
PRIMIX SOLUTIONS
Core Labs

Tapestry
Developer's

Guide

C O R E L A B S

Tapestry Developer's Guide

 Primix Solutions
One Arsenal Marketplace

Phone (617) 923-6639 • Fax (617) 923-5139

Tapestry contact information:

Howard Ship <hship@sourceforge.net>
http://sourceforge.net/projects/tapestry

Table of Contents
Introduction: What is Tapestry? 3

Scripting vs. Components 3
Interaction 7
Security 8
Features 8

Web Applications 10
Tapestry Components 12

Parameters and Bindings 12
Embedded Components 13
HTML Templates 14
Localization 18
Assets 18
Component Specification 19

Tapestry Pages 25
Page State 26
Persistent Page State 26
Dynamic Page State 28
Stale Links and the Browser Back

Button 32
Page Loading and Pooling 33
Page Localization 33
Page Buffering 34

Applications and Services 36
Application Servlet 36
Required Pages 37
Server-Side State 38
Application Services 39
Application Specification 40

Understanding the Request
Cycle 42

Page service 43
Direct service 43
Action service 44
Action service and forms 46

Provided Components 47
Action 47
Any 47
Body 48
Checkbox 48
Conditional 48
DatabaseQuery 48
DateField 48
Delegator 49
Direct 49
ExceptionDisplay 49
FieldLabel 50
Foreach 50
Form 50
Hidden 51
Image 51
ImageButton 51
Insert 51
InsertURL 52
InsertWrapped 52
IntegerField 52
Option 52
Page 52
PropertySelection 53
Radio 53
RadioGroup 53

Rollover 54
Script 54
Select 54
Service 54
Shell 55
Submit 55
ShowInspector 55
Text 55
TextFieldTextFieldTextFieldTextField 56
ValidatingTextField 56

Designing Tapestry Applications58
Persistent Storage Strategy 58
Identify Pages and Page Flow 59
Identify Common Logic 59

Identify Application Services 60
Identify Common Components 61

Coding Tapestry Applications 62
Application Object 62
Enterprise JavaBeans Support 62

Designing new components 63
Choosing a base class 63
Parameters and Bindings 64
Persistent Component State 65
Component Assets 65

The Tapestry Inspector 68

T A P E S T R Y D E S I G N E R ' S G U I D E

 3333

Introduction: What is
Tapestry?

apestry is a comprehensive web application framework, written in Java.

Tapestry is not an application server. Tapestry is a framework designed to be used inside
an application server.

Tapestry is not an application. Tapestry is a framework for creating web applications.

Tapestry is not a way of using JavaServer Pages. Tapestry is an alternative to using JavaServer
Pages.

Tapestry is not a scripting environment. Tapestry uses a component object model, not simple
scripting, to create highly dynamic, interactive web pages.

Tapestry is based on the Java Servlet API version 2.2 It is compatible with JDK 1.2 and above.
Tapestry uses a sophisticated component model to divide a web application into a hierarchy of
components. Each component has specific responsibilities for rendering web pages (that is,
generating a portion of an HTML page) and responding to HTML queries (such as clicking on a
link, or submitting a form).

The Tapestry framework takes on virtually all of the responsibilities for managing application flow
and server-side client state. This allows developers to concentrate on the business and
presentation aspects of the application.

Scripting vs. Components
Most leading web application frameworks are based on some form of scripting. These
frameworks (often bundled into a web or application server) include:

• Sun JavaServer Pages

• Microsoft Active Server Pages (ASP)

Chapter

1
T

T A P E S T R Y D E S I G N E R ' S G U I D E

 4444

• Allaire ColdFusion

• PHP

• WebMacro

• FreeMarker

All of these systems are based on reading an HTML template file and performing some kind of
processing on it. The processing is identified by directives … special tags in the HTML template
that indicate dynamic behavior.

Each framework has a scripting language. For JavaServer Pages it is Java itself. For ASP it is
Visual Basic. Most often, the directives are snippets of the scripting language inserted into the
HTML.

For example, here’s a snippet from a hypothetical JavaServer Page that displays part of a shopping
cart.

<%
String userName = (String)session.getAttribute("userName");

%>
<h1>Contents of shopping cart for <%= userName %>:</h1>

Most of the text is static HTML that is sent directly back to the client web browser. The bold text
identifies scripting code.

The first large block is used to extract the user name from the HttpSession, a sort of per-client
scratch pad (it is part of the Java Servlet API; other systems have some similar construct). The
second block is used to insert the value of an expression into the HTML. Here, the expression is
simply the value of the userName variable. It could be more complex, including the result of
invoking a method on a Java object.

This kind of example is often touted as showing how useful and powerful scripting solutions are.
In fact, it shows the very weaknesses of scripting.

First off, we have a good bit of Java code in an HTML file. This is a problem … no HTML
editor is going to understand the JavaServer Pages syntax, or be able to validate that the Java code
in the scripting sections is correct, or that it even compiles. Validation will be deferred until the
page is viewed within the application. Any errors in the page will be shown as runtime errors.
Having Java code here is unnatural … Java code should be developed exclusively inside an IDE.

In a real JavaServer Pages application I've worked on, each JSP file was 30% - 50% Java. Very
little of the Java was simple presentation logic like <%= userName %>, most of it was larger
blocks needed to 'set up' the presentation logic. Another good chunk was concerned with
looping through lists of results.

In an environment with separate creative and technical teams, nobody is very happy. The creative
team is unlikely to know JSP or Java syntax. The technical team will have difficulty

T A P E S T R Y D E S I G N E R ' S G U I D E

 5555

"instrumenting" the HTML files provided by creative team. Likewise, the two teams don't have a
good common language to describe their requirements for each page.

One design goal for Tapestry is minimal impact on the HTML. Many template-oriented systems
add several different directives for inserting values into the HTML, marking blocks as conditional,
performing repetitions and other operations. Tapestry adds exactly one directive, and it's
designed to look just like an HTML element.

A Tapestry component is identified by a <jwc> tag (Java Web Component).

For comparison, an equivalent Tapestry template to the previous JSP example:

<h1>Contents of shopping basket for
<jwc id="insertUserName"/>:</h1>

This defines a component named insertUserName on the page. Because we use just a single tag,
<jwc>, for all components, it is not possible to say exactly what dynamic content will be inserted
... that is defined elsewhere. The <jwc> tag simplyidentifies where the dynamic content will go.

A portion of the page's specification file defines what insertUserName is and what it does:

<component>
<id>insertUserName</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>application.userName</property-path>

</binding>
</bindings>

</component>

This identifies insertUserName as an Insert component; a component that inserts some text into
the response page's HTML. It further identifies what gets inserted (the component's value) as the
userName property of the application object.

Tapestry really excels when it is doing something more complicated that simply producing output.
For example, let’s assume that there’s a checkout button that should only be enabled when the
user has items in their shopping cart.

In the JSP world, this would look something like:

<%
boolean showLink;
String imageURL;
showLink = applicationObject.getHasCheckoutItems();
if (showLink)
imageURL = "/images/Checkout.gif";

else
imageURL = "/images/Checkout-disabled.gif";

T A P E S T R Y D E S I G N E R ' S G U I D E

 6666

if (showLink)
{

String linkURL;
linkURL = response.encodeURL("/servlet/checkout"); %>

<a href="<%= linkURL %>">
<% } %>
<img border=0 src="<%= imageURL %>" alt="Checkout"><%
if (showLink)
out.println("");

%>

This assumes that applicationObject exists to determine whether the user has entered any
checkout items. Presumably, this object was provided by a controlling servlet, or placed into the
HttpSession.

The corresponding Tapestry HTML template is much simpler:

<jwc id="checkoutLink"><jwc id="checkoutButton"/></jwc>

A bit more goes into the component specification (a separate XML document that describes the
configuration of the page and all components on the page; an excerpt is shown here):

<component>
<id>checkoutLink</id>
<type>Page</type>

<bindings>
<static-binding>
<name>page</name>
<value>Checkout</value>

</static-binding>
<binding>
<name>enabled</name>
<property-path>application.hasCheckoutItems</property-path>

</binding>
</bindings>

</component>

<component>
<id>checkoutButton</id>
<type>Rollover</type>

<bindings>
<binding>
<name>image</name>
<property-path>assets.checkout</property-path>

</binding>
<binding>
<name>disabled</name>
<property-path>assets.checkout-disabled</property-path>

</binding>
<static-binding>
<name>alt</name>
<value>Checkout</value>

</static-binding>

T A P E S T R Y D E S I G N E R ' S G U I D E

 7777

</bindings>
</component>

Again, a bit of hand waving is necessary. Here the checkoutLink component creates a link to the
Checkout page of the application, but only if the application object enables it. The
checkoutButton is a Rollover component, which automatically adjusts its image based on whether
the link that surrounds it is enabled or disabled (it can also handle changing the image when the
mouse is moved over it). We also reference the image assets, Checkout.gif and Checkout-
disabled.gif, indirectly.

The point of this example is that the JSP developer had to worry about character-by-character
production of HTML. Further, the ratio of Java code to HTML is quickly getting out of hand.

By contrast, the Tapestry developer is concerned with the behavior of components and has an
elegant way of specifying that behavior dynamically.

Interaction
Let's continue with a portion of the JSP that would allow an item to be deleted from the shopping
cart. For simplicity, we'll assume that there's an object of class LineItem named item and that
there's a servlet used for making changes to the shopping cart.

<tr> <td> <%= item.getProductName() %></td>
<td> <%= item.getQuantity() %></td>
<td>

<% String URL = response.encodeURL("/servlet/update-cart?action=remove" +
"&item=" + item.getId());

%>
<a href="<%= URL %>">Remove </td> </tr>

This clearly shows that in a JSP application, the designer is responsible for "knitting together" the
pages, servlets and other elements at a very low level. By contrast, Tapestry takes care of nearly all
these issues automatically:

<tr> <td> <jwc id="insertName"/> </td>
<td> <jwc id="insertQuantity"/> </td>
<td> <jwc id="remove">Remove</jwc> </td> </tr>

Because of the component object model used by Tapestry, the framework knows exactly "where
on the page" the remove component is. It uses this information to build an appropriate URL that
references the remove component. If the user clicks the link, the framework will inform the
component to perform the desired action. The remove component can then remove the item
from the shopping cart.

In fact, under Tapestry, no user code ever has to either encode or decode a URL. This removes
an entire class of errors from a web application (those URLs can be harder to assemble and parse
than you might think!)

T A P E S T R Y D E S I G N E R ' S G U I D E

 8888

Tapestry isn't merely building the URL to a servlet for you; the whole concept of 'servlets' drops
out of the web application. Tapestry is building a URL that will invoke a method on a
component.

Tapestry applications act like a 'super-servlet'. There's only one servlet to configure. By contrast,
even a simple JavaServer Pages application developed using Sun's Model 2 (where servlets provide
control logic and JSPs are used for presenting results) can easily have dozens of servlets.

Security
Developing applications using Tapestry provides some modest security benefits.

Tapestry applications are built on top of the Java Servlet API, so there are inherent benefits there.
Most security intrusions against CGI programs (such as those written in Perl or other scripting
languages) rely on sloppy code that evaluates portions of the URL in a system shell; this never
happens when using the Java Servlet API.

Because the URLs created by Tapestry for processing client interaction are more strongly
structured than the URLs in traditional solutions, there are fewer weaknesses to exploit.
Improperly formatted URLs result in an exception response being presented to the user.
Tapestry URLs are also harder to spoof, since they are very conversational … the exact form of
the URL is dependent on any or all of the previous interactions between the client and the server
in the same session.

Where the Java Servlet API suffers is in client identification, since a session identifier is stored on
the client either as an HTTP Cookie or encoded into each URL. Malicious software could
acquire such an identifier and "assume" the identity of a user who has recently logged into the
application. Still, because of the conversational nature of the Tapestry URLs it would be difficult
for an automated intruder to progress through the application from that point.

