DRAFT, 4/11/2001

OpenEJB 1.1 Specification

Draft 0.7

Richard Monson-Haefel

David Blevins

DRAFT, 4/11/2001

SECTION 1: INTRODUCGTION ...ttt e s

1.0 OVERVIEW. ...eeei ettt e ettt e e ettt e e s ettt e e e aata e e e eateeeasaeeeeaaateeeeanseeeasseeesanseeeeeasseeesasseeessnseeaeaansesesanneeeesssnennn
1.1 Monolithic VS. MOAUIAr DESIGNccciecieeiecie e ste sttt sre et ettt e na et e te e teeresnnesnnas
1.1.2 The CONtAINEr -SErVES CONETACTccveiiitieeieeicteeeieeseteeeteeseteeeteesebeeebeesbeesabessbeesaseesateesaressaseesnseens
1.1.3 No formal contract in the EJB SPeCifiCation..............ccoceeieiieiies e
1.1.4TheNEEd fOr @ COMIACEccveiiiee ettt et e e e te e st e e sabe e sbeesabeesabeesabessareesnneens

1.2 THE OPENEJB SERVER-CONTAINER CONTRACT ..eeecitiieiiiteeeiitteeeesteeeseineeeesasseeesansesesssssssssnssessssssesessnnees
1.2.1 The appliCation SErVEI STOIE.......cciieiieee et ee et te e ee e s s e st e et e et e s e enaesra e te e beeeesnnesnnas
1.2.2 ThE CONMAINET STOIE ..ot st e e st e e e be e s beesabe e sbeesabeesabeesabessabeesareens

1.3 THE ARCHITECTURE........ctiiiitieeiiteeeeeitteeeeitteeesstteeeeaataeesasseeesasseeeaassaseeaanseesasseeeaansesesanneeeesnseeeeannsesesnnnens
LL3.L OVEIVIEW. ...ttt ettt et e et e e te e et e s ate e s beeeabe e s beeeabeesabeesabeesabaeeabeesabeesatessabeesabessateesareesnseesnsensns
G T2 I =N oo = T = SRR RORPRRR
L1.3.3 TNE PIIIMAIY SEIVICESecvieeeieeseestee st et et eate st e st e st e e s te e teseeseesaeesaeesseenseenseessesseesseesseesennsesnsesnns
1.3/ 4 TNREINITAVIM SEIVEYveiivie et ccteeeteecetee et e s ete e s te e s teesabe e s abeeeabeesbeesabeesabeesabessateesabessateesatessaseesnsenns
1.4.5 CUSLOMUZADIE ...ttt et e e e e s be e st e e s beeeabe e sabeesabeesabeesabeesateesabessareesnseesns
G H G I 1= (] o] =TRSO

1.4 OPENEJB IS OPEN SOURCEceiiiutiieeititeeeitteeesstteeesateeessiseeeesssseessassssssasssssssasssssssssesesssssssssasssssssssessssnnes
1.4.1 ThE OPENEIB LICENSE.iicii e ceectee st este et eestee s e e te et e e te s e e s e e saeesae e teenteeneesneessaesseeseensesnsesneas
1.4.2 The OPEN SOUICE AAVANTAGE.........ceieerreerieeieetesieseeseesteestesseeseesreesreesseenseenseeseesseesseesseesseesessesnnes
1.4.3 The OPEN SOUFCE COMIMUNILYecueeiueesteeteeteeetesteeseeesteesteeseeeeeseesseesseesseeseenseensesseesseessesssesssesnsesnnes
1.4.4 The synergy of OpenEJB and OPEN SOUICE..........ccueieerieerieeiiesieeseeseesseeseeeseeeessaessaesseesseessesnsesnns

SECTION 2: THE SERVER-CONTAINER CONTRACT ..ot

2.1 OVERVIEW .oietiee e steee e ettt e e e tee e ettt e e e e tte e e eaeeeeesaaeeeeeaseeeeesseeesaaaeeeeanseeeeasseeesasseeeeantenesanseeesnnnenesansenenanns
2.1.1 OpenEJIB ReSPONSIDIITIESccveeiieecieeee sttt e esraeste e re e reennesneas
2.1.2 Server ReSPONSIDIIITIEScceeieeieece ettt ra et e s be e eeenesneas
2.1.3 The Server-ContaiNer INTEITACE.oocui i re e eaee s

2.2 SERVER-RPCCONTAINER CONTRACT ...uttiiiiittieeeiieeeeastteeeeauseeesssesesasseesssssessssssssesansssessnsssssssssssssassesesanns
2.2. 1 INVOKE POIICIES ...ttt et e e st e s e e s bt e e e ae e e sbbe e s aae e sateesareesateesaseesaeeesneeesneeas
W 0T N | 2T o] =t S
2.2.3 TNE EIBHOIME......ccciiiitie ettt et ettt e s e st e e st e e st e e st e e e abe e saseesbseesaseesateesaseesabeesaseesateesnseesneeas

SECTION 3: THE SERVICE PROVIDER INTERFACE ..o

CONNECTOR SUPPORT ..eetetitiiuttreteeeeeesitssstessssssassssessssssaasssssesssssssasssssssssssssssssssssssssssmssssssesssemssssssssesssssssnes
Current Satus: January 4, 2001ccooiuierieniiieniee sttt re et se e sabe e saeenaee s

SECTION 4: THE CORE OPENEJB IMPLEMENTATION. ...t
SECTION 5: VENDOR INTEROPERABILITY i

SECTION 6: OPENEJB CUSTOMIZATION ..ot s

THE OPENEJIB FACTORY ..uttttiiiiiiiiiitittiieeeeiieitrseeesesssasasseeesesssasiatssssessssassssssssessssssssssssssssssssssssssssessssnsssssseses

DRAFT, 4/11/2001
Section 1: Introduction

1.0 Overview

1.1 Monolithic vs. Modular Design

OpenEJB represents arevolution in application server design, aview that application servers should be
modular, not monolithic. A modular application server is built from subsystems rather than constructed as
one huge, tightly coupled platform. Modularization of application server software allows vendors to focus
on their core competencies instead of reinventing every subsystem from scratch to create a complete
platform. Not only is modularization possible, OpenEJB makes it aredlity.

OpenEJB is an EJB container system - not a monolithic EJB server - that can be plugged into any
application server to make it afully compliant EJB server.

The Enterprise JavaBeans API itself does not specify a separation of responsibilities among the application
server, the container, and the primary services (transaction, security, and connectors). As aresult, EJB
vendors must build proprietary monolithic application servers to support al the subsystems needed for a
complete EJB platform.

OpenEJB clearly defines the separation of its responsibilities as a container system from those of the
application server that hosts it, and from the primary services that support it. This decoupling enables
vendors of application servers, transaction managers, and providers of security services and connectors to
focus on their own specialties, while OpenEJB focuses on delivering a high-speed container system that
combines the services into asingle EJB platform.

