. EXaMPIe CAS MEIGEN ...ttt 133
7.6.3. SimpleTextMerger in an AgQregateeiiieeeveeeeeiiiie e e e eee e e e e aeeeeaens 135

8. XIMI & EM e 137
8.1 OVEIVIBIW ..ttt e ettt e e e e e et e e ettt e e e e e e e e e eaeba e e eees 137
8.2. Converting an Ecore Model to or from a UIMA Type Systemcccvvveievieeeenennnns 137
8.3. USiNg XMI CAS SerialiZationuuuuuuuuuuuueiiiiiiiiiiiiiiiriieirinineneeeeeeeseeeneeeeenenee 138
8.3.1. Character Encoding Issues with XML Serializationcooeevvviiiiiinnnnnnnn. 138

9. Managing different TYPESYSIEIMSvvueieie i e e e e e e e s 141
9.1. Annotators, Type Merging, and REMOLESccovvvvviiiiiie e 141
9.2. Supporting RemMOte ANNOLALOIScevviiiiiiiiiiiiieeeeeeeeee e 141
9.3. Type filtering support in Binary Compressed Serialization/Deseridization 141
9.4. Remote Services support with Compressed Binary Seriaizationcccccceeee.... 142
9.5. Compressed Binary serialization to/from files.........ccco 142

UIMA Version 2.10.2 UIMA Tutoria and Developers Guides Y

Chapter 1. Annotator and Analysis Engine
Developer's Guide

This chapter describes how to develop UIMA type systems, Annotators and Analysis Engines using
the UIMA SDK. It is helpful to read the UIMA Conceptua Overview chapter for areview on these
concepts.

An Analysis Engine (AE) is a program that analyzes artifacts (e.g. documents) and infers
information from them.

Analysis Engines are constructed from building blocks called Annotators. An annotator isa
component that contains analysis logic. Annotators analyze an artifact (for example, atext
document) and create additional data (metadata) about that artifact. It isagoal of UIMA that
annotators need not be concerned with anything other than their analysis logic — for example the
details of their deployment or their interaction with other annotators.

An Analysis Engine (AE) may contain a single annotator (thisisreferred to as a Primitive AE),
or it may be a composition of others and therefore contain multiple annotators (thisis referred to
as an Aggregate AE). Primitive and aggregate AEs implement the same interface and can be used
interchangeably by applications.

Annotators produce their analysis resultsin the form of typed Feature Structures, which are simply
data structures that have atype and a set of (attribute, value) pairs. An annotation is a particular
type of Feature Structure that is attached to aregion of the artifact being analyzed (a span of text in
adocument, for example).

For example, an annotator may produce an Annotation over the span of text Pr esi dent Bush,
where the type of the Annotation is Per son and the attribute f ul | Nane has the value Geor ge W
Bush, and its position in the artifact is character position 12 through character position 26.

It isaso possible for annotators to record information associated with the entire document rather
than a particular span (these are considered Feature Structures but not Annotations).

All feature structures, including annotations, are represented in the UIMA Common Analysis
Sructure(CAS). The CASisthe central data structure through which al UIMA components
communicate. Included with the UIMA SDK is an easy-to-use, native Javainterface to the

CAS cdlled the JCas. The JCas represents each feature structure as a Java object; the example
feature structure from the previous paragraph would be an instance of a Java class Person with
getFullName() and setFullName() methods. Though the examples in this guide all use the JCas,
it isaso possible to directly access the underlying CAS system; for more information see UIMA
References Chapter 4, CAS Reference .

The remainder of this chapter will refer to the analysis of text documents and the creation of
annotations that are attached to spans of text in those documents. Keep in mind that the CAS can
represent arbitrary types of feature structures, and feature structures can refer to other feature
structures. For example, you can use the CAS to represent a parse tree for a document. Also, the
artifact that you are analyzing need not be a text document.

Thisguideis organized as follows:

* Section 1.1, “ Getting Started” [2] is atutorial with step-by-step instructions for how to
develop and test asimple UIMA annotator.

» Section 1.2, “ Configuration and Logging” [13] discusses how to make your UIMA
annotator configurable, and how it can write messages to the UIMA log file.

Annotator & AE Developer's Guide 1

Getting Started

» Section 1.3, “Building Aggregate Analysis Engines’ [19] describes how annotators can
be combined into aggregate analysis engines. It aso describes how one annotator can make
use of the analysis results produced by an annotator that has run previously.

* Section 1.4, “ Other examples’ [24] describes several other examples you may find
interesting, including
¢ SimpleTokenAndSentenceAnnotator — a simple tokenizer and sentence annotator.
¢ PersonTitleDBWriterCasConsumer — a sample CAS Consumer which populates a
relational database with some annotations. It uses JDBC and in this example, hooks
up with the Open Source Apache Derby database.

* Section 1.5, “ Additional Topics’ [25] describes additional features of the UIMA SDK
that may help you in building your own annotators and analysis engines.

» Section 1.6, “ Common Pitfalls” [39] contains some useful guidelinesto help you
ensure that your annotators will work correctly in any UIMA application.

This guide does not discuss how to build UIMA Applications, which are programs that use
Anaysis Engines, along with other components, e.g. a search engine, document store, and user
interface, to deliver a complete package of functionality to an end-user. For information on
application development, see Chapter 3: “ Application Developer's Guide” .

1.1. Getting Started

This section is a step-by-step tutorial that will get you started developing UIMA annotators. All

of thefilesreferred to by the examplesin this chapter arein the exanpl es directory of the UIMA
SDK. Thisdirectory is designed to be imported into your Eclipse workspace; see UIMA Overview
& SDK Setup Section 3.2, “ Setting up Eclipse to view Example Code” for instructions on how to
do this. See UIMA Overview & SDK Setup Section 3.4, “ Attaching UIMA Javadocs’ for how to
attach the UIMA Javadocs to the jar files. Also you may wish to refer to the UIMA SDK Javadocs
located in the docs/api/index.html? directory.

Note: In Eclipse 3.1, if you highlight a UIMA class or method defined in the UIMA SDK
Javadocs, you can conveniently have Eclipse open the corresponding Javadoc for that class
or method in a browser, by pressing Shift + F2.

Note: If you downloaded the source distribution for UIMA, you can attach that as well to
the library Jar files; for information on how to do this, see UIMA References Chapter 1,
Javadocs.

The example annotator that we are going to walk through will detect room numbers for rooms
where the room numbering scheme follows some simple conventions. In our example, there are
two kinds of patterns we want to find; here are some examples, together with their corresponding
regular expression patterns:

Y orktown patterns:
20-001, 31-206, 04-123(Regular Expression Pattern: ##-[0-2]##)

Hawthorne patterns:
GN-K35, 1S-L07, 4N-B21 (Regular Expression Pattern: [G1-4][NS]-[A-Z]##)

There are several stepsto develop and test asimple UIMA annotator.
1. Define the CAS types that the annotator will use.

1 api/index.html

2 Annotator & AE Developer's Guide UIMA Version 2.10.2

api/index.html
api/index.html

Defining Types

2. Generate the Java classes for these types.
3. Write the actual annotator Java code.

4. Create the Analysis Engine descriptor.

5. Test the annotator.

These steps are discussed in the next sections.

1.1.1.

Defining Types

Thefirst step in developing an annotator isto define the CAS Feature Structure types that it creates.
Thisisdonein an XML file called a Type System Descriptor. UIMA defines basic primitive types
such as Boolean, Byte, Short, Integer, Long, Float, and Double, as well as Arrays of these primitive
types. UIMA also defines the built-in types TOP, which is the root of the type system, analogous

to Object in Java; FSAr r ay, which isan array of Feature Structures (i.e. an array of instances of
TOP); and Annot at i on, which we will discussin more detail in this section.

UIMA includes an Eclipse plug-in that will help you edit Type System Descriptors, so if you are
using Eclipse you will not need to worry about the details of the XML syntax. See UIMA Overview
& SDK Setup Chapter 3, Setting up the Eclipse IDE to work with UIMA for instructions on setting
up Eclipse and installing the plugin.

The Type System Descriptor for our annotator islocated in thefiledescri ptors/tutorial /
ex1/ Tutori al TypeSyst em xm . (Thisand al other examples are located in the exanpl es
directory of the installation of the UIMA SDK, which can be imported into an Eclipse project for
your convenience, as described in UIMA Overview & SDK Setup Section 3.2, “ Setting up Eclipse
to view Example Code’.)

In Eclipse, expand the ui naj - exanpl es project in the Package Explorer view, and browse to
thefiledescriptors/tutorial/exl/ Tutorial TypeSyst em xni . Right-click on thefilein
the navigator and select Open With — Component Descriptor Editor. Once the editor opens, click
on the “ Type System” tab at the bottom of the editor window. Y ou should see a view such as the
following:

IgTumrialTypeSystem.ml &3 = |
TutoriaTypeSystem. xml

Type System Definition

+ Types (or Classes) + Imported Type Systems

The following types (classes) are defined in this analysis engine descriptor. The following type systems are induded as
The grayed out items are imported or merged from other descriptors, and cannot be edited here. {To part of this one.

edit them, edit their source files), i

lement Type
S g
s R el Kina Location/Mame

Overview | Type System [Source

Our annotator will need only onetype—or g. apache. ui nma. t ut ori al . RoomNunber . (We
use the same namespace conventions as are used for Java classes.) Just asin Java, types have

UIMA Version 2.10.2 Annotator & AE Developer's Guide 3

Generating Java Source Filesfor CAS Types

supertypes. The supertype islisted in the second column of the left table. In this case our
RoomNumber annotation extends from the built-in type ui na. t cas. Annot ati on.

Descriptions can be included with types and features. In this example, thereis a description
associated with the bui | di ng feature. To seeit, hover the mouse over the feature.

The bottom tab labeled “ Source” will show you the XML source file associated with this
descriptor.

The built-in Annotation type declares three fields (called Featuresin CAS terminology). The
featuresbegi n and end store the character offsets of the span of text to which the annotation
refers. The feature sof a (Subject of Analysis) indicates which document the begin and end offsets
point into. The sof a feature can beignored for now since we assume in thistutorial that the CAS
contains only one subject of analysis (document).

Our RoomNumber type will inherit these three features from ui ma. t cas. Annot at i on, its
supertype; they are not visible in this view because inherited features are not shown. One additional
feature, bui | di ng, isdeclared. It takes a String asits value. Instead of String, we could have
declared the range-type of our feature to be any other CAS type (defined or built-in).

If you are not using Eclipse, if you need to edit the type system, do so using any XML or text
editor, directly. The following is the actual XML representation of the Type System displayed
abovein the editor:

<?xm version="1.0" encodi ng="UTF-8" ?>
<t ypeSyst emDescri ption xm ns="http://ui ma. apache. or g/ resour ceSpeci fier">
<nanme>Tut ori al TypeSyst enx/ nanme>
<descripti on>Type System Definition for the tutorial exanples -
as of Exercise 1</description>
<vendor >Apache Sof tware Foundati on</vendor >
<versi on>1. 0</ ver si on>
<types>
<t ypeDescri pti on>
<nane>or g. apache. ui na. t ut ori al . RoomNunber </ nane>
<descri pti on></ descri pti on>
<supert ypeName>ui ma. t cas. Annot at i on</ supert ypeNane>
<f eat ures>
<f eat ureDescri pti on>
<name>bui | di ng</ nanme>
<descri ption>Buil di ng contai ning this roonx/description>
<rangeTypeNanme>ui ma. cas. Stri ng</rangeTypeNane>
</ f eat ur eDescri pti on>
</ features>
</typeDescri pti on>
</types>
</typeSyst enDescri pti on>

1.1.2. Generating Java Source Files for CAS Types

When you save a descriptor that you have modified, the Component Descriptor Editor will
automatically generate Java classes corresponding to the types that are defined in that descriptor
(unless this has been disabled), using a utility called JCasGen. These Java classes will have the
same name (including package) as the CAStypes, and will have get and set methods for each of the
features that you have defined.

Thisfeature is enabled/disabled using the UIMA menu pulldown (or the Eclipse Preferences —
UIMA). If automatic running of JCasGen is not happening, please make sure the option is checked:

4 Annotator & AE Developer's Guide UIMA Version 2.10.2

Developing Y our Annotator Code

& Java - RoomNumberAnnotator xml - Eclipse SDK
He Edi MNavigate Search Project Run [UIMA Window Help
RunJCasGen |0 |gu oo o .
Settings k| o Auto generate JCAS source java files when changing types
v Display fully qualified type names

The Java class for the example org.apache.uima.tutorial.RoomNumber type can be found in sr ¢/
or g/ apache/ ui ma/ t ut ori al / RoomNunber . j ava . You will see how to use these generated
classesin the next section.

If you are not using the Component Descriptor Editor, you will need to generate these Java classes
by using the JCasGen tool. JCasGen reads a Type System Descriptor XML file and generates the
corresponding Java classes that you can then use in your annotator code. To launch JCasGen, run
the jcasgen shell script located in the/ bi n directory of the UIMA SDK installation. This should
launch a GUI that looks something like this:

2 ICasGen (=] % |

Fie Help

.Tl-l_i'l Unstructured nformation Management Archileciurs

m. An Apache foowbaior Propect
Wekoma bo the X ssGsn bool, You can desg corrers B0 resize.

}.‘ h apache-uiza) examples descriptors tutoriallexl) REooplunber Annotator . xml

Input Fle= Ertwais
<o temp
Qutput Directony: Eriwasa
Status
-
luceal]

Use the “Browse” buttons to select your input file (Tutorial TypeSystem.xml) and output directory
(the root of the source tree into which you want the generated files placed). Then click the “ Go”
button. If the Type System Descriptor has no errors, new Java source files will be generated under
the specified output directory.

There are some additional options to choose from when running JCasGen; please refer to the
UIMA Tools Guide and Reference Chapter 8, JCasGen User's Guide for details.

1.1.3.

Developing Your Annotator Code

Annotator implementations all implement a standard interface (AnalysisComponent), having
several methods, the most important of which are;

e initialize,

e process, and

* destroy.

initializeiscaled by theframework once when it first creates an instance of the annotator
class. pr ocess iscalled once per item being processed. dest r oy may be called by the application
when it is done using your annotator. There is a default implementation of thisinterface for

UIMA Version 2.10.2 Annotator & AE Developer's Guide 5

Developing Y our Annotator Code

annotators using the JCas, called JCasAnnotator_ImplBase, which has implementations of all
required methods except for the process method.

Our annotator class extends the JCasAnnotator_|mplBase; most annotators that use the JCas
will extend from this class, so they only have to implement the process method. This classis not
restricted to handling just text; see Chapter 5, Annotations, Artifacts, and Sofas.

Annotators are not required to extend from the JCasAnnotator_ImplBase class; they may instead
directly |mpI ement the AnalysisComponent interface, and provide all method implementations
themselves. 2 This allows you to have your annotator inherit from some other superclass if
necessary. If you would like to do this, see the Javadocs for JCasAnnotator for descriptions of the
methods you must implement.

Annotator classes need to be public, cannot be declared abstract and must have public, 0-argument
constructors, so that they can be instantiated by the framework. 3

The class definition for our RoomNumberAnnotator implements the process method, and is
shown here. You can find the source for thisin the ui maj - exanpl es/ src/ or g/ apache/ ui ma/
tutorial / exl/ RoomNunber Annot at or. j ava .

Note: In Eclipse, in the “Package Explorer” view, thiswill appear by

default in the project ui maj - exanpl es, inthefolder sr c, in the package

org. apache. ui ma. tutori al . ex1.
In Eclipse, open the RoomNumberAnnotator.java in the uimaj-examples project, under the src
directory.

package org. apache. uima.tutorial .exl;

i mport java.util.regex. Mat cher;
i mport java.util.regex. Pattern;

i mport org.apache. ui ma. anal ysi s_conponent . JCasAnnot at or _| npl Base;
i mport org.apache. ui na. j cas. JCas;
i mport org.apache. ui ma. tutorial . RoonN\unber ;

/**
* Exanpl e annotator that detects room nunbers using
* Java 1.4 regul ar expressions.
*/
public class RoomNumber Annot at or ext ends JCasAnnot at or _I npl Base {
private Pattern n¥orktownPattern =
Pattern. conpi | e("\\ b[0-4]\\d-[0-2]\\d\\d\\b");

private Pattern nmHawt hornePattern =
Pattern.conpil e("\\b[GL-4] [NS] -[A-Z]\\d\\d\\b");

public void process(JCas aJCas) {
/1 Discussed Later

}
}

The two Javaclass fields, mY orktownPattern and mHawthornePattern, hold regular expressions
that will be used in the process method. Note that these two fields are part of the Java
implementation of the annotator code, and not a part of the CAS type system. We are using the

°Notethat Anal ysisComponent isnot specific to JCAS. Thereisamethod getRequiredCasl nterface() which the user would have to implement
to return JCas. cl ass. Theninthepr ocess(Abst ract Cas cas) method, they would need to typecast cas totype JCas.

Although Java classes in which you do not define any constructor will, by default, have a O-argument constructor that doesn't do anything,
aclassin which you have defined at least one constructor does not get a default 0-argument constructor.

6 Annotator & AE Developer's Guide UIMA Version 2.10.2

Developing Y our Annotator Code

regular expression facility that is built into Java 1.4. It is not critical that you know the details
of how thisworks, but if you are curious the details can be found in the Java API docs for the
java.util.regex package.

The only method that we are required to implement is pr ocess. This method istypically called
once for each document that is being analyzed. This method takes one argument, which is a JCas
instance; this holds the document to be analyzed and all of the analysis results. 4

public void process(JCas aJCas) {
/1 get docunent text
String docText = aJCas. get Docunent Text () ;
/'l search for Yorktown room nunbers
Mat cher mat cher = n¥or kt ownPat t er n. mat cher (docText);
int pos = 0;
whil e (matcher.find(pos)) {
/1 found one - create annotation
RoomN\urmber annot ati on = new RoomNunber (aJCas) ;
annot ati on. set Begi n(mat cher.start());
annot at i on. set End(mat cher. end());
annot at i on. set Bui | di ng(" Yor kt own") ;
annot at i on. addTol ndexes() ;
pos = mat cher. end();
}
/| search for
mat cher =
pos = 0;
whil e (matcher.find(pos)) {
/1 found one - create annotation
Room\umber annot ati on = new RoomNunber (aJCas) ;

Hawt hor ne room nunbers
mHawt hor nePat t er n. mat cher (docText) ;

annot ati on.
annot ati on.
annot ati on.

set Begi n(mat cher.start());
set End(rmat cher. end());
set Bui | di ng(" Hawt hor ne") ;

annot ati on.
pos =

addTol ndexes();
mat cher. end() ;

The Matcher classis part of the java.util.regex package and is used to find the room numbersin
the document text. When we find one, recording the annotation is as simple as creating a new Java
object and calling some set methods:

RoonmNunber
annot ati on.
annot ati on.
annot ati on.

annot ati on = new RoonNunber (aJCas) ;
set Begi n(mat cher.start());

set End(mat cher. end());

set Bui | di ng(" Yor kt own") ;

The RoomNunber class was generated from the type system description by the Component
Descriptor Editor or the JCasGen tool, as discussed in the previous section.

Finally, we call annot at i on. addTol ndexes() to add the new annotation to the indexes
maintained in the CAS. By default, the CAS implementation used for analysis of text documents
keeps an index of all annotations in their order from beginning to end of the document. Subsequent
annotators or applications use the indexes to iterate over the annotations.

“ersion 1 of UIMA specified an additional parameter, the ResultSpecification. This provides a specification of which types and features
are desired to be computed and "output” from this annotator. Its useis optional; many annotatorsignore it.

This parameter has been replaced by specific set/getResultSpecification() methods, which allow the annotator to receive asignal (a method
call) when the result specification changes.

UIMA Version 2.10.2

Annotator & AE Developer's Guide 7

Creating the XML Descriptor

Note: If you don't add the instance to the indexes, it cannot be retrieved by down-stream
annotators, using the indexes.

Note: You can also call addTol ndexes() on Feature Structures that are not subtypes of
ui ma. t cas. Annot at i on, but these will not be sorted in any particular way. If you want
to specify a sort order, you can define your own custom indexes in the CAS:. see UIMA
References Chapter 4, CAS Reference and Section 2.4.1.5, “Index Definition” for details.

We're almost ready to test the RoomNumberAnnotator. There is just one more step remaining.

1.1.4. Creating the XML Descriptor

The UIMA architecture requires that descriptive information about an annotator be represented
inan XML file and provided aong with the annotator class file(s) to the UIMA framework at run
time. This XML fileis called an Analysis Engine Descriptor. The descriptor includes:

» Name, description, version, and vendor

» The annotator's inputs and outputs, defined in terms of the typesin a Type System
Descriptor

 Declaration of the configuration parameters that the annotator accepts

The Component Descriptor Editor plugin, which we previously used to edit the Type System
descriptor, can also be used to edit Analysis Engine Descriptors.

A descriptor for our RoomNumberAnnotator is provided with the UIMA distribution under the
namedescri ptors/tutorial /ex1l/ RoomNunber Annot at or. xn . To edit it in Eclipse, right-

click on that file in the navigator and select Open With —. Component Descriptor Editor.

Tip: In Eclipse, you can double click on the tab at the top of the Component Descriptor
Editor's window identifying the currently selected editor, and the window will
“Maximize’. Double click it again to restore the original size.

If you are not using Eclipse, you will need to edit Analysis Engine descriptors manually. See
Section 1.8, “Analysis Engine XML Descriptor” [40] for an introduction to the Analysis
Engine descriptor XML syntax. The remainder of this section assumes you are using the
Component Descriptor Editor plug-in to edit the Analysis Engine descriptor.

The Component Descriptor Editor consists of several tabbed pages; we will only need to use afew
of them here. For more information on using this editor, see Chapter 1, Component Descriptor
Editor User's Guide.

Theinitial page of the Component Descriptor Editor is the Overview page, which appears as
follows:

8 Annotator & AE Developer's Guide UIMA Version 2.10.2

Creating the XML Descriptor

B RoorblumberArmobstor.am £ ==
RopmiumberAnnotator. xml
Overview
= Implementation Details = Owerall Identification Information
Irglementation Language {IC/C++ (5 Java This section spacifies the baskc identification
P = informaton for this desoipbor
Ergne Type 2} Primitree (_;-.!-gg'r_gau:
Hame Rgam Mumber Arnotator
= Runtime Information
This section describes information abaut haw ta run this component WEqon s
updal.es the Cas Verdor The Apache Safbware Foundation
[#] multiple depioyment allavwed Deseriplien: | gn ayampls arnotator that
Dubputs new CASes searches for room rumbers in the
[l outpute TEM Watsan ressarch buildings.
Mame of the Java dass fle arg.apache,uma. tutoral.ex 1. Roomiumber Annotator
Browese|

Overview | Agregate | Parameters | Parameter Settings | Type System | Capabiities | Indexes | Resodrces| Sodrce |

This presents an overview of the RoomNumberAnnotator Analysis Engine (AE). The left side of
the page shows that this descriptor is for a Primitive AE (meaning it consists of a single annotator),
and that the annotator code is developed in Java. Also, it specifies the Java class that implements
our logic (the code which was discussed in the previous section). Finaly, on the right side of the
page are listed some descriptive attributes of our annotator.

The other two pages that need to be filled out are the Type System page and the Capabilities page.
Y ou can switch to these pages using the tabs at the bottom of the Component Descriptor Editor. In
the tutorial, these are already filled out for you.

The RoomNumberAnnotator will be using the Tutoria TypeSystem we looked at in Section
Section 1.1.1, “Defining Types’ [3]. To specify this, we add this type system to the Analysis
Engineslist of Imported Type Systems, using the Type System page's right side panel, as shown
here:

Type System Definition

* Types (or Classes) * Imported T“E S:v_stems

The followdng types (dasses) are defined in this analysis engine descriptor, The following type systems are included as
The grayed out items are imported or merged from other descriptors, and cannot be part of this one,
edited here. (To edit them, edit their source files),

Type Mame or Feature Name SuperType or Range AddT

= -—vpe

= arg.apache uima. tutorisl RoomMumber wma, toas, Annatation Set DataPath
e | Kind LocationMame

| By Location TutoralTypeSystem.xml

A I (2]

On the Capabilities page, we define our annotator's inputs and outputs, in terms of the typesin the
type system. The Capabilities page is shown below:

UIMA Version 2.10.2 Annotator & AE Developer's Guide 9

Testing Y our Annotator

0
]

E], RoomMumberAnnotator. xml &3

RoomMumberannotator, xml

Capabilities: Inputs and Qutputs

+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of
the Types and Features,

Mame Input | Output | Mame Space Add Capability Set

—|Set

Lang... Add Language
Sofas
= Type: RoomMumber Qutput org.apache.uima. tutorial Add Type

building Output Add Sofa

Remove

il

¢ Sofa Mappings (Only used in aggregate Descriptors)

I:.]vefview.Aggregate.Parameters.Pafameter"SEtﬁngs Type Syétem Capabilities Indexes.”z

Although capabilities come in sets, having multiple setsis deprecated; here we're just using one
set. The RoomNumberAnnotator is very simple. It requires no input types, as it operates directly
on the document text -- which is supplied as a part of the CAS initialization (and which is always
assumed to be present). It produces only one output type (RoomNumber), and it sets the value of
the bui | di ng feature on that type. Thisis all represented on the Capabilities page.

The Capabilities page has two other parts for specifying languages and Sofas. The languages
section allows you to specify which languages your Analysis Engine supports. The
RoomNumberAnnotator happens to be language-independent, so we can leave this blank. The
Sofas section allows you to specify the names of additional subjects of analysis. This capability
and the Sofa Mappings at the bottom are advanced topics, described in Chapter 5, Annotations,
Artifacts, and Sofas.

Thisisall of the information we need to provide for a simple annotator. If you want to peek at the
XML that this tool saves you from having to write, click on the “ Source” tab at the bottom to view
the generated XML.

1.1.5. Testing Your Annotator

Having developed an annotator, we need away to try it out on some example documents. The
UIMA SDK includes atool called the Document Analyzer that will allow usto do this. To run

the Document Analyzer, execute the documentAnalyzer shell script that isin the bi n directory

of your UIMA SDK installation, or, if you are using the example Eclipse project, execute the
“UIMA Document Analyzer” run configuration supplied with that project. (To do this, click on the
menu bar Run - Run ... — and under Java Applicationsin the left box, click on UIMA Document
Analyzer.)

Y ou should see a screen that looks like this:

10 Annotator & AE Developer's Guide UIMA Version 2.10.2

Testing Y our Annotator

tﬂ Document Analyzer

I
@
A

Irpuk Directory:
Oukpiut DiFectory:

Location of Analysis Engine ML Descriptor:
HML Tag conkaining Teodt (optional);
Language:

Character Encoding!

Unstructured Information Management Architecture

An Apache Soubator Progeat

examplesidata
examplesidatsiprocessed

examples\descrptorsianabysis_engineiPersonTidesnnotator, aml

en £

LTF-3 |

[Fun H Irkeractive H View]

l=Jo/ed

(e

Browse. .

There are six options on this screen:

1. Directory containing documentsto analyze

2. Directory where analysis results will be written

3. The XML descriptor for the Analysis Engine (AE) you want to run

4. (Optional) an XML tag, within the input documents, that contains the text to be analyzed.
For example, the value TEXT would cause the AE to only analyze the portion of the
document enclosed within <TEXT>...</TEXT> tags.

5. Language of the document

6. Character encoding

Use the Browse button next to the third item to set the “Location of AE XML Descriptor”

field to the descriptor we've just been discussing — <wher e- you- i nst al | ed- ui ma-

e. g. U MA_HOVE> / exanpl es/ descriptors/tutorial/exl/ RoonNunber Annot at or . xm
. Set the other fields to the values shown in the screen shot above (which should be the default
valuesif thisisthe first time you've run the Document Analyzer). Then click the “Run” button to

start processing.

When processing completes, an “Analysis Results’ window should appear.

UIMA Version 2.10.2

Annotator & AE Developer's Guide

11

Testing Y our Annotator

& =
ﬁ Analysis Resulls E
Theze are the Analyzed Documents:

Select viewer type and double-click file to open.

F BM_Life=ciences txt

[#) Mewr_IBM_Fellowes txt

E SeminarChalengesinSpeschRecognition txt

B TrainablelnformationExtractionSystems

E LIMASummerschool2003 txd

] Lima_Seminars txt

E WatsonConferenceRooms bt

Results Dizplay Format. (3 Java Wieweer (O HTML () XhL

[Performatce Stats H Cloze]

Make sure “ Java Viewer” is selected as the Results Display Format, and double-click on the
document UIM A SummerSchool 2003.txt to view the annotations that were discovered. The view
should look something like this:

 §
LA, Survener Sthoct o ﬁtkhfﬁh?&ﬂ‘fﬂﬂbﬂw&?l
e

August 26 2003

LA 101 - The Mew LEMA ndraduction
(Hareds-on Tufrial)

O 00AM.5.000M i AW GNKES

August 28, 2003
FROST Tufiorial
S 00AM-S00PM in HAW GN-KES

Saplember 15, 2003

LA, 20 UM, Achrancedd Topics
(Hands -0 Tukcrial)
OrD0AM-S 00PN) HaW 15-F53

September 17, 2003

The LA System integration Test and Hardening Service
The “SITH™

F00PM-4: 30PM in HAW GN-K35

[(oocuments, ., [+] Roomhumber

| Selectas || CeselectAl | ViewerMode: () Annctations () Entties

Y ou can click the mouse on one of the highlighted annotations to see alist of al its featuresin the
frame on the right.

Note: The legend will only show those types which have at least one instance in the CAS,
and are declared as outputs in the capabilities section of the descriptor (see Section 1.1.4,
“Creating the XML Descriptor” [8].

12

Annotator & AE Developer's Guide UIMA Version 2.10.2

Configuration and Logging

Y ou can use the DocumentAnalyzer to test any UIMA annotator — just make sure that the
annotator's classes are in the class path.

1.2. Configuration and Logging

1.2.1. Configuration Parameters

The example RoomNumberAnnotator from the previous section used hardcoded regular
expressions and location names, which is obviously not very flexible. For example, you might want
to have the patterns of room numbers be supplied by a configuration parameter, rather than having
to redo the annotator's Java code to add additional patterns. Rather than add a new hardcoded
regular expression for a new pattern, a better solution is to use configuration parameters.

UIMA allows annotators to declare configuration parameters in their descriptors. The descriptor
also specifies default values for the parameters, though these can be overridden at runtime.

1.2.1.1. Declaring Parameters in the Descriptor

The example descriptor descri pt or s/t ut ori al / ex2/ RoomNunber Annot at or . xni isthe
same as the descriptor from the previous section except that information has been filled in for the
Parameters and Parameter Settings pages of the Component Descriptor Editor.

First, in Eclipse, open example two's RoomNumberAnnotator in the Component Descriptor Editor,

and then go to the Parameters page (click on the parameters tab at the bottom of the window),
which is shown below:

%" RoomMNumberfnnotatorxml &3 —im
RoomMNumberAnnotator xml
Parameter Definitions | Bl =
! Configuration Parameters - Mot Used

This section shows all corfiguration parameters defined far this This part is onhy used for Agoregate
engine. Descriptors
[Use Parameter Groups

=-=Mot in amy group:
Multi Req String Mame: Pattems
Multi Req String Mame: i e

List of room number regular expression patl'tems.|
Edit

Remove | | |

Crverview | Aggreaate | Parameters | Parameter Settings | Type System | Capabilities | Indexes Hasnun:es:”-l

Two parameters — Patterns and L ocations -- have been declared. In this screen shot, the mouse
(not shown) is hovering over Patterns to show its description in the small popup window. Every
parameter has the following information associated with it:

* name — the name by which the annotator code refers to the parameter

UIMA Version 2.10.2 Annotator & AE Developer's Guide 13

Configuration Parameters

* description —anatural language description of the intent of the parameter

* type—the datatype of the parameter's value — must be one of String, Integer, Float, or

Boolean.

» multiVaued —true if the parameter can take multiple-values (an array), falseif the
parameter takes only asingle value. Shown aboveas Ml ti .

» mandatory —true if avalue must be provided for the parameter. Shown above as Req (for

required).

Both of our parameters are mandatory and accept an array of Strings as their value.

Next, default values are assigned to the parameters on the Parameter Settings page:

2 Boombumberdnnotatoraml 57
FoomMNumberAnnotator xml

Parameter Settings

+ Configuration Parameters

Thiz section list all configuration parameters, either
as plain parameters, or as part of one ar more
groups. Select one to show, or set the value in the
right hand panel.

=~ =Mot in any group:
Multi Req String Mame: Pattemns
Multi Req String Mame: Locations

I
L1

5=

= Values

Specify the value of the selected configuration

parameter.

Walue

“b0-4Pd-[0-2]d\d b
AhE1-4NSHA-Zd d b
“ed[12HA-Z]d b

Yalue list:
£ 2]

Crverview | Aggregate Parameters | Parameter Settings | Type System | Capabilities | Indexes F'.esc-un:es”ﬁ

Here the “ Patterns’ parameter is selected, and the right pane shows the list of valuesfor this
parameter, in this case the regular expressions that match particular room numbering conventions.
Notice the third pattern is new, for matching the style of room numbersin the third building, which

has room numbers such as J2- A11.

1.2.1.2. Accessing Parameter Values from the Annotator Code

Theclassor g. apache. ui ma. tut ori al . ex2. RoomNunber Annot at or has overridden the
initialize method. Theinitialize method is called by the UIMA framework when the annotator
isinstantiated, so it is a good place to read configuration parameter values. The default initialize
method does nothing with configuration parameters, so you have to overrideit. To see the code
in Eclipse, switch to the src folder, and open or g. apache. ui nma. t ut ori al . ex2. Hereisthe

method body:

/**

* @ee Anal ysi sConmponent#initialize(U maCont ext)

14

Annotator & AE Developer's Guide

UIMA Version 2.10.2

Configuration Parameters

*/
public void initialize(U maContext aContext)
throws ResourcelnitializationException {
super.initialize(aContext);

/1 Get config. paranmeter val ues
String[] patternStrings =

(String[]) aContext.getConfigParaneterVal ue("Patterns");
mLocations =

(String[]) aContext.getConfigParaneterVal ue("Locations");

/1 conpile regul ar expressions

nmPatterns = new Pattern[patternStrings.|ength];

for (int i =0; i < patternStrings.length; i++) {
mPatterns[i] = Pattern.conpile(patternStrings[i]);

}
}

Configuration parameter values are accessed through the UimaContext. Asyou will seein
subsequent sections of this chapter, the UimaContext is the annotator's access point for all of the
facilities provided by the UIMA framework — for example logging and external resource access.

The UimaContext's get Conf i gPar aret er Val ue method takes the name of the parameter as an
argument; this must match one of the parameters declared in the descriptor. The return value of this
method is a Java Object, whose type corresponds to the declared type of the parameter. It isup to
the annotator to cast it to the appropriate type, String[] in this case.

If thereis a problem retrieving the parameter values, the framework throws an exception. Generally
annotators don't handle these, and just let them propagate up.

To see the configuration parameters working, run the Document Analyzer application and select
the descriptor exanpl es/ descri pt or s/t utori al / ex2/ RoomNunber Annot at or . xm .

In the example document Wat sonConf er enceRoons. t xt , you should see some examples

of Hawthorne Il room numbers that would not have been detected by the ex1 version of
RoomNumberAnnotator.

1.2.1.3. Supporting Reconfiguration

If you take alook at the Javadocs (located in the docs/api® directory) for

or g. apache. ui ma. anal ysi s_conponent . Anaysi sConponent (which our annotator
implementsindirectly through JCasAnnotator_ImplBase), you will see that there is a reconfigure()
method, which is called by the containing application through the UIMA framework, if the
configuration parameter values are changed.

The AnalysisComponent_ImplBase class provides a default implementation that just calls the
annotator's destroy method followed by itsinitialize method. This works fine for our annotator.
The only situation in which you might want to override the default reconfigure() isif your
annotator has very expensive initialization logic, and you don't want to reinitialize everything if
just one configuration parameter has changed. In that case, you can provide a more intelligent
implementation of reconfigure() for your annotator.

1.2.1.4. Configuration Parameter Groups

For annotators with many sets of configuration parameters, UIMA supports organizing them into
groups. It is possible to define a parameter with the same name in multiple groups; one common

5 api/index.html

UIMA Version 2.10.2 Annotator & AE Developer's Guide 15

api/index.html
api/index.html

Logging

use for thisis for annotators that can process documentsin severa languages and which want to
have different parameter settings for the different languages.

The syntax for defining parameter groupsin your descriptor isfairly straightforward —
see UIMA References Chapter 2, Component Descriptor Reference for details. Values

of parameters defined within groups are accessed through the two-argument version of

Ui maCont ext . get Conf i gPar anet er Val ue, which takes both the group name and the
parameter name as its arguments.

1.2.1.5. Overriding Configuration Parameter Settings

There are two ways that the value assigned to a configuration parameter can be overridden. An
aggregate may declare a parameter that overrides one or more of the parameters in one or more
of its delegates. The aggregate must also define a value for the parameter, unless the parameter is
itself overridden by a setting in the parent aggregate.

An alternative method that avoids these strict hierarchical override constraints isto associate

an external global name with a parameter and to assign values to these external namesin an
external properties file. With this approach a particular parameter setting can be easily shared

by multiple descriptors, even across different applications. For applications with many levels of
descriptor nesting it avoids the need to edit aggregate override definitions when the location of an
annotator in the hierarchy is changed. For details see UIMA References Section 2.4.3.4, “ External
Configuration Parameter Overrides’

1.2.2.

Logging

The UIMA SDK provides alogging facility, which is very similar to the java.util.logging.L ogger
class that was introduced in Java 1.4.

In the Java architecture, each logger instance is associated with a name. By convention, this name
is often the fully qualified class name of the component issuing the logging call. The name can be
referenced in a configuration file when specifying which kinds of 1og messages to actually log, and
where they should go.

The UIMA framework supports this convention using the Ui naCont ext object. If you access a
logger instance using get Cont ext () . get Logger () within an Annotator, the logger name will
be the fully qualified name of the Annotator implementation class.

Here is an example from the process method of
org. apache. ui ma. tutori al . ex2. RoonNunber Annot at or :

get Cont ext () . get Logger (). og(Level . FI NEST, "Found: " + annotation);

Thefirst argument to the log method is the level of the log output. Here, a value of FINEST
indicates that thisis a highly-detailed tracing message. While useful for debugging, it islikely that
real applications will not output log messages at this level, in order to improve their performance.
Other defined levels, from lowest to highest importance, are FINER, FINE, CONFIG, INFO,
WARNING, and SEVERE.

If no logging configuration file is provided (see next section), the Java Virtual Machine defaults
would be used, which typically set the level to INFO and higher messages, and direct output to the
console.

If you specify the standard UIMA SDK Logger . properti es, the output will be directed to afile
named uima.log, in the current working directory (often the “project” directory when running from
Eclipse, for instance).

16

Annotator & AE Developer's Guide UIMA Version 2.10.2

Logging

Note: When using Eclipse, the uima.log file, if written into the Eclipse workspace in the
project uimaj-examples, for example, may not appear in the Eclipse package explorer view
until you right-click the uimaj-examples project with the mouse, and select “ Refresh”.
This operation refreshes the Eclipse display to conform to what may have changed on the
file system. Also, you can set the Eclipse preferences for the workspace to automatically

refresh (Window - Preferences — Genera — Workspace, then click the “refresh
automatically” checkbox.

1.2.2.1. Specifying the Logging Configuration

The standard UIMA logger uses the underlying Java 1.4 logging mechanism. Y ou can use the APIs
that come with that to configure the logging. In addition, the standard Java 1.4 logging initialization
mechanisms will look for a Java System Property named j ava. uti | . | oggi ng. config.file
and if found, will use the value of this property as the name of a standard “ properties’ file, for
setting the logging level. Please refer to the Java 1.4. documentation for more information on the
format and use of thisfile.

Two sample logging specification property files can be found in the UIMA_HOME

directory where the UIMA SDK isinstalled: confi g/ Logger . properti es, and confi g/

Fi | eConsol eLogger . properti es. These specify the same logging, except the first logs just
to afile, while the second logs both to afile and to the console. Y ou can edit these files, or create
additional ones, as described below, to change the logging behavior.

When running your own Java application, you can specify the location of the logging
configuration file on your Java command line by setting the Java system property
java.util .l ogging. config.fil e tobethelogging configuration filename. Thisfile
specification can be either absolute or relative to the working directory. For example:

java "-Djava. util .l ogging.config.file=C/Program Fil es/ apache-ui ma/ confi g/ Logger. properties"

Note: In ashell script, you can use environment variables such as UIMA_HOME if
convenient.

If you are using Eclipse to launch your application, you can set this property in the VM arguments

section of the Arguments tab of the run configuration screen. If you've set an environment variable
UIMA_HOME, you could for example, usethe string: " - Dj ava. uti |l . | oggi ng. config.file=
${env_var: U MA_HOVE}/ confi g/ Logger . properties".

If you running the .bat or .sh filesin the UIMA SDK's bi n directory, you can specify the location
of your logger configuration file by setting the Ul MA_LOGGER_CONFI G_FI LE environment
variable prior to running the script, for example (on Windows):

set U MA_LOGGER _CONFI G _FI LE=C: / myapp/ MyLogger . properties

1.2.2.2. Setting Logging Levels

Within the logging control file, the default global logging level specifies which kinds of events are
logged across all loggers. For any given facility this global level can be overridden by afacility
specific level. Multiple handlers are supported. This allows messages to be directed to alog file,
aswell asto a“console’. Note that the ConsoleHandler also has a separate level setting to limit
messages printed to the console. For example: . | evel = | NFO

The properties file can change where the log is written, as well.

