PRIMIX SOLUTIONS

Core Labs

Tapestry
Tutorial

CORE LABS

Tapestry Tutorial

© Primix Solutions
One Arsenal Marketplace
Phone (617) 923-6639 ¢ Fax (617) 923-5139

Table of Contents

Introduction 2 Dynamic Content 17

Setting up Kawa and Interactive Application 23

ServletExec Debugger 3 Launching the Application 29
Setting up the Tutorial Project 4 Adding Interactivity using Listeners 29
ServletExec Debugger 8 Persistant Page State and Page

Hello World 10 Pooling 30
Application Object 10 Dynamic Page State 31
Application Servlet 11 Debugging a Tapestry
Application Specification 12 Application 32
Home Page Specification 12 Re-usable Components 34
Home Page Template 13

Launch ServletExec Debugger 13

TAPESTRY TUTORIAL

Introduction

T apestry is a new application framework developed at Primix Solutions.

Tapestry uses a component object model to represent the pages of a web application.
This is similar to spirit to using the Java Swing component object model to build GUIs.

Just like using a GUI toolkit, there's some preperation and some basic ideas that must be cleared
before going to more ambitious things. Nobody writes a word processor off the top of their head
as their first GUI project; nobody should attempt a full-featured e-commerce site as their first
attempt at Tapestry.

The goal of Tapestry is to elminate most of the coding in a web application. Under Tapestry,
nearly all code is directly related to application functionality, with very little “"plumbing™. If you
have previously developed a web application using Microsoft Active Server Pages, JavaServer
Pages or Java Servlets, you may take for granted all the plumbing: writing servlets, assembling
URLSs, parsing URLS, managing objects inside the session, etc.

Tapestry takes care of nearly all of that, for free. It allows for the development of a rich, highly
interactive applications.

This tutorial will start with basic concepts, such as the "Hello World" application, and will
gradually build up to more sophisticated examples.

These examples were developed using the Kawa IDE, JDK 1.2.2 and ServletExec Debugger 2.2.

TAPESTRY TUTORIAL

Setting up Kawa and
ServletExec Debugger

Before we can get started writing servlets, we must have an environment
for running them.

D\ Wor k. If this is not convienent, any directory may be chosen, but the reader will be

F irst, create a working directory. In these examples, we'll use the working directory
responsible for adjusting the paths appropriately.

Directories within the working directory each store a Kawa project. In addition, the directory
D\ Wor k\ 1i b will contain copies of serveral Jar files needed when compiling and executing the
tutorial.

Jar Description

gnu-regexp.jar GNU Regular Expression parser for Java, version 1.0.8. Used by the
Tapestry framework.

jaxp.jar Java API for XML Processing, version 1.0.1 (interface definitions).

parser.jar Java API for XML Processing, version 1.0.1 (reference
implementation).

ServletExecDebugger.jar | ServletExec Debugger, version 2.2. Includes the Java Servlet API
version 2.1.1.

Tapestry.jar Tapestry framework.

Extract the Tutorial files to D: \ or k\ Tut ori al . You may have received the Tutorial files in a
Zip file, or you may check them out of the CVS repository using WinCVS.

TAPESTRY TUTORIAL

Setting up the Tutorial Project

Start with an empty Kawa workspace:

E Kawa

Eile Edt “iew Test Proect Buld Packages Info Customize

[= E ﬁl J'E E“attrihuteg j
W= S

512
=423 kawa Frojects

Now, create the Tutorial project by selecting Project » New ... from the menu.

Navigate into the D:\ Work\ Tut ori al directory, and enter Tutori al . kpx to create the new
Project (you must specify the extension because of the naming conflict with the tutorial directory).

NewProject @R
Save in: IﬁTUthiEﬂ = ﬁl
|1 tutorial

File name: ITutu:uriaI.kp:-c Save I
Save as type: IKawa Files [* kpx) j Cancel |

You now have a Kawa Project with no Java files. We'll now set up a list of files for the Tutorial
project:

Select the Tutorial project, then select Project » Add Directory ... from the menu.

We want to pick up not just the Java source files, but also Tapestry component specification files
(jwc), application specification (.application) and HTML templates (.html).

TAPESTRY TUTORIAL

AddDirectory Ed

Directaries:
o: ok Stutornal
Cancel
= dh = =N
[= wark
= Tutonal
£ tutarial

File Types separated by '

I". java;” jwe;” himl:, applicatior]

Dinives:

I = d j M etwork... |

Kawa will locate these files and organize them into appropriate folders. You can then expand
some folders to see the contents:

Kawa - kawa - Tutonal - [D:\.. \hello\HelloWorldS ervlet. java)

== File Edt Wiew Text Project Buld Packages [nfo Customize

D& @@ + 5 B ||[BooksFor ~|| &
I S At B T
B 5| 2 |

= tutanial
+- 2] adder
+-\2] border
=14 hello
B Helcworld application
—-B HeloWorlddpplication java
+-M Hellworldépplication extends Simplefipplicz
=B HeloworldServlet.java
+- MM HelldworldS erviet extends Application’S ervlel
B Home html
B Homejwc

B Makefie -
“| | b

Now we have to setup the classpath for compiling this project.

L]

Select the Tutorial project and then choose Project * Classpath ... from the menu.

