
Apache UIMA Dictionary
Annotator Documentation

Authors: The Apache UIMA Development Community

Version 2.3.0

Copyright © 2008, 2009 The Apache Software Foundation

Incubation Notice and Disclaimer. Apache UIMA is an effort undergoing incubation
at the Apache Software Foundation (ASF). Incubation is required of all newly accepted
projects until a further review indicates that the infrastructure, communications, and
decision making process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection of the completeness
or stability of the code, it does indicate that the project has yet to be fully endorsed by the
ASF.

License and Disclaimer. The ASF licenses this documentation to you under the
Apache License, Version 2.0 (the "License"); you may not use this documentation except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and
its contents are distributed under the License on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

Trademarks. All terms mentioned in the text that are known to be trademarks or
service marks have been appropriately capitalized. Use of such terms in this book should
not be regarded as affecting the validity of the the trademark or service mark.

http://www.apache.org/licenses/LICENSE-2.0

Apache UIMA Dictionary Annotator Documentation iii

Table of Contents
Introduction ... v
1. Processing Overview .. 1
2. Dictionary Creation .. 3

2.1. Dictionary Creator .. 3
2.2. Dictionary XML Format ... 4

3. Annotator Configuration .. 7
3.1. Dictionary Files .. 7
3.2. Input Match Type ... 7

3.2.1. Input Match Type Feature Path .. 8
3.3. Input Match Type Filters .. 9

Introduction v

Introduction
The DictionaryAnnotator is an Apache UIMA analysis engine that annotates words
based on dictionary entries. For each word in the document text that is available in the
dictionary a new annotation is created. The annotator can be configured with one or
more independent dictionaries. The dictionaries can easily be created with the dictionary
creator command line tooling. For advanced usage of the annotator the matching can also
be improved by specifying multi word capabilities, match input type properties and input
type filter settings.

Processing Overview 1

Chapter 1. Processing Overview
To use the DictionaryAnnotator at first a dictionary must be created because so far the
annotator does not provide any dictionaries. The creation of a dictionary is very simple
when using the dictionary creator command line tooling. The tooling takes as input a
list words that should be added to the dictionary. The output of the dictionary creator is
the created dictionary as XML file and can be used to configure the annotator. For each
dictionary additional meta data like the annotation output type for the created annotation
can be set. The dictionary and the DictionaryAnnotator can be configured to work with
single word dictionary entries like "Apache" or with multi word entries like "Apache
UIMA".

After the annotator is configured with the created dictionary the lookup strategy settings
must be defined. The dictionary lookup inside the annotator works with tokens. A token
is a word or an arbitrary text fragment that is used for the dictionary lookup. If a token
match a dictionary entry an annotation is created. The kind of tokens that are used for
the lookup can be configured and enhanced with filter capabilities. To improve the
dictionary lookup it is recommended that the tokenization for the dictionary entries and
the tokenization for the document text is the same. This can be achieved when using the
dictionary creator with some advanced settings.

During the annotator processing for each token in the document text that is available
in the dictionary a new annotation with the dictionary output type is created. These
annotations can be used in a succeeding step to do some further processing.

Dictionary Creation 3

Chapter 2. Dictionary Creation
To automatically create a dictionary, the DictionaryCreator command line tooling is
provied.

2.1. Dictionary Creator
The DictionaryCreator command line tool should be used to create the
DictionaryAnnotator dictionaries. The input for the DictionaryCreator is a text file that
contains the dictionary entries, one entry per line. The output is the created dictionary as
XML file.

The usage below shows all possible command line parameters.

java

 -cp uimaj-an-dictionary.jar

 org.apache.uima.annotator.dict_annot.dictionary.impl.DictionaryCreator

 -input <InputFile>

 -encoding <InputFileEncoding>

 -output <OutputFile>

 [-tokenizer <TokenizerPearFile> -tokenType <tokenType>]

 [-separator <separatorChar>]

 [-lang <dictionaryLanguage>]

When just using the mandatory settings the input content for the dictionary is tokenized/
separated by using the whitespace character. This means that if the line contains a
whitespace character as in "Apache UIMA" the dictionary entry is treated as multi word
entry where the mutli word consists of the two tokens "Apache" and "UIMA". If the line
just contains "DictionaryAnnotator" the dictionary entry in treated as single word entry
and has only one token called "DictionaryAnnotator".

A sample XML dictionary file is shown below.

<dictionary

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="dictionary.xsd">

 <typeCollection>

 <dictionaryMetaData

 caseNormalization="true"

 multiWordEntries="true"

 multiWordSeparator=" "/>

 <typeDescription>

 <typeName> ADD DICTIONARY OUTPUT TYPE HERE</typeName>

 </typeDescription>

 <entries>

 <entry>

 <key>DictionaryAnnotator</key>

 </entry>

 <entry>

Dictionary XML Format

4 Dictionary Creation Apache UIMA Sandbox Version 2.3.0

 <key>Apache UIMA</key>

 </entry>

 </entries>

 </typeCollection>

</dictionary>

In addition to the default creation, the DictionaryCreator can be configured with
additional parameters.