Finally, Tapestry applications have a single flow of control: all incoming requests flow through a
few specific methods of particular classes. This makes it easier to add additional security measures
that are specific to the application.

Features
The framework, based on the component object model, provides a significant number of other
features, including:

• Easy localization of applications

• Extremely robust error handling and reporting

• Highly re-usable components

• Automatic persistence of server-side client state between request cycles

T A P E S T R Y D E S I G N E R ' S G U I D E

 9999

• Powerful processing of HTML forms

• Strong support for load balancing and fail over

• Zero code generation1

• Easy deployment

• The Inspector, which allows developers to debug a running Tapestry application

The point of Tapestry is to free the web application developer from the most tedious tasks. In
many cases, the "raw plumbing" of a web application can be completely mechanized by the
framework, leaving the developer to deal with more interesting challenges, such as business and
presentation logic.

As Tapestry continues to develop, new features will be added. On the drawing board are:

• Support for easy cross-browser DHTML

• Improved XML support

• WAP / WML support

• Tighter database integration

• A real-time performance "Dashboard"

• Journaling / Playback

1 That is, Tapestry templates and specification are interpreted as is. Unlike JSPs, they are not translated into Java classes
and compiled.

T A P E S T R Y D E S I G N E R ' S G U I D E

 10101010

Web Applications
apestry has a very strong sense of what an application is. An application is an instance of
a particular class (usually a subclass from a provided base class, such as
com.primix.tapestry.app.SimpleApplication). An application consists of a
number of pages and provides a number of services to the pages and components on

those pages.

In other systems, there is no application per-se. There is some kind of 'home page' (or servlet),
which is the first page seen when a client connects to the web application. There are many pages,
servlets (or equivalent, in other frameworks) and interrelations between them. There is also some
amount of state stored on the server, such as the user name and a shopping cart (in a typical e-
commerce application). The sum total of these elements is the web application.

Tapestry imposes a small set of constraints on the developer, chiefly, that the application be
organized in terms of pages and components (and for advanced designers, services).

These constraints are intended to be of minimal impact to the developer, imposing an acceptible
amount of structure. They create a common language that can be used between members of a
team, and even between the technical and creative groups within a team.

Under Tapestry a page is also very well defined: It consists of a component specification, a
corresponding Java class, an HTML template, and a set of contained components.

By contrast, when using JavaServer Pages there are one or more servlets, embedded JavaBeans, a
JSP file and the Java class created from the JSP file. There isn't a standard naming scheme or
other way of cleanly identifying the various elements.

Interactivity in Tapestry is component based. If a component is interactive, such as an image
button with a hyperlink (<a>), clicking on the link invokes a method on the component. All
interactivity on a page is implemented by components on the page.

JavaServer Pages bases its interactivity on servlets. Interactive portions of a page must build
URLs that reference these servlets. The servlets use a variety of ad-hoc methods to identify what
operation is to take place when a link is clicked. Since there is no standard for any of this,
different developers, even on the same project, may take widely varying approaches to
implementing similar constructs.

Chapter

2
T

T A P E S T R Y D E S I G N E R ' S G U I D E

 11111111

Because pages are components, they have a well-defined interface, which describes to both the
framework and the developer how the page fits into the overall application.

A Tapestry application object provides a global place to store data between request cycles. It also
provides logic that can be common in many pages of the application.

The application also provides services. Services are the bridge between URLs and components.
Services are used to generate the URLs used by hyperlinks and form submissions. They are also
responsible for interpreting the same URLs when they are later triggered from the client web
browser.

T A P E S T R Y D E S I G N E R ' S G U I D E

 12121212

Tapestry Components
apestry components are "black boxes" that are involved with both rendering HTML
responses and responding to HTTP requests.

A Tapestry component is defined by its specification. The specification is an XML file
that defines the type of the component, it parameters, the template used by the component, any
components embedded within it and how they are 'wired up', and (less often) any assets used by
the component.

At runtime, the specification is used to identify and instantiate a class for the component. When
the page containing the component is rendered, the component will access its HTML template
(whose location is defined in the specification) to find the static HTML and embedded
components it will render.

Parameters and Bindings
Tapestry components are designed to work with each other, within the context of a page and
application. The process of rendering a page is largely about pulling information from a source
(example: the userName property of the application object) into a component (example: the
insertUserName component) and doing something with it (example: writing it to the HTML
response stream).

Each component has a specific set of parameters. Parameters have a name, a type and may be
required or optional.

To developers experienced with Java GUIs, it may appear that Tapestry component parameters
are the same as JavaBeans properties. This is not actually true. JavaBeans properties are set-and-
forget; the designer sets a value for the property using a visual editor and the value is saved with
the bean until it is used at runtime.

Parameters define the type of value needed, but not the actual value. This value is provided by a
special object called a binding. The binding is responsible for providing the value for the
parameter as it is needed.

Chapter

3
T

T A P E S T R Y D E S I G N E R ' S G U I D E

 13131313

A binding is a source and sink of data. A component uses a binding to import or export a data
value.

There are two types of bindings: static and dynamic. Static bindings are read-only; the value for
the binding is specified in the component specification.

Dynamic bindings are more prevalent and useful. A dynamic binding uses a JavaBeans property
name to retrieve the value when needed by the component. The source of this data is another
component.

In fact, dynamic bindings use something more powerful than just a property name, they can use a
property path. A property path is a series of property names separated by periods. We've already
seen an example: application.userName. This is equivalent to the Java code
getApplication().getUserName(), except that the actual class of each object is used, rather
than the declared type of each method.

Property paths can be very useful, since they can allow a binding to 'crawl' deeply through an
object graph to access the value it needs. This frees the components from relying totally on the
properties of their container, instead they are free to access properties of more distant objects.

Let's change the example: now the application contains a user property, which is an object of
class User that has a number of properties related to the real-life user (such as name, e-mail,
account number, etc.).

We can still use an Insert component to display the user's name; we just have to extend the
property path to application.user.name, which is approximately equivalent to
getApplication().getUser().getName().

Embedded Components
Under Tapestry, it is common to define new components by combining existing components.
The existing components are embedded in the containing component.

Each embedded component has an id (an identifying string) that must be unique within the
containing component. Every non-page component is embedded inside some other component
forming a hierarchy that can get quite deep (in real Tapestry applications, some pages have
components nested three to five levels deep).

In some cases, a component will be referenced by its id path. This is a series of component ids
separated by periods, representing a path from the page to a specific component. The same
notation as a property path is used, but the information being represented is quite different.

For example, the id path border.navbar.homeLink represents the component named
homeLink, embedded inside a component named navbar, embedded inside a component named
border, embedded inside some page.

Tapestry components are "black boxes". They have a set of parameters that may be bound.
Primitive components may not embed other components, or even have a template. Nearly all the

T A P E S T R Y D E S I G N E R ' S G U I D E

 14141414

built-in components are primitive; they are building blocks for constructing more complex
components.

Alternately, a component may be implemented using a template and embedded components. In
either case, the names, types or very existence of embedded components is private, hidden inside
the containing component's "black box".

HTML Templates
Nearly all Tapestry components combine static HTML2 from a template with additional dynamic
content (some few components are just dynamic content). Often, a Tapestry component embeds
other Tapestry components. These inner components are referenced in the containing
component's template.

Templates look like standard HTML files, though they are rarely complete HTML documents;
usually they are snippets. In addition, a new element, <jwc> (for Java Web Component), is added
to represent a component in the HTML template.

The <jwc> element has two forms:

<jwc id="component id"> body </jwc>

or

<jwc id="component id"/>

The parser used by Tapestry is relatively forgiving about case and white space. Also, the
component id can be enclosed in double quotes (as above) or single quotes.

The body listed above can be either static HTML or other Tapestry components or both.
Elements in the body of a component are wrapped by the containing component. The containing
component controls the rendering of the elements it wraps in its body. For example, the
Conditional component may decide not to render its body and the Foreach component may
render its body multiple times.

Not all Tapestry components should have a body. For example, the TextField component creates
an <input type=text> form element and it makes no sense for it to contain anything else.
Whether a component can have a body (and wrap other elements) is defined in the component's
specification.

Tapestry includes a special component, InsertWrapped, which is used to render the body of a
component. It makes it easy to create components that wrap other components.

2 The initial release of Tapestry is specifically oriented around HTML. Some support for non-HTML markup languages,
such as XML, XHTML or WML is already present and will be expanded in the future.

T A P E S T R Y D E S I G N E R ' S G U I D E

 15151515

In many scripting systems, scripting constructs are one-dimensional.... they appear at a certain
point on the page and dynamically insert some content into a stream of HTML that eventually
ends up on the client web browser.

Tapestry components are more powerful ... they have open and close tags and thus can contain a
body. This body is made up of static HTML from the template and other Tapestry components.
The outer component wraps the inner elements.

An example of this is the Border component in the Tapestry Tutorial3. It shows how a
component can wrap the entire content of a page.

Here, the border component provides the application title ("Reusable Component Tutorial", in
the title bar of the window), the page title (upper left corner) and navigation controls (left side).
The page provides the content in the light gray box in the center. In this example, the page
content is simply static HTML but in a real application the content would include other
components.

The Home page component has the following HTML template:

<jwc id="border">

Nothing much doing here on the home page. Visit one of our other
fine
pages.

</jwc>

In other words, the border component gets to produce HTML first. At some point, the page's

3 The Border tutorial has changed slightly since this was initially written, but the basic ideas still hold.

T A P E S T R Y D E S I G N E R ' S G U I D E

 16161616

content (wrapped inside the border component) will be produced. Afterwards, the border
component will have an opportunity to produce more HTML.

The Border component has a much larger HTML template:

<HTML>
<head>
<title>Reusable Component Tutorial</title>
</head>
<body>
<table border=0 bgcolor=gray cellspacing=0>
<tr valign=top>
<td colspan=3 align=left>
<jwc id="insertPageTitle"/>

</td>
</tr>
<tr valign=top>
<td align=right>

<jwc id="e">

<jwc id="link"><jwc id="insertName"/></jwc>

</jwc>

</td>
<td valign=top bgcolor=silver>
<jwc id="wrapped"/>

</td>
<td> </td>

</tr>
<tr>
<td colspan=3> </td>

</tr>
</table>
</body>
</HTML>

The Border contains five components:

• insertPageTitle

• e

• link

• insertName

• wrapped

The e component wraps some static HTML and the link component. The link component wraps
the insertName component.

When it comes time to render, Tapestry parses the HTML template and breaks them into blocks
of static HTML, component starts (the <jwc> tag) and component ends (the </jwc> tag).

T A P E S T R Y D E S I G N E R ' S G U I D E

 17171717

It figures out what each component wraps. For components with their own templates, such as
Home and Border, it figures out what the outer elements are, the outermost static HTML and
components that aren't wrapped by other components.

This information turns into a data structure:

The left side shows how the components are embedded. The home component contains the
border component. The border component contains the other components.

The outermost elements for the home component is a list of one item: the border component.
There's no text before or after the border component's <jwc> tag, and the remaining text in the
template is wrapped by the border component.

The border component is more complicated; it has several outer elements, representing static
HTML text and components. The other components don't have templates, so they don't have
outer elements, but some do wrap other components.

When it's time to render, the process starts in the home component. It iterates through its outer
list, which contains a single element: border. We then recursively render the border component.
Its outer list is rendered in order. Each component decides where it will render its wrapped
elements (if it has any). The e component is a Foreach; it will render its wrapped elements any
number of times.

Eventually, the process reaches the wrapped component, which is of type InsertWrapped. This is
a special component; it jumps up one level to its container (the border) and renders the border's
wrapped elements ... the text from the home page template.