Initially, the classpath is empty (except for classes provided by the JDK):

TAPESTRY TUTORIAL

Project clazzpath |

— Current Clazspath Setup

fawell

Fi e [Er

ElEte

LR L

KN i
—Add/Mew Claszzpath
| alell] csfziz
Add Dir... | Add File... Optiorns... | [Earicel |

(] | Cancel

We need to add a few Jar files to the classpath. Click on the "Add File..." button towards the
bottom of the panel:

You can select multiple files by holding down the control key while clicking:

Lookin: |4 lib ~] Q_l

Sil areregesp.jar

5] SessiomTracker jar

“z'frl SezsionTracker-deploy.jar
a Tapestoojar
E Tests.jar
"j'l zervlet jar _"il WlibBeans.jar
ServletExechebugger.jar EVIibBeans-depln}l.iar

File name: 1"Tapestr_lrl.iar jawp.jar "parzerjar' "ServietExe Open] -
Filez of type: 1Jar Filez [*.jar] :_1 Cancel I

After returning to the previous panel, click "Update”. The Jar files selected will be added to the
classpath:

TAPESTRY TUTORIAL

Project classpath

Current Clazspath Setup

v | DN ork b T apesty. jar Move Up
v DSl orkhlibhjaxp.jar

_ Movel |
v DM/ orkhlibhparser.jar
_ Dele |

v | DS orkibhS ervletE secDebugger. jar
ED: S orkMibanu-regesp.jar

P ﬂ Mew

Add/Mew Clazzpath

|D:\Unrk\lib\gnu—regexp.jar

Add Dir... | i Mo |

1] | Cancel

The order may be different, but that's irrelevant to Kawa and to the JDK. Kawa allows Jars to be
easily added to or removed from the classpath using the checkboxes, but we want all of these Jars.

You can set many compilation options from within Kawa. Select the Tutorial project and choose
Project » Compiler Options... from the menu.

TAPESTRY TUTORIAL

Java Options

Compiler l Interpreter] Javadu:u:]

Compilation output directony [-d)

=]

Debugging tables [-g)

Don't dizplay warmnings [-nowarnk

Optimize compiled code [-0]
Printz out meszages [-verboze]
Deprecated AP [-deprecation]

Custom options [sent as is] -

A L S S Y I A

=1»|

Ok | Cancel |

Turn on debugging output (for later, when we use Kawa to debug our application).

The project should now be compiled using the Project » Rebuild All or Project * Rebuild Dirty
menu items.

ServietExec Debugger

ServletExec Debugger requires setting up two directories outside of the IDE. The first directory
Is where ServletExec Debugger stores configuration information about the different servlets. The
second directory is the "web server" root directory (ServletExec Debugger acts as a simple web
server, providing access to static resources such as GIF files as well as dynamic content from
servlets).

You don't need to create these directories first; ServletExec Debugger will create them the first
time it starts up.

In my case, D: \ Wor k was my main working directory, so I used D:\ Wr k\ Ser vl et Debug for
configuration, and the project directory as my web server root directory.

TAPESTRY TUTORIAL

If you chose to put these files in a different directory, you'll have to adjust some of the examples
in later chapters.

When we want to run or debug our applications, we don't execute a specific class for our
application, we instead run the ServletExec Debugger, which acts as a simple web server and
servlet container.

To set this up, you must select the Project * Interpreter Options ... menu item, and update the
command line arguments and Java class name.

Java Options

Compiler Interpreter l Javadoc]

Basic l Advanced]

[Debug [-debug)

[Mo Garbage Collection [-noaspncge)
[Yerbose GC [-verbosegc)

[“erbose mode [-verboze)

[+ Command Line Arguments

|-h-:ume . AServletDebug -root ﬂ ﬂ
[v JavaClazs Name to Bun

|newatlanta.sedebugger.SewletE wecD ebugger

[Ewecute program in directon

| Bl

[Custom Options sent as is including JOB

ak. | Cancel

Don't forget to click the checkboxes; as with the classpath, Kawa allows you to easily inlcude or
exclude options used when running the program using those checkboxes; if they aren't checked,
the option won't be included.

TAPESTRY TUTORIAL

Hello World

We will develop a very simple, completely static web application as an
introduction to the basic concepts of Tapestry.

have any real functionality but it'll demostrate the simplest possible variation of a number of

I n this first example, we'll create a very simple "Hello World" kind of application. It won't
key aspects of the framework.

Even this simple Tapestry application requires two objects:
» -An application object that runs our (very simple) application

» Aservlet that bridges between the servlet container and our application

After that, we'll define our application, define the lone page of our application, configure
everything and launch it.

The code for this section of the tutorial is in the Java package tutorial.hello, ie,
D:\Work\ Tutorial\tutorial\hello.

Application Object

As each new client connects to the application, an instance of the application object is created for
them. The application object is used to track that client's activity within the application.

The application object IS a subclass the Tapestry class
com prim x.tapestry. app. Si npl eAppl i cati on.

Si npl eAppl i cat i on Is an abstract class; we must provide implementations for two methods.

* get Speci ficati onResour ceNane() provides the resource path of the application's
specification. The main purpose of the specification is to define the pages used in the
application.

