
PRIMIX SOLUTIONS
Core Labs

Java Build
Environment

C O R E L A B S

Java Build Environment

 Primix Solutions
One Arsenal Marketplace

Phone (617) 923-6639 • Fax (617) 923-5139

Tapestry contact information:

Howard Ship <hship@sourceforge.net>

http://sourceforge.net/projects/tapestry

Table of Contents
Introduction 2
Installation and Configuration 4

Installing Cygwin 4
Environment Variables 9
Configuration 9

Using JBE 11
Jar modules 13
Package Makefiles 15

War modules 15
WebLogic modules 17
jBoss modules 18
Additonal Variables 19

Future development of the JBE21

 2222

Introduction
s envisioned but most tool makers, the life of a Java developer is a solitary one. Parked
at his or her desk, with only his trusty tools, IDEs and the command line, the developer
creates the wonderful applets, applications and frameworks possible using Java.

The developer has and requires great freedom; each tool in his or her arsenal may have come
from a different company; each tool may have been installed into a directory of his or her liking.
This is not a problem because the developer is only accountable to him- or her-self, and these
selections of tools and locations will only aftect one person.

Alas, in the real world, developers work on teams and share code using source code repositories.
They may be physically located across the hallway, or across the planet. As they work, they may
make conflicting changes to code.

In addition, it is good to have precise control over which JDK is used to compile and execute
modules1. The JBE uses a simple system to allow developers to control exactly which JDK
vendor and release is used.

What's needed is a system that can adjust for local differences in developer's environments and
allow for "clean builds" of modules directly from source. That's what the Java Build
Environment (JBE) is for.

JBE is designed to start with basic Java source and utlimately produce a Java Archive (JAR) or
Web Archive (WAR) ready for testing or deployment. This may involve many steps, including
compiling Java code, creating RMI stubs and skeletons, using application-server specific tools
(such as WebLogic ejbc), combining the results into a JAR file ... even creating Javadoc.

Without JBE, there are three options for doing all this:

• The command line. Developers may simply execute the java and jar commands
themselves. This leads to problems when steps are missed, or the commands are in some
way dependent on a single developer's environment (for example, the setting of the
CLASSPATH variable).

1 A module is a single collection of Java source files that will be compiled and combined to form a single JAR.

Chapter

1
A

 3333

• Batch commands / shell scripts. Hard to develop and debug and non-portable between
platforms. Often assembled in a hurry that leads to the same kind of environment
problems as using the command line.

• IDE. Some IDEs can assemble JARs, or even interface to an application server to build
and deploy EJBs and WARs; however, this will require that the user interactively use the
IDE's tools. Also, these tools are idiosyncratic; getting them to package up the correct
Java classes and resources is often challenging.

JBE includes many hooks to allow custom directories, compiliation options or other
configuration to be specified. Other hooks allow for additional processing, such as signing a JAR.

JBE is designed to be portable, meaning the same source files and Makefiles will work across
multiple developer's workstations ... even when using different operating systems (such as
Windows, Linux and Solaris).

Because the JBE is based on GNU Make it is extermely adaptable and extensible. JBE Makefiles
can do more than simply compile Java files, they can also run tests, launch applications, prepare
distributions … virtually any operation that can be done using shell scripts or command macros,
though Makefile syntax is cleaner, easier and platform independent.

JBE is most useful with medium to large scale Java projects. It has no support for compiling
anything but Java; projects which use native code are beyond its scope.

 4444

Installation and Configuration
BE is distributed as a part of the Tapestry distribution, in the JBE directory.

Under Windows, it is necessary to perform a separate installation to provide the necessary
GNU tools, including GNU Make. JBE was developed under Windows (Windows NT 4.0

Workstation and Windows 2000 Professional), and makes use of the Cygwin tools library.

Future plans include porting it to Solaris (in such a way that Makefiles are automatically portable
between the two environments); this will support coding under Windows and deployment on
Solaris (including compiling on Solaris2).

Because my direct experience is to suffer the indignities of Windows development, the examples
in this document use Windows pathnames. Developers using Linux or Solaris should be able to
translate to their sensibly named file systems.