It may seem complicated, but ultimately its very natural from a markup language point of view;
the <jwc> tags continue to act like HTML elements, wrapping around and controlling their
contents, just exactly like a <table> wraps its <tr>'s or a <form> wraps its <input>'s.

border

home

link

insertPageTitle

e

insertName

border

wrapped

insertPageTitle
 .. color =white>
e
 ... bgcolor=silver>

</td> ... </HTML>

outer

outer

Nothing much doing ...

wrapped

link

wrapped

insertName

wrapped

<HTML> ... color =“White”>

wrapped

T A P E S T R Y D E S I G N E R ' S G U I D E

 18181818

Localization
Tapestry has built in support for localization, designed to be easy to use. Tapestry allows multiple
versions of HTML templates and assets (described in a later section) to be deployed with the
application.

Each client connecting to the application will select a particular Locale. When a page for the
application is created, the locale is used to select the correct template. Locales are defined by the
ISO (International Standards Organization). A locale consists of a language code (such as 'en' for
English, 'de' for German or 'fr' for French) and a country code (such as 'AU' for Australia, 'BE'
for Belguim, or 'GB' for United Kingdom).

The base template name is derived from the specification name, by changing the '.jwc' extension
to '.html. For example, component /com/skunkworx/skunkapp/Banner.jwc will have a base
template name of /com/skunkworx/skunkapp/Banner.html. This resource name is used as
the basis of a search that includes the locale. Various suffixes are inserted just before the '.html'
extension. A French speaking Belgian visitor would provoke the following search:

• /com/skunkworx/skunkapp/Banner_fr_BE.html

• /com/skunkworx/skunkapp/Banner_fr.html

• /com/skunkworx/skunkapp/Banner.html

The Tapestry framework automatically provides this basic level of support. To this, an
application could add custom logic to allow the locale to be selected at runtime, and to store a
user's locale preference (in a cookie, or in some form of profile) for later visits.

As of this writing, localization has not been implemented. However, support for localization is in
all necessary interfaces.

Assets
Assets are images (GIF, JPEG, etc.), movies, sounds or other collateral associated with a web
application. Assets come in three flavors: external, internal and private.

External assets live at an arbitrary URL. Internal assets use a URL within the servlet context
hosting the Tapestry application; these assets are deployed on the same web server as the
application, or within the same Web Application Archive (WAR).

Private assets come from the Java class path and are resources not normally visible to the web
server.

Tapestry uses the assets concept to address two areas: localization and deployment.

T A P E S T R Y D E S I G N E R ' S G U I D E

 19191919

For localization: internal and private assets are localized, just like HTML templates. That is, the
path name provided is used as the basis for a search that takes into account the containing page's
locale. External assets can't be localized in this way.

Private assets allow for easy deployment because the assets are packaged with the HTML
templates and Java code of the application, inside a Java Archive (JAR) file, or within the WEB-
INF/classes directory of a Web Application Archive (WAR) file.

Private assets support re-usability; a re-usable component may be packaged with supporting assets
(typically, image files) and used in any Tapestry application without change, and without having to
locate, extract or otherwise fiddle with those assets.

The Tapestry framework provides two ways of exposing the assets to the client web browser.

First, it provides a service that will access the asset dynamically. The URL encodes the application
servlet and the resource to download, and Tapestry framework code will pump the bytes down to
the client web browser. This is the default behavior (and is most useful during development).

The second method involves copying the asset out to a directory visible to the web server, and
creating a URL for it in its final location. This requires some extra configuration of the
application. This method also has some implications when deploying new versions of the web
application. These are addressed later in this document.

Component Specification
The component specification is an XML document. This discussion assumes a passing familiarity
with XML documents. The specification is located inside the running Java VMs class path; in a
deployed application, it will be a package resource, located (along with the Java class files) in the
WEB-INF/classes directory of the WAR (Web Application Archive).

These specifications can be quite verbose, it is strongly advised that a DTD-aware XML editor be
used, rather than hand editting the files.

The specification begins as follows:

<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC

"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.sourceforge.net/dtd/Tapestry_1_0.dtd">

<specification>

This begins the XML document, and identifies it as a component specification.

Next, the type of the component, the Java class to instantiate, is defined.

<class>class name</class>

This must be a full class name, such as com.skunkworx.skunkapp.Border.

T A P E S T R Y D E S I G N E R ' S G U I D E

 20202020

As previously described, the specification name is used to find the base HTML template name (by
replacing the '.jwc' extension with '.html').

During development, such resources may be in the developer's work areas, but when the
application is deployed, they will almost always be distributed inside a Java Archive (JAR) file or
Web Application Archive (WAR) file. This is one of the ways that Tapestry eases deployment.

Next, the specification describes whether the component can have a body (that is, wrap around
other HTML or components).

This is specified using the <allow-body> element:

<allow-body>boolean</allow-body>

The value specified should be "true" or "false". If not specified (the usual case), it defaults to true,
allowing the component to have a body.

The next section describes the parameters to the component, all of which is specified inside a
<parameters> element. Components can have two types of parameters: formal and informal.
Formal parameters describe the interface to the component and have already been touched on.

Informal parameters are a kind of 'back door' to the HTML generated by the component. The
majority of components have a one-to-one relationship to an HTML element.

Each informal parameter will be converted to an attribute / value pair and added to the HTML
element. The component will silently filter out any informal parameters whose name conflicts
with either a formal parameter name or an attribute controlled by the component. For example,
the action component (which generates an <a> element) will not allow an informal parameter to
specify the "href" attribute. Note that the check is case insensitive, so an informal parameter of
"Href" would also be skipped.

Informal parameters are primarily used to set the "class" attribute (used in conjunction with
cascading style sheets) and to create JavaScript event handlers.

Some components do not have the necessary one-to-one mapping to an HTML element that
makes informal parameters useful. The <allow-informal-parameters> element controls this:

<parameters>
<allow-informal-parameters>boolean
</allow-informal-parameters>

By default, informal parameters are allowed, so this is used to turn them off. This element is
optional, and usually omitted.

Following this, each parameter is specified with a <parameter> element:

<parameter>
<name>string</name>
<java-type>class name</java-type>
<required>boolean</required>

T A P E S T R Y D E S I G N E R ' S G U I D E

 21212121

</parameter>

Each parameter must have a unique name. Parameter names must start with a letter and may
contain letters, numbers and the underscore.

The Java type is the complete class name of a Java class that represents the type of data required
(or provided) by the component. If not specified, it defaults to java.lang.Object.

If a parameter is required, then a binding must be provided for the parameter when it is
embedded in another component. The <required> element is optional, and defaults to false
(meaning the parameter is optional).

Once all formal parameters are defined, the parameters element is closed:

</parameters>

Following the parameters, embedded components are detailed. A <components> element
surrounds a list of <component> elements.

A <component> tag starts each component:

<component>
<id>component id</id>
<type>component type</type>

Each component has a short id, which must be unique within its containing component. This id
is used to match the component against a <jwc> tag in the HTML template.

Each component must also have a type. Types are resource paths for a component specification.
Specifications end with '.jwc'. An example would be /com/skunkworx/skunkapp/Banner.jwc.

Unlike HTML templates, specifications are never localized.

As a convenience, aliases may be defined for components. An alias is a short name that takes the
place of the specification resource path. All built-in components for Tapestry have aliases, and an
application specification may define additional aliases.

For example, the component /com/primix/tapestry/components/Action.jwc has a
standard alias of Action.

Most components have parameters, and therefore, bindings. Bindings are contained within a
<bindings> element.

<bindings>

There are four different elements to specify bindings.

The <binding> element specifies a dynamic binding for the parameter.

<binding>

T A P E S T R Y D E S I G N E R ' S G U I D E

 22222222

<name>parameter name</name>
<property-path>property path</property-path>

</binding>

The property path is specified relative to the containing component.

In some cases, the value for the parameter will never change; in this case a <static-binding> is
used:

<static-binding>
<name>parameter name</name>
<value>value</value>

</static-binding>

Obviously, this only works for parameters that expect Strings or can coerce a String to a useful
value (such as a boolean or int). Static bindings also work quite well with informal parameters.

The third type of binding allows a parameter to be set from a public static field:

<field-binding>
<name>parameter name</name>
<field-name>field name</field-name>

</field-binding>

The field name is the complete name of a class, followed by a period, and then the name of a
public, static (usually final) field. For example, the value
com.primix.tapestry.IApplicationService.HOME_SERVICE references the public static
String variable, HOME_SERVICE contained within the interface IApplicationService.

This is both more precise and more efficient than a static binding. In many cases, it ensures that
the component and the related Java code agree on the exact value, rather than approximating the
value with a String. In addition, the value can be any data type, both scalars (such as int or
double) or real object types.

Because certain values in the java.lang package are so useful, a classname without a package is
assumed to be in the java.lang package. Thus the value Boolean.TRUE is an acceptible field
name.

Finally, in some cases, it makes sense for an embedded component to share a binding with its
container. This is accomplished with the <inherited-binding> element:

<inherited-binding>
<name>parameter name</name>
<parameter-name>parameter name</parameter-name>

</inherited-binding>

In this case, the first parameter name is the name of a parameter of the embedded component.
The second parameter name is the name of a parameter of the containing component.

T A P E S T R Y D E S I G N E R ' S G U I D E

 23232323

An example of this is a Border component, which has a title parameter that gives the name of the
page. The Border component embeds an Insert component, and uses an inherited binding to set
the Insert component's value parameter to the containing Border component's title parameter.

Once all bindings for a component are specified, the <bindings> and <component> elements
are closed.

</bindings>
</component>

Additional components may be specified within their own <component> elements. Once all
components are specified, the <components> element is closed.

</components>

Next, any assets for the component are specified. Assets are a way of identifying resources
whose URLs will appear in a web page. Most often, the assets are image files used with an Image
or Rollover component.

Assets may be stored at some arbitrary URL, may be somewhere on the same web site as the
Tapestry application, or may be stored as a resource inside Java VM class path.

Assets are contained within an <assets> element.

<assets>

There are three types of elements for specifying assets:

<external-asset>
<name>name</name>
<URL>URL</URL>

</external-asset>

<internal-asset>
<name>name</name>
<path>path</path>

</internal-asset>

<private-asset>
<name>name</name>
<resource-path>resource path</resource-path>

</private-asset>

In all three cases, the name must be very simple: start with a letter and contain only letters,
numbers and underscores. Assets names must be unique within the component.

For external assets, the URL must be complete: it will generally be inserted into the HTML
unchanged.

T A P E S T R Y D E S I G N E R ' S G U I D E

 24242424

For internal assets, the path must be relative to the web server's root directory. Internal assets
may be localized; this will be reflected in the actual file chosen and in the URL inserted into the
HTML.

For private assets, the resource path must be a resource path within the Java VM class path, like a
specification or HTML template resource path. This means the image can be stored in the
applications JAR, or in the WEB-INF/classes directory of the application's WAR, or inside some
JAR in the class path.

Internal and private assets may be localized: Tapestry will perform a search similar to the one for
HTML templates to locate the best match.

Once all assets have been specified, the <assets> element is closed:

</assets>

Since that's the last element in a component specification, the specification itself is closed:

</specification>

The major tags, <parameters>, <components>, <bindings> and <assets> are only specified
if there are elements to be contained. A component with no components will not have a
<components> element. An embedded component with no bindings will not have a
<bindings> element. In many cases, a component specification will be only a few lines long.

T A P E S T R Y D E S I G N E R ' S G U I D E

 25252525

Tapestry Pages
ages are specialized versions of components. As components, they have a specification,
embedded components, assets and an HTML template.

Pages do not have parameters, because they are the outermost component in the
component hierarchy.