10

TAPESTRY TUTORIAL

e get SpecificationAttributeName() provides a name used to store the specification
in memory. The specification is needed to process every request; rather than parse it on
each request, it is stored in memory for subsequent requests.

Tapestry can't use fixed names for either of these two values, since that would cause a naming
conflict if two different Tapestry applications were run simultaneosly inside the same servlet
container. This is not an unlikely possiblity ... a customer application will often be paired with a
CSR (customer service representative) application.

In any case, the code for the application object is quite simple:

HelloWorldApplication.java

package tutorial . hello;

i mport java.util.*;
i mport com primx.tapestry.*;
i nport com primx.tapestry. app. *;

public class Hell oWrl dApplication extends SinpleApplication
public Hel | oWorl dAppl i cati on(Request Cont ext context, Local e | ocal e)
{

super (context, | ocale);

}
protected String get SpecificationAttributeName()
{
return "Hell o.specification";
}
protected String get Specificati onResour ceNane()
{
return "/tutorial/hello/HelloWrld.application";
}
}

Application Servlet

The application servlet is a "bridge™ between the servlet container and the application object. It's
job is simply to create (on the first request) or locate (on subsequent requests) the application
object.

This is all accomplished in a single method, get Appl i cati on().

HelloWorldServlet.java

package tutorial . hello;

i mport com primx.tapestry.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

public class Hell oWrl dServl et extends ApplicationServl et
{

11

TAPESTRY TUTORIAL

protected | Application getApplicati on(Request Cont ext cont ext)
{

String name = "Hell o.application"
| Appl i cation application

application = (1Application)context.getSessionAttribute(nane);
if (application == null)

application = new Hel | oWor | dAppl i cati on(context, null);
cont ext . set Sessi onAttri but e(nane, application);

}

return application

}
}

Application Specification

The application specification is used to describe the application to the Tapestry framework. It
provides the application with a name, and a list of pages.

This specification is a file that is located on the Java classpath. In a deployed Tapestry application,
the specification lives with the application's class files: either in a Jar file, or in the WeB-
I NF/ cl asses directory of a war (Web Application Archive).

HelloWorld.application

<?xm version="1.0"?>
<appl i cati on>
<nanme>Hel | o Worl d Tut ori al </ nane>

<page>
<name>hone</ nane>
<speci fication-path>/tutorial/hell o/ Hne.jwc
</ speci fi cati on- pat h>
</ page>
</ application>

Our application is very simple; we give the application a name and define a single page, named
'home’ and identify the component that is used for that page. In Tapestry, components are
specified with the path to their specification file (a file that end with *jwc’).

Page 'home' has a special meaning to Tapestry; when you first launch a Tapestry application, it
loads and displays the 'home' page. All Tapestry applications are required to have a home page.

Home Page Specification

The home page specification defines the Tapestry component responsible for the page. In this
first example, our component is very simple:

12

TAPESTRY TUTORIAL

<?xm version="1.0"?>
<speci fi cati on>

<cl ass>com pri m x. t apest ry. BasePage</ cl ass>
</ speci fi cati on>

This simply says that Home is a kind of page. We use the supplied Tapestry class
com pri m x. t apest ry. BasePage since we aren't adding any behavior to the page.

Home Page Template

Finally, we get to the content of our application. This file is also a Java resource; it isn't directly
visible to the web server. It has the same location and name as the component specification,
except that it ends in "html",

Home.html
<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional //EN'>

<ht m >
<head>
<title>Hello World</title>
</ head>
<body>
Wl conme to your first Tapestry Application.

</ body>
</htm >

Launch ServletExec Debugger

The ServletExec Debugger server is launched using the "Run Java" toolbar button, by selecting
Build » Run from the menu, or by hitting F4.

Tool: EJBE Window Help
By B Q% £

Once launched. the output window will show the progress as the server starts up:

C\jdkl.2.2\bin\java.exe newatl anta. sedebugger. Servl et ExecDebugger -hone
../ Servl et Debug -r oot
Wrking Directory - D\Wrk\Tutorial\

13

TAPESTRY TUTORIAL

Class Path -
D:\Vork\Ilib\Tapestry.jar; DD\Work\lib\jaxp.jar; D\Wrk\Ilib\parser.jar;D\Wr
k\'Ii b\ Ser vl et ExecDebugger . j ar; D: \ Wor k\ | i b\ gnu-
regexp.jar;.;d:\tool s\ Kawa5. Obet al\ kawacl asses. zi p; C:\jdk1l. 2. 2\l i b\t ool s.ja
r;C\jdk1.2.2\jre\lib\rt.jar;C\jdkl.2.2\jre\lib\i18n.jar
New At | anta Servl et Exec Debugger 2.2

Copyright (c) 1997-1999 New Atl anta Communi cations, LLC

Al rights reserved. htt p: //ww. newat | ant a. conf
ServlietExec 2.2 initialized

Servl et Exec Servl et Exec |istening on port 8080

Like any servlet engine, servlets must be configured before they can be invoked. ServietExec

Debugger includes a servlet for administrating and configuring its environment. This is accessed
with the following URL:

http://| ocal host: 8080/ servl et/ adm n

The administration interface allows several aspects of the servlet container to be managed; we're

mostly intererested in mapping servlets to Java servlet classes, and to mapping URL fragments to
servlets.