This Introduction Section examines the need for a separation of responsibilities among application server,
container, and primary services, and how OpenEJB provides a powerful container system and a set of
programming interfaces that make this modularization possible.

1.1.2 The container-server contract

Enterprise JavaBeans defines a portable server-side component model for enterprise computing. EJB clearly
specifies a bean-container contract and a client-server contract that allow developers to switch EJB server
products in an enterprise system without significant redevel opment costs. While the EJB specification
defines portability in terms of the enterprise-bean and EJB-client programming models, the EJB servers
themselves - all the subsystems that lie between the enterprise beans and the client applications - remain
proprietary.

1.1.3 No formal contract in the EJB specification

The Enterprise JavaBeans specification does not define a server-container contract. Thisomissionis
intentional; it was done to facilitate maximum flexibility for vendors defining EJB server technologies.
Beyond isolating the beans from the application server, the container’s responsibility in the EJB system is
vague. At the application server level, the EJB specification defines only a bean-container contract and does
not define the server-container contract.

It is difficult to determine exactly, for example, which is responsible for resource management and other
services, the container or the application server. Without a clear separation of responsibilities between the
container and the application server, EJB vendors must bear the burden of implementing the entire platform,
including the distributed-object service, naming, transaction management, security, and EJB container. Asa

DRAFT, 4/11/2001

result, commercial EJB serverstend to be complex monolithic platforms with proprietary and hidden
implementations.

1.1.4 The need for a contract

The advantage to defining a server-container contract is that it allows third-party vendors to produce
containers that can plug into any application server. If the responsibilities of the container and application
server are clearly defined, then vendors who specialize in the technol ogies that support these different
responsibilities can focus on developing the container or application server that best matches their core
competencies. Web vendors focus on managing web requests; CORBA vendors focus on distributed-object
requests; TP monitors focus on transaction management. Meanwhile, the EJB container vendor focus on
managing the enterprise beans within the container. Until now this separation of responsibilities did not
exist.

1.2 The OpenEJB server-container contract

OpenEJB is a pre-built, self-contained, portable EJB 1.1 container system that can be plugged into any
application server environment. OpenEJB provides a clear separation of responsibilities between the EJB
container and the EJB server. The application server and OpenEJB container system interact through an
elegant and powerful programming interface, which forms the server-container contact. This contract is
defined by the Server-Container Interface (SCI), asmall, simple, and refined set of classes and interfaces.

1.2.1 The application server’srole

Application servers that use OpenEJB are responsible for providing client applications with naming and
remote access to the application server. Its services may include providing JNDI and proxy implementations
that fulfill the client-server contract of the EJB programming model. In application servers that will use
OpenEJB locally, such as servlet engines, OpenEJB already provides the necessary JNDI and proxy
implementations. When a client makes a request on a remote bean reference, the application server delivers
the request to the OpenEJB container system, which del egates the request to the appropriate enterprise bean
and applies transaction, connectors and security services appropriately.

The Apache Tomcat server is a good example of an application server that could easily be extended using
OpenEJB to provide its servlets with a complete EJB container system. Enydra and OpenORB are other
examples of application servers that would benefit from OpenEJB integration.

1.2.2 Thecontainer’srole

OpenEJB manages the enterprise bean’ s lifecycle and coordinates the application of transactions
(distributed or local), connectors, and security as defined by the EJB 1.1 specification. To manage these
tasksin away that is flexible and customizable, OpenEJB also enforces a separation of these
responsibilities into separate services. OpenEJB provides a Service Provider Interface (SPI) for transaction,
connectors and security services. These simple and flexible container-service contracts are based on simple
adapters and industry standards like the Connector APl and Java Transaction APl (JTA), so it iseasy for
service providers to support the SPI and plug directly into OpenEJB. In addition, services are swappable
and are easily configured by the application server vendor as well as the customer.

DRAFT, 4/11/2001

1.3 The Architecture

1.3.1 Overview

OpenEJB isthe first EJB container system that allows devel opers of an EJB platform to assemble it from
existing products rather than construct it from scratch. Vendors focus on what they do best while OpenEJB
provides the container to host Enterprise JavaBeans. When plugged into any Java compatible application
server, the result is a complete, yet modular Enterprise JavaBeans 1.1 container system. Through the server-
container interface (SCI), an application server vendor can use the OpenEJB container system to create an
instant and customizable EJB 1.1 platform. Through the service-provider interface (SPI), primary services
may be interchanged to match any target environment's specific requirements. Figure 1 shows how
OpenEJB separates responsibilities of the application server, container, and primary services.

Servlet Server - CORBA ORE - Java RMVI -- IntraVIM

OpenEJE CPI

OpenkE.JB

i R T "

Stateful Stateless Entity

Containers | | Containers | | Containers

h A A s

OpenEJE SPI

JTA
Transaction Manager | |Security Manager Connectors API

Tyrex
Encina
Tuxedo
CICS
OTS

DRAFT, 4/11/2001

1.3.2 Thecontainers

The OpenEJB container system provides three robust container types, including stateless and stateful
session-bean containers, and entity-bean containers for both bean- and container-managed entity beans.
These containers are strictly compliant with the EJB 1.1 specification, and provide the full complement of
security and transaction behaviors to beans. The OpenEJB containers are very lightweight because they
multiplex regquests concurrently, requiring less overhead to service more beans. The containers are also
extremely fast because they introduce virtually no bottlenecks to service requests, allowing thousands of
requests to execute within the container system simultaneously.

1.3.3 Theprimary services

OpenEJB defines three primary services: Transaction, security, and connectors. The containers use the
transaction, security, and connector services while servicing beans and performing other responsibilities: the
transaction service provides the container with transactional integrity; the security service provides
authorization control; the connectors provides an API for managing resource connections like JIDBC and
Java Message Service (JMS).

1.3.4ThelntraVM server

OpenEJB includes an IntraVM server that allows for swift interaction among beansin the same virtual
machine. While respecting the remote semantics required by EJB, optimizations in method calls from one
bean to another provide for very fast throughput and little or no latency. The IntraVM provides an
immediately available platform for application servers that do not need to support client access through
distributed objects. For example, an existing servlet engine or web server can use the IntraVM server to
integrate the OpenEJB container systems with very little effort.

1.4.5 Customizable

OpenEJB provides a core package that is a powerful default implementation of a container system. While
this core iswell engineered for performance and efficiency, it is possible to replace parts of the core system
in favor of custom implementations. For example, the passivation strategy in the stateful container, which
currently writes to afile, can be swapped out in favor of one that writesto a RDMBS or some other
secondary storage.

Developers can al'so add custom containers to extend the scope of the container system. A container that
uses JNI to interface with an ERP system, for example, could be integrated with other core OpenEJB
containers. Even the configuration system in OpenEJB, which currently uses a flexible XML DTD, can be
replaced. A proprietary container assembler could replace the current assembler to build containers from a
database - or even read another vendor's configuration file to load a container system at runtime. Practically
every feature of OpenEJB is replaceable, providing vendors and customers with unparalleled customization
and flexibility. However, customization is not at al necessary. OpenEJB includes a powerful core package
that makes it an extremely fast container system.