All components, however deep they're nesting, have a page property that points back to the page
they are ultimately embedded within. Pages have an application property that points to the
application they belong to.

Pages participate in a pooling mechanism, so that a single instance of a page component can be
used by multiple sessions of the same web application. Even when a large number of client
sessions are active, it is rare for more than a handful to be actively processing requests in the
application server. This pooling mechanism minimizes the number of instances of a page that
must exist concurrently on the server. There are some implications to this design that are
discussed in the following sections.

Pages may have persistent state, properties that persist between request cycles. In fact, any
component may have persistent state, and use the page as means for recording that state.

Application objects are session persistent objects, which is how they persist between request
cycles. In some cases, an application object will be serialized in one Java VM and deserialized into
another (for load balancing or fail-over reasons).

Pages are not session persistent. They exist only within the memory of the Java VM in which they
are first created. Pages and components don't need to implement the java.io.Serializable
interface; they will never be serialized.

Applications can always instantiate a new page instance and restore its previously recorded state
(the recorded state information is serialized with the application).

Chapter

4
P

T A P E S T R Y D E S I G N E R ' S G U I D E

 26262626

Page State
Pages, and the components on them, have state. State is considered the set of values for the
properties of the page.

In Tapestry, the lifespan of each property is very important. There are three lifespans:

• Persistent. Changes the property are recorded and persist between request cycles.
Persistent properties are restored when the page is next loaded.

• Transient. The property is set before the page is rendered and will be reset (to default
value) when the page is next loaded.

• Dynamic. The property changes while the page is rendered, but (like transient) the property is
reset when the page is next loaded.

Persistent properties are things like the user's name, the product being displayed in an e-
commerce application, etc. Transient properties are more commonly things needed just once,
such as an error message. Dynamic properties are intimately tied to the rendering process ... for
example, to display a list of items in an order, it may be necessary to have a dynamic property take
the value of each line item in sequence, as part of a loop.

Persistent Page State
The Tapestry framework is responsible for tracking changes to page state during the request cycle,
and storing that state between request cycles. This is accomplished through objects called page
recorders. As a page's persistent state changes, it notifies the page recorder, providing the name
of the property and the new value. Later, the page recorder can use this information to roll back
the state of the page.

Pages are blind as to how their state is stored. The basic implementation of Tapestry simply
stores the page state information in memory, but future options may include storing the data in
flat files, relational databases or even as cookies in the client browser.

Persistence is provided by the application, which creates and manages the page recorders. In a
simple application, the page recorders are serialized with the application object (for fail over and
load balancing).

Some minor burden is placed on the page designer to support persistent state.

The mutator method of every persistent property must include a line of code that notifies the
observer of the change.

For example, picture a page that has a persistent property for storing an email address. It would
implement the normal accessor and mutator methods:

private String emailAddress;

T A P E S T R Y D E S I G N E R ' S G U I D E

 27272727

public String getEmailAddress()
{
return emailAddress;

}

public void setEmailAddress(String value)
{
emailAddress = value;

fireObservedChange("emailAddress", value);
}

The mutator method does slightly more than change the private instance variable; it must also
notify the observer of the change, by invoking the method fireObservedChange(), which is
implemented by the class com.primix.tapestry.AbstractComponent. This method is
overloaded … implementations are provided for every type of scalar value, and for
java.lang.Object.

The value itself must be serializable (scalar values are converted to wrapper classes, which are
serializable).

The page designer must provide some additional code to manage the lifecycle of the page and its
persistent properties. This is necessary to support the "shell game" that allows a page instance to
be separate from its persistent state, and is best explained by example. Let's pretend that the user
can select a personal preference for the color scheme of a page. The default color is blue.

The first user, Suzanne, reaches the page first. Disliking the blue color scheme, she uses a form
on the page to select a green color scheme. The instance variable of the page is changed to green,
and the page recorder inside Suzanne's session records that the persistent value for the color
property is green.

When Suzanne revisits the page, an arbitrary instance of the page is taken from the pool. The page
recorder changes the color of the page to green and Suzanne sees a green page.

However, if Nancy visits the same page for the first time, what is the color? Her page recorder
will not note any particular selection for the page color property. She'll get whatever was left in
the page's instance variable ... green if she gets the instance last used to display the page for
Suzanne, or some other color if some other user recently hit the same page.

This may seem relatively minor when the persistent page state is just the background color.
However, in a real application the persistent page state information may include user login
information, credit card data, etc.

The way to deal with this properly is for each page with persistent state to override the method
detachFromApplication(). The implementation should reset any instance variables on the
page to their initial (freshly allocated) values.

In our example, when Suzanne is done with the page, its detachFromApplication() method
will reset the page color property back to blue before releasing it into the pool. When Nancy hits
the page for the first time, the page retrieved from the pool with have the expected blue property.

T A P E S T R Y D E S I G N E R ' S G U I D E

 28282828

In our earlier email address example, the following code would be implemented by the page:

public void detachFromApplication()
{
emailAddress = null;

super.detachFromApplication();
}

All properties, dynamic, transient and persistent, should be reset inside the
detachFromApplication() method.

Individual components on a page may also have dynamic, transient or persistent properties. If so,
they should implement the ILifecycle interface and implement the reset() method and clear
out such properties, as a page does in detachFromApplication().

Dynamic Page State
The properties of a page and components on the page can change during the rendering process.
These are changes to the page's dynamic state.

The majority of components in an application use their bindings to pull data from the page (or
from business objects reachable from the page).

A small number of components, notably the Foreach component, work the other way; pushing
data back to the page (or some other component).

The Foreach component is used to loop over a set of items. It has one parameter from which it
reads the list of items. A second parameter is used to write each item back to a property of its
container.

For example, in our shopping cart example, we may use a Foreach to run through the list of line
items in the shopping cart. Each line item identifies the product, cost and quantity.

Shopping cart for <jwc id="insertUserName"/>
<table>
<tr> <th>Product</th> <th>Qty</th> <th>Price</th> </tr>

<jwc id="e-item">
<tr>
<td> <jwc id="insertProductName"/> </td>
<td> <jwc id="insertQuantity"/> </td>
<td> <jwc id="insertPrice"/> </td>
<td> <jwc id="remove">remove</jwc> </td>

</tr>
</jwc>
</table>

(Obviously, we've glossed over many details, such as allowing the quantity to be updated, and
showing subtotals).

T A P E S T R Y D E S I G N E R ' S G U I D E

 29292929

Component e-item is our Foreach. It will render its body several times, depending on the
number of line items in the cart. On each pass it:

• Gets the next value from the source

• Updates the value into some property of its container

• Renders its body (the static HTML and components it wraps)

This continues until there are no more values in its source. Lets say this is a page that has a
lineItem property that is being updated by the e-item component. The insertProductName,
insertQuantity and insertPrice components use dynamic bindings such as lineItem.productName,
lineItem.quantity and lineItem.price.

Part of the page's specification would configure these embedded components:

<component>
<id>e-item</id>
<type>Foreach</type>

<bindings>
<binding>
<name>source</name>
<property-path>items</property-path>

</binding>

<binding>
<name>value</name>
<property-path>lineItem</property-path>

</binding>
</bindings>

</component>

<component>
<id>insertProductName</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>lineItem.productName</property-path>

</binding>
</bindings>

</component>

<component>
<id>insertQuantity</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>lineItem.quantity</property-path>

</binding>

T A P E S T R Y D E S I G N E R ' S G U I D E

 30303030

</bindings>
</component>

<component>
<id>insertPrice</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>lineItem.price</property-path>

</binding>
</bindings>

</component>

<component>
<name>remove</name>
<type>Action</type>

<bindings>
<binding>
<name>listener</name>
<property-path>removeListener</property-path>

</binding>
</bindings>

</component>

This is very important to the remove component. On some future request cycle, it will be
expected to remove a specific line item from the shopping cart, but how will it know which one?

This is at the heart of the action service. One aspect of the IRequestCycle's functionality is to
dole out a sequence of action ids that are used for this purpose (they are also involved in forms
and form elements). As the Action component renders itself, it allocates the next action id from
the request cycle. Regardless of what path through the page's component hierarchy the rendering
takes, the numbers are doled out in sequence. This includes conditional blocks and loops such as
the Foreach.

The steps taken to render an HTML response are very deterministic. If it were possible to
'rewind the clock' and restore all the involved objects back to the same state (the same values for
their instance variables) that they were just before the rendering took place, the end result would
be the same. The exact same HTML response would be created.

This is similar to the way in which compiling a program for source code results in the same object
code. Because the inputs are the same, the results will be identical.

This fact is exploited by the action service to respond to the URL. In fact, the state of the page
and components is rolled back and the rendering processes fired again (with output discarded).
Code inside the Action component can compare the action id against the target action id encoded
within the URL. When a match is found, the Action component can count on the state of the
page and all components on the page to be in the exact same state they were in when the page
was previously rendered.

T A P E S T R Y D E S I G N E R ' S G U I D E

 31313131

A small effort is required of the developer to always ensure that this rewind operation works. In
cases where this can't be guaranteed (for instance, if the source of this dynamic data is a stock
ticker or unpredictable database query) then other options must be used.

In our example, the remove component would trigger some application specific code
implemented in its containing page that removes the current lineItem from the shopping cart.

The application is responsible for providing a listener, an object that is notified when the Action
component is triggered. Action listeners implement the IActionListener interface, which has a
single method, actionTriggered().

Typically, the accessor method that provides the listener returns an instance of an inner class.
Since our specification identified removeListener as the listener property for the remove
component, the page must implement a remoteListener property:

public IActionListener getRemoveListener()
{
return new IActionListener()
{
public void actionTriggered(IComponent component,

IRequestCycle cycle)
throws RequestCycleException

{
getCart().remove(lineItem);

}
};

}

This method is only invoked after all the page state is rewound; especially relevant is the lineItem
property. The listener gets the shopping cart and removes from it the current line item. This
whole rewinding process has ensured that lineItem is the correct value, even though the remove
component was rendered several times on the page (because it was wrapped by the Foreach
component).

An equivalent JavaServer Pages application would have needed to define a servlet for removing
items from the cart, and would have had to encode in the URL some identifier for the item to be
removed. The servlet would have to pick apart the URL to find the cart item identifier, locate the
ShoppingCart (probably stored in the HttpSession) and the particular CartItem and invoke
the remove() method directly. Finally, it would forward to the JSP that would produce the
updated page.

The page containing the shopping cart would need to have special knowledge of the cart
modifying servlet; its servlet prefix and the structure of the URL (that is, how the item to remove
is identified). This creates a tight coupling between any page that wants to display the shopping
cart and the servlet used to modify the shopping cart. If the shopping cart servlet is modified
such that the URL it expects changes structure, all pages referencing the servlet will be broken.

Tapestry eliminates all of these issues, reducing the issue of manipulating the shopping cart down
to the listener class, and its single, small method.

T A P E S T R Y D E S I G N E R ' S G U I D E

 32323232

Stale Links and the Browser Back Button
The fact that web browsers have a "back" button is infuriating to application developers. What
right does the user have to dictate the order of navigation through the application? Who'se
application is this anyway?

In a truly stateless application, the browser back button is not a great hardship, because each page
carrys within itself (as cookies, hidden form fields and encoded URLs) all the state necessary to
process the page.

Tapestry applications can be more stateful, which is a blessing and a curse. The blessing is that
the Tapestry application, running on the server, can maintain state in terms of business objects,
data from databases, Enterprise JavaBeans and more. The curse is that a user hitting the back
button on the browser loses synchronization with that state.

Let's use an e-commerce example. A user is browsing a list of available cameras from a product
catalog. The user clicks on a Minolta camera and is presented with pictures, prices and details
about the Minolta camera.

