PRIMIX SOLUTIONS

Core Labs

Tapestry
Tutorial

CORE LABS

Tapestry Tutonial

© Primix Solutions
One Arsenal Marketplace
Phone (617) 923-6639 * Fax (617) 923-5139

Table of Contents

Introduction
Setting up Kawa and
ServietExec Debugger
Setting up the Tutorial Project
ServietExec Debugger
Hello World
Application Object
Application Servlet
Application Specification
Home Page Specification
Home Page Template
Launch ServietExec Debugger
Dynamic Content
Interactive Application

10
11
12
13
13
13

17

23

Launching the Application 30
Adding Interactivity using Listeners 30
Persistant Page State and Page
Pooling 31
Dynamic Page State 33
Tapestry Run Time Errors 34

Stale Pages 34

Stale Sessions 37

Exception Handling 38
Debugging a Tapestry
Application 41
Re-usable Components 44

TAPESTRY TUTORIAL

Introduction

T apestty is a new application framework developed at Primix Solutions.

Tapestry uses a component object model to represent the pages of a web application.
This is similar to spirit to using the Java Swing component object model to build GUIs.

Just like using a GUI toolkit, there's some preperation and some basic ideas that must be cleared
before going to more ambitious things. Nobody writes a word processor off the top of their head
as their first GUI project; nobody should attempt a full-featured e-commerce site as their first
attempt at Tapestry.

The goal of Tapestry is to elminate most of the coding in a web application. Under Tapestry,
neatly all code is directly related to application functionality, with very little "plumbing". If you
have previously developed a web application using Microsoft Active Server Pages, JavaServer
Pages or Java Servlets, you may take for granted all the plumbing: writing servlets, assembling
URLs, parsing URLSs, managing objects inside the session, etc.

Tapestry takes care of neatly all of that, for free. It allows for the development of a rich, highly
interactive applications.

This tutorial will start with basic concepts, such as the "Hello World" application, and will
gradually build up to more sophisticated examples.

These examples were developed using the Kawa IDE, JDK 1.2.2 and ServletExec Debugger 2.2.

TAPESTRY TUTORIAL

Setting up Kawa and
ServietExec Debugger

Before we can get started writing servlets, we must have an environment
for running them.

D:\Work. If this is not convienent, any directory may be chosen, but the reader will be

F irst, create a working directory. In these examples, we'll use the working directory
responsible for adjusting the paths appropriately.

Directories within the working directory each store a Kawa project. In addition, the directory
D:\Work\1lib will contain copies of serveral Jar files needed when compiling and executing the
tutorial.

Jar Description

gnu-regexp.jar GNU Regular Expression parser for Java, version 1.0.8. Used by the
Tapestry framework.

xerces.jar Xerces XML parser, available from apache.org.

ServletExecDebugger.jar ServletExec Debugger, version 2.2. Includes the Java Servlet API
version 2.1.1.

Tapestry.jar Tapestry framework.
PrimixFoundation.jar PrimixFoundation framework (provides supporting classes for
Tapestry).

Extract the Tutorial files to D: \Work\Tutorial. You may have received the Tutorial files in a
Zip file, or you may check them out of the CVS repository using WinCVS.

TAPESTRY TUTORIAL

Setting up the Tutorial Project

Start with an empty Kawa workspace:

ﬂ Kawa

Eile Edt “iew Test Proect Buld Packages Info Customize

1 = E ﬁl J'E E“attrihuteg j
W= S A

512
=423 kawa Frojects

Now, create the Tutorial project by selecting Project » New ... from the menu.

Navigate into the D:\Work\Tutorial directory, and enter Tutorial.kpx to create the new
Project (you must specify the extension because of the naming conflict with the tutorial directory).

NewProject @R
Save in: IﬁTUthiEﬂ [ﬁl
|1 tutorial

File name: ITutu:uriaI.kp:-c Save I
Save as type: IKawa Files [* kpx) j Cancel |

You now have a Kawa Project with no Java files. We'll now set up a list of files for the Tutorial
project:

Select the Tutorial project, then select Project » Add Directory ... from the menu.

We want to pick up not just the Java source files, but also Tapestry component specification files
(jwc), application specification (.application) and HTML templates (-html).

TAPESTRY TUTORIAL

AddDirectory Ed

Directaries:
o: ok Stutorial
Cancel
= dh = =N
[= wark
= Tutonal
£ tutarial

File Types separated by ' :

I". java;” jwe;” himl:, applicatior]

Dirives:

I = 4d j M etwork... |

Kawa will locate these files and organize them into appropriate folders. You can then expand
some folders to see the contents:

Kawa - kawa - Tutonal - [D:\.. \hello\HelloWorld5 ervlet. java)

== File Edt Wiew Text Project Buld Packages [nfo Customize

D& B @ + 5 B ||[BooksFor || &
LI S At B T
B 3]s 2 |

= tutanial
+- 2] adder
+-\2] border
=14 hello
B Helcworld application
=B HeloWworlddpplication java
+-M Hellworldépplication extends Simplefipplicz
=B HelowerldServlet.java
+- M HelldworldServiet extends Application’S ervlel
B Home html
B Homejwc

B Makefie -
“| | b

Now we have to setup the classpath for compiling this project.

L]

Select the Tutorial project and then choose Project * Classpath ... from the menu.

Initially, the classpath is empty (except for classes provided by the JDK):

TAPESTRY TUTORIAL

Project clazzpath |

— Current Clazspath Setup

fawvell

F e [Er

Elete

KN — i

—Add/Mew Clazzpath

e L

| Add/Update

Add Dir... | Add File... Ophiorz... | [Earicel

(] | Cancel

We need to add a few Jar files to the classpath. Click on the "Add File..." button towards the
bottom of the panel:

You can select multiple files by holding down the control key while clicking:

select File to Add : d S

Loak ir: I'alil:l j = £ EE-

griu-reqexp. jar @ SessionTracker-deploy jar
@ j2ee.jar . Tapeskry.jar
@ log. jar @ Tesks.jar

PrimixFoundation. jar @ Tutarial jar
@ ServletExecDebugger. jar @ YlibEeans,jar
@ SessionTracker.jar @ YWlibEeans-deploy . jar

1| | L
File name: I":-ceru:es.iar" "Primi=F oundation.jar'" ''T apesty. jar' Dpen I
Files of type: [Jar Files [*jar) =] Cancel |

Change i g
Directory to I j Project Dir |

A

After returning to the previous panel, click "Update". The Jar files selected will be added to the
classpath:

TAPESTRY TUTORIAL

Project classpath X

— Current Clazspath Setup

FD workh
[w| O Sf ok slibhS ervletE secDebugger. jar
[w| D Sfork slibhgnu-regesp.jar

[w| O Sk SiESP rimisF oundation. jar

[w| D Sforklibhmerces.jar Delete

fave g

taove Down

i

—&dd/Mew Clazzpath
D~Work~lib~Tapestrvy.jar fdddpdate
Add Dir... Add File... Options... | Cancel |

ak.

Cancel |

The order may be different, but that's irrelevant to Kawa and to the JDK. Kawa allows Jars to be
easily added to or removed from the classpath using the checkboxes, but we want all of these Jars.