On any operating system it is necessary to have a JDK installed. JBE was developed using Sun's
JDK 1.2.2 and JDK 1.3. The JDK used by the JBE is configurable (details are below).

Installing Cygwin
Cygwin is a set of GNU tools ported so as to run in the Windows NT or Windows 2000
environments (it may also work under Windows 95/98/ME).

Cygwin is available at http://sources.redhat.com/cygwin/.

Installing Cygwin is very easy; Cygwin starts by downloading a small installer called setup.exe.
Running this program allows the user to install any of the many individual packages in Cygwin
individually. You should download this program from the Cygnus web site to a safe directory
(you use the same program later to update your installation with newer versions of the packages).

2 Some would say that this is an uneccesarily conservative step, because of Write Once Run Anywhere, but being a little
paranoid never hurt.

Chapter

2
J

 5555

Click the Next button to continue. On the next screen, select "Install from Internet". This will
cause the installer to download the files and then install them on your workstation.

Click Next and select a directory to store the downloaded files.

Click Next and choose where to install Cygwin:

 6666

Click Next and tell the installer how to access the files over the Internet:

Click Next and select a site to download from:

 7777

Where you choose is a matter of hunting around for a good connection; you'll do best with a site
that is near you.

The installer will download a list of packages that can be installed. If you have a fast connection
and about 125MB of disk space, let it install the latest versions of every package.

If you want to be choosy, you can select just which packages to install. Clicking the release
number (the text to the right of the double arrows symbol) will cycle through available options,
one of which is "Skip".

 8888

]The JBE requires the following packages:

• ash

• cygwin

• fileutils

• findutils

• gzip

• make

• shellutils

• tar

• textutils

These downloads total approxmately 3 MB. In addition, you may want to install the following
additional packages:

• groff

• grep

 9999

• less

• man

The optional packages add another 2 MB of downloads.

After making your selections and clicking Next, the installer will download the necessary package
files and install them. This may take a few minutes, depending on the speed of your Internet
connection. The installer will display its progress as it works, then display the last panel:

Simply click Next to exit the installer.

Environment Variables
The JBE is packaged with Tapestry; if you are reading this document, then you have probably
already unpacked the Tapestry distribtution. The JBE is stored in the JBE subdirectory of the
distribution.

It is necessary to create an environment variable, SYS_MAKEFILE_DIR, that points to the
directory. Use forward slashes as the path seperator, even under Windows. A typical value for
this is "C:/Tapestry-0.2.7/JBE" (depending on which release of Tapestry you downloaded,
and where you installed it).

Under Windows, add an additional environment variable MAKE_MODE with the value unix.

Configuration
Configuration is accomplished by creating additional files used by GNU Make at runtime.

First, create a sub-directory of the JBE directory and name it config.

Create a new file, SiteConfig.mk, in the directory. This file is used to specify the platform for
the local workstation.

Example:

 10101010

config/SiteConfig.mk
Defines the local platform.

SITE_PLATFORM := Cygwin

Platforms correspond to the Platform.name.mk file in the main JBE directory.

This file may also be used to store addtiional, site-wide options (typically, variables that start with
the prefix SITE_). Such options will apply to all modules built on the local workstation.

In a multiple-developer environment, all developers on the same platform will use identical copies
of the SiteConfig.mk file.

A second configuration file, LocalConfig.mk, is used to establish the directories into which
related tools have been installed. For example:

config/LocalConfig.mk
TOOLS_DIR := C:/cygwin/bin

JDK_Sun_1.2.2_DIR := C:/jdk1.2.2
JDK_Sun_1.3_DIR := C:/jdk1.3

WEBLOGIC_DIR := C:/WebLogic

The first variable, TOOLS_DIR, is the directory for the GNU tools. Since this example is for
Windows 2000 using Cygwin, the tools directory is the Cygwin bin directory.

The next two variables define the locations of two JDKs installed on the local workstation. The
JBE considers a JDK to be a combination of a vendor and a release. You must create a variable
JDK_Vendor_Release_DIR for each combination.