1.3.6 Flexible

The OpenEJB container system defines lightweight and flexible interfaces that allow vendors to integrate
OpenEJB into their application server products easily. OpenEJB provides application server vendors
without EJB support afast track to EJB compliance. OpenEJB a so opens up the integration of transaction,
security, and connector services so that vendors and customers alike can choose the services that are the
most appropriate for their EJB platforms. Service providers can quickly adapt their products to OpenEJB
SPI, allowing them to compete with other vendors on the quality of their service.

DRAFT, 4/11/2001

1.4 OpenEJB is Open Source

1.4.1 The OpenEJB License

OpenEJB is an open source software project with aBSD license that is similar to the Apache license.
Although it's a new open source project, OpenEJB already has several platforms targeted for integration
including Apache Tomcat, OpenORB, and OpenJMS.

1.4.2 The open sour ce advantage

Open source exposes al the source code of the software to the world, providing significant advantagesto its
creators, its customers, and other devel opers. Unlike proprietary software, open source products contain no
mysteries, no hidden "features." The support costs are much lower with open source than for a proprietary
product. Customers that encounter anomal ous behavior can choose to locate the exact source of the problem
themselves and report it. Most important, open source encourages customers and other developersto
contribute enhancements to the software, so that an open source product becomes a joint development effort
among its creators, its users, and other vendors.

1.4.3 The open sour ce community

A community forms around every open source project, comprising devel opers and users that employ the
software in commercia and non-commercial environments. If an open source project iswell designed and
useful, it can become wildly successful. Typical and striking examplesinclude Linux, Apache, and Perl,
each of which has enjoyed success in both open source and commercial communities.

1.4.4 The synergy of OpenEJB and open sour ce

OpenEJB is especially well suited for open source because its modular design alows it to be integrated into
many different platforms. This flexibility makes OpenEJB the universal solution for any application server
that needs EJB functionality. OpenEJB represents a revolution in application server design, aview that
application servers subsystems should be built by organizations that specialize in those subsystems, then
bolted together to create a single complete platform, turning the potential of modularization into a reality.

Open source code represents another revolution in software, one that has a special synergy with modular
application server development. Open source exposes the code so that everyone understands how the
software works; modular application server software like OpenEJB exposes public programming interfaces
so that it can be assembled into an endless variety of platforms. Together, open source and modular
software form an excellent union of two philosophies.

DRAFT, 4/11/2001

Section 2: The Server-Container Contract

2.1 Overview

The Server-Container Contract defines the separation of responsibilities between the application server and
the OpenEJB container system. The server and container systems interact exclusively through the interfaces
and classesinthe or g. openej b package!, which are collectively refereed to as the Server-Container
Interface (SCI). The sever-container contract is defined by the SCI as well as the policies enumerated in
this section of the OpenEJB specification.

2.1.1 OpenEJB Responsibilities

OpenEJB instantiates a container system at runtime. The container system is responsible for managing
enterprise beans at runtime according to the information provided in their XML deployment descriptors?.
The container system interposes between regquests made by the server and serviced by enterprise beans. The
container system interposes to provide transaction, authorization security, and connector support for beans
servicing requests from the server. The transaction, security, and connector services used during
interposition are those assigned to the container system by the configuration.

The container system provides afast minimally synchronized environment for enterprise beansthat is
conformant with the EJB 1.1 specification.

The container system provides the server with an API (the SCI) for locating the container that hosts a
specific bean deployment and delegating reguests to the bean.

2.1.2 Server Responsibilities

The server isany Java application that hosts the OpenEJB container system. The server isresponsible for
supporting the EJB Client API for distributed clients or some other similar APl (CORBA, DCOM, etc.).
The server must provide the stubs, network protocol, dispatching, and naming services used to locate and
communicate requests with the container system.

2.1.3 The Server-Container Interface

The server and container interact through the server-container interface (SCI). The SCI is made up of the
10 classes and interfaces defined in the or g. openej b package. Using the SCI the server will delegate

requests to beans to the container system, which may reply with return values or exceptions depending on
the outcome of the request and the type of container.

Several classes and interfaces in the SCI represent a hierarchy for managing and hosting enterprise beans at
runtime. The participantsin this hierarchy are described below.

! Its possible that the application server also implements one or more of the Service-Provider Interfaces, but that is
outside the scope of the Server-Container contract discussed here.

2 The deployment information is actually mapped by the deployer to the OpenEJB configuration information for the
target plateform.

DRAFT, 4/11/2001

2.1.3.1 OpenEJB

OpenEJB isthe root of the container system hierarchy. It is responsible for loading the configuration
information and manufacturing the containers. The OpenEJB classis a static singleton that provides access
to the deployments, containers, transaction manager, and security service.

Properties props = new Properties();

or g. openej b. QoenEJIB. i ni t (props);

Transact i onManager txMgr = QpenEJB. get Tr ansact i onManager () ;
SecurityService ss = (penEJB. get SecurityService();

Contai ner [] containers = (penEJB. cont ai ners();

Depl oynment I nfo [] depl oyments = penEJB. depl oyrent s() ;

One the OpenEJB has been initialized, it can be used to access the containers, deployments and primary
services. OpenEJB maintains one container system per Java Virtual Machine and can not be initialized
more then once in the life of a process.

2.1.3.2 Container

The Cont ai ner manages one or more bean deployments at runtime. The Container interface provides
methods for accessing the Container'sid and the deployments managed by the container (represented by

or g. openej b. Depl oynent | nf o objects). In addition, the container defines the

get Cont ai ner Type() method, which will return Cont ai ner . ENTI TY, Cont ai ner. STATEFUL,
or Cont ai ner. STATELESS depending on the bean type managed by the container.

Cont ai ner cntr = QpenEJB. get Cont ai ner (" Accounting");
Depl oynment Info [] depl oyments = cntr. depl oynents();
Depl oynment | nf o depl oyl nfo = cntr. get Depl oynent (sonel d) ;
int type = cntr. get Contai ner Type();

The Container interface has been separated from the RpcContainer in order to support future container
types that are not based on RPC style communications such as the message-driven bean container in EJB
2.0, which will included in the next release of OpenEJB, OpenEJB 2.0.

2.1.3.3 RpcContainer

The RPC container is used for Sessi onBean and Ent i t yBean deployments, which are accessed via
remote procedure calls (RPC) from clients. Its called the RPC container (RpcCont ai ner) because it
enforces the semantics the Java RM1 API, but can be used with any RPC protocol including JRMP, RMI-
[1OP, 110P, SOAP, and, hypothetically, DCE and DCOM. The RpcCont ai ner sassumethat acall is
synchronous and that arguments, return values, and exceptions will adhere to the Java RMI-110P API
policies defined by the EJB 1.1 specification -- the actual protocol can be anything. The server is
responsible for trandating arguments, return values, and exceptions between the

RpcCont ai ner . i nvoke() method and the distributed object protocol used by the server.