You can set many compilation options from within Kawa. Select the Tutorial project and choose
Project » Compiler Options... from the menu.

TAPESTRY TUTORIAL

Java Oplions 5

Compiler 1 Interpreter] Javadu:u:]

| ™ Compilation output directary [-d]

i = | |
¥ Debugging tables [-g) ;
[Don't digplay warnings [-nowarn} '

. Optimize compiled code [-0]
i [™ Prints out messages [-verbose)
™ Deprecated AP [-deprecation]

. [Custom options [zent as is] -

]] Cancel 1

Turn on debugging output (for later, when we use Kawa to debug our application).

The project should now be compiled using the Project » Rebuild All or Project » Rebuild Dirty
menu items.

ServietExec Debugger

ServletExec Debugger requires setting up two directories outside of the IDE. The first directory
is where ServletExec Debugger stores configuration information about the different servlets. The
second directory is the "web server" root directory (ServletExec Debugger acts as a simple web
server, providing access to static resources such as GIF files as well as dynamic content from
servlets).

You don't need to create these directories first; ServletExec Debugger will create them the first
time it starts up.

In my case, D: \Work was my main working directory, so I used D:\Work\ServletDebug for
configuration, and the project directory as my web server root directory.

TAPESTRY TUTORIAL

If you chose to put these files in a different directory, you'll have to adjust some of the examples
in later chapters.

When we want to run or debug our applications, we don't execute a specific class for our
application, we instead run the ServletExec Debugger, which acts as a simple web server and
servlet container.

To set this up, you must select the Project * Interpreter Options ... menu item, and update the
command line arguments and Java class name.

Java Options

Compiler Interpreter l Javadoc]

Basic l Advanced]

[Debug [-debug)

[Mo Garbage Collection [-noaspncge)
[Yerbose GC [-verbosegc)

[“erbose mode [-verboze)

[+ Command Line Arguments

|-h-:ume . AServletDebug -root ﬂ ﬂ
[+ Java Clazs Name to Bun

|newatlanta.sedebugger.SewletE wecD ebugger

[Ewecute program in directon

| Bl

[Custom Options sent as is including JOB

k. | Cancel

Don't forget to click the checkboxes; as with the classpath, Kawa allows you to easily inlcude or
exclude options used when running the program using those checkboxes; if they aren't checked,
the option won't be included.

TAPESTRY TUTORIAL

Hello Worid

We will develop a very simple, completely static web application as an
introduction to the basic concepts of Tapestry.

have any real functionality but it'll demostrate the simplest possible variation of a number of
key aspects of the framework.

I n this first example, we'll create a very simple "Hello World" kind of application. It won't
Even this simple Tapestry application requires two objects:
e -An application object that runs our (very simple) application

e A servlet that bridges between the servlet container and our application

After that, we'll define our application, define the lone page of our application, configure
everything and launch it.

The code for this section of the tutorial is in the Java package tutorial.hello, ie.,
D:\Work\Tutorial\tutorial\hello.

Application Object

As each new client connects to the application, an instance of the application object is created for
them. The application object is used to track that client's activity within the application.

The application object is a subclass the Tapestry class

com.primix.tapestry.app.SimpleApplication.

SimpleApplication is an abstract class; we must provide implementations for two methods.

® getSpecificationResourceName () provides the resource path of the application's
specification. The main purpose of the specification is to define the pages used in the
application.

10

TAPESTRY TUTORIAL

® getSpecificationAttributeName () provides a name used to store the specification
in memory. The specification is needed to process every request; rather than parse it on
each request, it is stored in memory for subsequent requests.

Tapestry can't use fixed names for either of these two values, since that would cause a naming
conflict if two different Tapestry applications were run simultaneosly inside the same servlet
container. This is not an unlikely possiblity ... a customer application will often be paired with a
CSR (customer service representative) application.

In any case, the code for the application object is quite simple:

HelloWorldApplication.java

package tutorial.hello;

import java.util.*;
import com.primix.tapestry.*;
import com.primix.tapestry.app.*;

public class HelloWorldApplication extends SimpleApplication

{

public HelloWorldApplication (RequestContext context, Locale locale)

{
}

protected String getSpecificationAttributeName ()

{
}

protected String getSpecificationResourceName ()

{

}
}

super (context, locale) ;

return "Hello.specification";

return "/tutorial/hello/HelloWorld.application";

Application Serviet

The application servlet is a "bridge" between the servlet container and the application object. It's

job is simply to create (on the first request) or locate (on subsequent requests) the application
object.

This is all accomplished in a single method, getApplication().

HelloWorldServlet.java

package tutorial.hello;

import com.primix.tapestry.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends ApplicationServlet

{

11

TAPESTRY TUTORIAL

protected IApplication getApplication (RequestContext context)

{

String name = "Hello.application";
IApplication application;

application = (IApplication)context.getSessionAttribute (name) ;

if (application == null)

{

application = new HelloWorldApplication (context, null) ;
context .setSessionAttribute (name, application) ;

}

return application;

Application Specification

The application specification is used to describe the application to the Tapestry framework. It
provides the application with a name, and a list of pages.

This specification is a file that is located on the Java classpath. In a deployed Tapestry application,
the specification lives with the application's class files: either in a Jar file, or in the WEB-
INF/classes directory of a war (Web Application Archive).

HelloWorld.application

<?xml version="1.0"?>

<!DOCTYPE application PUBLIC
"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry 1 0.dtd">

<application>
<name>Hello World Tutorial</name>

<page>
<name>home< /name>
<specification-paths>/tutorial/hello/Home.jwc
</specification-path>

</page>
</application>

Our application is very simple; we give the application a name and define a single page, named
'home' and identify the component that is used for that page. In Tapestry, components are
specified with the path to their specification file (a file that end with "jwc’).

Page 'home' has a special meaning to Tapestry; when you first launch a Tapestry application, it
loads and displays the 'home' page. All Tapestry applications ate required to have a home page.

12

TAPESTRY TUTORIAL

Home Page Specification

The home page specification defines the Tapestry component responsible for the page. In this
first example, our component is very simple:

<?xml version="1.0"?>

<!DOCTYPE specification PUBLIC
"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry 1 0.dtd">

<specifications>
<class>com.primix.tapestry.BasePage</class>
</specification>

This simply says that Home is a kind of page. We use the supplied Tapestry class
com.primix.tapestry.BasePage since we aren't adding any behavior to the page.

Home Page Template

Finally, we get to the content of our application. This file is also a Java resource; it isn't directly
visible to the web server. It has the same location and name as the component specification,
except that it ends in "html".

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<htmls>
<head>
<title>Hello World</title>
</head>
<body>
Welcome to your first Tapestry Application.

</body>
</html>

Launch ServietExec Debugger

The ServletExec Debugger server is launched using the "Run Java" toolbar button, by selecting
Build * Run from the menu, or by hitting F4.