Part of the page lists similar or related items. The user clicks on the name of a similar Nikon
camera and is shown the pictures, prices and details of the Nikon camera. The user then hits the
browser back button, returning to the (out of date) page showing the Minolta camera, and clicks
the "add to shopping cart" button.

The user is sent to the shopping cart page, but what has been added to the cart, the Minolta or the
Nikon? It depends on how the Tapestry application has been structured.

Presumably, the application has a single page, named "ProductDetails", that shows the pictures,
prices and details of any product. The product details page will have a persistent property named
product, of type Product. Product is a business class that contains all that pricing and detail
information.

The question is, how is the add to shopping link implemented? If its logic is to add whatever the
current value of the product property is (i.e., an Action component or part of a form) then it will
add the Nikon camera, since that's the current product. This is the naïve approach, since it
doesn't take into account the possiblility that the user worked backwards to a prior page.

On the other hand, if a Direct component is used, it can encode into the URL the primary key of
the Minolta product, and that will be the product added to the shopping cart, regardless of the
current value of the product property.

Forms, controlled by the Form component, must make use of the action service, and so they are
susceptible to these issues related to the browser back button. Still, there are techniques to make
even forms safe. Borrowing an idea from more traditional JavaServer Pages development, a
hidden field can be included in the form to sychronize the form and the application ... for
example, including the primary key of the Minolta or Nikon product. Tapestry includes a Hidden
component used for just this purpose.

T A P E S T R Y D E S I G N E R ' S G U I D E

 33333333

Page Loading and Pooling
The process of loading a page (instantiating the page and its components) can be somewhat
expensive. It involves reading the page's specification as well as the specification of all embedded
components within the page. It also involves locating, reading and parsing the HTML templates
of all components. Component bindings must be created and assigned.

All of this takes time ... not much time on an unloaded server but potentially longer than is
acceptable on a busy site.

It would certainly be wasteful to create these pages just to discard them at the end of the request
cycle.

Instead, pages are used during a request cycle, and then stored in a pool for later re-use. In
practice, this means that a relatively small number of page objects can be shared, even when there
are a large number of clients (a single pool is shared by all clients). The maximum number of
instances of any one page is determined by the maximum number of clients that simultaneously
process a request that involves that page.

A page is taken out of the pool only long enough to process a request for a client that involves it.
A page is involved in a request if it contains the component identified in the service URL, or if
application code involves the page explicitly (for instance, uses the page to render the HTML
response). In either case, as soon as the response HTML stream is sent back to the client, any
pages used during the request cycle are released back to the pool.

This means that pages are out of the pool only for short periods of time. The duration of any
single request should be very short, a matter of a second or two.

Page Localization
When a page is first created, its locale is set to match the locale of the application it is loaded into.
This page locale is read-only; it is set when the page is first created and never changes.

Any component or asset on the page that needs to be locale-specific (for instance, to load the
correct HTML template) will reference the page's locale.

As noted previously, pages are not discarded; they are pooled for later reuse. When an application
gets an existing page from the pool, it always matches its locale against the pooled page's locale.
Thus a page and its application will always agree on locale, with one exception: if the application
locale is changed during the request cycle.

When the application locale changes, any pages loaded in the current request cycle will reflect the
prior locale. On subsequent request cycles, new pages will be loaded (or retrieved from the pool)
with locales matching the application's new locale.

Tapestry does not currently have a mechanism for unloading a page in the same request cycle it
was loaded (except at the end of the request cycle, when all pages are returned to the pool). If an

T A P E S T R Y D E S I G N E R ' S G U I D E

 34343434

application includes the ability to change locale, it should change to a new page after the locale
change occurs.

Changing locale may have other, odd effects. If part of a page's persistent state is localized and
the application locale is changed, then on a subsequent request cycle, the old localized state will be
loaded into the new page (with the new locale). This may also affect any components on the page
that have persistent state (though components with persistent state are quite rare).

In general, however, page localization is as easy as component localization and is usually not much
of a consideration when designing web applications with Tapestry.

Page Buffering
The HTML response generated by a page during rendering is buffered. By default, eight kilobytes
of 8-bit ASCII HTML is allowed to accumulate before any HTML output is actually sent back to
the client web browser.

If a Java exception is thrown during the page rendering process, any buffered output is discarded,
and the application-defined exception page is used to report the exception.

If a page generates a large amount of HTML and then throws an exception, the exception page is
still used to report the exception, however the page finally viewed in the client browser will be
"ugly", because part of the failed page's HTML will appear, then the complete HTML of the
exception page.

In practice, virtually all Tapestry pages will use a Body component, and a Body component
buffers the output of all components it wraps. This buffering is necessary so that the Body
component can write out various JavaScript handlers before the main body of HTML is written
(this is often related to the use of the Rollover component). In any case, whenever a Body
component is used, and exception thrown during the rendering of the page will cause all the
HTML buffered by the Body component to be cleanly discarded, allowing for a clean
presentation of the exception page.

There is a second aspect to page buffering; related to the HTTP protocol itself. An important
optimization is the 'Keep Alive' session. When possible, one connection between a web browser
and a web server should be used for multiple requests ... for example, to get a web page and then
get all the images on the web page. Early web browsers and clients didn't support this behavior,
so each request required opening a new connection to the server. All modern web browsers and
servers will take advantage of Keep Alive sessions ... if possible.

For sessions to be kept alive, each request and response must identify the exact length of its
content, in bytes, before transferring the content. For static web pages and static images, this is
quite normal; the web browser simply looks up the size of the page or image before transferring
its contents as a byte stream.

T A P E S T R Y D E S I G N E R ' S G U I D E

 35353535

Dynamic web sites are different because, by their very nature, the number of bytes is not known
when the first byte is written. For the server to indicate the end of the document to the client
web browser, it must close the connection.

This is overcome by page buffering, where the first byte isn't written until the buffer is filled or the
complete HTML response assembled in memory. If the entire HTML response is in the in-
memory buffer before any of the response is returned to the client web browser, then the exact
number of bytes will be known, just like a static page.

T A P E S T R Y D E S I G N E R ' S G U I D E

 36363636

Applications and Services
he application object acts as a central hub for a single client's access to the Tapestry
application.

Application objects are created by the application's servlet (described in the next section).

The application object provides support for the pages and components. It provides named
application services, which are used to create and respond to URLs. It creates and manages the
request cycle and provides robust default behavior for catching and reporting exceptions.

The application object provides the page recorder objects used by the request cycle. By doing so,
it sets the persistence strategy for the application as a whole. For example, applications which
subclass com.primix.tapestry.app.SimpleApplication will use the simple method of
storing persistent state: in memory. Such applications may still be distributed, since the page
recorders will be serialized with the application object (which is stored within the HttpSession).

Application Servlet
An application has a servlet, which acts as a bridge between the servlet container and the
application object.

The servlet has two main responsibilities:

• It provides the framework with the path to the application specification by implementing
the getApplicationSpecificationPath() method.

• It constructs the application object (by implenting the createApplication() method).

The servlet may also perform some static initialization for the application in it's init() method.
This includes tasks such as loading JDBC drivers.

In some cases, the application is dependent on some context initialization parameters (the context
is the container of the servlet, and is usually mapped to a single web application).

Chapter

5
T

T A P E S T R Y D E S I G N E R ' S G U I D E

 37373737

Context initial parameter name Description

com.primix.tapestry.asset.dir The complete pathname of a directory to which private
assets may be copied by the asset externalizer.

com.primix.tapestry.asset.URL The URL corresponding to the external asset directory.

These two parameters are used to allow efficient access to internal assets, by copying them out of
the classpath and to a directory visible to the web server.

Required Pages
Each application is required to have a minimum of five pages with specific names. Tapestry
provides default implementations for four of the fve, but a full-featured Tapestry application may
override any of the other three to provide a consistent look-and-feel.

Page Name Required Description

Exception Default provided, may be changed. Page used to present uncaught
exceptions to the user.

Home Must be provided by developer The initial page displayed when the
application is started.

Inspector Provided, never overriden. Inspector that allows the Tapestry
application to be interrogated on its
structure.

StaleSession Default provided, may be changed. Page used to announce that the session is
invalid.

StateLink Default provided, may be changed. Page used to announce that an stale link
(see below) was triggered.

Tapestry only mandates the logical name of these four pages; the actual page component used is
defined in the application specification.

The Home page is the first page viewed by a client connecting to the application. Other than that,
there is nothing special about the home page.

The initial connection to the application, where nothing is specified in the URL but the path to
the servlet, causes the home service to be invoked, which makes use of the home page.

The restart service will also redirect the user to the home page.

T A P E S T R Y D E S I G N E R ' S G U I D E

 38383838

No default is provided for the Home page; every Tapestry application must define a Home page.

The Exception page is invoked whenever an exception is thrown when processing a service.

The Tapestry framework catches the exception and discards any HTML output (this is why
output is buffered in memory).

The Exception page must implement a writable JavaBeans property of type
java.lang.Throwable named exception. The framework will invoke the accessor method
before the page is rendered.

The class com.primix.foundation.exception.ExceptionAnalyzer and the
ExceptionDisplay component are typically used to present this information.

The StaleLink page is displayed when a com.primix.tapestry.StaleLinkException is
thrown, which may occur during the processing of the request. The exception is thrown when
Tapestry determines that the state of the page (on the server) is out of synch with the client's view
of the page ... this most often happens when the user makes use of the browser's back button.

The default implementation informs the user of the problem ("you really shouldn't use the back
button on your browser") and uses the home service to create a link back to the home page.

The StaleSession page is displayed when a com.primix.tapestry.StaleSessionException
is thrown. This exception is thrown from the action and direct services if the HttpSession is
newly created - this indicates a fresh connection to the servlet container after the old session
timed out and was discarded.

Note that the home, restart and page services do not check for a newly created session.

The Inspector page is provided by the framework; it allows a developer to interrogate a running
Tapestry application to determine its structure.

Server-Side State
The application object is persistent inside the HttpSession; that means it any all of its non-
transient properties will persist between request cycles automatically.

However, the application object is not always the best place to put such properties. This is
because the provided base class for application, com.primix..tapestry.app.SimpleApplication
implements the java.io.Externalizable interface. Subclasses are also externalizable, meaning that
when new persistent properties are added, the methods readExternal() and writeExternal() must
be implemented in the subclass to persist and restore these properties.

This is something of a burden on the developer, since it is much easier (especially during the early,
less stable stages of development) to simply have a Serializable class with non-transient variables.

Tapestry makes a compromise here: it is possible to define a visit object, an object that holds
information about the user's visit. The IApplication interfaced defines a readable visit property.

T A P E S T R Y D E S I G N E R ' S G U I D E

 39393939

The class of the visit object is entrely up to the application developer (the application property is
typed as java.lang.Object).

Applications which use a visit object should subclass SimpleApplication and override the
createVisit() method to return a new instance of the visit object. This method is invoked to lazily
create the visit object when it is first needed.

Page's have a visit property that points to the visit object.

Application Services
Application services provide the structure for building a web application from individual pages
and components.

Each application service has a unique name. Well known names exist for the basic services (page,
action, direct, etc., described in a later section).

Application services are responsible for creating URLs (which are inserted into the response
HTML) and for later responding to those same URLs. This keeps the meaning of URLs
localized. In a typical servlet or JSP application, code in one place creates the URL for some
servlet to interpret. The servlet is in a completely different section of code. In situations where
the servlet's behavior is extended, it may be necessary to change the structure of the URL the
servlet processes ... and this requires finding every location such a URL is constructed and fixing
it. This is the kind of inflexible, ad-hoc, buggy solution Tapestry is designed to eliminate.

Most services have a relationship to a particular component. The basic services (action, direct,
page) each have a corresponding component (Action, Direct, Page). The following example
shows how the Page component is used to create a link between application pages.

First, an extract from the page's HTML template:

Click <jwc id=" login">here</jwc> to login.