UIMA Version 2.10.2 Annotator & AE Developer's Guide 17

Logging

Facility specific properties allow different logging for each class, aswell. For example, to set the
com.xyz.foo logger to only log SEVERE messages. com xyz. f 0o. | evel = SEVERE

If you have a sample annotator in the package or g. apache. ui ma. Sanpl eAnnot at or you can
set the log level by specifying: or g. apache. ui ma. Sanpl eAnnot ator. | evel = ALL

There are other logging controls; for afull discussion, please read the contents of the
Logger . properti es file and the Java specification for logging in Java 1.4.

1.2.2.3. Format of logging output

The logging output is formatted by handlers specified in the properties file for configuring logging,
described above. The default formatter that comes with the UIMA SDK formats logging output as
follows:

Timestanp - threadl D. sourcelnfo: Message |evel: nessage
Here's an example:

7/ 12/ 04 2:15:35 PM - 10: org.apache.uima.util.TestC ass. main(62): | NFO
You are not | ogged in!

1.2.2.4. Meaning of the logging severity levels

These levels are defined by the Java logging framework, which was incorporated into Java as of
the 1.4 release level. The levels are defined in the Javadocs for java.util.logging.Level, and include
both logging and tracing levels:
» OFFisaspecial level that can be used to turn off logging.
* ALL indicatesthat all messages should be logged.
» CONFIG isamessage level for configuration messages. These would typically occur once
(during configuration) in methods likei ni ti al i ze() .
* INFO isamessage |level for informational messages, for example, connected to server IP:
192.168.120.12
 WARNING isamessage level indicating a potential problem.
» SEVERE isamessage level indicating a serious failure.

Tracing levels, typically used for debugging:

» FINE isamessage level providing tracing information, typically at a collection level
(messages occurring once per collection).

» FINER indicates afairly detailed tracing message, typicaly at a document level (once per
document).

» FINEST indicates a highly detailed tracing message.

1.2.2.5. Using the logger outside of an annotator

An application using UIMA may want to log its messages using the same logging framework. This
can be done by getting areference to the UIMA logger, as follows:

Logger | ogger = U MAFramewor k. get Logger (Test Cl ass. cl ass);

The optional class argument allows filtering by class (if the log handler supports this). If not
specified, the name of the returned logger instance is “ org.apache.uima’.

Annotator & AE Developer's Guide UIMA Version 2.10.2

Building Aggregate Analysis Engines

1.2.2.6. Changing the underlying UIMA logging implementation
By default the UIMA framework use, under the hood of the UIMA Logger interface, the Java
logging framework to do logging. But it is possible to change the logging implementation that
UIMA use from Javalogging to an arbitrary logging system when specifying the system property

- Dor g. apache. ui ma. | ogger . cl ass=<I| ogger d ass>

when the UIMA framework is started.

The specified logger class must be available in the classpath and have to implement the
org. apache. ui ma. util . Logger interface.

UIMA also provides alogging implementation that use Apache Log4j instead of Javalogging. To
use Log4j you have to provide the Log4j jars in the classpath and your application must specify the
logging configuration as shown below.

‘ - Dor g. apache. ui na. | ogger. cl ass=or g. apache. ui ma. util . i npl. Log4j Logger _i npl

1.3. Building Aggregate Analysis Engines

1.3.1. Combining Annotators

The UIMA SDK makesit very easy to combine any sequence of Analysis Enginesto form an
Aggregate Analysis Engine. This is done through an XML descriptor; no Java code is required!

If you go to the exanpl es/ descri ptors/tutorial / ex3 folder (in Eclipse, it'sin your uimaj-
examples project, under thedescri pt ors/tut ori al / ex3 folder), you will find a descriptor for
a Tutorial DateTime annotator. This annotator detects dates and times. To see what this annotator
can do, try it out using the Document Analyzer. If you are curious as to how this annotator works,
the source code isincluded, but it is not necessary to understand the code at this time.

We are going to combine the Tutorial DateTime annotator with the RoomNumberAnnotator to
create an aggregate Analysis Engine. Thisisillustrated in the following figure:

TutorialDateTime Date, Time
9,
RoomNumberAnnotator RoomNumber
>
RoomN umberAnc‘fDateTime !
v v Date, Time,
TutorialDateTime RoomNumberAnnotator RoomNumber
=4

Figure 1.1. Combining Annotators to form an Aggregate Analysis Engine

UIMA Version 2.10.2 Annotator & AE Developer's Guide 19

Combining Annotators

The descriptor that does thisis named RoonNunber AndDat eTi nme. xm , which you can open
in the Component Descriptor Editor plug-in. Thisisin the uimaj-examples project in the folder
descriptors/tutorial/ex3.

The“Aggregate” page of the Component Descriptor Editor is used to define which components
make up the aggregate. A screen shot is shown below. (If you are not using Eclipse, see
Section 1.8, “Analysis Engine XML Descriptor” [40] for the actual XML syntax for Aggregate
Analysis Engine Descriptors.)

[Roomiumber AndDateTime.xml £ ~m
Roomhiurmnber AndCataTime. xmi

Aggregate Delegates and Flows

= Component Engines + Component Engine Flow

The following engines are induded in this aggregate, Choose a flow type and describe the
execution order of your engines,

Delegate | Key Name The table shows the delegates using their
Eﬁ . fex2RoomiumberAnnotator.xml - Roeomhumber key names.
R TutorialDateTime. xmi DateTime I:l Flow Kind: Fixed Flow -
] Qe
@Da teTime %
<] >
(][]

Overview | Aggregate | Parameters | Parameter Settings | Type System | Capabilities | Indexes | Resources | Source

On the left side of the screen isthe list of component engines that make up the aggregate —in this
case, the TutorialDateTime annotator and the RoomNumberAnnotator. To add a component, you
can click the*Add” button and browse to its descriptor. Y ou can also click the “Find AE” button
and search for an Analysis Enginein your Eclipse workspace.

Note: The “AddRemote” button is used for adding components which run remotely (for
example, on another machine using a remote networking connection). This capability is
described in section Section 3.6.3, “Calling aUIMA Service”,

The order of the components in the left pane does not imply an order of execution. The order of
execution, or “flow” is determined in the “Component Engine Flow” section on the right. UIMA
supports different types of algorithms (including user-definable) for determining the flow. Here we
pick the smplest: Fi xedFlI ow. We have chosen to have the RoomNumberAnnotator execute first,
although in this case it doesn't really matter, since the RoomNumber and DateTime annotators do
not have any dependencies on one another.

If you look at the " Type System” page of the Component Descriptor Editor, you will see that it
displays the type system but is not editable. The Type System of an Aggregate Analysis Engineis
automatically computed by merging the Type Systems of all of its components.

Warning: If the components have different definitions for the same type name, The
Component Descriptor Editor will show awarning. It is possible to continue past this
warning, in which case your aggregate's type system will have the correct “merged” type
definition that contains all of the features defined on that type by all of your components.

20

Annotator & AE Developer's Guide UIMA Version 2.10.2

Combining Annotators

However, it is not recommended to use this feature in conjunction with JCAS, since
the JCAS Java Class definitions cannot be so easily merged. See UIMA References
Section 5.5, “Merging Types’ for more information.

The Capabilities page is where you explicitly declare the aggregate Analysis Engine's inputs and
outputs. Sofas and Languages are described later.
@ RoomMumberAndDateTime, xml 23 - = O

{RoomMumber AndDateTime. xml

Capabilities: Inputs and Outputs i | E

+ Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of the
Types and Features,

- Mare Input | Output | Mame Space Add Capabiity Set
I=lSet
—|Languages Add Language
en
Sofas Add Type
—|Type: DateAnnot Qutput org.apache.uima. tutorial Add 5ofa
=all features > Qutput
—[Type: RoomMumber Cutput org.apache.uima, tutorial 1/Edit Features
<all features > Qutput
= Type: TimeAnnot Cutput org.apache.uima, tutorial
<all features = Cutput

¥ Sofa Mappings (No Sofas are defined)

D'u'er'u'iew:.ﬁ.ggregate.F'arameters.F'arameter Setﬁngs:TypE System | Capabilities Indexes:Resuurces.SDurcE.

Note that it is not automatically assumed that all outputs of each component Analysis Engine (AE)
are passed through as outputs of the aggregate AE. If, for example, the Tutorial DateTime annotator
a so produced Word and Sentence annotations, but those were not of interest as output in this case,
we can exclude them from the list of outputs.

Y ou can run this AE using the Document Analyzer in the same way that you run any other AE.
Just select theexanpl es/ descri ptors/tutorial /ex3/ RoonmNunber AndDat eTi ne. xm
descriptor and click the Run button. Y ou should see that RoomNumbers, Dates, and Times are all
shown:

UIMA Version 2.10.2 Annotator & AE Developer's Guide 21

AAES can also contain CAS Consumers

o X

LIBA& Summer Schoal | Click In Text to See Annotation Detad
1) "‘|

Auguest 26, 2005]

LBAS 101 - The Messr UIMA, Introduction

(Handds-on Tutorial)

S00u8M-500PM in HAWY GR-K35

August 28, 2003
FROST Tutorial

SO0AM-SO0PM in HAW GMN-HIS

September 15, 2003

LA, 201 Lina, Acvanced Toplcs
(Haneds-on Tutorial)
200AM-500PM in HAVY 15-F53

Saptember 17, 2003
The UiA System Infegration Test and Hardening Service
The "SITH"
Z00PM-4:30PM in HAW GN-K35
|
egend
[Docume.., Daledn... TimeAn... Roomiblu...
[selectan | [Deselectan | v/
% >

1.3.2. AAEs can also contain CAS Consumers

In addition to aggregating Analysis Engines, Aggregates can also contain CAS Consumers

(see Chapter 2, Collection Processing Engine Devel oper's Guide, or even a mixture of these
components with regular Analysis Engines. The UIMA Examples has an example of an Aggregate
which contains both an analysis engine and a CAS consumer, in exanpl es/ descri pt ors/

M xedAggr egat e. xml .

Analysis Engines support thecol | ect i onPr ocessConpl et e method, which is particularly
important for many CAS Consumers. If an application (or a Collection Processing Engine)
callscol I ecti onProcessConpl et e on an aggregate, the framework will deliver that call to

all of the components of the aggregate. If you use one of the built-in flow types (fixedFlow or
capabilityL anguageFlow), then the order specified in that flow will be the same order in which the
col | ecti onProcessConpl et e calls are made to the components. If a custom flow is used, then
the calls will be made in arbitrary order.

1.3.3.

Reading the Results of Previous Annotators

So far, we have been looking at annotators that look directly at the document text. However,
annotators can also use the results of other annotators. One useful thing we can do at this point
islook for the co-occurrence of a Date, a RoomNumber, and two Times — and annotate that asa
Mesting.

22

Annotator & AE Developer's Guide UIMA Version 2.10.2

Reading the Results of Previous Annotators

The CAS maintainsindexes of annotations, and from an index you can abtain an iterator that allows
you to step through al annotations of a particular type. Here's some example code that would
iterate over al of the TimeAnnot annotations in the JCas:

FSI ndex tinel ndex = aJCas. get Annot ati onl ndex(Ti neAnnot . type);
Iterator tinmelter = tinelndex.iterator();
while (tinmelter.hasNext()) {

Ti meAnnot tine = (TimeAnnot)tinelter.next();

/1 do sonet hi ng

}

Note: Y ou can also use the method
JCAS. get JFSI ndexReposi tory(). get Al l | ndexedFS(Your O ass. t ype) , which
returns an iterator over instances of Your Cl ass in no particular order.

Now that we've explained the basics, |et's take alook at the process method for

org. apache. ui ma. tutori al . ex4. Meet i ngAnnot at or . Since we're looking for a
combination of a RoomNumber, a Date, and two Times, there are four nested iterators. (There's
surely a better algorithm for doing this, but to keep things simple we're just going to look at every
combination of the four items.)

For each combination of the four annotations, we compute the span of text that includes all of them,
and then we check to seeif that span is smaller than a“window” size, a configuration parameter.
There are also some checks to make sure that we don't annotate the same span of text multiple
times. If al the checks pass, we create a Meeting annotation over the whole span. There'sreally
nothing to it!

The XML descriptor, located in exanpl es/ descri ptors/tutorial /ex4/

Meet i ngAnnot at or . xm , isalso very straightforward. An important difference from previous
descriptorsisthat thisisthe first annotator we've discussed that has input requirements. This can be
seen on the “ Capabilities” page of the Component Descriptor Editor:

UIMA Version 2.10.2 Annotator & AE Developer's Guide 23

Other examples

0
M|

B Meetingannotator.xml 52
IMeetingAnnatator, xml

Capabilities: Inputs and Outputs HEREE]

[=Em

» Component Capabilities

This section describes the languages handled, and the inputs needed and outputs provided in terms of the

Types and Features,
Mame Input | Output | Mame Space
—iEeE
en
Sofas

—|Type: DateAnnot Input arg.apache.uima. tutorial
<all features> Input

= Type: Meeting Qutput org.apache.uima. tutorial : :
<all features = Cutput

— Type: RoomMumber Input org.apache.uima. tutorial
<all features>= Input

= Type: TimeAnnot Input org.apache.uima. tutorial

<all features>= Input

¢ Sofa Mappings (Only used in aggregate Descriptors)

Duerview.Aggregate:Parameters.Parameter Settings | Type System _I;apal:uiliﬁes Indexes.Resuurces:SDurcE.

If we were to run the MeetingAnnotator on its own, it wouldn't detect anything because it
wouldn't have any input annotations to work with. The required input annotations can be produced
by the RoomNumber and DateTime annotators. So, we create an aggregate Analysis Engine
containing these two annotators, followed by the Meeting annotator. This aggregate isillustrated
in Figure 1.2, “An Aggregate Analysis Engine where an internal component uses output from
previous engines’ [24]. The descriptor for thisisin exanpl es/ descri ptors/tutorial/

ex4/ Meet i ngDet ect or AE. xnl . Giveit atry in the Document Analyzer.

Date, Time Date, Time,
RoomNumber

MeetingDetectorTAE ©=°... R ——
TutorialDateTime RoomNumberAnnotator MeetingAnnotator MEsting
N 5| (Requires: Date, Time —
and RoomNumber) - —

Figure 1.2. An Aggregate Analysis Engine where an
internal component uses output from previous engines

1.4. Other examples

The UIMA SDK include several other examples you may find interesting, including
» SimpleTokenAndSentenceAnnotator — a simple tokenizer and sentence annotator.
» XmiIDetagger — A multi-sofa annotator that does XML detagging. Multiple Sofas (Subjects
of Analysis) are described in alater — see Chapter 6, Multiple CAS Views of an Artifact.
Reads XML data from the input Sofa (named "xmIDocument"); this data can be stored

24 Annotator & AE Developer's Guide UIMA Version 2.10.2

Additional Topics

inthe CAS asastring or array, or it can be aURI to aremotefile. The XML is parsed
using the JVM's default parser, and the plain-text content is written to a new sofacalled
"plainTextDocument".
* PersonTitleDBWriterCasConsumer —a sample CAS Consumer which popul ates a rel ational
database with some annotations. It uses JIDBC and in this example, hooks up with the Open
Source Apache Derby database.

1.5. Additional Topics

1.5.1. Contract: Annotator Methods Called by the

Framework

The UIMA framework ensures that an Annotator instanceis called by only one thread at atime. An
instance never has to worry about running some method on one thread, and then asynchronously
being called using another thread. This approach simplifies the design of annotators — they do
not have to be designed to support multi-threading. When multiple threading is wanted, for
performance, multiple instances of the Annotator are created, each one running on just one thread.

The following table defines the methods called by the framework, when they are called, and the
requirements annotator implementations must follow.

Method When Called by Framework Requirements

initialize Typicaly only caled once, when Normally does one-time
instance is created. Can be called initialization, including reading of
again if application does areinitialize | configuration parameters. If the
call and the default behavior isn't application changes the parameters,
overridden (the default behavior it can call initialize to have the
for reinitialize isto call dest r oy annotator re-do itsinitialization.
followed by initialize

typeSysteminit Called before pr ocess whenever the | Typically, users of JCas do not
type system in the CAS being passed | implement any method for this. An
in differs from what was previously | annotator can use this call to read
passed in apr ocess cal (and called | the CAStype system and setup
for the first CAS passed in, t00). any instance variables that make
The Type System being passed to an | accessing the types and features
annotator only changes in the case of | convenient.
remote annotators that are active as
servers, receiving possibly different
type systems to operate on.

process Called once for each CAS. Called by | Processthe CAS, adding and/or
the application if not using Collection | modifying elementsin it
Processing Manager (CPM); the
application calls the process method
on the analysis engine, which is then
delegated by the framework to all
the annotatorsin the engine. For
Collection Processing application,
the CPM calls the process method. If
the application creates and manages
your own Collection Processing

UIMA Version 2.10.2

Annotator & AE Developer's Guide

25

Reporting errors from Annotators

M ethod

When Called by Framework

Requirements

Enginevia APl calls (see Javadocs),
the application calls this on the
Collection Processing Engine, and it
is delegated by the framework to the
components.

destroy

This method can be called by
applications, and is also called by
the Collection Processing Manager
framework when the collection
processing completes. It isalso called
on Aggregate delegate components,
if those components successfully
completetheirinitialize call,

if a subsequent delegate (or flow
controller) in the aggregate fails to
initialize. This allows components
which need to clean up things done
during initialization to do so. It isup
to the component writer to use atry/
finally construct during initialization
to cleanup from errors that occur
during initialization within one
component. The dest r oy call on
an aggregate is propagated to all
contained analysis engines.

An annotator should release all
resources, close files, close database
connections, etc., and return to a state
where another initialize call could be
received to restart. Typically, after a
destroy call, no further callswill be
made to an annotator instance.

reconfigure

This method is never called by the
framework, unless an application
callsit on the Engine object —

in which caseit the framework
propagatesit to all annotators
contained in the Engine.

Its purposeisto signal that the
configuration parameters have
changed.

A default implementation of this
calls destroy, followed by initialize.
Thisisthe only case whereinitiaize
would be called more than once.
Users should implement whatever
logic is needed to return the annotator
to aninitialized state, including re-
reading the configuration parameter
data.

1.5.2. Reporting errors from Annotators

There are two broad classes of errors that can occur: recoverable and unrecoverable. Because
Annotators are often expected to process very large numbers of artifacts (for example, text
documents), they should be written to recover where possible.

For example, if an upstream annotator created some input for an annotator which isinvalid,

the annotator may want to log this event, ignore the bad input and continue. It may include a
notification of this event in the CAS, for further downstream annotators to consider. Or, it may
throw an exception (see next section) — but in this case, it cannot do any further processing on that

document.

Note: The choice of what to do can be made configurable, using the configuration

parameters.

26

Annotator & AE Developer's Guide

UIMA Version 2.10.2

Throwing Exceptions from Annotators

1.5.3. Throwing Exceptions from Annotators

Let'ssay aninvalid regular expression was passed as a parameter to the RoomNumberAnnotator.
Because thisis an error related to the overall configuration, and not something we could expect to
ignore, we should throw an appropriate exception, and most Java programmers would expect to do
so like this:

throw new ResourcelnitializationException(
"The regul ar expression " + x + " is not valid.");

UIMA, however, does not do it thisway. All UIMA exceptions are internationalized, meaning
that they support translation into other languages. Thisis accomplished by eliminating hardcoded
message strings and instead using external message digests. Message digests are files containing
(key, value) pairs. The key is used in the Java code instead of the actual message string. This
allows the message string to be easily translated later by modifying the message digest file,

not the Java code. Also, message strings in the digest can contain parameters that are filled

in when the exception is thrown. The format of the message digest fileis described in the
Javadocs for the Javaclassj ava. uti | . Propert yResour ceBundl e and in the load method of
java.util.Properties.

Thefirst thing an annotator devel oper must choose is what Exception class to use. There are three
to choose from:

1. ResourceConfigurationException should be thrown from the annotator's reconfigure()
method if invalid configuration parameter values have been specified.

2. Resourcel nitializationException should be thrown from the annotator's initialize() method if
initialization fails for any reason (including invalid configuration parameters).

3. AnalysisEngineProcessException should be thrown from the annotator's process() method if
the processing of a particular document fails for any reason.

Generally you will not need to define your own custom exception classes, but if you do they
must extend one of these three classes, which are the only types of Exceptions that the annotator
interface permits annotators to throw.

All of the UIMA Exception classes share common constructor varieties. There are four possible
arguments:

The name of the message digest to use (optional —if not specified the default UIMA message digest
isused).

The key string used to select the message in the message digest.

An object array containing the parameters to include in the message. M essages can have
substitutable parts. When the message is given, the string representation of the objects passed are
substituted into the message. The object array is often created using the syntax new Object[]{ X, y}.

Another exception which isthe “cause” of the exception you are throwing. Thisfeatureis
commonly used when you catch another exception and rethrow it. (optional)

If you look at source file (folder: srcin Eclipse)
org. apache. ui ma. tut ori al . ex5. Room\unber Annot at or , you will see the following code:

UIMA Version 2.10.2 Annotator & AE Developer's Guide 27

Throwing Exceptions from Annotators

try {
nmPatterns[i] = Pattern.conpile(patternStrings[i]);

catch (PatternSyntaxException e) {
throw new ResourcelnitializationException(
MESSAGE_DI GEST, "regex_syntax_error",
new Qbject[]{patternStrings[i]}, e);
}

where the MESSAGE_DIGEST constant has the value
"org. apache. ui ma. tutori al . ex5. RoomNunber Annot at or _Messages".

Message digests are specified using a dotted name, just like Java classes. Thisfile, with

the .properties extension, must be present in the class path. In Eclipse, you find this

file under the src folder, in the package org.apache.uima.tutorial.ex5, with the name
RoomNumberAnnotator M essages.properties. Outside of Eclipse, you can find this

inthe ui maj - exanpl es. j ar with the name or g/ apache/ ui ma/ t ut ori al / ex5/
RoomN\umber Annot at or _Messages. properties. If youlook inthisfileyou will seetheline:

regex_syntax_error = {0} is not a valid regul ar expression.

which is the error message for the example exception we showed above. The placeholder { 0}
will befilled by the toString() value of the argument passed to the exception constructor —in this
case, the regular expression pattern that didn't compile. If there were additional arguments, their
locations in the message would be indicated as{ 1}, {2}, and so on.

If amessage digest is not specified in the call to the exception constructor, the

default is Ul MAExcept i on. STANDARD MESSAGE CATALOG (whosevalueis

“org. apache. ui ma. U MAExcept i on_Messages " in the current release but may

change). This message digest islocated in the ui ma- cor e. j ar fileat or g/ apache/ ui ma/

Ul MAExcept i on_nessages. properti es —you can take alook to seeif any of these exception
messages are useful to use.

To try out the regex_syntax_error exception, just use the Document Analyzer to run exanpl es/
descri ptors/tutorial /ex5/ RoomNunber Annot at or . xm , which happens to have an
invalid regular expression in its configuration parameter settings.

To summarize, here are the steps to take if you want to define your own exception message:

Create afile with the .properties extension, where you declare message keys and their associated
messages, using the same syntax as shown above for the regex_syntax_error exception. The
propertiesfile syntax is more completely described in the Javadocs for the load® method of the
java.util.Properties class.

Put your properties file somewhere in your class path (it can be in your annotator's .jar file).

Define a String constant (called MESSAGE_DIGEST for example) in your annotator code whose
valueisthe dotted name of this properties file. For example, if your propertiesfileisinside your jar
file at the location or g/ myor g/ myannot at or / Messages. pr operti es, then this String constant
should have the value or g. nyor g. myannot at or . Messages. Do not include the .properties
extension. In Java Internationalization terminology, thisis called the Resource Bundle name. For
more information see the Javadocs for the PropertyResourceBundle’ class.

6 http://java.sun.com/j 2se/1.5.0/docs/api/javalutil/Properties.html# oad(java.io.l nputStream)
7 http://java.sun.com/j2se/1.5.0/docs/api/javalutil /PropertyResourceBundl e htm

28 Annotator & AE Developer's Guide UIMA Version 2.10.2

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/PropertyResourceBundle.html

Accessing External Resources

In your annotator code, throw an exception like this:

t hrow new Resourcel nitializati onException(
MESSAGE_DI GEST, "your _nmessage_nane",
new bj ect[]{parand, paran?,...});

Y ou may also wish to look at the Javadocs for the UIMAEXxception class.

For mgre information on Java's internationalization features, see the Java lnternationalization
Guide”.

1.5.4. Accessing External Resources

External Resources are Java objects that have alife cycle where they are (optionally) initialized
at startup time by reading external datafrom afile or viaa URL (which can access information
over the http protocol, for instance). It isnot required that Extermal Resource objects do any
external datareading to initialize themselves. However, thisis such acommon use case, that we
will presume this mode of operation in the description below.

Sometimes you may want an annotator to read from an external resource, such asaURL or afile—
for example, along list of keys and values that you are going to build into a HashMap. Y ou could,
of course, just introduce a configuration parameter that holds the absolute path or URL to this
resource, and build the HashMap in your annotator's initialize method. However, thisis not the best
solution for three reasons:

1. Including an absolute path in your descriptor to specify the initialization data makes your
annotator difficult for othersto use. Each user will need to edit this descriptor and set the
absolute path to avalue appropriate for his or her installation.

2. You cannot share the created Java object(s), e.g., a HashMap, between multiple annotators.
Also, in some deployment scenarios there may be more than one instance of your annotator,
and you would like to have the option for them to share the same Java Object(s).

3. Your annotator would become dependent on a particular implementation of the Java
Object(s). It would be better if there was a decoupling between the actual implementation,
and the API used to accessit.

A better way to create these sharable Java objects and initialize them via external disk or URL
sources is through the ResourceM anager component. In this section we are going to show an
example of how to use the Resource Manager.

This example annotator will annotate UIMA acronyms (e.g. UIMA, AE, CAS, JCas) and store the
acronym'’s expanded form as a feature of the annotation. The acronyms and their expanded forms
are stored in an external file.

First, look at the exanpl es/ descri ptors/tutorial / ex6/ U maAcr onymAnnot at or . xm
descriptor.

8 http://java.sun.com/j2se/1.5.0/docs/gui defintl findex.html

UIMA Version 2.10.2 Annotator & AE Developer's Guide 29

http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html

Accessing External Resources

B uimascronymannotator.aml 2 = 0]
UmaAronymAnnetatar.xml
Resources " =
* Resources Needs, Deﬁmbum and Bindings * Resource Dependencies
Spedfy External Resources; Bnd d'seﬂ fo dependendes on the nght panel by Primitives dedare what resources they need, A primithe
selacting the corresponding dependency and didding Bind. cam only bind to one external resournce,
= UimahcranymTabieRle LRL: fle:ora/apachs fina tuterial x| - Bound | Cptonal? | Keys Inted -
Baund to: AcronymTable Bourd requred AcronymTable org.2

(%] i | [
= Imports for External Resources and Bindings
The follawing definitions are induded:

Kind | Locabon/Mame
[p—r— @

Creerview | Apgregate | Farameters Parameter Settings | Type System | Capabilties Indexes | Resources | Source

The values of the rowsin the two tables are longer than can be easily shown. Y ou can click the

small button at the top right to shift the layout from two side-by-side tables, to a vertically stacked

layout. Y ou can also click the small twisty on the “Imports for External Resources and Bindings’ to

collapse this section, because it's not used here. Then the same screen will appear like this:

[Bf umasconymannotatord £ =)

|z cronyménnatatoe s B
Hesources HRIS

- Resources Needs, Definitions and Bindings
Spedfy External Resources; Bind them to dependendes on the raght panei b ; seicchnu the comespondng dcpmrkn"van:ﬂ dicking Bind.

| = umaﬂcro"rym"ahleﬂe LRL: filex cvgn'apad':e}uma;h.mo ial fextfuimaAoronyms. oot hmlen'entamm org.apache.uma. mt:;na exﬁ Sarngﬂzso.n:e_m-pl -
Eournd to: AcranymiTable

* Imports for External Resources and Bindings

+ Resource Dependencies
Primitives dedare what resources they need. A primitive can only bind to one external resource,

Bound | Optional? | Keys Enterface Name IE
| Bound regured AgonymTaole org.apache.uma. tutorial, exs, StringMapResouroe

Orverviewe | Apgregate | Farameters | Parameter Sethnﬁ.‘lmc System | Capabiibes | Indexes | Resources | Source

The top window has a scroll bar allowing you to see therest of the line.

1.5.4.1. Declaring Resource Dependencies

The bottom window is where an annotator declares an external resource dependency. The XML for
thisisasfollows:

<ext er nal Resour ceDependency>

30 Annotator & AE Developer's Guide UIMA Version 2.10.2

Accessing External Resources

<key>Acr onyniTabl e</ key>
<descri pti on>Tabl e of acronyns and their expanded formns.</description>
<i nt er f aceName>
org. apache. ui ma.tutorial . ex6. St ri ngMapResour ce
</i nt er f aceNane>
</ ext er nal Resour ceDependency>

The <key> value (AcronymTable) is the name by which the annotator identifies this

resource. The key must be unique for all resources that this annotator accesses, but the same

key could be used by different annotators to mean different things. The interface name

(org. apache. ui ma. tut ori al . ex6. St ri ngMapResour ce) isthe Javainterface through which
the annotator accesses the data. Specifying an interface nameis optional. If you do not specify an
interface name, annotators will instead get an interface which can provide direct access to the data
resource (file or URL) that is associated with this external resource.

1.5.4.2. Accessing the Resource from the UimaContext

If you look at theor g. apache. ui ma. tut ori al . ex6. Ui maAcr onymAnnot at or source, you
will see that the annotator accesses this resource from the UimaContext by calling:

Stri ngMapResource mvap =
(StringMapResour ce) get Cont ext () . get Resour ceQbj ect (" Acr onynirabl e") ;

The object returned from the get Resour ceOhj ect method will implement the interface
declared in the <i nt er f aceName> section of the descriptor, St ri ngMapResour ce in this
case. The annotator code does not need to know the location of external data that may be used
to initilize this object, nor the Java class that might be used to read the data and implement the
St ri ngMapResour ce interface.

Note that if we did not specify a Javainterface in our descriptor, our annotator could directly access
the resource data as follows:

I nput St ream stream = get Cont ext (). get Resour ceAsSt r ean(" Acr onynirabl e") ;
If necessary, the annotator could aso determine the location of the resourcefile, by calling:
URI uri = getContext().getResourceURI ("Acronyniabl e");

These last two options are only available in the case where the descriptor does not declare a Java
interface.

Note: The methods for getting access to resources include get Resour ceURL. That
method returns a URL, which may contain spaces encoded as %20. url.getPath() would
return the path without decoding these %20 into spaces. get Resour ceURI on the other
hand, returns a URI, and the uri.getPath() does do the conversion of %20 into spaces. See
also get Resour ceFi | ePat h, which does a getResourceURI followed by uri.getPath().

1.5.4.3. Declaring Resources and Bindings

Refer back to the top window in the Resources page of the Component Descriptor Editor. Thisis
where we specify the location of the resource data, and the Java class used to read the data. For the
example, this corresponds to the following section of the descriptor:

<r esour ceManager Confi gur at i on>
<ext er nal Resour ces>

UIMA Version 2.10.2 Annotator & AE Developer's Guide 31

Accessing External Resources

<ext er nal Resour ce>
<name>U maAcr onyniabl eFi | e</ nane>
<descri pti on>
A tabl e containing UM acronyns and their expanded forns.
</ descri pti on>
<fil eResour ceSpecifier>
<fileUrl>file:org/apache/uima/tutorial/ex6/ui maAcronyns. t xt
</fileUrl>
</fil eResourceSpecifier>
<i npl enent at i onNane>
org. apache. ui ma. tutori al . ex6. Stri ngMapResour ce_i np
</'i mpl enent at i onNanme>
</ ext er nal Resour ce>
</ ext er nal Resour ces>

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>Acr onynirabl e</ key>
<r esour ceName>Ui maAcr onyniabl eFi | e</ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>
</ r esour ceManager Conf i gurati on>

Thefirst section of this XML declares an external Resource, the Ui maAcr onynTabl eFi | e. With
this, the fileUrl element specifies the path to the data file. This can be afile on the file system,

but can aso be a remote resource access via, e.g., the http protocol. The fileUrl element doesn't
haveto bea"file", it can be a URL. This can be an absolute URL (e.g. one that starts with file:/

or filex//l, or file://my.host.org/), but that is not recommended because it makes installation of

your component more difficult, as noted earlier. Better isarelative URL, which will be looked up
within the classpath (and/or datapath), as used in this example. In this case, thefile or g/ apache/

ui ma/tutorial / ex6/ ui maAcronyns. t xt islocated inui nmaj - exanpl es. j ar, whichisinthe
classpath. If you look in thisfile you will see the definitions of several UIMA acronyms.

The second section of the XML declares an external ResourceBinding, which connects the key
Acr onynirabl e, declared in the annotator's external resource dependency, to the actual resource
name Ui maAcr onyniTabl eFi | e. Thisisrather trivial in this case; for more on bindings see

the example Ui maMeet i ngDet ect or AE. xml below. Thereis no global repository for external
resources; it is up to the user to define each resource needed by a particular set of annotators.

In the Component Descriptor Editor, bindings are indicated below the external resource. To create
anew bhinding, you select an external resource (which must have previously been defined), and

an external resource dependency, and then click the Bi nd button, which only enablesif you have
selected two things to bind together.

When the Analysis Engineis initialized, it creates a single instance of

St ri ngMapResour ce_i npl and loadsit with the contents of the datafile. This means that the
framework calls the instance's| oad method, passing it an instance of DataResource, from which
you can obtain a stream or URI/URL of the external resource that was declared in the external
resource; for resources where loading does not make sense, you can implement al oad method
which ignoresits argument and just returns, or performes whatever initialization is appropriate at
startup time. See the Javadocs for SharedResourceObject for details on this.

The UimaA cronymAnnotator then accesses the data through the St ri ngMapResour ce interface.
This single instance could be shared among multiple annotators, as will be explained later.

Warning: Because the implementation of the resource is shared, you should insure your
implementation is thread-safe, asit could be called multiple times on multiple threads,
simultaneoudly.

Annotator & AE Developer's Guide UIMA Version 2.10.2

Accessing External Resources

Note that all resource implementation classes (e.g. StringMapResource_impl in the provided
example) must be declared public must not be declared abstract, and must have public, O-argument
constructors, so that they can be instantiated by the framework. (Although Java classes in which
you do not define any constructor will, by default, have a O-argument constructor that doesn't

do anything, aclassin which you have defined at least one constructor does not get a default O-
argument constructor.)

All resource implementation classes that provide access to resource data must aso implement the
interface org.apache.uima.resource.SharedResourceObject. The UIMA Framework will invoke this
interface's only method, | oad, after this object has been instantiated. The implementation of this
method can then read data from the specified Dat aResour ce and use that data to initialize this
object. It can also do whatever resource initialization might be appropriate to do at startup time.

This annotator isillustrated in Figure 1.3, “External Resource Binding” [33]. To seeitin

action, just run it using the Document Analyzer. When it finishes, open up the UIMA_Seminars
document in the processed results window, (double-click it), and then left-click on one of the
highlighted terms, to see the expandedForm feature's value.

UimaAcronymAnnotator

(Resource: “AcronymTable”) UimaAcronym

—>

External Resource Binding:

2 UimaAcronymTableFile
v

UimaAcronyms.txt

Figure 1.3. External Resource Binding

By designing our annotator in this way, we have gained some flexibility. We can freely replace
the StringMapResource_impl class with any other implementation that implements the smple
StringMapResource interface. (For example, for very large resources we might not be able to have
the entire map in memory.) We have also made our external resource dependencies explicit in the
descriptor, which will help othersto deploy our annotator.

1.5.4.4. Sharing Resources among Annotators

Another advantage of the Resource Manager isthat it allows our data to be shared between
annotators. To demonstrate this we have devel oped another annotator that will use the same
acronym table. The UimaM eetingAnnotator will iterate over Meeting annotations discovered
by the Meeting Detector we previously developed and attempt to determine whether the
topic of the meeting isrelated to UIMA. It will do this by looking for occurrences of UIMA
acronymsin close proximity to the meeting annotation. We could implement this by using
the UimaA cronymAnnotator, of course, but for the sake of this example we will have the
UimaM eetingAnnotator access the acronym map directly.

The Java code for the UimaM eetingAnnotator in example 6 creates a new type, UimaMeeting, if it
finds a meeting within 50 characters of the UIMA acronym.

UIMA Version 2.10.2 Annotator & AE Developer's Guide 33

Accessing External Resources

We combine three analysis engines, the UimaA cronymAnnotator to annotate UIMA acronyms,
the MeetingDectector from example 4 to find meetings and finally the UimaM eetingAnnotator

to annotate just meetings about UIMA.. Together these are assembled to form the new aggregate
analysis engine, UimaM eetingDectector. This aggregate and the sharing of a common resource are
illustrated in Figure 1.4, “Component engines of an aggregate share a common resource” [34].

UimaAcronym UimaAcronym, Meeting
UlMAMeetingDetectorTAE = o

— . [

UimaAcronymAnnotator MeetingDetectorTAE UimaMeetingAnnotator

UimaAcronym,
(Resource: “AcronymTable”)

N L (Requires: Meeting) = UimaMeeting
(Resource: “UimaTermTable”

———

External Resource Binding: .-~ External Resource Binding:
UimaAcronymTableFile UimaAcronymTableFile

N

UimaAcronyms.txt

Figure 1.4. Component engines of an aggregate share a common resource

The important thing to noticeisin the Ui maMeet i ngDet ect or AE. xml aggregate descriptor. It
includes both the UimaM eetingAnnotator and the UimaA cronymA nnotator, and contains a single
declaration of the UimaAcronymTableFile resource. (The actual example has the order of the first

two annotators reversed versus the above picture, which is OK since they do not depend on one
another).

It al'so binds the resources as follows:

Annotator & AE Developer's Guide UIMA Version 2.10.2

Accessing External Resources

B UimaMeetingDetectorTAE.xml 5 |
LimaMeetingDetector TAE. xml

Resources

[EEE,
mua

+ Resources Needs, Definitions and Bindings

Specify External Resources; Bind them to dependencies on the right panel by selecting the corresponding dependency
and dicking Bind.

= UimaAcronymTableFile URL: file:orgfapache/uima/tutorial/jexs fuimaicronyms. txt Implementation:
Bound to: UimaAcronymAnnotator /AcronymTable
Bound to: UimaMeetingAnnotator UimaTermTable

¥ Tmnorts for Fyternal Resonrces and Rindinns

+ Resource Dependencies

Primitives dedare what resources they need, A primitive can only bind to one external resource.

Bound | Optional? | Keys Interface Name

Bound required UimaMeetingAnnotatorUimaTermTable org.apache uima. tutorial exd.StrinaMapResource
Bound required UimaAcronymAnnotator/AcronymTable org.apache uima. tutorial exd. StringMapResource

Overview - Aggregaté - Parameters - ijaraméter Settings | Type System | Capab-iliﬁes . Inﬂexes Resources | Snurce.

<ext er nal Resour ceBi ndi ngs>
<ext er nal Resour ceBi ndi ng>
<key>Ui maAcr onymAnnot at or/ Acr onynirabl e</ key>
<r esour ceNane>Ui nmaAcr onyniabl eFi | e</ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>

<ext er nal Resour ceBi ndi ng>
<key>Ui maMeet i ngAnnot at or / Ui maTer mrabl e</ key>
<r esour ceNanme>Ui naAcr onyniabl eFi | e</ r esour ceNanme>
</ ext er nal Resour ceBi ndi ng>
</ ext er nal Resour ceBi ndi ngs>

This binds the resource dependencies of both the UimaAcronymAnnotator (which uses the name
AcronymTable) and UimaM eetingAnnotator (which uses UimaTermTable) to the single declared
resource named UimaAcronymFile. Therefore they will share the same instance. Resource bindings
in the aggregate descriptor override any resource declarations in individual annotator descriptors.

If we wanted to have the annotators use different acronym tables, we could easily do that. We
would simply have to change the resourceName elements in the bindings so that they referred to
two different resources. The Resource Manager gives us the flexibility to make this decision at
deployment time, without changing any Java code.

1.5.4.5. Threading and Shared Resources

Sharing can aso occur when multiple instances of an annotator are created by the framework in
response to run-time deployment specifications. If an implementation classis specified in the

UIMA Version 2.10.2 Annotator & AE Developer's Guide 35

Result Specifications

external resource, only one instance of that implementation classis created for a given binding, and
is shared among all annotators. Because of this, the implementation of that shared instance must

be written to be thread-safe - that is, to operate correctly when called at arbitrary times by multiple
threads. Writing thread-safe code in Javais addressed in several books, such as Brian Goetz's Java
Concurrency in Practice.

If no implementation class is specified, then the getResource method returns a DataResource
object, from which each annotator instance can obtain their own (non-shared) input stream; so
threading is not an issuein this case.

1.5.5.

Result Specifications

Annotators often are written to do alot of computation and produce alot of different outputs.
For example, atokenizer can, in addition to identifying tokens, look them up in dictionaries,
create lemmaforms (dropping suffexes and prefixes), etc. Result Specifications provide away to
dynamically specify what results are desired for a particular CAS being processed.