13

TAPESTRY TUTORIAL

IO R WHMW DN
Eh |0 SP LD |

Once launched. the output window will show the progress as the server starts up:

C:\jdk1l.2.2\bin\java.exe newatlanta.sedebugger.ServletExecDebugger -home
../ServletDebug -root
Working Directory - D:\Work\Tutorial\
Class Path -
D:\Work\lib\Tapestry.jar;D:\Work\lib\jaxp.jar;D:\Work\lib\parser.jar;D:\Wor
k\1lib\ServletExecDebugger.jar;D: \Work\lib\gnu-
regexp.jar; .;d:\tools\Kawa5.0betal\kawaclasses.zip;C:\jdk1l.2.2\1lib\tools. ja
r;C:\jdkl.2.2\jre\lib\rt.jar;C:\jdk1l.2.2\jre\1lib\i18n.jar
New Atlanta ServletExec Debugger 2.2

Copyright (c) 1997-1999 New Atlanta Communications, LLC.

All rights reserved. http://www.newatlanta.com/
ServletExec 2.2 initialized
ServletExec ServletExec listening on port 8080

Like any servlet engine, servlets must be configured before they can be invoked. ServletExec
Debugger includes a servlet for administrating and configuring its environment. This is accessed
with the following URL:

http://localhost:8080/servliet/admin

The administration interface allows several aspects of the servlet container to be managed; we're
mostly intererested in mapping servlets to Java servlet classes, and to mapping URL fragments to
servlets.

14

TAPESTRY TUTORIAL

3 ServietExec Admin - Microzoft Internet Explorer

| Ele Edt View Favoites TIooks Help

J =a - m - @ A | (%] @ | E) Js‘-‘t;ldress @ hitp: /localho st 8080/ serviet/admin

ServletExec

Help

Register
About

View Logs

Serviets

Configure
Aliases
Filters

Logging

Server-Side

ServletExec” Ad:
Configure Servlets

Enter data into the top (blank) form to configure a new servl
existing serviets. To delete a servlet, edit its data so all text £
15 available at the bottom of the page.

Servlet Name: I

Servlet Class: |

'nde Rase: |

We need to create a new servlet named "HelloWorld" tha maps to the Java servlet class we've

created:

servlet Wame: |HEIIDWDrId

Servlet Class: [tutorial hello. HelloWarldSenlet

Code Base: ||

Initialization
Arguments:

Init Load Order: I

=

[" Loaded Submit | Reset |

Next we need to create a URL alias for the servlet:

15

TAPESTRY TUTORIAL

Servlets
Configure

Filters
Lowgugi

Alias Servlet Name(s)

|hello [Hellowarld

LI U

Finally, we can use the servlet alias to build a URL:

http://localhost:8080/hello

Which will result in the following page:

#¥ Hello World - Microsoft Intemet Explorer
| Ele Edt View Faveites Tools Heb |

|ero - Q0 A 33 oS || Addes[E) hpiocahoseoaomelo =] || Links |

Welcotne to vour first Tapestry Application.

-
4

|E] Dane | [_Tﬂ Local infranet

Not much of an application ... there's no interactivity. It might as well be a static web page, but it's
a start. Remember, there was no JavaServer page here, and now HTML directly visible to the
web server. There was an application consisting of a single component.

In the following chapters, we'll see how to add dynamic content and then true interactivity.

16

http://localhost:8080/hello

TAPESTRY TUTORIAL

Dynamic Content

This excample will add a tiny amount of interactivity, as well as some very
simple dynamric content ... content that is different each time the "page’ is
viewed.

n this section, we'll create a new web application that will show some dynamic content. We'll
also begin to show some interactivity by adding a link to the page.

Our dynamic content will simply be to show the current date and time. The interactivity will
be a link to refresh the page. It all looks like this:

<} Simple - Microzoft Intemnet Explorer

| Fle Edt Wew Faveites Took Help |“
[& -5 DA A |53 S || addess [E] hp:/ Aocathost 8080 simple =] | Links |
=

This application demonstrates some dynamic behawor using Tapestry components
The cwrent date and tme 15: Tue Jul 11 14:23:53 EDT 2000

Chel here to refresh.

-
7

&) Dore [| "= Local intranet

Clicking the word "here" will update the page showing the new data and time. Not incredibly
interactive, but it's a start.

The code for this section of the tutorial is in the package tutorial.simple.

17

TAPESTRY TUTORIAL

We need to create a new servlet and application object, but they're almost identical to our earlier
ones (only the parts marked in blue are different). The real action in this section will be the new
version of the home page.

SimpleServlet.java

package tutorial.simple;

import com.primix.tapestry.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleServlet extends ApplicationServlet

{

protected IApplication getApplication (RequestContext context)

{
String name = "simple.application';
TApplication application;

application = (IApplication)context.getSessionAttribute (name) ;

if (application == null)

{

application = new SimpleTutorialApplication (context,
null) ;
context .setSessionAttribute (name, application) ;

}

return application;

The bold text identifies the only significant changes from the previous HelloWorldServlet class.
We are storing the application specification under a different name as an attribute of the
HttpSession.

SimpleTutorialApplication.java

package tutorial.simple;

import java.util.*;
import com.primix.tapestry.*;
import com.primix.tapestry.app.*;

public class SimpleTutorialApplication extends SimpleApplication

{

public SimpleTutorialApplication (RequestContext context, Locale locale)

{

super (context, locale) ;

}

protected String getSpecificationAttributeName ()

{

return "Simple.specification";

}

protected String getSpecificationResourceName ()

18

TAPESTRY TUTORIAL

{

return "/tutorial/simple/Simple.application";

}
}

Again, the bold text shows the significant changes. We use a different attribute name of the
ServletContext to store the parsed application specification (so it can be shared between sessions).
Since this is a different application, we use a different application specification.

The application specification is also straight forward:

<?xml version="1.0"?>

<!DOCTYPE application PUBLIC
"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry 1 0.dtd">

<applications>
<name>Simple Tutorial</name>

<page>
<name>home</name>
<specification-path>/tutorial/simple/Home.jwc
</specification-path>

</page>

</application>

Things only begin to get more interesting when we look at the HTML template for the home
page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Simple</title>
</head>
<body>
This application demonstrates some dynamic behavior using Tapestry
components.

<p>The current date and time is: <jwc id="insertDate"/>
<p>Click <jwe id="refresh">here</jwec> to refresh.

</body>
</html>

This looks like ordinary HTML, except for the special <jwc> tags (highlighted in blue and
underlined). "jwc" is an abbreviation for "Java Web Component"; these tags are placeholders for
the dynamic content provided by Tapestry components.

We have two components. The first inserts the current date and time. The second component
creates a hypetrlink that refreshes the page.

19

TAPESTRY TUTORIAL

One of the goals of Tapestry is that the HTML should have the minimum amount of special
markup. This is demonstrated here ... the <jwc> tags blend into the real HTML of the template.
We also don't confuse the HTML by explaining exactly what an insertDate or refresh is; that
comes out of the specification (described shortly). The ids used here are meaningful only to the
developer, the particular type and configuration of each component is defined in the component
specification.

Very significant is the fact that a Tapestry component can wrap around other elements of the
template. The refresh component wraps around the word "here". What this means is that the
refresh component will get a chance to produce emit some HTML (an <a> hyperlink tag), then
emit the HTML it wraps (the word "here"), then get a chance to emit more HTML (the ""
closing tag).