These are:

• tokenization <TokenizerPearFile> - To use an Apache UIMA tokenizer
annotator PEAR that tokenize the input instead of the simple whitespace
tokenization that is done by default. When using a special tokenizer the tokenType
<tokenType> parameter must also be set.

• tokenType <tokenType> - Specifies the token type to get the tokens created by the
tokenizer. These tokens are used to create the single or multi word dictionary entries
for each line of the input.

• lang <languageCode> - In some cases it is necessary to specify the language for the
created dictionary and for the used tokenization.

• separator <separatorChar> - If no special tokenizer is used for the tokenization
of the input dictionary content, by default the whitespace character is used to
tokenizer the content. If another separator character should be used instead, it can
be specified by using this parameter.

After the dictionary is created, it is necessary to update the created dictionary with some
additional meta data. The most important one that must be set is the typeName entry.
The typeName entry after the creation looks like <typeName> ADD DICTIONARY OUTPUT
TYPE HERE</typeName> and must be updated with the UIMA type that should be used
if the DictionaryAnnotator creates an annotation for a word based on this dictionary. For
more details about the other meta data entries of the dictionary, please refer to Section 2.2,
“Dictionary XML Format” [4].

2.2. Dictionary XML Format
The Dictionary XML Format is shown with an example below:

<dictionary

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="dictionary.xsd">

 <typeCollection>

 <dictionaryMetaData

 caseNormalization="true"

 multiWordEntries="true"

 multiWordSeparator=" "/>

 <languageId>en</languageId>

Dictionary XML Format

Apache UIMA Sandbox Version 2.3.0 Dictionary Creation 5

 <typeDescription>

 <typeName>org.apache.uima.DictionaryEntry</typeName>

 </typeDescription>

 <entries>

 <entry>

 <key>DictionaryAnnotator</key>

 </entry>

 <entry>

 <key>Apache UIMA</key>

 </entry>

 </entries>

 </typeCollection>

</dictionary>

The <dictionaryMetaData> element specifies how the dictionary is used inside the
DictionaryAnnoator. The attributes for the element are:

• caseNormalization - If this parameter is set to true all dictionary entries are
treated case normalized. This means that the dictionary matching is not case
sensitive.

• multiWordSeparator - Specifies the multi word separator character that is used in
the XML document for multi words. If the DictionaryCreator creates the dictionary
files this is by default the "|" character.

• multiWordEntries - If this parameter is true the dictionary is treated as multi
word dictionary. This means that dictionary entries that are separated by the
multiWordSpearator are treated as multi word entries. So for example "Apache|
UIMA" is treated as multi word entry and the document text must have after the
tokenization two tokens "Apache" and "UIMA" to match the dictionary entry.

The <languageId> element specifies the language of the current dictionary if all entries
have the same language. This settings is not mandatory and can also be omitted. content.

The <typeName> element specifies the output type that is used if an annotation is created
for a dictionary entry.

The <key> elements specifies the dictionary entries. For each entry an own <key> element
is used.

Annotator Configuration 7

Chapter 3. Annotator Configuration
To use the DictionaryAnnotator it must be configured with at least one dictionary and
with the input match type settings - the tokens - that the annotator will use to do the
lookup. In addition to these mandatory settings it is possible to define input match type
filters to filter the used annotations before they are used for the lookup. The following
paragraphs will explain in detail how to configuration is done.

3.1. Dictionary Files
To specify the annotator dictionary files there is a configuration parameter definition in
the annotator descriptor that looks like:

<configurationParameter>

 <name>DictionaryFiles</name>

 <description>

 list of dictionary files to configure the annotator

 </description>

 <type>String</type>

 <multiValued>true</multiValued>

 <mandatory>true</mandatory>

</configurationParameter>

This parameter is mandatory and multi valued. This means that the setting must be
available and one or more dictionary files can be specified with the same parameter. A
sample setting for two dictionary files can look like:

<nameValuePair>

 <name>DictionaryFiles</name>

 <value>

 <array>

 <string>dictionary1.xml</string>

 <string>http://localhost/mydict/dictionary.xml</string>

 </array>

 </value>

</nameValuePair>

The specified dictionary file names must be available in the classpath or in the UIMA
datapath. Additionally it is possible to specify an HTTP URL to load the dictionary file.

