PRIMIX SOLUTIONS

Core Labs

Tapestry
Tutorial

CORE LABS

Tapestry Tutorial

© Primix Solutions
One Arsenal Marketplace
Phone (617) 923-6639 « Fax (617) 923-5139

Tapestry contact information:

Howard Ship <hship@primix.com>
http://sourceforge.net/projects/tapestry

Table of Contents

Introduction 2 The Home Page 33
Setting up the Tutorial 3 The Guess Page 36
Java Build Environment (JBE) 3 Limitations 40
Building the Tutorial 3 Creating Reusable Components41l
Hello World 7 The Tapestry Inspector 48
Application Engine 7 Specification View 49
Application Servlet 7 Components View 49
Application Specification 8 Template View 50
Home Page Specification 8 Properties View 51
Home Page Template 9 Complex Forms and Output 53
Run the Application 9 Survey 55
Dynamic Content 11 SurveyDatabase 59
Interactive Application 16 SurveyEngine 59
Adding Interactivity using Listeners 23 SurveyPage 60
Persistant Page State and Page Results 68
Pooling 24 Localization 76
Dynamic Page State 25 Home Page 78
Tapestry Run Time Errors 26 Change page 80
Stale Sessions 26 Other Options for Localization 82
Exception Handling 27 Further Study 83
Potpourri! 30

The Visit Object 32

TAPESTRY TUTORIAL

Introduction

T apestry is a new application framework developed at Primix Solutions.

Tapestry uses a component object model to represent the pages of a web application.
This is similar to spirit to using the Java Swing component object model to build GUIs.

Just like using a GUI toolkit, there's some preparation and some basic ideas that must be cleared
before going to more ambitious things. Nobody writes a word processor off the top of their head
as their first GUI project; nobody should attempt a full-featured e-commerce site as their first
attempt at Tapestry.

The goal of Tapestry is to eliminate most of the coding in a web application. Under Tapestry,
nearly all code is directly related to application functionality, with very little "plumbing". 1f you
have previously developed a web application using Microsoft Active Server Pages, JavaServer
Pages or Java Servlets, you may take for granted all the plumbing: writing servlets, assembling
URLSs, parsing URLS, managing objects inside the session, etc.

Tapestry takes care of nearly all of that, for free. It allows for the development of rich, highly
interactive applications.

This tutorial will start with basic concepts, such as the "Hello World" application, and will
gradually build up to more sophisticated examples.

The tutorial uses Jetty, a freely available servlet engine, which is packaged with the Tapestry
distribution.

The format of this tutorial is to describe (visually and with text) an application within the tutorial,
then describe how it is constructed, using code excerpts. The reader is best served by having an
IDE open so that they can look at the code in detail, as well as run the applications.

TAPESTRY TUTORIAL

Setting up the Tutorial

C. drive. This will have created a directory Tapest ry-x. x. x* and, beneath it, several

T his document expects that you will have extracted the full Tapestry distribution to your
more directories.

The Tapestry Tutorial will be in C:\ Tapest ry- x. x. x\ Exanpl es\ Tut ori al .

Java Build Environment (JBE)

In order to execute the tutorial, you must set up the Java Build Environment or JBE, which is
also distributed with Tapestry. The file C\ Tapestry- x- x- x\ doc\ JBE. pdf contains a full
description of how to set up the JBE.

Setting up the JBE is required, since it is used to compile the tutorial as well as execute it.

Building the Tutorial

Building the Tutorial is quite easy (once the JBE is set up, and the necessary Jar files installed).
Change to the Tutorial directory, C:\Tapestry-x-x-x\Examples\Tutorial.

Execute the command nake war

C \ Tapest ry- 0. 2. 8\ Exanpl es\ Tut ori al >nake war

*** Catal ogi ng package tutorial.hello ... ***
*** (Catal ogi ng package tutorial.sinple ... ***
*** (Catal ogi ng package tutorial.adder ... ***

1 The actual release numbers will change. This document was prepared for Tapestry-0-2-8.

TAPESTRY TUTORIAL

*** Catal ogi ng package tutorial.border ... ***
*** Catal ogi ng package tutorial.survey ... ***
*** Conmpiling ... ***

cd . ; \

C. /jdkl. 2.2/ bin/javac. exe -d C /Tapestry-

0. 2. 5/ Exanpl es/ Tut ori al /. bui | d/ wapp/ WEB

-1 NF/ cl asses -classpath "C. /Tapestry-0. 2.5/ Exanpl es/ Tutori al ; C./ Tapestry-
0.2.5/E

xanpl es/ Tut ori al /. bui | d/ wapp/ VEEB- | NF/ cl asses; C. / Tapest ry-

0.2.5/1i b/ Tapestry.jar;

C./ Tapestry-0.2.5/1ib/javax. servlet.jar"
tutorial/hello/HelloWrldServlet.java t

utorial /sinple/Home.java tutorial/sinplel/SinpleServlet.java
tutorial /adder/ Adder

Servlet.java tutorial/adder/Home. java tutorial /border/Border.|java
tutorial/borde

r/ Border Application.java tutorial/border/BorderServlet.java
tutorial/survey/ Race

.java tutorial/survey/ RaceMddel . java tutorial/survey/ Results.java
tutorial/surve

y/ Sex. java tutorial /survey/ SexAdaptor.java tutorial/survey/ Survey. |ava
tutorial/

survey/ SurveyApplication.java tutorial/survey/ SurveyDat abase. | ava
tutorial/surve

y/ SurveyPage. java tutorial / survey/ SurveyServl et.java

*** Copyi ng WEB-I NF resources ... ***

Copyi ng: web. xmi

*** Copyi hg package resources ...***

Copyi ng: Hel |l oWorl d. appl i cati on Home. ht M Hone.jwc Sinple. application
Hone. ht m

Hone. j wc Adder. application Hone. htm Hone.jwc Border. application
Border.htm Ce

do.htm Hone.htm Legal.htm Border.jw O edo.jwe Hone.jwe Legal . jwc
Sur vey. appl

ication Home. ht M Results. htm SurveyPage. htm Home.jwe Results.jwe
Sur veyPage.

wc SurveyStrings. properties

*** Copyi ng context resources ... ***

Copyi ng: index. htm

*** Building Tutorial.war ... ***

C /jdkl.2.2/bin/jar.exe cf Tutorial.war -C .build/ wapp .

C. \ Tapestry- 0. 2. 5\ Exanpl es\ Tut ori al >

TAPESTRY TUTORIAL

That's an awful amount of output. When its done, you can start up the Jetty server just as easily
with the make run command:

C. \ Tapest ry- 0. 2. 5\ Exanpl es\ Tut ori al >nake run
C. /jdkl. 2. 2/ bin/java. exe -classpath "C./ Tapestry-
0.2.5/1i b/ Tapestry.jar; C /Tapes
try-0.2.5/1ib/javax.servlet.jar; C/Tapestry-
0.2.5/1ib/xerces.jar;C/Tapestry-0.2
.5/1ib/gnu-regexp.jar; C/Tapestry-0.2.5/lib/comnortbay.jetty.jar" \
- Dor g. xm . sax. par ser =or g. apache. xer ces. par ser s. SAXPar ser \
com nortbay. Jetty. Server jetty.xmn
20001109221653438GMI EVENT
[mai n] com nort bay. HTTP. Ht t pSer ver . addWbAppl i cati o
n(H t pServer . j ava: 480)

>>9> Wb Applicati on WebApp: Tapestry Tutorial @ar:file:/C /Tapestry-
0. 2. 5/ Exam
pl es/ Tutorial /Tutorial .war!/ added
20001109221653438GMI EVENT
[mai n] com nort bay. HTTP. Handl er . Nul | Handl er. start (N
ul | Handl er. j ava: 79)

>>5> Started ServletHandl er in WebApp: Tapestry
Tutorial @ar:file:/C /Tapestry-
0. 2.5/ Exanpl es/ Tutori al / Tutori al . war!/
20001109221653438GMI EVENT
[mai n] com nort bay. HTTP. Handl er . Resour ceHandl er . st a
rt (Resour ceHandl er . j ava: 151)

>>4> ResourceHandl er started in jar:file:/C /Tapestry-
0. 2. 5/ Exanpl es/ Tut ori al /
Tutorial .war!/
20001109221653438GMTI EVENT
[mai n] com nort bay. HTTP. Handl er. Nul | Handl er. start (N
ul | Handl er . j ava: 79)

>>5> Started ResourceHandl er in WWbApp: Tapestry
Tutorial @ar:file:/C /Tapestry
-0. 2.5/ Exanpl es/ Tutori al / Tutori al .war!/
20001109221653438GMI EVENT
[mai n] com nort bay. HTTP. Socket Li st ener. start (Socket
Li stener.java: 71)

>>3> Started SocketListener on 0.0.0.0/0.0.0.0: 8080

Finally, you can access the Tutorials using the URL http://localhost:8080/tutorial

TAPESTRY TUTORIAL

<} Tapestry Tutorial - Microsoft Internet Explorer 10l x|
J File Edit Miew Favoribes Tools Help ‘
J W oy @ fat | NES| @ | =h |J-°-E|df855 IE ks localhost : S080) tukorial finde:x, hkml j |JLinks 2

Tapestry Tutorial

Please select one of the following Tapestry applications from the futorial:

s Hello World
s Sinple

o Adder

. Hgggman

s Border

s Survey
o Locale

|@ Dane I_l_ (2 Local intranst

TAPESTRY TUTORIAL

Hello World

have any real functionality but it'll demonstrate the simplest possible variation of a number

I n this first example, we'll create a very simple "Hello World™ kind of application. It won't
of key aspects of the framework.

We'll define our application, define the lone page of our application, configure everything and
launch it.

The code for this section of the tutorial is in the Java package tutorial.hello, ie,
C. \ Tapestry-x. x. x\ Exanpl es\ Tutori al \tutorial \ hel | o.

Application Engine

As each new client connects to the application, an instance of the application engine is created for
them. The application engine is used to track that client's activity within the application.

The application engine is an instance, or subclass of, the Tapestry class
com prim Xx.tapestry. engi ne. Si npl eEngi ne.

In these first few examples, we have no additional behavior to add to the provided base class, so
we simply use Si npl eEngi ne directly.

Application Servlet

The application servlet is a "bridge" between the servlet container and the application engine. Its
job is simply to create (on the first request) or locate (on subsequent requests) the application
engine.

The application servlet must subclass com prim x. t apestry. Appl i cationServl et and
implement the method: get Appl i cati onSpeci fi cati onPat h(). This method provides the
path to the application specification file; the servlet reads this file when it is initialized.

TAPESTRY TUTORIAL

HelloWorldServlet.java

package tutorial . hello;
i mport com primx.tapestry.*;

public class Hell oWrl dServl et extends ApplicationServl et

{
protected String getApplicati onSpecificati onPath()
{
return "/tutorial/hello/HelloWrld.application"
}
}

Application Specification

The application specification is used to describe the application to the Tapestry framework. It
provides the application with a name, and engine class, and a list of pages.

This specification is a file that is located on the Java class path. In a deployed Tapestry
application, the specification lives with the application’s class files: either in a Jar file, or in the
VEB- | NF/ cl asses directory of a war (Web Application Archive).

HelloWorld.application

<?xm version="1.0"?>
<! DOCTYPE application PUBLIC "-//Primx Sol utions//Tapestry Specification
1.0/ /EN'
"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">
<appl i cati on>
<name>Hel | o Worl d Tutori al </ name>
<engi ne- cl ass>com pri m x. t apest ry. engi ne. Si npl eEngi ne</ engi ne- cl ass>
<page>
<name>Home</ name>
<specification-path>/tutorial/hello/ Home.jw</specification-
pat h>
</ page>
</ appl i cati on>

Our application is very simple; we give the application a name, use the standard engine, and define
a single page, named "Home". In Tapestry, components are specified with the path to their
specification file (a file that end with ' jwc’).

Page "Home" has a special meaning to Tapestry: when you first launch a Tapestry application, it
loads and displays the "Home" page. All Tapestry applications are required to have such a home

page.

Home Page Specification

The page specification defines the Tapestry component responsible for the page. In this first
example, our component is very simple:

TAPESTRY TUTORIAL

<?xm version="1.0""?>

<! DOCTYPE speci fi cati on PUBLIC
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>com pri m x. t apest ry. BasePage</ cl ass>
</ speci fi cati on>

This simply says that Home is a kind of page. We use the supplied Tapestry class
com pri m x. t apest ry. BasePage since we aren't adding any behavior to the page.

Home Page Template

Finally, we get to the content of our application. This file is also a Java resource; it isn't directly
visible to the web server. It has the same location and name as the component specification,
except that it ends in "html".

Home.html
<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.0 Transitional//EN'>
<ht m >
<head>
<title>Hello Wrld</title>
</ head>
<body>

Vel conme to your first Tapestry Application.
</ body>

</ htm >

Run the Application

You should already be running the Jetty server in a window, and have a browser running the
tutorials page. Select the first option, Hello World, from the list. You will be presented with the
first (and only) page generated by Tapestry for this application:

TAPESTRY TUTORIAL

=101 %]

/3 Hello World - Microsoft Internet Explorer

J File Edit ‘“iew Favorites Tools Help ‘
&9 DD A L5 S| D - =] || addess [E] hipiocahostaoagjtutorialhel =] | |Links
=

Welcome to your first Tapestry Application.