; ServietE xec Admin - Microzoft Internet Explorer

J File Edt Miew Favontez Toolz Help

J & - - @ A | (] @ | E) Jﬁgdress @ hitp: Alocalho st BOB0/ servlet/ admin

ServietExec SewletExec’m Ad

Help
Register

About Configure Servlets
View Logs

Enter data into the top (blank) form to configure a new servl

existing servlets. To delete a servlet, edit its data so all text i
15 available at the bottom of the page.

Serviets

Configure
Aliases

Filters
Logging Servlet Name: I

Server-Side Servlet Class: |
: Cnde Race: |

We need to create a new servlet named "HelloWorld" tha maps to the Java servlet class we've
created:

14

TAPESTRY TUTORIAL

servlet Wame: |HEIIDWDrId

Servlet Class: [tutorial hello. HelloWarldSenlet

Code Base: ||

Initialization =

Arguments: =
Init Load Order: I " Loaded Submit | Reset |

Next we need to create a URL alias for the servlet:

Servlets
Configure

Filters
Logging
Alias Servlet Name(s)
|hello [Hellowarld

L |

Finally, we can use the servlet alias to build a URL:

http://I ocal host: 8080/ hel | o

Which will result in the following page:

15

http://localhost:8080/hello

TAPESTRY TUTORIAL

/3 Hello World - Microzoft Intemnet Explorer
Favortes Tools Help
=] || Links >

| File
e -= -4 EHP TS || Addes IEI kittp: #loc alhost B0E0/hello
=

Edit View

Welcome to yvour first Tapestry Application.

<

| %% Local infranet

&) Done
Not much of an application ... there's no interactivity. It might as well be a static web page, but it's
a start. Remember, there was no JavaServer page here, and now HTML directly visible to the

web server. There was an application consisting of a single component.

In the following chapters, we'll see how to add dynamic content and then true interactivity.

16

TAPESTRY TUTORIAL

Dynamic Content

This example will add a tiny amount of interactivity, as well as some very
simple dynamic content ... content that is different each time the ‘page’ is
viewed.

n this section, we'll create a new web application that will show some dynamic content. We'll
also begin to show some interactivity by adding a link to the page.

Our dynamic content will simply be to show the current date and time. The interactivity will
be a link to refresh the page. It all looks like this:

<} Simple - Microzoft Intemnet Explorer

-2 -Qd 3 A |_Agd:ass [€] hitp:/ o alhost 8080/ simple =] | Links
=l

This application demonstrates some dynamic behawor using Tapestry components
The cwrent date and tme 15: Tue Jul 11 14:23:53 EDT 2000

Chclc here to refresh.

=

&) Done " [Ta Local intraret g

Clicking the word "here™ will update the page showing the new data and time. Not incredibly
interactive, but it's a start.

The code for this section of the tutorial is in the package tutorial.simple.

17

TAPESTRY TUTORIAL

We need to create a new servlet and application object, but they're almost identical to our earlier
ones (only the parts marked in blue are different). The real action in this section will be the new
version of the home page.

SimpleServlet.java

package tutorial . sinple;

i mport com primx.tapestry.*;
i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class SinpleServlet extends ApplicationServl et

{
protected | Application getApplicati on(Request Cont ext cont ext)
{
String name = "sinple.application”;
| Appl i cation application;
application = (1Application)context.getSessionAttribute(nane);
if (application == null)
application = new Si npl eTut ori al Appl i cati on(cont ext,
null);
cont ext . set Sessi onAttri but e(nane, application);
}
return application;
}
}

The bold text identifies the only significant changes from the previous HelloWorldServlet class.
We are storing the application specification under a different name as an attribute of the
HttpSession.

SimpleTutorial Application.java

package tutorial . sinple;

i mport java.util.*;
i mport com primXx.tapestry. *;
i nport com primXx.tapestry. app. *;

public class SinpleTutorial Application extends Sinpl eApplication

{
public SinpleTutorial Appl i cati on(Request Cont ext context, Local e |ocale)

{

super (context, | ocale);

}
protected String get SpecificationAttributeName()
{
return "Sinpl e.specification";
}

protected String get Specificati onResour ceNane()

18

TAPESTRY TUTORIAL

{

return "/tutorial/sinplelSinple.application”

}

}

Again, the bold text shows the significant changes. We use a different attribute name of the
ServletContext to store the parsed application specification (so it can be shared between sessions).
Since this is a different application, we use a different application specification.

The application specification is also straight forward:

Simple.application

<?xm version="1.0""?>

<appl i cati on>
<nane>Si npl e Tutori al </ name>

<page>
<nane>hone</ name>
<speci fication-path>/tutorial/sinplelHome.jwc
</ speci fi cati on- pat h>

</ page>

</ applicati on>

Things only begin to get more interesting when we look at the HTML template for the home
page:

Home.html

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional //EN'>
<ht m >
<head>

<title>Sinple</title>
</ head>
<body>
This application denonstrates sone dynam c behavi or using Tapestry
conponent s.

<p>The current date and tinme is: <jwc id="insertDate"/>
<p>dick <gwec id="refresh">here</jwc> to refresh

</ body>
</htm >

This looks like ordinary HTML, except for the special <jwc> tags (highlighted in blue and
underlined). "jwc" is an abbreviation for "Java Web Component"; these tags are placeholders for
the dynamic content provided by Tapestry components.