It is up to the annotator writer to take advantage of the result specification; using it is optional.
If it isused, the annotator writer checksif a particular output is wanted, by asking the result
specification if it contains a specific Type and/or Feature. If it does, then the annotator produces
that type/feature; if not, it skips the computations for producing that type/feature.

The Result Specification querying may include the language. A typical use case: The CAS contains
a document written in some language, and some upstream Annotator has discovered what this
language is. The Annotator extracts the previously discovered language specification from the
CAS and then includes it when querying the Result Specification. The exact method of encoding
language specificationsin the CASisleft up to annotator devel opers; however, the framework
provides a commonly used type for this - the org.apache.uima.tcas.DocumentAnnotation type.

The Result Specification is passed to the annotator instance by calling its setResultSpecificaiton
method (this call istypically done by the framework, based on Capability specifications).

When called, the default implementation saves the result specification in an instance variable

of the Annotator instance, which can be accessed by the annotator using the protected

get Resul t Speci fi cati on() method.

A Result Specification isalist of output types and / or type:feature names, catagorized by
language(s), which are expected to be output from (produced by) the annotator. Annotators may use
this to optimize their operations, when possible, for those cases where only particular outputs are
wanted. The interface to the Result Specification object (see the Javadocs) allows querying both
types and particular features of types.

The languages specifications used by Result Specifications are the same that are specifiablein
Capability Specifications; examplesinclude "en" for English, "en-uk" for British English, etc.
Thereis also alanguage type, "x-unspecified”, which is presumed if no language specification(s)
aregiven.

If aquery of the Result Specification doesn't include alanguage, it is treated asif the language
"x-unspecified" was specified. Language matching is hierarchically defaulted, in one direction:

if a query includes the language "en-uk", meaning that the document being processed isin that
language, it will match Result Specifications whose languages "en-uk”, "en", or "x-unspecified".

In other words, if the Result Specifications say to produce output if the actual document's language
isen-uk, or en, or x-unspecified, then having the actual document's language be en-uk would
"match" any of these Result Specifications. However the reverse is not true: If the query asks about
producing output if the actual document's language is "x-unspecified”, then it would not match

36

Annotator & AE Developer's Guide UIMA Version 2.10.2

Result Specifications

if the Result Specification said to produce output only if the actual document is en-uk or en; the
Result Specification would need to say to produce output for "x-unspecified).

If the Result Specification indicates it wants output produced for "en-uk", but the annotator is given
alanguage which is unknown, or one that is known, but isn't "en-uk", then the query (using the
language of the document) will return false. Thisistrue even if the languageis "en". However, if
the Result Specification indicates it wants output for "en", and the query is for a document whose
language is "en-uk" then the query will return true.

Sometimes you can specify the Result Specification; othertimes, you cannot (for instance, inside a
Callection Processing Engine, you cannot). When you cannot specify it, or choose not to specify it
(for example, using the form of the process(...) call on an Analysis Engine that doesn't include the
Result Specification), a“ Default” Result Specification is used.

1.5.5.1. Default ResultSpecification

The default Result Specification is taken from the Engine's output Capability Specification.
Remember that a Capability Specification has both inputs and outputs, can specify types and / or
features, and there can be more than one Capability Set. If there is more than one set, the logical
union by language of these setsis used. Each set can have a different "language(s)" specified;

the default Result Specification will have the outputs by language(s), so that the annotator can
guery which outputs should be provided for particular languages. The methods to query the Result
Specification take a type and (optionally) afeature, and optionally, alanguage. If the queried type
is asubtype of some otherwise matching type in the Result Specification, it will match the query.
See the Javadocs for more details on this.

1.5.5.2. Passing Result Specifications to Annotators

If you are not using a Collection Processing Engine, you can specify
a Result Specification for your AnalysisEngine(s) by calling the
Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) method.

It isaso possible to pass a Result Specification on each call to Anal ysi sEngi ne. process(CAS,
Resul t Speci fi cati on) . However, thisis not recommended if your Result Specification

will stay constant across multiple callsto pr ocess. In that caseit will be more efficient to call
Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) only when the
Result Specification changes.

For primitive Analysis Engines, whatever Result Specification you passin is passed aong to the
annotator's set Resul t Speci fi cati on(Resul t Speci fi cati on) method. For aggregate
Analysis Engines, see below.

1.5.5.3. Aggregates

For aggregate engines, the Result Specification passed to the

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) method isintended
to specify the set of output types/features that the aggregate should produce. Thisis not necessarily
equivalent to the set of output types/features that each annotator should produce. For example,

an annotator may need to produce an intermediate type that is then consumed by a downstream
annotator, even though that intermediate type is not part of the Result Specification.

To handle this situation, when

Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on) iscaledonan
aggregate, the framework computes the union of the passed Result Specification with the set of all
input types and features of all component AnalysisEngines within that aggregate. This formsthe

UIMA Version 2.10.2 Annotator & AE Developer's Guide 37

Class path setup when using JCas

complete set of types and features that any component of the aggregate might need to produce. This
derived Result Specification is then intersected with the delegate's output capabilities, and the result
is passed to the Anal ysi sEngi ne. set Resul t Speci fi cati on(Resul t Speci fi cati on)

of each component AnalysisEngine. In the case of nested aggregates, this procedure is applied
recursively.

1.5.5.4. Collection Proessing Engines

The Default Result Specification is aways used for al components of a Collection Processing
Engine.

1.5.6.

Class path setup when using JCas

JCas provides Java classes that correspond to each CAS type in an application. These classes
are generated by the JCasGen utility (which can be automatically invoked from the Component
Descriptor Editor).

The Java source classes generated by the JCasGen utility are typically compiled and packaged into
aJAR file. This JAR file must be present in the classpath of the UIMA application.

For more details on issues around setting up this class path, including deployment issues where
class loaders are being used to isolate multiple UIMA applicationsinside a single running Java
Virtual Machine, please see UIMA References Section 5.6.6, “Class Loadersin UIMA” .

1.5.7.

Using the Shell Scripts

The SDK includes a/ bi n subdirectory containing shell scripts, for Windows (.bat files) and Unix
(.shfiles). Many of these scripts invoke sample Java programs which require a class path; they call
acommon shell script, set Ui raCl assPat h to set up the UIMA required files and directories on
the class path.

If you need to include files on the class path, the scripts will add anything you specify in the
environment variables CLASSPATH or UIMA_CLASSPATH to the classpath. So, for example,
if you are running the document analyzer, and wanted it to find a Java class file named (on
Windows) c:\a\b\c\myProject\myJarFile.jar, you could first issue aset command to set the
UIMA_CLASSPATH to thisfile, followed by the documentAnalyzer script:

set U MA_CLASSPATH=c:\ a\ b\ c\ nyProj ect\myJarFile.jar
docurnent Anal yzer

Other environment variables are used by the shell scripts, asfollows:
Table 1.1. Environment variables used by the shell scripts

Environment Variable Description

UIMA_HOME Path where the UIMA SDK was installed.

JAVA_HOME (Optional) Path to a Java Runtime
Environment. If not set, the Java JRE that isin
your system PATH is used.

UIMA_CLASSPATH (Optional) if specified, a path specification to
use as the default ClassPath. Y ou can also set
the CLASSPATH variable. If you set both,

they will be concatenated.

38

Annotator & AE Developer's Guide UIMA Version 2.10.2

Common Pitfalls

Environment Variable Description

UIMA_DATAPATH (Optional) if specified, a path specification
to use as the default DataPath (see UIMA
References Section 2.2, “Imports’)

UIMA_LOGGER_CONFIG_FILE (Optional) if specified, a path to a Java Logger
propertiesfile (see Section 1.2, “ Configuration
and Logging” [13])

UIMA_JVM_OPTS (Optional) if specified, the VM argumentsto
be used when the Java processis started. This
can be used for example to set the maximum
Java heap size or to define system properties.

VNS _PORT (Optional) if specified, the network IP port
number of the Vinci Name Server (VNS) (see
Section 3.6.5, “The Vinci Naming Services
(VN9)")

ECLIPSE_ HOME (Optional) Needs to be set to the root of your
Eclipse installation when using shell scripts
that invoke Eclipse (e.g. jcasgen_merge)

1.6. Common Pitfalls

Here are some things to avoid doing in your annotator code:
Retaining r eferences to JCas objects between calls to process()

The JCas will be cleared between calls to your annotator's process() method. All of the analysis
results related to the previous document will be deleted to make way for analysis of a new
document. Therefore, you should never save areference to a JCas Feature Structure object (i.e.
an instance of aclass created using JCasGen) and attempt to reuse it in a future invocation of the
process() method. If you do so, the results will be undefined.

Careless use of static data

Always keep in mind that an application that uses your annotator may create multiple instances
of your annotator class. A multithreaded application may attempt to use two instances of your
annotator to process two different documents simultaneously. Thiswill generally not cause any
problems as long as your annotator instances do not share static data.

In general, you should not use static variables other than static final constants of primitive data
types (String, int, float, etc). Other types of static variables may allow one annotator instance to set
avalue that affects another annotator instance, which can lead to unexpected effects. Also, static
references to classes that aren't thread-safe are likely to cause errors in multithreaded applications.

1.7. Viewing UIMA objects in the Eclipse debugger

Eclipse (as of version 3.1 or later) has a new feature for viewing Java Logical Structures. When
enabled, it will permit you to see aview of UIMA objects (such as feature structure instances, CAS
or JCasinstances, etc.) which displays the logical subparts. For example, hereisaview of afeature
structure for the RoomNumber annotation, from the tutorial example 1.

UIMA Version 2.10.2 Annotator & AE Developer's Guide 39

Analysis Engine XML Descriptor

(9= Varigbles i . Breakpoints | Expressions g E =
Mame Value
F @ this org.apache.uima. tutorial. ex 1. RoomMumber Annotator @ 1a0d253b
® @ alCas org.apache.uima.jcas.impl. JCasImpl @3a99653F
O docText UIT Seminar: Challenges in Speech Recognition'n August 8, 2003 10:30 AM - 11;30 A,
¥ @ matcher java.util.regex.Matcher @25fe53c
= annotation RoomMumberin sofa: _Initialview'\n begin: 203'\n end: 209%n building: “Yorktown™\n
< addr 21
= jrasType org.apache, uima. tutorial. RoomMumber_Type @5atce538

The “annotation” object in Java shows as a 2 element object, not very convenient for seeing
the features or the part of the input that is being annotatoed. But if you turn on the Java L ogical
Structure mode by pushing this button:

the features of the FeatureStructure instance will be shown:

(%)= Variables &% . Breakpoints | Expressions Ed= = ==
Mame Value
@ this org.apache. uima. tutorial ex 1. RoomMumber Annotator @1a0d 253b
O alCas org.apache.uima.jcas.impl. JCasImpl @3a99653f
@ docText UIT Seminar: Challenges in Speech Recognition'n August 8, 2003 10:30 AM - 11:30 A,
F O matcher java.util.regex. Matcher @25fe53c
= ‘. annotation RoomMumber'n sofa: _Initialfiew\n begin: 203% end: 209% building: ™Yorktown™\n
= & [0] Features: [Lorg.apache.uima.cas.impl.DebugMameValuePair; @1126533
H & [0] sofa: Sofaln sofaMum: 1% sofalD: ™_InitialView™n mimeType: “text™n sofaérray: ...
F & [1] begin: 203
H & [2] end: 209
H a [3] building: Yorktown
H & [1] Covered Text: 20-043
H & [2] SubAnnotations: Expand to show

1.8. Introduction to Analysis Engine Descriptor XML
Syntax

This section is an introduction to the syntax used for Analysis Engine Descriptors. Most users do
not need to understand these details; they can use the Component Descriptor Editor Eclipse plugin
to edit Analysis Engine Descriptors rather than editing the XML directly.

This section walks through the actual XML descriptor for the RoomNumberAnnotator example
introduced in section Section 1.1, “Getting Started” [2]. The discussion is divided into severa
logical sections of the descriptor.

The full specification for Analysis Engine Descriptorsis defined in UIMA References Chapter 2,
Component Descriptor Reference.

1.8.1. Header and Annotator Class Identification

<?xm version="1.0" encodi ng="UTF-8" ?>
<l-- Descriptor for the exanple RoomNunber Annotator. -->

40 Annotator & AE Developer's Guide UIMA Version 2.10.2

Simple Metadata Attributes

<anal ysi seEngi neDescri ption xm ns="http://ui ma. apache. or g/ resourceSpecifier">
<f ramewor k|l npl enent at i on>or g. apache. ui ma. j ava</ f ranewor kI npl enent at i on>
<primtive>true</primtive>
<annot at or | npl ement at i onNane>
org. apache. ui ma. tutori al . ex1. RoomNunber Annot at or
</ annot at or | npl enent at i onNane>

The document begins with a standard XML header and a comment. The root element of the
document is named <anal ysi sEngi neDescri pti on>, and must specify the XML namespace
http://ui ma. apache. org/ resour ceSpecifi er.

Thefirst subelement, <f r amewor kil npl enent at i on>, must contain the value

or g. apache. ui ma. j ava. The second subelement, <pri ni ti ve>, contains the Boolean value
true, indicating that this XML document describes a Primitive Analysis Engine. A Primitive
Anaysis Engine is comprised of a single annotator. It is also possible to construct XML descriptors
for non-primitive or Aggregate Analysis Engines; thisis covered later.

The next element, <annot at or | npl enent at i onName>, contains the fully-qualified class name
of our annotator class. Thisis how the UIMA framework determines which annotator class to
instantiate.

1.8.2. Simple Metadata Attributes

<anal ysi sengi neMet aDat a>
<name>Room Nunber Annot at or </ nane>
<descri pti on>An exanpl e annotator that searches for room nunbers in
the 1 BM Wat son research buil di ngs. </ descri pti on>
<ver si on>1. 0</ ver si on>
<vendor >The Apache Software Foundati on</vendor ></ para>

Here are shown four simple metadata fields — name, description, version, and vendor. Providing
values for these fields is optional, but recommended.

1.8.3. Type System Definition

<t ypeSyst enDescri pti on>
<i nport s>
<inport |ocation="Tutorial TypeSystem xm "/>
</inports>
</ typeSyst enDescri pti on>

This section of the XML descriptor defines which types the annotator works with. The
recommended way to do thisis to import the type system definition from a separate file, as shown
here. The location specified here should be arelative path, and it will be resolved relative to the
location of the aggregate descriptor. It is also possible to define types directly in the Analysis
Engine descriptor, but these types will not be easily shareable by others.

1.8.4. Capabilities

<capabilities>
<capability>
<inputs />
<out put s>
<t ype>or g. apache. ui ma. tut ori al . RoonNunber </ t ype>
<f eat ur e>or g. apache. ui ma. t ut ori al . RoomNunber : bui | di ng</ f eat ur e>
</ out put s>

UIMA Version 2.10.2 Annotator & AE Developer's Guide 41

Configuration Parameters (Optional)

</ capability>
</ capabilities>

The last section of the descriptor describes the Capabilities of the annotator — the Types/Features
it consumes (input) and the Types/Features that it produces (output). These must be the names of
types and features that exist in the ANALY SIS ENGINE descriptor's type system definition.

Our annotator outputs only one Type, RoomNumber and one feature, RoomNumber:building. The
fully-qualified names (including namespace) are needed.

The building feature is listed separately here, but clearly specifying every feature for a complex
type would be cumbersome. Therefore, a shortcut syntax exists. The <outputs> section above could
be replaced with the equivalent section:

<out put s>
<type al | Annot at or Features ="true">

or g. apache. ui ma. tut ori al . RoomNunber

</type>
</ out put s>

1.8.5. Configuration Parameters (Optional)

1.8.5.1.

Configuration Parameter Declarations

<confi gurati onPar anmet er s>
<confi gur ati onPar anet er >

<name>Pat t er ns</ nane>

<descri pti on>Li st of room nunber regul ar expression patterns.
</ descri pti on>

<type>String</type>

<mul ti Val ued>t rue</ nul ti Val ued>

<mandat or y>t r ue</ mandat or y>

</ confi gur ati onPar anet er >
<confi gur ati onPar anet er >

<name>Locat i ons</ name>

<descri ption>Li st of |ocations corresponding to the room nunber
expressi ons specified by the Patterns paraneter.

</ descri ption>

<type>String</type>

<mul ti Val ued>t rue</ mul ti Val ued>

<mandat or y>t r ue</ mandat or y>

</ confi gur ati onPar anmet er >
</ confi gurati onPar anet er s>

The<confi gur ati onPar anet er s> element contains the definitions of the configuration
parameters that our annotator accepts. We have declared two parameters. For each configuration
parameter, the following are specified:

name — the name that the annotator code usesto refer to the parameter
description —a natural language description of the intent of the parameter

type —the data type of the parameter's value — must be one of String, Integer, Float, or
Boolean.

multiValued —true if the parameter can take multiple-values (an array), false if the
parameter takes only asingle value.

42

Annotator & AE Developer's Guide UIMA Version 2.10.2

Configuration Parameters (Optional)

* mandatory —trueif avalue must be provided for the parameter

Both of our parameters are mandatory and accept an array of Strings as their value.

1.8.5.2. Configuration Parameter Settings

<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<nanme>Pat t er ns</ nane>
<val ue>
<array>
<string>b[0-4]d-[0-2]ddb</string>
<string>b[Gl-4] [NS] - [A- Z] ddb</ st ri ng>
<string>bJ[12]-[A-Z] ddb</string>
</ array>
</ val ue>
</ naneVal uePai r >
<naneVal uePai r >
<nanme>Locat i ons</ nanme>
<val ue>
<array>
<string>Watson - Yorktown</string>
<string>Watson - Hawt horne I</string>
<string>Watson - Hawt horne II</string>
</ array>
</ val ue>
</ naneVal uePai r >
</ confi gurationPar anet er Setti ngs>

1.8.5.3. Aggregate Analysis Engine Descriptor

<?xm version="1.0" encodi ng="UTF-8" ?>

<primtive>false</primtive>

<del egat eAnal ysi sengi neSpeci fi ers>
<del egat eAnal ysi sEngi ne key="RoomNunber " >
<inmport |ocation="../ex2/ RoomNunber Annot at or.xm "/ >
</ del egat eAnal ysi sengi ne>
<del egat eAnal ysi séngi ne key="Dat eTi ne" >
<inport |ocation="Tutorial DateTi ne.xm" />
</ del egat eAnal ysi sengi ne>
</ del egat eAnal ysi sEngi neSpeci fi ers>

<anal ysi seEngi neDescri ption xm ns="http://ui ma. apache. or g/ resourceSpeci fier">
<f ramewor kl npl enent at i on>or g. apache. ui na. j ava</ f r amewor kl npl enent ati on>

Thefirst difference between this descriptor and an individual annotator's descriptor is that the
<prinmtive>element containsthevaluef al se. Thisindicates that this Analysis Engine (AE) is

an aggregate AE rather than a primitive AE.

Then, instead of a single annotator class name, we have alist of

del egat eAnal ysi sEngi neSpeci fi er s. Each specifies one of the components that constitute
our Aggregate . We refer to each component by the relative path from this XML descriptor to the

component AE's XML descriptor.

Thislist of component AEs does not imply an ordering of them in the execution pipeline. Ordering

is done by another section of the descriptor:

<anal ysi sengi neMet aDat a>
<nane>Aggr egate AE - Room Nunmber and Dat eTi me Annot at or s</ nanme>

UIMA Version 2.10.2 Annotator & AE Developer's Guide

Configuration Parameters (Optional)

<descri pti on>Det ects Room Nunbers, Dates, and Ti mes</description>
<f | owConstrai nt s>
<f i xedFl ow>
<node>RoomN\unber </ node>
<node>Dat eTi me</ node>
</ fi xedFl ow>
</ fl owConstr ai nt s>

Here, afixedFlow is adequate, and we specify the exact ordering in which the AEs will be
executed. In this case, it doesn't really matter, since the RoomNumber and DateTime annotators do
not have any dependencies on one another.

Finally, the descriptor has a capabilities section, which has exactly the same syntax as a primitive
AE's capabilities section:

<capabilities>
<capability>
<i nputs />
<out put s>
<type al | Annot at or Feat ures="t rue" >
org. apache. ui ma. tut ori al . RoomN\unber
</type>
<type al | Annot at or Feat ures="true" >
or g. apache. ui ma. tut ori al . Dat eAnnot
</type>
<type al | Annot at or Feat ures="true">
or g. apache. ui ma. tutorial . Ti mneAnnot
</type>
</ out put s>
<l anguagesSupport ed>
<l anguage>en</ | anguage>
</ | anguagesSupport ed>
</capability>
</capabilities>

Annotator & AE Developer's Guide UIMA Version 2.10.2

Chapter 2. Collection Processing Engine
Developer's Guide

Note: The CPE (Collection Processing Engine) was an early approach to supporting some
scale-out use cases. It is an older approach that doesn't support some of the newer features
of CASes such as multiple views and CAS Multipliers. It has been supplanted by UIMA-
AS, which has full support for the new features.

The UIMA Analysis Engine interface provides support for developing and integrating algorithms
that analyze unstructured data. Analysis Engines are designed to operate on a per-document
basis. Their interface handles one CAS at atime. UIMA provides additional support for applying
analysis engines to collections of unstructured data with its Collection Processing Architecture.
The Collection Processing Architecture defines additional components for reading raw data
formats from data collections, preparing the data for processing by Analysis Engines, executing
the analysis, extracting analysis results, and deploying the overall flow in avariety of local and
distributed configurations.

The functionality defined in the Collection Processing Architecture is implemented by a Collection
Processing Engine (CPE). A CPE includes an Analysis Engine and adds a Collection Reader,
aCASInitializer (deprecated as of version 2), and CAS Consumers. The part of the UIMA
Framework that supports the execution of CPEs s called the Collection Processing Manager, or
CPM.

A Collection Reader provides the interface to the raw input data and knows how to iterate over
the data collection. Collection Readers are discussed in Section 2.4.1, “ Developing Collection
Readers’ [53]. The CAS Initializer ! prepares an individual dataitem for analysis and

loads it into the CAS. CAS Initializers are discussed in Section 2.4.2, “Developing CAS
Initializers’ [58] A CAS Consumer extracts analysis results from the CAS and may also
perform collection level processing, or analysis over a collection of CASes. CAS Consumers are
discussed in Section 2.4.3, “Developing CAS Consumers’ [59].

Analysis Engines and CAS Consumers are both instances of CAS Processors. A Collection
Processing Engine (CPE) may contain multiple CAS Processors. An Analysis Engine contained in
a CPE may itself be a Primitive or an Aggregate (composed of other Analysis Engines). Aggregates
may contain Cas Consumers. While Collection Readers and CAS Initializers always run in the
same VM asthe CPM, a CAS Processor may be deployed in avariety of local and distributed
modes, providing a number of options for scalability and robustness. The different deployment
options are covered in detail in Section 2.5, “Deploying a CPE” [62].

Each of the componentsin a CPE has an interface specified by the UIMA Collection Processing
Architecture and is described by a declarative XML descriptor file. Similarly, the CPE itself has a
well defined component interface and is described by a declarative XML descriptor file.

A user creates a CPE by assembling the components mentioned above. The UIMA SDK provides a
graphical tool, called the CPE Configurator, for assisting in the assembly of CPEs. Use of this tool
issummarized in Section 2.2.1, “Using the CPE Configurator” [47], and more details can be

found in UIMA Tools Guide and Reference Chapter 2, Collection Processing Engine Configurator
User's Guide. Alternatively, a CPE can be assembled by writing an XML CPE descriptor. Details
on the CPE descriptor, including its syntax and content, can be found in the UIMA References
Chapter 3, Collection Processing Engine Descriptor Reference. The individual components have

ICAS Initializers are deprecated in favor of amore general mechanism, multiple subjects of analysis.

CPE Developer's Guide 45

CPE Concepts

associated XML descriptors, each of which can be created and / or edited using the Component
Description Editor.

A CPE is executed by a UIMA infrastructure component called the Collection Processing
Manager (CPM). The CPM provides a number of services and deployment options that cover
instantiation and execution of CPEs, error recovery, and local and distributed deployment of the
CPE components.

2.1. CPE Concepts

Figure 2.1, “CPE Components’ [46] illustrates the data flow that occurs between the different
types of components that make up a CPE.

Entity Entit .
. y + CAS Analysis
Collections C;I;‘c:i:‘:n (9. Document__, Inifi;iszer P
& Meta data (adds to CAS)
Entity + CAS
*Manages Processing l J J
*Monitors Status CAS Consumer CAS Consumer CAS Consumer
«Collects Statistics (builds aggregate (builds aggregate (builds aggregate
data structure) data structure) data structure)
| |
Glossary Search
Glossary Extractor I e Engine
Index
(Kinds of CAS Consumers)

Figure 2.1. CPE Components

The components of a CPE are:

 Collection Reader — interfaces to a collection of dataitems (e.g., documents) to be analyzed.
Collection Readers return CASes that contain the documents to analyze, possibly along with
additional metadata.

» Analysis Engine —takes a CAS, analyzes its contents, and produces an enriched CAS.
Analysis Engines can be recursively composed of other Analysis Engines (called an
Aggregate Analysis Engine). Aggregates may aso contain CAS Consumers.

» CAS Consumer — consume the enriched CAS that was produced by the sequence of Analysis
Engines before it, and produce an application-specific data structure, such as a search engine
index or database.

A fourth type of component, the CAS Initializer, may be used by a Collection Reader to populate
a CAS from adocument. However, as of UIMA version 2 CAS Initializers are now deprecated in
favor of a more general mechsanism, multiple Subjects of Analysis.

46 CPE Developer's Guide UIMA Version 2.10.2

CPE Configurator and CAS viewer

The Collection Processing Manager orchestrates the data flow within a CPE, monitors status,
optionally manages the life-cycle of internal components and collects statistics.

CASes are not saved in a persistent way by the framework. If you want to save CASes, then you
have to save each CAS as it comes through (for example) using a CAS Consumer you write to do
this, in whatever format you like. The UIMA SDK supplies an example CAS Consumer to save
CASesto XML files, either in the standard XMI format or in an older format called XCAS. It also
supplies an example CAS Consumer to extract information from CASes and store the resultsinto a
relational Database, using Java's JDBC APIs.

2.2. CPE Configurator and CAS viewer
2.2.1. Using the CPE Configurator

A CPE can be assembled by writing an XML CPE descriptor. Details on the CPE descriptor,
including its syntax and content, can be found in UIMA References Chapter 3, Collection
Processing Engine Descriptor Reference. Rather than edit raw XML, you may develop a CPE
Descriptor using the CPE Configurator tool. The CPE Configurator tool is described briefly in this
section, and in more detail in UIMA Tools Guide and Reference Chapter 2, Collection Processing
Engine Configurator User's Guide.

The CPE Configurator tool can be run from Eclipse (see Section 2.2.2, “Running the CPE
Configurator from Eclipse” [51], or using the cpeGui shell script (cpeGui . bat on Windows,
cpeQui . sh on Unix), which islocated in the bi n directory of the UIMA SDK installation.
Executing this batch file will display the window shown here:

UIMA Version 2.10.2 CPE Developer's Guide 47

Using the CPE Configurator

[H Collection Processing Engine Configurator g@ ﬁ
File View Help

ﬁ] Unstructured Information Management Architecture
A Apache eubasor Praject.

i Hi |

Calection Reader

Anahesis Engines

() = (2

A5 Consumers |

() (=))

1 @asa‘

alzed

The window is divided into three sections, one each for the Collection Reader, Analysis Engines,
and CAS Consumers.? In each section, you select the component(s) you want to include in the
CPE by browsing to their XML descriptors. The configuration parameters present in the XML
descriptors will then be displayed in the GUI; these can be modified to override the values present
in the descriptor. For example, the screen shot below shows the CPE Configurator after the
following components have been chosen:

Col | ecti on Reader:
%JI MA_HOVEY4 exanpl es/ descri ptors/col | ecti on_reader/
Fi | eSyst enCol | ecti onReader . xm

Anal ysi s Engi ne:
%J MA_HOVEY exanpl es/ descri pt or s/ anal ysi s_engi ne/
NamesAndPer sonTi t| es_TAE. xmi

CAS Consuner :
%Jl MA_HOVE% exanpl es/ descri pt ors/ cas_consuner/
Xm Wit er CasConsuner . xm

’Thereisalso afourth pane, for the CAS Initializer, but it is hidden by default. To enableit clickthe Vi ew — CAS I nitiali zer
Panel menuitem.

48 CPE Developer's Guide UIMA Version 2.10.2

Using the CPE Configurator

=)

4 Collection Processing Engine Configurator E]@

Fie Wiew Help
i
.

Unstructured Information Management Architecture

An Apache norebator Project,

Collection Reader

Desoptor: | |\FlesystemCalectionReader
Input Directory! | a4y smache-uimal exarplesidats

Encoding:
Language:

Analysis Engines

[Add... ” << ” =3 |

E Agoregate TAE - Mame Recopnizer and Person Tithe Anmotator

CAS Consumers

[aod.. |[== J[2> |

[3¢] i Weriter CAS Carsumer

Quipuk Directorys Cripempiuimato_autput Browisa..

I @ n m

ritiakzed

For the File System Collection Reader, ensure that the Input Directory is set to %4Jl MA_HOVE
% exanpl es\ dat a°. The other parameters may be left blank. For the External CAS Writer

CAS Consumer, ensure that the Output Directory is set to %JI MA_HOVE% exanpl es\ dat a

\ processed.

After selecting each of the components and providing configuration settings, click the play
(forward arrow) button at the bottom of the screen to begin processing. A progress bar should

be displayed in the lower left corner. (Note that the progress bar will not begin to move until all
components have completed their initialization, which may take several seconds.) Once processing
has begun, the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes successfully,
you will be presented with a performance report.

Using the File menu, you can select Save CPE Descri pt or to create an .xml descriptor file that
defines the CPE you have constructed. Later, you can use Open CPE Descri pt or to restorethe
CPE Configurator to the saved state. Also, CPE descriptors can be used to run a CPE from a Java
program — see section Section 2.3, “Running a CPE from Y our Own Java Application” [52].

CPE Descriptors allow specifying operational parameters, such as error handling options, that are
not currently available for configuration through the CPE Configurator. For more information on

3Replace Y4l MA_HOVEYbwith the path to where you installed UIMA.

UIMA Version 2.10.2 CPE Developer's Guide 49

Using the CPE Configurator

manually creating a CPE Descriptor, see the UIMA References Chapter 3, Collection Processing
Engine Descriptor Reference.

The CPE configured above runs a simple name and title annotator on the sample data provided
with the UIMA SDK and stores the results using the XMI Writer CAS Consumer. To view the
results, start the External CAS Annotation Viewer by running the annot at i onVi ewer batch file
(annot ati onVi ewer . bat on Windows, annot at i onVi ewer . sh on Unix), which islocated in
the bi n directory of the UIMA SDK installation. Executing this batch file will display the window
shown here:

[# Annotation Viewer g @W

File Help

.111 Unstructured Information Management Architecture
II i

. An Apache Incubator Project.

Input Direckory: | Cikempiuimalzmi_oukput

TypeSystem or AE Descriptor File: | \analysis_engineiMamessndPersonTitles_TAE. xml

Ensure that the Input Directory is the same as the Output Directory specified for the XMI Writer
CAS Consumer in the CPE configured above (e.g., %JI MA_HOVE% exanpl es\ dat a\ pr ocessed)
and that the TAE Descriptor Fileis set to the Analysis Engine used in the CPE configured above
(e.g., exanpl es\ descri pt or s\ anal ysi s_engi ne\ NanesAndPer sonTi t | es_TAE. xnl).

Click the View button to display the Analyzed Documents window:

.,

ﬁ Analyzed Documents @

These are the Analyzed Documents.

Select viewer type and double-click file to apen.
E IBM_LifeSciences txt

Mew 1BM_Fellows. txt

[# SeminarChallengesinSpeechRecognition. txt
[# TrainablelnformationExtractionSystems txt
UIMASUrmmerSchool2003 tet

[# UIMA_Seminars. txt

E YWatsonConferenceRooms. txt

Results Display Format: (8) Java Viewer () HTML () %ML

Cloge

Double click on any document in the list to view the analyzed document. Double clicking the first
document, IBM_L ifeSciences.txt, will bring up the following window:

CPE Developer's Guide UIMA Version 2.10.2

Running the CPE Configurator from Eclipse

E X
[l 5. 7Li% sciences is one of the emerging markats ot the heart of IBMTs growdh strateqy,” said John M, (o [Elick In Text 1o See Annotstion Datad |
|| Thompson ., IBM senior vice president & group executive, Software. "This imvestment is the first of & 1 Mame [Jahn M, Thompson®) |
. rumber of steps we will be taking lo advance [BM's Iife sciences inflistees.” In his role a5 newly L tE";'i =104 |
sppoirded [BM Comporation vice chairman, efective September 1, Mr. Thompsan will be responsible for & end=110

|l integrating and accelersting IBM's efforts o axploi Ife sciences and other emerging growih areas

W IEM estimates the market for IT solutions for life sciences will skyiocket fiom $3.5 billion today 1o
If more than §9 bison by 2003, Driving demand is the expleaive growth in genomic, proteneic and

|| pharnacewtical resaarch For example, the Human Genome Database iz approssmately thiee

W terabytes of dats, or the eguivalert of 150 milon pages of mforration. The valurme of fe sciences
E data 15 doubling eviery S mordhs

I =401 af ks genmbic data is worlthless without the information téchnology thal can help scaendisis
manage and anakyze 1o unlock the pathways that will lead 10 néew cures for Ty of today's

|| drseazes,” sad De Caroline Kowat, wee pressdent of [BM's new Life Sciences unit. "IBM can help
W speed thes process by enahbling more efficient interpretation of data and shanng of knowledge. The
|| Potential for change based on innovation in life sciences is bigger than the change caused by the
|| #=gital circuit.”

|| Among the e sciences indtistives slready underway at IBM are

- DiscoveryLink™ — For the first time, reseanchers using this combination of innovative meddlewase and
E imegration senrsces can joan logether information from many sources to sohe complex medical

|f research problems. DiscoveryLink creates a Sartual database” that peimdts data to be accessed and
|| extracted fram multiple data sources used in research and development projects. ThisIT solution can ||

s
!DDﬂcumenLNm [+] Mame [+] ParsanTitle

| [selectan || Desslectan | .

This window shows the analysis results for the document. Clicking on any highlighted annotation
causes the details for that annotation to be displayed in the right-hand pane. Here the annotation
spanning “John M. Thompson” has been clicked.

Congratulations! Y ou have successfully configured a CPE, saved its descriptor, run the CPE, and
viewed the analysis results.

2.2.2.

Running the CPE Configurator from Eclipse

If you have followed theinstructionsin UIMA Overview & SDK Setup Chapter 3, Setting up the
Eclipse IDE to work with UIMA and imported the example Eclipse project, then you should already
have a Run configuration for the CPE Configurator tool (called Ul MA CPE GUI) configured to run
in the example project. Simply run that configuration to start the CPE Configurator.

If you haven't followed the Eclipse setup instructions and wish to run the CPE Configurator tool
from Eclipse, you will need to do the following. Asinstalled, this Eclipse launch configuration

is associated with the “uimaj-examples’ project. If you've not aready done so, you may wish

to import that project into your Eclipse workspace. It's located in %UIMA_HOM E%/docs/
examples. Doing thiswill supply the Eclipse launcher with al the classfilesit needs to run the
CPE configurator. If you don't do this, please manually add the JAR filesfor UIMA to the launch
configuration.

Also, you need to add any projects or JAR files for any UIMA components you will be running to
the launch class path.

Note: A simpler alternative may be to change the CPE launch configuration to be based
on your project. If you do that, it will pick up al the filesin your project's class path,

UIMA Version 2.10.2 CPE Developer's Guide 51

Running a CPE from Y our Own Java Application

which you should set up to include al the UIMA framework files. An easy way to do
thisisto specify in your project's properties build-path that the uimaj-examples project is
on the build path, because the uimaj-examples project is set up to include al the UIMA
framework classesin its classpath already.

Next, in the Eclipse menu select Run - Run..., which brings up the Run configuration screen.
In the Main tab, set the main classto or g. apache. ui ma. t ool s. cpm Cpnfr ane
In the arguments tab, add the following to the VM arguments:

- Xms128M - Xnx256M
- Dui ma. hone="C: \ Program Fi | es\ Apache\ ui ma"

(or wherever you installed the UIMA SDK)

Click the Run button to launch the CPE Configurator, and use it as previously described in this
section.

2.3. Running a CPE from Your Own Java
Application

The simplest way to run a CPE from a Java application is to first create a CPE descriptor as
described in the previous section. Then the CPE can be instantiated and run using the following
code:

/| parse CPE descriptor in file specified on comand |ine
CpeDescripti on cpeDesc = U MAFr amewor k. get XM_Par ser () .
par seCpeDescri pti on(new XM.I nput Sour ce(args[0]));

/linstantiate CPE
nCPE = Ul MAFr amewor k. pr oduceCol | ecti onProcessi ngEngi ne(cpeDesc) ;

//Create and register a Status Cal |l back Listener
NCPE. addSt at usCal | backLi st ener (new St at usCal | backLi stener | nmpl ());

/Il Start Processing
NCPE. process() ;

Thiswill start the CPE running in a separate thread.

Note: Theprocess() method for a CPE can only be called once. If you need to call it
again, you have to instantiate a new CPE, and call that new CPE's process method.

2.3.1.

Using Listeners

Updates of the CPM's progress, including any errors that occur, are sent to the callback handler
that isregistered by the call to addSt at usCal | backLi st ener, above. The callback handler is
aclass that implementsthe CPM's St at usCal | backLi st ener interface. It responds to events
by printing messages to the console. The source code is fairly straightforward and is not included
in this chapter — see the or g. apache. ui ma. exanpl es. cpe. Si npl eRUnCPE. j ava inthe
%I MA_HOME% exanpl es\ sr ¢ directory for the complete code.

52

CPE Developer's Guide UIMA Version 2.10.2

Developing Collection Processing Components

If you need more control over the information in the CPE descriptor, you can manually configure it
viaits API. See the Javadocs for package or g. apache. ui ma. col | ect i on for more details.

2.4. Developing Collection Processing Components

This section is an introduction to the process of developing Collection Readers, CAS Initializers,
and CAS Consumers. The code snippets refer to the classes that can be found in %J MA_HOVE%
\ exanpl es\ src example project.

In the following sections, classes you write to represent components need to be public and have
public, 0-argument constructors, so that they can be instantiated by the framework. (Although Java
classes in which you do not define any constructor will, by default, have a 0-argument constructor
that doesn't do anything, a class in which you have defined at |east one constructor does not get a
default O-argument constructor.)

2.4.1.

Developing Collection Readers

A Collection Reader is responsible for obtaining documents from the collection and returning each
document as a CAS. Like al UIMA components, a Collection Reader consists of two parts — the
code and an XML descriptor.

A simple example of a Collection Reader isthe “File System Collection Reader,” which
simply reads documents from files in a specified directory. The Java codeisin the class

or g. apache. ui ma. exanpl es. cpe. Fi | eSyst enCol | ecti onReader and the XML
descriptor is %J MA_HOVEY exanpl es/ src/ mai n/ descri ptors/col | ecti on_reader/
Fi | eSyst entCol | ecti onReader . xni .

2.4.1.1. Java Class for the Collection Reader

The Java class for a Collection Reader must implement the

or g. apache. ui ma. col | ecti on. Col | ecti onReader interface. Y ou may build your
Collection Reader from scratch and implement this interface, or you may extend the convenience
base classor g. apache. ui ma. col | ecti on. Col | ecti onReader _| npl Base .

The convenience base class provides default implementations for many of the methods defined in
the Col | ecti onReader interface, and provides abstract definitions for those methods that you
are required to implement in your new Collection Reader. Note that if you extend this base class,
you do not need to declare that your new Collection Reader implements the Col | ect i onReader
interface.

Tip: Eclipsetip —if you are using Eclipse, you can quickly create the

boiler plate code and stubs for all of the required methods by clickingFi | e

- New — O ass to bring up the “New Java Class’ dialogue, specifying

or g. apache. ui ma. col | ecti on. Col | ecti onReader _| npl Base as the Superclass,
and checking “ Inherited abstract methods’ in the section “Which method stubs would you
like to create?’, asin the screenshot below:

UIMA Version 2.10.2 CPE Developer's Guide 53

Developing Collection Readers

= Mew Java Class @
Java Class —
Create a new Java dass, (l. - ﬁ
Source folder: LEma e xamples/src
Package: erg. apache.uima exemples cpe I-ﬁrngge... |
[Jendesing type:

Hame: tewColecbonf eader

Modifiers: 3 gublic " defayt

(Jabsract []final
Supercless: orgy. apache.uima . colecton. CollectionReader_ImplBase [mﬁ:;:u; ;

merfaces: | (aos.]

Vihich method stubs would you e t ceate?
[Jipuiblic static void man{Strng(] args)
[[] constructors from superdass
[w] nhesited abstract mathads
Do you want to add comments as configured in the properfics of the current progect?
[l zenerate comments

) | frsn || conca |

For therest of this section we will assume that your new Collection Reader extends

the Col | ecti onReader _I npl Base class, and we will show examples from the

or g. apache. ui ma. exanpl es. cpe. Fi | eSyst enCol | ecti onReader . If you must inherit
from a different superclass, you must ensure that your Collection Reader implements the

Col | ect i onReader interface — see the Javadocsfor Col | ect i onReader for more details.