The RpcCont ai ner extends the Container interface and defines one method, i nvoke(); The
i nvoke() method isused by the server to delegate bean requests to the RpcContainer.

RocCont ai ner rm ntr = (RpcCont ai ner) QoenEJB. get Cont ai ner (" Accounti ng") ;

oj ect retVal = rm tr.invoke(depl oyl D, et hod, args, nul |, princi pal);

DRAFT, 4/11/2001

2.1.3.4 Deploymentinfo

The Depl oynent | nf o represents a unique bean deployment in the container system. It maintains all
deployment information about the bean that may be useful to the server in determining the behavior and
identity of a specific bean deployment. Deploymentinfo objects are uniquely identified within the container
system by their deployment-id. The deployment-id can be used in the get Depl oynent | nf o() method,
defined in both the OpenEJB class and Container interface to obtain a specific Deploymentinfo object.

(hj ect depl oyl D = depl oyrent | nf 0. get Depl oyrent | X) ;

Depl oynment I nfo di _1 = QpenEJB. get Depl oynent | nf o(depl oyl D) ;
Depl oynent I nfo di _2 = cont ai ner. get Depl oynent | nf (depl oyl D) ;

| f (depl oyl D. equal s(di _1) &% depl oyl D. equal s(di _2))
/1 this condition will always be true

Its expected that most servers will associate a deployment-id with a remote reference connection, since the
server must supply the deployment-id when invoking the Roc Cont ai ner . i nvoke() method. Servers
can use the Deploymentinfo to obtain information about the bean as well as obtaining a direct reference to
the bean’s container.

The deployment-id is often the same as the INDI lookup name used by remote clients to access the bean.
Thisis not arequirement, but can make it direct client requests to the correct container and Deploymentinfo
object. The deployment-id can, however, be any character string as long as deployment-ids are unique with
acontainer system.

2.1.3.5 Proxylnfo

Aninstance of Pr oxy| nf o class represents a remote reference to a bean in the container system. When a
bean method (create, find, or business methods) is defined as returning a remote reference to another bean,
the container will replace that reference with the Pr oxy| nf o object if itsalocal bean. Local beans are
those beans deployed in the same container system.

The Pr oxyl nf o object provides information sufficient for the server to generate a native remote reference
that can be used by the calling client. This native remote reference isimplemented using the distributed
protocol used by the server.

2.1.3.6 OpenEJBEXxception

Thisis the base exception type of the ApplicationException, InvalidateReferenceException and
SystemException. It is never thrown directly by the container system to the server.

2.1.3.7 ApplicationException

An Appl i cati onExcept i on isthrown when invocation on the bean instance resultsin a
java. rm . Renot eExcept i on or some type of EJB application exception. The server must propagate
the cause of the ApplicationException to the client.

2.1.3.8 InvalidateRefer enceException

Thel nval i dat eRef er enceExcepti on istypeof Appl i cati onExcept i on that isthrown when
EJB 1.1 policy requires that the server invalidate the client's remote reference. The

I nval i dat eRef er enceExcept i on isonly thrown for stateful session beans when an operation
results in the destruction of the bean instance. The server must propagate the cause of the
InvalidateReferenceException (usually a RemoteException) and then make the clients remote reference
inoperable.

10

DRAFT, 4/11/2001

2.1.3.9 SystemException

Theor g. openej b. Syst emExcept i on isused to report a system failure in the container system or
one of the service providers (transaction, security, or connectors). The condition that caused the exception
is considered a partial or complete failure of the container system that may be isolated to the container or
service provider that caused the exception.

Container may throw a system exception if an abnormal condition exists while handling server regquest.
Examples of abnormal conditionsinclude: An |/O error that occurs passivating stateful bean instances to
disk; an invalid deployment-id or call method is used as an argument to aRpc Cont ai ner . i nvoke()
method call.

When aSyst enExcept i on isthrown, the server can attempt to recover by re-executing the request,
removing the container from service, or removing the entire container system from service. The

Syst emExcept i on wrappers the causal exception which may be evaluated to determine the source of the
faillure. For example: If the causal exceptionisaj avax. j t a. Syst emExcept i on the server knows
that the exception was thrown from the transaction service provider.

2.1.3.10 EnvProps

The EnvPr ops provides atype for standard constants used when initializing the container system.

2.2 Server-RpcContainer Contract

The server initializes the OpenEJB container system at server start-up or before the first bean request is
serviced. Every bean deployment has an id, called the deployment-id, that is unique within a container
system. The server must provide its RPC clients with a naming service that maps names to deployment-ids
associated with RpcContainers. In many cases the naming service' s name binding may be the same as the
deployment-id, but thisis not required. When the client performs a name service lookup, the server will
return a home reference; a proxy or stub that implements the bean's home interface.

The server isresponsible for providing the distributed communication infrastructure (proxies, network
protocol handlers, dispatchers, etc.) for remote references. Every remote reference provided by the server
is associated with a specific deployment-id, which in turn mapsto a specific Roc Cont ai ner . When the
client invokes a method on a bean or home reference, the server will either delegate the request to
reference's Rpc Cont ai ner or service the request itself.

In general, create, remove, finder, and business methods are del egated to the reference's Rpc Cont ai ner .
The values returned or exceptions thrown are propagated to the server's clients. The server itself services
all other methods of the EJBHome and EJBObj ect interfaces because these methods require the creation
of distributed communication artifacts specific to the server's distributed object protocol (i.e. Handl e and
EJBMet aDat a) or that are easily handled by the server (i.e. EJBObj ect . i sl denti cal () and
EJBObj ect . get Pri maryKey()).

The server delegates all RPC requests to RPC container using the Rpc Cont ai ner . i nvoke() method.
Thei nvoke() method will either return normally or throw an exception. Normal return values are

propagated to client, exceptions are handled according to the exception policies outlined in section "2.2.1.3
Exceptions”.

2.2.1 Invoke Policies

In general requests by the client on bean's business methods and the home's create, and find methods are
delegated to the Rpc Cont ai ner. TheRpcCont ai ner interface definesthei nvoke() method

11

DRAFT, 4/11/2001

which represents much of the server-container contract, which is expressed through parameters, return
values, and exceptions that can be thrown by the invoke method to the server.

2.2.1.1 Parameters

The RpcCont ai ner .invoke() method defines declares five parameters.

publ i c (pj ect invoke(Chj ect depl oyl D,
Met hod cal | Met hod,
hj ect [] args,
oj ect pri nKey,
Cbj ect securityldentity)

throws penEJBExcepti on;
2.2.1.1.1 deployl D

Thisisthe deployment-id of the bean to be invoked. Every bean deployment has a unique deployment-id
within the scope of a container system. The deployment-id can be used to obtain the bean's
DeploymentInfo object which is used by the container to select the correct bean deployment to service the
method request as well as providing other information. (A container can and often does support several
different deployments at the sametime.). The deployment-id type isinconsequential to the container
system, but is usually a String or Integer type.