What's more important is that the component can not only wrap static HTML from the template,
it may wrap around other Tapestry components ... and those components may themselves wrap
text and components, to whatever depth is required.

And, as we'll see in later chapters, a Tapestry component itself may have a template and more
components inside of it. In a real application, the single page of HITML produced by the
framework may be the product of dozens of components, effectively "weaved" from dozens of
HTML templates.

Again, the HTML template doesn't define what the components are, it is simply a mix of static
HTML that will be passed directly back to the client web browser, with a few placeholders (the
<jwc> tags) for where dynamic content will be plugged in.

The page's component specification defines what types of components are used and how data
moves between the application, page and any components.

<?xml version="1.0"?>

<!DOCTYPE specification PUBLIC
"-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry 1 0.dtd">

<specifications>
<class>tutorial.simple.Home</class>

<components>
<component >
<id>insertDate</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>currentDate</property-path>
</binding>
</bindings>
</component >

<component >

TAPESTRY TUTORIAL

<id>refresh</id>
<type>Page</type>

<bindings>
<static-binding>
<name>page</name>
<value>home</value>
</static-binding>
</bindings>
</component >
</components>

</specification>

Here's what all that means: ‘The Home page is implemented with a custom class,
tutorial.simple.Home. It contains two components, insertDate and refresh.

The two components used within this page are provided by the Tapestry framework.

The insertDate component is type Insert. Insert components have a value parameter used to
specify what should be inserted into the HITML produced by the page. The insertDate
component has its value parameter bound to a JavaBeans property of its container (the page), the
currentDate property.

The refresh component is type Page, meaning it creates a link to some other page in the
application. Page components have a parameter, also named page, which defines the name of the
page to navigate to. The name is matched against a page named in the application specification.

In this case, we only have one page in our application (named 'home'), so we using a static binding
for the page parameter.

That just leaves the implementation of the Home page component:

package tutorial.simple;

import java.util.*;
import com.primix.tapestry.spec.*;
import com.primix.tapestry.*;

public class Home extends BasePage

{

public Home (IApplication application,
ComponentSpecification componentSpecification)

super (application, componentSpecification) ;

}

public Date getCurrentDate ()

{

return new Date () ;

}
}

21

TAPESTRY TUTORIAL

Home implements a read-only JavaBeans property, currentDate. This is the same currentDate
that the insertDate component needs. When asked for the current date, the Home object returns
a new instance of the java.util. Date object.

The insertDate component converts objects into strings by invoking toString() on the object.
Now all the bits and pieces are working together.

To run this new Tapestry application, you'll have to map servlet 'Simple' to class
'tutorial.simple.SimpleServlet' and map alias '/simple' to servlet 'Simple'. You can then use the
following URL to try out the dynamic web application:

http://localhost:8080/simple

Run the application, and use the View Source command to examine the HTML generated by
Tapestry:

< !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html >
<head>
<title>Simple</title>
</head>
<body>

This application demonstrates some dynamic behavior using Tapestry
components.

<p>The current date and time is: Wed Jul 19 10:48:26 EDT 2000

<p>Click
here to refresh.

</body>
</html>

This should look very familiar. Text which was generated dynamically, by Tapestry components,
is in bold font. As you can see, Tapestry not only inserted simple text (the current date and time,
obtained from an java.util.Date object), but the refresh component inserted the <a> and
 tags, and created an appropriate URL.

TAPESTRY TUTORIAL

Interactive Application

A more ambitions exanmple, we'll build a simple adding machine.

ow it's time to build a real, interactive application. We'll still use just a single page, but it
will demonstrate many of the more interesting features of Tapestry, including
maintenance of server side page state.

Our application allows the user to sum up a list of numbers.

-*3 Adder Tutonal - Microzoft Intemnet Exploraer

5_ File Edit Yiew Favoiites Tool: Help |
e-=-Qad ES =S |Jﬂsrdress [&] hitp:#/locahast 808D/ adder/ actionhome/1.0 =] || Links |

=
Value: |
At [ist
Items
2.0
FR
2.6
J /|
2] Dove | T8t Local inteanet 5

The user enters a number into the value field and clicks "Add to list". The number is added to the
list of items and factored into the total.

A Form component containing a TextField component will be used to collect information from
the user. A Foreach component will be used to run though the list of items, and Insert

components will be used to present each item in the list, as well as the total.

If the user enter in a non-number, then an error message is displayed.

23

TAPESTRY TUTORIAL

; Adder Tutorial - Microsoft Internet Explorer ;lglil

J File Edit Wiew Favorites Tools Help |
|« -=» -9 | E3E | S |Jnddress IE hitp:/f127.0,0, 1:8080/adder factionfhome/1/0 ¥ | |JLinks »
=]
Please enter a valid number.
WFQUE:FDD
Add to list |
Items
187
187
[
|&] Done I_l_lﬂ Internst 5

As with the previous examples, the servlet and application objects are simple variations on the
previous two sets (they are ommited here).

The application specification is, likewise, a variation on the prior example.
The code for this section is in the tutorial.adder package.

We'll start with the HTML template for the home page:

< !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Adder Tutorial</title>
</head>
<body>

<jwc id="ifError">
<table border=1>

<tr>
<td bgcolor=red>

<jwc id="insertError"/>

</td>
</tr>
</table>
<p>
</jwe>

<jwc id="form">

24

TAPESTRY TUTORIAL

<table>
<tr>
<td align=right>Value:</td>
<td><jwc id="textfield"/></td>
</tr>
<tr>
<td> </td>
<td><input type=submit value="Add to list"s></td>
</tr>
</table>

</jwe>

<table>
<tr> <ths>Items</th> </tr>
<jwc id="e">
<tr align=rights>
<td>
<jwc id="insertCurrentValue"/>
</td>
</tr>
</jwe>

<tr align=rights>
<td>
<hr>

<jwc id="insertTotal"/>
</td>
</tr>
</table>

</body>
</html>

Again, Tapestry takes care of most of the details. The form component will turn into an HTML
<FORM> element, and the correct URL is automatically generated. The textfield component
will become an <INPUT TYPE=TEXT>, with the necessary smarts to collect the value
submitted by the user and provide it to the page.

The e component is a Foreach, used for running through a list of elements (supplied as a List,
Iterator or an array of Java objects). We've already see the Insert component.

Next we have the specification:

<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC "-//Primix Solutions//Tapestry Specification
1.0//EN"

"http://tapestry.primix.com/dtd/Tapestry 1 0.dtd">

<specifications>
<class>tutorial.adder.Home</class>

<components>

TAPESTRY TUTORIAL

<component >
<id>ifError</id>
<type>Conditional</type>

<bindings>
<binding>
<name>condition</name>
<property-path>error</property-paths>
</binding>
</bindings>
</component >
<component>
<id>insertError</id>
<type>Insert</type>
<bindings>
<binding>
<name>value</name>
<property-path>error</property-path>
</binding>
</bindings>
</component >
<component >
<id>form</id>
<type>Form</type>
<bindingss>
<binding>

<name>listener</name>
<property-path>formListener</property-path>
</binding>
</bindings>
</component >

<component >
<ids>textfield</id>
<type>TextField</type>

<bindings>
<binding>
<name>text</name>
<property-path>newValue</property-path>
</binding>
</bindings>
</component >

<component >
<id>e</id>
<type>Foreach</type>

<bindings>
<binding>
<name>source</name>
<property-path>items</property-path>
</binding>

TAPESTRY TUTORIAL

</bindings>
</component >

<component >
<id>insertCurrentValue</id>
<type>Insert</type>

<bindingss>
<binding>
<name>value</name>
<property-path>components.e.value</property-path>
</binding>
</bindings>
</component >

<component >
<id>insertTotal</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>total</property-path>
</binding>
</bindings>
</component >
</components>

</specification>

We only want to display the error message if there is one, so the ifText is conditional on there
being a non-null error message (the Conditional component treats null as false).