2.4.1.2. Required Methods in the Collection Reader class

The following abstract methods must be implemented:
initialize()

Theinitialize() methodiscalled by the framework when the Collection Reader is first
created. Col | ecti onReader _I npl Base actually provides a default implementation of this
method (i.e., it is not abstract), so you are not strictly required to implement this method. However,
atypical Collection Reader will implement this method to obtain parameter values and perform
various initialization steps.

In this method, the Collection Reader class can access the values of its configuration parameters
and perform other initialization logic. The example File System Collection Reader reads its
configuration parameters and then builds alist of filesin the specified input directory, as follows:

CPE Developer's Guide UIMA Version 2.10.2

Developing Collection Readers

public void initialize() throws ResourcelnitializationException {
File directory = new Fil e(
(String)get Confi gPar anet er Val ue(PARAM_| NPUTDI R)) ;
nEncodi ng = (String)get ConfigParanet er Val ue(PARAM_ENCODI NG) ;
mDocunent Text Xm TagName = (String) get Confi gPar anet er Val ue(PARAM XM.TAG) ;
nmLanguage = (String)get Confi gPar anet er Val ue(PARAM_LANGUAGE) ;
mCurrent| ndex = 0;

/lget list of files (not subdirectories) in the specified directory
nFiles = new Arraylist();
File[] files = directory.listFiles();
for (int i =0; i <files.length; i++) {

if (!files[i].isDirectory()) {

nFiles.add(files[i]);

}

}

Note: Thisisthe zero-argument version of theinitialize method. There is aso amethod on
the Collection Reader interface calledi ni ti al i ze(Resour ceSpeci fier, Map) but

it is not recommended that you override this method in your code. That method performs
internal initialization steps and then callsthe zero-argument i ni ti al i ze().

hasNext()

ThehasNext () method returns whether or not there are any documents remaining to be read from
the collection. The File System Collection Reader's hasNext () method isvery simple. It just
checksif there are any more files | eft to be read:

publ i ¢ bool ean hasNext () {
return nCurrentlndex < nFiles.size();

}

getNext(CAS)

The get Next () method reads the next document from the collection and populates a CAS. In the
simple case, this amounts to reading the file and calling the CAS'sset Docunent Text method.
The example File System Collection Reader is dightly more complex. It first checks for aCAS
Initializer. If the CPE includes a CAS Initializer, the CAS Initidizer is used to read the document,
andinitialize() the CAS. If the CPE does not include a CAS Initidizer, the File System
Collection Reader reads the document and sets the document text in the CAS.

The File System Collection Reader also stores additional metadata about the document

inthe CAS. In particular, it sets the document's language in the special built-in feature

structure ui ma. t cas. Docunent Annot ati on (see UIMA References Section 4.3,

“Built-in CAS Types’ for details about this built-in type) and creates an instance of

or g. apache. ui ma. exanpl es. Sour ceDocunent | nf or mat i on , which stores information
about the document's source location. This information may be useful to downstream components
such as CAS Consumers. Note that the type system descriptor for this type can be found in

or g. apache. ui ma. exanpl es. Sour ceDocunent | nf or mat i on. xn , which islocated in the
exanpl es/ sr c directory.

The getNext() method for the File System Collection Reader looks like this:

public void getNext(CAS aCAS) throws | OException, CollectionException {
JCas j cas;

UIMA Version 2.10.2 CPE Developer's Guide 55

Developing Collection Readers

try {
jcas = aCAS. getJCas();

} catch (CASException e) {
t hrow new Col | ecti onException(e);
}

/1 open input streamto file
File file = (File) nFiles.get(nCurrentl|ndex++);
Buf f eredl nput Stream fis =
new Buf f er edl nput St ream(new Fi | el nput Strean(file));
try {
byte[] contents = new byte[(int) file.length()];
fis.read(contents);
String text;
if (nEncoding !'= null) {
text = new String(contents, nmEncoding);
} else {
text = new String(contents);

/1 put docunent in CAS
j cas. set Docunent Text (t ext);
} finally {
if (fis !=null)
fis.close();

}

/1 set language if it was explicitly specified
/las a configuration paraneter
i f (nLanguage != null) {
((Docunent Annot ati on) jcas. get Docunent Annot ati onFs()).
set Language(nLanguage) ;

/1 Al'so store |ocation of source docunment in CAS.
/1 This information is critical if CAS Consuners wl|
/1 need to know where the original docunent contents
/'l are | ocated.
/'l For exanple, the Senmantic Search CAS | ndexer
/'l wites this information into the search index that
/1 it creates, which allows applications that use the
/'l search index to |locate the docunents that satisfy
//their semantic queries.
Sour ceDocunent | nf ormati on srcDocl nfo =
new Sour ceDocunent | nf ormati on(j cas);
srcDocl nfo. set Uri (
file.getAbsoluteFile().toURL().toString());
srcDocl nfo. set Of f set | nSour ce(0);
srcDocl nfo. set Docunent Si ze((int) file.length());
srcDocl nf 0. set Last Segnent (
mCur rent | ndex == nFil es. size());
srcDocl nf 0. addTol ndexes() ;

The Collection Reader can create additional annotationsin the CAS at this point, in the same way
that annotators create annotations.

getProgress|()

The Collection Reader is responsible for returning progress information; that is, how much of
the collection has been read thus far and how much remains to be read. The framework defines
progress very generaly; the Collection Reader simply returns an array of Pr ogr ess objects, where

CPE Developer's Guide UIMA Version 2.10.2

Developing Collection Readers

each object contains three fields — the amount already completed, the total amount (if known), and
aunit (e.g. entities (documents), bytes, or files). The method returns an array so that the Collection
Reader can report progress in multiple different units, if that information is available. The File
System Collection Reader'sget Pr ogr ess() method looks like this:

public Progress[] getProgress() {
return new Progress[]{
new Progressl npl (nCurrent | ndex, nFil es. si ze(), Progress. ENTI TI ES) };
}

In this particular example, the total number of filesin the collection is known, but the total size
of the callection is not known. As such, aPr ogr essl npl object for Pr ogr ess. ENTI TI ES is
returned, but a Pr ogr essl npl object for Pr ogr ess. BYTES isnot.

close()

The close method is called when the Collection Reader is no longer needed. The Collection Reader
should then release any resources it may be holding. The FileSystemCollectionReader does not
hold resources and so has an empty implementation of this method:

public void close() throws | OException { }

Optional Methods

The following methods may be implemented:
reconfigure()

This method is called if the Collection Reader's configuration parameters change.
typeSysteminit()

If you are only setting the document text in the CAS, or if you are using the JCas (recommended,
asin the current example, you do not have to implement this method. If you are directly using the
CAS AP, thismethod is used in the same way asit is used for an annotator — see Section 1.5.1,

“ Annotator Methods’ for more information.

Threading considerations

Coallection readers do not have to be thread safe; they are run with a single thread per instance, and
only one instance per instance of the Collection Processing Manager (CPM) is made.

XML Descriptor for a Collection Reader

Y ou can use the Component Description Editor to create and / or edit the File System Collection
Reader's descriptor. Here isits descriptor (abbreviated somewhat), which is very similar to an
Analysis Engine descriptor:

<col | ecti onReader Descri pti on
xm ns="http://ui ma. apache. or g/ resour ceSpeci fier">

<f ramewor k|l npl ement at i on>or g. apache. ui na. j ava</ f r anewor kl npl enent at i on>
<i npl ement at i onNane>

or g. apache. ui ma. exanpl es. cpe. Fi | eSyst entCol | ect i onReader
</i npl ement at i onNane>
<pr ocessi ngResour ceMet aDat a>

<nane>Fi | e System Col | ecti on Reader </ nane>

<descri ption>Reads files fromthe fil esystem </description>

UIMA Version 2.10.2 CPE Developer's Guide 57

Developing CAS Initializers

<ver si on>1. 0</ ver si on>
<vendor >The Apache Software Foundati on</vendor >
<confi gur ati onPar anet er s>
<configurationPar aneter >
<nane>| nput Di r ect or y</ nane>
<description>Directory containing input files</description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>t r ue</ nandat or y>
</ confi gur ati onPar anet er >
<confi gur ati onPar anet er >
<nane>Encodi ng</ nane>
<descri pti on>Character encodi ng for the docunents.</description>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ nandat or y>
</ confi gurati onPar anet er >
<confi gur ati onPar anet er >
<nanme>Language</ nane>
<descri ption>l SO | anguage code for the docunents</description>
<type>String</type>
<mul ti Val ued>f al se</ mul ti Val ued>
<nmandat or y>f al se</ nandat or y>
</ confi gurati onPar anet er >
</ confi gurati onPar anet er s>
<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<nane>| nput Di r ect or y</ nane>
<val ue>
<string>C:./Program Fi | es/ apache/ ui ma/ exanpl es/ dat a</ stri ng>
</val ue>
</ naneVal uePai r >
</ confi gurati onParanet er Setti ngs>

<I-- Type System of CASes returned by this Collection Reader -->

<t ypeSyst enDescri pti on>
<i nport s>
<i nport nane="org. apache. ui ma. exanpl es. Sour ceDocurent | nf or mati on"/ >
</i nport s>
</ typeSyst enDescri pti on>

<capabilities>
<capabi lity>
<i nput s/ >
<out put s>
<type al | Annot at or Feat ures="true" >
or g. apache. ui ma. exanpl es. Sour ceDocurnent | nf or mat i on
</type>
</ out put s>
</ capability>
</ capabilities>
<oper ati onal Properti es>
<nodi fi esCas>t rue</ nodi fi esCas>
<mul ti pl eDepl oyrment Al | owed>f al se</ ul ti pl eDepl oynent Al | owed>
<out put sNewCASes>t r ue</ out put sNewCASes>
</ oper ati onal Properti es>
</ processi ngResour ceMet aDat a>
</ col | ecti onReader Descri pti on>

2.4.2. Developing CAS Initializers

Note: CASInitializers are now deprecated (as of version 2.1). For complex initialization,
please use instead the capabilities of creating additional Subjects of Analysis (see
Chapter 6, Multiple CAS Views of an Artifact).

58

CPE Developer's Guide UIMA Version 2.10.2

Developing CAS Consumers

In UIMA 1.x, the CAS Initializer component was intended to be used as a plug-in to the Collection
Reader for when the task of populating the CAS from araw document is complex and might be
reusable with other data collections.

A CAS Initializer Java class must implement the interface

or g. apache. ui ma. col | ection. Caslnitializer,andwill also generaly extend from the
convenience base classor g. apache. ui na. col | ection. Caslnitializer_Inpl Base. A
CAS nitializer also must have an XML descriptor, which has the exact same form as a Collection
Reader Descriptor except that the outer tagis<casl ni ti al i zer Descri pti on>.

CASinitializers have optional i ni ti al i ze(),reconfigure(),andtypeSystem nit()
methods, which perform the same functions as they do for Collection Readers. The only required
method for a CAS Initializer isi ni ti al i zeCas(Obj ect, CAS). Thismethod takes the raw
document (for example, an | nput St r eamobject from which the document can be read) and a
CAS, and populates the CAS from the document.

2.4.3.

Developing CAS Consumers

Note: Inversion 2, there is no difference in capability between CAS Consumers and
ordinary Analysis Engines, except for the default setting of the XML parameters for

mul ti pl eDepl oyment Al | owed and nodi f i esCas. We recommend for future work that
users implement and use Analysis Engine components instead of CAS Consumers.

A CAS Consumer receives each CAS after it has been analyzed by the Analysis Engine. CAS
Consumers typically do not update the CAS; they typically extract datafrom the CAS and persist
selected information to aggregate data structures such as search engine indexes or databases.

A CAS Consumer Java class must implement the interface

or g. apache. ui ma. col | ecti on. CasConsuner , and will also generally extend from the
convenience base classor g. apache. ui ma. col | ecti on. CasConsuner _| npl Base. A CAS
Consumer also must have an XML descriptor, which has the exact same form as a Collection
Reader Descriptor except that the outer tag is <casConsuner Descri pti on>.

CAS Consumers have optional i ni ti ali ze(),reconfigure(),andtypeSystenm nit()
methods, which perform the same functions as they do for Collection Readers and CAS Initializers.
The only required method for a CAS Consumer is pr ocessCas(CAS) , which iswherethe CAS
Consumer does the bulk of itswork (i.e., consume the CAS).

The CasConsuner interface (aswell asthe version 2 Analysis Engine interface) additionally
defines batch and collection level processing methods. The CAS Consumer or Analysis Engine can
implement the bat chPr ocessConpl et e() method to perform processing that should occur at the
end of each batch of CASes. Similarly, the CAS Consumer or Analysis Engine can implement the
col | ecti onProcessConpl et e() method to perform any collection level processing at the end
of the collection.

A very simple example of a CAS Consumer, which writes an XML representation

of the CASto afile, isthe XMI Writer CAS Consumer. The Javacodeisin the class

or g. apache. ui ma. exanpl es. cpe. Xm Wit er CasConsumer and the descriptor isin

%J MA_HOVEY4 exanpl es/ descri ptors/ cas_consumner/ Xm Wit er CasConsuner. xm .

2.4.3.1. Required Methods for a CAS Consumer

When extending the convenience class
or g. apache. ui ma. col | ecti on. CasConsuner _| npl Base, the following abstract methods
must be implemented:

UIMA Version 2.10.2 CPE Developer's Guide 59

Developing CAS Consumers

initialize()

Theinitialize() methodiscalled by the framework when the CAS Consumer isfirst created.
CasConsuner _| npl Base actually provides a default implementation of this method (i.e., it is

not abstract), so you are not strictly required to implement this method. However, atypical CAS
Consumer will implement this method to obtain parameter values and perform various initialization
steps.

In this method, the CAS Consumer can access the values of its configuration parameters and
perform other initialization logic. The example XMI Writer CAS Consumer reads its configuration
parameters and sets up the output directory:

public void initialize() throws Resourcelnitializati onException {
nmDocNum = 0;
mout putDir = new File((String) getConfigParaneterVal ue(PARAM OUTPUTDI R)) ;
if (!mOutputDir.exists()) {
nOut put Di r. nkdi rs();
}
}

processCas()

TheprocessCas() method iswherethe CAS Consumer does most of its work. In our example,
the XMI Writer CAS Consumer obtains an iterator over the document metadatain the CAS (in

the SourceDocumentl nformation feature structure, which is created by the File System Collection
Reader) and extracts the URI for the current document. From this the output filename is constructed
in the output directory and a subroutine (wr i t eXmi) is called to generate the output file. The

wri t eXmi subroutine usesthe Xni CasSeri al i zer class provided with the UIMA SDK to
serialize the CAS to the output file (see the example source code for details).

public void processCas(CAS aCAS) throws ResourceProcessException {
String nodel Fil eNane = nul |;

JCas j cas;
try {
jcas = aCAS. getJCas();
} catch (CASException e) {
t hr ow new Resour ceProcessException(e);

}

/1 retreive the filenane of the input file fromthe CAS
FSlterator it = jcas
. get Annot at i onl ndex(Sour ceDocunent | nf or mat i on. t ype)
.iterator();
File outFile = null;
if (it.hasNext()) {
Sour ceDocunent | nformation filelLoc =
(Sour ceDocunent I nformation) it.next();
File inFile;
try {
inFile = new File(new URL(fil eLoc.getUri()).getPath());
String outFileNanme = inFil e.getNanme();
if (fileLoc.getOffsetlnSource() > 0) {
outFileName += ("_" + filelLoc.getOfsetlnSource());

out FileNane += ".xm";

outFile = new Fil e(nQutputDir, outFileNane);

nodel Fi | eName = nQut put Di r. get Absol utePath() +
"/" + inFile.getNane() + ".ecore";

CPE Developer's Guide UIMA Version 2.10.2

Deploying a CPE

} catch (MalfornedURLException el) {
/1 invalid URL, use default processing bel ow

}

if (outFile == null) {
outFile = new File(nQutputDir, "doc" + nmDocNumt+);

}
/1 serialize XCAS and wite to output file
try {

writeXm (jcas.getCas(), outFile, nodel FileNane);
} catch (1 CException e) {

t hr ow new Resour ceProcessException(e);
} catch (SAXException e) {

t hr ow new Resour ceProcessException(e);

}
}

Optional Methods
The following methods are optional in a CAS Consumer, though they are often used.
batchProcessComplete()

The framework calls the batchProcessComplete() method at the end of each batch of CASes. This
givesthe CAS Consumer or Analysis Engine an opportunity to perform any batch level processing.
Our simple XMI Writer CAS Consumer does not perform any batch level processing, so this
method is empty. Batch sizeis set in the Collection Processing Engine descriptor.

collectionProcessComplete()

The framework calls the collectionProcessComplete() method at the end of the collection (i.e.,
when all objects in the collection have been processed). At this point in time, no CASis passed
in as a parameter. This gives the CAS Consumer or Analysis Engine an opportunity to perform
collection processing over the entire set of objectsin the collection. Our simple XMI Writer CAS
Consumer does not perform any collection level processing, so this method is empty.

2.5. Deploying a CPE

The CPM provides anumber of service and deployment options that cover instantiation and
execution of CPEs, error recovery, and local and distributed deployment of the CPE components.
The behavior of the CPM (and correspondingly, the CPE) is controlled by various options and
parameters set in the CPE descriptor. The current version of the CPE Configurator tool, however,
supports only default error handling and deployment options. To change these options, you must
manually edit the CPE descriptor.

Eventually the CPE Configurator tool will support configuring these options and a detailed tutorial
for these settings will be provided. In the meantime, we provide only a high-level, conceptual
overview of these advanced featuresin the rest of this chapter, and refer the advanced user to
UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details on
setting these options in the CPE Descriptor.

Figure 2.2, “CPE Instantiation” [62] shows alogical view of how an application uses the

UIMA framework to instantiate a CPE from a CPE descriptor. The CPE descriptor identifies the
CPE components (referencing their corresponding descriptors) and specifies the various options for
configuring the CPM and deploying the CPE components.

UIMA Version 2.10.2 CPE Developer's Guide 61

Deploying a CPE

Results
A
P Collection Analysis
P Reader Engines
L
|
c — CPE
A Descriptor
T RN
| CPE
o Components
N
Legend
Developer APPLICATION

Figure 2.2. CPE Instantiation

There are three deployment modes for CAS Processors (Analysis Engines and CAS Consumers) in
aCPE:

1. Integrated (runsin the same Javainstance as the CPM)
2. Managed (runsin a separate process on the same machine), and
3. Non-managed (runsin a separate process, perhaps on a different machine).

An integrated CAS Processor runsin the same JVM as the CPE. A managed CAS Processor runs
in a separate process from the CPE, but still on the same computer. The CPE controls startup,
shutdown, and recovery of amanaged CAS Processor. A non-managed CAS Processor runs as a
service and may be on the same computer as the CPE or on a remote computer. A non-managed
CAS Processor serviceis started and managed independently from the CPE.

For both managed and non-managed CAS Processors, the CAS must be transmitted between
separate processes and possibly between separate computers. This is accomplished using Vinci,
a communication protocol used by the CPM and which is provided as a part of Apache UIMA.
Vinci handles service naming and location and data transport (see Section 3.6.2, “ Deploying as
aVinci Service” for more information). Service naming and location are provided by a Vinci
Naming Service, or VNS. For managed CAS Processors, the CPE uses its own internal VNS. For
non-managed CAS Processors, a separate VNS must be running.

Note: The UIMA SDK also supports using unmanaged remote services via the web-
standard SOAP communications protocol (see Section 3.6.1, “Deploying as SOAP
Service”. This approach is based on a proxy implementation, where the proxy is essentially
running in an integrated mode. To use this approach with the CPM, use the Integrated
mode, with the component being an Aggregate which, in turn, connects to a remote
service.

The CPE Configurator tool currently only supports constructing CPESs that deploy CAS Processors
in integrated mode. To deploy CAS Processors in any other mode, the CPE descriptor must be

62

CPE Developer's Guide UIMA Version 2.10.2

Deploying Managed CAS Processors

edited by hand (better tooling may be provided later). Details on the CPE descriptor and the
required settings for various CAS Processor deployment modes can be found in UIMA References
Chapter 3, Collection Processing Engine Descriptor Reference . In the following sections we
merely summarize the various CAS Processor deployment options.

2.5.1. Deploying Managed CAS Processors

Managed CAS Processor deployment is shown in Figure 2.3, “ CPE with Managed CAS
Processors’ [63]. A managed CAS Processor is deployed by the CPE asaVinci service. The

CPE manages the lifecycle of the CAS Processor including service launch, restart on failures,

and service shutdown. A managed CAS Processor runs on the same machine as the CPE, but in

a separate process. This provides the necessary fault isolation for the CPE to protect it from non-
robust CAS Processors. A fatal failure of amanaged CA S Processor does not threaten the stability

of the CPE.
manage \

Vinci service interface

\ Computer j

Figure 2.3. CPE with Managed CAS Processors

The CPE communicates with managed CAS Processors using the Vinci communication protocol.

A CAS Processor is launched asaVinci service and its pr ocess() method isinvoked remotely
viaaVinci command. The CPE usesits own internal VNS to support managed CAS processors.
The VNS, by default, listens on port 9005. If this port is not available, the VNS will increment its
listen port until it finds one that is available. All managed CAS Processors are internally configured
to “talk” to the CPE managed VNS. Thisinternal VNS is transparent to the end user launching the
CPE.

To deploy amanaged CAS Processor, the CPE deployer must change the CPE descriptor. The
following is a section from the CPE descriptor that shows an example configuration specifying a
managed CAS Processor.

<casProcessor deploynent="1ocal" nane="Meeting Detector TAE">
<descri pt or >
<i ncl ude href="depl oy/vi nci/ Depl oy_Meet i ngDet ect or TAE. xm "/ >
</ descri pt or >
<runl nSepar at ePr ocess>
<exec dir="." executabl e="java">
<env key="CLASSPATH'

UIMA Version 2.10.2 CPE Developer's Guide 63

Deploying Non-managed CAS Processors

val ue="src;
C./ Program Fi | es/ apache/ ui ma/|i b/ ui ma-core.jar;
C:./ Program Fi | es/ apache/ ui ma/|i b/ ui ma-cpe.jar;
C./ Program Fi | es/ apache/ ui ma/ | i b/ ui ma- exanpl es. j ar;
C. / Program Fi | es/ apache/ ui na/ | i b/ ui ma- adapt er-vinci.jar;
C./ Program Fi |l es/ apache/uinma/lib/jVinci.jar"/>
<ar g>- DLOG=C: / Tenp/ servi ce. | og</ ar g>
<ar g>or g. apache. ui ma. ref erence_i npl . col | ecti on.
servi ce. vi nci . Vi nci Anal ysi sengi ner Servi ce_i npl </ ar g>
<ar g>${descriptor}</arg>
</ exec>
</ runl nSepar at ePr ocess>
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRateThreshol d action="term nate" val ue="1/100"/>
<maxConsecuti veRestarts action="term nate" val ue="3"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/>
</ casProcessor >

See UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details
and required settings.

2.5.2. Deploying Non-managed CAS Processors

Non-managed CAS Processor deployment is shown in Figure 2.4, “ CPE with non-managed CAS
Processors’ [64]. In non-managed mode, the CPE supports connectivity to CAS Processors
running on local or remote computers using Vinci. Non-managed processors are different from
managed processors in two aspects:

1. Non-managed processors are neither started nor stopped by the CPE.

2. Non-managed processors use an independent VNS, also neither started nor stopped by the
CPE.

Computer

I cas
Processor

CAS I T
Processor

Computer

}
i
'
I:‘
'. CcAS
Processor

interface

Vinci service |:| Computer

Figure 2.4. CPE with non-managed CAS Processors

64

CPE Developer's Guide UIMA Version 2.10.2

Deploying Integrated CAS Processors

While non-managed CAS Processors provide the same level of fault isolation and robustness as
managed CAS Processors, error recovery support for non-managed CAS Processors is much more
limited. In particular, the CPE cannot restart a non-managed CAS Processor after an error.

Non-managed CA S Processors al so require a separate Vinci Naming Service running on the
network. This VNS must be manually started and monitored by the end user or application.
Instructions for running a VNS can be found in Section 3.6.5.1, “ Starting VNS”.

To deploy anon-managed CA S Processor, the CPE deployer must change the CPE descriptor. The
following is a section from the CPE descriptor that shows an example configuration for the non-
managed CAS Processor.

<casProcessor depl oynent="renote" nanme="Meeting Detector TAE"'>
<descri pt or >
<i nclude href=
"descri ptors/vinci Servi ce/ Meeti ngDet ect or Vi nci Servi ce. xm "/ >
</ descri pt or >
<depl oyment Par anet er s/ >
<filter/>
<error Handl i ng>
<errorRateThreshol d acti on="term nate" val ue="1/100"/>
<maxConsecuti veRestarts action="term nate" val ue="3"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/>
</ casProcessor >

See UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details
and required settings.

2.5.3.

Deploying Integrated CAS Processors

Integrated CAS Processors are shown in Figure 2.5, “ CPE with integrated CAS

Processor” [66]. Here the CAS Processors run in the same JVM asthe CPE, just like

the Collection Reader and CAS Initializer. This deployment method resultsin minimal CAS
communication and transport overhead as the CAS is shared in the same process space of the
JVM. However, a CPE running with al integrated CAS Processorsis limited in scalability by

the capability of the single computer on which the CPE is running. Thereis also a stability risk
associated with integrated processors because a poorly written CAS Processor can cause the VM,
and hence the entire CPE, to abort.

UIMA Version 2.10.2 CPE Developer's Guide 65

Collection Processing Examples

“.. SN

CAS
Processor

\ W
Computer /

Figure 2.5. CPE with integrated CAS Processor

The following is a section from a CPE descriptor that shows an example configuration for the
integrated CA S Processor.

<casProcessor depl oynent ="i ntegrated” name="“Meeting Detector TAE">
<descri pt or >
<include href="descriptors/tutorial/ex4/ MeetingDetector TAE. xm "/>
</ descri pt or >
<depl oyment Par anet er s/ >
<filter/>
<errorHandl i ng>
<errorRateThreshol d acti on="term nate" val ue="100/1000"/ >
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<ti meout max="100000"/>
</ error Handl i ng>
<checkpoi nt bat ch="10000"/>
</ casProcessor>

See UIMA References Chapter 3, Collection Processing Engine Descriptor Reference for details
and required settings.

2.6. Collection Processing Examples

The UIMA SDK includes a set of examplesillustrating the three modes of deployment,
integrated, managed, and non-managed. These arein the/ exanpl es/ descri pt or s/

col | ecti on_processi ng_engi ne directory. There are three CPE descriptors that run an
example annotator (the Meeting Finder) in these modes.

To run either the integrated or managed examples, use the r unCPE script in the /bin directory of
the UIMA installation, passing the appropriate CPE descriptor as an argument, or if you're using
Eclipse and have the ui maj - exanpl es project in your workspace, you can use the Eclipse Menu

- Run - Run... - and then pick the launch configuration “UIMA Run CPE".

Note: Ther unCPE script must be run from the %J MA_HOVE% exanpl es directory,
because the example CPE descriptors use relative path names that are resolved relative to
thisworking directory. For instance,

66 CPE Developer's Guide UIMA Version 2.10.2

Collection Processing Examples

runCPE
descriptors\collection_processing_engine\M eetingFinderCPE_|I ntegrated.xml

To run the non-managed example, there are some additional steps.

1. Start aVNS service by running the st ar t VNS script in the/ bi n directory, or using the
Eclipse launcher “UIMA Start VNS'.

2. Deploy the Meeting Detector Analysis Engine asa Vinci service, by running the
start Vi nci Servi ce scriptinthe/ bi n directory or using the Eclipse launcher for
this, and passing it the location of the descriptor to deploy, in this case %J MA_HOVE%
exanpl es/ depl oy/ vi nci / Depl oy_Meet i ngDet ect or TAE. xn , or if you're using
Eclipse and have the ui maj - exanpl es project in your workspace, you can use the Eclipse

Menu - Run - Run... — and then pick the launch configuration “UIMA Start Vinci
Service’.

3. Now, run the runCPE script (or if in Eclipse, run the launch configuration “UIMA
Run CPE"), passing it the CPE for the non-managed version (%Jl MA_ HOVE
% exanpl es/ descri ptors/col |l ection_processi ng_engi ne/
Meet i ngFi nder CPE_NonManaged. xm).

This assumes that the Vinci Naming Service, the runCPE application, and the

Meet i ngDet ect or TAE service are al running on the same machine. Most of the scripts that need
information about VNS will look for values to use in environment variables VNS HOST and
VNS _PORT; these default to “localhost” and “9000”. Y ou may set these to appropriate values
before running the scripts, as needed; you can aso pass the name of the VNS host as the second
argument to the startVinciService script.

Alternatively, you can edit the scripts and/or the XML files to specify alternatives

for the VNS _HOST and VNS _PORT. For instance, if ther unCPE application is

running on a different machine from the Vinci Naming Service, you can edit the

Meet i ngFi nder CPE_NonManaged. xnl and change the vnsHost parameter: <par anet er
name="vnsHost" val ue="I| ocal host" type="string"/>to specify the VNS host instead
of “localhost”.

UIMA Version 2.10.2 CPE Developer's Guide 67

Chapter 3. Application Developer's Guide

This chapter describes how to develop an application using the Unstructured Information
Management Architecture (UIMA). The term application describes a program that provides end-
user functionality. A UIMA application incorporates one or more UIMA components such as
Analysis Engines, Collection Processing Engines, a Search Engine, and/or a Document Store and
adds application-specific logic and user interfaces.

3.1. The UIMAFramework Class

An application developer's starting point for accessing UIMA framework functionality isthe

or g. apache. ui ma. U MAFr amewor k class. The following is a short introduction to some
important methods on this class. Several of these methods are used in examplesin the rest of this
chapter. For more details, see the Javadocs (in the docs/api directory of the UIMA SDK).

* UIMAFramework.getXMLParser(): Returns an instance of the UIMA XML Parser class,
which then can be used to parse the various types of UIMA component descriptors.
Examples of this can be found in the remainder of this chapter.

* UIMAFramework.produceX X X (ResourceSpecifier): There are various produce methods
that are used to create different types of UIMA components from their descriptors. The
argument type, ResourceSpecifier, is the base interface that subsumes all types of component
descriptorsin UIMA. Y ou can get a ResourceSpecifier from the XML Parser. Examples of
produce methods are:

¢ produceAnalysisEngine

¢ produceCasConsumer
 produceCaslnitializer

¢ produceCollectionProcessingEngine

 produceCollectionReader
There are other variations of each of these methods that take additional, optional arguments.
See the Javadocs for details.

» UIMAFramework.getL ogger(<optional-logger-name>): Gets areference to the UIMA
Logger, to which you can write log messages. If no logger name is passed, the name of the
returned logger instance is “ org.apache.uima’.

* UIMAFramework.getVersionString(): Gets the number of the UIMA version you are using.

* UIMAFramework.newDefaultResourceManager(): Gets an instance of the UIMA
ResourceManager. The key method on ResourceM anager is setDataPath, which allows you
to specify the location where UIMA components will go to look for their external resources.
Once you've obtained and initialized a ResourceM anager, you can passit to any of the
produceX XX methods.

3.2.

Using Analysis Engines

This section describes how to add analysis capability to your application by using Analysis Engines
developed using the UIMA SDK. An Analysis Engine (AE) is a component that analyzes artifacts
(e.g. documents) and infers information about them.

Application Developer's Guide 69

Instantiating an Analysis Engine

An Analysis Engine consists of two parts - Java classes (typically packaged as one or more

JAR files) and AE descriptors (one or more XML files). Y ou must put the Java classesin your
application's class path, but thereafter you will not need to directly interact with them. The UIMA
framework insulates you from this by providing a standard AnalysisEngine interfaces.

Theterm Text Analysis Engine (TAE) is sometimes used to describe an Analysis Engine that
analyzes atext document. In the UIMA SDK v1.x, there was a TextAnaysisEngine interface that
was commonly used. However, as of the UIMA SDK v2.0, thisinterface has been deprecated and
all applications should switch to using the standard AnalysisEngine interface.

The AE descriptor XML files contain the configuration settings for the Analysis Engine aswell as
adescription of the AE's input and output requirements. Y ou may need to edit these filesin order
to configure the AE appropriately for your application - the supplier of the AE may have provided
documentation (or commentsin the XML descriptor itself) about how to do this.

3.2.1. Instantiating an Analysis Engine

The following code shows how to instantiate an AE from its XML descriptor:

/1 get Resource Specifier fromXM file
XMLl nput Source in = new XM.I nput Sour ce(" MyDescriptor.xm");
Resour ceSpeci fier specifier =
Ul MAFr amewor k. get XM_Par ser () . par seResour ceSpeci fier(in);

/lcreate AE here
Anal ysi sEngi ne ae =
U MAFr amewor k. pr oduceAnal ysi sengi ne(specifier);

Thefirst two lines parse the XML descriptor (for AEs with multiple descriptor files, one of them
isthe “main” descriptor - the AE documentation should indicate which it is). The result of the
parseisaResour ceSpeci fi er object. Thethird line of code invokes a static factory method
Ul MAFr amewor k. pr oduceAnal ysi sEngi ne, which takes the specifier and instantiates an
Anal ysi sEngi ne object.

There is one caveat to using this approach - the Analysis Engine instance that you create will
not support multiple threads running through it concurrently. If you need to support this, see
Section 3.2.5, “Multi-threaded Applications’ [72].

3.2.2. Analyzing Text Documents

There are two ways to use the AE interface to analyze documents. Y ou can either use the JCas
interface, which is described in detail in UIMA References Chapter 5, JCas Reference or you can
directly use the CASinterface, which is described in detail in UIMA References Chapter 4, CAS
Reference. Besides text documents, other kinds of artifacts can also be analyzed; see Chapter 5,
Annotations, Artifacts, and Sofas for more information.

The basic structure of your application will look similar in both cases:

Using the JCas

/lcreate a JCas, given an Anal ysis Engi ne (ae)
JCas jcas = ae. newJCas();

/lanal yze a document
j cas. set Document Text (doclt ext);

70 Application Developer's Guide UIMA Version 2.10.2

Analyzing Non-Text Artifacts

ae. process(jcas);
doSonet hi ngW t hResul t s(j cas);
jcas.reset();

/l anal yze anot her docunent
j cas. set Docunent Text (doc2t ext);
ae. process(j cas);
doSonet hi ngW t hResul t s(j cas) ;
jcas.reset();

h }/done
ae. destroy();

Using the CAS

/lcreate a CAS
CAS aCasVi ew = ae. newCAS() ;

/lanal yze a docunent

aCasVi ew. set Docunent Text (doc1t ext);
ae. process(aCasVi ew) ;

doSonet hi ngW t hResul t s(aCasVi ew) ;
aCasVi ew. reset () ;

/ anal yze anot her docunent

aCasVi ew. set Docurment Text (doc2t ext) ;
ae. process(aCasVi ew) ;

doSonet hi ngW t hResul t s(aCasVi ew) ;
aCasVi ew. reset () ;

/ / done

ae. destroy();

First, you create the CAS or JCas that you will use. Then, you repeat the following four steps for
each document:

1. Put the document text into the CAS or JCas.

2. Call the AE's process method, passing the CAS or JCas as an argument

3. Do something with the results that the AE has added to the CAS or JCas

4, Cdl the CAS'sor JCas's reset() method to prepare for another analysis

3.2.3. Analyzing Non-Text Artifacts

Analyzing non-text artifactsis similar to analyzing text documents. The main difference is that
instead of using the set Docunent Text method, you need to use the Sofa APIs to set the artifact
into the CAS. See Chapter 5, Annotations, Artifacts, and Sofas for details.

3.2.4. Accessing Analysis Results

Annotators (and applications) access the results of analysisviathe CAS, using the CAS or JCas
interfaces. These results are accessed using the CAS Indexes. There is one built-in index for
instances of the built-in type ui ma. t cas. Annot at i on that can be used to retrieve instances of
Annot at i on or any subtype of Annotation. Y ou can also define additional indexes over other

types.

Indexes provide a method to obtain an iterators over their contents; the iterator returns the matching
elements one at time from the CAS.

UIMA Version 2.10.2 Application Developer's Guide 71

Multi-threaded Applications

3.2.4.1. Accessing Analysis Results using the JCas

» Section 1.3.3, “Reading the Results of Previous Annotators”
* UIMA References Chapter 5, JCas Reference

» The Javadocsfor or g. apache. ui ma. j cas. JCas.

3.2.4.2. Accessing Analysis Results using the CAS

* UIMA References Chapter 4, CAS Reference

» The source codefor or g. apache. ui ma. exanpl es. Pri nt Annot at i ons, whichisin
exanpl es\ src.

e The Javadocsfor the or g. apache. ui ma. cas and or g. apache. ui ma. cas. t ext
packages.

3.2.5. Multi-threaded Applications

Y ou may be running on a multi-core system, and want to run multiple CASes at once through
your pipeline. To support this, UIMA provides multiple approaches. The most flexible and
recommended way to do thisisto use the features of UIMA-AS, which not only allows scale-up
(multiple threads in one CPU), but also supports scale-out (exploiting a cluster of machines).

This section describes the simplest way to use an AE in a multi-threaded environment. First, note
that most Analysis Engines are written with the assumption that only one thread will be accessing
it at any onetime; that is, Analysis Engines are not written to be thread safe. The writers of these
assume that multiple instances of the Annotator Engine class will be instantiated as needed to
support multiple threads.

If your application has multiple threads that might invoke an Analysis Engine, to insure that
only one thread at atime uses a CAS and runs in the pipeline, you can use the Java synchronized
keyword to ensure that only one thread is using an AE at any given time. For example:

public class My/Application {
private Anal ysi sengi ne mAnal ysi SEngi ne;
private CAS nCAS;

public MyApplication() {
/1 get Resource Specifier fromXM file
XMLI nput Source in = new XM.I nput Sour ce(" MyDescriptor.xm");
Resour ceSpeci fier specifier =
U MAFr anewor k. get XM_Par ser () . par seResour ceSpeci fier (in);

/lcreate Anal ysis Engine here
mAnal ysi sEngi ne = Ul MAFr amewor k. pr oduceAnal ysi sengi ne(specifier);
nCAS = mAnal ysi sEngi ne. newCAS() ;

}

/1l Assune some other part of your mnulti-threaded application could
/1 call *“analyzeDocunment” on different threads, asynchronously

72 Application Developer's Guide UIMA Version 2.10.2

Multi-threaded Applications

publ i c synchroni zed voi d anal yzeDocunent (Stri ng aDoc) {
/lanal yze a document
nCAS. set Docunent Text (abDoc) ;
mAnal ysi sEngi ne. process();
doSonet hi ngW t hResul t s(nTCAS) ;
nCAS. reset () ;

Without the synchronized keyword, this application would not be thread-safe. If multiple threads
called the analyzeDocument method simultaneously, they would both use the same CAS and
clobber each others' results. The synchronized keyword ensures that no more than one thread is
executing this method at any given time. For more information on thread synchronization in Java,
see http://docs.oracle.com/javase/tutorial/essential/concurrency/ .

The synchronized keyword ensures thread-safety, but does not alow you to process more than one
document at atime. If you need to process multiple documents simultaneously (for example, to
make use of a multiprocessor machine), you'll need to use more than one CAS instance.

Because CAS instances use memory and can take some time to construct, you don't want to create a
new CAS instance for each request. Instead, you should use afeature of the UIMA SDK called the
CAS Pool, implemented by the type CasPool .

A CAS Pool contains some number of CAS instances (you specify how many when you create

the pool). When athread wantsto use a CAS, it checks out an instance from the pool. When the
thread is done using the CAS, it must release the CAS instance back into the pool. If all instances
are checked out, additional threads will block and wait for an instance to become available. Hereis
some example code:

public class My/Application {
private CasPool ntCasPool ;

private Anal ysi sEngi ne mAnal ysi SEngi ne;

public MyApplication()
{

/1 get Resource Specifier fromXM file
XMLI nput Source in = new XM.I nput Sour ce(" MyDescriptor.xm");
Resour ceSpeci fier specifier =

U MAFr amewor k. get XM_Par ser () . par seResour ceSpeci fier (in);

//Create multithreadable AE that will

[l Accept 3 sinultaneous requests

/1 The 3rd paraneter specifies a tinmeout.

/' When the nunber of sinmultaneous requests exceeds 3,

/1 additional requests will wait for other requests to finish.

/1 This parameter determ nes the maxi mum nunber of nilliseconds

/1 that a new request should wait before throw ng an

/1l - a value of O will cause themto wait forever.

mAnal ysi séngi ne = U MAFr amewor k. pr oduceAnal ysi seEngi ne(specifier, 3, 0);

/lcreate CAS pool with 3 CAS instances
nmCasPool = new CasPool (3, mAnal ysi sEngi ne);
}

/1 Notice this is no |onger "synchronized"
public void anal yzeDocunent (String abDoc) {
// check out a CAS instance (argunent 0 neans no tineout)

UIMA Version 2.10.2 Application Developer's Guide 73

http://docs.oracle.com/javase/tutorial/essential/concurrency/

Multiple AEs & Creating Shared CA Ses

CAS cas = nCasPool . get Cas(0);
try {
/lanal yze a docunent
cas. set Docunent Text (aDoc) ;
mAnal ysi sEngi ne. process(cas);
doSonet hi ngW t hResul t s(cas) ;
} finally {
/I MAKE SURE we rel ease the CAS instance
nmCasPool . r el easeCas(cas);

}

There is not much more code required here than in the previous example. First, there is one
additional parameter to the AnalysisEngine producer, specifying the number of annotator instances
to create’. Then, instead of creati ng asingle CASin the constructor, we now create a CasPool
containing 3 instances. In the analyze method, we check out a CAS, useit, and then releaseit.