String deploynentI D = ...get depl oynment id fromrequest

Depl oynent | nf o depl oyment = (penEJB. get Depl oynent | nf o(depl oynent | D) ;

RPQCont ai ner contai ner = (RPCCont ai ner) depl oyrent . get Cont ai ner () ;
cont ai ner. i nvoke(depl oynment | D, cal | met hod, args, securityldentity);

2.2.1.1.2 callM ethod

Thisisthej ava. | ang. ref | ect. Met hod object that represents the remote interface (home or remote)
method that was invoked by the client. This parameter is used by the container to determine whether the
method should be delegated directly to the bean or run under a different method (i.e. cr eat e() isrunas
ej bCreat e()). Inaddition, the Method object is used as akey in the container system when determining
the transaction and security attributes that must be applied when the operating on the bean instance.

22113args

Thear gs array isthe parameter values used by the client to invoke the remote reference method. The
arguments must be indexed in the array in the same order they are declared on the remote interface method.
Primitive values (i nt , doubl e, char, etc.) must be substituted with their primitive wrapper counter parts
(I nt eger, Doubl e, Char act er, etc.) inthe array. The arguments must be copied and not passed by
reference from the client. Thiswill be a natural occurrence for most distributed object systems since
arguments must be marshaled across the network. Arguments that are remote references must be
operational, meaning that they must implement the remote interface and provide network access to their
respective bean.

22114 primKey

The primary key identifies a unique bean in the container system. For stateful beans the primary key
identifies a unique bean instance that maintains a conversational state with a specific client. For entity
beans the primary key identifies a unique bean in the database. Stateless session beans do not use a primary
key, sothepr i nKey parameter will be null for requests on stateless beans. The primKey isusally nul |
for invocations servicing home interface methods -- home references don't have a primary key. The
exception is EI-BHome remove methods for which the server must provide the primary key of the bean
(stateful or entity) that isto be removed.

12

DRAFT, 4/11/2001

2.2.1.1.5 securityl dentity

Thesecurityl dentity isthesecurity identity representing the client. The server isresponsible for
providing the proper object for the container systems designated security service. The type and
implementation of thesecuri tyl denti ty objectisimmaterial to the container. It's assumed that the
security service used by the container will know how to use it.

For example, if the container's profile specifies security service provider that uses SSL authentication, then
the proper SSL credential may be passed asthesecuri tyl dent ity parameter. If the security service
provider uses Kerberos then the proper Kerberos token may be passed asthesecurityl dentity
parameter.

2.2.1.2 Return Values

The RpcCont ai ner. i nvoke() method returns an Object type. The value of the return depends on the
expected return type of the remote method that was invoked; the declared return type of the home or remote
interface.

2.2.1.2.1 void

If the remote interface method returnsavoid, thei nvoke() method will returnanul | value. The
remote reference will then return void.

2.2.1.2.2 primitive types

If the remote interface method returns asingle primitive value (i nt , doubl e, char , etc.), thei nvoke()
method will return the corresponding primitive wrapper (I nt eger , Doubl e, Char act er, etc.) object.
The remote reference will then return the primitive value of the wrapper object.

2.2.1.2.3 Serializable types

If the remote interface method returns a serializable type, thei nvoke() method will return an object of
that type. The remote reference returns a copy of the serializable object.

Theexceptionisj ava. | ang. St ri ng and primitive wrapper types (I nt eger , Doubl e, Char act er,
ect.), which are immutable and need not be copied.

2.2.1.2.4 Array Valuetypes

If the remote interface method returns an array, thei nvoke() method will return an array of that type.
The remote reference returns a complete copy of the array including the individual elements.

2.2.1.2.5 Remote References

If the remote interface method returns a remote reference, thei nvoke() method will either return

Pr oxyl nf o object or the actual remote reference. Pr oxy| nf o objects are returned for local beans,
which are beans managed within the container system. Remote references are returned by for non-local
beans, which are beans managed by a different container system or a different EJB vendor (Weblogic,
WebSphere, etc.).

If the method called is a create or single object find method, thei nvoke() method will return the

Pr oxyl nf o that represents the created or found bean. If a business method returns aremote reference to a
local bean, the container will return a Pr oxy| nf o object for that bean. The server then, must generate the
remote reference based on the Pr oxy| nf o and returned that reference to the client.

13

DRAFT, 4/11/2001

The Pr oxyl nf o object provides information sufficient for the server to generate a remote reference for
the local bean including the remote interface to implement (remote or home), the deployment-id, the
primary key of the bean, and the a reference to the bean's container.

If the bean returns a remote reference to a non-local bean, the container will return that same remote
reference to the server. The assumption is that the remote reference from the non-local bean (different
container system or vendor) is serializable, so otherwise can be transferred between address spaces and
remain operational. Problems can occur when the distributed object protocol used by the sever is
incompatible with the non-local bean reference's implementation.

2.2.1.3 Exceptions

There are three possible exceptions that can be thrown by thei nvoke() method:
Appl i cati onExcepti on, Syst enExcepti on,orthel nval i dat eRef er enceExcepti on.

2.2.1.3.1 ApplicationException

An Appl i cati onExcept i on isthrown when invocation on the bean instance resultsin a

java.rm . Renpt eExcept i on or some type of EJB application exception. The server must propageate
the cause of the Appl i cat i onExcept i on tothe client. Whenan Appl i cati onExceptionis
thrown, the cause is considered to be normal; it does not represent a system failure or require invalidation of
the remote reference. The cause should be propagated to the client but no other action need be taken by the
server.

When a bean method throws a custom application exception from a business methods or a standard
application exception (Cr eat eExcept i on, Cbj ect Not FoundExcept i on, etc.) from a standard
business method (ej bCr eat e, ej bFi nd, etc.), the container will catch the exception and re-throw it
wrapped inan Appl i cat i onExcept i on tothe server.

Under some circumstances, a Renot eExcept i on may occur while delegating a request to the bean
instance. Examplesinclude: A security authorization violation (the client is not authorized to access the
bean method); An attempt to propagate a transaction to a bean method declared with the Never
transaction attribute; An attempt to perform aloopback on an entity bean that is declared as non-reentrant.
In these cases the Renot eExcept i on will be wrapped in a ApplicationException by the container and
thrown to the server fromthei nvoke() method. The server must treat the Renpt eExcept i on asit
would any custom application exception; the Renot eExcept i on should be propagated to the client, but
no other action need be taken by the server.

2.2.1.3.2 InvalidateRefer enceException

Thel nval i dat eRef er enceExcepti on istypeof Appl i cati onExcept i on that isthrown when
EJB 1.1 policy requires that the server invalidate the client's remote reference. The

I nval i dat eRef er enceExcept i on will nest aRenpt eExcept i on or standard application
exception (i.e. Obj ect Not FoundExcept i on) that must re-thrown to the client by the bean reference.
Thel nval i dat eRef er enceExcept i on isonly thrown for stateful session beans when an operation
results in the destruction of the bean instance. Examplesinclude: An EJBExcept i on isthrown by a
stateful bean method (business method or standard callback method) and the instance is evicted; A client
attempts to invoke a method on a stateful bean object that no longer exists.