For the form component, all we have to do is supply a listener, an object that is informed when
the form is submitted.

For the textfield component, we provide a text parameter that provides the default value for the
<INPUT> element, as well as a place to put the value submitted on the form. This must be of
type javalang.String, so we need to do a little translation (in our Java class), since internally we
want to store the value as a double.

For the e component, we supply a binding for the source parameter. For each item in the source
list, it will update its value property, which is later accessed by the Insert component. The
property path components.e.value accomplishes this: the page has a component property, which
is a Map of the components on the page. e is the id of a component, and a key in the Map. It has
a property named value, which is the current item from the source list.

A Foreach also has a parameter named value. By creating a binding for this parameter, the
Foreach can update a property of the page, or some other component. This is more commonly
used when the items in the list are business objects and the application needs to invoke business
methods on them.

Finally, the Java code for the home page puts everything together:

27

TAPESTRY TUTORIAL

package tutorial.adder;

import com.primix.tapestry.*;

import com.primix.tapestry.components.*;
import com.primix.tapestry.spec.*;
import java.util.*;

public class Home extends BasePage

{

private List items;
private String newValue;
private String error;

public Home (IApplication application, ComponentSpecification
specification)

super (application, specification) ;

}

public List getItems ()

{
}

public void setItems (List value)

{

return items;

items = value;

fireObservedChange ("items", value) ;

}

public void setNewValue (String value)

{
}

public String getNewValue ()

{
}

public void detachFromApplication ()

{

newValue = value;

return newValue;

items = null;
newValue = null;
error = null;

super.detachFromApplication() ;

}

public void addItem(double value)

{

if (items == null)

{

items = new ArrayList () ;

TAPESTRY TUTORIAL

fireObservedChange ("items",

}

items.add (new Double (value)) ;

fireObservedChange () ;

items) ;

}

public double getTotal ()

{

Iterator 1i;
Double item;

double result = 0.

if (items != null)

{

0;

1 = items.iterator() ;
while (i.hasNext ())

{

item =

(Double) 1i.next () ;

result += item.doubleValue () ;

}

return result;

}

public IActionListener getFormListener ()

{

return new IActionListener ()

{

public void actionTriggered (IComponent component,

IRequestCycle cycle)

{

try

{

}

public String getError ()

{
}

return error;

double item = Double.parseDouble (newValue) ;
addItem(item) ;

newValue = null;
(NumberFormatException e)

error = "Please enter a valid number.";

TAPESTRY TUTORIAL

That may seem like a lot of code for what we're doing, but in reality, very much is going that we
don't have to write:

e Processing the submitted form
e Storing the List of items persistently between request cycles
e Encoding and decoding URLs

e Very robust exception support

Tapestry components, using JavaBeans properties, take care of moving data to and from the
HTML form. Our application merely has to supply the logic to properly respond when the form
is submitted. In this case, converting the text into a double that can be added to the list.

Because we let Tapestry set the names of our form elements, there's no possibility of mismatched
names between the Java code (setting defaults and interpreting the posted request) and the
HTML template.

Launching the Application

Run the application, then use the ServletExec Admin page to configure the servlet. Map servlet
"Addet" to "tutotial.adder.AdderServlet" and map alias "/addet" to servlet "Adder".

Enter the following URL to start the application:

http://localhost:8080/adder

Enter a few values into the text field to see how the application works, adding them together into
an ever larger list.

Adding Interactivity using Listeners

To understand the relationship between the home page specification, the home page class and the
components used by the home page, it is necessary to understand the JavaBeans properties
provided by the home page class.

We implement several JavaBeans properties on this page:

Property Type R/W Description
name
newltem String R/ W Stores the string enterred into the form.

30

http://localhost:8080/adder

TAPESTRY TUTORIAL

items List (of R/W Items in the list. Persists between request
Double) cycles.
formlistener IActionListener Read Informed when form is submitted.
Only
total double Read Total of items; computed on the fly.
Only

This example demonstrates how to provide interactivity to an application. For Tapestry,
interactivity is defined as a request cycle initiated by a user clicking on a hyperlink or submitting a
form.

In our case, we want to know when the form containing the TextField is submitted so that we can
provide application specific behavior -- adding the value enterred in the TextField to the list of
items.

This is accomplished using a listener, an object that implements the Java interface
IActionListener. This interface defines a single method, actionTriggered (). When the
form is submitted, all the components wrapped by the form (in this case, the TextField) are given
a chance to retrieve their values from the request and update properties of the application (the
TextField sets the currentltem property). The form then gets its listener and invokes the
actionTriggered () method.

In the specification, the listener parameter was bound to the formlistener property of the page.
The code in the getFormListener () method creates an anonymous inner class and returns it.

Inner classes have access to the private fields and methods of the class. In this case, the inner
class invokes the addItem() method to add the currentltem (with a value provided by the
TextField component) to the items List.

A listener is free to do anything it wants. It can change the state of the application, or can retrieve
other pages (by name) from the request cycle object, and can change properties of those pages. It
can even chose a different page to render, by invoking setPage () on the request cycle.

Persistant Page State and Page Pooling

The home page of this application uses a persistant page property, a List that contains
java.lang.Doubles, the items in the list.

Persistent page state is one of the most important concepts in Tapestry. Fach page in the
application (and in fact, even components within the page) has some properties that should
persist between requests. This can be values such as the user's name and address, or (in this case)
the list of numbers enterred so far.

31

TAPESTRY TUTORIAL

In traditional JavaServer Pages or servlet applications, a good chunk of code must be written to
manage this. The values must be encoded in cookies, as hidden form fields, as named attributes
of the HttpSession, or stored into a server-side flat file or database. Each servlet, or page, or
whatever was directly responsible for managing this ... which leads to many half realized, ad-hoc
solutions and an avalanche of bugs and even security holes.

With Tapestry, the framework takes care of these persistence issues. When a persistent property
of a page is changed the accessor method also invokes the method fireObservedChange ().
This method informs a special object, the page's recorder, about the property and its new value.

When the page is next used, the value is restored automatically. Within the Tapestry framework,
all of these pages, components, specifications and templates are converted into objects.
Assembling a page is somewhat expensive: it involves reading all those specifications and
templates, creating and initializating component objects, creating binding objects for the
components, and organizing the components into a hierarchy.

Creating a page object for just one request cycle only to discard it is simply unacceptible. Pages
should be kept around as long as they are needed; they should be re-used in subsequent request
cycles, both for the same client session, or for other sessions.