Note: Frequently, the two numbers (number of CA Ses, and the number of AEs) will be the
same. It would not make sense to have the number of CA Ses |ess than the number of AEs
—the extra AE instances would always block waiting for a CAS from the pool. It could
make sense to have additional CA Ses, though — if you had other multi-threaded processes
that were using the CA Ses, other than the AEs.

The getCAS() method returns a CAS which is not specialized to any particular subject of analysis.
To process things other than this, please refer to Chapter 5, Annotations, Artifacts, and Sofas .

Note the use of the try...finally block. Thisis very important, as it ensures that the CAS we have
checked out will be released back into the pool, even if the analysis code throws an exception. Y ou
should always use try...finally when using the CAS pool; if you do not, you risk exhausting the
pool and causing deadl ock.

The parameter 0 passed to the CasPool.getCas() method is atimeout value. If thisisset to a
positive integer, it is the maximum number of milliseconds that the thread will wait for an instance
to become available in the pool. If thistime elapses, the getCas method will return null, and the
application can do something intelligent, like ask the user to try again later. A value of 0 will cause
the thread to wait for an available CAS, potentially forever.

All of this can better be done using UIMA-AS. Besides taking care of setting up the CAS pools,
etc., UIMA-AS dlows a pipe line having several delegatesto be scaled-up optimally for each
delegate; one delegate might have 5 instances, while another might have 3. It also does a different
kind of initialization, in that it creates athread pool itself, and insures that each annotator instance
getsits process() method called using the same thread that was used for that annotator instance's
initialization call; some annotators could be written assuming that thisis the case.

3.2.6. Using Multiple Analysis Engines and Creating
Shared CASes

In most cases, the easiest way to use multiple Analysis Engines from within an application is
to combine them into an aggregate AE. For instructions, see Section 1.3, “Building Aggregate
Analysis Engines’. Be sure that you understand this method before deciding to use the more
advanced feature described in this section.

1 Both the UIMA Collection Processing Manager framework and the remote deployment services framework have implementations which
use CAS poolsin this manner, and thereby relieve the annotator developer of the necessity to make their annotators thread-safe.

74

Application Developer's Guide UIMA Version 2.10.2

Saving CASesto file systems or general Streams

If you decide that your application does need to instantiate multiple AEs and have those AEs share
asingle CAS, then you will no longer be able to use the various methods on the Anal ysi sEngi ne
class that create CASes (or JCases) to create your CAS. This is because these methods create a
CASwith adatamodel specific to asingle AE and which therefore cannot be shared by other AEs.
Instead, you create a CAS as follows:

Suppose you have two analysis engines, and one CAS Consumer, and you want to create one type
system from the merge of all of their type specifications. Then you can do the following:

Anal ysi sengi neDescri ption aeDescl =
U MAFr anewor k. get XMLPar ser () . par seAnal ysi sengi neDescription(...);

Anal ysi sEngi neDescri ption aeDesc2 =
Ul MAFr anewor k. get XM_Par ser () . par seAnal ysi séngi neDescription(...);

CasConsuner Descri pti on ccDesc =
Ul MAFr amewor k. get XM_Par ser () . par seCasConsuner Descri ption(...);

List list = new ArrayList();
|ist.add(aeDescl);

|ist.add(aeDesc2);

|ist.add(ccDesc);

CAS cas = CasCreationUils.createCas(list);

/1 (optional, if using the JCas interface)
JCas jcas = cas.getJCas();

The CasCreationUtils class takes care of the work of merging the AES type systems and producing
a CAS for the combined type system. If the type systems are not compatible, an exception will be
thrown.

3.2.7. Saving CASes to file systems or general Streams

The UIMA framework provides multiple APIs to save and restore the contents of a CAS to streams.
Two common uses of this are to save CASes to the file system, and to send CA Ses to other
processes, running on remote systems.

The CASes can be serialized in multiple formats:
* Binary formats:

e plain binary: Thisis used to communicate with remote services, and also for
interfacing with annotators written in C/C++ or related languages via the NI Java
interface, from Java

e Compressed binary: There are two forms of compressed binary. The recommend
oneisform 6, which also alows type filtering. See Section 8.1, “Binary CAS
Compression overview”.

e XML formats: There are two forms of thisformat. The preferred form isthe XMI form
(see Chapter 7, XMI CAS Serialization Reference). An older format is also available, called
XCAS.

» JSON formats (as of version 2.7.0): Thisisintended for exposing resultsin the CAS as
JSON objects for use by web applications. See Section 9.1, “JSON serialization support
overview”. For JSON, only serialization is supported.

UIMA Version 2.10.2 Application Developer's Guide 75

Saving CASesto file systems or general Streams

» Java Object seriaization: There are APIsto convert a CAS to a Java object that can be
serialized and deserialized using standard Java object read and write Object methods. There
isalso away toinclude the CAS's type system and index definition.

Each of these serializations has different capabilities, summarized in the table below.
Table 3.1. Serialization Capabilities

XCAS XMl JSON Binary Cmpr4 | Cmrp6 | JavaObj

Output Output Output Output Output Output Output -
Stream Stream Stream, Stream Stream, Stream,
File, Data Data
Writer Output Output
Stream, Stream,
File File

Lists/ - Yes Yes - - - -
Arrays
inline
formatting?

Formatted? - Yes Yes - - - -

Type - Yes Yes - - Yes -
Filtering?

Delta - Yes - Yes Yes Yes -
Cas?

0O0TS? Yes Yes - - - - -

Only send | Yes Yes Yes send all send al Yes send all
indexed +
reachable
FSs?

NameSpace/- Yes - - - - -
Schemas?

lenient Yes Yes - - - Yes -
available?

optionaly | - - Justtype | Yes Yes Yes Yes
include system
embedded
Type
System
and
Indexes
definition?

In the above table, Cmpr 4 and Cmpr 6 refer to Compressed forms of the seriaization, and JavaObj
refersto Java Object seriaization.

For the XMI and JSON formats, lists and arrays can sometimes be formatted "inline". In this
representation, the elements are formatted directly as the value of a particular feature. Thisis only
doneif the arrays and lists are not multiply-referenced.

Application Developer's Guide UIMA Version 2.10.2

Saving CASesto file systems or general Streams

Type Filtering support enables only a subset of the types and/or features to be serialized. An
additional type system object is used to specify the typesto be included in the serialization. This
can be useful, for instance, when sending a CAS to a remote service, where the remote service only
uses a small number of the types and features, to reduce the size of the serialized CAS.

Delta Cas support makes use of a"mark" set in the CAS, and only serializes changes in the CAS,
both new and modified Feature Structures, that were added or changed after the mark was set. This
is useful for remote services, supporting the use-case where alarge CAS is sent to the service,
which sets the mark in the received CAS, and then adds a small amount of information; the Delta
CAS then serializes only that small amount as the "reply” sent back to the sender.

OOTS means "Out of Type System™ support, intended to support the use-case where a CASis
being sent to a remote application. This supports deseriaizing an incoming CAS where some of the
types and/or features may not be present in the receiving CAS's type system. A "lenient" option on
the deserialization permits the deserialization to proceed, with the out-of-type-system information
preserved so that when the CAS is subsequently reserialized (in the use-case, to be returned back to
the sender), the out-of -type-system information is re-merged back into the output stream.

The Binary, Java Object, and Compressed Form 4 serializations send all the Feature Structures
inthe CAS, in the order they were created in the CAS. The other methods only send Feature
Structures that are reachable, either by their being in some CAS index, or being referenced as a
feature of another Feature Structure which is reachable.

The NameSpace/Schema support allows specifying a set of schemas, each one corresponding to a
particular namespace, used in XM seridization.

Lenient allows the receiving Type System to be missing types and/or features that being
deserialized. Normally this causes an exception, but with the lenient flag turned on, these extra
types and/or features are skipped over and ignored, with no error indicated.

Some formats optionally allow embedded type system and indexes definition to be saved; loaders
for these can use that information to replace the CAS's type system and indexes definition, or (for
compressed form 6) use the type system part to decode the serialized data. Thisis described in
detail in the Javadocs for CaslOUtils. JSON serialization has severa aternatives for optionally
including portions of the type system, described in the reference document chapter on JSON.

To save an XMI representation of a CAS, usethe save method in Casl OUti | s or the

seri al i ze method of the classor g. apache. ui ma. util. Xm CasSeri al i zer. To save
an XCAS representation of a CAS, usethe save method in Casl QUt i | s class or use the
or g. apache. ui ma. cas. i npl . XCASSer i al i zer instead; see the Javadocs for details.

All the external serialized forms (except JISON and the inline CA S approximate serialization) can
beread back inusing the Casl OUti | s | oad methods. The Casl Quti | s | oad methods also
have API forms that support loading type system and index definition information at the same time
(from addition input sources); thereis aso aform for loading compressed form 6 where you can
pass the type system to use for decoding, when it is different from that of the receiving CAS. The
XCAS and XMI external forms can aso be read back in using thedeser i al i ze method of the
classor g. apache. ui ma. util . Xnl CasDeseri al i zer . All of these methods deserialize into a
pre-existing CAS, which you must create ahead of time. See the Javadocs for details.

TheSeri al i zat i on class has various static methods for serializing and deserializing Java Object
forms and compressed forms, with finer control over available options. See the Javadocs for that
classfor details.

Several of the APIs use or return instances of Ser i al For mat , which is an enum specifying the
various forms of serialization.

UIMA Version 2.10.2 Application Developer's Guide 7

Using Collection Processing Engines

3.3. Using Collection Processing Engines

A Collection Processing Engine (CPE) processes collections of artifacts (documents) through
the combination of the following components: a Collection Reader, an optional CAS Initializer,
Analysis Engines, and CAS Consumers. Collection Processing Engines and their components are
described in Chapter 2, Collection Processing Engine Developer's Guide .

Like Analysis Engines, CPEs consist of a set of Java classes and a set of descriptors. Y ou need to
make sure the Java classes are in your classpath, but otherwise you only deal with descriptors.

3.3.1. Running a Collection Processing Engine from a
Descriptor

Section 2.3, “Running a CPE from Y our Own Java Application” describes how to use the APIsto
read a CPE descriptor and run it from an application.

3.3.2. Configuring a Collection Processing Engine
Descriptor Programmatically

For the finest level of control over the CPE descriptor settings, the CPE offers programmatic
access to the descriptor viaan API. With this API, adeveloper can create a complete

descriptor and then save the result to afile. This also can be used to read in a descriptor (using
XML Parser.parseCpeDescription as shown in the previous section), modify it, and write it back
out again. The CPE Descriptor API allows a developer to redefine default behavior related to error
handling for each component, turn-on check-pointing, change performance characteristics of the
CPE, and plug-in a custom timer.

Below is some example code that illustrates how this works. See the Javadocs for package
org.apache.uima.collection.metadata for more details.

/'l Creates descriptor with default settings
CpeDescription cpe = CpeDescri ptorFactory. produceDescriptor();

/1 Add Col | ecti onReader
cpe. addCol | ecti onReader ([descriptor]);

/1 Add Caslnitializer (deprecated)
cpe. addCaslnitializer(<cas initializer descriptor>);

/! Provide the nunber of CASes the CPE will use
cpe. set CasPool Si ze(2);

/1 Define and add Anal ysis Engi ne
Cpel nt egr at edCasProcessor personTitl eProcessor =
CpeDescri pt or Fact ory. produceCasProcessor (“Person”);

/1 Provide descriptor for the Analysis Engine
personTi t| eProcessor. set Descri ptor([descriptor]);

/1 Continue, despite errors and skip bad Cas
personTi tl eProcessor. set Acti onOnMaxError (“conti nue”);

/1l ncrease amount of time in ns the CPE waits for response
//fromthis Anal ysis Engine
personTi tl eProcessor. set Ti meout (100000) ;

78

Application Developer's Guide UIMA Version 2.10.2

Configuring a CPE Descriptor Programmatically

/1 Add Anal ysis Engine to the descriptor
cpe. addCasPr ocessor (personTitl eProcessor);

/1 Define and add CAS Consuner

Cpel nt egr at edCasProcessor consuner Processor =
CpeDescri pt or Fact ory. produceCasProcessor (“Printer”);
consuner Processor. set Descri ptor ([descriptor]);

/I Define batch size
consuner Processor . set Bat chSi ze(100) ;

[/ Term nate CPE on max errors
consumer Processor. set Acti onOnMaxError (“term nate”);

/1 Add CAS Consuner to the descriptor
cpe. addCasProcessor (consuner Processor) ;

/1 Add Checkpoint file and define checkpoint frequency (ns)
cpe. set Checkpoi nt (“[pat h] / checkpoi nt. dat”, 3000);

/1 Plug in customtimer class used for timng events
cpe. set Ti mer (“org. apache. uima.internal .util.JavaTi nmer”);

/1 Define nunber of documents to process
cpe. set NunifoPr ocess(1000) ;

/1 Dunmp the descriptor to the System out
((CpeDescri ptionl npl)cpe).toXM(System out);

The CPE descriptor for the above configuration looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<cpeDescription xm ns="http://ui ma. apache. or g/ resourceSpeci fier">
<col | ecti onReader >
<col |l ectionlterator>
<descri pt or >
<i nclude href="[descriptor]"/>
</ descri pt or >
<configurationParaneterSettings>..
</ confi gurati onPar anet er Setti ngs>
</col | ectionlterator>

<caslnitializer>
<descri pt or >
<i nclude href="[descriptor]"/>
</ descri pt or >
<confi gurationParaneterSettings>..
</ confi gurati onPar anet er Setti ngs>
</caslnitializer>
</ col | ecti onReader >

<casProcessors casPool Si ze="2" processi nguni t ThreadCount ="1">
<casProcessor depl oynent="int egrated" name="Person">

<descri pt or >
<i nclude href="[descriptor]"/>

</ descri pt or >

<depl oynment Par anet er s/ >

<error Handl i ng>
<errorRateThreshol d acti on="term nate" val ue="100/1000"/>
<maxConsecuti veRestarts action="term nate" val ue="30"/>
<ti meout nax="100000"/>

UIMA Version 2.10.2 Application Developer's Guide

79

Setting Configuration Parameters

</ error Handl i ng>
<checkpoi nt bat ch="100" ti me="1000ns"/>
</ casProcessor>

<casProcessor depl oynent="integrated" name="Printer">
<descri pt or >
<include href="[descriptor]"/>
</ descri pt or >
<depl oynent Par anet er s/ >
<error Handl i ng>
<errorRat eThreshol d acti on="term nate"
val ue="100/ 1000"/ >
<maxConsecuti veRestarts action="terni nate"
val ue="30"/>
<ti meout nax="100000" defaul t="-1"/>
</ error Handl i ng>
<checkpoi nt bat ch="100" ti ne="1000ns"/>
</ casProcessor >
</ casProcessor s>

<cpeConfi g>
<numroPr ocess>1000</ nuniToPr ocess>
<depl oyAs>i mmedi at e</ depl oyAs>
<checkpoi nt file="[path]/checkpoint.dat" time="3000ns"/>
<timerlnpl >

or g. apache. ui ma. reference_i npl . util . JavaTi mer

</timerlnpl>

</ cpeConfi g>

</ cpeDescri pti on>

3.4. Setting Configuration Parameters

Configuration parameters can be set using APls as well as configured using the XML descriptor
metadata specification (see Section 1.2.1, “Configuration Parameters’.

There are two different places you can set the parameters viathe APIs.
» After reading the XML descriptor for a component, but before you produce the component
itself, and
 After the component has been produced.

Setting the parameters before you produce the component is done using the
ConfigurationParameterSettings object. Y ou get an instance of this for a particular component

by accessing that component description's metadata. For instance, if you produced a component
description by using Ul MAFr amewor k. get XMLPar ser () . par se. . . method, you can use

that component description's getM etaData() method to get the metadata, and then the metadata's
getConfigurationParameter Settings method to get the ConfigurationParameter Settings object.
Using that object, you can set individual parameters using the setParameterVaue method. Here's an
example, for a CAS Consumer component:

/|l Create a description object by reading the XM. for the descriptor

CasConsuner Descri pti on casConsuner Desc =
Ul MAFr amewor k. get XM_Par ser () . par seCasConsuner Descri pti on(new
XMLI nput Sour ce("descri ptors/cas_consuner/InlinexXm CasConsuner.xm ")) ;

/1 get the settings fromthe netadata
Confi gurati onParanet er Setti ngs consumer Par anSettings =
casConsuner Desc. get Met aDat a() . get Conf i gur ati onPar anmet er Setti ngs();

80 Application Developer's Guide UIMA Version 2.10.2

Integrating Text Analysis and Search

/1 Set a paraneter val ue

consuner Par anfSet t i ngs. set Par anmet er Val ue(
I nli neXm CasConsuner. PARAM OUTPUTDI R,
out put Di r. get Absol ut ePat h());

Then you might produce this component using:

CasConsuner conponent =
U MAFr anewor k. pr oduceCasConsuner (casConsuner Desc) ;

A side effect of producing a component is calling the component's “initialize” method, allowing it
to read its configuration parameters. If you want to change parameters after this, use

conponent . set Conf i gPar anet er Val ue(
“<par anet er - nane>"
“<par anmet er - val ue>") ;

and then signal the component to re-read its configuration by calling the component's reconfigure
method:

conponent . reconfigure();

Although these examples are for a CAS Consumer component, the parameter APIs also work for
other kinds of components.

3.5. Integrating Text Analysis and Search

The UIMA SDK on IBM's a phaworks http://www.al phaworks.ibm.com/tech/uimaincludes a
semantic search engine that you can use to build a search index that includes the results of the
analysis done by your AE. This combination of AEs with a search engine capable of indexing both
words and annotations over spans of text enables what UIMA refersto as semantic search. Over
time we expect to provide additional information on integrating other open source search engines.

Semantic search is a search where the semantic intent of the query is specified using one or more
entity or relation specifiers. For example, one could specify that they are looking for a person
(named) “Bush.” Such a query would then not return results about the kind of bushes that grow in
your garden.

3.5.1.

Building an Index

To build a semantic search index using the UIMA SDK, you run a Collection Processing Engine
that includes your AE along with a CAS Consumer which takes the tokens and annotatitions,
together with sentence boundaries, and feeds them to a semantic searcher's index term input. The
alphaWorks semantic search component includes a CAS Consumer called the Semantic Search
CAS Indexer that does this; this component is available from the alphaworks site. Y our AE must
include an annotator that produces Tokens and Sentence annotations, along with any “semantic”
annotations, because the Indexer requires this. The Semantic Search CAS Indexer's descriptor is
located here: exanpl es/ descri pt ors/ cas_consuner/ Semant i cSear chCasl ndexer . xnml .

3.5.1.1. Configuring the Semantic Search CAS Indexer

Since there are several ways you might want to build a search index from the information in the
CAS produced by your AE, you need to supply the Semantic Search CAS Consumer — Indexer

UIMA Version 2.10.2 Application Developer's Guide 81

http://www.alphaworks.ibm.com/tech/uima

Building an Index

with configuration information in the form of an Index Build Specification file. Apache UIMA
includes code for parsing Index Build Specification files (see the Javadocs for details). An example
of an Indexing specification tailored to the AE from the tutorial in the Chapter 1, Annotator and
Analysis Engine Developer's Guide islocated in exanpl es/ descri ptors/tutorial / search/
Meet i ngl ndexBui | dSpec. xm . It looks like this:

<i ndexBui | dSpeci fi cati on>
<i ndexBui | dl t en>
<name>or g. apache. ui nma. exanpl es. t okeni zer. Token</ name>
<i ndexRul e>
<styl e nane="Tern{/>
</'i ndexRul e>
</indexBuil dltenm>
<i ndexBui | dl t erm>
<nanme>or g. apache. ui ma. exanpl es. t okeni zer. Sent ence</ nane>
<i ndexRul e>
<styl e name="Breaki ng"/>
</ i ndexRul e>
</indexBuil dltenm>
<i ndexBui | dl t en>
<nane>or g. apache. ui ma. tut ori al . Meet i ng</ nanme>
<i ndexRul e>
<styl e nane="Annot ati on"/>
</ i ndexRul e>
</indexBuil dl ten>
<i ndexBui | dI t en>
<name>or g. apache. ui na. t ut ori al . RoonNunber </ nanme>
<i ndexRul e>
<styl e nanme="Annot ati on">
<attri but eMappi ngs>
<mappi ng>
<f eat ur e>bui | di ng</ f eat ur e>
<i ndexName>bui | di ng</i ndexName>
</ mappi ng>
</attributeMappi ngs>
</styl e>
</'i ndexRul e>
</indexBui |l dl t en>
<i ndexBui | dl t enm>
<nane>or ¢g. apache. ui ma. t ut ori al . Dat eAnnot </ nanme>
<i ndexRul e>
<styl e nane="Annot ation"/>
</ i ndexRul e>
</indexBuil dltenm>
<i ndexBui | dl t en>
<name>or g. apache. ui ma. tut ori al . Ti meAnnot </ nanme>
<i ndexRul e>
<styl e nane="Annot ati on"/>
</'i ndexRul e>
</indexBuil dl tenm>
</ i ndexBui | dSpeci fi cati on>

The index build specification is a series of index build items, each of which identifiesa CAS
annotation type (asubtype of ui ma. t cas. Annot ati on —see UIMA References Chapter 4, CAS
Reference) and a style.

Thefirst item in this example specifies that the annotation type

or g. apache. ui ma. exanpl es. t okeni zer. Token should be indexed with the “ Term” style.
This means that each span of text annotated by a Token will be considered a single token for
standard text search purposes.

82

Application Developer's Guide UIMA Version 2.10.2

Building an Index

The second item in this example specifies that the annotation type

or g. apache. ui ma. exanpl es. t okeni zer. Sent ence should be indexed with the “Breaking”
style. This means that each span of text annotated by a Sentence will be considered asingle
sentence, which can affect that search engine's algorithm for matching queries. The semantic
search engine available from alphaWorks always requires tokens and sentences in order to index a
document.

Note: Requirements for Term and Breaking rules. The Semantic Search indexer from
alphawWorks requires that the items to be indexed as words be designated using the Term
rule.

The remaining items all use the “Annotation” style. Thisindicates that each annotation of the
specified types will be stored in the index as a searchable span, with a name equal to the annotation
name (without the namespace).

Also, features of annotations can be indexed using the <at t r i but eMappi ngs> subelement.

In the example index build specification, we declare that the bui | di ng feature of the type

org. apache. ui ma. tut ori al . RoomNunber should be indexed. The <i ndexNane> element can
be used to map the feature name to a different name in the index, but in this example we have opted
to use the same name, bui | di ng.

At the end of the batch or collection, the Semantic Search CAS Indexer builds the index. This index
can be queried with simple tokens or with XML tags.

Examples:
» A query ontheword “UIMA” will retrieve all documents that have the occurrence of
the word. But a query of the type <Meet i ng>Ul MA</ Meet i ng> will retrieve only those
documents that contain a Meeting annotation (produced by our MeetingDetector TAE, for
example), where that M eeting annotation contains the word “UIMA”.
* A query for <RoomNunber bui | di ng="Yor kt own"/ > will return documents that have a
RoomNumber annotation whose bui | di ng feature contains the term “Y orktown”.

More information on the syntax of these kinds of queries, called XML Fragments, can be found

in documentation for the semantic search engine component on http://www.al phaworks.ibm.com/
tech/uima. For more information on the Index Build Specification format, see the UIMA Javadocs
for classor g. apache. ui ma. sear ch. I ndexBui | dSpeci fi cati on. Accessing the Javadocsis
described in UIMA References Chapter 1, Javadocs.

3.5.1.2. Building and Running a CPE including the Semantic
Search CAS Indexer

The following stepsillustrate how to build and run a CPE that uses the UIMA Meeting Detector
TAE and the Simple Token and Sentence Annotator, discussed in the Chapter 1, Annotator and
Analysis Engine Developer's Guide along with a CAS Consumer called the Semantic Search CAS
Indexer, to build an index that allows you to query for documents based not only on textual content
but also on whether they contain mentions of Meetings detected by the TAE.

Run the CPE Configurator tool by executing the cpeGui shell script in the bi n directory of
the UIMA SDK. (For instructions on using this tool, see the UIMA Tools Guide and Reference
Chapter 2, Collection Processing Engine Configurator User's Guide.)

In the CPE Configurator tool, select the following components by browsing to their descriptors:

» Collection Reader: %4J MA_HOVEY exanpl es/ descri pt ors/ col | ecti onReader/
Fi | eSyst entCol | ecti onReader . xm

UIMA Version 2.10.2 Application Developer's Guide 83

http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima

Semantic Search Query Tool

» Analysis Engine: include both of these; one produces tokens/sentences, required by the
indexer in al cases and the other produces the meeting annotations of interest.

® o) MA_HOVEY% exanpl es/ descri pt or s/ anal ysi s_engi ne/
Si npl eTokenAndSent enceAnnot at or . xni

® o%J MA_HOVEY exanpl es/ descri ptors/tutorial /ex6/ U MAMeet i ngDet ect or TAE. xmi

» Two CAS Consumers:
® o%J MA_HOVEY4 exanpl es/ descri pt or s/ cas_consuner/ Semant i cSear chCasl ndexer . xm
®* oJ MA_HOVEY4 exanpl es/ descri pt or s/ cas_consuner/ Xm Wit er CasConsuner . xm

Set up parameters.

 Set the File System Collection Reader's “Input Directory” parameter to point to the
%0 MA_HOMVEYS exanpl es/ dat a directory.

» Set the Semantic Search CAS Indexer's “Indexing Specification Descriptor” parameter
to point to %4l MA_HOVEYS exanpl es/ descri ptors/tutorial / search/
Meet i ngl ndexBui | dSpec. xml

* Set the Semantic Search CAS Indexer's “Index Dir” parameter to whatever directory into
which you want the indexer to write itsindex files.

Warning: The Indexer erases old versions of thefilesit createsin this directory.

» Setthe XMI Writer CAS Consumer's “ Output Directory” parameter to whatever directory
into which you want to store the XM files containing the results of your analysis for each
document.

Click on the Run Button. Once the run completes, a statistics dialog should appear, in which you
can see how much time was spent in each of the components involved in the run.

3.5.2. Semantic Search Query Tool

The Semantic Search component from UIMA on a phaWorks contains a simple tool for running
gueries against a semantic search index. After building an index as described in the previous
section, you can launch thistool by running the shell script: semanticSearch, found in the/ bi n
subdirectory of the Semantic Search UIMA install, at the command prompt. If you are using
Eclipse, and have installed the UIMA examples, there will be a Run configuration you can useto
conveniently launch this, called Ul MA Senanti ¢ Sear ch. Thiswill display the following screen:

84 Application Developer's Guide UIMA Version 2.10.2

Semantic Search Query Tool

#f Semantic Search & <

File

Unstructured Information Management Architecture
NN 46 S0E 67 | Re.e

Index Directon CMampwlmatsearchindax Browsa..

HCASMMI Directory CMampllratornb_output BFI:I'NSE...

Original Documents Directony Hruwse-.

Tvpe System Descriptor Clapache-uirmatexamplesidescrptorsttuton alessTutonal Typ eSystem xmi Browse...
|—
HAIL Fragments Query | = Search
| View Analysis View Original Document |

Configure the fields on this screen as follows:

» Set the “Index Directory” to the directory where you built your index. Thisis the same value
that you supplied for the “Index Dir” parameter of the Semantic Search CAS Indexer in the
CPE Configurator.

o Set the“XMI/XCAS Directory” to the directory where you stored the results of your
analysis. Thisisthe same value that you supplied for the “ Output Directory” parameter of
XMI Writer CAS Consumer in the CPE Configurator.

» Optionally, set the “Original Documents Directory” to the directory containing the original
plain text documents that were analyzed and indexed. Thisis only needed for the "View
Original Document" button.

» Set the “Type System Descriptor” to the location of the descriptor that describes your
type system. For this example, thiswill be %J MA_HOVEY exanpl es/ descri ptors/
tutorial/ex4/ Tutorial TypeSystem xm

Now, inthe“XML Fragments’ field, you can typein single words or XML queries where the
XML tags correspond to the labels in the index build specification file (e.g. <Meet i ng>Ul MA</
Meet i ng>). XML Fragments are described in the documentation for the semantic search engine
component on http://www.al phaworks.ibm.com/tech/uima.

After you enter aquery and click the “ Search” button, alist of hits will appear. Select one of the
documents and click “View Analysis’ to view the document in the UIMA Annotation Viewer.

The source code for the Semantic Search query programisin exanpl es/ src/ con i bnmi apache-
ui ma/ sear ch/ exanpl es/ Semant i cSear ch@GUl . j ava . A simple command-line query
program is aso provided in exanpl es/ sr ¢/ com i bni apache- ui ma/ sear ch/ exanpl es/
Semant i cSear ch. j ava . Using these as amodel, you can build a query interface from your

own application. For details on the Semantic Search Engine query language and interface, see the
documentation for the semantic search engine component on http://www.a phaworks.ibm.com/tech/
uima.

UIMA Version 2.10.2 Application Developer's Guide 85

http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima
http://www.alphaworks.ibm.com/tech/uima

Working with Remote Services

3.6. Working with Remote Services

Note: This chapter describes older methods of working with Remote Services. These
approaches do not support some of the newer CAS features, such as multiple views and
CAS Multipliers. These methods have been supplanted by UIMA-AS, which has full
support for the new CAS features.

The UIMA SDK alowsyou to easily take any Analysis Engine or CAS Consumer and deploy it as
aservice. That Analysis Engine or CAS Consumer can then be called from a remote machine using
various network protocols.

The UIMA SDK provides support for two communications protocols:
» SOAP, the standard Web Services protocol
 Vinci, alightweight version of SOAP, included as a part of Apache UIMA.

The UIMA framework can make use of these servicesin two different ways.

1. An Analysis Engine can create a proxy to aremote service; this proxy acts like alocal
component, but connects to the remote. The proxy has limited error handling and retry
capabilities. Both Vinci and SOAP are supported.

2. A Collection Processing Engine can specify non-Integrated mode (see Section 2.5,
“Deploying a CPE”. The CPE provides more extensive error recovery capabilities. This
mode only supports the Vinci communications protocol.

3.6.1. Deploying a UIMA Component as a SOAP Service
To deploy aUIMA component as a SOAP Web Service, you need to first install the following
software components:

» Apache Tomcat 5.0 or 5.5 (http://jakarta.apache.org/tomcat/)

* Apache Axis 1.3 or 1.4 (http://ws.apache.org/axis/)

Later versions of these components will likely also work, but have not been tested.
Next, you need to do the following setup steps:

» Setthe CATALINA_HOME environment variable to the location where Tomcat is installed.

» Copy al of the JAR filesfrom %J MA_HOVEY | i b to the UCATALI NA_HOVEY$ webapps/
axi s/ VEB- I NF/ | i b in your installation.

* Copy your JAR filesfor the UIMA components that you wish to 4CATALI NA_HOVEY4
webapps/ axi s/ VEB- | NF/ | i b in your installation.

* IMPORTANT: any time you add JAR files to Tomcat (for instance, in the above 2 steps),
you must shutdown and restart Tomcat before it “ notices’ this. So now, please shutdown and
restart Tomcat.

 All the Java classes for the UIMA Examples are packaged in the ui ma- exanpl es. j ar file
whichisincluded in the %a MA HOVEY% | i b folder.

 Inaddition, if an annotator needs to locate resource files in the classpath, those resources
must be available in the Axis classpath, so copy these also to %CATALI NA_HOVEYS
webapps/ axi s/ VEEB- | NF/ cl asses .

86 Application Developer's Guide UIMA Version 2.10.2

http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/

Deploying as SOAP Service

Asan example, if you are deploying the GovernmentTitleRecognizer (found in exanpl es/
descri pt or s/ anal ysi s_engi ne/ Government Of fi ci al Recogni zer _RegEx_TAE)
as a SOAP service, you need to copy the file exanpl es/ r esour ces/

Governnent Ti t| ePatt erns. dat into.../WEB-I N/ cl asses.

Test your installation of Tomcat and Axis by starting Tomcat and going to ht t p: //

| ocal host : 8080/ axi s/ happyaxi s. j sp inyour browser. Check to be sure that this reports that
all of the required Axis libraries are present. One common missing file may be activation.jar, which
you can get from java.sun.com.

After completing these setup instructions, you can deploy Analysis Engines or CAS Consumers

as SOAP web services by using the depl oyt ool utility, with islocated in the/ bi n directory

of the UIMA SDK. depl oyt ool isacommand line program utility that takes as an argument
aweb services deployment descriptors (WSDD file); example WSDD files are provided in the
exanpl es/ depl oy/ soap directory of the UIMA SDK. Deployment Descriptors have been
provided for deploying and undeploying some of the example Analysis Engines that come with the
SDK.

As an example, the WSDD file for deploying the example Person Title annotator looks like this
(important parts are in bold italics):

<depl oynment name="PersonTit| eAnnot at or"
xm ns="http://xm . apache. org/ axi s/ wsdd/ "
xm ns:java="http://xn . apache. or g/ axi s/ wsdd/ pr ovi ders/j ava">

<servi ce nane="urn: PersonTitl eAnnotator" provi der="java: RPC'>
<par anet er nane="scope" val ue="Request"/>

<par anet er nane="cl assNanme"
val ue="org. apache. ui ma. ref erence_i npl . anal ysi s_engi ne
.servi ce. soap. Axi sAnal ysi sengi neService_i npl "/ >

<par anet er nane="al | onedMet hods" val ue="get Met aDat a process"/>

<par anet er nane="resour ceSpeci fi er Pat h"
val ue="C:/ Program Fi | es/ apache/ ui ma/ exanpl es/
descri pt ors/ anal ysi s_engi ne/ Per sonTi t| eAnnot at or . xm "/ >

<par anet er nane="num nstances" val ue="3"/>

<!-- Type Mappings onmtted fromthis docunent;
you will not need to edit them -->

<typeMapping .../>
<typeMapping .../>
<typeMapping .../>

</ service>

</ depl oyment >

To modify thisWSDD file to deploy your own Analysis Engine or CAS Consumer, just replace the
areas indicated in bold italics (deployment name, service name, and resource specifier path) with
values appropriate for your component.

Thenum nst ances parameter specifies how many instances of your Analysis Engine or CAS
Consumer will be created. This allows your service to support multiple clients concurrently. When

UIMA Version 2.10.2 Application Developer's Guide 87

Deploying asaVinci Service

anew request comesin, if al of the instances are busy, the new regquest will wait until an instance
becomes available.

To deploy the Person Title annotator service, issue the following command:

C./ Program Fi | es/ apache/ ui ma/ bi n>depl oyt ool
../ exanpl es/ depl oy/ soap/ Depl oy_Per sonTi t | eAnnot at or . wsdd

Test if the deployment was successful by starting up a browser, pointing it to your Tomcat
installation's “axis’ webpage (e.g., ht t p: / /| ocal host : 8080/ axi s) and clicking on the List
link. This should bring up a page which shows the deployed services, where you should see the
service you just deployed.

The other components can be deployed by replacing Depl oy_Per sonTi t | eAnnot at or . wsdd
with one of the other Deploy descriptorsin the deploy directory. The deploytool utility can aso
undeploy services when passed one of the Undeploy descriptors.

Note: Thedepl oyt ool shell script assumes that the web services are to be installed at
http://1 ocal host: 8080/ axi s. If thisis not the case, you will need to update the shell
script appropriately.

Once you have deployed your component as aweb service, you may call it from aremote machine.
See Section 3.6.3, “Calling aUIMA Service” [89] for instructions.

3.6.2. Deploying a UIMA Component as a Vinci Service

There are no software prerequisites for deploying aVinci service. The necessary libraries are
part of the UIMA SDK. However, before you can use Vinci services you need to deploy the
Vinci Naming Service (VNS), as described in section Section 3.6.5, “The Vinci Naming Services
(VNS)” [91].

To deploy aservice, you have to insure any components you want to include can be found on
the class path. One way to do thisisto set the environment variable UIMA_CLASSPATH to the
set of class paths you need for any included components. Then runthe st art Vi nci Ser vi ce
shell script, which islocated in the bi n directory, and passit the path to a Vinci deployment
descriptor, for example: C: Ul MA>bi n/ st art Vi nci Servi ce ../ exanpl es/ depl oy/ vi nci /
Depl oy_Per sonTi t | eAnnot at or . xn . If you are running Eclipse, and have the ui maj -

exanpl es project in your workspace, you can use the Eclipse Menu — Run — Run... and then
pick “UIMA Start Vinci Service’.

This example deployment descriptor looks like:

<depl oyment name="Vinci Person Title Annotator Service">
<servi ce nane="ui ma. annot at or. PersonTi t| eAnnot ator" provi der="vinci ">
<par anet er nane="resour ceSpeci fi er Pat h"
val ue="C: / Program Fi | es/ apache/ ui ma/ exanpl es/ descri pt or s/
anal ysi s_engi ne/ PersonTi t | eAnnot at or . xm "/ >
<par anet er nane="num nstances" val ue="1"/>

<par anet er nane="server Socket Ti neout" val ue="120000"/>

</ servi ce>

88 Application Developer's Guide UIMA Version 2.10.2

Calling aUIMA Service

</ depl oynent >

To modify this deployment descriptor to deploy your own Analysis Engine or CAS Consumer, just
replace the areas indicated in bold italics (deployment name, service name, and resource specifier
path) with values appropriate for your component.

Thenum nst ances parameter specifies how many instances of your Analysis Engine or CAS
Consumer will be created. This allows your service to support multiple clients concurrently. When
anew request comesin, if al of the instances are busy, the new request will wait until an instance
becomes available.

Theser ver Socket Ti meout parameter specifies the number of milliseconds (default = 5 minutes)
that the service will wait between requests to process something. After this amount of time, the
server will presume the client may have gone away - and it “cleans up”, releasing any resources it
is holding. The next call to process on the service will result in acycle which will cause the client
to re-establish its connection with the service (some additional overhead).

There are two additional parameters that you can add to your deployment descriptor:

* <paraneter nanme="threadPool M nSi ze" val ue="[Integer]"/>: Specifiesthe
number of threads that the Vinci service creates on startup in order to serve clients' requests.

e <paraneter name="t hreadPool MaxSi ze" val ue="[Integer]"/>: Specifies
the maximum number of threads that the Vinci service will create. When the number of
concurrent requests exceeds thet hr eadPool M nSi ze, additional threads will be created to
serve requests, until thet hr eadPool MaxSi ze isreached.

Thest art Vi nci Ser vi ce script takes two additional optional parameters. The first one overrides
the value of the VNS _HOST environment variable, allowing you to specify the name server to

use. The second parameter if specified needs to be a unique (on this server) non-negative number,
specifying the instance of this service. When used, this number allows multiple instances of the
same named service to be started on one server; they will all register with the Vinci name service
and be made available to client requests.

Once you have deployed your component as aweb service, you may call it from aremote machine.
See Section 3.6.3, “Calling aUIMA Service” [89] for instructions.

3.6.3.

How to Call a UIMA Service

Once an Analysis Engine or CAS Consumer has been deployed as a service, it can be used from
any UIMA application, in the exact same way that alocal Analysis Engine or CAS Consumer is
used. For example, you can call an Analysis Engine service from the Document Analyzer or use the
CPE Configurator to build a CPE that includes Analysis Engine and CAS Consumer services.

To do this, you use a service client descriptor in place of the usual Analysis Engine or CAS
Consumer Descriptor. A service client descriptor isasimple XML file that indicates the location
of the remote service and afew parameters. Example service client descriptors are provided in the
UIMA SDK under the directoriesexanpl es/ descri pt or s/ soapSer vi ce and exanpl es/
descri pt ors/ vi nci Ser vi ce. The contents of these descriptors are explained below.

Also, before you can call a SOAP service, you heed to have the necessary Axis JAR filesin your
classpath. If you use any of the scriptsin the bi n directory of the UIMA installation to launch your
application, such as documentAnalyzer, these JARs are added to the classpath, automatically, using
the CATALI NA_HOME environment variable. The required files are the following (all part of the
Apache Axis download)

UIMA Version 2.10.2 Application Developer's Guide 89

Restrictions on remotely deployed services

» activation.jar

e axisjar

» commons-discovery.jar
» commons-logging.jar
e jaxrpc.jar

e sag.jar

3.6.3.1. SOAP Service Client Descriptor

The descriptor used to call the PersonTitleAnnotator SOAP service from the example aboveis:

<uri Specifier xm ns="http://uima. apache. org/resourceSpecifier">
<r esour ceType>Anal ysi sEngi ne</r esour ceType>
<uri>http://|ocal host: 8080/ axi s/ servi ces/ urn: PersonTitl eAnnot at or </ uri >
<pr ot ocol >SOAP</ pr ot ocol >
<t i meout >60000</t i meout >
</ uri Specifier>

The <resourceType> element must contain either AnalysisEngine or CasConsumer. This specifies
what type of component you expect to be at the specified service address.

The <uri> element describes which service to call. It specifies the host (localhost, in this example)
and the service name (urn:PersonTitleAnnotator), which must match the name specified in the
deployment descriptor used to deploy the service.

3.6.3.2. Vinci Service Client Descriptor

Tocal aVinci service, asimilar descriptor is used:

<uri Specifier xm ns="http://ui ma. apache. org/resourceSpecifier">
<resour ceType>Anal ysi sEngi ne</r esour ceType>
<uri >ui ma. annot . Per sonTi t | eAnnot at or </ uri >
<pr ot ocol >Vi nci </ pr ot ocol >
<t i meout >60000</ti meout >
<par anet er s>
<par anet er nanme="VNS_HOST" val ue="sone. internet.ip. name-or-address"/>
<par anet er nane="VNS_PORT" val ue="9000"/ >
</ par anet er s>
</ uri Speci fier>

Note that Vinci uses a centralized naming server, so the host where the service is deployed does not
need to be specified. Only aname (ui ma. annot . Per sonTi t | eAnnot at or) is given, which must
match the name specified in the deployment descriptor used to deploy the service.