Second, a portion of the page's specification:

<component>
<id>login</id>
<type>Page</type>

<bindings>
<static-binding>
<name>page</name>
<value>Login</value>

</static-binding>
</bindings>

</component>

The login component will locate the page service, and provide 'Login' (the name of the target
page) as a parameter. The page service will build and return an appropriate URL (/servlet

T A P E S T R Y D E S I G N E R ' S G U I D E

 40404040

path/page/Login), which the login component will incorporate into the <a> hyperlink it
generates.

If the user later clicks that link, the application will invoke the page service to handle the URL; it
will extract the page name (Login) and render that page.

The other services are more or less complicated, but share the same basic trait: the service
provides the URL and later responds if the URL is triggered.

Application Specification
The application specification is used to identify the name of the application, the details of each
page in the application, and to set up aliases for commonly used components within the
application.

The application specification is loaded after the application object is created, which is very unlike
pages and components (where the specification is read first and used to determine which class to
instantiate).

As previously discussed, the application servlet is responsible for locating the application object or
creating it.

The application specification begins with an XML header:

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC

"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.sourceforge.net/dtd/Tapestry_1_0.dtd">

<application>

The name of the application is specified. This name should be unique for all Tapestry
applications running within a servlet container. It may contain letters, numbers, periods, spaces,
underscores and dashes.

<name>application name</name>

Each page in the application is now defined, with a logical name:

<page>
<name>page name</name>
<specification-path>specification path</specification-path>

</page>

The name of the page must be unique within the application. It may contain letters, numbers,
underscores, periods or dashes.

The specification path is the path of the component specification for the page, a resource within
the Java class path. For example /com/skunkworx/skunkapp/Home.jwc.

T A P E S T R Y D E S I G N E R ' S G U I D E

 41414141

Typically, the name of the page will match the name of the component; the logical name Home
will map to /com/skunkworx/skunkapp/Home.jwc and be implemented by class
com.skunkworx.skunkapp.Home. This is not a hard and fast rule, it may make sense to use
different names; for example, a multi-page wizard may show the relationship between the pages
using a name like WizardName.PageName. In other cases, naming conflicts can be eliminated by
varying the name of the page's logical name or component.

Following this, aliases for components may be defined:

<component-alias>
<alias>alias</alias>
<specification-path>specification path</specification-path>

</component-alias>

This is used to create a short, memorable name for a frequently used component. Aliases have
the same format as page names.

Component aliases are mostly freeform (letters, numbers and some punctuation are acceptable).
A good guideline is to name the alias, the specification and the Java class the same. This naming
pattern is used for all the internal Tapestry components. For example, the component
/com/primix/tapestry/components/Action.jwc has an alias of Action and is implemented
by the class com.primix.tapestry.components.Action.

Finally, the specification is completed by closing the application element:

</application>

T A P E S T R Y D E S I G N E R ' S G U I D E

 42424242

Understanding the Request
Cycle

eb applications are significantly different in structure from other types of interactive
applications. Because of the stateless nature of HTTP (the underlying
communication protocol between web browsers and web servers), the server is
constantly "picking up the pieces" of a conversation with the client.

This is complicated further in a high-end system that utilizes load balancing and fail over. In these
cases, the server is expected to pick up a conversation started by some other server.

The Java Servlet API provides a base for managing the client - server interactions, by providing
the HttpSession object, which is used to store server-side state information for a particular
client.

Tapestry picks up from there, allowing the application, pages and components to believe (with
just a little bit of work) that they are in continuous contact with the client web browser.

At the center of this is the request cycle. This request cycle is so fundamental under Tapestry that
a particular object represents it, and it is used throughout the process of responding to a client
request and creating an HTML response.

Each application service makes use of the request cycle in its own way. We'll describe the three
common application services (page, action and direct), in detail.

In most cases, it is necessary to think in terms of two consecurtive request cycles. In the first
request cycle, a particular page is rendered and, along the way, any number of application service
URLs are generated and included in the HTML. The second request cycle is triggered by one of
those service URLs.

Chapter

6

W

T A P E S T R Y D E S I G N E R ' S G U I D E

 43434343

Page service
The page service is used for basic navigation between pages in the application. The page service is
tightly tied to the Page component.

A page service URL is of the form:

/servlet path/page/page name

The request cycle for the page service is relatively simple.

• The service extracts the page name from the URL

• The named page it loaded and rolled back to its last recorded state

• The page is rendered to provide the HTML response sent back to the client

Direct service
The direct service is used to trigger a particular action. This service is tied to the Direct
component.

A direct service URL is of the form:

/servlet path/direct/page name /id path/context

The request cycle for the direct service is more complicated that the page service.

• The service extracts the page name from the URL

• The page is loaded and its persistent state is rolled back to its last recorded state

• The service extracts the id path from the URL

• The component is located within the page, using its id path

• The component is notified that it has been triggered, with the context passed as an array
of Strings

• The component locates its listener

• The listener is informed that the component was triggered

• The listener reacts in an application specific way, and may update the state of any number
of pages

• The listener may optionally select a new page to render a response

T A P E S T R Y D E S I G N E R ' S G U I D E

 44444444

• The state of any changed pages is recorded by the page recorders

• The result page (the page specified in the URL, unless overridden by the listener) is
rendered to provide the HTML response sent back to the client

This is the way in which applications respond to the user. What's key is the component's listener,
of type com.primix.tapestry.components.IDirectListener. This is the hook that allows
pre-defined components from the Tapestry framework to access application specific behavior.
The application or page objects (which are application specific) provide the necessary listener
objects using dynamic bindings.

The direct service is useful in many cases, but does have its limitations. The state of the page
when the listener is invoked is its state just prior to rendering (in the previous request cycle). This
can cause a problem when the action to be performed is reliant on state that changes during the
rendering of the page. In those cases, the action service (and Action or Form components)
should be used.

The Direct component has an optional parameter named context. The value for this may be a
single String, an array of Strings, or a List of Strings. These strings are added to the URL after
the id path. When the action is triggered, the array is reconstructed (from the URL) and provided
to the Direct component and its listener. This is primarily used to encode dynamic page state
directly into the URL when doing so is not compatible with the action service (described in the
next section).

Action service
The action service is also used to trigger a particular application-specific action using an Action
component, and its listener. The action service is also used by the Form component to process
HTML form submissions.

An action service URL is of the form:

/servlet prefix/action/page name/action id/component id path

The request cycle for the action service is more complicated that the direct service. This sequence
assumes that the component is an Action, the details of handling form submissions are described
in a later section.

• The service extracts the page name from the URL

• The page is loaded and rolled back to its last recorded state

• The service extracts the action id and component id path from the URL

• A render of the page is started, with output discarded

• Each component "goes through the motions" of rendering

T A P E S T R Y D E S I G N E R ' S G U I D E

 45454545

• Eventually, the Action component identifies that the page has been rewound (the action
id in the URL matches the current action id)4

• The Action component locates its listener

• The listener is informed that the action was triggered

• The listener reacts in an application specific way, and may update the state of any number
of pages

• The listener may optionally select a new page to render a response

• The Action component terminates the rewind cycle

• The state of any changed pages is recorded by the page recorders

• The result page (the page specified in the URL, unless overridden by the listener) is
rendered to provide the HTML response sent back to the client

The process of restoring the page's dynamic state is called rewinding. Rewinding is used to go
beyond restoring a page's persistent state and actually restore the page's dynamic state. Whatever
state the page was in when the action URL was rendered in the previous request cycle is restored
before the action's listener is invoked.

Use of the action service is convenient, but not always appropriate. Deeply nested Foreach
components will result in a geometric increase in processing time to respond to actions (as well as
render the HTML).

If the data on the page is not easily accessible then the action service should be avoided. For
example, if the page is generated from a long running database query. Alternate measures, such as
storing the results of the query as persistent page state should be used.

Another alternative is to use the direct service (and Direct component) instead, as it allows the
necessary context to be encoded into the URL. This can be very useful when the dynamic state
of the page is dependant on expensive or unpredictably changing data (such as a database query).

For example, a product catalog could encode the primary key of the products listed as direct
service parameters to create links to a product details page.

4 The Action compares its id path against the target id path from the URL. If there's a mismatch, it throws a
StaleLinkException. This may occur due to the user moving backwards (using the browser back button) and
submitting a form.

T A P E S T R Y D E S I G N E R ' S G U I D E

 46464646

Action service and forms
Processing of requests for Form components is a little more complicated than for ordinary Action
components. This is because a Form will wrap a number of form-related components, such as
TextField, Select, Option, Checkbox and others.

In order to accept the results posted in the HTML form, each of these components must be
given a chance to respond to the request. A component responds to the request by extracting a
request parameter from the HttpServletRequest, interpreting it, and assigning a value through
a parameter. Most Form related components also have an optional listener, which will be notified
after the value is assigned.

As with an Action component again, a full rewind must be done, to account for conditional
portions of the page and Foreaches.

The Form component doesn't terminate the rewind cycle until after all of its wrapped
components have had a chance to render. It then notifies its own listener.

The basic components, Text and TextField, are quite simple. They are simply moving text
between the application, the HTML and the submitted request.

Individual Checkbox components are also simple: they set a boolean property.

The Option and Radio components work the same way; they set a boolean property. This makes
perfect sense from the point of view of the individual component, but may not always be what
the application developer needs.

For a Radio component, or an Option component when multiple selection is not allowed, the end
user will select one possible value from a list. The resulting behavior on the application side is to
turn off all boolean properties but one.

An application-specific subclass of com.primix.tapestry.components.SelectionAdaptor
can be used in combination with the Radio or Option to translate between application objects and
this virtual array of flags.

More often, a form will use either a group of radio buttons or a pop-up option list to select a
single value to assign to some object property. The PropertySelection component is designed to
efficiently handle this situation.

Tapestry also includes more complicated components, ValidatingTextField as some relatives.
These are similar to the simple TextField component, but provide greater validation and checking
of input, and provide the ability to visually mark fields that are required or in error.

T A P E S T R Y D E S I G N E R ' S G U I D E

 47474747

Provided Components
he Tapestry framework provides a large set of pre-written components to use as a
starting point for building applications, or more complicated components.

This section will provide a brief overview of the available components and their most
commonly used parameters. The Javadoc is the final reference for this information. All
components live in the com.primix.tapestry.components package.

Each of these components is automatically added as an alias in an application specification.

Action
Creates an <a> hyperlink in the HTML response. If the link is triggered, then the Action retrieves
its listener, and invokes actionTriggered() on it.

Parameter Description

listener The object notified when the link is triggered.

enabled Controls whether the link is produced, if false, then the link is not created, but the
contents are still rendered.

Any
Used to make an existing HTML element dynamic. Informal parameters are used to fill in the
attributes of the element.

Parameter Description

element The element to be produced

Chapter

7
T

T A P E S T R Y D E S I G N E R ' S G U I D E

 48484848

Body
Replaces the <body> tag. The Body component provides some support for other components,
such as the Rollover component.

Checkbox
Used to implement a checkbox form element. Must be wrapped by a Form component.

Parameter Description

selected Indicates whether the checkbox is selected or not.

disabled Controls whether the text field is active or not.

Conditional
Makes part of an HTML template conditional. The body of the Conditional component is only
rendered if a specified condition is met.

Parameter Description

condition The condition to be met.

invert If true, then the condition is inverted. This is useful for simulating an else clause.

DatabaseQuery
A wrapper around a JDBC query. It converts each row selected from the database into a Map
that it provides to its container, much like a Foreach component.

Parameter Description

connection The JDBC Connection to execute the query on.

query A SQL query to execute.

row A property to update with each row from the query.

DateField
A kind of validating text field that allows a date to be entered.