Unless overriden in some way, the default JDK is Sun 1.3.

LocalConfig.mk is also a useful place to specify other global variables. In this example, the
variable WEBLOGIC_DIR is specified, to identify where the WebLogic application server was
installed ... this is only needed you will be creating EJB deployments for Weblogic.

 11111111

Using JBE
JBE performs builds on modules. For JBE, a module is a directory which contains a number of
Java packages. The source code in all the packages will be compiled and eventually combined into
a single JAR file.

JBE requires a master Makefile in the module directory, whose job is to set global options for the
entire module, and to identify the list of Java packages. Each package may also have a Makefile,
which is used to identify the Java source files, resource files and RMI classes for that package.

The standard directory hierarchy for a module has the module directory as the root of the Java
package tree for the module:

! Module Directory

" Makefile

! com

! example

! snood

" Makefile

" SnoodClient.java

" ISnood.java

! server

" Makefile

" SnoodImpl.java

" SnoodClient.properties

This lays out a module with two package directories. The first, com.example.snood contains
the class SnoodClient.java, the interface ISnood.java and a resource file:

Chapter

3

 12121212

SnoodClient.properties. The second package, com.example.snood.server contains the
class SnoodImpl.java..

A module makefile must provide a name for the module (which is used to name the JAR or WAR
file) and a list of packages. It may provide additional options used when compiling, generating
Javadoc or installing the JAR.

The module directory doesn't have to be the source code root, by setting the SOURCE_DIR
variable, the source code root directory can be moved to another directory. Many developers
prefer to put the Java source code in a directory named "src". In other situations, the Java source
code may be in a sibling directory to the module directory.

In our example, the module directory is also the root source code directory, so the Makefile is
very simple:

Makefile
MODULE_NAME = Snood

PACKAGES = \
com.example.snood \
com.example.snood.server

include $(SYS_MAKEFILE_DIR)/Jar.mk

The last line identifies this module as a Jar module; one that builds a JAR file.

The other two Makefiles identify the Java source files in the package, any resource files that
should be copied into the JAR, and any classes that must be compiled with the RMI compiler.

com/example/snood/Makefile
JAVA_FILES = *.java

RESOURCE_FILES = *.properties

include $(SYS_MAKEFILE_DIR)/Package.mk

com/example/snood/server/Makefile
JAVA_FILES = *.java

RMI_CLASSES = SnoodImpl

include $(SYS_MAKEFILE_DIR)/Package.mk

Building this module executes a sequence of commands3:

make

*** Cataloging package com.example.snood ... ***

3 As the JBE evolves, the exact commands may alter slightly, but the general pattern will be the same.

 13131313

*** Cataloging package com.example.snood.server ... ***

*** Compiling ... ***

C:/jdk1.2.2/bin/javac.exe -d .build/classes -classpath
"D:/Temp/Snood;D:/Temp/Snood/.build/classes" com/example/snood/ISnood.java
com/example/snood/SnoodClient.java com/example/snood/server/SnoodImpl.java

*** Compiling RMI stubs and skeletons ... ***

C:/jdk1.2.2/bin/rmic.exe -d .build/classes -classpath
"D:/Temp/Snood;D:/Temp/Snood/.build/classes" \

com.example.snood.server.SnoodImpl

*** Copying package resources ...***

Copying: SnoodClient.properties

*** Building Snood.jar ... ***

C:/jdk1.2.2/bin/jar.exe cf Snood.jar -C .build/classes .

When a module is first built, JBE catalogs the Java source files, resource files and RMI classes in
the packages (this information is kept for subsequent makes4). It then uses this information to
perform all the remaining work from the module directory.

Here it compiled all the Java files in one pass, built the RMI stubs and skeletons, then copied
resource files, and created the final JAR file.On a subsequent build, only files which had changed
since the previous build would be recompiled or re-copied.

You can also see that full pathnames are used to access the various GNU and JDK tools. This
ensures that the correct JDK is used. It also means the tools are available, even if the user hasn't
added the JDK\bin dir to the system PATH.