We have two components. The first inserts the current date and time. The second component
creates a hyperlink that refreshes the page.

One of the goals of Tapestry is that the HTML should have the minimum amount of special
markup. This is demonstrated here ... the <jwc> tags blend into the real HTML of the template.

TAPESTRY TUTORIAL

We also don't confuse the HTML by explaining exactly what an insertDate or refresh is; that
comes out of the specification (described shortly). The ids used here are meaningful only to the
developer, the particular type and configuration of each component is defined in the component
specification.

Very significant is the fact that a Tapestry component can wrap around other elements of the
template. The refresh component wraps around the word "here”. What this means is that the
refresh component will get a chance to produce emit some HTML (an <a> hyperlink tag), then
emit the HTML it wraps (the word "here"), then get a chance to emit more HTML (the ""
closing tag).

What's more important is that the component can not only wrap static HTML from the template,
it may wrap around other Tapestry components ... and those components may themselves wrap
text and components, to whatever depth is required.

And, as we'll see in later chapters, a Tapestry component itself may have a template and more
components inside of it. In a real application, the single page of HTML produced by the
framework may be the product of dozens of components, effectively “weaved™" from dozens of
HTML templates.

Again, the HTML template doesn't define what the components are, it is simply a mix of static
HTML that will be passed directly back to the client web browser, with a few placeholders (the
<jwc> tags) for where dynamic content will be plugged in.

The page's component specification defines what types of components are used and how data
moves between the application, page and any components.

<?xm version="1.0"?>

<speci ficati on>
<cl ass>tutorial . si npl e. Hone</ cl ass>

<conponent >
<i d>i nsert Dat e</i d>
<type>l nsert </type>

<bi ndi ng>
<name>val ue</ name>
<property- pat h>current Dat e</ property- pat h>
</ bi ndi ng>
</ conponent >

<conponent >
<i d>refresh</id>
<t ype>Page</t ype>

<st ati c- bi ndi ng>
<nanme>page</ name>
<val ue>hone</ val ue>
</ stati c- bi ndi ng>
</ conponent >

20

TAPESTRY TUTORIAL

</ speci fi cati on>

Here's what all that means: The Home page is implemented with a custom class,
tutorial.simple.Home. It contains two components, insertDate and refresh.

The two components used within this page are provided by the Tapestry framework.

The insertDate component is type Insert. Insert components have a value parameter used to
specify what should be inserted into the HTML produced by the page. The insertDate
component has its value parameter bound to a JavaBeans property of its container (the page), the
currentDate property.

The refresh component is type Page, meaning it creates a link to some other page in the
application. Page components have a parameter, also named page, which defines the name of the
page to navigate to. The name is matched against a page named in the application specification.

In this case, we only have one page in our application (named 'home’), so we using a static binding
for the page parameter.

That just leaves the implementation of the Home page component:

Home.java

package tutorial . sinple;

i mport java.util.*;
i nport com prim x.tapestry. spec. *;
i mport com primx.tapestry.*;

public class Hone extends BasePage

{
publ i c Home(l Application application,
Conmponent Speci fi cati on conponent Speci fi cati on)
{

super (appl i cati on, conponent Speci fication);

public Date get CurrentDate()
{

return new Date();

}
}

Home implements a read-only JavaBeans property, currentDate. This is the same currentDate
that the insertDate component needs. When asked for the current date, the Home object returns
a new instance of the java.util. Date object.

The insertDate component converts objects into strings by invoking toString() on the object.
Now all the bits and pieces are working together.

21

TAPESTRY TUTORIAL

To run this new Tapestry application, you'll have to map servlet 'Simple’ to class
‘tutorial.simple.SimpleServlet' and map alias '/simple’ to servlet 'Simple’. You can then use the
following URL to try out the dynamic web application:

http://I ocal host: 8080/ si npl e

Run the application, and use the View Source command to examine the HTML generated by
Tapestry:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM_ 4.0 Transitional//EN'>
<ht M >
<head>
<title>Sinple</title>
</ head>
<body>

This application denonstrates sone dynam c behavi or usi ng Tapestry
conponent s.

<p>The current date and time is: Wed Jul 19 10:48: 26 EDT 2000</ b>

<p>d i ck
here to refresh.

</ body>
</ htm >

This should look very familiar. Text which was generated dynamically, by Tapestry components,
is in bold font. As you can see, Tapestry not only inserted simple text (the current date and time,
obtained from an j ava. uti | . Dat e object), but the refresh component inserted the <a> and
</ a> tags, and created an appropriate URL.

22

TAPESTRY TUTORIAL

Interactive Application

A more ambitious example, we'll build a simple adding machine.

will demonstrate many of the more interesting features of Tapestry, including

N ow it's time to build a real, interactive application. We'll still use just a single page, but it
maintenance of server side page state.

Our application allows the user to sum up a list of numbers.

fa' Adder Tutonal - Microzoft Intemet Exploraer

_ File Edit YWiew Fgvoites Tools Help
|- = - 2] o} | S = “A,dd'resslﬁ hitp: A flocabost B0E0/ adderd aclionFome1 A0 ﬂ |_Unks”

=
Value: |
At [ist
Items
2.0
FR
2.6
/|
2] Dore T8t Local intranet y

The user enters a number into the value field and clicks "Add to list". The number is added to the
list of items and factored into the total.