[
|@ Done I_’_ [OF Local intranet i

Not much of an application ... there's no interactivity. It might as well be a static web page, but it's
a start. Remember, there was no JavaServer page here, and no HTML directly visible to the web

server. There was an application consisting of a single component.

In the following chapters, we'll see how to add dynamic content and then true interactivity.

10

TAPESTRY TUTORIAL

Dynamic Content

n this section, we'll create a new web application that will show some dynamic content. We'll
also begin to show some interactivity by adding a link to the page.

Our dynamic content will simply be to show the current date and time. The interactivity will
be a link to refresh the page. It all looks like this:

3 Simple - Microsoft Internet Explorer
J File Edit ‘“iew Favorites Tools Help
J =D fat | ez R | =] = |J-C\C_|dr855 I@ http:) flocalhost: 2080 tuborialfsimple j HLinks e
o o =
Thiz application demonstrates some dynaric behavior using Tapestty components,
The current date and time 15 Tha Nov 09 17:23:31 EST 2000
Click here to refresh.
[~
|@ Done I_’_ [5E Local intranet i

Clicking the word "here™ will update the page showing the new data and time. Not incredibly
interactive, but it's a start.

The code for this section of the tutorial is in the package tutorial.simple.
We need to create a new servlet and application object, but they're almost identical to our earlier

ones (only the parts marked in blue are different). The real action in this section will be the new
version of the home page.

11

TAPESTRY TUTORIAL

SimpleServlet.java

package tutorial . sinple;

i mport com primx.tapestry.*;
i mport com primXx.tapestry. app. *;

public class SinpleServlet extends ApplicationServl et

{
protected String getApplicati onSpecifi cati onPath()
{
return "/tutorial/sinplel/Sinple.application"
}
}

The bold text identifies the only significant changes from the previous HelloWorldServlet class.

The application specification is also straight forward:

Simple.application
<?xm version="1.0""?>
<! DOCTYPE appl i cati on PUBLI C
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. sourceforge. net/dtd/ Tapestry_ 1 0.dtd">

<appl i cati on>
<nane>Si npl e Tutori al </ name>
<engi ne- cl ass>com pri m x. t apest ry. engi ne. Si npl eEngi ne</ engi ne- cl ass>

<page>
<nane>Homne</ name>
<speci fication-path>/tutorial/sinple/ Hne.jw
</ speci fication- pat h>

</ page>

</ applicati on>

Things only begin to get more interesting when we look at the HTML template for the home
page:

Home.html

<! DOCTYPE HTM. PUBLIC "-//WBC//DID HTM. 4.0 Transitional//EN'>
<htm >
<head>

<title>Sinple</title>
</ head>
<body>
This application denonstrates sone dynam c behavi or using Tapestry
conponent s

<p>The current date and time is: <jwc id="insertDate"/>
<p>Cick <jwc id="refresh">here</jw> to refresh.

</ body>
</ htm >

12

TAPESTRY TUTORIAL

This looks like ordinary HTML, except for the special <j we> tags (shown in bold). "jwc™ is an
abbreviation for "Java Web Component"; these tags are placeholders for the dynamic content
provided by Tapestry components.

We have two components. The first inserts the current date and time. The second component
creates a hyperlink that refreshes the page.

One of the goals of Tapestry is that the HTML should have the minimum amount of special
markup. This is demonstrated here ... the <j we> tags blend into the standard HTML of the
template. We also don't confuse the HTML by explaining exactly what an insertDate or refresh
is; that comes out of the specification (described shortly). The ids used here are meaningful only
to the developer, the particular type and configuration of each component is defined in the
component specification.

Very significant is the fact that a Tapestry component can wrap around other elements of the
template. The refresh component wraps around the word "here”. What this means is that the
refresh component will get a chance to emit some HTML (an <a> hyperlink tag), then emit the
HTML it wraps (the word "here™), then get a chance to emit more HTML (the closing tag).

What's more important is that the component can not only wrap static HTML from the template
(as shown in this example), but may wrap around other Tapestry components ... and those
components may themselves wrap text and components, to whatever depth is required.

And, as we'll see in later chapters, a Tapestry component itself may have a template and more
components inside of it. In a real application, the single page of HTML produced by the
framework may be the product of dozens of components, effectively “woven™ from dozens of
HTML templates.

Again, the HTML template doesn't define what the components are, it is simply a mix of static
HTML that will be passed directly back to the client web browser, with a few placeholders (the
<j we> tags) for where dynamic content will be plugged in.

The page's component specification defines what types of components are used and how data
moves between the application, page and any components.

<?xm version="1.0""?>

<I DOCTYPE speci fication PUBLIC
"-//Primx Solutions//Tapestry Specification 1.0//EN
"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>tutorial . sinpl e. Hone</ cl ass>

<conponent s>
<conponent >
<i d>i nsert Dat e</i d>
<type>l nsert</type>

<bi ndi ngs>

13

TAPESTRY TUTORIAL

<bi ndi ng>
<nanme>val ue</ name>
<property- pat h>current Dat e</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>refresh</id>
<t ype>Page</t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<nane>page</ name>
<val ue>Hone</ val ue>
</static-bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>

</ speci fi cati on>

Here's what all that means: The Home page is implemented with a custom class,
tutorial.sinple.Hone. It contains two components, insertDate and refresh.

The two components used within this page are provided by the Tapestry framework.

The insertDate component is type Insert. Insert components have a value parameter used to
specify what should be inserted into the HTML produced by the page. The insertDate
component has its value parameter bound to a JavaBeans property of its container (the page), the
currentDate property.

The refresh component is type Page, meaning it creates a link to some other page in the
application. Page components have a parameter, also named page, which defines the name of the
page to navigate to. The name is matched against a page named in the application specification.

In this case, we only have one page in our application (named "Home"), so we can use a static
binding for the page parameter.

That just leaves the implementation of the Home page component:

Home.java

package tutorial . sinple;

i mport java.util.*;
i mport com primXx.tapestry.*;

public class Hone extends BasePage

{
public Date get CurrentDate()
{
return new Date();
}

14

TAPESTRY TUTORIAL

}

Home implements a read-only JavaBeans property, currentDate. This is the same currentDate
that the insertDate component needs. When asked for the current date, the Home object returns
a new instance of the j ava. uti | . Dat e object.

The insertDate component converts objects into strings by invoking t oSt ri ng() on the object.
Now all the bits and pieces are working together.

Run the application, and use the View Source command to examine the HTML generated by
Tapestry:

<! DOCTYPE HTML PUBLIC "-//WBC//DID HTM. 4.0 Transitional //EN'>
<htm >
<head>
<title>Sinple</title>
</ head>
<body>

This application denonstrates some dynam c behavi or usi ng Tapestry
conponent s.

<p>The current date and time is: Thu Nov 09 17:23:31 EST 2000

<p>d i ck
here to refresh.

</ body>
</htm >

This should look very familiar. Text which was generated dynamically, by Tapestry components,
Is in bold font. As you can see, Tapestry not only inserted simple text (the current date and time,
obtained from an j ava. uti | . Dat e object), but the refresh component inserted the <a> and
</ a> tags, and created an appropriate URL for the href attribute.

15

TAPESTRY TUTORIAL

Interactive Application

will demonstrate many of the more interesting features of Tapestry, including

N ow it's time to build a real, interactive application. We'll still use just a single page, but it
maintenance of server side page state.

Our Adder application allows the user to sum up a list of numbers.

/4 Adder Tutorial - Microsoft Internet Explorer] =10l =]

J File Edit ‘“iew Favorites Tools Help ‘
J - -0 fat | SeREz R | & - |J-C\C_|dr855 I@ D.ftutcuriaI,l'au:lder,l'actiu:unp’Hnmep’Dp’Fnrmj HLinks e
=

Walue: |

Addd to list |

Ttems
70
227
237

[~

|@ Done I_’_ [5E Local intranet i

The user enters a number into the value field and clicks "Add to list". The number is added to the
list of items and factored into the total.

A Form component containing a TextField component will be used to collect information from
the user. A Foreach component will be used to run though the list of items, and Insert
components will be used to present each item in the list, as well as the total.

If the user enter in a non-number, then an error message is displayed.

16

TAPESTRY TUTORIAL

/} Adder Tutorial - Microsoft Internet Explorer =101 %|

J File Edit ‘“iew Favorites Tools Help ‘
J S @ fat | Ly G @ | =] E ™ |J-‘1C_|dr655 I@ D.l'tutcnriaI,l'adder,l'actinm'Humep’Dp’Furmj HLinks £5
=

Please enter a valid number. |

Walue: |fcu:|

A to list |

Ttems
70
227
297

E

|@ Done I_ ’_ Local intranet i

As with the previous examples, the servlet and application objects are simple variations on the
previous two sets (they are ommited here).

The application specification is, likewise, a variation on the prior example.
The code for this section is in the tutorial.adder package.

We'll start with the HTML template for the home page:

Home.html
<! DOCTYPE HTML PUBLIC "-//WBC//DID HTM. 4.0 Transitional //EN'>
<ht m >
<head>
<title>Adder Tutorial</title>
</ head>
<body>

<jwc id="ifError">
<t abl e bor der=1>

<tr>
<td bgcol or=red>

<jwc id="insertError"/>
</ span>
</td>
</tr>
</tabl e>
<p>
</]jwc>

<jwe id="forn>

17

TAPESTRY TUTORIAL

<t abl e>
<tr>
<td align=right>Val ue: </td>
<t d><j wc id="i nput Newval ue"/></td>
</[tr>
<tr>
<td> </td>
<t d><i nput type=submit value="Add to list"></td>
</tr>
</t abl e>

</ jwc>

<t abl e>
<tr> <th>ltenms</th> </tr>
<jwe id="e">
<tr align=right>
<t d>
<jwc id="insertCurrent Val ue"/>
</td>
</tr>
</ jwc>

<tr align=right>
<t d>
<hr >

<jwc id="insertTotal "/>
</td>
</[tr>
</t abl e>

</ body>
</htm >

Again, Tapestry takes care of most of the details. The form component will turn into an HTML
<FORM> element, and the correct URL is automatically generated. The textfield component
will become an <INPUT TYPE=TEXT>, with the necessary smarts to collect the value
submitted by the user and provide it to the page.

The e component is a Foreach, used for running through a list of elements (supplied as a List,
Iterator or an array of Java objects). We've already see the Insert component.

Next we have the specification:

<?xm version="1.0"?>
<! DOCTYPE speci fication PUBLIC "-//Prim x Sol utions//Tapestry Specification
1.0/ /EN'

"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>tutori al . adder . Hone</ cl ass>

<conponent s>

18

TAPESTRY TUTORIAL

<conponent >
<id>ifError</id>
<t ype>Condi ti onal </ type>

<bi ndi ngs>
<bi ndi ng>
<nane>condi ti on</ nane>
<property- pat h>error </ property-pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

<conponent >
<i d>i nsertError</id>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ nanme>
<property- pat h>error </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

<conponent >
<i d>f or nx/i d>
<t ype>For nx/ t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>l i st ener </ nanme>
<pr operty- pat h>f or nLi st ener </ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nput Newval ue</i d>
<t ype>Text Fi el d</t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>t ext </ name>
<property- pat h>newval ue</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>e</i d>
<t ype>For each</t ype>

<bi ndi ngs>
<bi ndi ng>
<nanme>sour ce</ name>
<pr operty- pat h>i t ens</ propert y- pat h>
</ bi ndi ng>

19

TAPESTRY TUTORIAL

</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert Current Val ue</i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<pr operty- pat h>conponent s. e. val ue</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsertTotal </i d>
<type>| nsert</type>

<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<property- pat h>t ot al </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>

</ speci fi cati on>

We only want to display the error message if there is one, so the ifText is conditional on there
being a non-null error message (the Conditional component treats null as false).

For the form component, all we have to do is supply a listener, an object that is informed when
the form is submitted.

For the textfield component, we provide a text parameter that provides the default value for the
<INPUT> element, as well as a place to put the value submitted on the form. This must be of
type j ava. | ang. Stri ng, SO we need to do a little translation (in our Java class), since internally
we want to store the value as a double.

For the e component, we supply a binding for the source parameter. For each item in the source
list, it will update its value property, which is later accessed by the Insert component. The
property path components.e.value accomplishes this: the page has a component property, which
is a Map of the components on the page. e is the id of a component, and a key in the Map. It has
a property named value, which is the current item from the source list.

A Foreach also has a parameter named value. By creating a binding for this parameter, the
Foreach can update a property of the page, or some other component. This is more commonly
used when the items in the list are business objects and the application needs to invoke business
methods on them.