JBE creates a .build directory in the module directory and directs compilation to this directory
as well as copying resource files into it. It just becomes a matter of using the JDK jar tool to
create a JAR from the directory. WARs are generated the same way (but with a different
structure).

Jar modules
The most basic type of JBE module is the Jar module, which builds a JAR file that can be used as
a framework or standalone application. The JAR file is created in the module directory (though it
can be removed by make clean).

4 If the files change, such as when files are added or removed, the catalog used by make will be out of date. It can be
refreshed by building the catalog target, though its often simpler to just do a make clean.

 14141414

A Jar module Makefile should define the following values:

Variable Description

INSTALL_DIR The directory to which the final JAR should be copied after it is built.

JAVADOC_DIR The directory to which Javadoc should be written.

JDK_RELEASE Optional: The release of the JDK to use when compiling.

JDK_VENDOR Optional: The vendor to use when compiling.

LOCAL_CLASSPATH A space seperated list of the classpath entries (typically, other JAR
files) used when compiling. Absolute or relative pathnames may be
used. Use the forward slash as the path seperator (even on
Windows).

META_RESOURCES The names of any resources that should be copied from the module
directory into the JAR's META-INF directory. This is optional.

MODULE_NAME The name used when building the JAR, and as the sub-directory
when building Javadoc.

PACKAGES The names of all packages in the module.

SOURCE_DIR An alternate directory to serve as the root directory for Java source
and Java class resources. This is optional; if not specified the module
directory is treated as the source directory.

A Jar module has a number of standard Make targets:

Target Description

catalog Rebuild the catalog of Java files, resource files and RMI classes. Used after adding or
removing such files from a package.

clean Remove JAR and the .build directory.

compile Compile changed Java source files, then compile any changed RMI classes.

default Alias for compile.

force Compile all, not just dirty, then compile all RMI classes

install jar; then copy JAR to INSTALL_DIR

 15151515

jar compile; then copy resources and build JAR

javadoc Generate Javadoc for the contents of the JAR

Package Makefiles
Package Makefiles are very simple. They are only used when cataloging; they simply declare what
types of files are in the package.

The form of a Package makefile is very simple:

JAVA_FILES = list of files

RESOURCE_FILES = list of files

RMI_CLASSES = list of class names

include $(SYS_MAKEFILE_DIR)/Package.mk

As shown in the prior examples, the JAVA_FILES and RESOURCE_FILES may use wild cards
(such as "*.java" or "*.properties").

The RMI_CLASSES is simply a list of the class names of RMI implementation classes; just the
simple name of the class (no extension, and no package name; the package is known from
context).

Package makefiles are optional, if not provided a default makefile is used. The default makefile
assumes all files ending in the following extensions are resource files:

• jwc (Tapestry Component Specifications)

• application (Tapestry Application Specifications)

• html (Tapestry HTML templates)

• properties (Java properties files)

• script (Tapestry script files)

War modules
A War module is similar to a Jar module, except that the final file has the extension ".war" instead
of ".jar" and the internal layout is different. A Web Application Archive (WAR) is a file that can
be deployed into a J2EE compatible application server; it contains servlets and other Java code as
well as context resources (images and other assets that are visible to the web server).

 16161616

In a WAR, classes are stored in the directory WEB-INF/classes, rather than at the root. Context
resources go in the root of the WAR (these are images and other files that are accessible by the
client web browser). There will deployment descriptor files that must also be copied from the
module directory into the WEB-INF directory as well, and a WAR can include libraries of code in
its WEB-INF/lib directory.

Variable Description

CONTEXT_RESOURCES The names of individual files or directories that should be copied
from the module directory into the root of the WAR. Relative
pathnames will be maintained when copied. Directories are
copied recusively (but directories named 'CVS' are pruned).

INSTALL_DIR The directory to which the final WAR should be copied after it is
built.

INSTALL_LIBRARIES A space seperated list of libraries that should be installed into the
WEB-INF/lib directory. The entries here should be a subset of
LOCAL_CLASSPATH.

