it20one-service-framework v.20050204

Project Documentation

IT200ne 07 February 2005

TABLE OF CONTENTS i

Table of Contents

Overview
1= T o 1
OV IV B L ot 2
[T =T 0 o = 3
INCAINALION . . . o o 4
Reconfiguration 6
DECOMIMISION . . o .o e e e e e 7
SOV IS . ottt 8
ServiCEMAaNAgEISEIVICE oottt 9
SYStEMPIOPEITYSEIVICE . . . o . ot e 10
HOW T 0 . o 11
TOU0 S o ot 13

©2004 IT200NE « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©2004

IT200NE

ALL RIGHTS RESERVED

1.1 MAIN 1

What is YAAFI?

The Yet Another Avalon Framework Implementation.

YAAFI is a light-weight implementation of a service framework using the Avalon service lifecycle interfaces. There
are a few other implementations out there such as Excalibur, Fortress and most notably Merlin but YAAFI gives
you a lot of bells and whistles with minimal baggage.

What we left out to
* logger manager implementation
* run-time instrumentation to monitor application health
* service implementation versioning
* service initialization in a background thread

* support for singleton lifestyle only

©2004 IT200NE « ALL RIGHTS RESERVED

1.2 OVERVIEW 2

Overview

What is YAAFI?

The Yet Another Avalon Framework Implementation.

YAAFI is a light-weight implementation of a service framework using the Avalon service lifecycle interfaces. There
are a few other implementations out there such as Excalibur, Fortress and most notably Merlin but YAAFI gives
you a lot of bells and whistles with minimal baggage.

What we left out to
* logger manager implementation
* run-time instrumentation to monitor application health
* service implementation versioning
* service initialization in a background thread

* support for singleton lifestyle only

©2004 IT200NE « ALL RIGHTS RESERVED

13

1.3 LIFECYCLE 3

Lifecycle

Service Lifecycle

The service lifecycle contains of a bunch of interfaces covering the following aspects of a service

* incarnation
* reconfiguration

* decommissioning

These interfaces are the contract between your service implementation and the service container. And this is the
reason why we can deploy a service implementation using different service framework implementations such as
Excalibur or Metlin.

©2004 IT200NE « ALL RIGHTS RESERVED

131

1.3.1 INCARNATION 4

Incarnation

Incarnation
The incarnation of a service covers the creation and configuration of a service
The following methods are invoked:
* Constructor()
* LogEnabled.enableLogging(Logger)
* Contextualizable.contextualize(Context)
* Serviceable.service(ServiceManager)
* Configurable.configure(Configuration)
* Parameterizable.parameterize(Parameters)
* Initializable.initialize()
* Executable.execute()

* Startable.start()

The good news are that you don't have to implement all these interfaces if you have a simple service. The bad news
are that you might need all of this interfaces in a complex application ... :-)

Constructor()

This doesn't come as a surprise

LogEnabled.enableLogging(Logger)

Here you get the logger for your service implementation. This is again an interface to an implementation of a logger
provided by the caller of the service framework.

Contextualizable.contextualize(Context)

The context contains information about your application environment. The following entries are guaranteed to be
available since they are supplied by YAAFI

Name Type Description

urn:avalon:home File The home directory of the application. This is
usually the current working directory or WEB-INF.
It is assumed that your application has read
access.

urn:avalon:temp File The temp directory of the application. It is
assumed that temporary files will be dumped there
and therefore read/write access is required.

©2004 IT200NE « ALL RIGHTS RESERVED

1.3.1 INCARNATION 5

Name Type Description

componentAppRoot String The absolute path home directory of the
application again. This is provided for backward
compatibility with Fulcrum and might be depracted
in the future.

Serviceable.service(ServiceManager)

At this point you get a reference to the service container. This is the right moment to lookup all dependent services
just to make sure that everything is fine.

Configurable.configure(Configuration)

A common task is to access configuration information whereas the Configuration instance is a light-weight XML
DOM tree. This means you can use nested XML files for the configuration of your service.

Parameterizable.parameterize(Parameters)

Quite frankly I'm not sure why this method is needed. The only reason I can think of is a command-line application

Initializable.initialize()

This method is used for initializing your service implementation since you have all your configuration information

by now.
Executable.execute()
If the component implements Executable the execute method will be invoked before the component instance is

exposed to any other component.

Startable.start()

The Startable interface is used by any component that is constantly running for the duration of its life.

©2004 IT200NE « ALL RIGHTS RESERVED

1.3.2 RECONFIGURATION 6

132 Reconfiguration

Decommision

The reconfiguration of a service covers the following methods

* Suspendable.suspend()
* Reconfigurable.reconfigure(Configuration)

* Suspendable.resume()

Suspendable.suspend()

Suspend the service since it is guarenteed that no client will invoke the service.

Reconfigurable.reconfigure(Configuration)

Reconfigure the service with the Configuration instance.