Finally, the Java code for the home page puts everything together:

20

TAPESTRY TUTORIAL

Home. java

package tutorial . adder;

i mport com primx.tapestry.*;
i nport com prim x.tapestry. conponents. *;
i mport java.util.*;

public class Hone extends BasePage

{

private List itens;
private String newval ue;
private String error;

public List getltens()

{
return itemns;
}
public void setltens(List val ue)
{
itens = val ue;
fireCbservedChange("itens", value);
}
public void set Newal ue(String val ue)
{
newal ue = val ue;
}
public String get Newal ue()
{
return newval ue;
}
publ i c void detach()
{
items = null;
newal ue = nul | ;
error = null;
super . det ach() ;
}
public void addlten(doubl e val ue)
{
if (itenms == null)
{
itens = new ArraylList();
fireCbservedChange("itens", itens);
}
i tens. add(new Doubl e(val ue));
fireCbservedChange();
}

21

TAPESTRY TUTORIAL

publ i c doubl e get Tot al ()

{
Iterator i;
Doubl e item
doubl e result = 0.0;
if (itens !'= null)
{
i =itens.iterator();
whil e (i.hasNext())
{
item = (Doubl e)i.next();
result += item doubl eVal ue();
}
}
return result;
}
public I ActionListener getFornii stener ()
{

return new | Acti onLi st ener ()

public void actionTriggered(l Conponent conponent,
| Request Cycl e cycl e)

{
try
{ _
doubl e item = Doubl e. par seDoubl e(newval ue) ;
addlten(iten;
newal ue = nul | ;
cat ch (Nunber For mat Excepti on e)
{
error = "Please enter a valid nunber.";
}
}
b
}
public String getError()
{
return error;
}

}

That may seem like a lot of code for what we're doing, but in reality, very much is going that we
don't have to write:

» Processing the submitted form

» Storing the List of items persistently between request cycles

22

TAPESTRY TUTORIAL

* Encoding and decoding URLs

» Very robust exception support

Tapestry components, using JavaBeans properties, take care of moving data to and from the
HTML form. Our application merely has to supply the logic to properly respond when the form
is submitted. In this case, converting the text into a double that can be added to the list.

Because we let Tapestry set the names of our form elements, there's no possibility of mismatched
names between the Java code (setting defaults and interpreting the posted request) and the
HTML template.

Enter a few values into the text field to see how the application works, adding them together into
an ever larger list.

Adding Interactivity using Listeners

To understand the relationship between the home page specification, the home page class and the
components used by the home page, it is necessary to understand the JavaBeans properties
provided by the home page class.

We implement several JavaBeans properties on this page:

Property Type R/W Description

name

newltem String R/W Stores the string entered into the form.

items List (of R/W Items in the list. Persists between request

Double) cycles.

formListener IActionListener Read Informed when form is submitted.
Only

total double Read Total of items; computed on the fly.
Only

This example demonstrates how to provide interactivity to an application. For Tapestry,
interactivity is defined as a request cycle initiated by a user clicking on a hyperlink or submitting a
form.

In our case, we want to know when the form containing the TextField is submitted so that we can
provide application specific behavior -- adding the value enterred in the TextField to the list of
items.

23

TAPESTRY TUTORIAL

This is accomplished using a listener, an object that implements the Java interface
| Acti onLi stener. This interface defines a single method, acti onTri ggered(). When the
form is submitted, all the components wrapped by the form (in this case, the TextField) are given
a chance to retrieve their values from the request and update properties of the application (the
TextField sets the currentltem property). The form then gets its listener and invokes the
actionTri gger ed() method.

In the specification, the listener parameter was bound to the formListener property of the page.
The code in the get For nLi st ener () method creates an anonymous inner class and returns it.

Inner classes have access to the private fields and methods of the class. In this case, the inner
class invokes the addlten() method to add the currentltem (with a value provided by the
TextField component) to the items List.

A listener is free to do anything it wants. It can change the state of the application, or can retrieve
other pages (by name) from the request cycle object, and can change properties of those pages. It
can even chose a different page to render, by invoking set Page() on the request cycle.

Persistant Page State and Page Pooling

The home page of this application uses a persistant page property, a Li st that contains
j ava. | ang. Doubl eS, the items in the list.

Persistent page state is one of the most important concepts in Tapestry. Each page in the
application (and in fact, even components within the page) has some properties that should
persist between requests. This can be values such as the user's name and address, or (in this case)
the list of numbers enterred so far.

In traditional JavaServer Pages or servlet applications, a good chunk of code must be written to
manage this. The values must be encoded in cookies, as hidden form fields, as named attributes
of the Ht t pSessi on, or stored into a server-side flat file or database. Each servle (or JSP) is
directly responsible for managing access to these values ... which leads to many half realized, ad-
hoc solutions and an avalanche of bugs, and even security holes.

With Tapestry, the framework takes care of these persistence issues. When a persistent property
of a page is changed the accessor method also invokes the method fi r eCbser vedChange() .
This method informs a special object, the page's recorder, about the property and its new value.

When the page is next used, the value is restored automatically. This may not seem natural ... an
obvious question is: why wasn't the page in the same state? Then answer is that that page
instance is shared, and may be used by a different client in the interrum.

Within the Tapestry framework, all of these pages, components, specifications and templates are
converted into Java objects. Assembling a page is somewhat expensive: it involves reading all

24

TAPESTRY TUTORIAL

those specifications and templatesz, creating and initializating component objects, creating binding
objects for the components, and organizing the components into a hierarchy.

Creating a page object for just one request cycle only to discard it is simply unacceptible. Pages
should be kept around as long as they are needed; they should be re-used in subsequent request
cycles, both for the same client session, or for other sessions.

The Tapestry framework accomplishes this by pooling instances of page objects; there could
concievably be a handful of different instances being shared by thousands of client sessions. This
Is a kind of shell game that is important to maintain scalability.

What this means for the developer is some minor extra work. On each request cycle, a different
instance of the page object may be used to handle the request. This means that data can't simply
be stored in the instance variables of the page between request cycles.

Tapestry seperates the persistent state of a page from the actual page objects. The state is stored
seperately, making use of the page recorder objects. When needed, a page can be created or
reclaimed from the page pool and have all of its persistant properties set by the page recorder.

The developer has three responsibilities when coding a page with persistant state:

e The property must be serializable; this includes Java scalar types (boolean, int, double,
etc.), Strings, common collection classes (ArrayLi st, HashMap, etc.) and other classes
that implement j ava. i 0. Seri al i zabl e.

» When the value of the property changes, the fi r eCoser vedChange() method must be
invoked, to inform the page recorder about the change.

* When the request cycle ends and the page is returned to the pool, the persistant state
must be reset to its initial value (as if the page object was newly instantiated). This is done
in the det ach() method.

Dynamic Page State

This page has a bit of dynamic state; state that changes as the page is being renderred. The value
property of the Foreach component takes on different values from the items List as the page is
renderred. Dynamic state is easier to handle than persistant state; for completeness, it must also
be reset in the detach() method.

2 Specifications and templates are generally read just once, then left in memory for susbsequent use.

25

TAPESTRY TUTORIAL

Tapestry Run Time Errors

O ne of the benefits to developing using Tapestry is its robust exception handling support.

We'll demonstrate these by creating invalid URLS.

Stale Sessions

As we just demonstrated, Tapestry is quite careful about conversational state. What happens if all
the conversation state is lost?

Start up adder application then enter a few numbers. Go back to the window executing Jetty and
stop it, then restart it.

Now, try to add an additional number to the list.

26

TAPESTRY TUTORIAL

/) stale Session - Microsoft Internet Explorer =10l =]

J File Edit ‘“iew Favorites Tools Help ‘
J H v @ fat | L Gd @ | =] E ™ |J-‘1C_|dr655 I@ D.l'tutcnriaI,l'adder,l'actinm'Humep’Dp’Furmj HLinks £5
[—
Tour sesston has tuned out.

Web applications store mformation about what vou are deing on the server. This mformation 13 called
the sessiasn.

Web servers must track many, many sesstons. If you are mactive for a long encugh timne (usually, a few
mirtes), this mformation 15 discarded to make room for active users.

At this point ¥ou may restart the session to continue,

[
|@ Done I_ ’_ Local inkranet i

Because Tapestry can't find any information about your session, it assumes the session timed out
and was discarded, and so presents the default error page for this situation.

Remember that most Tapestry URLSs are very conversational, they only make sense as the most
recent request in a series of requests exchanged between the client and the server.

This means that most pages in a Tapestry application can't be bookmarked; the URL that would
be stored in the client's web browser is not meaningful. Creating bookmarkable pages is a subject
of a later tutorial.

Exception Handling

Tapestry handles exceptions, catching them when they occur and formatting a readable page with
all the details. Of course, in your own application, such exceptions will never occur, or will be
caught and handled by your own code.

Still, it's nice that Tapestry can assist when debugging during development, when uncaught
exceptions may in fact be thrown.

To demonstrate what Tapestry does for exceptions, we need to do a little bit of sneaky work.

First, enter a few numbers into the Adder application:

27

TAPESTRY TUTORIAL

; Adder Tutorial - Microsoft Internet Explorer ;lglil

J File Edit Wiew Favorites Tools Help ‘
|« -=»- @0 EBIE | S |Jﬂ-ddress I@ http:/{127.0,0. 1:8080/ adder/actionfhomey1/0 ¥ | |JLinks =
=y
1\uraluna:|
Add to list |
Items
230
11.0
340
=
|&] Done I_l_lﬂ Internet v

Now, edit the URL in the Address field, and change the word "action" to "acion™ (i.e, remove the
letter ') and hit return.

/) Exception - Microsoft Internet Explorer i] |

J File Edit ‘jew Favorites Tools Help

J &= -5 7l | N | = - |J.C\c_ldress IE BI:I,fI:utorial,fadder,l'acion,l'Hu:ume,l'D,l'Fu:urmj HLinks o

An exception has occured. :|

Tou may continue by restarting the session.

Name: com primiz tapestry ApplicationBuntimeExzception
Message: Application does not inplement a service named acion.
Trace:

com.primix tapestry app AbstractApplication.getService
(AbstractApplication java B45)

« COM.primixtapestry app AbstractApplication service{ AbstractApplication java 874)
« com.primixtapestry ApplicationSerdet doGet{ ApplicationServlet java 92)
« javax serviet http HitpServlat service(HttpSenet java)
4| a imvay cardat httn Htn S arndat conderolHtnSondat isweat | _hILI

|@ Done I_’_ [5E Local intranet i

Tapestry has discovered that the URL was invalid ... in this case that the word "action" was
changed to "acion"”. Since Tapestry normally produces all the URLs it must later interpret, it
doesn't make an effort to pretty this up (as it does with stale links and sessions), instead it throws
an exception which is caught and displayed.

28

TAPESTRY TUTORIAL

As you may notice, the exception report is extremely complex. Tapestry displays all the
information it can about the exception that was thrown ... it can even break apart nested
exceptions and dig down to the deepest one. It shows the stack trace where the deepest
exception was thrown. It also provides information about the H t pRequest, Ht t pSessi on,
Ser vl et Cont ext and Java VM.

Finally, it includes a link that will destroy the current HttpSession and restart the application from
scratch.

29

TAPESTRY TUTORIAL

Potpourri!

o far, these examples have been a little bit cut-and-dried. Lets do a meatier example that
uses a few more interesting components. Let's play Hangman!

Our Hangman application consists of four pages. The home page allows a new game to be
started, which includes selecting the difficulty of the game (how many wrong guesses you are

allowed).

; Tapestry Hangman - Microsoft Internet Explorer = ||:|| ﬂ

J File Edit Yiew Favorites Tools Help

le-=» - A Ed S |Jnddress @] hitp: /lacalhost: 080 twtorialfhangman | “Links »
-

Tapestry Hangman

Thus 1z the standard game of Hangman, You must guess a word, a letter at a time. If vou make too many mmistalces,

you losel

" Easy game; vou are allowed ten mmsses.
O Medum game, you are allowed five misses.
" Hard game; you are only allowed three misses.

Flas! |

[~
&1 Done [| [BE Localintranet)

The main page is the Guess page, where the partially filled out word is displayed, and the user can
make guesses (from a shrinking list of possible letters):

30

TAPESTRY TUTORIAL

a Tapestry Hangman - Microsoft Internet Explorer i |EI|5|

J File Edit Wiew Favorites Tools Help ‘
J R @ il | e @ | = |J.°.eress IE host:SDBD,l'tutorial,l'hangman,l'direct,l'Guess,l'guess,fMj |JLinks 2
=
Make a Guess
You have made 4 bad guesses, out of a masumum of 5.
m A 3 : R
M' 1s not in the word.
Guess BCDFHIJTELNPORSTUVWXY Z
Give up?
[-]
|@ Done I_l_ (BE Local intranst i
After you give up, or when you make too many mistakes, you get to the Failed page:
a Tapestry Hangman - Microsoft Internet Explorer = |EI|5|
J File Edit Wiew Favorites Tools Help
J R B @ ﬁ | EE] G @ | é |J.°.eress IE ttp:J',flocalhnst:SUBD,I'tutnrial,l'hangman,l'page,l’Failedj |JLinks 2
=
-
You Lose!
The word was: INTEEMNET
Start again
[-]
|@ Done I_l_ (2 Local intranet i

But, if you guess all the letters, you are sent to the Success page:

31

TAPESTRY TUTORIAL

/) Tapestry Hangman - Microsoft Internet Explorer | 101 x|

J File Edit Wiew Favorites Tools Help ‘

J R @ il | e ® | = |J.°.eress IE host:SDBD,l'tutorial,l'hangman,l'direct,l'Guess,l'guess,fNj |JLinks 2
=
7 T
You Win!
The word was: APPLICATION |
Start again
[-]
|@ Done I_ l_ Local intranet i
The Visit Object

The center of this application is an object that represents game, an object of class
HangmanGame. This object is used to track the word being guessed, the letters that have been
used, the number of misses and the letters that have been correctly guessed.

This object is a property of the visit object. What's the visit object? The visit object is a holder of
all information about a single client's visit to your web application. It contains data and methods
that are needed by the pages and components of your application.