JAVADOC_DIR The directory to which Javadoc should be written.

JDK_RELEASE Optional: The release of the JDK to use when compiling.

JDK_VENDOR Optional: The vendor to use when compiling.

LOCAL_CLASSPATH A space seperated list of the classpath entries (typically, other JAR
files) used when compiling. Absolute or relative pathnames may
be used. Use the forward slash as the path seperator (even on
Windows).

META_RESOURCES The names of any resources that should be copied into the
WAR's META-INF directory.

MODULE_NAME The name used when building the WAR, and as the sub-directory
when building Javadoc.

PACKAGES The names of all packages in the module.

SOURCE_DIR An alternate directory to serve as the root directory for Java
source and Java class resources.

WEB_INF_RESOURCES The names of files that should be copied into the WEB-INF
directory. This should include the application-server specific
deployment descriptor. The J2EE deployment descriptor,
web.xml, is automatically copied.

 17171717

War modules have similar targets as Jar modules:

Target Description

catalog Rebuild the catalog of Java files, resource files and RMI classes. Used after adding or
removing such files from a package.

clean Remove WAR, .build directory (in module and in each package)

compile Compile changed Java source files, then compile any changed RMI classes.

default Alias for compile

force Compile all, not just dirty, then compile all RMI classes

install war; then copy WAR to INSTALL_DIR

javadoc Generate Javadoc for the contents of the WAR

war compile; then copy resources and build WAR

WebLogic modules
The WebLogic module type is a specialization of the Jar type used to create deployable EJB JARS
for use with the WebLogic application server version 5.15. To use it, the WEBLOGIC_DIR variable
must be set, usually in LocalConfig.mk.

Unless overriden, WebLogic modules are always compiled using Sun's JDK 1.2.2.

The libraries WEBLOGIC_DIR/classes and WEBLOGIC_DIR/lib/weblogicaux.jar are
automatically added to the classpath. These add WebLogic's implementations of the J2EE
frameworks (JNDI, EJB, etc.).

For the most part, WebLogic modules work the same as Jar modules. However, the jar rule is
changed to not only build the normal JAR, but also build the depoyable JAR. It does this by
running the WebLogic ejbc command, which provides all the WebLogic specific classes needed
to deploy (such as stubs and skeletons for EJBs, and a variety of files to support container
managed persistence).

The deployable JAR is called MODULE_NAME-deploy.jar. The install rule copies both JARs to
the install directory.

5 WebLogic 6.0 was recently released; it appears that much of the infrastructure provided by the WebLogic module is no
longer necessary, and deployable EJB JARs can be built using the normal Jar makefile.

 18181818

JAR files in the LOCAL_CLASSPATH are treated as dependencies of the deployable JAR. If
they change, then the deployable JAR is rebuilt (using ejbc).

The WebLogic module automatically adds the files ejb-jar.xml (the generic EJB deployment
descriptor) and weblogic-ejb-jar.xml (the WebLogic specific EJB deployment descriptor) to
the list of META_RESOURCES (files copied to the META-INF directory of the JAR).

jBoss modules
jBoss is an open-source J2EE application server available from http://www.ejboss.org/.

The jBoss module type is a specialization of the Jar type used to create EJB JARS for use with the
jBoss. jBoss is easier to work with than WebLogic, since it doesn't require the creation of stubs
and skeletons, and deployment is as simple as copying the JAR file to a predetermined directory.

To use it, the JBOSS_DIR variable must be set, usually in LocalConfig.mk.

The following libraries are automatically included in the classpath:

• JBOSS_DIR/lib/ext/ejb.jar

• JBOSS_DIR/lib/ext/jndi.jar

• JBOSS_DIR/lib/jdbc2_0-stdext.jar

These three libraries provide the basic J2EE functionality. ejb.jar provices the javax.ejb
classes, jndi.jar provides the javax.naming classes and jbdc2_0-stdext.jar provides the
javax.sql classes.

For the most part, jBoss modules work the same as Jar modules.