T A P E S T R Y D E S I G N E R ' S G U I D E

 49494949

Parameter Description

date The date property to be editted.

delegate An IValidationDelegate used to handle validation exceptions.

maximum The lastest acceptible date (optional).

minimum The earliest acceptible date (optional).

required If true, a value must be entered.

Delegator
A component which delegates its behavior (that is, the HTML renders) to some other object.
This is occasionally useful when the HTML to render is best generated from pure Java code (or
has been provided from some source outside of Tapestry).

Parameter Description

delegate The object which will provide the rendering for the component.

Direct
Creates a <a> hyperlink that notifies the component when the link is triggered. The link includes
some context-specific data that is passed on to the component's listener. This is used in cases
where the Action component can't be used (or is too inefficient).

Parameter Description

listener Specifies an object that is notified when the link is clicked.

context An array of Strings to be encoded into the URL. These parameters will be
decoded when the link is triggered.

enabled Controls whether the link is produced. If disabled, the portion of the template the
link surrounds is still rendered, but not the link itself.

ExceptionDisplay
A component, used on the standard exception page, used to render a detailed list of the
exceptions.

T A P E S T R Y D E S I G N E R ' S G U I D E

 50505050

Parameter Description

exceptions An array of com.primix.foundation.exception.ExceptionDescription
objects

FieldLabel
A component, used with a ValidatingTextField (or similar component) that provides the label for
the field. A delegate object may be specified that will change the visual formatting of the label to
reflect the state of the field, for instance, to make the label red when the field itself is in error.

Parameter Description

field The validating text field associated with the label.

delegate An optional IValidationDelegate, responsible for the visual look of the label.

Foreach
A component that loops through a set of values, setting a property for each value before
rendering its wrapped elements.

Parameter Description

source The source of objects to be iterated.

value Used to update the current value on each iteration.

Form
A component that manages an HTML form. The other form-related components must be
wrapped inside the Form.

Parameter Description

method The value to use for the method attribute of the <form> tag.

listener The listener, informed after the wrapped components of the form have had a
chance to respond to the request.

T A P E S T R Y D E S I G N E R ' S G U I D E

 51515151

Hidden
Adds a hidden (<input type=hidden>) field to a Form. This is often used to synchronize data
known when the page containing the Hidden was created.

Parameter Description

value Property to store when the form is renderred and to restore when the form is
submitted.

Image
Used to insert a static image.

Parameter Description

image The image to show, specified as an asset.

ImageButton
An image button inside a Form. Clicking the button submits the form.

Parameter Description

disabled If true, the image button will be disabled (not respond to the mouse).

image The image to show, specified as an asset.

selected A property updated if the button is clicked.

tag The value assigned to the selected property if the button is clicked.

Insert
Inserts dynamic text into the HTML response. Invalid characters (such as < and >) are converted
into HTML entities (< and >).

Parameter Description

value The value to be inserted, which may be a string or an arbitrary object (that is
converted to a string).

format An format (java.text.Format) object used to format the String or object.

T A P E S T R Y D E S I G N E R ' S G U I D E

 52525252

InsertURL
Used to insert the URL of an asset

Parameter Description

asset The asset whose URL is to be inserted.

InsertWrapped
Renders the static HTML and components wrapped by the container of the InsertWrapped
component. Components which have HTML templates and can wrap other elements should
include exactly one InsertWrapped component in their template.

IntegerField
A type of validating text field that is used to edit an integer property.

Parameter Description

value The property to edit.

delegate An IValidationDelegate that is used to handle validation exceptions.

required If true, a value must be provided by the user.

minimum Optional minimum acceptible value.

maximum Optional maximum acceptible value.

Option
Implements a component that manages an HTML <option> form element, and must be
wrapped by a Select component.

Parameter Description

selected Used to indicate whether the given option is selected.

Page
Creates a link to another page within the application.

T A P E S T R Y D E S I G N E R ' S G U I D E

 53535353

Parameter Description

page The name of a page to link to.

enabled Controls whether the link is produced. If disabled, the portion of the template the
link surrounds is still rendered, but not the link itself.

PropertySelection
Creates either a <select> or a sequence of <input type=radio> controls that ultimately allow a
property to be set. Uses a model to map between Java values that will be assigned, and textual
labels that will appear in the HTML response.

Parameter Description

value The property value to edit.

model The model used to enumerate the potential values, and to produce text labels for
each value.

renderer An object used to render the property selection; two default implementations are
provided (on creates a pop up list, the other a table of radio buttons).

Radio
Implements a component that manages an HTML form element. Such a component must be
wrapped (possibly indirectly) inside a RadioGroup component.

Parameter Description

selected Used to indicate whether the given option is selected. Only updated if the Radio is
not disabled.

disabled If true, then the Radio is disabled. It will write a disabled attribute into its tag
when rendering, and will not update its selected binding.

RadioGroup
A container of Radio components, which itself must be within a Form component.

T A P E S T R Y D E S I G N E R ' S G U I D E

 54545454

Rollover
Works with any kind of link component, which must wrap it, to provide a rollover image button
… a button where the image changes when the mouse move over it or off of it. A Rollover is
disabled if the link that wraps it is disabled.

Parameter Description

image The (initial) image to show (if not disabled).

focus The image displayed when the mouse moves over the button (unless disabled).

blur The image displayed when the mouse moves off of the button (unless disabled).

disabled The image displayed if the link is itself disabled.

Script
A component that accesses a script file and adds JavaScript functions and statements to the
response page. The specified script file is read and parsed and substitutions are made before the
final scripting code is inserted into the page.

Parameter Description

script The resource path of the script file.

Select
A wrapper around Option components, within a Form.

Parameter Description

multiple If true, the component allows multiple selection.

Service
A component for creating a link for an arbitrary service that uses no parameters, such as the reset
or home service.

Parameter Description

service The name of the service.

T A P E S T R Y D E S I G N E R ' S G U I D E

 55555555

enabled Controls whether the link is produced. If disabled, the portion of the template the
link surrounds is still rendered, but not the link itself.

Shell
Provides the outer "shell" of a page, including the <html>, <head> and <title> tags (but not the
<body> tag).

Parameter Description

title Title for the page, placed within a <title> element.

stylesheet Stylesheet to be used on the page.

Submit
Provides a form submit button (<input type=submit>). This is most useful when the form
contains multiple submit buttons and the application needs to know which was actually pressed.

Parameter Description

disabled If true, the submit button will be disabled.

label The label to put on the button.

selected A property updated if the button is the one clicked to submit the form.

tag The value applied to the selected property if the button is the one clicked to
submit the form.

ShowInspector
Adds a link to a page that is used to raise the Tapestry Inspector in a new window. This is
generally added to the navigational border of an application.

Text
Implements a component that manages an HTML <textarea> form element, within a Form
component.

T A P E S T R Y D E S I G N E R ' S G U I D E

 56565656

Parameter Description

text The text inside the text area.

disabled Controls whether the textarea is active or not.

columns The width of the textarea, in characters.

rows The number of rows in the textarea.

TextFieldTextFieldTextFieldTextField
Implements a component that manages an HTML <input type=text> or <input
type=password> form element, within a Form component.

Parameter Description

text The text inside the text field.

hidden If true, then the text field is written as a <input type=password> form
element.

disabled Controls whether the text field is active or not.

displayWidth Controls the display width of the text control in the client browser.

maximumLength Controls the maximum number of characters that the text control will accept

ValidatingTextField
An improved TextField that can perform simple validations. The field may be required, and a
mimum length may be specified.

Parameter Description

text The text inside the text field.

hidden If true, then the text field is written as a <input type=password> form
element.

disabled Controls whether the text field is active or not.

displayWidth Controls the display width of the text control in the client browser.

T A P E S T R Y D E S I G N E R ' S G U I D E

 57575757

required If true, a value must be provided by the user.

delegate An IValidationDelegate instance used to handle validation errors.

minimumLength Optional, the minimum number of characters that may be entered.

T A P E S T R Y D E S I G N E R ' S G U I D E

 58585858

Designing Tapestry
Applications

hen first starting to design a Tapestry application, the designer consider some basic
elements as a guide to the overall design of the application.

Persistent Storage Strategy
Tapestry pages store a certain amount of client state between request cycles. The Tapestry
application chooses the strategy for this storage by choosing a particular super-class.

Currently, only the com.primix.tapestry.app.SimpleApplication class is provided with
the framework; it uses in-memory page recorders. When the application object is serialized, the
page recorders are serialized along with it.

The IPageRecorder interface doesn't specify anything about how a page recorder works. This
opens up many possibilities for storage of state, including flat files, databases, stateful EJB session
beans, or HTTP Cookies.

In fact, a very sophisticated application could mix and match, using cookies for some pages, in-
memory for others.

By default, page recorders stay active for the duration of the user session. If a page will not be
referenced again, or its persistent state is no longer relevant or needed, the application may
explicitly "forget" its state.

Remember that for load balancing and fail over reasons, the application object will be serialized
and de-serialized. Ideally, its serialized state should be less than two kilobytes; because Java
serialization is inefficient, this does not leave much room.

Chapter

8
W

T A P E S T R Y D E S I G N E R ' S G U I D E

 59595959

Identify Pages and Page Flow
Early in the design process, the page flow of the application should be identified. Each page
should be identified and given a specific name.

Page names are less structured than other identifiers in Tapestry. They may contain letters,
numbers, underscores, dashes and periods. Tapestry makes absolutely no interpretation on the
page names.

In many applications, certain parts of the functionality are implemented as "wizards", several
related pages that are used in sequence as part of a business process. A common example of this
is initial user registration, or when submitting an order to an e-commerce system.

A good page naming convention for this case is "wizard-name.page-name" (a period separates the
two names). This visually identifies that several pages are related. In addition, a Java package for
the wizard should be created to contain the Java classes, component specifications, HTML
templates and other assets related to the wizard.

The designer must also account for additional entry points to the Application beyond the
standard home page. These may require additional application services (see below).

Identify Common Logic
Many applications will have common logic that appears on many pages. For example, an e-
commerce system may have a shopping cart, and have many different places where an item can
be added to the cart.

In many cases, the logic for this can be centralized in the application object. The application
could implement methods for adding products to the shopping cart. This could take the form of
Java methods, component listeners, or even new application services.

In addition, most web applications have a concept of a 'user'. The object representing the user
should be a property of the application (or the visit property of the application), making it
accessible to all pages and components.

Most Tapestry applications will involve some interaction with Enterprise JavaBeans. The code to
lookup home interfaces, or to gain access to stateless session beans, is typically located in the
application.

Listener code, on various pages, will cast the application property to the appropriate actual class
and invoke methods.

The following example demonstrates this idea. EJBApplication is a hypothetical Tapestry
application that uses EJBs.

public IActionListener getListener()
{

return new IActionListener()

T A P E S T R Y D E S I G N E R ' S G U I D E

 60606060

{
public void actionTriggered(IComponent component,

IRequestCycle cycle)
{

EJBApplication app;
ISomeHomeInterface home;

app = (EJBApplication)application;

home = app.getSomeHomeInterface();

try
{

// etc.
}
catch (RemoteException e)
{

throw new ApplicationRuntimeException(e);
}

}
};

}

Identify Application Services
Tapestry applications will need to define new application services when a page must be referenced
from outside the Tapestry application

This is best explained by example. It is reasonable in an e-commerce system that there is a
particular page that shows product information for a particular product. This information
includes description, price, availability, user reviews, etc. A user may want to bookmark that page
and return to it on a later session.

Tapestry doesn't normally allow this; the page may be book marked, but when the bookmark is
triggered, the page may not render correctly, because it will not know which product to display.
The URLs normally generated in a Tapestry application are very context sensitive; they are only
meaningful in terms of the user's navigation throughout the application, starting with the Home
page. When book marked, that context is lost.