A Form component containing a TextField component will be used to collect information from
the user. A Foreach component will be used to run though the list of items, and Insert
components will be used to present each item in the list, as well as the total.

As with the previous examples, the servlet and application objects are simple variations on the
previous two sets (they are ommited here).

23

TAPESTRY TUTORIAL

The application specification is, likewise, a variation on the prior example.
The code for this section is in the tutorial.adder package.
We'll start with the HTML template for the home page:

Home.html
<! DOCTYPE HTML PUBLIC "-//WBC//DID HTM. 4.0 Transitional //EN'>
<ht m >
<head>
<title>Adder Tutorial</title>
</ head>
<body>

<jwe id="forni>

<t abl e>
<tr>
<td align=right >Val ue: </td>
<td><jwc id="textfield"/></td>
</tr>

<tr>
<td> </td>
<t d><i nput type=submit value="Add to list"></td>
</tr>
</t abl e>

</jwc>

<t abl e>
<tr> <th>ltems</th> </tr>
<jwe id="e">
<tr align=right>
<t d>
<jwc id="insertCurrentVal ue"/>
</td>
</tr>

</jwc>

<tr align=right>
<t d>
<hr >

<jwc id="insertTotal"/>
</td>
</tr>
</t abl e>

</ body>
</htm >

Again, Tapestry takes care of most of the details. The form component will turn into an HTML
<FORM> element, and the correct URL is automatically generated. The textfield component

24

TAPESTRY TUTORIAL

will become an <INPUT TYPE=TEXT>, with the necessary smarts to collect the value
submitted by the user and provide it to the page.

The e component is a Foreach, used for running through a list of elements (supplied as a List,
Iterator or an array of Java objects). We've already seen the Insert components.

Next we have the specification:

<?xm version="1.0"?>

<speci ficati on>
<cl ass>tutori al . adder. Hone</ cl ass>

<conponent >
<i d>f ornx/i d>
<t ype>For nx/ t ype>

<bi ndi ng>
<nane>l i st ener </ name>
<pr operty- pat h>f or nLi st ener </ propert y- pat h>
</ bi ndi ng>
</ conponent >

<conponent >
<id>textfield</id>
<t ype>Text Fi el d</t ype>

<bi ndi ng>
<name>t ext </ name>
<property- pat h>t ext Fi el dVal ue</ property- pat h>
</ bi ndi ng>
</ conponent >

<conponent >
<i d>e</i d>
<t ype>For each</t ype>

<bi ndi ng>
<name>sour ce</ name>
<property- pat h>i t ens</ property- pat h>
</ bi ndi ng>

<bi ndi ng>
<name>val ue</ name>
<property- pat h>current|tenx/property-pat h>
</ bi ndi ng>
</ conponent >

<conponent >
<i d>i nsert Current Val ue</i d>
<type>l nsert </type>

<bi ndi ng>
<nane>val ue</ nane>

25

TAPESTRY TUTORIAL

<pr operty- pat h>current|tenx/property-pat h>
</ bi ndi ng>
</ conponent >

<conponent >
<i d>i nsert Total </i d>
<type>l nsert </type>

<bi ndi ng>
<name>val ue</ name>
<pr operty- pat h>t ot al </ property- pat h>
</ bi ndi ng>
</ conponent >

</ speci fi cati on>

For the form component, all we have to do is supply a listener, an object that is informed when
the form is submitted.

For the textfield component, we provide a text parameter that provides the default value for the
<INPUT> element, as well as a place to put the value submitted on the form. This must be of
type java.lang.String, so we need to do a little translation (in our Java class), since internally we
want to store the value as a double.

For the e component, we supply a binding for the source parameter. For each item in the source
list, it will update the currentltem property of the home page (through its value parameter). That
means the value will be in the home page's currentltem property when the insertCurrentValue
component needs it.

Finally, the Java code for the home page puts everything together:

Home.java

package tutorial . adder

i mport com primx.tapestry.*;

i mport com prim x.tapestry. conponents. *;
i nport com prim Xx.tapestry. spec. *;

i mport java.util.*;

public class Hone extends BasePage

{

private List itens;
private double currentltem

public Home(l Application application, Conponent Specification
speci fi cati on)

{

super (appl i cati on, specification);

public void setCQurrentlten(doubl e val ue)

{
}

currentltem = val ue;

26

TAPESTRY TUTORIAL

public double getCurrentltemn()

{

return currentltem
}
public List getltens()
{

return itens;
}

public void setltens(List val ue)

{

itens = val ue;

fireCbservedChange("itens", val ue);

}

public void detachFromAppl i cation()
{

items = null;

super . det achFr omAppl i cati on();
}

public void addlten(doubl e val ue)
{

if (itenms == null)

{

items = new Arraylist();
fireCbservedChange("itens", itens);

}

i tenms. add(new Doubl e(val ue));

fireCbservedChange();
}

publ i c doubl e get Tot al ()
{

Iterator i;
Doubl e item
doubl e result = 0.0;

if (items !'= null)