Whenthei nvoke() method throwsan Appl i cati onExcept i on the server must: First throw the

nested (cause) exception to the client; Second, invalidate the reference so that any subsequent method
invoked on the reference immediately throw a Renpt eExcept i on. Thereference is made inoperable.

14

DRAFT, 4/11/2001

2.2.1.3.3 SystemException

A SystemException is thrown by the invoke() method when a partial failure of the container or one of the
service providers (transaction, security, connectors) has occurred while servicing the method. Conditions
that cause a Sy st emExcept i on and server responsibilities are covered in more detail in Section 2.4:
SystemException.

A Syst enExcept i on represents a serious error in the container system. It should be assumed if this
exception isthrown that the container system is unstable and appropriate action by the server should be
taken.

2.2.2 The EJBODject

The EJBObject isimplemented by server specific stub that acts as a remote reference to a corresponding
bean in a RpcContainer. The EJBObject stub must implement boththej avax. ej b. EJBObj ect
interface as well as the remote interface (and all its super types) defined by the bean devel oper.

When an EJB client creates or finds a bean from a EJBHome reference, the server is responsible for
returning a remote reference to that bean. The remote reference, the EJBObject, isimplemented according
to the server's distributed object protocol and is bound to its bean's RpcContainer at the server. How thisis
accomplished is up to the server, but it is expected that servers will maintain a mapping between the
EJBObject's network connection or logical thread, and the correct RpcContainer using the deployment-id.
For stateful and entity beans, the EJBObject reference is mapped to a specific bean instance within a
container using the deployment-id and primary key.

2.2.2.1 Remote I nterface M ethods

The remote interface methods, those business methods defined by the bean developer in the remote
interface, are delegated to thei nvoke() method of the appropriate Rpc Cont ai ner (the container that
services the bean deployment represented by EJBObj ect). Invocations onthe EJBObj ect stub are
transmitted from client to the server (using the servers distributed object protocol) and then delegated to the
appropriate RpcCont ai ner .

2.2.2.2 EJBODbject Interface M ethods

Except for ther emove() method, all EJBObject interface methods are implemented by the server. (The
renove() method ishandled by the OpenEJB RpcContainer viathei nvoke() method.) The
EJBObject methods are dependent on server specific conventions and distributed object protocol, so the
responsibly for implementing these methods falls on the server.

2.2.2.2.1 getEJBHOmMe

The get EJBHome() method is handled by the server which will need to return an application server
implementation of the EIBHome stub implementing the appropriate home interface to the client.

2.2.2.2.2 getHandle

Theget Handl e() method isimplemented by the application server. The Handle class needs to be
seriadizable, so that it can be written to file or stream. The Handle implementation must be able to re-
connect to the server after it is deserialized using the server's distributed object protocol, and return an
EJBObject stub for the appropriate bean.

15

DRAFT, 4/11/2001

2.2.2.2.3 getPrimaryKey()

The server may choose to maintain a reference to the primary key in the stub, or to maintain it at the server.
Session beans do not expose their primary keys, so the application server will need to throw a
RemoteException when this method is invoked on session EJBObject stubs.

2.2.2.2.4 isldenticial

Thei sl dentici al (EJBOoj ect obj) method isimplemented by the server. The application server
should compare container and deployment-ids for an exact match. In addition, the identity (primary key)
for entity and stateful session beans must match aswell. The primary key and other identifiers may be
maintained in the EJBObject stubs or on the server.

2.2.2.2.5remove

The remove() method is delegated by the server tothei nvoke() method of the proper

RpcCont ai ner. When invoked on an EJBObject stub for a stateless bean, the server doesn't not need to
delegate the invocation to the container -- EJBObject.remove() invocations are not handled by the stateless
container.

Oncear enove() method has been processed, the server should attempt to invalidate all the EJBObject
stubs of the bean that was removed, so that subsequent invocations on that EJBObject stub result in

j avax. ej b. Onj ect Not FoundExcept i on being thrown to the client. Subsequent requests by server
on behalf of the removed bean will result in the RpcCont ai ner throwing a

org.openej b. Appl i cati onExcepti on that wrapsa

j avax. ej b. Obj ect Not FoundExcepti on.

2.2.3TheEJBHome

The EJBHome isimplemented by server specific stub that acts as a remote reference to a corresponding
deployment in a RpcContainer. The EJBHome stub must implement both thej avax. ej b. EJBHome
interface as well as the home interface (and all its super types) defined by the bean developer.

When the client uses a naming service to locate a bean's EJBHome reference, the server is responsible for
returning a remote reference to that bean. The home reference, the EJBHome, is implemented according to
the server's distributed object protocol and is bound to its bean's RpcContainer at the server. How thisis
accomplished is up to the server, but it is expected that servers will maintain a mapping between the
EJBHome's network connection or logical thread, and the correct RpcContainer using the deployment-id.

In some cases the deployment-id and the lookup name may be the same value, but thisis not required and is
considered a server specific option.

2.2.3.1 Home I nter face M ethods

The home interface methods, those methods defined by the bean developer in the home interface, are
delegated to thei nvoke() method of the appropriate Rpc Cont ai ner (the container that services the
bean deployment represented by EJBHone). Invocations on the EJBHone stub are transmitted from client
to the server (using the servers distributed object protocol) and then delegated to the appropriate

RpcCont ai ner.

In the case of home interface methods, anul | value must be passed as the primary key argument in the
RpcCont ai ner. i nvoke() method. Home interface methods are not specific to one bean instance and
so have no primary key associated with method requests. The only exception to thisis the E-BHome
remove methods which are discussed in more detail in section 2.2.3.2.

16

DRAFT, 4/11/2001

When ahome interface cr eat e method is delegated to the Rpc Cont ai ner the return value will always
beaPr oxyl nf o object describing the remote reference that should be returned to the client. The remote
reference is a distributed object stub implemented according to the server distributed object protocol.

When asingle-valuef i nd method (i.e. f i ndByPri mar yKey ()) isdelegated to the RocCont ai ner a
single Pr oxy| nf o object will be returned, the same aswith the cr eat e methods. When a multi-value

f i nd method is delegated to the RpcCont ai ner,aj ava. uti |l . Col | ecti on of Proxyl nf o
objectsis returned to the server. The server isthen responsible for returningaCol | ecti on or

Enurer at i on of remote references to the client. The collection type returned to the client depends on
how the f i nd method was declared.

2.2.3.2 EJBHome Interface M ethods

Except for ther enove() method, al EJBHone interface methods are implemented by the server. (The
renove() method ishandled by the OpenEJB RpcContainer viathei nvoke() method.) The
EJBHonme methods are dependent on server specific conventions and distributed object protocol, so the
responsibly for implementing these methods falls on the server.