The jBoss module automatically adds the file ejb-jar.xml (the generic EJB deployment
descriptor) to the list of META_RESOURCES (files copied to the META-INF directory of the JAR).
If you use the auxilliary descriptor files (jboss.xml and/or jaws.xml) you'll need to manually
add those to META_RESOURCES.

A jBoss module has a number of standard make targets. Most of these are the same as the Jar
module, with the exception of the deploy target.

Target Description

catalog Rebuild the catalog of Java files, resource files and RMI classes. Used after adding or
removing such files from a package.

clean Remove JAR and the .build directory.

compile Compile changed Java source files, then compile any changed RMI classes.

 19191919

default Alias for compile.

deploy jar, then copy the JAR file to the JBOSS_DIR/deploy directory to be hot deployed
into the running jBoss server.

force Compile all, not just dirty, then compile all RMI classes

install jar; then copy JAR to INSTALL_DIR

jar compile; then copy resources and build JAR

javadoc Generate Javadoc for the contents of the JAR

run deploy, then runs the jBoss server

run-ejx Run's the jBoss EJX tool (a GUI used to edit deployment descriptors)

Additonal Variables
The behavior of the JBE is controlled by makefile variables. The prior sections identified the
minimum variables needed for the different types of modules, this section provides information
on variables that are useful in all modules. Typically these supply additional options to existing
commands and rules.

Variable Declared Description

EJBC_OPT Makefile or command
line

Additional module-specific options for
WebLogic ejbc.

JAVAC_OPT Makefile or command
line

Module specific java compiler options.

JAVADOC_OPT Makefile or command
line

Javadoc options.

LOCAL_JAVAC_OPT config/LocalConfig.mk

Local workstation java compiler options.

LOCAL_RMIC_OPT config/LocalConfig.mk

Local workstation RMI compiler options.

RMIC_OPT Makefile or command
line

Module specific RMI compiler options.

 20202020

SITE_EJBC_OPT config/SiteConfig.mk Additional site-wide options for
WebLogic ejbc.

SITE_JAVAC_OPT config/SiteConfig.mk Site-wide java compiler options.

SITE_JDK_PLATFORM config/SiteConfig.mk Site-wide default JDK platform. If not
specified, the default is 'Win32'.

SITE_JDK_RELEASE config/SiteConfig.mk Site-wide default JDK If not specified,
the default is '1.3'.

SITE_JDK_VENDOR config/SiteConfig.mk Site-wide default JDK vendor. If not
specified, the default is 'Sun'.

SITE_PLATFORM config/SiteConfig.mk Platform used to locate common tools.

SITE_RMIC_OPT config/SiteConfig.mk Site-wide RMI compiler options.

For example, there are several options available to enable on Java debugging support when
compiling Java code:

• Set JAVAC_OPT=-g in the module's Makefile, to affect all future compiles for just that
module.

• Execute the command make compile JAVAC_OPT=-g to affect just the immediate
compiles (this can be combined with the clean or force targets for greater effect).

• Set LOCAL_JAVAC_OPT=-g in config/LocalConfig.mk (or an environment variable) to
affect compilation in all modules

• Set SITE_JAVAC_OPT=-g in config/SiteConfig.mk (or an environment variable) to affect
all modules

LOCAL_JAVAC_OPT and SITE_JAVAC_OPT would appear to be redundant, but they
have different intents. LOCAL_JAVAC_OPT is for setting options specific to the local
developer's workstation, whereas options in SITE_JAVAC_OPT will be shared between
developers on a team and should not have any local workstation dependencies.

 21212121

Future development of the JBE
Like Tapestry, the JBE is an ongoing effort. As new situations arise, it is extended to meet the
need.

Future plans include:

• Support for EARs (Enterprise Application Archives).

• Support for more application servers.

• Support for derived source --- that is, compling Java code generated by tools (such as the
IDL compiler)

• JAR signing

• Support for Solaris (in progress) and Linux platforms, and for IBM JDKs.

Chapter

4

	Installing Cygwin
	Environment Variables
	Configuration
	Jar modules
	Package Makefiles
	War modules
	WebLogic modules
	jBoss modules
	Additonal Variables