{
i = itens.iterator();
while (i.hasNext())

{
item = (Double)i.next();
result += item doubl eVal ue();

}

return result;

27

TAPESTRY TUTORIAL

public I ActionListener getFornListener()
{

return new | Acti onLi st ener ()

public void actionTriggered(l Conponent conponent,

cycl e)
{
if (currentltem!= 0.0)
addlten(currentltemn;
currentltem = 0. 0;
}
IE
}
public String getTextFi el dval ue()
{

if (currentltem == 0.0)
return null;

return Doubl e.toString(currentlteny;

}

public void setTextFi el dVal ue(String val ue)

{
try
{

currentltem = Doubl e. par seDoubl e(val ue) ;

}
cat ch (Nurber For mat Excepti on e)

{
}
}
}

That may seem like a lot of code for what we're doing, but in reality, very much is going that we

don't have to write:
* Processing the submitted form
Storing the List of items persistently between request cycles
» Encoding and decoding URLS

» Very robust exception support

In addition, because we let Tapestry set the names of our form elements, there's no possibility of
mismatched names between the Java code (setting defaults and interpreting the posted request)

and the HTML template.

| Request Cycl e

28

TAPESTRY TUTORIAL

Launching the Application

Run the application, then use the ServletExec Admin page to configure the servlet. Map servlet
"Adder" to "tutorial.adder.AdderServlet" and map alias "'/adder" to servlet "Adder".

Enter the following URL to start the application:

http://I ocal host : 8080/ adder

Enter a few values into the text field to see how the application works, adding them together into
an ever larger list.

Adding Interactivity using Listeners

To understand the relationship between the home page specification, the home page class and the
components used by the home page, it is necessary to understand the JavaBeans properties
provided by the home page class.

We implement several JavaBeans properties on this page:

Property Type R/W | Description
name
textFieldValue | String R/W | Converts between String and double for the
currentltem property.
currentltem double R/W Item being displayed or value entered in form.
items List (of R/W Items in the list. Persists between request cycles.
Double)
formListener IActionListener | Read Informed when form is submitted.
Only
total double Read Total of items; computed on the fly.
Only

This example demonstrates how to provide interactivity to an application. For Tapestry,
interactivity is defined as a request cycle initiated by a user clicking on a hyperlink or submitting a
form.

In our case, we want to know when the form containing the TextField is submitted so that we can
provide application specific behavior -- adding the value enterred in the TextField to the list of
items.

This is accomplished using a listener, an object that implements the Java interface
| ActionLi stener. This interface defines a single method, acti onTri ggered(). When the

29

http://localhost:8080/adder

TAPESTRY TUTORIAL

form is submitted, all the components wrapped by the form (in this case, the TextField) are given
a chance to retrieve their values from the request and update properties of the application (the
TextField sets the currentltem property). The form then gets its listener and invokes the
actionTri gger ed() method.

In the specification, the listener parameter was bound to the formListener property of the page.
The code in the get For nLi st ener () method creates an anonymous inner class and returns it.

Inner classes have access to the private fields and methods of the class. In this case, the inner
class invokes the addl t en() method to add the currentltem (with a value provided by the
TextField component) to the items List.

A listener is free to do anything it wants. It can change the state of the application, or can retrieve
other pages (by name) from the request cycle object, and can change properties of those pages. It
can even chose a different page to render, by invoking set Page() on the request cycle.

Persistant Page State and Page Pooling

The home page of this application uses a persistant page property, a Li st that contains
j ava. | ang. Doubl es, the items in the list.

Persistent page state is one of the most important concepts in Tapestry. Each page in the
application (and in fact, even components within the page) has some properties that should
persist between requests. This can values such as the user's name and address, or (in this case) the
list of numbers enterred so far.

In traditional JavaServer Pages or servlet applications, a good chunk of code must be written to
manage this. The values must be encoded in cookies, as hidden form fields, as named attributes
of the HttpSession, or stored into a server-side flat file or database. Each servlet, or page, or
whatever was directly responsible for managing this ... which leads to many half realized, ad-hoc
solutions and an avalanche of bugs, not to mention, security holes.

With Tapestry, the framework takes care of these issues. When a persistent property of a page is
changed the accessor method also invokes the method f i r eCoser vedChange(). This method
informs a special object, the page's recorder, about the property and its new value.

When the page is next used, the value is restored automatically. Within the Tapestry framework,
all of these pages, components, specifications and templates are converted into objects.
Assembling a page is somewhat expensive: it involves reading all those specifications and
templates, creating and initializating component objects, creating binding objects for the
components, and organizing the components into a hierarchy.

Creating a page object for just one request cycle only to discard it is simply unacceptible. Pages
should be kept around as long as they are needed; they should be re-used in subsequent request
cycles, both for the same client session, or for other sessions.

30

TAPESTRY TUTORIAL

The Tapestry framework accomplishes this by pooling instances of page objects; there could
concievably be a handful of different instances being shared by thousands of client sessions. This
is a kind of shell game that is important to maintain scalability.

What this means for the developer is some extra work. On each request cycle, a different instance
of the page object may be used to handle the request. This means that data can't simply be stored
in the instance variables of the page between request cycles.