The visit object is owned and created by the engine object. It is serialized and de-serialized with
the engine.

The application specification includes a little extra segment at the bottom to specify the class of
the visit object.

Hangman.application

<?xm version="1.0""?>
<! DOCTYPE application PUBLIC "-//Primx Sol utions//Tapestry Specification
1.0/ /EN'
"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">
<appl i cati on>
<name>Tapest ry Hangman</ name>
<engi ne- cl ass>com pri m x. t apest ry. engi ne. Si npl eEngi ne</ engi ne- cl ass>
<page>
<name>Hore</ nane>
<speci fi cati on- pat h>/tut ori al / hangman/ Hone. j we</ speci fi cati on-
pat h>
</ page>
<page>

32

TAPESTRY TUTORIAL

<nanme>Quess</ name>
<speci ficati on-
pat h>/t ut ori al / hangman/ Quess. j we</ speci fi cati on- pat h>
</ page>
<page>
<nane>Fai | ed</ name>
<speci ficati on-
pat h>/tut ori al / hangman/ Fai | ed. j we</ speci fi cati on- pat h>
</ page>
<page>
<nane>Success</ name>
<speci ficati on-
pat h>/t ut ori al / hangnman/ Success. j wc</ speci f i cat i on- pat h>
</ page>
<properties>
<property>
<name>com pri m Xx. tapestry. vi sit-cl ass</ name>
<val ue>t ut ori al . hangman. Vi si t </ val ue>
</ property>
</ properties>
</ appl i cation>

These properties are simple named values associated with the application specification. When the
application engine needs to create the visit object, it creates an instance of the named class.

So, returning from that distraction, the game object is a property of the visit object, which is
accessible from any page (via the page's visit property).

The Home Page

The Home page’s job is to collect the difficulty and initiate a game:

Home.java

public class Hone

ext ends BasePage

i mpl emrents | Acti onLi st ener

{
public static final int EASY = 10;
public static final int MEDOUM = 5
public static final int HARD = 3;

private int msses;
private String error;

public voi d detach()

{
m sses = 0;
error = null;
super . det ach();
}
public int getM sses()
{

33

TAPESTRY TUTORIAL

return m sses;

}
public void setM sses(int val ue)
{ nm sses = val ue;
fireCbservedChange(" m sses", val ue);
}
public String getError()
{ return error;
}
public I ActionLi stener getForniLi stener ()
i return this;

public void actionTriggered(l Conponent conponent, | RequestCycle cycle)
t hrows Request Cycl eExcepti on

{
if (msses == 0)
{
error = "Please select a gane difficulty.";
return;
}
Visit visit = (Visit)getVisit();
visit.start(m sses);
cycl e. set Page(" Quess");
}

}

We're seeing all the familiar ideas: The misses property is a persistent page property (which means
the page will "remember" the value previously selected by the user).

We use a common trick for simple pages: the page contains a single Form component, so we use
the page itself as the form's listener, and have the page implement the 1ActionListener interface.
This saves a bit of code for creating an inner class as the form listener.

Initially, we don't select a difficulty level, and the user can click "Play!" without selecting a value
from the list, so we check that.

Otherwise, we get the visit object and ask it to start a new game with the selected number of
misses. We then jump to the Guess page to start accepting guesses from the user.

The interesting part of the Home page HTML template is the form:

34

TAPESTRY TUTORIAL

Home.html (excerpt)

<jwc id="forni>
<jwc id="group">

<jwc id="ifError">
<jwc id="insertError"/>

</jwc>
<t abl e>
<tr>
<t d><jwc id="input Easy"/></td>
<t d>Easy gane; you are allowed ten misses.</td>
</tr>
<tr>
<t d><j wc i d="i nput Medi unt'/ ></td>
<t d>Medi um gane; you are allowed five m sses.</td>
</tr>
<tr>
<td><jwc id="inputHard"/></td>
<td>Hard gane; you are only allowed three m sses. </td>
</tr>
<tr>
<td></td>
<t d><i nput type="submt" val ue="Pl ay!"></td>
</[tr>
</t abl e>
</jwc>
</jwc>

Here, the interesting components are group, inputEasy, inputMedium and inputHard. group is
type RadioGroup, a wrapper that must go around the Radio components (the other three). The
RadioGroup determines what property of the page is to be read and updated (its bound to the
misses property). Each Radio button is associated with a particular value to be assigned to the
property, when that radio button is selected by the user.

This comes together in the Home page specification:

Home.jwc (excerpt)
<conponent >
<i d>group</i d>
<t ype>Radi oG oup</t ype>
<bi ndi ngs>
<bi ndi ng>
<name>sel ect ed</ name>
<pr opert y- pat h>m sses</ propert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

35

TAPESTRY TUTORIAL

<conponent >
<i d>i nput Easy</i d>
<t ype>Radi o</t ype>
<bi ndi ngs>
<fi el d- bi ndi ng>
<name>val ue</ name>
<fi el d- name>t ut ori al . hangman. Hoe. EASY</fi el d-
nane>
</fi el d- bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Medi unx/ i d>
<t ype>Radi o</t ype>
<bi ndi ngs>
<fi el d- bi ndi ng>
<name>val ue</ nanme>
<fi el d- name>t ut ori al . hangman. Home. MEDI UMK/ f i el d-
ame>
</fi el d- bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Har d</i d>
<t ype>Radi o</t ype>
<bi ndi ngs>
<fi el d- bi ndi ng>
<name>val ue</ name>
<fi el d- name>t ut ori al . hangrman. Horme. HARD</ f i el d-
nane>
</fi el d- bi ndi ng>
</ bi ndi ngs>
</ conponent >

The <field-binding> is very useful in this case; it is similar to a <static-binding> but, instead of
supplying the value in place, it uses a reference to a public static field of some class or interface.
This is a good thing, since if you decide to make a HARD game only allow two mistakes, you can
make the change in exactly one place.

So the end result is: when the user clicks the radio button for a Hard game, the static constant
HARD is assigned to the page's misses property.

The Guess Page

This is the page where uses make letter guesses. The page has four sections:
» Adisplay of the word, with underscores replacing unguessed letters.

» A status area, showing the number of bad guesses and an optional error message after an
invalid guess

36

TAPESTRY TUTORIAL

» Alist of letters that may be guessed. Letters disappear after they are used.

* Anoption to give up and see the word, terminating the game.

Let's start with the HTML template this time:

Guess.html (excerpt)

<hl>Make a Quess</ hl>

<jwc id="insertQess"/>

<p>

You have made <jwc id="insertM ssed"/> bad guesses,
out of a maxi mum of <jwc id="insertMaxM sses"/ >.

<jwc id="ifError">

<p>

<jwc id="insertError"/>
</ jwc>

<p>Q@uess:

<jwe id="e">

<jwc id="guess"><jwc id="insertlLetter"/></jwc>
</jwc>

<p><jwe id="givelp">G ve up?</jwc>

Most of these components should be fairly obvious by now; let's focus on the components that
allow the user to guess a letter. This could have been implemented in a number of ways ... using
more radio buttons, a drop down list, a text field the user could type into. In this example, we
chose to simply create a series of links, one for each letter the user may still guess.

Let's look at the specification for those three components (e, guess and insertLetter).

Guess.jwc (excerpt)

<conponent >
<i d>e</i d>
<t ype>For each</t ype>

<bi ndi ngs>
<bi ndi ng>
<nanme>sour ce</ nanme>
<property- pat h>unused</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>guess</i d>

37

TAPESTRY TUTORIAL

<type>Di rect </t ype>

<bi ndi ngs>
<bi ndi ng>
<name>| i st ener </ name>
<pr operty- pat h>guessLi st ener </ pr opert y- pat h>
</ bi ndi ng>

<bi ndi ng>
<name>cont ext </ name>
<pr operty- pat h>conponent s. e. val ue</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<id>insertlLetter</id>
<type>| nsert</type>

<bi ndi ngs>
<bi ndi ng>
<nanme>val ue</ name>
<pr operty- pat h>conponent s. e. val ue</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

Component e is simply a Foreach, the source is the unused property of the page (we'll see in a
moment how the page gets this list of unused letters from the game object).

Component insertLetter inserts the current letter from the list of unused letters. It gets this
current letter directly from the e component. On successive iterations, a Foreach component's
value property is the value for the iteration.

Component guess is type Directs, which creates a hyperlink on the page and notifies its listener
when the user clicks the link. Just knowing that the component was clicked isn't very helpful
though ... the application needs to know which letter was actually clicked.

Passing that kind of information along is accomplished by setting the context parameter for the
component. The context parameter is a string, or array of strings, that will be encoded into the
URL. When the component's listener is notified, it is passed the same Strings.

The context is often used to encode primary keys of objects, names of columns or other
information specific to the application.

In this case, the context is simply the letter to be guessed.

All of this comes together in the Java code for the Guess page.

3 Direct is kind of an abbreviation for DirectAction. There is another component, Action, that was written first and also
creates a hyperlink on the page. This is one of those naming connundrums that has managed to get itself entrenched in
Tapestry and is best to accept in the style of a magic incantation.

38

TAPESTRY TUTORIAL

Guess.java (excerpt)

public IDirectListener get@essLi stener ()

{
return new | D rectListener()
{
public void directTriggered(l Conponent conponent,
String[] context, |RequestCycle cycle)
t hrows Request Cycl eExcepti on
{
nmakeQuess(context[0], cycle);
}
}i
}

private voi d nakeQuess(String guess, |RequestCycle cycle)
t hrows Request Cycl eExcepti on

{
HangmanGanme gane = get Game();
char letter = guess.charAt(0);

try
{

gane. guess(letter);

catch (GameException ex)
{

error = ex.get Message();

if (gane.getFailed())
cycl e. set Page("Fai | ed");

return;

}

/1 A good guess.

i f (gane. get Done())
cycl e. set Page(" Success") ;

}

So the listener for the guess component gets the first String in the context and invokes the
makeQuess() method. We pass the guessed letter to the game object which throws a
GameException if the guess is invalid.

The method HangmanGame.getFailed() returns true when all the missed guesses are used up, at
which point we go to the Failed page to tell the user what the word was.

On the other hand, if an exception isn't thrown, then the guess was good. getDone() returns true
if all letters have been guessed, in which go to the Success page.

If all letters weren't guessed, we stay on the Guess page, which will display the word with the
guessed letter filled in, and with fewer options in the list of possible guesses.

39

TAPESTRY TUTORIAL

Limitations

This is a very, very simple implementation of the game. For example, it's easy to cheat ... you can
give up, then use your browser's back button to return to the Guess page and keep guessing (with
accuracy, if your memory is any good).

40

TAPESTRY TUTORIAL

Creating Reusable Components

n this tutorial, we'll show how to create a reusable component. One common use of
components it to create a common "border" for the application that includes basic
navigation. We'll be creating a simple, three page application with a navigation bar down the
left side.

3 Border Tutorial - Microsoft Internet Explorer
J File Edit \jew Favorites Tools Help
J = - = - @ it | NET| @ | =h E - H.ﬂgldress @ http: fflacalhost: 3050/border j “Links 2
[
Maothing much doing here on the home page. Visit one of our other fine pages.
[~
|@ Done ’_I_ = Local intranet S

Navigating to another page results in a similar display:

41

TAPESTRY TUTORIAL

/) Border Tutorial - Microsoft Internet Explorer =10 =|
J File Edit \iew Faworites Tools Help
J o B @ il | E @ | = - “.ﬂgldress I@ Iu:u:alhost:SDBDjborderIpageICredoj |JLinks o
[
“IWe will sell no Tapestry before its time."
[~
|&] Dore || BB Local intranet Y

Each page's content is confined to the silver area in the center. Note that the border adapts itself
to each page: the title "Home" or "Credo™ is specific to the page, and the current page doesn't
have an active link (in the above page, "Credo™ is the current page, so only "Home" and "Legal"
are usable as navigation links).

The "i" in the circle is the Show Inspector link. It will be described in the next chapter.

Because this tutorial is somewhat large, we'll only be showing excerpts from some of the files.
The complete source of the tutorial examples is available seperately, in the tutorial.oorder package.

Each of the three pages has a similar HTML template:

<jwc id="border">

Not hi ng much doi ng here on the home page. Visit one of our other
fine
pages.

</jwc>

Remember that Tapestry components can wrap around other HTML elements or components.
For the border, we have an HTML template where everything on the page is wrapped by the
border component.

Note that we don't specify any <HTML> or <BODY> tags; those are provided by the border
(as well as the matching close tags).

This illustrates a key concept within Tapestry: embedding vs. wrapping. The Home page embeds
the border component (as we'll see in the Home page's specification). This means that the Home
page is implemented using the border component.

42

TAPESTRY TUTORIAL

However, the border component wraps the content of the Home page ... the Home page
HTML template indicates the order in which components (and static HTML elements) are
renderred. On the Home page, the Border component 'bats' first and cleanup.

The construction of the Border component is based on how it differs from page to page. You'll
see that on each page, the title (in the upper left corner) changes. The names of all three pages are
displayed, but only two of the three will have links (the third, the current page, is just text). Lastly,
each page contains the specific content from its own HTML template.