The built-in action and direct services reject any URL if there isn't an existing HttpSession.
They redirect to a StaleSession page, that warns the use of what has occurred and allows them to
start the application fresh (a standard page for this is provided by Tapestry, but can be overridden
by an application that wants to provide different content or look-and-feel).

By defining a new application service, the necessary context can be encoded directly into the
URL, in a way similar to how the direct action works. This is partially a step backwards towards
typical servlet or JSP development, but even here Tapestry offers superior services. In the e-
commerce example, the application service URL could encode some form of product identifier.

T A P E S T R Y D E S I G N E R ' S G U I D E

 61616161

An example of this is in the Primix Virtual Library application. In order to make certain pages
bookmarkable, a new service named "external" was created. The external service includes the
name of a page and the primary key of an object that page displays.

The external service works much the same was as the page service, except that it invokes an
additional method on the page, setup(), which is passed the primary key extracted from the URL.

The end result is that when a user arrives at such a page, the URL used identifies the page and the
primary key. Bookmarking the page stores the URL so that when the bookmark is later opened,
the correct data is read and displayed.

Identify Common Components
Even before detailed design of an application, certain portions of pages will be common to most,
if not all, pages. The canonical example is a "navigation bar", a collection of links and buttons
used to navigate to specific pages within the application. An e-commerce site may have a
shopping cart related component that can appear in many places.

In many cases, common components may need to be parameterized: the navigation bar may
need a parameter to specify what pages are to appear; the shopping cart component will require a
shopping cart object (the component is the view and controller, the shopping cart object is the
model).

Other examples of common components are viewers and editors of common data types.

In the Virtual Library, components that made use of the external service were created. The
components, BookLink and PersonLink, took as parameters the corresponding objects (Book or
Person) and created links to the pages that displayed the details of that Book or Person.

T A P E S T R Y D E S I G N E R ' S G U I D E

 62626262

Coding Tapestry Applications

Application Object
pplication objects are somewhat different than page and component objects. The latter
are created after their specification is read, using information inside the specification.

Application objects are created by the application servlet.

Application objects will be serialized and de-serialized as part of load balancing and fail over. As
much as possible, attributes of the application object should be transient. For example, the
instance variable that holds the ApplicationSpecification is transient; if needed (after de-
serialization), the application can locate the specification from its servlet (the servlet reads the
application specification once, when it is first initialized).

As discussed earlier, the base class SimpleApplication implement java.io.Externalizable. This
means subclasses that add any persistent instance variables must override readExternal() and
writeExternal(). Alternately, a visit object can be defined that contains persistent properties.

Enterprise JavaBeans Support
The application object should provide access to the most commonly used Enterprise JavaBeans
used in the application. It can provide a central location for the common code (related to JNDI
and to narrowing EJB references), rather than have that scattered throughout the application.

It is important to remember that EJB references are not serializable. However, it is possible to
convert between an EJB reference and an EJB handle, and handles are serializable. An application
should make any instance variables that store EJB references transient, and should perform extra
serialization work to serialize and restore the necessary EJB handles.

Chapter

9

A

T A P E S T R Y D E S I G N E R ' S G U I D E

 63636363

Designing new components
Creating new components using Tapestry is designed to be quite simple.

Components are typically created through aggregation, that is, by combining existing components
using an HTML template and specification.

You will almost always want to define a short alias for your new component in the application
specification. This insulates developers from minor name changes to the component
specification, such as moving the component to a different Java package.

Like pages, components should reset their state back to default values when the page they are
contained within is returned to the pool.

Most components do not have any meaningful state. A component which does should
implement the ILifecycle interface, and implement the reset() method.

The reset() method is invoked from the page's detachFromApplication() method, which is
invoked at the very end of the request cycle, just before the page is returned to the page pool.

Choosing a base class
There are two basic types of components: those that use an HTML template, and those that
don't.

Nearly all of the base components provided with the Tapestry framework don't use templates.
They inherit from the class com.primix.tapestry.AbstractComponent. Such components
must implement the render() method.

Components that use templates inherit from a subclass of AbstractComponent:
com.primix.tapestry.BaseComponent. They should leave the render() method alone (it
already does what it should ... load the template if necessary and render itself using the template).

In some cases, a new component can be written just by combining existing components (this
often involves using inherited bindings). Such a codeless component will consist of just a
specification and an HTML template and will use the BaseComponent class.

Chapter

10

T A P E S T R Y D E S I G N E R ' S G U I D E

 64646464

Parameters and Bindings
You may create a component that has parameters. Under Tapestry, component parameters are a
kind of "named slot" that can be wired up as a source (or sink) of data in a number of ways. This
"wiring up" is actually accomplished using binding objects.

The page loader, the object that converts a component specification into an actual component, is
responsible for creating and assigning the bindings. It uses the method setBinding() to assign
a binding with a name. Your component can retrieve the binding by name using getBinding().

For example, lets create a component that allows the color of a span of text to be specified using a
java.awt.Color object. The component has a required parameter named 'color'. The class's
render() method is below:

public void render(IResponseWriter writer, IRequestCycle cycle)
throws RequestCycleException

{
IBinding colorBinding;
Color color;
String encodedColor;

colorBinding = getBinding("color");
color = (Color)colorBinding.getValue();
encodedColor = RequestContext.encodeColor(color);

writer.begin("font");
writer.attribute("color", encodedColor);

renderWrapped(writer, cycle);

writer.end();
}

The call to getBinding() is relatively expensive, since it involves rummaging around in a
java.util.Map and then casting the result from java.lang.Object to
com.primix.tapestry.IBinding.

Because bindings are typically set once and then read frequently by the component, implementing
them as private instance variables is much more efficient. Tapestry allows for this as an
optimization on frequently used components.

The setBinding() method in AbstractComponent checks to see if there is a read/write
JavaBeans property named "nameBinding" for type com.primix.tapestry.IBinding. In this
example, it would look for the methods getColorBinding() and setColorBinding().

If the methods are found, they are invoked from getBinding() and setBinding() instead of
updating the Map.

 This changes the example to:

private IBinding colorBinding;

T A P E S T R Y D E S I G N E R ' S G U I D E

 65656565

public void setColorBinding(IBinding value)
{
colorBinding = value;

}

public IBinding getColorBinding()
{
return colorBinding;

}

public void render(IResponseWriter writer, IRequestCycle cycle)
throws RequestCycleException

{
Color color;
String encodedColor;

color = (Color)colorBinding.getValue();
encodedColor = RequestContext.encodeColor(color);

writer.begin("font");
writer.attribute("color", encodedColor);

renderWrapped(writer, cycle);

writer.end();
}

This is a trade off; slightly more code for slightly better performance. There is also a memory
bonus; the Map used by AbstractComponent will never be created.

Persistent Component State
Like pages (described further in the document), individual components may have state that
persists between request cycles. This is rare for non-page components, but still possible and
useful in special circumstances.

A client that must persist some client state uses its page's changeObserver. It simply posts
ObservedChangeEvents with itself (not its page) as the source. In practice, it still simply invokes
the fireObservedChange() method.

In addition, the component should implement the interface ILifecycle, and the method
reset() and, within that method, reset all instance variables to default values, just as a page does
(in its detachFromApplication() method).

Component Assets
Tapestry components are designed for easy re-use. Most components consist of a specification, a
Java class and an HTML template.

T A P E S T R Y D E S I G N E R ' S G U I D E

 66666666

Some components may need more; they may have additional image files, sounds, Flash
animations, QuickTime movies or whatever. These are collectively called "assets".

Assets come in three flavors: external, internal and private.

• An external asset is just a fancy way of packaging a URL at an arbitrary web site.

• An internal asset represents a file with a URL relative to the web server containing the
Tapestry application.

• A private asset is a file within the class path, that is, packaged with the component in a
Java Archive (JAR) file. Obviously, such assets are not normally visible to the web server.

Components which use assets don't care what flavor they are; they simply rely on the method
buildURL() to provide a URL they can incorporate into the HTML they generate. For example,
the Image component has an image parameter that is used to build the src attribute of an HTML
 element.

Assets figure prominently into three areas: reuse, deployment and localization.

Internal and private assets may be localized: when needed, a search occurs for a localized version,
relative to a base name provided in the component specification.

Private assets simplify both re-use and deployment. They allow a re-usable Tapestry component,
even one with associated images, style sheets (or other assets) to be incorporated into a Tapestry
application without any special consideration. For example, the standard exception page makes
use of a private asset to access its stylesheet.

In a traditional web application, private assets would need to be packaged separately from the
'component' code and placed into some pre-defined directory visible to the web server.

Under Tapestry, the private assets are distributed with the component specification, HTML
templates and Java code, within a Java Archive (JAR) file, or within the WEB-INF/classes
directory of a Web Application Archive (WAR) file. The resources are located within the running
application's class path.

The Tapestry framework takes care of making the private assets visible to the client web browser.
This occurs in one of two ways:

• The private assets are copied out of the class path and to a directory visible to the web
server. This requires some additional configuration of the Tapestry application servlet.

• The assets are dynamically accessed from the class path using the asset service.

Copying assets out of the class path and onto the web site is the best solution for final
deployment, since it allows the assets to be retrieved as static files, an operation most web servers
are optimized for.

T A P E S T R Y D E S I G N E R ' S G U I D E

 67676767

Dynamically accessing assets requires additional operations in Java code. These operations are
not nearly as efficient as static access. However, dynamic access is much more convenient during
development since much less configuration (in this case, copying of assets) is necessary before
testing the application.

As with many things in Tapestry, the components using assets are blind as to how the assets are
made visible to the client.

Finally, every component has an assets property that is an unmodifiable java.util.Map. The
assets in the Map are accessible as if they were properties of the Map. In other words, the property
path assets.welcome is valid, if the component defines an asset named 'welcome'.

T A P E S T R Y D E S I G N E R ' S G U I D E

 68686868

The Tapestry Inspector
 apestry includes a powerful tool: the Inspector, which reveals the construction of a
running Tapestry application.

The ShowInspector component is used to include a link that launches the Inspector.
This is typically included in the navigational border of an application, so that it is available to the
developer from any page. The Inspector itself is a page that is provided by the framework and
available to any Tapestry application.

The Inspector allows the developer to see how the page is constructed. It reveals the page's
specification, a list of embedded components within the page, the page's HTML template and
more.

It is possible to dig down and see the same information for any component within the page.

Chapter

11

T

T A P E S T R Y D E S I G N E R ' S G U I D E

 69696969

The Tapestry Inspector is currently evolving in terms of functionality and look-and-feel. More
information will be added here when the Inspector has been finalized.

	Scripting vs. Components
	Interaction
	Security
	Features
	Parameters and Bindings
	Embedded Components
	HTML Templates
	Localization
	Assets
	Component Specification
	Page State
	Persistent Page State
	Dynamic Page State
	Stale Links and the Browser Back Button
	Page Loading and Pooling
	Page Localization
	Page Buffering
	Application Servlet
	Required Pages
	Server-Side State
	Application Services
	Application Specification
	Page service
	Direct service
	Action service
	Action service and forms
	Action
	Any
	Body
	Checkbox
	Conditional
	DatabaseQuery
	DateField
	Delegator
	Direct
	ExceptionDisplay
	FieldLabel
	Foreach
	Form
	Hidden
	Image
	ImageButton
	Insert
	InsertURL
	InsertWrapped
	IntegerField
	Option
	Page
	PropertySelection
	Radio
	RadioGroup
	Rollover
	Script
	Select
	Service
	Shell
	Submit
	ShowInspector
	Text
	TextField
	ValidatingTextField
	Persistent Storage Strategy
	Identify Pages and Page Flow
	Identify Common Logic
	Identify Application Services
	Identify Common Components
	Application Object
	Enterprise JavaBeans Support
	Choosing a base class
	Parameters and Bindings
	Persistent Component State
	Component Assets