The host and/or port where your Vinci Naming Service (VNS) server is running can be specified by
the optional <parameter> elements. If not specified, the value is taken from the specification given
your Java command line (if present) using - DVNS_HOST=<host > and - DVNS_PORT=<port >
system arguments. If not specified on the Java command line, defaults are used: localhost for the
VNS_HGST, and 9000 for the VNS_PORT. See the next section for details on setting up aVNS
Server.

3.6.4. Restrictions on remotely deployed services
Remotely deployed services are started on remote machines, using UIMA component descriptors
on those remote machines. These descriptors supply any configuration and resource parameters

90 Application Developer's Guide UIMA Version 2.10.2

The Vinci Naming Services (VNS)

for the service (configuration parameters are not transmitted from the calling instance to the
remote one). Likewise, the remote descriptors supply the type system specification for the remote
annotators that will be run (the type system of the calling instance is not transmitted to the remote
one).

The remote service wrapper, when it receives a CAS from the caller, instantiates it for the remote
service, making instances of all types which the remote service specifies. Other instancesin the
incoming CAS for types which the remote service has no type specification for are kept aside, and
when the remote service returns the CAS back to the caller, these type instances are re-merged back
into the CAS being transmitted back to the caller. Because of this design, a remote service which
doesn't declare atype system won't receive any type instances.

Note: Thisbehavior may change in future releases, to one where configuration parameters
and / or type systems are transmitted to remote services.

3.6.5. The Vinci Naming Services (VNS)

Vinci consists of components for building network-accessible services, clients for accessing those
services, and an infrastructure for locating and managing services. The primary infrastructure
component isthe Vinci directory, known as VNS (for Vinci Naming Service).

On startup, Vinci serviceslocate the VNS and provide it with information that is used by VNS
during service discovery. Vinci service provides the name of the host machine on which it runs, and
the name of the service. The VNS internally creates a binding for the service name and returns the
port number on which the Vinci service will wait for client requests. This VNS stores its bindings
in afilesystemin afile called vns.services.

InVinci, services are identified by their service name. If there is more than one physical service
with the same service name, then Vinci assumes they are equivalent and will route queries to them
randomly, provided that they are al running on different hosts. Y ou should therefore use a unique
service name if you don't want to conflict with other services listed in whatever VNS you have
configured jVinci to use.

3.6.5.1. Starting VNS

Torunthe VNS use the st ar t VNS script found in the bi n directory of the UIMA installation,
or launch it from Eclipse. If you'veinstalled the ui maj - exanpl es project, it will supply a pre-

configured launch script you can access in Eclipse by selecting Menu — Run — Run... and picking
“UIMA Start VNS'.

Note: VNS runs on port 9000 by default so please make sure this port is available. If you
see the following exception:

j ava. net. Bi ndExcepti on: Address already in use:

JVM Bi nd

it indicates that another processis running on port 9000. In this case, add the parameter - p
<port >tothest art VNS command, using <por t > to specify an alternative port to use.

When started, the VNS produces output similar to the following:

‘[10/6/04 3:44 PM| main] WARNING Config file doesn't exist,

UIMA Version 2.10.2 Application Developer's Guide 91

The Vinci Naming Services (VNS)

creating a new enpty config file!
[10/6/04 3:44 PM| nmin] Loading config file : .vns.services
[10/6/04 3:44 PM| nmin] Loading workspaces file : .vns.workspaces
[10/6/04 3:44 PM | nmin]
(WARNI NG) Unexpect ed exception:
java.io. Fi | eNot FoundException: .vns.workspaces (The system cannot find
the file specified)
at java.io.FilelnputStream open(Native Mt hod)
at java.io.FilelnputStream <init>(Unknown Source)
at java.io.FilelnputStream <init>(Unknown Source)
at java.io. Fil eReader. <init>(Unknown Source)
at org.apache. vinci.transport.vns. service. VNS. | oadWr kspaces(VNS. j ava: 339
at org.apache. vinci.transport.vns. service. VNS. start Servi ng(VNS. j ava: 237)
at org.apache. vinci.transport.vns. service. VNS. mai n(VNS. j ava: 179)
[10/6/04 3:44 PM| nain] WARNING failed to | oad workspace
[10/6/04 3:44 PM| nain] VNS Workspace : nul
[10/6/04 3:44 PM| nmin] Loading counter file : .vns.counter
[10/6/04 3:44 PM| main] Could not |oad the counter file : .vns.counter
[10/6/04 3:44 PM| nmin] Starting backup thread
using files .vns.services. bak
and .vns. services
[10/6/04 3:44 PM| nmmin] Serving on port : 9000
[10/6/04 3:44 PM| Thread-0] Backup thread started
[10/6/04 3:44 PM| Thread-0] Saving to config file : .vns.services. bak
>>>>>>>>>>>>> VNS is up and runni ng! <<<<<<<<<<<<<<<<<
>>>>>>>>>>>>> Type "quit' and hit ENTER to term nate VNS <<<<<<<<<<<<<
[10/6/04 3:44 PM| Thread-0] Config save required 10 mllis
[10/6/04 3:44 PM| Thread-0] Saving to config file : .vns.services
[10/6/04 3:44 PM| Thread-0] Config save required 10 millis.
[10/6/04 3:44 PM| Thread-0] Saving counter file : .vns.counter

Note: Disregard the java.io.FileNotFoundException: .\vns.workspaces (The system cannot
find the file specified). It is just a complaint. not a serious problem. VNS Workspaceis
afeature of the VNS that is not critical. The important information to noteis[10/ 6/ 04
3:44 PM| main] Serving on port : 9000 which states the actual port where
VNS will listen for incoming requests. All Vinci services and all clients connecting to
services must provide the VNS port on the command line IF the port is not a default. Again
the default port is 9000. Please see Section 3.6.5.3, “Launching Vinci Services’ [92]

below for details about the command line and parameters.

3.6.5.2. VNS Files

The VNS maintains two externa files:
* VNns. services
e vns. counter

These files are generated by the VNS in the same directory where the VNS is launched from. Since

these files may contain old information it is best to remove them before starting the VNS. This
step ensures that the VNS has aways the newest information and will not attempt to connect to a
service that has been shutdown.

3.6.5.3. Launching Vinci Services

When launching Vinci service, you must indicate which VNS the service will connect to. A Vinci
serviceistypicaly started using the script st art Vi nci Ser vi ce, found in the bi n directory of
the UIMA installation. (If you're using Eclipse and have the ui maj - exanpl es project in the
workspace, you will also find an Eclipse launcher named “UIMA Start Vinci Service” you can

use.) For the script, the environmental variable VNS_HOST should be set to the name or |P address
of the machine hosting the Vinci Naming Service. The default islocalhost, the machine the service

92

Application Developer's Guide

UIMA Version 2.10.2

Configuring Timeout Settings

is deployed on. This name can also be passed as the second argument to the startVinciService
script. The default port for VNS is 9000 but can be overriden with the VNS _PORT environmental
variable.

If you write your own startup script, to define Vinci's default VNS you must provide the following
JVM parameters:

j ava - DVNS_HOST=l ocal host - DVNS_PORT=9000 . ..

The above setting is for the VNS running on the same machine as the service. Of course one can
deploy the VNS on a different machine and the VM parameter will need to be changed to this:

j ava - DVNS_HOST=<host > - DVNS_PORT=9000 . ..

where “<host>" is amachine name or its |P where the VNS is running.

Note: VNS runs on port 9000 by default. If you see the following exception:

(WARNI NG Unexpect ed excepti on:

or g. apache. vinci . transport. Servi ceDownExcept i on:
VNS i naccessi bl e: java. net. Connect

Exception: Connection refused: connect

then, perhaps the VNS s not running OR the VNS is running but it is using a different
port. To correct the latter, set the environmental variable VNS PORT to the correct port
before starting the service.

To get the right port check the VNS output for something similar to the following:

[10/6/04 3:44 PM| main] Serving on port : 9000

It is printed by the VNS on startup.

3.6.6.

Configuring Timeout Settings

UIMA has severa timeout specifications, summarized here. The timeouts associated with remote
services are discussed below. In addition there are timeouts that can be specified for:

» Acquiring an empty CASfrom a CAS Pool: See Section 3.2.5, “Multi-threaded
Applications’ [72].

» Reassembling chunks of a large document See UIMA References Section 3.7, “ CPE
Operational Parameters”

If your application uses remote UIMA servicesit isimportant to consider how to set the timeout
values appropriately. Thisis particularly important if your service can take along time to process
each request.

There are two types of timeout settingsin UIMA, the client timeout and the server socket timeout.
The client timeout is usually the most important, it specifies how long that client is willing to wait
for the service to process each CAS. The client timeout can be specified for both Vinci and SOAP.
The server socket timeout (Vinci only) specifies how long the service holds the connection open
between calls from the client. After this amount of time, the server will presume the client may

UIMA Version 2.10.2 Application Developer's Guide 93

Configuring Timeout Settings

have gone away - and it “ cleans up”, releasing any resources it is holding. The next call to process
on the service will cause the client to re-establish its connection with the service (some additional
overhead).

3.6.6.1. Setting the Client Timeout

The way to set the client timeout is different depending on what deployment mode you use in your
CPE (if any).

If you are using the default “integrated” deployment mode in your CPE, or if you are not using a
CPE at all, then the client timeout is specified in your Service Client Descriptor (see Section 3.6.3,
“Calling aUIMA Service” [89]). For example:

<uri Specifier xm ns="http://uima. apache. org/resourceSpecifier">
<r esour ceType>Anal ysi sEngi ne</ r esour ceType>
<uri >ui ma. annot . Per sonTi t | eAnnot at or </ uri >
<pr ot ocol >Vi nci </ pr ot ocol >
<t i meout >60000</ ti neout >
<par anet er s>
<par anet er nanme="VNS_HOST" val ue="sone.internet.ip.name-or-address"/>
<par anet er nane="VNS_PORT" val ue="9000"/ >
</ par anet er s>
</ uri Specifier>

The client timeout in this example is 60000. This value specifies the number of milliseconds that
the client will wait for the service to respond to each request. In this example, the client will wait
for one minute.

If the service does not respond within this amount of time, processing of the current CAS will
abort. If you called the Anal ysi sEngi ne. pr ocess method directly from your application, an
Exception will be thrown. If you are running a CPE, what happens next is dependent on the error
handling settings in your CPE descriptor (see UIMA References Section 3.6.1.7, “<errorHandling>
Element”). The default action is for the CPE to terminate, but you can override this.

If you are using the “managed” or “non-managed” deployment mode in your CPE, then the client
timeout is specified in your CPE desciptor'ser r or Handl i ng element. For example:

<error Handl i ng>
<maxConsecuti veRestarts .../>
<errorRateThreshold .../>
<ti nmeout nmax="60000"/>

</ error Handl i ng>

Asin the previous example, the client timeout is set to 60000, and this specifies the number of
milliseconds that the client will wait for the service to respond to each request.

If the service does not respond within the specified amount of time, the action is determined by the
settings for maxConsecut i veRest arts and er r or Rat eThr eshol d. These settings support such
things as restarting the process (for “managed” deployment mode), dropping and reestablishing the
connection (for “non-managed” deployment mode), and removing the offending service from the
pipeline. See UIMA References Section 3.6.1.7, “<errorHandling> Element”) for details.

Note that the client timeout does not apply to the Get Met aDat a request that is made when the
client first connectsto the service. Thiscall istypically very fast and does not need alarge timeout
(the default is 60 seconds). However, if many clients are competing for a small number of services,

Application Developer's Guide UIMA Version 2.10.2

Increasing performance using parallelism

it may be necessary to increase this value. See UIMA References Section 2.7, “ Service Client
Descriptors”

3.6.6.2. Setting the Server Socket Timeout

The Server Socket Timeout applies only to Vinci services, and is specified in the Vinci deployment
descriptor as discussed in section Section 3.6.2, “Deploying asa Vinci Service” [88]. For
example:

<depl oyment name="Vinci Person Title Annotator Service">
<servi ce name="ui ma. annot at or. PersonTi t| eAnnot at or" provi der="vinci ">

<par anet er nane="resour ceSpeci fi er Pat h"
val ue="C: / Program Fi | es/ apache/ ui ma/ exanpl es/ descri pt or s/
anal ysi s_engi ne/ Per sonTi t| eAnnot at or. xm "/ >

<par anet er nane="num nst ances" val ue="1"/>
<par anet er nane="server Socket Ti neout" val ue="120000"/>
</ service>

</ depl oynment >

The server socket timeout hereis set to 120000 milliseconds, or two minutes. This parameter
specifies how long the service will wait between requests to process something. After this amount
of time, the server will presume the client may have gone away - and it “cleans up”, releasing any
resourcesit is holding. The next call to process on the service will cause the client to re-establish its
connection with the service (some additiona overhead). The service may print a“Read Timed Out”
message to the console when the server socket timeout elapses.

In most cases, it is not aproblem if the server socket timeout elapses. The client will simply
reconnect. However, if you notice “Read Timed Out” messages on your server console, followed
by other connection problems, it is possible that the client is having trouble reconnecting for some
reason. In this situation it may help increase the stability of your application if you increase the
server socket timeout so that it does not elapse during actual processing.

3.7. Increasing performance using parallelism

There are several ways to exploit parallelism to increase performance in the UIMA Framework.
These range from running with additional threads within one Java virtual machine on one host
(which might be a multi-processor or hyper-threaded host) to deploying analysis engines on a set of
remote machines.

The Collection Processing facility in UIMA provides the ahility to scale the pipe-line of analysis
engines. This scale-out runs multiple threads within the Java virtual machine running the CPM, one
for each pipein the pipe-line. To activateiit, in the <casPr ocessor s> descriptor element, set the
attribute pr ocessi ngUuni t Thr eadCount , which specifies the number of replicated processing
pipelines, to avaue greater than 1, and insure that the size of the CAS pool isequal to or greater
than this number (the attribute of <casPr ocessor s> to set iscasPool Si ze). For more details on
these settings, see UIMA References Section 3.6, “CAS Processors” .

For deployments that incorporate remote analysis engines in the Collection Manager pipe-line,
running on multiple remote hosts, scale-out is supported which uses the Vinci naming service. If

UIMA Version 2.10.2 Application Developer's Guide 95

Monitoring AE Performance using JIM X

multiple instances of a service with the same name, but running on different hosts, are registered
with the Vinci Name Server, it will assign these instances to incoming requests.

There are two modes supported: a*“random” assignment, and a*“exclusive’” one. The “random”
mode distributes |oad using an algorithm that selects a service instance at random. The UIMA
framework supports this only for the case where all of the instances are running on unique hosts;
the framework does not support starting 2 or more instances on the same host.

The exclusive mode dedicates a particular remote instance to each Collection Manager pip-line
instance. This mode is enabled by adding a configuration parameter in the <casProcessor> section
of the CPE descriptor:

<deploymentParameters>
<parameter name="service-access' value="exclusive" />
</deploymentParameters>

If thisis not specified, the “random” mode is used.

In addition, remote UIMA engine services can be started with a parameter that specifies the number
of instances the service should support (seethe <par anet er name="numl nst ances" > XML
element in remote deployment descriptor Section 3.6, “Working with Remote Services’ [86]
Specifying more than one causes the service wrapper for the analysis engine to use multi-threading
(within the single Java Virtual Machine —which can take advantage of multi-processor and hyper-
threaded architectures).

Note: When using Vinci in “exclusive’” mode (see service access under UIMA References
Section 3.6.1.5, “ <deploymentParameters> Element”), only one thread is used. To achieve
multi-processing on a server in this case, use multiple instances of the service, instead of
multiple threads (see Section 3.6.2, “Deploying as a Vinci Service” [88].

3.8. Monitoring AE Performance using JMX

Asof version 2, UIMA supports remote monitoring of Analysis Engine performance viathe Java
Management Extensions (IMX) API. IMX is a standard part of the Java Runtime Environment
v5.0; there is also a reference implementation available from Sun for Java 1.4. An introduction to
JMX isavailable from Sun here: http://java.sun.com/devel oper/technical Articles/ J2SE/jmx.html.
When you run aUIMA with aJVM that supports IM X, the UIMA framework will automatically
detect the presence of IMX and will register MBeans that provide access to the performance
statistics.

Note: The Sun JVM supports local monitoring; for others you can configure your
application for remote monitoring (even when on the same host) by specifying a
unigue port number, e.g. - Dcom sun. managenent . j nxr enot e. por t =1098
- Dcom sun. managenent . j nxr enot e. aut henti cat e=f al se -

Dcom sun. nanagenent . j nxrenot e. ssl =f al se

Now, you can use any JMX client to view the statistics. JDK 5.0 or later provides a standard client
that you can use. Simply open a command prompt, make sure the JDK bi n directory isin your
path, and execute the j consol e command. This should bring up awindow allowing you to select
one of the local IMX-enabled applications currently running, or to enter aremote (or local) host
and port, e.g. localhost:1098. The next screen will show a summary of information about the Java
process that you connected to. Click on the “MBeans’ tab, then expand “org.apache.uima’ in the
tree at the left. Y ou should see aview likethis:

96

Application Developer's Guide UIMA Version 2.10.2

http://java.sun.com/developer/technicalArticles/J2SE/jmx.html

Monitoring AE Performance using JIM X

¥ J2SE 5.0 Monitoring & Management Console Joled
Connection Window
[7] 676@iocamast . oo X
Summary | Memory | Threads | Classes | MBeans | WM |
MEeans
EJ Tree (nﬂrmes. f -t_l;u_.-.'.dillnll.‘i " Motifications | Infu
o [Jimplementation [Name | Valug
¢ =] com.ibr.uima AnalysisTime o
@ UIMA Meeting Detector TAE [BatchProcessCompleteTime 0 |
¢ 3 UiMA Meeting Detector TAE Componet |CASesPerSecond 700 |
@ WeetingDetector [CollectionProcessCompleteTi.. 0
¢ (=] MeetingDetector Components [Name [TutorialDateTime Annotator
W@ DateTime| |NumberOfCASesProcessed 7
W Meeting |ServiceCalTime 1]

& RoomMumber
@ _FlowController
@ Uimascronymannolator
@@ UimaMestingsnnotator
€ _FlowController
o= 29 java.lang
o= [java.ufil Iogging

a [T+ | Refresh, |

Each of the nodes under “or g. apache. ui ma” in the tree represents one of the UIMA Analysis
Engines in the application that you connected to. Y ou can select one of the analysis engines to view
its performance statistics in the view at the right.

Probably the most useful statistic is“CASes Per Second”, which is the number of CASes that this
AE has processed divided by the amount of time spent in the AE's process method, in seconds.
Note that thisis the total elapsed time, not CPU time. Even so, it can be useful to compare the
“CASes Per Second” numbers of al of your Analysis Engines to discover where the bottlenecks
occur in your application.

The Anal ysi sTi e, Bat chPr ocessConpl et eTi e, and Col | ect i onPr ocessConpl et eTi e
properties show the total elapsed time, in milliseconds, that has been spent in the AnalysisEngine's
process(), batchProcessConplete(), andcollectionProcessConpl et e() methods,
respectively. (Note that for CAS Multipliers, time spent in the hasNext () and next () methodsis
also counted towards the AnalysisTime.)

Note that once your UIMA application terminates, you can no longer view the statistics through
the IMX console. If you want to use IM X to view processes that have completed, you will need
to write your application so that the JVM remains running after processing completes, waiting for
some user signal before terminating.

It is possible to override the default IMX MBean names UIMA uses, for example to better organize
the UIMA MBeans with respect to MBeans exposed by other parts of your application. Thisis done
using the Anal ysi sEngi ne. PARAM_MBEAN_NAME_PREFI| X additional parameter when creating
your AnalysisEngine:

//set up Map with custom JMX MBean name prefix

Map paranmvap = new HashMap();

par amvap. put (Anal ysi sengi ne. PARAM MBEAN NAME_PREFI X,
"org. myor g: cat egor y=MyApp") ;

/'l create Anal ysis Engine

UIMA Version 2.10.2 Application Developer's Guide 97

Performance Tuning Options

Anal ysi séngi ne ae =
U MAFr anewor k. pr oduceAnal ysi sengi ne(speci fier, paramnvap);

Similary, you can use the Anal ysi sEngi ne. PARAM MBEAN_SERVER parameter to specify a
particular instance of aJMX MBean Server with which UIMA should register the MBeans. If no
specified then the default isto register with the platform MBeanServer (Java 5+ only).

More information on JIMX can be found in the Java 5 documentation?.

3.9. Performance Tuning Options

There are asmall number of performance tuning options available to influence the runtime
behavior of UIMA applications. Performance tuning options need to be set programmeatically when
an analysis engine is created. Y ou simply create a Java Properties object with the relevant options
and passit to the UIMA framework on the call to create an analysis engine. Below is an example.

XML.Par ser parser = U MAFranmewor k. get XM_Par ser () ;
Resour ceSpecifier spec = parser. parseResourceSpecifi er(
new XM.I nput Sour ce(descriptorFile));
/1 Create a new properties object to hold the settings.
Properties performanceTuni ngSettings = new Properties();
/] Set the initial CAS heap size.
per f ormanceTuni ngSet ti ngs. set Property(
U MAFr anewor k. CAS_| NI TI AL_HEAP_SI ZE,
"1000000") ;
/1 Disable JCas cache.
per f or manceTuni ngSet ti ngs. set Property(
U MAFr anewor k. JCAS_CACHE_ENABLED,
"fal se");
/1 Create a wrapper properties object that can
/'l be passed to the franework.
Properties additional Parans = new Properties();
/1l Set the performance tuning properties as value to
/1 the appropriate paraneter.
addi ti onal Par ans. put (
Resour ce. PARAM PERFORMANCE_TUNI NG_SETTI NGS,
per f or manceTuni ngSet ti ngs) ;
/]l Create the analysis engine with the paraneters.
/'l The second, unused argunent here is a custom
/1 resource nanager.
thi s. ae = U MAFr anewor k. pr oduceAnal ysi sengi ne(
spec, null, additional Parans);

The following options are supported:

e Ul MAFr amewor k. JCAS_CACHE_ENABLED: allows you to disable the JCas cache (true/
false). The JCas cacheisan internal datastructure that caches any JCas object created by
the CAS. This may result in better performance for applications that make extensive use of
the JCas, but also incurs a steep memory overhead. If you're processing large documents
and have memory issues, you should disable this option. In general, just try running afew
experiments to see what setting works better for your application. The JCas cache is enabled
by default.

2 http://java.sun.com/j 2se/1.5.0/docs/api/javax/management/package-summary.html#package_description

98

Application Developer's Guide UIMA Version 2.10.2

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html#package_description

Performance Tuning Options

o Ul MAFr amewor k. CAS_I NI TI AL_HEAP_SI ZE: set theinitial CAS heap size in number
of cells (integer valued). The CAS uses 32bit integer cells, so four timestheinitia sizeis
the approximate minimum size of the CAS in bytes. Thisis another space/time trade-off
as growing the CAS heap is relatively expensive. On the other hand, setting the initial size
too high is wasting memory. Unless you know you are processing very small or very large
documents, you should probably leave this option unchanged.

* Ul MAFr amewor k. PROCESS TRACE_ENABLED: enable the process trace mechanism
(trueffalse). When enabled, UIMA tracks the time spent in individual components
of an aggregate AE or CPE. For more information, see the APl documentation of
org. apache. ui ma. util.ProcessTrace.

* Ul MAFr amewor k. SOCKET_KEEPALI VE_ENABLED: enable socket KeepAlive (true/false).
This setting is currently only supported by Vinci clients. Defaultstot r ue.

UIMA Version 2.10.2 Application Developer's Guide

Chapter 4. Flow Controller Developer's Guide

A Flow Controller is a component that plugs into an Aggregate Analysis Engine. When a CAS
isinput to the Aggregate, the Flow Controller determines the order in which the components
of that aggregate are invoked on that CAS. The ability to provide your own Flow Controller
implementation is new as of release 2.0 of UIMA.

Flow Controllers may decide the flow dynamically, based on the contents of the CAS. So, as
just one example, you could develop a Flow Controller that first sends each CAS to a Language
| dentification Annotator and then, based on the output of the Language I dentification Annotator,
routes that CA S to an Annotator that is specialized for that particular language.

4.1. Developing the Flow Controller Code

4.1.1. Flow Controller Interface Overview

Flow Controller implementations should extend from the JCasFI owCont r ol | er _I npl Base
or CasFl owCont r ol | er _I npl Base classes, depending on which CAS interface they prefer to
use. Aswith other types of components, the Flow Controller ImplBase classes define optional
initialize,destroy,andreconfigure methods. They also define the required method
conput eFl ow.

The conput eFl owmethod is called by the framework whenever anew CAS enters the Aggregate
AnaysisEngine. It is given the CAS as an argument and must return an object which implements
the FI ow interface (the Flow object). The Flow Controller devel oper must define this object. It
isthe object that is responsible for routing this particular CAS through the components of the
Aggregate Analysis Engine. For convenience, the framework provides basic implementation of
flow objectsin the classes CasFlow_ImplBase and JCasFlow_ImplBase; use the JCas oneif you
are using the JCas interface to the CAS.

The framework then uses the Flow object and callsits next () method, which returnsa St ep
object (implemented by the UIMA Framework) that indicates what to do next with this CAS next.
There are three types of steps currently supported:

* Si npl eSt ep, which specifies asingle Analysis Engine that should receive the CAS next.

* Paral | el St ep, which specifies that multiple Analysis Engines should receive the CAS
next, and that the relative order in which these Analysis Engines execute does not matter.
Logically, they can runin parallel. The runtimeis not obligated to actually execute themin
parallel, however, and the current implementation will execute them serialy in an arbitrary
order.

* Fi nal St ep, which indicates that the flow is completed.

After executing the step, the framework will call the Flow object's next () method again to
determine the next destination, and thiswill be repeated until the Flow Object indicates that
processing is complete by returning aFi nal St ep.

The Flow Controller has accessto aFl owCont r ol | er Cont ext , which is a subtype of
Ui maCont ext . In addition to the configuration parameter and resource access provided
by aUi maCont ext , the Fl owCont r ol | er Cont ext also gives access to the metadata
for al of the Analysis Engines that the Flow Controller can route CASesto. Most Flow
Controllers will need to use thisinformation to make routing decisions. Y ou can get a
handle to the FI owCont r ol | er Cont ext by calling the get Cont ext () method defined

Flow Controller Developer's Guide 101

Example Code

inJCasFl owControl | er | npl Base and CasFl owCont rol | er I npl Base. Then, the

Fl owCont r ol | er Cont ext . get Anal ysi sEngi neMet aDat aMap method can be called to get a
map containing an entry for each of the Analysis Enginesin the Aggregate. The keysin this map
are the same as the delegate analysis engine keys specified in the aggregate descriptor, and the
values are the corresponding Anal ysi sEngi neMet aDat a objects.

Finally, the Flow Controller has optional methods addAnal ysi sEngi nes and

r emoveAnal ysi sengi nes. These methods are intended to notify the Flow Controller if new
Analysis Engines are available to route CASes to, or if previously available Analysis Engines

are no longer available. However, the current version of the Apache UIMA framework does not
support dynamically adding or removing Analysis Engines to/from an aggregate, so these methods
are not currently called. Future versions may support this feature.

4.1.2.

Example Code

This section walks through the source code of an example Flow Controller that simluates asimple
version of the “Whiteboard” flow model. At each step of the flow, the Flow Controller looksit all
of the available Analysis Engines that have not yet run on this CAS, and picks one whose input
requirements are satisfied.

The Java class for the exampleis
or g. apache. ui ma. exanpl es. f| ow. Wi t eboar dFl owCont r ol | er and the source codeis
included in the UIMA SDK under the exanpl es/ sr ¢ directory.

4.1.2.1. The WhiteboardFlowController Class

public class \WiteboardFl owController
ext ends CasFl owControl | er _I npl Base {
public Fl ow conput eFl ow(CAS aCAS)
t hrows Anal ysi sengi neProcessException {
Wi t eboar dFl ow fl ow = new Whi t eboar dFl ow() ;
/1l As of release 2.3.0, the following is not needed,
/1 because the framework does this automatically
/1 flow. setCas(aCAS);

return flow

}

cl ass Wit eboar dFl ow ext ends CasFl ow_| npl Base {
/] Discussed Later
}

}

The Wi t eboar dFl owCont r ol | er extendsfrom CasFl owControl | er | npl Base and
implements the conput eFl ow method. The implementation of the conput eFl ow method is very
simple; it just constructs anew Wi t eboar dFl ow object that will be responsible for routing this
CAS. The framework will add a handle to that CAS which it will later use to make its routing
decisions.

Note that we will have one instance of Wi t eboar dFl owper CAS, so if there are multiple CASes
being simultaneously processed there will not be any confusion.

4.1.2.2. The WhiteboardFlow Class

cl ass Wit eboar dFl ow ext ends CasFl ow_| npl Base {

102

Flow Controller Developer's Guide UIMA Version 2.10.2

Example Code

private Set mAl readyCall ed = new HashSet ();

public Step next() throws Anal ysi sEngi neProcessException {
/1l Get the CAS that this Flow object is responsible for routing.
/1 Each Flow instance is responsible for a single CAS.
CAS cas = getCas();

/] iterate over avail able AEs
Iterator aelter = getContext().getAnalysi sengi neMet aDat aMap() .
entrySet().iterator();
while (aelter.hasNext()) {
Map. Entry entry = (Map. Entry) aelter.next();
/1 skip AEs that were already called on this CAS
String aeKey = (String) entry.getKey();
if (!mAl readyCall ed. contai ns(aeKey)) {
/'l check for satisfied input capabilities
/1 (i.e. the CAS contains at | east one instance
/'l of each required input
Anal ysi sengi neMet aData nmd =
(Anal ysi sengi neMet aDat a) entry. get Val ue();
Capability[] caps = nd. get Capabilities();
bool ean satisfied = true;

for (int i =0; i < caps.length; i++) {
satisfied = inputsSatisfied(caps[i].getlnputs(), cas);
if (satisfied)
br eak;

}
if (satisfied) {
mAl r eadyCal | ed. add(aeKey) ;
i f (mLogger.isLoggabl e(Level . FI NEST)) {
get Cont ext (). get Logger (). | og(Level . FI NEST,
"Next AE is: " + aeKey);

}
return new Si npl eSt ep(aeKey);
}
}
}
/'l no appropriate AEs to call - end of flow

get Cont ext (). get Logger (). og(Level . FI NEST, "Fl ow Conplete.");
return new Final Step();

}

private bool ean inputsSatisfied(TypeO Feature[] alnputs, CAS aCAS) ({
/linplenmentation detail; see the actual source code

}

}

Each instance of the Wi t eboar dFl owCont r ol | er isresponsible for routing asingle CAS.
A handle to the CASinstance is available by calling the get Cas() method, which is a standard
method defined on the CasFl ow_| npl Base superclass.

Each timethe next method is called, the Flow object iterates over the metadata

of al of the available Analysis Engines (obtained viathe call to get Cont ext ().

get Anal ysi sEngi neMet aDat aMap) and sees if the input types declared in an
AnalysisEngineMetaData object are satisfied by the CAS (that is, the CAS contains at |east one
instance of each declared input type). The exact details of checking for instances of typesin the
CAS are not discussed here — see the WhiteboardFlowController.java file for the compl ete source.

When the Flow object decides which AnalysisEngine should be called next, it indicates this by
creating a SimpleStep object with the key for that AnalysisEngine and returning it:

UIMA Version 2.10.2 Flow Controller Developer's Guide 103

Creating the Flow Controller Descriptor

return new Si npl eSt ep(aekKey);

The Flow object keeps alist of which Analysis Enginesit hasinvoked in the mAl r eadyCal | ed
field, and never invokes the same Analysis Engine twice. Note thisis not a hard requirement. It

is acceptable to design a FlowController that invokes the sasme Analysis Engine more than once.
However, if you do this you must make sure that the flow will eventually terminate.

If there are no Analysis Engines left whose input requirements are satisfied, the Flow object signals
the end of the flow by returning a Final Step object:

return new Final Step();

Also, note the use of the logger to write tracing messages indicating the decisions made by the
Flow Controller. Thisisagood practice that helps with debugging if the Flow Controller is
behaving in an unexpected way.

4.2. Creating the Flow Controller Descriptor

To create a Flow Controller Descriptor in the CDE, use File - New — Other - UIMA - Flow
Controller Descriptor File:

|
—_—

Select a wizard

Wizards:

= [2= UIMA |
@? Analysis Engine Descriptar File
% Type System Descriptor File
—|-[z= Collection Processing Companents
Ef Cas Consumer Descriptor File
@’ Cas Initializer Descriptor File
Ef Collection Reader Descriptor File
—|-[z== Importable Parts =
Ef External Resource and Bindings (Resource Manager Configuration) Descript
2 Flow Controller Descriptor File
Index Collection Descriptor File
Type Priarities Descriptor File E'v

Mext = mish Cancel

Thiswill bring up the Overview page for the Flow Controller Descriptor:

104

Flow Controller Developer's Guide UIMA Version 2.10.2

Adding Flow Controller to an Aggregate

B srpiorz.ml 23 =8
{ flowControlierDescriptor2 xml
Overview H
* Implementabion Detais

» Runtime Information

—

Thic gection descaribes information about how to run the component
O updates the CAS
O multinle denloyment allawed

Mame of the Java dzsce fie

Browse !

« (werall Identfication Information

This section spadfies the basic identification information for this descriptor

Marme fowControlerDescrplor2
Version 1,0

Vendar

Clescripbon:

Cwerview | Parameters Farameter Settings Type System Capshiities-Inﬂexes Reenurces | Solrcs |

Type in the Java class name that implements the Flow Controller, or use the “Browse” button to
select it. Y ou must select a Java class that implements the FI owCont r ol | er interface.

Flow Controller Descriptors are very similar to Primitive Analysis Engine Descriptors —for
example you can specify configuration parameters and external resources if you wish.

If you wish to edit a Flow Controller Descriptor by hand, see UIMA References Section 2.5, “Flow
Controller Descriptors’ for the syntax.

4.3. Adding a Flow Controller to an Aggregate
Analysis Engine

To use aFlow Controller you must add it to an Aggregate Analysis Engine. Y ou can only have one
Flow Controller per Aggregate Analysis Engine. In the Component Descriptor Editor, the Flow
Controller is specified on the Aggregate page, as a choice in the flow control kind - pick “User-
defined Flow” . When you do, the Browse and Search buttons underneath become active, and alow
you to specify an existing Flow Controller Descriptor, which when you select it, will be imported
into the aggregate descriptor.

UIMA Version 2.10.2 Flow Controller Developer's Guide 105

Adding Flow Controller to CPE

= Component Engine Flow

Choose a flow type and describe the execution order of your engines,
The table shows the delegates using their key names,

Flow Kind: | User-defined Flow F—

Flow Controller: descriptors/flowCtr flowCantrollerDescriptor, xml e

Key Mame: flowControllerDescriptor
Search

Eﬂaecnnﬁguraﬁnn 3
ﬁaecnnﬁguraﬁnn&
Eﬂaecnnﬁguraﬁnn 32
aecnnﬁguraﬁnn 3

gE 4

The key name is created automatically from the name element in the Flow Controller Descriptor
being imported. If you need to change this name, you can do so by switching to the “ Source” view
using the bottom tabs, and editing the name in the XML source.

If you edit your Aggregate Analysis Engine Descriptor by hand, the syntax for adding a Flow
Controller is:

<del egat eAnal ysi sEngi neSpeci fi er s>

</ del egat eAnal ysi sEngi neSpeci fi er s>

<fl owController key=“[String]”>
<import .../>

</flowController>

As usual, you can use either in import by location or import by name — see UIMA References
Section 2.2, “Imports”.

The key that you assign to the FlowController can be used elsewhere in the Aggregate Analysis
Engine Descriptor —in parameter overrides, resource bindings, and Sofa mappings.

4.4. Adding a Flow Controller to a Collection
Processing Engine

Flow Controllers cannot be added directly to Collection Processing Engines. To use a Flow
Controller in a CPE you first need to wrap the part of your CPE that requires complex flow control
into an Aggregate Analysis Engine, and then add the Aggregate Analysis Engine to your CPE. The
CPE's deployment and error handling options can then only be configured for the entire Aggregate
Analysis Engine as a unit.

4.5. Using Flow Controllers with CAS Multipliers

If you want your Flow Controller to work inside an Aggregate Analysis Engine that contains a CAS
Multiplier (see Chapter 7, CAS Multiplier Developer's Guide), there are additional things you must
consider.

When your Flow Controller routes a CAS to a CAS Multiplier, the CAS Multiplier may produce
new CA Ses that then will also need to be routed by the Flow Controller. When a new output

106

Flow Controller Developer's Guide UIMA Version 2.10.2

Continuing the Flow When Exceptions Occur

CASis produced, the framework will call the newCasPr oduced method on the Flow object that
was managing the flow of the parent CAS (the one that was input to the CAS Multiplier). The
newCas Pr oduced method must create a new Flow object that will be responsible for routing the
new output CAS.

Inthe CasFl ow_| npl Base and JCasFl ow_| npl Base classes, the newCasPr oduced method is
defined to throw an exception indicating that the Flow Controller does not handle CAS Multipliers.
If you want your Flow Controller to properly deal with CAS Multipliers you must override this
method.

If your Flow class extends CasFl ow_| npl Base, the method signature to overrideis:

prot ect ed Fl ow newCasProduced(CAS newQut put Cas, String producedBy)

If your Flow class extends JCasFl ow_I npl Base, the method signature to overrideis:

prot ect ed Fl ow newCasProduced(JCas newCQut put Cas, String producedBy)

Also, thereisavariant of Fi nal St ep which can only be specified for output CA Ses produced

by CAS Multipliers within the Aggregate Analysis Engine containing the Flow Controller. This
version of Fi nal St ep is produced by the calling the constructor with at r ue argument, and it
causes the CAS to be immediately released back to the pool. No further processing will be done
onitand it will not be output from the aggregate. Thisis the way that you can build an Aggregate
Analysis Engine that outputs some new CASes but not others. Note that if you never want any new
CASesto be output from the Aggregate Analysis Engine, you don't need to use this; instead just
declare <out put sNewCASes>f al se</ out put sNewCASes> in your Aggregate Analysis Engine
Descriptor as described in Section 7.3.3, “ Aggregate CAS Multipliers’.

For more information on how CAS Multipliersinteract with Flow Controllers, see Section 7.3.2,
“CAS Multipliers and Flow Control”.

4.6. Continuing the Flow When Exceptions Occur
If an exception occurs when processing a CAS, the framework may call the method

bool ean conti nueOnFail ure(String fail edAeKey, Exception failure)

on the Flow object that was managing the flow of that CAS. If this method returnst r ue, then the
framework may continue to call the next () method to continue routing the CAS. If this method
returnsf al se (the default), the framework will not make any more calls to the next () method.

In the case where the last Step was a Parallel Step, if at |east one of the destinations resulted in
afailure, then cont i nueOnFai | ur e will be called to report one of the failures. If this method
returns true, but one of the other destinations in the Parallel Step resulted in afailure, then the
cont i nueOnFai | ur e method will be called again to report the next failure. This continues until
either this method returns false or there are no more failures.

Notethat it is possible for processing of a CAS to be aborted without this method being called. This
method is only called when an attempt is being made to continue processing of the CAS following
an exception, which may be an application configuration decision.

In any case, if processing is aborted by the framework for any reason, including because
cont i nueOnFai | ur e returned false, the framework will call the Fl ow. abort ed() method to
allow the Flow object to clean up any resources.

UIMA Version 2.10.2 Flow Controller Developer's Guide 107

Continuing the Flow When Exceptions Occur

For an example of how to continue after an exception, see the example code
or g. apache. ui ma. exanpl es. f| ow. AdvancedFi xedFl owCont r ol | er, inthe exanpl es/
sr ¢ directory of the UIMA SDK. This exampe also demonstrates the use of Par al | el St ep.

108 Flow Controller Developer's Guide UIMA Version 2.10.2

Chapter 5. Annotations, Artifacts, and Sofas

Up to this point, the documentation has focused on analyzing strings of Unicode text, producing
subtypes of Annotations which reference offsetsin those strings. This chapter generalizes this
concept and shows how other kinds of artifacts can be handled, including non-text things like audio
and images, and how you can define your own kinds of “annotations’ for these.

5.1. Terminology

5.1.1. Artifact

The Artifact is the unstructured thing being analyzed by an annotator. It could be an HTML web
page, an image, a video stream, a recorded audio conversation, an MPEG-4 stream, etc. Artifacts
are often restructured in the course of processing to facilitate particular kinds of analysis. For
instance, an HTML page may be converted into a*“de-tagged” version. Annotators at different
placesin the pipeline may be analyzing different versions of the artifact.

5.1.2. Subject of Analysis — Sofa

Each representation of an Artifact is called a Subject of Analysis, abbreviated using the acronym
“Sofd’” which stands for Subject OF Analysis. Annotation metadata, which have explicit
designations of sub-regions of the artifact to which they apply, are always associated with a
particular Sofa. For instance, an annotation over text specifies two features, the begin and end,
which represent the character offsets into the text string Sofa being analyzed.