Border.html

<jwc id="shell">
<jwc id="body">
<t abl e border=0 bgcol or=gray cel | spaci ng=0 cel | paddi ng=4>
<tr valign=top>
<td col span=3 al i gn=l eft>
<jwc id="insertPageTitle"/>
</td>
</tr>
<tr valign=t op>
<td align=right>

<jwe id="e">

<jwc id="link"><jwc id="insertNane"/></jwc>
</jwc>
</ font>
</td>
<td rowspan=2 val i gn=top bgcol or=si | ver>
<jwc id="w apped"/>
</td>
<td rowspan=2 wi dt h=4></td>
</tr>
<tr>
<t d><j wc i d="show nspector"/></td>
</tr>
<tr>
<td col span=3 hei ght =4> </t d>
</tr>
</t abl e>
</jwc>
</ jwc>

The insertApplicationName and insertPageTitle components provides the name of the
application, and the title of the page within the application.

The e, link and insertName components provide the inter-page navigation links.

The showlnspector component provides the button below the page names (the italicized "i" in a

circle) and will be explained shortly.
The shell component provides the outermost portions of the page, the <html> and <head> tags.

The body component is a replacement for the <body> tag; it is required to support automatic
rollover buttons (such as the showlnspector) and will be used by most Tapestry applications.

43

TAPESTRY TUTORIAL

Lastly, the wrapped component provides the actual content for the page.

The Border component is designed to be usable in other Tapestry applications, so it doesn't hard
code the list of page names. These must be provided to the border component. In fact, the
application object provides the list.

<?xm version="1.0""?>
<! DOCTYPE speci fication PUBLIC "-//Prim x Sol utions// Tapestry Specification
1.0//EN'
"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">
<speci ficati on>
<cl ass>tutori al . bor der. Bor der </ cl ass>
<par anet er s>
<al | ow i nf or mal - par anet er s>no</ al | ow- i nf or mal - par anet er s>
<par anet er >
<name>titl| e</ name>
<j ava-type>j ava. |l ang. Stri ng</j ava-type>
<requi red>yes</requi red>
</ par anet er >
<par anet er >
<name>pages</ nanme>
<r equi r ed>yes</requi r ed>
</ par anet er >
</ par anet er s>
<conponent s>
<conponent >
<i d>shel | </i d>
<t ype>Shel | </t ype>
<bi ndi ngs>
<bi ndi ng>
<name>titl| e</ name>
<pr operty-
pat h>page. appl i cati on. speci fi cati on. nane</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nsert PageTi tl e</i d>
<type>l nsert</type>
<bi ndi ngs>
<i nheri t ed- bi ndi ng>
<nane>val ue</ nanme>
<par anet er - nane>ti t | e</ par anet er - name>
</ i nheri t ed- bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>body</i d>
<t ype>Body</t ype>
</ conponent >
<conponent >
<i d>e</id>
<t ype>For each</t ype>
<bi ndi ngs>
<i nheri t ed- bi ndi ng>

44

TAPESTRY TUTORIAL

<name>sour ce</ name>
<par amet er - name>pages</ par anet er - nanme>
</'i nheri t ed- bi ndi ng>
<bi ndi ng>
<name>val ue</ name>
<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>link</id>
<t ype>Page</t ype>
<bi ndi ngs>
<bi ndi ng>
<nane>page</ name>
<pr oper t y- pat h>pageNane</ pr opert y- pat h>
</ bi ndi ng>
<bi ndi ng>
<nane>enabl ed</ name>
<property- pat h>enabl ePageLi nk</ property-
pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nsert Name</i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >
<conponent >
<i d>wr apped</i d>
<type>l nsert W apped</t ype>
</ conponent >
<conponent >
<i d>show nspect or </ i d>
<t ype>Showl nspect or </t ype>
</ conponent >
</ conponent s>
</ speci ficati on>

So, the specification for the Border component must identify the parameters it needs, but also the

components it uses and how they are configured.

We start by declaring two parameters: title and pages. The first is the title that will appear on the
page. The second is the list of page names for the navigation area. We don't specify a type for
pages because we want to allow all the possibilites (List, Iterator, Java array) that are acceptible as

the source parameter to a Foreach.

We then provide the shell component with its title parameter; this will be the window title. We

use the application's name, with is extracted from the application's specification.

45

TAPESTRY TUTORIAL

jumps from the page, to the application, to the application specification and gets the name of the
application.

Further down we see that the insertPageTitle component inherits the title parameter from its
container, the border component. Whatever binding is provided for the title parameter of the
border will also be used as the value parameter of the insertPageTitle component. Using these
inherited bindings simplifies the process of creating complex components from simple ones.

Likewise, the e component (a Foreach) needs as its source the list of pages, which it inherits from
the Border component's pages parameter. It has been configured to store each succesive page
name into the pageName property of the Border component; this is necessary so that the Border
component can determine which page link to disable (it disables the current page since we're
already there).

The link component creates the link to the other pages. It has an enabled parameter; when false
the link component doesn't create the hyperlink (though it still allows the elements it wraps to
render). The Java class for the Border component, tutori al . bor der. Bor der, provides a
method, get Enabl ePagelLi nk(), that returns true unless the pageName parameter (set by the e
component) matches the current page's name.

The showlInspector component creates a rollover button (the "i" lights up when the mouse is
moved over it):

Show Inspector

Clicking on the button raises a second window that describes the current page in the application
(this is used when debugging a Tapestry applicaton). The Inspector is described in the next
chapter.

The final mystery is the wrapped component. It is used to render the elements wrapped by the
border on the page containing the border. Those elements will vary from page to page; running
the application shows that they are different on the home, credo and legal pages (different text
appears in the central light-grey box). There is no limitation on the elements either ... Tapestry is
specifically designed to allow components to wrap other components in this way, without any
arbitrary limitations.

This means that the different pages could contain forms, images or any set of components at all,
not just static HTML text.

The specification for the home page shows how the title and pages parameters are set. The title is
static, the literal value "Home" (this isn't the best approach if localization is a concern).

<?xm version="1.0"?>
<! DOCTYPE speci fication PUBLI C

46

TAPESTRY TUTORIAL

“-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>com pri m x. t apest ry. BasePage</ cl ass>

<conponent s>
<conponent >
<i d>border</id>
<t ype>Bor der </ t ype>

<bi ndi ngs>
<st ati c- bi ndi ng>
<nanme>ti t | e</ nane>
<val ue>Hone</ val ue>
</static-bi ndi ng>

<bi ndi ng>
<nane>pages</ name>
<pr operty- pat h>appl i cat i on. pageNanmes</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>

</ speci fi cati on>

The pages property is retrieved from the application, which implements a pageNames property:

BorderApplication.java (excerpt)

private static final String[] pageNanes =
{ "Home", "COredo", "Legal" };

public String[] getPageNanes()
{

return pageNanes;

}

How did Tapestry know that the type 'Border' (shown in bold in the page specification)
corresponded to the specification / t ut ori al / bor der/ Bor der . j we? Only because we defined
an alias in the application specification:

Border.application (excerpt)

<conponent >
<al i as>Bor der </ al i as>
<type>/tutorial/border/Border.jw</type>
</ conponent >

Had we failed to do this, we would have had to specify the complete resource path,
/tutorial/border/Border.jwe, on each page's specification, instead of the short alias
'Border'. There is no magic about the existing Tapestry component types (Insert, Foreach, Page,
etc.) ... they each have an alias pre-registered into every application specification. These short
aliases are simply a convienience.

47

TAPESTRY TUTORIAL

The Tapestry Inspector

Unlike scripting systems (such as JavaServer Pages and the like), Tapestry applications are gifted
with a huge amount of information about how they are implemented ... the same component
object model that allows Tapestry to perform so many ordinary functions can be leveraged to
provide some unusual functionality.

Run the border tutorial from the previous chapter and click on the show inspector button (the
circle with the italic "i"'). A new window will launch, containing the Inspector:

Component Navigation

View Selection
g Tapestry Inspector; Border Tuborial - M . .J.DJEI
Fie Edt ‘'Yew Fpvorkes Todls Held -
= - = -3 A3 P - | | Aekdresss |IEI hittp: {ccahost-2080 fhorderd ac:.'-n'm:ﬂ Links ™
-
|H'_-'| & 'I'I . <+
[in v
[Spscefication [Companents | Templats || Properties |

Specification Resowrce Path ftotoral/border/Home, fec
Jawa elake cam. prinbe tapestry BasePage
Allpw wifos mal paameiess Srue

Albew body Drue

_ S -
The Inspector displays live information from the running application; in fact, it is simply another
part of the application (the drop-down list of pages will include the Inspector page itself). The
Inspector is most often used to debug HTML generation by viewing the HTML templates.

48

TAPESTRY TUTORIAL

The Inspector consists of three sections. The Component Navigation allows the page to be
selected (using the drop-down list), and then shows the page, or component on the page, being
inspected.

The View Selection selects one of four views of the component to be selected. Finally, the View
Details section shows detailed information about the component, as selected.

The Showlnspector component and the Inspector page are built-into the Tapestry framework.
Any Tapestry application can make use of the Inspector by simply adding a ShowlInspector
component to any page. Most commonly, the ShowInspector component is added to a persistent
navigation component, such as the Border component (in these examples).

Specification View

The specification tab show the basic information about the component, plus its formal and
informal parameters (and how they are bound), and any assets.

; Tapestry Inspector: Border Tutorial - Microsoft Internet Explorer ! i |EI|5|

J File Edit Wiew Favarites Tools Help

J i @ tat | 1 G @ | = = “.ﬂgldress IE http:.I'.I'Iocalhost:BDSﬂjbnrder,fdirectlflnspecj |JLinks e
B
IHDme 'I

| Specification | Components | | Template | | Properties |

- Component Specification |

Specification Resource Path ftutoral/barder/Border juwic

page == border

Java class tutoral border, Border
Allow informal parameters falze

Allow body true

pamefosred] Jevetwe | i

pages true jawa.lang, Ohject PropertyBinding[Home application. pageMames]
title true jawa.lang, 5tHng StaticBinding[Home]

[~
|@ Daone l_ l_ Local intranet &

A more complicated component may also show informal parameters and assets.

Components View

The components view provides a list of the components embedded in the currently inspected
component. Clicking the name of a component inspects that component.

49

TAPESTRY TUTORIAL

a Tapestry Inspector: Border Tutorial - Microsoft Internet Explorer . |E||i|

J File Edit “iew Favarites Tools Help

J S @ 7t | NS @ | = E < |J-°-E|E|FESS I@ orderaction/Inspectar/zviewTabs, select j “Links e

-

IHDme 'I

page =» border

| Specification | | Components | | Template | | Properties |

T ——
W | Twe
body Body

e Foreach

inzertdpplicationMame Insert

inzertMame Inzert

insertPageTitle Insert

link Page

showlnspector Showlnspector .

wrapped InsertWrapped LI
|@ Done l_’_ (= Local inkranet 4

Template View

The template view shows the template (if known) for the component. It is formatted much like
the examples in this document, with <j we> tags in bold. In addition, component names are
links, showing the template (if any) for the embedded component.

50

TAPESTRY TUTORIAL

; Tapestry Inspector: Border Tutorial - Microsoft Internet Explorer . |E||i|

J File Edit “iew Favarites Tools Help

J S @ 7t | NS @ | = < |J-°-E|E|FESS I@ orderaction/Inspectar/3fviewTabs, select j “Links e

IHDme 'I
page =» border

| Specification | | Components | | Template | Properties |

- Component Template ‘

<HTHL>

<head> -
<titler<jwe id="insertApplicationName"f=</titlex

</ head>

<jwec id="body":>>
<tahle bhorder=0 bgcoolor=gray cellspacing=0 cellpadding=4:
<tr walign=top:>
<td colspan=3 align=left:
<font size=5 color="White"r<jwc id="ignsertPageTitle"f-</fontx

</ td>
</ tr>
<tr walign=top:> LI
|@ httpsf flacalhost: 3050 barderfaction) Inspeckar 3 view Tabs, select l_ l_ Lacal inkranst 4
Properties View

The properties view shows all persistent properties for the page.

a Tapestry Inspector: Border Tutorial - Microsoft Internet Explorer = |E||i|

J File Edit Wiews Faworites Tools Help

J S @ it | eS| @ | = < |J-°-E|E|FESS I@ orderaction/Inspectar/4)viewTabs, select j “Links 4

[
Imspedor vl

| Specification | | Components | | Template | | Properties

- Persistent Properties ‘

inspectedldPath znull=

poge

inspectedPagetlame java.lang StHAng Inspectaor
i com. prmix. tapestry.inspector Wiew Wew[FROPERTIES]
[-]
|@ hitbpsf flocalhosk ;8050 borderaction) Tnspector 4 view Tabs, select l_ l_ Local intranet &

The component column is usually blank, except in the rare case that a component has its own
persistent properties, in which case the component's id path is displayed.

51

TAPESTRY TUTORIAL

52

TAPESTRY TUTORIAL

Complex Forms and Output

apestry includes a number of components designed to simplify interactions with the
client, especially when handling forms.

In this chapter, we'll build a survey-taking application that collects information from the
user, stores it in an in-memory database, and produces tabular results summarizing what has been

entered.

We'll see how to validate input from the client, how to create radio groups and pop-up selections
and how to organize information for display.

The application has three main screens; the first is a home page:

“} survey Tutorial - Microsoft Internet Explorer =10] x|

J File Edit Miew Favorites Tools Help ‘

J CoRE A A @ e, | L G @ | =) - “F\gdress IE Iocalhost:BDBDIsurvewpageIHomej “Links e

Y

Welcome to the Survey Tutoral
Home
3 swrveys mn the database.