The Tapestry framework accomplishes this by pooling instances of page objects; there could
concievably be a handful of different instances being shared by thousands of client sessions. This
is a kind of shell game that is important to maintain scalability.

What this means for the developer is some minor extra work. On each request cycle, a different
instance of the page object may be used to handle the request. This means that data can't simply
be stored in the instance variables of the page between request cycles.

Tapestry seperates the persistent state of a page from the actual page objects. The state is stored
seperately, making use of the page recorder objects. When needed, a page can be created or
reclaimed from the page pool and have all of its persistant properties set by the page recorder.

The developer has three responsibilities when coding a page with persistant state:

e The property must be serializable; this includes Java scalar types (boolean, int, double,
etc.), Strings, common collection classes (ArrayList, HashMap, etc.) and user-defined
classes that implement java.io.Serializable.

e When the value of the property changes, the £ireObservedChange () method must be
invoked, to inform the page recorder about the change.

e When the request cycle ends and the page is returned to the pool, the persistant state
must be reset to its initial value (as if the page object was newly instantiated). This is done
in the detachFromApplication () method.

32

TAPESTRY TUTORIAL

Dynamic Page State

This page has a bit of dynamic state; state that changes as the page is being renderred. The value
property of the Foreach component takes on different values from the items List as the page is
renderred. Dynamic state is easier to handle than persistant state; for completeness, it must also
be reset in the detachFromApplication () method.

33

TAPESTRY TUTORIAL

Tapestry Run Time Errors

Tapestry has some rich support for detecting and presenting errors at
runtinze.

One of the benefits to developing using Tapestry is its robust exception handling support.

We'll demonstrate these by creating invalid URLs.

Stale Links

This section will demonstrate how Tapestry deals with stale /inks, a situation that occurs when the
user uses the "back" button in their browser in inappropriate ways.

To begin, start up the Adder application and enter a few numbers into it. The values entered do
not mattet.

34

TAPESTRY TUTORIAL

3 Adder Tutorial - Microsoft Internet Explorer ;lglil

J File Edit Wiew Favorites Tools Help |
|a-=»- @8 | IS |Jﬁ'-ddress I@ hitp:/f127.0,0, 1:8080/adderfactionfhome/z/o ¥ | |JLinks =
-l

Walue: |

Add to list |

Ttems
230
21.0

#78.0

8220

a

|&] Done I_l_lﬂ Internst

Now, use the browser back button to back up a screen or two:

3 Adder Tutorial - Microsoft Internet Explorer i m|

J File Edit Wiew Favorites Tools Help |
J R I | | BN | =] |J.ﬁ.gldress @ htkp:ff127.0.0,1: 8080/ adder factionfhome 10 j |JLinks e
=]

Walue: |15

A tolist

Items
23.0
21.0
44.10

[~

|&] Done I_I_la Internet A

You've backed up in time, as far as the web application is concerned. You ate about to ask the
application to add the number 15 to the list of numbers (23 and 21) you previously entered. But
really you already entered three numbers (23, 21, 878). By backing up and submitting the form
with a different value, you are breaking the rules of the converstation between you (running the
web client) and the Tapestry application running on the server.

Tapestry is built to detect this. When you submit the form, you'll see a standard error page:

35

TAPESTRY TUTORIAL

/3 stale Link - Microsoft Internet Explorer 10| x|

J File Edit Wiew Fawvorites Tools Help |
|a-=»- @8 | S| S |Jﬁ'-ddress I@ hitp:/f127.0,0, 1:8080/adderfactionfhome/z/o ¥ | |JLinks =
-l

You have clicked on a stele fnk This 15 often the result of using vour browser's hack button. You
may continue by returning to the application's home page.

| K

|&] Done I_l_lﬂ Internst

Behind the scenes, Tapestry has been tracking changes to the home page. Everytime there's a
change, it increments a version number for that page. The URL for the form includes the
expected version number. By going back and time, you have provoked a mismatch between the
version number when the page was rendered and the actual value (which reflects a change ... the

addition of the third number).

When you return to the home page, everything is synchronized again, and Tapestry displays the
correct list of numbers:

36

TAPESTRY TUTORIAL

3 Adder Tutorial - Microsoft Internet Explorer ;lglil

J File Edit Wiew Favorites Tools Help |
|« -=» -9 | E3E | S |Jnddress IE http:/f127.0.0, 1:8080/adder home | |JLinks »
=

Walue: |

Add to list |

Ttems
230
21.0

#78.0

8220

a

|&] Done I_l_lﬂ Internst

What we've seen hete is simply the defanlt behavior for Tapestry. Tapestry never locks you in to a
single approach; with some additional code it is possible to make applications respond more
cleanly when stale links are encountered.

Stale Sessions

As we just demonstrated, Tapestry is quite careful about conversational state. What happens if all
the conversation state is lost?

Go back to the Kawa IDE and stop, then restart, ServletExec Debugger. This wipes out all
session information.

Now, try to add an additional number to the list.

37

TAPESTRY TUTORIAL

/Z Session Timeout - Microsoft Internet Explorer . 10| x|

J File Edit Wiew Fawvorites Tools Help |
|&-=»- @8 | S| S |Jﬁ'-ddress I@ hitp:/f127.0,0, 1:8080/adder factionfhome/3/0 ¥ | |JLinks =
-l

Tour session has tumed out.

Web applcations store mformation about what you are doing on the server. This mformation 1z
called the session.

Web servers must track many, many sessions. I you are mactive for a long enough tune (usually, a
fewr runubes), this information 1z discarded to malce room for active users.

At this point you may restart the session to contine.

|~
|&] Done I_l_lﬂ Internst v

Because Tapestry can't find any information about your session, it assumes the session timed out
and was discarded, and so presents the default error page for this situation.

Remember that most Tapestry URLs are very conversational, they have version numbers and all
that stored inside them and they only make sense in context with the data stored on the server.

This means that most pages in a Tapestry application can't be bookmarked; the URL that would
be stored in the client's web browser is not meaningful. Creating bookmarkable pages is a subject
of a later tutorial.

Exception Handling

Tapestry handles exceptions, catching them when they occur and formatting a readable page with
all the details. Of course, in your own application, such exceptions will never occur, or will be
caught and handled by your own code.

Still, it's nice that Tapestry can assist when debugging during development, when exception may
in fact be thrown.

To demonstrate what Tapestry does for exceptions, we need to do a little bit of sneaky work.

First, enter a few numbers into the Adder application:

38

TAPESTRY TUTORIAL

3 Adder Tutorial - Microsoft Internet Explorer ;lglil

J File Edit Wiew Favorites Tools Help |
|a-=»- @8 | IS |Jﬁ'-ddress I@ hitp:/f127.0,0, 1:8080/adder factionfhome/1/0 ¥ | |JLinks =
=4
1\uraluna:|
Add to list |
Items
230
11.0
340
id
|&] Done I_l_lﬂ Internst 5

Now, edit the URL in the Address field, and change the word "action" to "acton" (i.e, remove the
letter '1') and hit return.