3.2. Input Match Type
The InputMatchType parameter defines the annotation type that is used for the dictionary
lookup. All annotations of type InputMatchType are used for the lookup in the dictionary.
In most cases this type should be the output type of the tokenizer annotator component.
If the dictionary was created by using the DictionaryCreator configured with a tokenizer,
it is recommended that the same tokenizer is also used in the annotator flow. Beyond

Input Match Type Feature Path

8 Annotator Configuration Apache UIMA Sandbox Version 2.3.0

that the InputMatchType should be the same as the tokenType used for the dictionary
creation.

The parameter that defines the input match type is:

<configurationParameter>

 <name>InputMatchType</name>

 <description></description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>true</mandatory>

</configurationParameter>

The parameter setting is mandatory and single valued. A sample setting for the
InputMatchType looks like:

<nameValuePair>

 <name>InputMatchType</name>

 <value>

 <string>org.apache.uima.TokenAnnotation</string>

 </value>

</nameValuePair>

3.2.1. Input Match Type Feature Path

In some special cases it may be necessary to use a feature value or a featurePath value of
the InputMatchType for the dictionary lookup. In that case not the covered text of the
InputMatchType annotation is used for the lookup but the specified feature or featurePath
value.

To define a feature or featurePath that is used for the lookup the following parameter
must be used:

<configurationParameter>

 <name>InputMatchFeaturePath</name>

 <description></description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>false</mandatory>

</configurationParameter>

The parameter is not mandatory, it is just an optional addition. But if the parameter is
used, the defined feature or featurePath must be valid for the InputMatchType. A sample
configuration with a feature called baseFormToken is shown below:

<nameValuePair>

 <name>InputMatchFeaturePath</name>

 <value>

 <string>baseFormToken</string>

 </value>

Input Match Type Filters

Apache UIMA Sandbox Version 2.3.0 Annotator Configuration 9

</nameValuePair>

If a featurePath is specified the path separator for the feature is "/".

3.3. Input Match Type Filters
If not all InputMatchType annotations should be used for the dictionary lookup it is
possible to define filters to filter the used annotations. To define a filter three settings
are necessary. The first one is the InputMatchFilterFeaturePath that specifies the
feature or featurePath that should be used for the filtering. The second parameter is the
FilterConditionOperator that defines the filter condition operator. The last parameter
is FilterConditionValue that defines the condition value for the comparison.

The parameter definition for all three parameters looks like:

<configurationParameter>

 <name>InputMatchFilterFeaturePath</name>

 <description></description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>false</mandatory>

</configurationParameter>

<configurationParameter>

 <name>FilterConditionOperator</name>

 <description></description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>false</mandatory>

</configurationParameter>

<configurationParameter>

 <name>FilterConditionValue</name>

 <description></description>

 <type>String</type>

 <multiValued>false</multiValued>

 <mandatory>false</mandatory>

</configurationParameter>

For the InputMatchFilterFeaturePath the same rules applies as for the
InputMatchFeaturePath. The specified feature or featurePath must be valid for the
InputMatchType definition. If a featurePath is specified, the features are separated by "/".

The value for the FilterConditionOperator can be one of:

• NULL - InputMatchFilterFeaturePath value must be NULL. No
FilterConditionValue must be specified.

• NOT_NULL - InputMatchFilterFeaturePath value must be set and is not NULL.
No FilterConditionValue must be specified.

Input Match Type Filters

10 Annotator Configuration Apache UIMA Sandbox Version 2.3.0

• EQUALS - InputMatchFilterFeaturePath value must be equal to the
FilterConditionValue.

• NOT_EQUALS - InputMatchFilterFeaturePath value is not equal to the
FilterConditionValue

• LESS - InputMatchFilterFeaturePath value is less than the
FilterConditionValue

• LESS_EQ - InputMatchFilterFeaturePath value is less or equal to the
FilterConditionValue

• GREATER - InputMatchFilterFeaturePath value is greater than the
FilterConditionValue

• GREATER_EQ - InputMatchFilterFeaturePath value is greater or equal to the
FilterConditionValue

A sample configuration for a filter that only use noun tokens for the dictionary lookup is
shown below:

<nameValuePair>

 <name>InputMatchFilterFeaturePath</name>

 <value>

 <string>partOfSpeach</string>

 </value>

</nameValuePair>

<nameValuePair>

 <name>FilterConditionOperator</name>

 <value>

 <string>EQUALS</string>

 </value>

</nameValuePair>

<nameValuePair>

 <name>FilterConditionValue</name>

 <value>

 <string>noun</string>

 </value>

</nameValuePair>

	Apache UIMA Dictionary Annotator Documentation
	Table of Contents
	Introduction
	Chapter 1. Processing Overview
	Chapter 2. Dictionary Creation
	2.1. Dictionary Creator
	2.2. Dictionary XML Format

	Chapter 3. Annotator Configuration
	3.1. Dictionary Files
	3.2. Input Match Type
	3.2.1. Input Match Type Feature Path

	3.3. Input Match Type Filters