Flease take our surwey.

IMote: mformation 1s not collected mto a permanent database, for the purposes of this
tutorial, we are using an m-memeory class to represent the database.

Na |

|&] Done [[[vocalintranet

The second page is for entering survey data:

53

TAPESTRY TUTORIAL

3 Survey Tutorial - Microsoft Internet Explorer

J File Edit Wiew Favorites Tools Help

J R wh) s @ fat | Y 3 | = E o E |JAC_|C|I’ESS IE http:.l'p'localhast:SEIBD,I'survey,l'page,f:j |JLinks e

-

survey

Howvard
Caucasian ¥

Subimit

gl
]
]
]
r
7
I
I
| Submit |

| KO

|@ Done ’_ I_ Local intranet

The last page is used to present results collected from many surveys:

54

TAPESTRY TUTORIAL

/] survey Tutorial - Microsoft Internet Explorer 100 x|

J File Edit Wew Favorites Tools Help |
J = fat | e | =N |JF\QE|VESS IE LIrVEv.I'al:til:un,l'Sur\fey,l'D,l'sur\.feyFnrmj “Links 2

Results

cummary of 4 surveys:

" Resut_[Count %
Sex o Male 2 S5
| Sex:Temal: 1 25%
Sex Transgender 0 5%

Sex: Asemal 1 25%

Eace - Caucasian |3 7% | |
Face : Aftican 0 1%

Face : Astan] 024

Eace : Tnuit 0 5%

Eace : Martian |1 25%

Aoeto 18 0 054

Ape 19 - 28 0

0%

- [
|@ Done I_I_ (2E Local intranet 4

In addition, we are re-using the Border component from the previous chapter.

The application does not use an actual database; the survey information is stored in memory (the
amount of work to set up a JDBC database is beyond the scope of this tutorial).

The source code for this chapter isin the t ut ori al . sur vey package.

Survey

At the root of this application is an object that represents a survey taken by a user. We want to
collect the name (which is optional), the sex and the race, the age and lastly, which pets the survey
taker prefers.

package tutorial . survey;

i mport java.util.*;
i mport com primx.tapestry.*;
i mport java.io.*;

public class Survey inplements Serializable, doneable
{
private Object primaryKey;
private String nane;
private int age = 0;
private Sex sex = Sex. MALE;

55

TAPESTRY TUTORIAL

private Race race = Race. CAUCASI AN,

private bool ean |i kesDogs = true;
private bool ean |ikesCats;
private bool ean |ikesFerrits;
private bool ean |ikesTurni ps;

public Cbject getPrimaryKey()

{
return primaryKey;
}
public void setPrimaryKey(Chj ect val ue)
{
pri maryKey = val ue;
}
public String get Name()
{
return nane;
}
public void set Name(String val ue)
{
nane = val ue;
}
public int getAge()
{
return age;
}
public void set Age(int val ue)
{
age = val ue;
}
public void set Sex(Sex val ue)
{
sex = val ue;
}
public Sex get Sex()
{
return sex;
}
public voi d set Race(Race val ue)
{
race = val ue;
}
publ i c Race get Race()
{
return race
}

56

TAPESTRY TUTORIAL

publ i ¢ bool ean getLi kesCat s()

{
return |ikesCats;
}
public void setLikesCat s(bool ean val ue)
{
l'i kesCats = val ue;
}
publ i ¢ bool ean get Li kesDogs()
{
return |ikesDogs;
}
public void setLi kesDogs(bool ean val ue)
{
l'i kesDogs = val ue;
}
publ i c bool ean getLi kesFerrits()
{
return likesFerrits;
}
public void setLikesFerrits(bool ean val ue)
{
l'i kesFerrits = val ue;
}
publ i ¢ bool ean get Li kesTur ni ps()
{
return |ikesTurnips;
}
public void setLikesTurni ps(bool ean val ue)
{
l'i kesTurni ps = val ue;
}
/**

* Validates that the survey is acceptible; throws an {@i nk
I Il egal Argunent Except i on}
* if not valid.

*

*/
public void validate()
throws |1 egal Argunment Excepti on
{
if (race == null)
throw new ||| egal Ar gunent Excepti on("Race nust be
specified.");
if (sex == null)
throw new ||| egal Ar gunent Excepti on("Sex nust be
specified.");

57

TAPESTRY TUTORIAL

if (age < 1)
throw new I | | egal Argument Excepti on("Age nust be at | east
one.");
}
public Chject clone()
{
try
{
return super.clone();
E:at ch (d oneNot Support edExcepti on e)
{ return null;
}
}
}

The race and sex properties are defined in terms of the Race and Sex classes, which are derived
from com pri m x. f oundat i on. Enum Enumclasses act like C enum types; a specific number of
pre-defined values are declared by the class (as static final constants of the class).

Race.java

package tutorial . survey;

i mport com prim x. f oundati on. Enum

/**

* An enuneration of different races.

*

*/
public class Race extends Enum
{
public static final Race CAUCASI AN = new Race(" CAUCASI AN') ;
public static final Race AFRI CAN = new Race("AFR CAN');
public static final Race ASI AN = new Race("AS|I AN');
public static final Race INUT = new Race("INU T");
public static final Race MARTI AN = new Race(" MARTI AN") ;
private Race(String enunerati onld)
{
super (enuner ati onl d) ;
}
private (bj ect readResol ve()
{
return getSingleton();
}
}

This is better than using String or int constants because of type safety; the Java compiler will

58

TAPESTRY TUTORIAL

notice if you pass Race. | NUl T as a parameter that expects an instance of Sex ... if they were both
encoded as numbers, the compiler wouldn't know that there was a programming error.

SurveyDatabase

The Sur veyDat abase class is a mockup of a database for storing Surveys, it has methods such as
addSurvey() and getAllSurveys(). To emulate a database, it even allocates primary keys for
surveys. Additionally, when surveys are added to the database, they are copied and when surveys
are retrieved from the database, they are copied (that is, modifying a Survey instance after adding
it to, or retrieving it from, the database doesn't affect the persistently stored Surveys within the
database ... just as if they were in external storage).

SurveyEngine

The database is accessed via the Sur veyAppl i cat i on object.

SurveyEngine.java (excerpt)

private transi ent SurveyDat abase dat abase;

publ i ¢ SurveyDat abase get Dat abase()

{ return database;
}
prot ected voi d set upFor Request (Request Cont ext cont ext)
{ super . set upFor Request (cont ext) ;
i f (database == null)
{ String name = "Survey. dat abase";

Ser vl et Cont ext servl et Cont ext ;

servl et Cont ext =
cont ext . get Servl et (). get Servl et Cont ext () ;

dat abase =
(SurveyDat abase) servl et Cont ext . get Attri but e(name) ;

i f (database == null)
{

dat abase = new Sur veyDat abase() ;

servl et Cont ext. set Attri but e(name, dat abase);
}

The SurveyDatabase instance is stored as a named attribute of the ServletContext, a shared space
available to all sessions.

59

TAPESTRY TUTORIAL

SurveyPage

The SurveyPage is where survey information is collected. It initially creates an Survey instance as
a persistent page property. It uses Form and a number of other components to edit the survey.

When the survey is complete and valid, it is added to the database and the results page is used as
an acknowledgment.

The SurveyPage also demonstrates how to validate data from a TextField component, and how to

display validation errors. If invalid data is enterred, then the user is notified (after submitting the
form):

2} Survey Tutorial - Microsoft Internet Explorer 101 =]

J File Edit \iew Favorites Tools Help

J Lo RE A A @ il | e @ | =] E - “.D.C_Idress IE http:Il',l'lu:u:alhost:BDBDIsurveyIactionp’j “Links 2

ry

Walue entered for age 15 not a number,

Survey

Name IHDward

Age old
Sex i+ MfMale Race ICauu:asian *I

i~ Female

i~ Transgender

= Naon-Sexual
Favorite Pets [~ Cats

¥ Dogs

" Ferrits

™ Turnips

Subrmnit |

w1

|@ Done l_l_ [BE Local intranet

The HTML template for the page is relatively short. All the interesting stuff comes later, in the
specification and the Java class.

SurveyPage.html

<jwc id="border">

<jwc id="ifError">

<t abl e border=1>

<tr>

<td bgcol or =r ed>

<jwc id="insertError"/>

60

TAPESTRY TUTORIAL

</[font> </tr> </tr> </tabl e>
</ jwc>

<jwc id="surveyForm >
<t abl e bor der =0>

<tr valign=top> <t h>Nane</t h>
<td col span=3><jwc id="i nput Name"/></td></tr>

<tr valign=top> <th>Age</th>
<td col span=3><jwc id="input Age"/></td></tr>

<tr valign=top> <th>Sex</th>
<td> <jwc id="inputSex"/>
</td>

<t h>Race</ t h>

<t d><jwc id="input Race"/>
</td> </tr>

<tr valign=top> <th>Favorite Pets</th>
<td col span=3>
<jwc id="inputCats"/> Cats

<jwc i d="i nput Dogs"/> Dogs

<jwc id="inputFerrits"/> Ferrits

<jwc id="inputTurnips"/> Turnips</td> </tr>
<tr>
<td></td>
<td col span=3><i nput type=submt val ue="Submt"></td> </tr>
</t abl e>

</jwc>
</ jwc>

Most of this page is wrapped by the surveyForm component which is of type Form. The form
contains two text fields (nameField and ageField), a group of radio buttons (ageSelect) and a pop-
up list (raceSelect), and a number of check boxes (cats, dogs, ferrits and turnips).

Most of these components are pretty straight forward: nameField and ageField are setting String
properties, and the check boxes are setting boolean properties. The two other components,
raceSelect and ageSelect, are more interesting.

Both of these are of type PropertySelection; they are used for setting a specific property of some
object to one of a number of possible values.

The PropertySelection component has some difficult tasks: It must know what the possible
values are (including the correct order). It must also know how to display the values (that is, what
labels to use on the radio buttons or in the pop up).

This information is provided by a model (an object that implement
com prim x. t apestry. conponents. | PropertySel ecti onMbdel), an object that exists just
to provide this information to a PropertySelection component.

61

TAPESTRY TUTORIAL

There's a secondary question with PropertySelection: how the component is rendered. By default,
it creates a pop-up list but this can be changed by providing an alternate renderer (using the
component's renderer parameter). In our case, we used a secondary, radio-button renderer.

Applications can also create their own renders, if they need to do something special with fonts,
styles or images.

First, let's review the specification for the SurveyPage:

SurveyPage.jwc

<?xm version="1.0""?>

<! DOCTYPE speci fication PUBLIC "-//Prim x Sol utions//Tapestry Specification
1. 0//EN'

"http://tapestry. sourceforge. net/dtd/ Tapestry_ 1 0.dtd">
<speci fi cati on>

<cl ass>tutori al . survey. SurveyPage</ cl ass>
<conponent s>
<conponent >
<i d>bor der </ i d>
<t ype>Bor der </ t ype>
<bi ndi ngs>
<stati c- bi ndi ng>
<name>titl| e</ name>
<val ue>Sur vey</ val ue>
</ stati c- bi ndi ng>
<bi ndi ng>
<name>pages</ nanme>
<property-
pat h>appl i cati on. pageNanes</ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<id>i fError</id>
<t ype>Condi ti onal </t ype>
<bi ndi ngs>
<bi ndi ng>
<name>condi t i on</ name>
<property- pat h>error </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nsertError</id>
<type>l nsert</type>
<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<property- pat h>error </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>sur veyFor nx/i d>
<t ype>For nx/ t ype>
<bi ndi ngs>

62

TAPESTRY TUTORIAL

<bi ndi ng>
<name>| i st ener </ name>
<pr operty- pat h>f or nLi st ener </ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Name</i d>
<t ype>Text Fi el d</type>
<bi ndi ngs>
<stati c- bi ndi ng>
<nane>di spl ayW dt h</ name>
<val ue>30</ val ue>
</stati c-bi ndi ng>
<stati c- bi ndi ng>
<name>maxi mumA dt h</ name>
<val ue>100</ val ue>
</stati c-bi ndi ng>
<bi ndi ng>
<name>t ext </ name>
<pr opert y- pat h>sur vey. nane</ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Age</i d>
<t ype>Text Fi el d</type>
<bi ndi ngs>
<st ati c- bi ndi ng>
<nane>di spl ayW dt h</ name>
<val ue>4</ val ue>
</static-bi ndi ng>
<st ati c- bi ndi ng>
<nane>maxi mumN dt h</ name>
<val ue>4</ val ue>
</static-bi ndi ng>
<bi ndi ng>
<nane>t ext </ name>
<property- pat h>age</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Sex</i d>
<t ype>Pr opert ySel ecti on</type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<property- pat h>survey. sex</ property- pat h>
</ bi ndi ng>
<bi ndi ng>
<name>nodel </ name>
<property- pat h>sexModel </ pr opert y- pat h>
</ bi ndi ng>
<bi ndi ng>

<nane>r ender er </ name>

63

TAPESTRY TUTORIAL

<property-

pat h>conponent s. i nput Sex. def aul t Radi oRender er </ pr opert y- pat h>

</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Race</i d>
<t ype>Pr opert ySel ecti on</type>
<bi ndi ngs>
<bi ndi ng>
<name>val ue</ name>
<property- pat h>survey
</ bi ndi ng>
<bi ndi ng>
<name>nodel </ name>

. race</ property- pat h>

<pr opert y- pat h>r aceMbdel </ pr operty- pat h>

</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Cat s</i d>
<t ype>Checkbox</t ype>
<bi ndi ngs>
<bi ndi ng>
<name>sel ect ed</ name>
<pr opert y- pat h>sur vey
pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Dogs</ i d>
<t ype>Checkbox</t ype>
<bi ndi ngs>
<bi ndi ng>
<name>sel ect ed</ name>
<pr opert y- pat h>sur vey
pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Ferrits</id>
<t ype>Checkbox</t ype>
<bi ndi ngs>
<bi ndi ng>
<name>sel ect ed</ name>
<property-
pat h>survey. | i kesFerrits</property-pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<conponent >
<i d>i nput Tur ni ps</i d>
<t ype>Checkbox</t ype>
<bi ndi ngs>
<bi ndi ng>

. I'i kesCat s</ property-

. I'i kesDogs</ pr operty-

64

TAPESTRY TUTORIAL

<nane>sel ect ed</ nane>
<pr operty-

pat h>sur vey. | i kesTur ni ps</ property- pat h>

</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>
</ speci fi cati on>

Several of the components, such as inputName and inputTurnips, modify properties of the survey
directly. The SurveyPage class has a survey property, which allows for property paths like
survey.name and survey.likesTurnips.