/2§ Exception - Microsoft Internet Explorer 10| x|

J File Edit Wiew Favorites Tools Help |
|a-=»- B8 | S| S |Jﬁ'-ddress I@ hitp:/f127.0,0, 1:8080/adderfactonfhomef1/0 ¥ | |JLinks =

An exception has occured. :I
Tou may continue by restarting the session

Name: com. primix tapestry. ApphcatonBuntimeEzception
MMessage: Lpplication does not implement a service named acton
Trace:

com.primix tapestry app AbstractApplication . getService
(AbstractApplication java: 59%)

com.primix tapestry app AbstractApplication service
(Abstractpplication java 906)

. . com.Drimix.tamestw.ADDIicationSewIet.dOGetmDDIicationSewIet.iawa:Bd’l‘J _ILl
4 »
|&] Done I_l_lﬂ Internst 5

Tapestry has discovered that the URL was invalid ... in this case that the word "action" was
changed to "acton". Since Tapestry normally produces all the URLs it must later consume, it
doesn't make an effort to pretty this up (as it does with stale links and sessions), instead it throws
an exception which is caught and displayed.

39

TAPESTRY TUTORIAL

As you may notice, the exception report is extremely complex. It displays all the information it
can about the exception that was thrown ... it can even break apart nested exceptions and dig
down to the deepest one. It shows the stack trace where the deepest exception was thrown. It

also provides information about the HttpRequest, HttpSession, ServletContext and Java
VM.

Finally, it includes a link that will destroy the current HttpSession and restart the application from
scratch.

TAPESTRY TUTORIAL

Debugging a Tapestry
Application

We'll show how to debug a Tapestry application while it runs, by running
the servlet container inside Kawa's debugger.

e're going to make a quick detour and discuss debugging a Tapestry application using
Kawa.

We'll continue using the previous example, this time setting a breakpoint to
demonstrate how the Foreach component updates the page property 'currentltem'.

First, edit the file tutorial/adder/Home.java. Navigate to the method setNewValue () and
set a breakpoint by clicking F9 or the menu item Build » Breakpoint Set/UnSet. A red marker
appears in the gutter along the left edge:

41

TAPESTRY TUTORIAL

& - Tutorial - [D:\...\ adder’Home.javal

digw Text Project Build Packages Info Customize Plugin Tools Window Help

[ﬁl ¥ B ||HDSuchCDmpDnentExj| @l & R ||311 | L S =

AL E || W %

?l ‘ super{application, specification};
rojects =
:I?-il;EIefile public Li=st getltemns()
%ﬂlii:d return items:
adder |-
----- Adder. application

B Adderbpplication java public woid setltems({list walue)

B AdderServlet java L items = walue:
Harre. htrnl
B Homejava fireCbzervedChange("itens", walues):
e Harre. e
%EDTE' public woid setHewValue(String walue)
x] hello
] simple [] newWValue = valus:
3] survey
§Build En*_\fironmenl public String getHewValu=()
JixFoundation i
ey return newValus:

VIPERICT bt 1

At this point, you can launch the debugger, using the Build » Debug * Run menu item, or by
hitting F5, or by clicking the debug icon on the toolbar.

& @

Start/Conk - F5

At this point, Kawa will reconfigure itself slightly, adding a "JVMDI Watch" window (this is
window that allows values to be displayed while debugging).

Launch the Adder application (from the previous chapter) with the URL:
http://localhost:8080/adder
When the form comes up, enter a value and click the submit button.

The Kawa window will raise itself, and the Project pane (along the left side of the window) will
show the stack trace leading upto the break point.

42

http://localhost:8080/adder

TAPESTRY TUTORIAL

- com. primis. tapestiy, components, T extField: render: 226
com. primix. tapestiy. binding. PropertyBinding: setString: 209
com. primix. tapestiy. binding, PropertpBinding: sefy alus: 224
com. primix. foundation. prop. PropertyHelper: set: 504

com. primis. foundation. prop. Propertpd coeszon set 153
java lang reflect Method:imeoke:-1

tutorial adder Haomne: seth sty alue: 34

B‘:I thiz=ingtance of tutorial. adder. Home(id=EE3), Object

oyalue="23", Sting >

I;I

firetbzervedChange("itens", walue):

public woid setHewValue(String walue)

X
—

newValue = wvalue;

public String getHewValus()
{

return newValue;
<

stput | Buid | Findin Files

Torking Directory — D ~Work~Tutorial*

“lassFath — D »Work~lib~Tapestry.jar;D ~Work-lib“ServletEzecDebugger . jar ;D “Work>lib“gnu
Worl~lib~FrimizFoundation. jar:D:~Work-lib~zxerce=s. jar:D ~Worl~Tutorial~.build~classe=s; .
«tools. jar:c:~jdkl. 2. 2%jre~lib~rt . jar;c:~jdkl. 2. 2~jre~lib~118n.jar;c:~Kawad . K l-kawaclasse
‘roperties - —Xbootclasspath:c:™~jdkl .2 2~1lib~tools. jar;c:~jdkl. 2. 2~jre~lib“~rt . jar:c:~jdk

~118n. jar:
Jebug Start. .

Jew Atlanta ServletEzec Debugger 2072

You can use the stack track to inspect the object, or see the parameters to the method.

Hit the continue button (or Build » Debug » Cont menu item, or F5) to allow ServletExec and

Tapestry to finish the response.

TAPESTRY TUTORIAL

Re-usable Components

Tapestry is designed to facilitate the creation of re-usable comopnents; this
chapter will show an example of such a component.

components it to create a common "border" for the application that includes basic
navigation. We'll be creating a simple, three page application with a navigation bar down the

left side.

l n this tutorial, we'll show how to create a re-usable component. One common use of

/} Feusable Component Tutorial - Microzoft Internet Explorer

| Ele Edt View Favortes Tools Heb E
& -2 - QB A &3 || addess[E] hp/ocahosta080border =] || Links >
=
Iothing much doing here on the home page. Visit one of our other fine pages.
=
&) Done l_!_ E'g Local intranet i

Navigating to another page results in a similar display:

TAPESTRY TUTORIAL

-’ﬁ Reuzable Component Tutonal - Microsoft Internet Explorer

| Fie Edt View Favoites Tooks Help -

| -=» - DD D TS |_.&§dms¢ €] hitp: /locshost B080/barder/page/credo ﬂJ Links *
=l

[

Ejn&ﬁ““."“””m..n“__"._m_"._”m._.“”_m..n___"__m_ "{“'Eﬂiﬁ&ﬂﬂkﬁ&"”""””:@

Each page's content is confined to the silver area in the center. Note that the border adapts itself
to each page: the title "Home" or "Credo" is specific to the page, and the current page doesn't
have an active link.

Because this tutorial is somewhat large, we'll only be showing excerpts from some of the files.
The complete source of the tutorial examples is available seperately, in the tutorial. border package.

Each of the three pages has a similar HTML template:

<jwc id="border">

Nothing much doing here on the home page. Visit one of our other
fine
pages.

</jwe>

What we're doing here is wrapping the entire page inside the border. Note that we don't specify
an <HTML> or <BODY> tags; those are provided by the border (as well as the matching close

tags).