Other examples of representations of Artifacts, which could be Sofasinclude: An HTML web page,
a detagged web page, the trandated text of that document, an audio or video stream, closed-caption
text from avideo stream, €tc.

Often, there is one Sofa being analyzed in a CAS. The next chapter will show how UIMA
facilitates working with multiple representations of an artifact at the same time, in the same CAS.

5.2. Formats of Sofa Data

Sofa data can be Java Unicode Strings, Feature Structure arrays of primitive types, or a URI which
references remote data available via a network connection.

The arrays of primitive types can be things like byte arrays or float arrays, and are intended to be
used for artifacts like audio data, image data, etc.

The URI form holds a URI specification String.
Note: Sofadata can be "serialized" using an XML format; when it is, the String data

being serialized must not include invalid XML characters. See Section 8.3.1, “ Character
Encoding Issues with XML Serialization” [138].

Annotations, Artifacts & Sofas 109

Setting and Accessing Sofa Data

5.3. Setting and Accessing Sofa Data
5.3.1. Setting Sofa Data

When a CAS s created, you can set its Sofa Data, just one time; this property insures that metadata
describing regions of the Sofaremain valid. As a consequence, the following methods that set data
for agiven Sofa can only be called once for a given Sofa.

The following methods on the CAS set the Sofa Data to one of the 3 formats. Assume that the
variable “aCas’ holds areference to a CAS:

aCas. set Sof aDat aSt ri ng(docunent _text_string, mnme_type_string);
aCas. set Sof aDat aArray(feature_structure_primtive_array, mne_type_string);
aCas. set Sof aDat aURI (uri _string, mnme_type_string);

In addition, the method aCas. set Docunent Text (docunent _t ext _stri ng) may still be used,
and isequivalent to set Sof aDat aStri ng(string, "text").Themimetypeiscurrently not
used by the UIMA framework, but may be set and retrieved by user code.

Feature Structure primitive arrays are @l the UIMA Array types except arrays of Feature
Structures, Strings, and Booleans. Typically, these are arrays of bytes, but can be other types, such
asfloats, longs, etc.

The URI string should conform to the standard URI format.

5.3.2. Accessing Sofa Data

The analysis agorithms typically work with the Sofa data. The following methods on the CAS

access the Sofa Data:
String aCas. get Docunent Text () ;
String aCas. get Sof aDat aSt ri ng() ;
Feat ureStructure aCas. get Sof aDat aArray() ;
String aCas. get Sof aDat aURI () ;
String aCas. get Sof aM nmeType();

The get Docunent Text and get Sof aDat aSt ri ng return the same text string. The

get Sof aDat aURI returnsthe URI itself, not the datathe URI is pointing to. Y ou can use standard
Javal/O capabilities to get the data associated with the URI, or use the UIMA Framework
Streaming method described next.

5.3.3. Accessing Sofa Data using a Java Stream

The framework provides a consistent method for accessing the Sofa data, independent of it being
stored locally, or accessed remotely using the URI. Get a Java InputStream instance from the Sofa
data using:

I nput Stream i nput St ream = aCas. get Sof aDat aSt r ean() ;

 If thedataislocal, this method returns a ByteArrayl nputStream. This stream provides bytes.

« If the Sofa data was set using setDocumentText or setSofaDataString, the String is
converted to bytes by using the UTF-8 encoding.

110 Annotations, Artifacts & Sofas UIMA Version 2.10.2

The Sofa Feature Structure

« If the Sofa data was set as a DataArray, the bytesin the data array are serialized, high-
byte first.

* If the Sofa data was specified as a URI, this method returns the handle from
url.openStream(). Java offers built-in support for several URI schemesincluding “FILE:”,
“HTTP.”, “FTP.” and has an extensible mechanism, URLSt r eanHand! er Fact ory, for
customizing access to an arbitrary URI. See more details at http://java.sun.com/j2se/1.5.0/
docs/api/javalnet/URL StreamHandlerFactory.html .

5.4. The Sofa Feature Structure

Information about a Sofais contained in a specia built-in Feature Structure of type

ui ma. cas. Sof a. Thisfeature structure is created and managed by the UIMA Framework; users
must not create it directly. Although these Sofa type instances are implemented as standard feature
structures, generic CAS APIs can not be used to create Sofas or set their features. Instead, Sofas
are created implicitly by the creation of new CAS views. Similarly, Sofa features are set by CAS
methods such ascas. set Docunment Text () .

Features of the Sofatype include

» SofalD: Every Sofain a CAS has a unique SofalD. Sofal Ds are the primary handle for
access. ThisID is often the same as the name string given to the Sofa by the developer, but it
can be mapped to a different name (see Section 6.4, “ Sofa Name Mapping”.

* Mimetype: This string feature can be used to describe the type of the data represented by a
Sofa. It isnot used by the framework; the framework provides APIsto set and get its value.

» SofaData: The Sofadataitself. This data can be resident in the CAS or it can be areference
to data outside the CAS.

5.5. Annotations

Annotators add meta data about a Sofato the CAS. It is often useful to have this metadata
denote aregion of the Sofato which it applies. For instance, assuming the Sofais a String, the
metadata might describe a particular substring as the name of a person. The built-in UIMA type,
uima.tcas.Annotation, has two extra features that enable this - the begin and end features - which
denote a character position offset into the text string being analyzed.

The concept of “annotations’ can be generalized for non-string kinds of Sofas. For instance, an
audio stream might have an audio annotation which describes sounds regions in terms of floating
point time offsetsin the Sofa. An image annotation might use two pairs of x,y coordinates to define
the region the annotation applies to.

5.5.1.

Built-in Annotation types

The built-in CAStype, ui ma. t cas. Annot at i on, isjust one kind of definition of an Annotation.
It was designed for annotating text strings, and has begin and end features which describe which
substring of the Sofa being annotated.

For applications which have other kinds of Sofas, the UIMA developer will design their own
kinds of Annotation types, as needed to describe an annotation, by declaring new types which are
subtypes of ui ma. cas. Annot at i onBase. For instance, for images, you might have the concept
of arectangular region to which the annotation applies. In this case, you might describe the region
with 2 pairs of x, y coordinates.

UIMA Version 2.10.2 Annotations, Artifacts & Sofas 111

http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLStreamHandlerFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLStreamHandlerFactory.html

Annotations have an associated Sofa

5.5.2. Annotations have an associated Sofa

Annotations are always associated with a particular Sofa. In subsequent chapters, you will learn
how there can be multiple Sofas associated with an artifact; which Sofa an annotation referstois
described by the Annotation feature structure itself.

All annotation types extend from the built-in type uima.cas.AnnotationBase. This type has one
feature, areference to the Sofa associated with the annotation. This value is currently used by
the Framework to support the getCoveredText() method on the annotation instance - this returns
the portion of atext Sofathat the annotation spans. It aso is used to insure that the Annotation is
indexed only in the CAS View associated with this Sofa.

5.6. AnnotationBase

A built-in type, ui ma. cas. Annot at i onBase, isprovided by UIMA to allow users to extend
the Annotation capabilities to different kinds of Annotations. The Annot at i onBase type has
one feature, named sof a, which holds areference to the Sof a feature structure with which this
annotation is associated. The sof a feature is automatically set when creating an annotation
(meaning — any type derived from the built-in ui ma. cas. Annot at i onBase type); it should not
be set by the user.

Thereis one method, get Vi ew(), provided by Annot at i onBase that returns the CAS View for
the Sofa the annotation is pointing at. Note that this method always returns a CAS, even when
applied to JCas annotation instances.

The built-in type ui ma. t cas. Annot at i on extendsui na. cas. Annot at i onBase and adds two
features, abegin and an end feature, which are suitable for identifying a span in atext string that
the annotation applies to. Users may define other extensionsto Annot at i onBase with aternative
specifications that can denote a particular region within the subject of analysis, as appropriate to
their application.

112 Annotations, Artifacts & Sofas UIMA Version 2.10.2

Chapter 6. Multiple CAS Views of an Artifact

UIMA provides an extension to the basic model of the CAS which supports analysis of multiple
views of the same artifact, all contained with the CAS. This chapter describes the concepts,
terminology, and the APl and XML extensions that enable this.

Multiple CAS Views can simplify things when different versions of the artifact are needed at
different stages of the analysis. They are aso key to enabling multimodal analysis where the initial
artifact is transformed from one modality to another, or where the artifact itself is multimodal, such
asthe audio, video and closed-captioned text associated with an MPEG object. Each representation
of the artifact can be analyzed independently with the standard UIMA programming model; in
addition, multi-view components and applications can be constructed.

UIMA supports this by augmenting the CAS with additional light-weight CAS objects, one for
each view, where these objects share most of the same underlying CAS, except for two things: each
view hasits own set of indexed Feature Structures, and each view has its own subject of analysis
(Sofa) - its own version of the artifact being analyzed. The Feature Structure instances themselves
are in the shared part of the CAS; only the entries in the indexes are unique for each CAS view.

All of these CAS view objects are kept together with the CAS, and passed as a unit between
componentsin a UIMA application. APIs exist which allow components and applications to switch
among the various view objects, as needed.

Feature Structures may be indexed in multiple views, if necessary. New methods on CAS Views
facilitate adding or removing Feature Structures to or from their index repositories:

aVi ew. addFsTol ndexes(aFeat ureStruct ure)
aVi ew. r enoveFsFr om ndexes(aFeat ureSt ruct ur e)

specify the view in which this Feature Structure should be added to or removed from the indexes.

6.1. CAS Views and Sofas

Sofas (see Section 5.1.2, “ Subject of Analysis— Sofa’) and CAS Views are linked. In this
implementation, every CAS view has one associated Sofa, and every Sofa has one associated CAS
View.

6.1.1.

Naming CAS Views and Sofas

The developer assigns a name to the View / Sofa, which is asimple string (following the rules
for Javaidentifiers, usually without periods, but see special exception below). These names are
declared in the component XML metadata, and are used during assembly and by the runtime to
enabl e switching among multiple Views of the CAS at the same time.

Note: The nameis called the Sofaname, for historical reasons, but it applies equally to the
View. Intherest of this chapter, we'll refer to it as the Sofa name.

Some applications contain components that expect a variable number of Sofas asinput or output.
An example of acomponent that takes a variable number of input Sofas could be one that takes
several trangdlations of a document and merges them, where each trandation was in a separate Sofa.

Y ou can specify avariable number of input or output sofa names, where each name has the same
base part, by writing the base part of the name (with no periods), followed by a period character
and an asterisk character (.*). These denote sofas that have names matching the base part up to the

Multiple CAS Views 113

Multi/Single View partsin Applications

period; for example, names such asbase_nane_part . TTX_3d would match a specification of
base_nane_part. *.

6.1.2. Multi-View, Single-View components & applications

Components and applications can be written to be Multi-View or Single-View. Most components
used as primitive building blocks are expected to be Single-View. UIMA provides capabilities

to combine these kinds of components with Multi-View components when assembling analysis
aggregates or applications.

Single-View components and applications use only one subject of analysis, and one CAS View.
The code and descriptors for these components do not use the facilities described in this chapter.

Conversdly, Multi-View components and applications are aware of the possibility of multiple
Views and Sofas, and have code and XML descriptors that create and manipul ate them.

6.2. Multi-View Components

6.2.1. How UIMA decides if a component is Multi-View

Every UIMA component has an associated XML Component Descriptor. Multi-View components
are identified simply as those whose descriptors declare one or more Sofa names in their Capability
sections, as inputs or outputs. If a Component Descriptor does not mention any input or output Sofa
names, the framework treats that component as a Single-View component.

6.2.2. Multi-View: additional capabilities

Additional capabilities provided for components and applications aware of the possibilities of
multiple Views and Sofas include:

» Creating new Views, and for each, setting up the associated Sofa data

» Getting areference to an existing View and its associated Sofa, by name

 Specifying aview in which to index a particular Feature Structure instance

6.2.3. Component XML metadata

Each Multi-View component that creates a Sofa or wants to switch to a specific previously created
Sofa must declare the name for the Sofa in the capabilities section. For example, a component
expecting as input aweb document in html format and creating a plain text document for further
processing might declare:

<capabilities>
<capability>
<i nput s/ >
<out put s/ >
<i nput Sof as>
<sof aName>r awCont ent </ sof aNanme>
</'i nput Sof as>
<out put Sof as>
<sof aNanme>det agCont ent </ sof aNane>
</ out put Sof as>
</ capability>
</ capabilities>

Details on this specification are found in UIMA References Chapter 2, Component Descriptor
Reference. The Component Descriptor Editor supports Sofa declarations on the Capabilites Page.

114 Multiple CAS Views UIMA Version 2.10.2

Sofa Capabilities & APIsfor Apps

6.3. Sofa Capabilities and APIs for Applications

In addition to components, applications can make use of these capabilities. When an application
creates anew CAS, it also createstheinitia view of that CAS - and this view isthe object that is
returned from the create call. Additional views beyond thisfirst one can be dynamically created at
any time. The application can use the Sofa APIs described in Chapter 5, Annotations, Artifacts, and
Sofas to specify the datato be analyzed.

If an Application createsanew CAS, theinitial CASthat is created will be aview named
“_InitialView”. This name can be used in the application and in Sofa Mapping (see the next
section) to refer to this otherwise unnamed view.

6.4. Sofa Name Mapping

Sofa Name mapping is the mechanism which enables UIMA component devel opers to choose
locally meaningful Sofa namesin their source code and let aggregate, collection processing engine
devel opers, and application devel opers connect output Sofas created in one component to input
Sofas required in another.

At agiven aggregation level, the assembler or application developer defines namesfor al the
Sofas, and then specifies how these names map to the contained components, using the Sofa Map.

Consider annotator code to create anew CAS view:

CAS vi ewX = cas.createViewm("X");

Or code to get an existing CAS view:
CAS viewX = cas.getView"X");

Without Sofa name mapping the Sofal D for the new Sofawill be “X”. However, if aname
mapping for “X” has been specified by the aggregate or CPE calling this annotator, the actual
SofalD in the CAS can be different.

All Sofasin a CAS must have unique names. Thisis accomplished by mapping all declared Sofas
as described in the following sections. An attempt to create a Sofa with a SofalD already in use will
throw an exception.

Sofa name mapping must not usethe “.” (period) character. Runtime Sofa mapping maps names up
tothe®.” and appends the period and the following characters to the mapped hame.

To get aJava lterator for al theviewsin a CAS:
Iterator allViews = cas.getViewmterator();

To get aJava lterator for selected viewsin a CAS, for example, views whose name is either exactly
equal to namePrefix or is of the form namePrefix.suffix, where suffix can be any String:

Iterator soneViews = cas.getViewiterator(String nanePrefiXx);

Note: Sofaname mapping is applied to namePrefix.

Sofa name mappings are not currently supported for remote Analysis Engines. See Section 6.4.5,
“Name Mapping for Remote Services’ [118].

UIMA Version 2.10.2 Multiple CAS Views 115

Name Mapping in an Aggregate Descriptor

6.4.1. Name Mapping in an Aggregate Descriptor

For each component of an Aggregate, name mapping specifies the conversion between component
Sofa names and names at the aggregate level.

Here's an example. Consider two Multi-View annotators to be assembled into an aggregate which
takes an audio segment consisting of spoken English and produces a German text tranglation.

The first annotator takes an audio segment as input Sofa and produces a text transcript as
output Sofa. The annotator designer might choose these Sofa names to be “ Audiol nput” and
“TranscribedText".

The second annotator is designed to trandate text from English to German. This devel oper might
choose the input and output Sofa names to be “ EnglishDocument” and “ GermanDocument”,
respectively.

In order to hook these two annotators together, the following section would be added to the top
level of the aggregate descriptor:

<sof aMappi ngs>
<sof aMappi ng>
<conponent Key>SpeechToText </ conmponent Key>
<conponent Sof aNane>Audi ol nput </ conponent Sof aNanme>
<aggr egat eSof aNane>Segenent edAudi o</ aggr egat eSof aNane>
</ sof aMappi ng>
<sof aMappi ng>
<conponent Key>SpeechToText </ conmponent Key>
<conponent Sof aNanme>Tr anscr i bedText </ conponent Sof aNane>
<aggr egat eSof aName>Engl i shTranscri pt </ aggr egat eSof aNanme>
</ sof aMappi ng>
<sof aMappi ng>
<conponent Key>Engl i shToGer manTr ansl at or </ conponent Key>
<conponent Sof aNane>Engl i shDocunent </ conponent Sof aNanme>
<aggr egat eSof aNane>Engl i shTranscri pt </ aggr egat eSof aNanme>
</ sof aMappi ng>
<sof aMappi ng>
<conponent Key>Engl i shToGer manTr ansl| at or </ conponent Key>
<conponent Sof aNane>CGer manDocunent </ conponent Sof aNanme>
<aggr egat eSof aNane>Cer manTr ansl| at i on</ aggr egat eSof aNane>
</ sof aMappi ng>
</ sof aMappi ngs>

The Component Descriptor Editor supports Sofa name mapping in aggregates and simplifies the
task. See UIMA Tools Guide and Reference Section 1.9.1, “ Sofa (and view) name mappings’ for
details.

6.4.2. Name Mapping in a CPE Descriptor

The CPE descriptor aggregates together a Collection Reader and CAS Processors (Annotators
and CAS Consumers). Sofa mappings can be added to the following elements of CPE descriptors:
<col l ectionlterator>,<caslnitializer>andthe<casProcessor>. To be consistent
with the organization of CPE descriptors, the maps for the CPE descriptor are distributed among
the XML markup for each of the parts (collectionlterator, caslnitializer, casProcessor). Because
of thisthe <conponent Key> element is not needed. Finally, rather than sub-elements for

the parts, the XML markup for these uses attributes. See UIMA References Section 3.6.1.3,
“<sofaNameMappings> Element”.

116 Multiple CAS Views UIMA Version 2.10.2

CAS View received by Process

Here's an example. Let's use the aggregate from the previous section in a collection processing
engine. Here we will add a Collection Reader that outputs audio segments in an output Sofa
named “nextSegment”. Remember to declare an output Sofa nextSegment in the collection reader
description. Well add a CAS Consumer in the next section.

<col | ecti onReader >
<col | ectionlterator>
<descri pt or >

</ descri pt or >
<configurati onParaneterSettings>...</configurationParaneterSettings>
<sof aNameMappi ngs>
<sof aNameMappi ng conponent Sof aName=" next Segnent "
cpeSof aNane=" Segenent edAudi 0"/ >
</ sof aNanmeMappi ngs>
</col |l ectionlterator>
<caslnitializer/>
<col | ecti onReader >

At this point the CAS Processor section for the aggregate does not need any Sofa mapping because
the aggregate input Sofa has the same name, “ SegementedAudio”, asis being produced by the
Collection Reader.

6.4.3. Specifying the CAS View delivered to a Components
Process Method

All components receive a Sofanamed “_Initial View”, or a Sofa that is mapped to this name.

For example, assume that the CAS Consumer to be used in our CPE is a Single-View component
that expects the analysis results associated with the input CAS, and that we want it to use the results
from the translated German text Sofa. The following mapping added to the CAS Processor section
for the CPE will instruct the CPE to get the CAS view for the German text Sofa and passit to the
CAS Consumer:

<casProcessor >

<sof aNameMappi ngs>
<sof aNameMappi ng conponent Sof aName="_I|ni ti al Vi ew'
cpeSof aNanme=" Ger manTr ansl ati on"/ >
<sof aNameMappi ngs>
</ casProcessor>

An dternative syntax for this kind of mapping isto simply leave out the component sofanamein
this case.

6.4.4. Name Mapping in a UIMA Application

Applications which instantiate UIMA components directly using the UIMAFramework methods
can aso create atop level Sofa mapping using the “additional parameters’ capability.

/lcreate a "root" U MA context for your whol e application

Ui naCont ext Admi n r oot Cont ext =
Ul MAFr amewor k. newUi maCont ext (Ul MAFr amewor k. get Logger (),
U MAFr anewor k. newDef aul t Resour ceManager (),
U MAFr amewor k. newConf i gur ati onManager ()) ;

UIMA Version 2.10.2 Multiple CAS Views 117

Name Mapping for Remote Services

i nput = new XM.I nput Source("test.xm");
desc = Ul MAFr amewor k. get XMLPar ser () . par seAnal ysi sengi neDescri ption(i nput);

/ /I setup sofa nane mappi ngs using the api
HashMap sof amappi ngs = new HashMap() ;

sof amappi ngs. put ("1 ocal Nanel", "gl obal Nanel");
sof amappi ngs. put ("l ocal Nane2", "gl obal Nane2");

//create a U MA Context for the new AE we are about to create

//first argument is unique key anong all AEs used in the application
U maCont ext Admi n chi | dCont ext = root Cont ext.createChild("nyAE", sofanap);

/linstanti ate AE, passing the U MA Context through the additional
/| paranmet ers map

Map addi ti onal Parans = new HashMap();
addi ti onal Par ans. put (Resour ce. PARAM Ul MA_CONTEXT, chi | dCont ext);

Anal ysi sengi ne ae =
Ul MAFr amewor k. pr oduceAnal ysi sengi ne(desc, addi ti onal Par ans) ;

Sofa mappings are applied from the inside out, i.e., local to global. First, any aggregate mappings
are applied, then any CPE mappings, and finally, any specified using this “additional parameters’
capability.

6.4.5. Name Mapping for Remote Services

Currently, no client-side Sofa mapping information is passed from a UIMA client to aremote
service. This can cause complications for UIMA servicesin a Multi-View application.

Remote Multi-View services will work only if the serviceis Single-View, or if the Sofa names
expected by the service exactly match the Sofa names produced by the client.

If your application requires Sofa mappings for aremote Analysis Engine, you can wrap your
remotely deployed AE in an aggregate (on the remote side), and specify the necessary Sofa
mappings in the descriptor for that aggregate.

6.5. JCas extensions for Multiple Views

The JCasinterface to the CAS can be used with any / al views. Y ou can aways get a JCas object
from an existing CAS object by using the method getJCas(); this call will create the JCas if it
doesn't already exist. If it does exigt, it just returns the existing JCas that corresponds to the CAS.

JCas implements the getView(...) method, enabling switching to other named views, just like the
corresponding method on the CAS. The JCas version, however, returns JCas objects, instead of
CAS objects, corresponding to the view.

6.6. Sample Multi-View Application

The UIMA SDK contains a simple Sofa example application which demonstrates many Sofa
specific concepts and methods. The source code for the application driver isin exanpl es/

src/ or g/ apache/ ui ma/ exanpl es/ Sof aExanpl eAppl i cati on. j ava and the Multi-View
annotator is given in Sof aExanpl eAnnot at or . j ava in the same directory.

118 Multiple CAS Views UIMA Version 2.10.2

Annotator Descriptor

This sample application demonstrates alanguage translator annotator which expects an input text
Sofawith an English document and creates an output text Sofa containing a German translation.
Some of the key Sofa conceptsillustrated here include:

 Sofa creation.

» Access of multiple CASviews.

* Unique feature structure index space for each view.

* Feature structures containing cross references between annotationsin different CAS views.

» The strong affinity of annotations with a specific Sofa

6.6.1. Annotator Descriptor

The annotator descriptor in exanpl es/ descri pt or s/ anal ysi s_engi ne/
Sof aExanpl eAnnot at or . xml declares an input Sofa named “ EnglishDocument” and an output
Sofa named “ GermanDocument”. A custom type “ CrossAnnotation” is also defined:

<t ypeDescri pti on>
<nanme>sof a. t est. Cr ossAnnot at i on</ nane>
<descri ption/ >
<supertypeNane>ui ma. t cas. Annot at i on</ supert ypeNane>
<f eat ures>
<f eat ureDescri pti on>
<nane>ot her Annot at i on</ nanme>
<descri ption/ >
<rangeTypeNane>ui ma. t cas. Annot ati on</ r angeTypeNane>
</ featureDescription>
</ f eatures>
</typeDescri pti on>

The Cr ossAnnot at i on typeisderived from ui ma. t cas. Annot at i on and includes one new
feature: areference to another annotation.

6.6.2. Application Setup

The application driver instantiates an analysis engine, seAnnot at or , from the annotator
descriptor, obtains anew CAS using that engine's CAS definition, and creates the expected input
Sofausing:

CAS cas = seAnnot at or. newCAS() ;
CAS aVi ew = cas. createVi em "Engli shDocunment ") ;

Since seAnnot at or isaprimitive component, and no Sofa mapping has been defined, the SofalD
will be “EnglishDocument”. Loca Sofa datais set using:

aVi ew. set Docunent Text ("t his beer is good");

At this point the CAS contains all necessary inputs for the translation annotator and its process
method is called.

6.6.3. Annotator Processing

Annotator processing consists of parsing the English document into individual words, doing word-
by-word trandation and concatenating the trandations into a German trandlation. Analysis metadata
on the English Sofawill be an annotation for each English word. Analysis metadata on the German
Sofawill beaCr ossAnnot at i on for each German word, where the ot her Annot at i on feature
will be areference to the associated English annotation.

UIMA Version 2.10.2 Multiple CAS Views 119

Accessing the results of analysis

Code of interest includes two CAS views:

/1l get View of the English text Sofa
engl i shVi ew = aCas. get Vi ew(" Engl i shDocunent ") ;

/1 Create the output German text Sofa
germanVi ew = aCas. creat eVi ew(" Ger manDocunent ") ;

the indexing of annotations with the appropriate view:

engl i shVi ew. addFsTol ndexes(engAnnot) ;

.ge.r rrian\ﬂ ew. addFsTol ndexes(ger mAnnot) ;

and the combining of metadata belonging to different Sofas in the same feature structure:

/1 add link to English text
ger mAnnot . set Feat ur eVal ue(ot her, engAnnot);

6.6.4. Accessing the results of analysis

The application needs to get the results of analysis, which may bein different views. Analysis
results for each Sofa are dumped independently by iterating over all annotations for each associated
CAS view. For the English Sofa:

//get annotation iterator for this CAS

FSI ndex anl ndex = aVi ew. get Annot ati onl ndex() ;

FSIterator anlter = anlndex.iterator();

while (anlter.isValid()) {
Annot ati onFS annot = (AnnotationFS) anlter.get();
Systemout.println(" " + annot.get Type().get Name()

+ ": " + annot. get CoveredText());

anl ter. noveToNext () ;

}
Iterating over al German annotations looks the same, except for the following:

if (annot.getType() == cross) {
Annot ati onFS crossAnnot =
(Annot ati onFS) annot . get Feat ur eVal ue(ot her) ;
System out. println(" ot her annotation feature: "
+ crossAnnot . get CoveredText ());
}

Of particular interest here is the built-in Annotation type method get Cover edText () . This
method uses the “begin” and “end” features of the annotation to create a substring from the CAS
document. The SofaRef feature of the annotation is used to identify the correct Sofa's data from
which to create the substring.

The example program output is:

---Printing all annotations for English Sofa---
ui ma. t cas. Docunment Annot ati on: this beer is good
ui ma. tcas. Annotation: this

ui ma. t cas. Annot ati on: beer

ui ma. tcas. Annotation: is

120 Multiple CAS Views UIMA Version 2.10.2

Views APl Summary

ui ma. t cas. Annot ati on: good

---Printing all annotations for Gernan Sof a---
ui ma. t cas. Docunent Annot ati on: das bier ist gut
sof a. test. CrossAnnot ati on: das

ot her annotation feature: this
sof a. test. CrossAnnot ati on: bier

ot her annotation feature: beer
sof a. t est. CrossAnnot ati on: i st

ot her annotation feature: is
sof a. test. CrossAnnot ati on: gut

ot her annotation feature: good

6.7. Views APl Summary

The recommended way to deliver a particular CAS view to a Single-View component is to use by
Sofa-mapping in the CPE and/or aggregate descriptors.

For Multi-View components or applications, the following methods are used to create or get a
reference to a CAS view for a particular Sofa:

Creating anew View:

JCas newVi ew
CAS newVi ew

aJCas.createView String | ocal NameOf TheVi ewBef or eMappi ng) ;
aCAS .createView(String | ocal NameCf TheVi ewBef or eMappi ng) ;

Getting aView froma CAS or JCas:

JCas nyView = aJCas. getView String | ocal NaneOrf TheVi ewBef or eMappi ng) ;

CAS nyView = aCAS .getViewString | ocal NameOf TheVi ewBef or eMappi ng) ;
Iterator allViews = aCasOrJCas. getViewlterator();

Iterator someViews = aCasOrJCas.getView terator(String | ocal Vi emNamePrefi x);

The following methods are useful for al annotators and applications:

Setting Sofa datafor a CAS or JCas:

aCasOr JCas. set Docunent Text (Stri ng docText);

aCasOrJCas. set Sof aDat aString(String docText, String m neType);

aCasOr JCas. set Sof aDat aArray(FeatureStructure array, String nm nmeType);
aCasOrJCas. set Sof aDat aURI (String uri, String nm nmeType);

Getting Sofa datafor a particular CAS or JCas:

String doc = aCasOrJCas. get Docunent Text () ;

String doc = aCasOrJCas. get Sof aDat aStri ng() ;
FeatureStructure array = aCasOrJCas. get Sof aDat aArray();
String uri = aCasOrJCas. get Sof aDat aURI () ;

Input Streamis = aCasOr JCas. get Sof aDat aSt r ean() ;

6.8. Sofa Incompatibilities between UIMA version 1
and version 2

A major changein version 2 isrelated to the support of Single-View components and applications.
Given an analysis engine, ae, the AP

UIMA Version 2.10.2 Multiple CAS Views 121

Sofa Incompatibilities: V1 and V2

CAS cas = ae. newCas();

used to return the base CAS. Now it returns aview of the Sofanamed “_InitialView”. This Sofa
will actually only be created if any Sofa datais set for thisview. Theinitial view is used for Single-
View applications and Multi-View annotators with no Sofa mapping.

The process method of Multi-View annotators receive the base CAS, however the base CAS no
longer has an index repository to hold “global” data. Global data needs to be put in a specific
named CAS view of your choice.

Note: A Multi-View component is no longer passed the base CAS view. See Section 6.4.3,
“CAS View received by Process’ [117].

Because of these changes, the following scenarios will break with v2.0 clients:
» Any version 1.x services (you must migrate the servicesto version 2).
» Applications or components explicitly referencing “_DefaultTextSofaName” in code or
descriptors.
» Multi-View applications using the Base CAS index repository.

122 Multiple CAS Views UIMA Version 2.10.2

Chapter 7. CAS Multiplier Developer's Guide

The UIMA analysis components (Annotators and CAS Consumers) described previously in this
manual all take asingle CAS asinput, optionally make modifications to it, and output that same
CAS. This chapter describes an advanced feature that became available in the UIMA SDK v2.0:
anew type of analysis component called a CAS Multiplier, which can create new CASes during
processing.

CAS Multipliers are often used to split alarge artifact into manageabl e pieces. Thisisacommon
requirement of audio and video analysis applications, but can also occur in text analysis on very
large documents. A CAS Multiplier would take asinput a single CAS representing the large artifact
(perhaps by aremote reference to the actual data— see Section 5.2, “Formats of Sofa Data’) and
produce as output a series of new CA Ses each of which contains only a small portion of the original
artifact.

CAS Multipliers are not limited to dividing an artifact into smaller pieces, however. A CAS
Multiplier can aso be used to combine smaller segments together to form larger segments. In
general, a CAS Multiplier is used to change the segmentation of a series of CASes; that is, to
change how a stream of datais divided among discrete CAS objects.

7.1. Developing the CAS Multiplier Code

7.1.1. CAS Multiplier Interface Overview

CAS Multiplier implementations should extend from the JCasMul ti pl i er _I npl Base or
CasMul ti plier_I npl Base classes, depending on which CAS interface they prefer to use. As
with other types of analysis components, the CAS Multiplier ImplBase classes define optional
initialize,destroy,andreconfi gure methods. There are then three required methods:
process, hasNext , and next . The framework interacts with these methods as follows:

1. Theframework callsthe CAS Multiplier's pr ocess method, passing it an input CAS. The
process method returns, but may hold on to areference to the input CAS.

2. The framework then callsthe CAS Multiplier'shasNext method. The CAS Multiplier
should return t r ue from this method if it intends to output one or more new CA Ses (for
instance, segments of this CAS), and f al se if not.

3. If hasNext returned true, the framework will call the CAS Multiplier'snext method. The
CAS Multiplier createsanew CAS (we will see how in amoment), populates it, and returns
it from the next method.

4. Steps 2 and 3 continue until hasNext returnsfase. If the framework detects a situation
where it needs to cancel this CAS Multiplier, it will stop calling the hasNext and next
methods, and when another top-level CAS comes along it will call the annotator's pr ocess
method again. User's annotator code should interpret this as asignal to cleanup processing
related to the previous CAS and then start processing with the new CAS.

From the time when pr ocess iscalled until the hasNext method returnsfalse (or pr ocess is
called again), the CAS Multiplier “owns’ the CAS that was passed to its pr ocess method. The
CAS Multiplier can store areference to this CASin alocal field and can read from it or write to it
during this time. Once the ending condition occurs, the CAS Multiplier gives up ownership of the
input CAS and should no longer retain areference to it.

CAS Multiplier 123

Getting an empty CAS Instance

7.1.2. How to Get an Empty CAS Instance

The CAS Multiplier'snext method must return a CAS instance that represents a new
representation of the input artifact. Since CAS instances are managed by the framework, the CAS
Multiplier cannot actually create anew CAS; instead it should request an empty CAS by calling the
method:

CAS get Enpt yCAS()
or

JCas get Enpt yJCas()

which are defined onthe CasMul ti pli er | npl Base and JCasMul ti plier I npl Base classes,
respectively.

Note that if it is more convenient you can request an empty CAS during the pr ocess or hasNext
methods, not just during the next method.

By default, a CAS Multiplier is only alowed to hold one output CAS instance at atime. Y ou must
return the CAS from the next method before you can request a second CAS. If you try to call
getEmptyCA S a second time you will get an Exception. Y ou can change this default behavior by
overriding the method get Casl nst ancesRequi r ed to return the number of CAS instances that
you need. Be aware that CA S instances consume a significant amount of memory, so setting this
to alarge value will cause your application to use alot of RAM. So, for example, it isnot agood
practice to attempt to generate a large number of new CASesin the CAS Multiplier's pr ocess
method. Instead, you should spread your processing out across the callsto the hasNext or next
methods.

Note: You can only call get Enpt yCAS() or get Enpt yJCas() fromyour CAS
Multiplier'spr ocess, hasNext , or next methods. Y ou cannot call it from other methods
such asi ni tial i ze. Thisis because the Aggregate AE's Type System is not available
until all of the components of the aggregate have finished their initiaization.

The Type System of the empty CAS will contain all of the type definitions for all components of
the outermost Aggregate Analysis Engine or Collection Processing Engine that contains your CAS
Multiplier. Therefore downstream components that receive these CA Ses can add new instances of
any type that they define.

Warning: Be careful to keep the Feature Structures that belong to each CAS separate.

Y ou cannot create references from a Feature Structure in one CAS to a Feature Structure in
another CAS. You also cannot add a Feature Structure created in one CAS to the indexes
of adifferent CAS. If you attempt to do this, the results are undefined.

7.1.3. Example Code

This section walks through the source code of an example CAS Multiplier that

breaks text documents into smaller pieces. The Java class for the exampleis

or g. apache. ui ma. exanpl es. casMul ti pli er. Si npl eText Segnment er and the source code
isincluded in the UIMA SDK under the exanpl es/ sr ¢ directory.

7.1.3.1. Overall Structure

public class SinpleTextSegmenter extends JCasMultiplier_Inpl Base {
private String nDoc;

124 CAS Multiplier UIMA Version 2.10.2

Example Code

private int nPos;
private int nSegnentSi ze;
private String nmDoclUri ;

public void initialize(U maContext aContext)
throws Resourcelnitializati onException

...}

public void process(JCas aJCas) throws Anal ysi SEngi neProcessException
{... 1

publ i ¢ bool ean hasNext () throws Anal ysi SEngi neProcessExcepti on
...}

public AbstractCas next() throws Anal ysi séngi neProcessException

{... 1}

}
The Si npl eText Segnent er class extendsJCasMul ti pl i er _I npl Base and implements the

optional i ni ti al i ze method aswell astherequired pr ocess, hasNext , and next methods.
Each method is described below.

7.1.3.2. Initialize Method

public void initialize(U maContext aContext) throws
Resourcelnitializati onException {
super.initialize(aContext);
nmSegnent Si ze = ((I nteger)aCont ext. get Confi gPar anet er Val ue(
"segment Si ze")).intVal ue();

Like an Annotator, a CAS Multiplier can override theinitialize method and read configuration
parameter values from the UimaContext. The SimpleTextSegmenter defines one parameter,
“Segment Size”, which determines the approximate size (in characters) of each segment that it will
produce.

7.1.3.3. Process Method

public void process(JCas aJCas)
t hrows Anal ysi sEngi neProcessException {
nmDoc = aJCas. get Docunent Text () ;
nPos = 0;
/1 retreive the filenane of the input file fromthe CAS so that it can
/1 be added to each segnent
FSlterator it = aJCas.
get Annot at i onl ndex(Sour ceDocument | nformati on.type).iterator();
if (it.hasNext()) {
Sour ceDocunent I nfornation filelLoc =
(Sour ceDocunent | nfornation)it.next();
mDocUri = fileLoc.getUri();

el se {

mDocUri = null;
}
}

The process method receives a new JCas to be processed(segmented) by this CAS Multiplier.
The SimpleTextSegmenter extracts some information from this JCas and storesit in fields (the

UIMA Version 2.10.2 CAS Multiplier 125

Example Code

document text is stored in the field mDoc and the source URI in the field mDocURI). Recall that
the CAS Multiplier is considered to “own” the JCas from the time when processiis called until
the time when hasNext returns false. Therefore it is acceptable to retain references to objects
from the JCasin a CAS Multiplier, whereas this should never be done in an Annotator. The CAS
Multiplier could have chosen to store areference to the JCas itself, but that was not necessary for
this example.

The CAS Multiplier also initializes the mPos variable to 0. This variable is a position into the
document text and will be incremented as each new segment is produced.

7.1.3.4. HasNext Method

publ i ¢ bool ean hasNext () throws Anal ysi SEngi neProcessException {
return nmPos < nDoc. | ength();
}

The job of the hasNext method is to report whether there are any additional output CASesto
produce. For this example, the CAS Multiplier will break the entire input document into segments,
so we know there will always be a next segment until the very end of the document has been
reached.

7.1.3.5. Next Method

public AbstractCas next() throws Analysi sEngi neProcessException {
int breakAt = nmPos + nBSegment Si ze;
if (breakAt > nDoc.|ength())
breakAt = nDoc. | ength();

/'l search for the next newl ine character.

/1l Note: this exanple segnenter inplenmentation

/1 assunes that the document contains nmany new ines.

/1 In the worst case, if this segnmenter

// is run on a docunment with no new i nes,

/1 it will produce only one segment containing the

/1 entire docunment text.

/1 A better inplenmentation mght specify a naxi num segnent size as
/1 well as a mnimum

whil e (breakAt < nmDoc.length() &&
nmDoc. char At (breakAt - 1) != '\n")
br eak At ++;

JCas jcas = getEnptyJCas();
try {
j cas. set Docunment Text (nDoc. subst ri ng(nPos, breakAt));
/1 if original CAS had SourceDocunent | nformation,
al so add Sour ceDocunent | nformati o
/1 to each segnent
if (mDocUri !'= null) {
Sour ceDocunent | nf ormati on sdi =
new Sour ceDocunent | nf ormati on(j cas);
sdi.setUri (mDocUri);
sdi . set Of f set | nSour ce(nPos) ;
sdi . set Docunent Si ze(br eakAt - nPos);
sdi . addTol ndexes();

if (breakAt == nmDoc.length()) {
sdi . set Last Segnment (true);

126 CAS Multiplier UIMA Version 2.10.2

CAS Multiplier Descriptor

}
}

mPos = breakAt;
return jcas;
} catch (Exception e) {
jcas.rel ease();
t hrow new Anal ysi sEngi neProcessExcepti on(e);

Thenext method actually produces the next segment and returns it. The framework guarantees
that it will not call next unlesshasNext hasreturned true since the last call to pr ocess or next .

Note that in order to produce a segment, the CAS Multiplier must get an empty JCas to popul ate.
Thisisdone by theline:

JCas jcas = getEnptyJCas();

This requests an empty JCas from the framework, which maintains a pool of JCas instances to draw
from.

Also, notetheuse of thetry. . . cat ch block to ensure that a JCas is rel eased back to the poal if
an exception occurs. Thisis very important to allow a CAS Multiplier to recover from errors.

7.2. Creating the CAS Multiplier Descriptor

Thereis not a separate type of descriptor for a CAS Multiplier. CAS Multiplier are considered a
type of Analysis Engine, and so their descriptors use the same syntax as any other Analysis Engine
Descriptor.

The descriptor for the Si npl eText Segrent er islocated in the exanpl es/ descri pt ors/
cas_nul tiplier/Sinpl eText Segnent er. xm directory of the UIMA SDK.

The Analysis Engine Description, in its “Operational Properties’ section, now contains a new
“outputsNewCASes’ property which takes a Boolean value. If the Analysis Engineisa CAS
Multiplier, this property should be set to true.