The age field is more complicated, since it must be converted from a String to an int before being
assigned to the survey's age property ... and the page must check that the user enterred a valid
number as well.

Finally, the SurveyPage class shows how all the detalils fit together:

SurveyPage.java

package tutorial . survey;

i mport com primx.tapestry.*;
i mport com prim Xx.tapestry. conponents. *;
i mport java.util.*;

public class SurveyPage extends BasePage
{
private Survey survey;
private String error;
private String age;
private |PropertySel ecti onMddel sexModel ;
private |PropertySel ecti onMbdel raceMdel;

public |PropertySel ecti onMbdel get RaceMddel ()

{
if (raceModel == null)
raceModel = new EnunPropert ySel ecti onModel (
new Race[]
{

Race. CAUCASI AN, Race. AFRI CAN, Race. ASI AN,
Race. INU T, Race. MARTI AN
}, getBundl e("tutorial.survey. SurveyStrings"),

"Race");
return raceMdel ;
}
public | PropertySel ecti onMbdel get SexModel ()
{
if (sexModel == null)
sexMbdel = new EnunPropertySel ecti onModel (
new Sex| |
{

65

TAPESTRY TUTORIAL

Sex. MALE, Sex. FEMALE, Sex. TRANSGENDER,

Sex. ASEXUAL
}, getBundle("tutorial.survey. SurveyStrings"),

"Sex");

return sexhMdel

}

private ResourceBundl e getBundl e(String resourceNamne)

{
}

return Resour ceBundl e. get Bundl e(resour ceNane, getLocal e());

public | ActionListener getFornListener()
{

return new | Acti onLi st ener ()

{
public void actionTriggered(l Conponent conponent,
| Request Cycl e cycl e)
{

try

{
survey. set Age(| nt eger . parsel nt (age));
survey. val i date();

}

cat ch (Nurber For mat Excepti on e)

/1 Nunber For mat Excepti on doesn't provide
any useful data

setError("Value entered for age is not a

nunber.");

return;

} .

catch (Exception e)

{
set Error (e. get Message()) ;
return;

}

[/l Survey is OK add it to the database

((SurveyApplication)get Application()).getDatabase().addSurvey(survey

set Survey(nul |')
/1 Junp to the results page to show the totals.

cycl e. set Page(" Resul t s");

}s
}

public Survey get Survey()

66

TAPESTRY TUTORIAL

{
if (survey == null)
set Survey(new Survey());
return survey;
}
public void setSurvey(Survey val ue)
{
survey = val ue;
fireCbservedChange("survey", survey);
}
public void detach()
{
super . det ach();
survey = null;
error = null;
age = null;
/1l W keep the nodels, since they are stateless
}
public void setError(String val ue)
{
error = val ue;
}
public String getError()
{
return error,;
}
public String getAge()
{
i nt ageVal ue;
if (age == null)
ageVal ue = get Survey(). get Age();
i f (ageVal ue == 0)
age = "";
el se
age = Integer.toString(ageVal ue);
}
return age;
}
public void setAge(String val ue)
{
age = val ue;
}

67

TAPESTRY TUTORIAL

A few notes. First, the raceModel and sexModel properties are created on-the-fly as needed. The
EnunPr oper t ySel ecti onMbdel is a provided class that simplifies using a PropertySelection
component to set an Enumtyped property. We provide the list of possible values, and the
information needed to extract the corresponding labels from a properties file, in this case,
SurveyStrings. properties:

SurveyStrings.properties

Race. CAUCASI AN=Caucasi an
Race. AFRI CAN=Af ri can
Race. ASI AN=Asi an

Race. | NU T=I nui t

Race. MARTI AN=Mar t i an

Sex. ASEXUAL=Non- Sexual

Sex. MALE=Mal e

Sex. FEMALE=Fenal e

Sex. TRANSGENDER=Tr ansgender

Only survey is a persistent page property. The error property is transient (it is set to null at the
end of the request cycle). The error property doesn't need to be persistent ... it is generated during
a request cycle and is not used on a subsequent request cycle (because the survey will be re-
validated).

Likewise, the age property isn't page persistent. If an invalid value is submitted, then its value will
come up from the H t pSer vl et Request parameter and be plugged into the age property of the
page. If validation of the survey fails, then the SurveyPage will be used to render the HTML
response, and the invalid age value will still be there.

In the det achFromAppl i cati on() method, the survey, error and age properties are properly
cleared. The raceModel and ageModel properties are not ... they are stateless and leaving them in
place saves the trouble of creating identical objects later.

Results

Displaying results is broken up into two parts. In the first part, the database is queries for all
surveys, and totals in a number of categories are prepared.

In the second part, those interrum results are incorporated into the HTML response page.

Results.html

<jwc id="border">
Summary of <jwc id="insertSurveyCount"/> surveys:

<jwe id="e-results">
<jwe id="ifFirst">
<t abl e bor der=0>
<tr bgcol or=bl ack>
<t h>Resul t </th>

68

TAPESTRY TUTORIAL

<t h><f ont col or =whi t e>Count </ f ont ></ t h>
<t h><f ont col or =whi t e>%/ f ont ></t h>

</tr>
</jwc>
<jwc id="resul ts-row'>
<t d>
<jwc id="insertResult"/>
</td>
<t d>

<jwc id="insertCount"/>
</td>
<td align=right>

<jwc id="insertPercent"/>

</td>
</ jwc>
<jwc id="iflLast">
</t abl e>
</jwc>
</jwc>
</ jwc>

This template shows how those results will be provided to a Foreach component (e-results) that
will iterate through them, and use a set of three Insert components. The ifFirst and ifLast
components are used to generate the start and end of the HTML table (if the results are empty
then the table doesn't get rendered at all).

The results-row component will take the place of the normal <TR> element in a table. It exists
to vary the HTML bgcolor attribute, alternating between white and grey backgrounds for
readability.

Results.jwc

<?xm version="1.0""?>

<! DOCTYPE speci fi cation PUBLIC
"-//Primx Solutions//Tapestry Specification 1.0//EN'
"http://tapestry. sourceforge. net/dtd/ Tapestry 1 0.dtd">

<speci fi cati on>
<cl ass>tutorial.survey. Resul t s</ cl ass>

<conponent s>
<conponent >
<i d>bor der </ i d>
<t ype>Bor der </ t ype>

<bi ndi ngs>
<stati c- bi ndi ng>
<nane>titl e</ name>
<val ue>Resul t s</ val ue>
</static-bi ndi ng>

<bi ndi ng>
<name>pages</ name>
<property-
pat h>appl i cati on. pageNanes</ pr operty- pat h>

69

TAPESTRY TUTORIAL

</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert SurveyCount </ i d>
<type>l nsert </type>

<bi ndi ngs>

<bi ndi ng>
<nanme>val ue</ name>
<property-
pat h>dat abase. sur veyCount </ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<l-- The results is a List of Maps. -->

<conponent >
<i d>e-resul ts</id>
<t ype>For each</t ype>

<bi ndi ngs>
<bi ndi ng>
<name>sour ce</ name>
<pr operty- pat h>resul t s</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<id>ifFirst</id>
<t ype>Condi ti onal </t ype>

<bi ndi ngs>
<bi ndi ng>
<name>condi t i on</ name>
<pr oper t y- pat h>conponent s. e-
resul ts. first</property-path>

</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
<l-- This stands in for the TR el enent, but handl es the

bgcolor. -->

<conponent >
<i d>resul ts-row</id>
<t ype>Any</type>

<bi ndi ngs>
<stati c- bi ndi ng>
<nane>el emrent </ nane>
<val ue>t r </ val ue>
</static-bi ndi ng>

70

TAPESTRY TUTORIAL

<bi ndi ng>
<nane>bgcol or </ name>
<pr opert y- pat h>r owCol or </ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsertResul t</i d>
<type>l nsert </type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ nanme>
<pr opert y- pat h>conponent s. e-
resul ts. val ue. nane</ propert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert Count </ i d>
<type>| nsert</type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<pr operty- pat h>conponent s. e-
resul ts. val ue. count </ pr opert y- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<i d>i nsert Percent </i d>
<type>l nsert </t ype>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<pr opert y- pat h>conponent s. e-
resul ts. val ue. per cent </ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >

<conponent >
<id>i fLast</id>
<t ype>Condi ti onal </t ype>

<bi ndi ngs>
<bi ndi ng>
<nanme>condi ti on</ name>
<pr opert y- pat h>conponent s. e-
resul ts. | ast </ property-pat h>
</ bi ndi ng>

71

TAPESTRY TUTORIAL

</ bi ndi ngs>
</ conponent >

</ conponent s>

</ speci fi cati on>

The presentation relies on the Java class providing a results property. This property is a Li st of
Maps. Each Map has three keys: name, count and percent. The rest of the logic is simply to break
apart this Li st into Maps (as property-path components.e-results.value), and to pull out the values
for the three keys.

Creating this results property consumes the bulk of the class:

Results.java

package tutorial . survey;

i mport com primx.tapestry.*;
i mport java.util.*;

i mport java.text.*;

i mport java.awt . Col or;

public class Results extends BasePage

{

private SurveyDat abase surveyDat abase;
privat e bool ean oddRow = fal se;
privat e Nunber For mat per cent For mat ;

publ i c SurveyDat abase get Dat abase()

{
i f (surveyDatabase == null)
{
SurveyAppl i cation surveyApplication;
surveyAppl i cati on = (SurveyApplication)application;
surveyDat abase = surveyAppl i cati on. get Dat abase() ;
}
return surveyDat abase;
}
public voi d detach()
{
super . det ach();
sur veyDat abase = nul | ;
oddRow = f al se;
}
public String get RowCol or ()
{

Col or col or;
String result;

72

TAPESTRY TUTORIAL

i f (oddRow)

color = Col or.|ight@G ay;
el se

color = Col or. white;

result = Request Cont ext . encodeCol or (col or);

oddRow = ! oddRow,
return result;
}
public List getResults()
{

nt raceAfrican = 0;
nt raceAsian = 0;

nt raceCaucasi an = 0;
nt racelnuit = 0;

nt raceMartian =
nt sexAsexual
nt sexFenal e
nt sexhale = 0;

nt sexTransgender = O;
nt |likesCats = 0;

nt |ikesDogs = O;
nt |ikesFerrits
nt |ikesTurnips ;

nt ageToTeen = 0; // 1 - 18

nt ageEarlyAdult = 0; // 19 - 28
nt ageToMddle =0; // 29 - 35
nt ageMddle =0; // 36 - 49

nt agedder = 0; // 50 - 64

nt ageRetire = 0; // 65 - 80

nt agedd =0; // 81 - 100
Survey[] surveys;

Survey survey;

List result;

Race race;

Sex sex;

i nt count;

int i;

i nt age;

0;
= O,
= O,

i
i
i
i
i
i
i
i
i
i
i
i 0
i 0
i /
i

i

i

i

i

i

surveys = get Dat abase().get Al | Surveys();

if (surveys == null ||
surveys. | ength == 0)
return null;

count = surveys. | ength;
for (i =0; i < count; i++)
{

survey = surveys[i];

race = survey. get Race();
if (race == Race. AFRI CAN)
raceAfri can++;

73

TAPESTRY TUTORIAL

if (race == Race. ASlI AN)
r aceAsi an++;

if (race == Race. CAUCASI AN)
raceCaucasi an++;

if (race == Race. | NUIT)
racel nui t ++;

i f (race == Race. VARTI AN)
raceMarti an++;

sex = survey. get Sex();
if (sex == Sex. MALE)
sexMal e++;

if (sex == Sex. FEVALE)
sexFemal e++;

i f (sex == Sex. TRANSGENDER)
sexTr ansgender ++;

if (sex == Sex. ASEXUAL)
sexAsexual ++;

i f (survey. getlLikesCats())
| i kesCat s++;

i f (survey. getLi kesDogs())
| i kesDogs++;

i f (survey. getLikesFerrits())
l'i kesFerrits++;

i f (survey. getLi kesTur ni ps())
| i kesTur ni ps++;

age = survey. get Age();

if (age < 19)
ageToTeen++;

if (age >= 19 && age <= 28)
ageEar | yAdul t ++;

if (age >= 29 && age <= 35)
ageToM ddl e++;

if (age >= 36 && age <= 49)
ageM ddl e++;

if (age >= 50 && age <= 64)
aged der ++;

if (age >= 65 &% age <= 80)
ageRet i re++;