2.2.3.2.1 getEJBM etaData

Theget EJBMet aDat a() method isimplemented by the application server. The EJBMet aDat a class
needs to be serializable, so that it can be written to file or stream. Using the deployment-id, the server can
lookup the Depl oynent | nf o object for that bean, and use it to populate the EJBMVet aDat a object. In
addition, the EJBMet aDat a implementation must be able to re-connect to the server after it is deserialized
using the server's distributed object protocol, and return an EJBHone stub from the

EJBMet aDat a. get EJBHone() method.

2.2.3.2.2 getHomeHandle

Theget HomeHandl e() method isimplemented by the application server. The HomeHandl| e class
needs to be serializable, so that it can be written to file or stream. The HoneHand| e implementation must
be able to re-connect to the server after it is deserialized using the server's distributed object protocol, and
return an EJBHome stub for the appropriate bean.

2.2.3.2.5remove

Ther emove() methods are delegated by the server tothei nvoke() method of the proper
RpcCont ai ner. When invoked on a EJBHomne stub for a stateless bean, the server doesn't not need to
delegate the invocation to the container -- EJBHone. r enove() invocations are not handled by the
stateless container — but doing so will not cause an error.

Oncear enove() method has been processed, the server should attempt to invalidate al the

EJBObj ect stubs of the bean that was removed, so that subsequent invocations on that EJBCbj ect stub
resultinj avax. ej b. Cbj ect Not FoundExcept i on being thrown to the client. Subsequent requests
by server on behalf of the removed bean will result in the RocCont ai ner throwing a

org.openej b. Appl i cati onExcepti on that wrapsa

j avax. ej b. Obj ect Not FoundExcepti on.

17

DRAFT, 4/11/2001

Section 3: The Service Provider Interface

Connector Support

Included in the service provider interface of OpenEJB is the Connector API. The Connector APl isa
standard J2EE API that defines a contract between the “ application server” and resource connectors.
Resource connectors are technology specific APIs for accessing backend systems like relational databases,
messaging services, and ERP systems. The most familiar resource APIs are JDBC and JMS. Itisthe
responsibility of the “application server” to manage the pooling and application of transactions and security
services to resource connections used by enterprise beans. It's the responsibility of the connectorsto
provide physical resource connections and the facilities for manufacturing those connections. The
Connector API specifies how “application server” and the connectors interact to manage resource
connections.

In the case of OpenEJB the role of the “application server” -- as defined by the Connector API specification
-- isfulfilled by the OpenEJB container system. OpenEJB provides a mechanism for declaring connectors
and their connection managersin the XML configuration file. OpenEJB also provides connection managers
with access to the appropriate transaction and security service at runtime through a standard JINDI name
space.

A connection manager is responsible for managing resource connections according the contracts defined in
the Connector API. Thisincludes pooling and sharing connections as well as managing the transaction and
security contexts of connection at runtime. Connection managers implement the

j avax. resour ce. spi . Connect i onManager interface defined in the Connector API.

A resource connection (a.k.a. connector) is responsible for providing physical connectionsto a backend
resource such as arelational database or enterprise messaging system. A connector must implement the SPI
contracts defined by the Connector API specification in addition to atechnology specific API. For
example, a IDBC connector will implement the Connector SPI as well asthe JDBC API. Similarly, aJMS
connector will implement the Connector SPI and the IMS API. The Connector SPI is used by the
connection manager to mange the physical resource connections -- independent of the type of backend
resource accessed by the connector. The technology specific API is used by enterprise beans to work
directly with the backend resource accessed by the connector. For example, an enterprise bean will use the
JDBC API to query, update, and delete records in arelational database system.

The advantage of the Connector API isthat it allows any Connector compliant resource to work with any
Connector compliant application server. A vendor who creates a connector for a specific backend resource
can be assured that their product will work with any application server that supports the Connector API.
Before the introduction of the Connector API, organizations were limited to the resource connections
supported by their application server. The Connector API largely eliminates this limitation. If your
application server is complaint with the connector API, it should automatically support any existing and
newly defined connectors.

OpenEJB takes this portability a step further by making the connection managers plugable. In most
application servers, the vendor will offer one or more connection manager options, but the selection of
connection managers are fixed and proprietary -- they are built into the application server. OpenEJB, on the
other hand, allows any third party to define a connection manager that can easily be plugged into OpenEJB
and used at runtime to manage connectors. The connection manager defined by the third party is
responsible for pooling connections and interacting with connectors according to the Connector API.
OpenEJB isresponsible for providing the connection manager with accessto a JTA TransactionM anager
and the security service. In addition, OpenEJB provides enterprise beans with access to connectors through

18

DRAFT, 4/11/2001

their INDI environment naming context (ENC). The bean uses only the resources technology specific API
and is not aware of the connector API, which is only used by the connection manager.

While devel oping connectors and connection managersis not trivial, plugging third party connectors and
connection managers into OpenEJB is very easy. Both connectors and connection managers are declared in
the facilities section of OpenEJB's XML configuration file. The following example shows that multiple
connectors can be assigned to the same connection manager. In this case the OpenEJB JDBC Connector
and a JM S connector provide by the Acme corporation are assigned to the Connection manager provided by
Blue Sky corporation.

<connect or s>
<connect or >
<connect or - i d>QO der sDat abase</ connect or - i d>
<connect i on- nanager - i d>Local Shar ed</ connect i on- manager - i d>
<managed- connect i on- f act ory>
<cl ass- nane>or g. openej b. resour ce. j dbc. JdbcManagedConnect i onFact or y
</ cl ass- name>
<properties>
<property>
<pr opert y- name>set JdbcDr i ver </ pr oper t y- name>
<pr operty-val ue>sun. j dbc. odbc. JdbcQdbcDri ver </ pr oper t y- val uep
</ property>
<property>
<pr operty- nane>set JdbcU | </ pr opert y- name>
<pr operty-val ue>j dbc: odbc: or der s</ property- val ue>
</ property>
</ properties>
</ managed- connect i on-f act or y>
</ connect or >
<connect or >
<connect or -i d>l nvent or yTopi c</ connect or - i d>
<connect i on- manager - i d>Local Shar ed</ connect i on- nanager - i d>
<managed- connect i on- f act ory>
<cl ass- name>com acne. j ns. Topi cManagedConnect i onFact ory
</ cl ass- name>
<properties>
<property>
<pr oper t y- nane>URL</ pr opert y- nane>
<proper ty-val ue>j ns: acne. con nyt opi c</ property-val ue>
</ property>
</ properties>
</ managed- connect i on- f act ory>
</ connect or >
<connect i on- manager >
<connect i on- manager - i d>Local Shar ed</ connect i on- manager - i d>
<cl ass- nane>
com bl ue- sky. openej b. Connect i oniVanager
</ cl ass- name>
</ connect i on- manager >
</ connect or s>

Connectors can be assigned to any one of several connection managers. Connectors can be assigned to any
one of several connection managers. For example, there could be four connectors declared and two
connection managers. Two of the connectors are assigned to one connection manager, while the other two
are assigned to the other connection manager.