If you use the CDE, be sure to check the “Outputs new CASes’ box in the Runtime Information
section on the Overview page, as shown here:

UIMA Version 2.10.2 CAS Multiplier 127

Using CAS Multipliersin Aggregates

|SimpleTextSegmenter. xml

Overview

= Implementation Details

Implementation Language) C/C++ (%) Java
Engine Type 'fv_:' Primitive O Aggregate

+ Runtime Information

This section describes information about how to run this component
[]updates the CAS

multiple deployment allowed

Outputs new CASes

Mame of the Java dass file -:urg.e_upau:he.uima.examples.casMuItipIier.SimpIETextSEgmenter

Browse

If you edit the Analysis Engine Descriptor by hand, you need to add a <out put sNewCASes>
element to your descriptor as shown here:

<oper at i onal Properties>
<nodi f i esCas>f al se</ nodi fi esCas>
<mul ti pl eDepl oyment Al | owed>t rue</ mul ti pl eDepl oynment Al | owed>
<out put sNewCASes>t r ue</ out put sNewCASes>
</ oper ati onal Properties>

Note: The “modifiedCas’ operational property refersto the input CAS, not the new output
CA Ses produced. So our example SimpleTextSegmenter has modifiesCas set to false since
it doesn't modify the input CAS.

7.3. Using a CAS Multiplier in an Aggregate
Analysis Engine

You can include a CAS Multiplier as a component in an Aggregate Analysis Engine. For example,
this allows you to construct an Aggregate Analysis Engine that takes each input CAS, breaks it up
into segments, and runs a series of Annotators on each segment.

7.3.1. Adding the CAS Multiplier to the Aggregate

Since CAS Multiplier are considered atype of Analysis Engine, adding them to an aggregate
works the same way as for other Analysis Engines. Using the CDE, you just click the“Add...”
button in the Component Engines view and browse to the Analysis Engine Descriptor of your CAS
Multiplier. If editing the aggregate descriptor directly, justi nport the Analysis Engine Descriptor
of your CAS Multiplier as usual.

An example descriptor for an Aggregate Analysis Engine containing a CAS Multiplier is provided
inexanpl es/ descri ptors/cas_mul tiplier/Segment er AndTokeni zer AE. xmi . This
Aggregate runs the Si npl eText Segnent er example to break alarge document into segments,
and then runs each segment through the Si npl eTokenAndSent enceAnnot at or . Try running it

128

CAS Multiplier UIMA Version 2.10.2

CAS Multipliersand Flow Control

in the Document Analyzer tool with alarge text file asinput, to see that it outputs multiple output
CASes, one for each segment produced by the Si npl eText Segnent er .

7.3.2. CAS Multipliers and Flow Control

CAS Multipliers are only supported in the context of Fixed Flow or custom Flow Control. If you
use the built-in “Fixed Flow” for your Aggregate Analysis Engine, you can position the CAS
Multiplier anywhere in that flow. Processing then works as follows: When a CASisinput to the
Aggregate AE, that CASisrouted to the components in the order specified by the Fixed Flow, until
that CAS reaches a CAS Multiplier.

Upon reaching a CAS Multiplier, if that CAS Multiplier produces new output CA Ses, then

each output CAS from that CAS Mulltiplier will continue through the flow, starting at the node
immediately after the CAS Multiplier in the Fixed Flow. No further processing will be done on the
origina input CAS after it has reached a CAS Multiplier —it will not continue in the flow.

If the CAS Multiplier does not produce any output CASes for agiven input CAS, then that input
CASwill continue in the flow. This behavior is appropriate, for example, for a CAS Multiplier that
may segment an input CAS into pieces but only does so if the input CASis larger than acertain
size.

It is possible to put more than one CAS Multiplier in your flow. In this case, when anew CAS
output from the first CAS Multiplier reaches the second CAS Multiplier and if the second CAS
Multiplier produces output CA Ses, then no further processing will occur on the input CAS, and any
new output CA Ses produced by the second CAS Multiplier will continue the flow starting at the
node after the second CAS Multiplier.

This default behavior can be customized. The Fi xedFl owCont r ol | er component
that implement's UIMA's default flow defines a configuration parameter
Acti onAfterCasMuil tiplier that can take the following values:

e conti nue —the CAS continues on to the next e ement in the flow

» st op —the CASwill no longer continue in the flow, and will be returned from the aggregate
if possible.

» dr op —the CASwill no longer continue in the flow, and will be dropped (not returned from
the aggregate) if possible.

» dropl f NewCasPr oduced (the default) —if the CAS multiplier produced anew CAS as
aresult of processing this CAS, then this CAS will be dropped. If not, then this CAS will
continue.

Y ou can override this parameter in your Aggregate Analysis Engine the same way you would
override a parameter in adelegate Analysis Engine. But to do so you must first explicitly identify
that you are using the Fi xedFl owCont r ol | er implementation by importing its descriptor into
your aggregate as follows:

<fl owControl |l er key="Fi xedFl owController">
<i nport nane="org. apache. ui ma. fl ow. Fi xedFl onController"/>
</flowControll er>

The parameter could then be overriden as, for example:

UIMA Version 2.10.2 CAS Multiplier 129

Aggregate CAS Multipliers

<confi gurati onPar anmet er s>
<confi gur ati onPar anet er >
<name>Act i onFor | nt er nedi at eSegnent s</ nanme>
<type>String</type>
<mul ti Val ued>f al se</ nul ti Val ued>
<mandat or y>f al se</ nandat or y>
<overrides>
<par anet er >
Fi xedFl onControl | er/ Acti onAfterCasMul tiplier
</ par anet er >
</ overrides>
</ confi gur ati onPar anet er >
</ confi gurati onPar anet er s>

<confi gurati onPar anet er Setti ngs>
<naneVal uePai r >
<name>Act i onFor | nt er nedi at eSegnent s</ nanme>
<val ue>
<string>drop</string>
</ val ue>
</ naneVal uePai r >
</ confi gurationParanet er Settings>

This overriding can also be done using the Component Descriptor Editor tool. An example of

an Analysis Engine that overrides this parameter can be found in exanpl es/ descri pt or s/
cas_nul tiplier/Segment _Annot ate_Mer ge_AE. xni . For more information about how to
specify aflow controller as part of your Aggregate Analysis Engine descriptor, see Section 4.3,
“Adding Flow Controller to an Aggregate”.

If you would like to further customize the flow, you will need to implement a custom
FlowController as described in Chapter 4, Flow Controller Developer's Guide. For example, you
could implement a flow where a CASthat isinput to a CAS Multiplier will be processed further by
some downstream components, but not others.

7.3.3. Aggregate CAS Multipliers

An important consideration when you put a CAS Multiplier inside an Aggregate Anaysis Engine
iswhether you want the Aggregate to also function asa CAS Multiplier —that is, whether you want
the new output CA Ses produced within the Aggregate to be output from the Aggregate. Thisis
controlled by the <out put sNewCASes> element in the Operational Properties of your Aggregate
Analysis Engine descriptor. The syntax is the same as what was described in Section 7.2, “CAS
Multiplier Descriptor” [127] .

If you set this property to t r ue, then any new output CA Ses produced by a CAS Multiplier inside
this Aggregate will be output from the Aggregate. Thus the Aggregate will function asaCAS
Multiplier and can be used in any of the ways in which a primitive CAS Multiplier can be used.

If you set the <outputsNewCA Ses> property to f al se , then any new output CA Ses produced by
a CAS Multiplier inside the Aggregate will be dropped (i.e. the CASes will be released back to the
pool) once they have finished being processed. Such an Aggregate Analysis Engine functions just
like a“normal” non-CAS-Multiplier Analysis Engine; the fact that CAS Multiplication is occurring
insideit is hidden from users of that Analysis Engine.

Note: If you want to output some new Output CA Ses and not others, you need to
implement a custom Flow Controller that makes this decision — see Section 4.5, “Using
Flow Controllers with CAS Multipliers’.

130 CAS Multiplier UIMA Version 2.10.2

CAS Multipliersin CPE's

7.4. Using a CAS Multiplier in a Collection
Processing Engine

Itiscurrently alimitation that CAS Multiplier cannot be deployed directly in a Collection
Processing Engine. The only way that you can use a CAS Multiplier in a CPE isto first wrap it
in an Aggregate Analysis Engine whose out put sNewCASes property issettof al se, whichin
effect hides the existence of the CAS Multiplier from the CPE.

Note that you can build an Aggregate Analysis Engine that consists of CAS Multipliersand
Annotators, followed by CAS Consumers. This can simulate what a CPE would do, but without the
deployment and error handling options that the CPE provides.

7.5. Calling a CAS Multiplier from an Application

7.5.1. Retrieving Output CASes from the CAS Multiplier

The Anal ysi sEngi ne interface has the following methods that allow you to interact with CAS
Multiplier:

e Caslterator processAndQut put NewCASes(CAS)
e JCaslterator processAndCut put NewCASes(JCas)

From your application, you call pr ocessAndQut put NewCASes and passit theinput CAS. An
iterator is returned that allows you to step through each of the new output CA Ses that are produced
by the Analysis Engine.

It isvery important to realize that CA Ses are pooled objects and so your application must release
each CAS (by calling the CAS. r el ease() method) that it obtains from the Caslterator before it
callsthe Casl t er at or . next method again. Otherwise, the CAS pool will be exhausted and a
deadlock will occur.

The example codein the classor g. apache. ui ma. exanpl es. casMul tiplier.
CasMul ti pl i er Exanpl eAppl i cati on illusratesthis. Here is the main processing loop:

Caslterator caslterator = ae. processAndQOut put NewCASes(initial Cas);
while (caslterator. hasNext()) {
CAS out Cas = caslterator.next();

//dunp the docunent text and annotations for this segnent
Systemout. print] n("*******%*x NEW SEGVENT *******%%m) .
System out . printl| n(out Cas. get Docunment Text ()) ;

Pri nt Annot at i ons. pri nt Annot ati ons(out Cas, System out);

/lrel ease the CAS (inportant)
out Cas. rel ease();

Note that as defined by the CAS Multiplier contract in Section 7.1.1, “CAS Multiplier Interface
Overview” [123], the CAS Multiplier ownstheinput CAS (i ni ti al Cas in the example) until
the last new output CAS has been produced. This means that the application should not try to
make changestoi ni ti al Cas until after the Casl t er at or . hasNext method has returned false,
indicating that the segmenter has finished.

UIMA Version 2.10.2 CAS Multiplier 131

CAS Multiplierswith other AEs

Note that the processing time of the Analysis Engineis spread out over the calls to the
Caslterator's hasNext and next methods. That is, the next output CAS may not actually be
produced and annotated until the application asks for it. So the application should not expect calls
tothe Casl t er at or to necessarily complete quickly.

Also, callstothe Casl t er at or may throw Exceptions indicating an error has occurred during
processing. If an Exception isthrown, al processing of the input CAS will stop, and no more
output CASes will be produced. There is currently no error recovery mechanism that will allow
processing to continue after an exception.

7.5.2. Using a CAS Multiplier with other Analysis Engines
In your application you can take the output CASes from a CAS Multiplier and pass them to the
pr ocess method of other Analysis Engines. However there are some specia considerations
regarding the Type System of these CA Ses.

By default, the output CASes of a CAS Multiplier will have a Type System that contains all of
the types and features declared by any component in the outermost Aggregate Analysis Engine or
Callection Processing Engine that contains the CAS Multiplier. If in your application you create a
CAS Multiplier and another Analysis Engine, where these are not enclosed in an aggregate, then
the output CA Ses from the CAS Multiplier will not support any types or features that are declared
in the latter Analysis Engine but not in the CAS Multiplier.
This can be remedied by forcing the CAS Multiplier and Analysis Engine to share asingle
Ui maCont ext when they are created, asfollows:
/lcreate a "root" U MA context for your whol e application
Ui naCont ext Admi n r oot Cont ext =
Ul MAFr amewor k. newUi naCont ext (Ul MAFr amewor k. get Logger (),
Ul MAFr anewor k. newDef aul t Resour ceManager (),
U MAFr amewor k. newConf i gur ati onManager ()) ;
XMLI nput Sour ce i nput = new XM.I nput Sour ce("MyCasMul tiplier.xm");
Anal ysi sengi neDescri ption desc = U MAFramewor k. get XM_Par ser () .
par seAnal ysi sengi neDescri ption(input);
//create a U MA Context for the new AE we are about to create
//first argument is unique key anong all AEs used in the application
U maCont ext Admi n chi | dCont ext = root Cont ext . creat eChil d(
"myCasMul tiplier", Collections. EMPTY_MAP);
/linstantiate CAS Miltiplier AE, passing the U MA Context through the
//addi tional paraneters nap
Map additi onal Parans = new HashMap();
addi ti onal Par ans. put (Resour ce. PARAM U MA_CONTEXT, chi |l dCont ext);
Anal ysi sengi ne casMul ti plier AE = U MAFr amewor k. pr oduceAnal ysi sEngi ne(
desc, addi ti onal Par ans) ;
/lrepeat for another AE
XMLI nput Sour ce i nput2 = new XM.I nput Sour ce(" MyAE. xm ") ;
Anal ysi sEngi neDescri ption desc2 = U MAFramewor k. get XM_Par ser () .
par seAnal ysi séngi neDescri ption(i nput 2);
U maCont ext Admi n chi | dCont ext 2 = r oot Cont ext . creat eChi | d(
132 CAS Multiplier UIMA Version 2.10.2

Merging with CAS Multipliers

"myAE", Coll ections. EMPTY_MAP);

Map additional Parans2 = new HashMap();
addi ti onal Par ans2. put (Resour ce. PARAM Ul MA_CONTEXT, chil dCont ext 2);

Anal ysi sengi ne nyAE = Ul MAFr anewor k. pr oduceAnal ysi sEngi ne(
desc2, additional Parans2);

7.6. Using a CAS Multiplier to Merge CASes

A CAS Multiplier can aso be used to combine smaller CA Ses together to form larger CASes. In
this section we describe how this works and walk through an example.

7.6.1. Overview of How to Merge CASes

1. When the framework first callsthe CAS Multiplier's pr ocess method, the CAS Multiplier
regquests an empty CAS (which welll call the "merged CAS") and copies relevant data from
the input CAS into the merged CAS. Theclassor g. apache. ui ma. uti | . CasCopi er
provides utilities for copying Feature Structures between CA Ses.

2. When the framework then callsthe CAS Multiplier'shasNext method, the CAS Multiplier
returnsf al se to indicate that it has no output at thistime.

3. When the framework calls pr ocess again with anew input CAS, the CAS Multiplier
copies data from that input CAS into the merged CAS, combining it with the data that was
previously copied.

4. Eventually, when the CAS Multiplier decides that it wants to output the merged CAS, it
returnst r ue from the hasNext method, and then when the framework subsequently calls
the next method, the CAS Multiplier returns the merged CAS.

Note: Thereisno explicit call to flush out any pending CASes from a CAS Multiplier
when collection processing completes. It is up to the application to provide some
mechanism to let a CAS Multiplier recognize the last CASin acollection so that it can
ensure that its final output CASes are complete.

7.6.2. Example CAS Merger

An example CAS Multiplier that merges CASes can be found is

provided in the UIMA SDK. The Javaclass for thisexampleis

or g. apache. ui ma. exanpl es. casMul ti pli er. Si npl eText Mer ger and the source codeis
located under the exanpl es/ sr ¢ directory.

7.6.2.1. Process Method

Almost all of the code for thisexampleisin the pr ocess method. Thefirst part of the pr ocess
method shows how to copy Feature Structures from the input CAS to the "merged CAS":

public void process(JCas aJCas) throws Anal ysi SEngi neProcessException {
/1 procure a new CAS if we don't have one al ready
if (mvergedCas == null) {
m\ver gedCas = get EnptyJCas();
}

/'l append docurnent text

UIMA Version 2.10.2 CAS Multiplier 133

Example CAS Merger

String docText = aJCas. get Docunent Text () ;
int prevDocLen = nDocBuf. | ength();
nmDocBuf . append(docText) ;

/'l copy specified annotation types

/| CasCopier takes two args: the CAS to copy from

/1 the CAS to copy into.

CasCopi er copi er = new CasCopi er (aJCas. get Cas(), nm\ergedCas. get Cas());

/'l needed in case one annotation is in tw indexes (could
/'l happen if specified annotation types overl ap)
Set copi edl ndexedFs = new HashSet () ;
for (int i = 0; i < mAnnotationTypesToCopy.|ength; i++) {
Type type = mvergedCas. get TypeSyst em()
. get Type(mAnnot ati onTypesToCopy[i]);
FSI ndex i ndex = aJCas. get Cas(). get Annot ati onl ndex(type);
Iterator iter = index.iterator();
while (iter.hasNext()) {
FeatureStructure fs = (FeatureStructure) iter.next();
if (!copiedl ndexedFs. contains(fs)) {
Annot ati on copyOFFs = (Annotation) copier.copyFs(fs);
/1 update begin and end
copyf Fs. set Begi n(copyOf Fs. get Begi n() + prevDoclLen);
copyf Fs. set End(copyOf Fs. get End() + prevDoclLen);
mver gedCas. addFsTol ndexes(copyOf Fs) ;
copi edl ndexedFs. add(fs);
}
}
}

The CasCopi er classisused to copy Feature Structures of certain types (specified by a
configuration parameter) to the merged CAS. The CasCopi er does deep copies, meaning that if
the copied FeatureStructure references another FeatureStructure, the referenced FeatureStructure
will aso be copied.

This example also merges the document text using a separate St r i ngBuf f er . Note that we cannot
append document text to the Sofa data of the merged CA S because Sofa data cannot be modified
onceitis set.

The remainder of the pr ocess method determines whether it istime to output anew CAS. For
this example, we are attempting to merge all CA Ses that are segments of one origina artifact.
Thisis done by checking the Sour ceDocunent | nf or mat i on Feature Structure in the CAS
to seeif its| ast Segnent featureisset tot r ue. That feature (which is set by the example

Si nmpl eText Segment er discussed previously) marks the CAS as being the last segment of an
artifact, so when the CAS Multiplier sees this segment it knowsiit is time to produce an output
CAS.

/1 get the SourceDocunent|nfornmation FS,
/1 which indicates the sourceUR of the docunent
/1 and whether the incomng CAS is the | ast segnent
FSlterator it = aJCas
. get Annot at i onl ndex(Sour ceDocurnent | nfornmati on.type).iterator();

if (lit.hasNext()) {

t hrow new Runti neExcepti on("M ssi ng Sour ceDocunent | nf or mati on");
}

Sour ceDocurnent | nf or mati on sour ceDocl nfo =
(Sour ceDocunent I nformation) it.next();
i f (sourcebDocl nfo. getLast Segnent ()) {
/1 time to produce an output CAS
/1 set the docunent text

134 CAS Multiplier UIMA Version 2.10.2

SimpleTextMerger in an Aggregate

m\er gedCas. set Docunment Text (nDocBuf . toString());

/1 add source docunent info to destination CAS
Sour ceDocunent | nformati on dest SDI =

new Sour ceDocunent | nf or mat i on(mver gedCas) ;
dest SDI . set Uri (sourceDocl nfo. getUri ());
dest SDI . set Of f set | nSour ce(0) ;
dest SDI . set Last Segnent (true);
dest SDI . addTol ndexes();

nmDocBuf = new StringBuffer();
mReadyToCQut put = true;
}

When it istime to produce an output CAS, the CAS Multiplier makes final updates to the merged
CAS (setting the document text and adding a Sour ceDocunent | nf or mat i on FeatureStructure),
and then sets the nReadyToCQut put field to true. Thisfield isthen used in the hasNext and next
methods.

7.6.2.2. HasNext and Next Methods

These methods are relatively simple:

publ i ¢ bool ean hasNext () throws Anal ysi SEngi neProcessException {
return mReadyToCQut put ;

}

public AbstractCas next() throws Analysi séngi neProcessException {
if (!nReadyToQut put) {
t hrow new Runti neExcepti on("No next CAS");

}
JCas casToReturn = mvergedCas;

m\ver gedCas = nul | ;
mReadyToQut put = fal se;
return casToReturn;

}

When the merged CASisready to be output, hasNext will return true, and next will return the
merged CAS, taking care to set the mver gedCas field to nul | so that the next call to pr ocess
will start with afresh CAS.

7.6.3. Using the SimpleTextMerger in an Aggregate
Analysis Engine

An example descriptor for an Aggregate Analysis Engine that uses the

Si npl eText Mer ger isprovidedin exanpl es/ descriptors/cas_nul tiplier/

Segnent _Annot at e_Mer ge_AE. xnmi . ThisAggregate first runsthe Si npl eText Segnent er
example to break alarge document into segments. It then runs each segment through the example
tokenizer and name recognizer annotators. Finally it runsthe Si npl eText Mer ger to reassemble
the segments back into one CAS. The Nane annotations are copied to the final merged CAS but the
Token annotations are not.

This example illustrates how you can break large artifacts into pieces for more efficient processing
and then reassemble a single output CA'S containing only the results most useful to the application.
Intermediate results such as tokens, which may consume alot of space, need not be retained over
the entire input artifact.

UIMA Version 2.10.2 CAS Multiplier 135

SimpleTextMerger in an Aggregate

The intermediate segments are dropped and are never output from the Aggregate Analysis Engine.
Thisis done by configuring the Fixed Flow Controller as described in Section 7.3.2, “CAS
Multipliers and Flow Control” [129], above.

Try running this Analysis Engine in the Document Analyzer tool with alarge text file asinput,
to seethat it outputs just one CAS per input file, and that the final CAS contains only the Nane
annotations.

136 CAS Multiplier UIMA Version 2.10.2

Chapter 8. XMI and EMF Interoperability

8.1. Overview

In traditional object-oriented terms, a UIMA Type System isa class model and aUIMA CASis

an object graph. There are established standards in this area— specifically, UML® isan OMG™
standard for class models and XMI (XML Metadata Interchange) is an OMG standard for the XML
representation of object graphs.

Furthermore, the Eclipse Modeling Framework (EMF) is an open-source framework for model-
based application development, and it is based on UML and XMI. In EMF, you define class models
using a metamodel called Ecore, which is similar to UML. EMF provides tools for converting
aUML model to Ecore. EMF can then generate Java classes from your model, and supports
persistence of those classesin the XMI format.

The UIMA SDK provides tools for interoperability with XMI and EMF. These tools allow
conversions of UIMA Type Systems to and from Ecore models, as well as conversions of UIMA
CASesto and from XMI format. This provides a number of advantages, including:

Y ou can define amodel using a UML Editor, such as Rational Rose or
EclipseUML, and then automatically convert it to a UIMA Type System.

Y ou can take an existing UIMA application, convert its type system to Ecore, and
save the CASes it producesto XMI. Thisdatais how in aform whereit can easily
be ingested by an EMF-based application.

More generaly, we are adopting the well-documented, open standard XMI as the standard way

to represent UIMA-compliant analysis results (replacing the UIMA-specific XCAS format). This
use of an open standard enables other applications to more easily produce or consume these UIMA
analysis results.

For more information on XM, see Grose et a. Mastering XMI. Java Programming with XMI,
XML, and UML. John Wiley & Sons, Inc. 2002.

For more information on EMF, see Budinsky et a. Eclipse Modeling Framework 2.0. Addison-
Wesley. 2006.

For details of how the UIMA CASisrepresented in XMI format, see UIMA References Chapter 7,
XMI CAS Serialization Reference .

8.2. Converting an Ecore Model to or from a UIMA
Type System

The UIMA SDK provides the following two classes:

Ecor e2Ui maTypeSyst em converts from an .ecore model developed using EMF to aUIMA-
compliant TypeSystem descriptor. Thisis a Javaclass that can be run as a standalone program or
invoked from another Java application. To run as a standal one program, execute:

java or g.apache.uima.ecor e.Ecor e2UimaTypeSystem <ecor e file> <output file>

The input .ecore file will be converted to a UIMA TypeSystem descriptor and written to the
specified output file. Y ou can then use the resulting TypeSystem descriptor in your UIMA
application.

XMI & EMF 137

Using XMI CAS Serialization

Ui maTypeSyst en2Ecor e: convertsfrom aUIMA TypeSystem descriptor to an .ecore model.
ThisisaJavaclass that can be run as a standalone program or invoked from another Java
application. To run as a standalone program, execute:

java org.apache.uima.ecor e.UimaTypeSystem2Ecor e <TypeSystem descriptor> <output file>

Theinput UIMA TypeSystem descriptor will be converted to an Ecore model file and written to
the specified output file. Y ou can then use the resulting Ecore model in EMF applications. The
converted type system will include any <i nport . .. >ed TypeSystems; the fact that they were
imported is currently not preserved.

To run either of these converters, your classpath will need to include the UIMA jar filesaswell as
the following jar files from the EMF distribution: common.jar, ecorejar, and ecorexmi.jar.

Also, note that the uima-core.jar file contains the Ecore model file uima.ecore, which defines the
built-in UIMA types. Y ou may need to use this file from your EMF applications.

8.3. Using XMI CAS Serialization

The UIMA SDK provides XMI support through the following two classes:

Xni CasSeri al i zer: canberunfrom within a UIMA application to write out a CAS to the
standard XM1 format. The XMI that is generated will be compliant with the Ecore model generated
by U maTypeSyst en2Ecor e. An EMF application could use this Ecore model to ingest and
process the XMI produced by the X miCasSerializer.

Xnmi CasDeseri al i zer: can berun from within a UIMA application to read in an XMl
document and populate a CAS. The XMI must conform to the Ecore model generated by
U maTypeSyst enREcor e.

Also, the uimaj-exampl es Eclipse project contains some example code that shows how to use the
serializer and deseridizer:

or g. apache. ui ma. exanpl es. xmi . Xmi Wit er CasConsuner: ThisisaCAS
Consumer that writes each CAS to an output filein XMI format. It is analogous to
the XCasWriter CAS Consumer that has existed in prior UIMA versions, except
that it usesthe XMI serialization format.

or g. apache. ui ma. exanpl es. xmi . Xmi Col | ecti onReader: Thisisa
Collection Reader that reads a directory of XMI files and deserializes each
of them into a CAS. For example, thiswould alow you to build a Collection
Processing Engine that reads XM files, which could contain some previous
analysis results, and then do further analysis.

Finally, in under the folder ui maj - exanpl es/ ecor e_sr c isthe class

or g. apache. ui ma. exanpl es. xmi . Xm Ecor eCasConsuner , which writes each

CASto XMI format and also saves the Type System as an Ecore file. Since this uses the

Ui maTypeSyst enREcor e converter, to compile it you must add to your classpath the EMF jars
common.jar, ecore,jar, and ecore.xmi.jar — see ecore_src/readme.txt for instructions.

8.3.1.

Character Encoding Issues with XML Serialization

Note that not all valid Unicode characters are valid XML characters, at least not in XML 1.0.
Moreover, it is possible to create characters in Java that are not even valid Unicode characters,

138

XMI & EMF UIMA Version 2.10.2

Character Encoding Issues with XML Serialization

let done XML characters. As UIMA character datais trandlated directly into XML character
data on serialization, this may lead to issues. UIMA will therefore check that the character data
that is being seriaized is valid for the version of XML being used. If non-serializable character
datais encountered during serialization, an exception is thrown and serialization fails (to avoid
creating invalid XML data). UIMA does not simply replace the offending characters with some
valid replacement character; the assumption being that most applications would not like to have
their data modified automatically.

If you know you are going to use XML serialization, and you would like to avoid such issues on
serialization, you should check any character data you create in UIMA ahead of time. | ssues most
often arise with the document text, as documents may originate at various sources, and may be of
varying quality. So it's a particularly good ideato check the document text for characters that will
cause issues for serialization.

UIMA provides a handful of functionsto assist you in

checking Java character data. Those methods are located in

org.apache. uima.internal.util.XMUils.checkFor NonXnl Characters(),with
several overloads. Please check the javadocs for further information.

Please note that these issues are not specific to XMI seriaization, they apply to the older XCAS
format in the same way.

UIMA Version 2.10.2 XMI & EMF 139

Chapter 9. Managing different Type Systems

9.1. Annotators, Type Merging, and Remotes

UIMA supports combining Annotators that have different type systems. Thisis normally done by
"merging" the two type systems when the Annotators are first loaded and instantiated. The merge
process produces alogical Union of the two; types having the same name have their feature sets
combined. The combining rules say that the range of same-named feature slots must be the same.
This combined type system is then used for the CAS that will be passed to all of the annotators.
Details of type merging are described in UIMA References ?77?2?2.

This approach (of merging the type systems together) works well for annotators that are run
together in one UIMA pipeline instantiation in one machine. Extensions are needed when UIMA

is scaled out where the pipeline includes remote annotators, acting as servers, serving potentially
multiple clients, each of which might have a different type system. Clients, when initializing, query
all their remote server parts to get their type system definition, and merges them together with

its own to make the type system for the CAS that will be sent among all of those annotators. The
Client's TypeSystem is the union of al of its annotators, even when some of the them are remote.

9.2. Supporting Remote Annotators

Servers, in providing service to multiple clients, may receive CA Ses from different Clients having
different type systems. UIMA has implemented several different approaches to support this.

Note: Base UIMA includes support for SOAP and VINCI protocols (but these are both
older, and do not support newer features of the CAS like CAS Multipliers and multiple
Views).

The SOAP remote service sends the entire CAS, along with the Client's type system. At the remote,
the Client's type system is deserialized and used as the remote's type system. For Vinci and UIMA-
ASusing XMI, the "reachable" Feature Structures (only) are sent. A reachable Feature Structure
isonethat isindexed, or is reachable via a reference from another reachable Feature Structure.

The receiving service's type system is guaranteed to be a subset of the sender. Specia code in the
deserializer saves aside any types and features not present in the server's type system and re-merges
these values back when returning the CAS to the client.

UIMA-AS supportsin addition binary CAS serialization protocols. The binary support is typically
compressed. This compression can greatly reduce the size of data, compared with plain binary
serialization. The compressed form also supports having a target type system which is different
from the source's, aslong asit is compatible.

Delta CAS support is available for XM, binary and compressed binary protocols, used by UIMA-
AS. The Delta CAS refersto the CAS returned from the service back to the client - only the new
Feature Structures added by the service, plus any modifications to existing feature structures and/
or indexes, are returned. This can greatly reduce the size of the returned data. Delta CAS support is
automatically used with more recent versions of UIMA-AS.

9.3. Type filtering support in Binary Compressed
Serialization/Deserialization

The built-in support for Binary Compressed Serialization/Deserialization supports filtering between
non-identical type systems. The filtering is designed so that things (types and/or features) that are

Managing different TypeSystems 141

Remote Services support with Compressed Binary Serialization

defined in one type system but not in another are not sent (when serializing) nor received (when
deserializing). When deserializing, non-received features receive 0 as their value. For built-in types,
likeinteger, float, etc., thisisthe number O; for other kinds of things, thisis usually a"null" value.

Some kinds of type mappings cannot be supported, and will signal errors. The two types being
mapped between must be "mergable” according to the normal type merger rules (see above);
otherwise, errors are signaled.

9.4. Remote Services support with Compressed
Binary Serialization

Uncompressed Binary Serialization protocols for communicating to remote UIMA-AS services
require that the Client and Server's type systems be identical. Compressed Binary Serialization
protocols support Server type systems which are a subset of the Clients. Types and/or features not
in the Server's type system are not sent to the Server.

9.5. Compressed Binary serialization to/from files

Compressed binary serialization to afile can specify atarget type system which is a subset of the
original type system. The serialization will then exclude types and features not in the target, when
serializing. You can use thisto filter the CASto serialize out just the parts you want to.

Compressed binary deserialization from afile must specify as the target type system the one that
went with the target when it was serialized. The source type system can be different; if it is missing
types/features, these will be filtered during deserialization. If it has additional features, these will
be set to 0 (the default value) in the CAS heap. For numeric features, this means the value will be 0
(including floating point 0); for feature structure references and strings, the value will be null.

142

Managing different TypeSystems UIMA Version 2.10.2

	UIMA Tutorial and Developers' Guides
	Table of Contents
	Chapter 1. Annotator and Analysis Engine Developer's Guide
	1.1. Getting Started
	1.1.1. Defining Types
	1.1.2. Generating Java Source Files for CAS Types
	1.1.3. Developing Your Annotator Code
	1.1.4. Creating the XML Descriptor
	1.1.5. Testing Your Annotator

	1.2. Configuration and Logging
	1.2.1. Configuration Parameters
	1.2.1.1. Declaring Parameters in the Descriptor
	1.2.1.2. Accessing Parameter Values from the Annotator Code
	1.2.1.3. Supporting Reconfiguration
	1.2.1.4. Configuration Parameter Groups
	1.2.1.5. Overriding Configuration Parameter Settings

	1.2.2. Logging
	1.2.2.1. Specifying the Logging Configuration
	1.2.2.2. Setting Logging Levels
	1.2.2.3. Format of logging output
	1.2.2.4. Meaning of the logging severity levels
	1.2.2.5. Using the logger outside of an annotator
	1.2.2.6. Changing the underlying UIMA logging implementation

	1.3. Building Aggregate Analysis Engines
	1.3.1. Combining Annotators
	1.3.2. AAEs can also contain CAS Consumers
	1.3.3. Reading the Results of Previous Annotators

	1.4. Other examples
	1.5. Additional Topics
	1.5.1. Contract: Annotator Methods Called by the Framework
	1.5.2. Reporting errors from Annotators
	1.5.3. Throwing Exceptions from Annotators
	1.5.4. Accessing External Resources
	1.5.4.1. Declaring Resource Dependencies
	1.5.4.2. Accessing the Resource from the UimaContext
	1.5.4.3. Declaring Resources and Bindings
	1.5.4.4. Sharing Resources among Annotators
	1.5.4.5. Threading and Shared Resources

	1.5.5. Result Specifications
	1.5.5.1. Default ResultSpecification
	1.5.5.2. Passing Result Specifications to Annotators
	1.5.5.3. Aggregates
	1.5.5.4. Collection Proessing Engines

	1.5.6. Class path setup when using JCas
	1.5.7. Using the Shell Scripts

	1.6. Common Pitfalls
	1.7. Viewing UIMA objects in the Eclipse debugger
	1.8. Introduction to Analysis Engine Descriptor XML Syntax
	1.8.1. Header and Annotator Class Identification
	1.8.2. Simple Metadata Attributes
	1.8.3. Type System Definition
	1.8.4. Capabilities
	1.8.5. Configuration Parameters (Optional)
	1.8.5.1. Configuration Parameter Declarations
	1.8.5.2. Configuration Parameter Settings
	1.8.5.3. Aggregate Analysis Engine Descriptor

	Chapter 2. Collection Processing Engine Developer's Guide
	2.1. CPE Concepts
	2.2. CPE Configurator and CAS viewer
	2.2.1. Using the CPE Configurator
	2.2.2. Running the CPE Configurator from Eclipse

	2.3. Running a CPE from Your Own Java Application
	2.3.1. Using Listeners

	2.4. Developing Collection Processing Components
	2.4.1. Developing Collection Readers
	2.4.1.1. Java Class for the Collection Reader
	2.4.1.2. Required Methods in the Collection Reader class
	initialize()
	hasNext()
	getNext(CAS)
	getProgress()
	close()
	Optional Methods
	reconfigure()
	typeSystemInit()

	Threading considerations
	XML Descriptor for a Collection Reader

	2.4.2. Developing CAS Initializers
	2.4.3. Developing CAS Consumers
	2.4.3.1. Required Methods for a CAS Consumer
	initialize()
	processCas()
	Optional Methods
	batchProcessComplete()
	collectionProcessComplete()

	2.5. Deploying a CPE
	2.5.1. Deploying Managed CAS Processors
	2.5.2. Deploying Non-managed CAS Processors
	2.5.3. Deploying Integrated CAS Processors

	2.6. Collection Processing Examples

	Chapter 3. Application Developer's Guide
	3.1. The UIMAFramework Class
	3.2. Using Analysis Engines
	3.2.1. Instantiating an Analysis Engine
	3.2.2. Analyzing Text Documents
	3.2.3. Analyzing Non-Text Artifacts
	3.2.4. Accessing Analysis Results
	3.2.4.1. Accessing Analysis Results using the JCas
	3.2.4.2. Accessing Analysis Results using the CAS

	3.2.5. Multi-threaded Applications
	3.2.6. Using Multiple Analysis Engines and Creating Shared CASes
	3.2.7. Saving CASes to file systems or general Streams

	3.3. Using Collection Processing Engines
	3.3.1. Running a Collection Processing Engine from a Descriptor
	3.3.2. Configuring a Collection Processing Engine Descriptor Programmatically

	3.4. Setting Configuration Parameters
	3.5. Integrating Text Analysis and Search
	3.5.1. Building an Index
	3.5.1.1. Configuring the Semantic Search CAS Indexer
	3.5.1.2. Building and Running a CPE including the Semantic Search CAS Indexer

	3.5.2. Semantic Search Query Tool

	3.6. Working with Remote Services
	3.6.1. Deploying a UIMA Component as a SOAP Service
	3.6.2. Deploying a UIMA Component as a Vinci Service
	3.6.3. How to Call a UIMA Service
	3.6.3.1. SOAP Service Client Descriptor
	3.6.3.2. Vinci Service Client Descriptor

	3.6.4. Restrictions on remotely deployed services
	3.6.5. The Vinci Naming Services (VNS)
	3.6.5.1. Starting VNS
	3.6.5.2. VNS Files
	3.6.5.3. Launching Vinci Services

	3.6.6. Configuring Timeout Settings
	3.6.6.1. Setting the Client Timeout
	3.6.6.2. Setting the Server Socket Timeout

	3.7. Increasing performance using parallelism
	3.8. Monitoring AE Performance using JMX
	3.9. Performance Tuning Options

	Chapter 4. Flow Controller Developer's Guide
	4.1. Developing the Flow Controller Code
	4.1.1. Flow Controller Interface Overview
	4.1.2. Example Code
	4.1.2.1. The WhiteboardFlowController Class
	4.1.2.2. The WhiteboardFlow Class

	4.2. Creating the Flow Controller Descriptor
	4.3. Adding a Flow Controller to an Aggregate Analysis Engine
	4.4. Adding a Flow Controller to a Collection Processing Engine
	4.5. Using Flow Controllers with CAS Multipliers
	4.6. Continuing the Flow When Exceptions Occur

	Chapter 5. Annotations, Artifacts, and Sofas
	5.1. Terminology
	5.1.1. Artifact
	5.1.2. Subject of Analysis — Sofa

	5.2. Formats of Sofa Data
	5.3. Setting and Accessing Sofa Data
	5.3.1. Setting Sofa Data
	5.3.2. Accessing Sofa Data
	5.3.3. Accessing Sofa Data using a Java Stream

	5.4. The Sofa Feature Structure
	5.5. Annotations
	5.5.1. Built-in Annotation types
	5.5.2. Annotations have an associated Sofa

	5.6. AnnotationBase

	Chapter 6. Multiple CAS Views of an Artifact
	6.1. CAS Views and Sofas
	6.1.1. Naming CAS Views and Sofas
	6.1.2. Multi-View, Single-View components & applications

	6.2. Multi-View Components
	6.2.1. How UIMA decides if a component is Multi-View
	6.2.2. Multi-View: additional capabilities
	6.2.3. Component XML metadata

	6.3. Sofa Capabilities and APIs for Applications
	6.4. Sofa Name Mapping
	6.4.1. Name Mapping in an Aggregate Descriptor
	6.4.2. Name Mapping in a CPE Descriptor
	6.4.3. Specifying the CAS View delivered to a Components Process Method
	6.4.4. Name Mapping in a UIMA Application
	6.4.5. Name Mapping for Remote Services

	6.5. JCas extensions for Multiple Views
	6.6. Sample Multi-View Application
	6.6.1. Annotator Descriptor
	6.6.2. Application Setup
	6.6.3. Annotator Processing
	6.6.4. Accessing the results of analysis

	6.7. Views API Summary
	6.8. Sofa Incompatibilities between UIMA version 1 and version 2

	Chapter 7. CAS Multiplier Developer's Guide
	7.1. Developing the CAS Multiplier Code
	7.1.1. CAS Multiplier Interface Overview
	7.1.2. How to Get an Empty CAS Instance
	7.1.3. Example Code
	7.1.3.1. Overall Structure
	7.1.3.2. Initialize Method
	7.1.3.3. Process Method
	7.1.3.4. HasNext Method
	7.1.3.5. Next Method

	7.2. Creating the CAS Multiplier Descriptor
	7.3. Using a CAS Multiplier in an Aggregate Analysis Engine
	7.3.1. Adding the CAS Multiplier to the Aggregate
	7.3.2. CAS Multipliers and Flow Control
	7.3.3. Aggregate CAS Multipliers

	7.4. Using a CAS Multiplier in a Collection Processing Engine
	7.5. Calling a CAS Multiplier from an Application
	7.5.1. Retrieving Output CASes from the CAS Multiplier
	7.5.2. Using a CAS Multiplier with other Analysis Engines

	7.6. Using a CAS Multiplier to Merge CASes
	7.6.1. Overview of How to Merge CASes
	7.6.2. Example CAS Merger
	7.6.2.1. Process Method
	7.6.2.2. HasNext and Next Methods

	7.6.3. Using the SimpleTextMerger in an Aggregate Analysis Engine

	Chapter 8. XMI and EMF Interoperability
	8.1. Overview
	8.2. Converting an Ecore Model to or from a UIMA Type System
	8.3. Using XMI CAS Serialization
	8.3.1. Character Encoding Issues with XML Serialization

	Chapter 9. Managing different Type Systems
	9.1. Annotators, Type Merging, and Remotes
	9.2. Supporting Remote Annotators
	9.3. Type filtering support in Binary Compressed Serialization/Deserialization
	9.4. Remote Services support with Compressed Binary Serialization
	9.5. Compressed Binary serialization to/from files