74

TAPESTRY TUTORIAL

count));

count));

}

private Map buil dResul t (String nane,

{

if (age >= 81)
aged d++;
}
result = new Arraylist();

resul t.add(buil dResul t (" Sex :
resul t.add(buil dResul t (" Sex :
resul t.add(bui | dResul t (" Sex :

resul t.add(bui |l dResul t (" Sex :

resul t.add(bui | dResul t (" Race :

resul t.add(bui | dResul t (" Race :
resul t.add(bui | dResul t (" Race :
resul t.add(bui | dResul t (" Race :
resul t.add(bui |l dResul t (" Race :

resul t.add(bui | dResul t (" Age:
resul t.add(bui | dResul t (" Age:
resul t.add(bui | dResul t (" Age:
resul t.add(bui | dResul t (" Age:
resul t.add(bui | dResul t (" Age:
resul t.add(bui | dResul t (" Age:
resul t.add(bui | dResul t (" Age:

resul t.add(bui | dResul t ("Li kes
resul t.add(bui | dResul t ("Li kes
resul t.add(bui | dResul t ("Li kes
resul t.add(bui | dResul t ("Li kes

return result;

Map result;

result = new HashMap(3);

resul t. put ("nane", nane);
result.put("count”, new Integ
i f (percentFormat == null)

per cent Format =

Mal e,
Femal e",
Transgender ",

Asexual ", sexAsexual, count));
Caucasi an", raceCaucasi an,
African", raceAfrican, count));
Asi an", raceAsian, count));
Inuit", racelnuit, count));
Martian", raceMartian, count));

to 18", ageToTeen, count));

19 - 28", ageEarlyAdult, count));

29 - 35", ageToM ddl e, count));

36 - 49", ageM ddle, count));

50 - 64", aged der, count));

65 - 80", ageRetire, count));

80 and up", agedd, count));
cats", likesCats, count));
dogs", |ikesDogs, count));
ferrits", likesFerrits, count));
turni ps", l|ikesTurnips, count));

int count, int total)

er(count));

Nunber For mat . get Per cent | nst ance(get Local e()) ;

resul t. put ("percent",

(doubl e)total));

return result;

sexMal e,
sexFemal e,

count));
count));
sexTr ansgender ,

per cent For mat . f or mat ((doubl e) count /

75

TAPESTRY TUTORIAL

| ocalization

which it assists with localization of a web application. This is normally an ugly area in

O ne of the most powerful and useful features of the Tapestry framework is the way in
web applications, with tremendous amounts of ad-hoc coding necessary.

Because Tapestry does such a strong job of seperating the presentation of a component (its
HTML template) from its control logic (its specification and Java class) it becomes easy for it to
perform localization automatically. It's as simple as providing additional localized HTML
templates for the component, and letting the framework select the proper one.

However, the static text of an application, provided by the HTML templates, is not all.
Applications also have assets (images, stylesheets and the like) that must also be localized ... that
fancy button labeled "Search™ is fine for your English clients, but your French cliensts will require
a similar button labeled "Recherche".

Again, the framework assists, because it can look for localized versions of the assets as it runs.

The locale application demostrates this. It is a very simply application that demonstrates changing
the locale of a running application.

The Home page of the application allows you to select a new language for the application:

76

TAPESTRY TUTORIAL

3 Locale Demonstration - Microsoft Internet Explorer i |D|l|
J File Edit Miew Favoribes Tools Help ‘
J e @ fat | NES| @ | =h |J-°-E|df855 IE https fflacalhost:S0&0)tukorialflocale j |JLinks 2

This tutonal demonstration how to dynamically change the locale for the rnmng applcation.

Select a new locale:

Ch
[English =] L

[
|@ Dane I_l_ 2 Local intranst S

Selecting "German" from the list and clicking the "Change" button brings you to a new page that
acknowledges your selection::

<} Locale Demonstration - Microsoft Internet Explorer -10] x|
J File Edit \iew Faworites Toals Help
J G - omp o @ ol | Ve @ | = H.ﬁ.gldress IE http: fflocalhost: 5080/ utorialflocaleackion/Home 0 Farm j HLinks 2%
Glisckwinsche, haben Sie geandert das locale zu Deutsch.
Sdhlen sie
anders aus
[
|@ Done l_’_ (2 Local intranet j

Clicking the button (it's labeled "Select Another" in German) returns you to the Home page to
select a new language:

4 Translations were done using Bablefish and are probably laughably bad to someone who actually speaks the language.

77

TAPESTRY TUTORIAL

3 Locale Demonstration - Microsoft Internet Explorer

J File Edit Miew Favoribes Tools Help ‘
|J Address I@ httpsfflacalhost 5080t ukorialflocale/page (Home j |J Links *

|«-=» - DRAA P S
=

Dhese Eeterentendemonstration, wie man dynamisch das locale Hir die laufende Anwendung andert.

Wahlen Sie ein neues locale avs:

IEninsch 'I

L

£X

[
4

l_ l_ Local intranet

|@ Dane

The neat thing here is that the Home page has been localized into German as well; it shows
equivalent German text, the options in the popup list are in German, and the "Change™ button

has been replaced with a German equivalent.

Home Page
The Home page consists of a single component specification, four versions of the HTML

template and four image assets.
Home.jwc (excerpt)

<conponent >
<i d>i nput Local e</i d>

<t ype>Pr opert ySel ecti on</type>

<bi ndi ngs>
<bi ndi ng>
<nane>val ue</ name>
<pr operty- pat h>sel ect edLocal e</ property- pat h>
</ bi ndi ng>
<bi ndi ng>
<nane>nodel </ name>
<pr opert y- pat h>l ocal eMbdel </ pr operty- pat h>
</ bi ndi ng>
</ bi ndi ngs>

</ conponent >

<conponent >
<i d>changeBut t on</i d>

<t ype>| mageBut t on</t ype>
<bi ndi ngs>

78

TAPESTRY TUTORIAL

<bi ndi ng>
<nane>i nage</ nanme>
<pr operty- pat h>asset s. change- but t on</ pr operty-
pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>
<asset s>
<pri vat e- asset >
<nane>change- but t on</ nanme>
<resource-path>/tutorial /| ocal e/ Change. gi f </ resour ce- pat h>
</ pri vat e- asset >
</ asset s>

The changeButton component is an ImageButton, a Tapestry version of an <input
type="image"> HTML form element. We provide it with an image, and asset that will be used as
the src attribute of the HTML element.

The property path assets.change-button is a convienience; each component may have a number
of named assets and has an assets property that is a Map of those assets.

We also must define the asset, naming it change-button. We declare it as a private asset, an asset
that is not directly visible to the servlet container, but is instead packaged with the Java classes in a
JAR or in the WEB-INF/classes directory of a WAR.

In fact, there are four files in that directory, named Change.gif, Change_de.gif, Change_fr.gif and
Change_it.gif. Those suffixes (_de, fr, etc.) identify the locale for which the image is appropriate.
More information on those suffixes is available from the java.util.Locale documentation.

When Tapestry is rendering the page, it knows what locale is currently selected for the application
(it's a property of the engine object) and chooses the correct file based on that.

Along with the four images, there are four HTML templates.

Home.html

<jwc id="border">

This tutorial denonstrati on how to dynamically change the | ocal e
for the running application

<p>
Sel ect a new | ocal e:
<jwe id="form >
<jwc id="inputLocal e"/>
<jwc id="changeButton"/>
</ jwc>

</jwc>

The alternate locale versions are named in the same pattern as the image asset files.

79

TAPESTRY TUTORIAL

Home_de.html

<jwc id="border">

Di ese Referentendenonstrati on, wi e man dynam sch
das | ocal e für die |aufende Anwendung ä ndert .

<p>
W#228; hl en Sie ein neues | ocal e aus:

<jwe id="forn>
<jwc id="inputLocal e"/>
<jwc id="changeButton"/>
</jwc>

</ jwc>
The ids of components are consistent regardless of the locale used ... these are internal ids (the

equivalent of variable names) and are not shown to the end user. In addition, there's only one
specification file and the ids here must match the ids in the specification.

The only real different is the static text which, here, is in German.

Again, when Tapestry is rendering the page, it first chooses the correct localized HTML template.
When it is rendering the changeButton component, it finds the correct localized file.

What if there isn't a localization of a template or file? Tapestry will use the more general file. For
instance, if we somehow managed to convince the application that we spoke Spanish we would
see mostly English text since we didn't provide Spanish localized templates or assets.

The Java code for the Home page is simple enough that we can largely skip it. The only
interesting parts are providing a property selection model for the inputLocale component and
responding when the form is submitted:

Home.java (excerpt)

public void actionTriggered(l Conponent conponent, | RequestCycle cycle)
t hrows Request Cycl eExcepti on

get Engi ne() . set Local e(sel ect edLocal e) ;

cycl e. set Page(" Change") ;

Change page

After the use selects a language, the application switches to the Change page for a response,
which includes a link back to the Home page (as a localized image button).

Change.html

<jwc id="border">

TAPESTRY TUTORIAL

Congratul ati ons, you've changed the locale to <jwc id="insertLocal eNane"/ >.
<p><j wc i d="hone"><jwc i d="chooseAgai nl mage"/></jwc>

</ jwc>

This template combines with the specification that identifies the images.

Change.jwc (excerpt)

<conponent >
<i d>chooseAgai nl mage</i d>
<t ype>l mage</t ype>
<bi ndi ngs>
<bi ndi ng>
<namne>i mage</ name>
<property- pat h>asset s. choose- agai n</ property- pat h>
</ bi ndi ng>
</ bi ndi ngs>
</ conponent >
</ conponent s>
<asset s>
<cont ext - asset >
<nane>choose- agai n</ nhanme>
<pat h>/ i mages/ | ocal e/ ChooseAgai n. gi f </ pat h>
</ cont ext - asset >
</ asset s>

This is similar to the previous example, in that we've provided four versions of the
ChooseAgain.gif image asset.

However, we've put the images in a different place. This time, the asset is a context asset, an asset
that is visible to the servlet container. In this example, the file ChooseAgain.gif is located in the
/images/locale directory of the WAR. Tapestry makes sure that the correct prefix (/tutorial) is
prepended to the path when the HTML is rendered.

Context assets are the most common assets used. Private assets (as used on the Home page) are
used mostly when creating libraries of components for reuse. When building an application that
stands on its own, context assets are easier and more efficient.

As with the Home page, there are multiple localizations of the Change page.

Change_de.html

<jwc id="border">

A ü ckw8#252; nsche, haben Si e geä ndert das |ocale zu <jwc
i d="i nsertLocal eNane"/ >.

<p><jwc id="home"><jwc id="chooseAgai nl mage"/></jwc>

</jwc>

81

TAPESTRY TUTORIAL

As we saw previously, the components in the HTML template are the same, just the static HTML
has changed.

Other Options for Localization

In some cases, different localizations of the a component will be very similar, perhaps having only
one or two small snippets of text that is different.

In those cases, it may be easier on the developer to not localize the HTML template, but to
replace the variant text with an Insert component.

The page can read a localized Strings file (a .properties file) to get appropriate localized text. This
saves the bother of maintaining multiple HTML templates.

All components on a page share the single locale for the page, but each performs its own search
for its HTML template. This means that some components may not have to be localized, if they
never contain any static HTML text. This is sometimes the case for reusable components, even
navigational borders.

82

TAPESTRY TUTORIAL

Further Study

he preceding chapters cover many of the basic aspects of Tapestry. You should be
comfortable with basic Tapestry concepts:

» Seperation of presentation, business and control logic
» Use of JavaBeans properties as the source of dynamic data
» How bindings access JavaBeans properties to provide data to components

* How components wrap each other, allowing for the creation of very complicated
components through aggregation.

» Different types of page properties (transient, dynamic, persistent)

Tapestry is capable of quite a bit more. Also available within the Tapestry Examples package
(along with the tutorial code and this document) is the Primix Virtual Library application (Vlib).

Vlib is a full-blown J2EE application, that makes use of Tapestry as its front end, and a set of
session and entity Enterprise JavaBeans as its back end.

Vlib also demonstrates some of the other aspects of developing a Tapestry application. It shows
how to create pages that are bookmarkable (meaning that their URL includes enough information
to reconstruct them in a subsequent session). It shows how to handle logging in to an application,
and how to protect pages from being accessed until the user is logged in. It has many specialized
reusable components for creating links to pages about books and people.

83

	Java Build Environment (JBE)
	Building the Tutorial
	Application Engine
	Application Servlet
	Application Specification
	Home Page Specification
	Home Page Template
	Run the Application
	Adding Interactivity using Listeners
	Persistant Page State and Page Pooling
	Dynamic Page State
	Stale Sessions
	Exception Handling
	The Visit Object
	The Home Page
	The Guess Page
	Limitations
	Specification View
	Components View
	Template View
	Properties View
	Survey
	SurveyDatabase
	SurveyEngine
	SurveyPage
	Results
	Home Page
	Change page
	Other Options for Localization