Suspendable.resume()

Resume the service - afterwards clients will invoke the service again.

©2004 IT200NE « ALL RIGHTS RESERVED

1.3.3 DECOMMISION 7

133 Decommision

Decommision

The decommision of a service covers the shutdown procedure a service
* Startable.stop()

* Disposable.dispose()

¢ Finalizer

Startable.stop()

Stop all of the service activities since it is guaranteed that no client will invoke the service.

Disposable.dispose()

Free all resources hold by the service implementation.

Finalizer

Well, it might be never called but all resouces have been released before.

©2004 IT200NE « ALL RIGHTS RESERVED

1.4 SERVICES 8

14 Services

YAAFI Services

YAAFI comes already with the following services since they are generally useful and do not add any dependencies

Name Desciption
ServiceManagerService Keeps a reference to the YAAFI instance
SystemPropertyService Copies system properties during startup

©2004 IT200NE « ALL RIGHTS RESERVED

1.4.1 SERVICEMANAGERSERVICE 9

141 ServiceManagerService

Overview

This service keeps an YAAFT instance.

Configuration

Role Configuration

<role
defaul t-cl ass="org. apache. ful crum yaafi. servi ce. servi cemanager. Servi ceManager Ser vi ce"
early-init="true"

/>

Usage

ServiceManagerService.getServiceManager() returns you an instance of ServiceManager which allows to lookup
other services.

FOO foo = (FOO) Servi ceManager Servi ce. get Servi ceManager (). | ookup("FQO'");

©2004 IT200NE « ALL RIGHTS RESERVED

1.4.2

1.4.2 SYSTEMPROPERTYSERVICE 10

SystemPropertyService

Overview
This service copies entries from the configuratio.xml into the SystemProperties.

Quite useful since you can avoid tinkering with system properties in start scripts.
Configuration

Role Configuration

<role
name="or g. apache. ful crum yaafi. servi ce. systenproperty. Syst enPropertyService"
shor t hand="Syst enPr oper t ySer vi ce"
def aul t - cl ass="org. apache. ful crum yaafi.servi ce. systenproperty. SystenPropertyServicel npl"
early-init="true"

Component Configuration

<Syst enPr opertyServi ce>
<property nanme="FOO'>BAR</ property>
</ Syst enPropertyServi ce>

Usage

This service does not expose any methods

©2004 IT200NE « ALL RIGHTS RESERVED

15

1.5 HOW TO 11

How To

How to write my own service?

» Write your service interface and implementation using the Avalon Lifecycle interfaces.

* Add an entry to the role configuration file. This entry contains the information how YAAFI can instantiate and
access the service

* Add an entry to the component configuratino file if you need to configure your service.

How can | embed YAAFI in an application?

The embedding is done by creating a YAAFT instance using the ServiceManagerFactory.create() method.

The following example creates a fully initialized and running YAAFI container with the given configuration
parameters using a LOG4J logger.

Servi ceCont ai ner manager = null;
Logger | ogger = new Log4JLogger(org.apache. | o0g4j.Logger. getLogger (" YAAFI");
manager = Servi ceManager Factory. creat e(

| ogger,

"rol eConfiguration.xm",

"conponent Confi guration. xm ",

"parameters. xm "

)

At the end of day you have to terminate YAAFI

manager . di spose();

How can | embed YAAFI into Turbine?

In the 'contrib' directory there is a ready-to-use Turbine service which needs the following configuration (for
Turbine 2.2)

servi ces. Yaaf i Conponent Ser vi ce. cl assnane=or g. apache. t ur bi ne. servi ces. yaf fi conponent . Tur bi neYaaf i Conponent Servi ce
servi ces. Yaaf i Conponent Ser vi ce. conponent Rol es=./ conf/ conponent Rol es. xm

servi ces. Yaaf i Conponent Servi ce. conponent Confi gurati on=./conf/conponent Confi gurati on. xm

servi ces. Yaaf i Conponent Servi ce. par anet er s=

©2004 IT200NE « ALL RIGHTS RESERVED

1.5 HOW TO

©2004

IT200NE

ALL RIGHTS RESERVED

12

1.6

1.6 TODO'S 13

TODO

Support for encrytped configuration files

Encryption/dectyption of role and component configuration file using Blowfish] from Markus Hahn (see
http:/ /www.lassekolb.info/bfacs.htm).

Adding a component personality
Based on the component personality a proper Context will be created (e.g. 'merlin’, 'fortress', 'phoenix') and passed

to the component. This would allow to teuse Avalon service written for other containers (I'm not jokink)

Adding a container personality

This would allow to embed YAAFI cleanly in another Avalon Container, e.g. within James.

Add automatic reconfiguration

It would be nice to poll the configuration files and trigger a reconfiguration if they were changed

©2004 IT200NE « ALL RIGHTS RESERVED