This illustrates a key concept within Tapestry: embedding vs. wrapping. The Home page embeds
the Border component (as we'll see in the Home page's specification). However, the Border
component wraps the content of the Home page ... the Home page HTML template indicates
the order in which components (and static HTML elements) get a chance to render. On the
Home page, the Border component 'bats' first azd cleanup.

The construction of the Border component is based on how it differs from page to page. You'l
see that on each page, the title (in the upper left corner) changes. The names of all three pages are

TAPESTRY TUTORIAL

displayed, but only two of the three will have links (the third, the current page, is just text). Lastly,
each page contains the specific content from its own HTML template.

Border.html

<HTML>
<head>
<title><jwc id="insertApplicationName"/></title>
</head>
<body>
<table border=0 bgcolor=gray cellspacing=0>
<tr valign=top>
<td colspan=3 align=left>
<jwc id="insertPageTitle"/>
</td>
</tr>
<tr valign=top>
<td align=rights>

<jwc id="e">

<jwe id="link"><jwc id="insertName"/></jwc>
</jwe>

</td>
<td valign=top bgcolor=silver>
<jwe id="wrapped"/>
</td>
<td> </td>
</tr>
<tr>
<td colspan=3> </td>
</tr>
</table>
</body>
</HTML>

The insertApplicationName and insertPageTitle components provides the name of the
application, and the title of the page within the application.

The e, link and insertName components provide the inter-page navigation links. Lastly, the
wrapped component provides the actual content for the page.

The Border component is designed to be usable in other Tapestry applications, so it doesn't hard
code the list of page names. These must be provided to the border component. In fact, the
application object provides the list.

<?xml version="1.0"?>
<!DOCTYPE specification PUBLIC "-//Primix Solutions//Tapestry Specification
1.0//EN"

"http://tapestry.primix.com/dtd/Tapestry 1 0.dtd">

<specifications>
<class>tutorial .border.Border</class>

TAPESTRY TUTORIAL

<parameters>
<allow-informal-parameters>no</allow-informal -parameters>

<parameter>
<name>title</names>
<java-type>java.lang.String</java-type>
<requireds>yes</requireds>

</parameter>

<parameter>
<name>pages</name>
<required>yes</requireds>
</parameter>
</parameters>

<components>

<component>
<id>insertApplicationName</id>
<type>Insert</type>

<bindingss>
<binding>
<name>value</name>
<property-
path>page.application.specification.name</property-paths>
</binding>
</bindings>
</component >

<component >
<id>insertPageTitle</id>
<type>Insert</type>

<bindings>
<inherited-binding>
<name>value</name>
<parameter-name>title</parameter-name>
</inherited-binding>
</bindings>
</component >

<component >
<idse</id>
<type>Foreach</type>

<bindings>
<inherited-binding>
<names>source</name>
<parameter-name>pages</parameter-name>
</inherited-binding>

<binding>
<name>value</name>
<property-path>pageName</property-path>
</binding>

47

TAPESTRY TUTORIAL

</bindings>
</component >

<component >
<id>link</id>
<type>Page</type>

<bindingss>
<binding>
<names>page</name>
<property-path>pageName</property-path>
</binding>

<binding>
<name>enabled</name>
<property-path>enablePagelLink</property-path>
</binding>
</bindings>
</component >

<component >
<id>insertName</id>
<type>Insert</type>

<bindings>
<binding>
<name>value</name>
<property-path>pageName</property-path>
</binding>
</bindings>
</component >

<component>
<id>wrapped</id>
<type>InsertWrapped</type>
</component >
</components>
</specification>

So, the specification for the Border component must identify the parameters it needs, but also the
components it uses and how they are configured.

We start by declaring two parameters: title and pages. The first is the title that will appear on the
page. The second is the list of page names for the navigation area. We don't specify a type for
pages because we want to allow all the possibilites (List, Iterator, Java array) that are acceptible as
the source parameter to a Foreach.

The insertApplicationName doesn't get its value from a parameter; it jumps from the page, to the
application, to the application specification and gets the name of the application.

Further down we see that the insertPageTitle component inherits the title parameter from its
container, the border component. Whatever binding is provided for the title parameter of the
border will also be used as the value parameter of the insertPageTitle component. Using these
inherited bindings simplifies the process of creating complex components from simple ones.

TAPESTRY TUTORIAL

Likewise, the e component (a Foreach) needs as its source the list of pages, which it inherits from
the Border component's pages parameter. It has been configured to store each succesive page
name into the pageName property of the Border component; this is necessary so that the Border
component can determine which page link to disable (it disables the current page since we're

already there).

The link component creates the link to the other pages. It has an enabled parameter; when false
the link component doesn't create the hyperlink (though it still allows the elements it wraps to
render). The Java class for the Border component, tutorial.border.Border, provides a
method, getEnablePageLink (), that returns true unless the pageName parameter (set by the e
component) matches the current page's name.

The final mystery is the wrapped component. It is used to render the elements wrapped by the
border on the page containing the border. Those elements will vary from page to page; running
the application shows that they are different on the home, credo and legal pages (different text
appears in the central light-grey box). There is no limitation on the elements either .. Tapestry is
specifically designed to allow components to wrap other components in this way, without any
arbitrary limitations.

This means that the different pages could contain forms, images or any set of components at all,
not just static HTML text.

The specification for the home page shows how the title and pages parameters are set. The title is
static, the literal value "Home" (this isn't the best approach if localization is a concern).

<?xml version="1.0"7?>

<!DOCTYPE specification PUBLIC
-//Primix Solutions//Tapestry Specification 1.0//EN"
"http://tapestry.primix.com/dtd/Tapestry 1 0.dtd">

<specification>
<class>com.primix.tapestry.BasePage</class>

<components>
<component >
<idsborder</id>
<type>Border</type>

<bindings>
<static-binding>
<name>title</name>
<value>Home</value>
</static-binding>

<binding>
<name>pages</name>
<property-path>application.pageNames</property-path>
</binding>
</bindings>
</component >
</components>

49

TAPESTRY TUTORIAL

</specification>

The pages property is retrieved from the application, which implments a pageNames property:

BorderApplication.java (excerpt)

private static final String[] pageNames =
{ "home", "credo", "legal" };

public String[] getPageNames ()

{

return pageNames;

}

How did Tapestry know that the type Border' (shown in bold in the page specification)
corresponded to the specification /tutorial /border/Border.jwc? Only because we defined
an alias in the application specification:

Border.application (excerpt)

<component >

<alias>Border</alias>

<type>/tutorial /border/Border.jwc</type>
</component >

Had we failed to do this, we would have had to specify the complete resource path,
/tutorial/border/Border.jwc, on ecach page's specification, instead of the short alias
'‘Border'. There is no magic about the existing Tapestry component types (Insert, Foreach, Page,
etc.) ... they each have an alias pre-registered into every application specification. These short
aliases are simply a convienience.

	Setting up the Tutorial Project
	ServletExec Debugger
	Application Object
	Application Servlet
	Application Specification
	Home Page Specification
	Home Page Template
	Launch ServletExec Debugger
	Launching the Application
	Adding Interactivity using Listeners
	Persistant Page State and Page Pooling
	Dynamic Page State
	Stale Links
	Stale Sessions
	Exception Handling