Enterprise beans access connectors as resources through their INDI ENC. The connector-id used in the
deceleration of aresource is mapped directly to connector-id of a connector in the facilities section. In the
below example, the enterprise bean declares two resourceswhose connect or - i d elements map to
connectors shown in the previous example.

<entity-bean>
<di spl ay- nane>Enpl oyeeEIB</ di spl ay- nane>

19

DRAFT, 4/11/2001

<ej b- depl oyment -i d>111111</ ej b- depl oynent -i d>
<hone>or g. openej b. t est . beans. Enpl oyeeHone</ hone>
<r enot e>or g. openej b. t est . beans. Enpl oyee</ r enot e>
<ej b- cl ass>or g. openej b. t est . beans. Enpl oyeeBean</ gj b- cl ass>
<pri mary-key>j ava. | ang. | nt eger </ pri nary- key>
<j ndi - enc>
<resour ce-ref >
<r es-r ef - name>j dbc/ or der s</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</ r es-t ype>
<res- aut h>Cont ai ner </ r es- aut h>
<connect or - i d>QO der sDat abase</ connect or - i d>
</resource-ref>
<resour ce- r ef >
<r es-ref - nane>j ns/ i nvent or yTopi c</ res-r ef - name>
<res-type>j avax. j ns. Topi cConnect i onFact ory</res-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
<connect or - i d>l nvent or yTopi c</ connect or - i d>
</resource-ref >
</jndi - enc>
</entity-bean>

Current Status: January 4, 2001

The Connector API isnear completion but is not yet initsfinal release. Asaresult there are no connectors
currently available. While its believed that vendors will quickly release a cornucopia of connectors
following the specification's final release, the OpenEJB project provides an interim solution: aJDBC
connector that can be used with any JDBC driver. The JDBC connector is packaged under

org. openej b. resour ce. j dbc. It can be used to wrapper any JDBC driver and make it Connector
compliant (limited). The OpenEJB JDBC connector is currently limited to local transactions (see
Connector specification) and does not provide support for the XA interfaces and 2-phase commit. Thisis
likely to change in the coming months. In the mean time, organizations can use the OpenEJB JDBC
connector to access any JDBC compliant database within alocal transaction.

OpenEJB aso provides a connection manager, the

or g. openej b. resour ce. Shar edLocal Connect i onManager , that can be used to manage any
connector that supports local transactions. In addition the Shar edLocal Connect i onManager
supports connection sharing, so that componentsin a chain of execution will automatically share the same
physical connection and local transaction. This makes it possible to support atransaction for asingle
resource that spans several components in the same unit-of-work.

For example, bean A calls bean B which calls bean C. All three beans access the same JDBC resource from
their INDI ENC (the res-id is the same). With connection sharing bean B and C will use the same physical
JDBC connection used by bean A. When the unit-of-work is complete and all the beans have completed
their work, the transaction on the JDBC connection will be committed. All the work preformed on that
physical connection by each of the beansis committed or rollback together; its atomic. However,
connection sharing does not allow different resources to be enrolled in the same local transaction. If for
example, beans A, B, and C all access JDBC and JM S resources, then the JDBC work will be committed
together and the IM S work will be committed together, but the JDBC and JMS work will be committed
separately. If the IDBC commiit fails, the IMS commit will still be executed. That's the limitation of a
shared local connection manager. A connection manager that supports 2-phase commit would ensure that
these different resources succeed or fail together. Itslikely that a connection manager that supports 2-phase
commit will be provided by OpenEJB or some third party in the future.

From a developers stand point the connectors are anon-issue. The developer simply declares which

connectors are used with which connection managers and maps the connectors as resources enterprise
bean's INDI ENC. Its our hope that others will consider developing connection managers that can be used

20

DRAFT, 4/11/2001

with OpenEJB. Over the coming weeks the OpenEJB-ConnectionManager interface will be refined.
Currently, OpenEJB provides connector managers with access to the TransactionManager used by the bean
requesting access to aresource.

Section 4. The Core OpenEJB Implementation
Section 5: Vendor |nteroperability

Section 6: OpenEJB Customization

The OpenEJB factory

The OpenEJ B class manufactures an instance of OpenEJB with a complete container system that is ready
to accept bean requests. Essentially, the server will usethe statici nit () method of the OpenEJB class
to bootstrap a container system. The Properties object passed asan argument to thei ni t () method is
combined with the System properties and passed to the constructor of an OpenEJB instance.

Properties props = new Properties();
daénEJB ej b = org. openej b. QoenEJB. i nit (props);

The OpenEJB instance is responsible initiating the construction of container system by locating the correct
Assenbl er and providing it with access to configuration information. The Assembler is responsible for
constructing every artifact of the container system and preparing it to service bean requests based on
configuration information. The type of Assembler and the source of the configuration information can be
identified through properties, which can be declared in the Properties argument or in the system class
properties.

The Assembler property uses the property name"or g/ openej b/ assenbl er _cl ass". This property
name is bound to the fully qualified class name of the Assembler class used to build the OpenEJB container
system. The default implementation is, which is used if an Assembler property is not specified, isthe
org.openej b. core. conf. Assenbl er. The Assembler isresponsible for constructing the entire
container system using the configuration information.

The configuration source property uses the property name

"or g/ openej b/ confi gurati on_sour ce". This property identifies the source of the configuration
information used to build the container system. The configuration source may be alocal file, remote
location, a database table, etc. The configuration information itself can take any form aslong as it works
with the named Assembler. The default Assenbl er expectsa XML filethat islocated on the local hard
drive and conforms to the openejb_config.dtd.

The Assembler and configuration source property names are conveniently declared as static fieldsin
org.opengib.EnvProps class.

package org. openej b;
public class EnvProps {

public final static String CONFI GURATI ON = "or g/ openej b/ confi gur ati on| sour ce";
public final static String ASSEMBLER = "or g/ openej b/ assenbl er _cl ass";

21

DRAFT, 4/11/2001

If the core OpenEJB implementation isto be used, the EnvPr ops. ASSEVBLER property should not be
declared since the default is to use the core Assembler class. The EnvPr ops. CONFI GURATI ON
property, however, must be set to the file location of the XML configuration file on the local hard drive.

It's possible to develop and use a custom Assembler class. Thiswould be useful if custom containers or
other artifact are needed that can not be constructed by the default core Assembler. Some vendors may, for
example, want to use a configuration schemathat is different then the XML schema used with OpenEJB's
core library. Thiswould require a new or modified Assembler. If acustom Assebler is needed, it can be
specified in the properties along with its custom configuration. For example, an assembler might be
constructed that can build an container system off of a Weblogic properties files.

Properties props = new Properties();

pr ops. addPr oper t y(EnvPr ops. ASSEMBLER, "com acre. openej b. webl ogi ¢c_assenber]) ;

pr ops. addPr oper t y(EnvPr ops. GONFI GURATI ON, " c: / / openej b/ wel ogi c. props");
or g. openej b. QpenEJB. i ni t (props);

22