Tapestry seperates the persistent state of a page from the actual page objects. The state is stored
seperately, making use of the page recorder objects. When needed, a page can be created or
reclaimed from the page pool and have all of its persistant properties set by the page recorder.

The developer has three responsibilities when coding a page with persistant state:

» The property must be serializable; this includes Java scalar types (boolean, int, double,
etc.), Strings, common collection classes (ArrayLi st, HashMap, etc.) and user-defined
classes that implement j ava. i 0. Seri al i zabl e.

* When the value of the property changes, the fi r eCbser vedChange() method must be
invoked, to inform the page recorder about the change.

* When the request cycle ends and the page is returned to the pool, the persistant state
must be reset to its initial value (as if the page object was newly instantiated). This is done
in the det achFr omAppl i cat i on() method.

Dynamic Page State

This page has a bit of dynamic state; state that changes as the page is being renderred. The
currentltem property takes on different values from the items List as the page is renderred.
Dynamic state is easier to handle than persistant state; for completeness, it must also be reset in
the det achFr omAppl i cat i on() method.

31

TAPESTRY TUTORIAL

Debugging a Tapestry
Application

We'll show how to debug a Tapestry application while it runs, by running
the servlet container inside Kawa's debugger.

e're going to make a quick detour and discuss debugging a Tapestry application using
Kawa.

We'll continue using the previous example, this time setting a breakpoint to
demonstrate how the Foreach component updates the page property ‘currentltem’.

First, edit the file t ut ori al / adder / Hone. j ava. Navigate to the method set Current It en()

and set a breakpoint by clicking F9 or the menu item Build » Breakpoint Set/UnSet. A red
marker appears in the gutter along the left edge:

32

TAPESTRY TUTORIAL

kawa - Tutorial - [D:%.. Ac3iHome. java]

zdit Views Tedt Proeet Buld Package: Infe Customize Flugin Tool: EJBE Window Help

=] J{,Eg@|currentltam j@ﬁﬁ %@@@@|g@gj

B Ty T A

110,4] P] private double currentltem;
awa Projects public Home(lApplication application, Com
» Tutonal 1 , ,

£3 htoial - supsr(application, specification):

412 ¢l

Bl c2 public void setCurrentltem{double value)

4 63 i1

B C3.application currentltem = valuel

F-B C3tpplicationjava

Fo B CiServiet java public double getCurrentItend)

~B Home khtml i
=B Homejava return currentItem;
T Home extends BasePage ‘
~B Home. pac public List getltems()
RET ;

return items:

At this point, you can launch the debugger, using the Build » Debug * Run menu item, or by
hitting F5, or by clicking the debug icon on the toolbar.

<<image of debug icon>>

At this point, Kawa will reconfigure itself slightly, adding a "JVMDI Watch™ window (this is
window that allows values to be displayed while debugging).

Launch the Adder application (from the previous chapter) with the URL.:

http://I ocal host: 8080/ adder

When the form comes up, enter a value and click the submit button.

The Kawa window will raise itself, and the Project pane (along the left side of the window) will

show the stack trace leading upto the break point. You can use the stack track to inspect the
object, or see the parameters to the method.

Hit the continue button (or Build » Debug » Cont menu item, or F5) to allow ServletExec and
Tapestry to finish the response.

33

http://localhost:8080/adder

TAPESTRY TUTORIAL

Re-usable Components

Tapestry is designed to facilitate the creation of re-usable comopnents; this
chapter will show an example of such a component.

components it to create a common “border” for the application that includes basic
navigation. We'll be creating a simple, three page application with a navigation bar down the

left side.

I n this tutorial, we'll show how to create a re-usable component. One common use of

/3 Feusable Component Tutorial - Microzoft Internet Explorer

| Ele Edt View Favortes Tools Heb | =
[«-=2 -0 & 53| ||Addess[&] iy /Aocahost8080/border =] || Links »
=
j -]
}E] Done r—"r"—ﬁﬂ Local intranet i

Navigating to another page results in a similar display:

34

TAPESTRY TUTORIAL

-’j Reuzable Component Tutonal - Microsoft Internet Explorer

| Fie Edt View Favoites Tooks Help -
| LERERC ﬂ @ al | = EI =) |_#§drﬂ&¢ |@ hitp: /facahost BOB0 bander/page/credo ﬂJ Links *
=

=

&] Dane | [T Local intranet i

Each page's content is confined to the silver area in the center. Note that the border adapts itself
to each page: the title "Home" or "Credo™ is specific to the page, and the current page doesn't
have an active link.

Because this tutorial is somewhat large, we'll only be showing excerpts from some of the files.
The complete source of the tutorial examples is available seperately, in the tutorial.border package.

Each of the three pages has a similar HTML template:

Home.html

<jwc id="border">

Not hi ng much doi ng here on the hone page. Visit one of our other
fine
pages.

</jwc>

What we're doing here is wrapping the entire page inside the border. Note that we don't specify
an <HTML> or <BODY> tags; those are provided by the border (as well as the matching close
tags).

This illustrates a key concept within Tapestry: embedding vs. wrapping. The Home page embeds
the Border component (as we'll see in the Home page's specification). However, the Border
component wraps the content of the Home page ... the Home page HTML template indicates
the order in which components (and static HTML elements) get a chance to render. On the
Home page, the Border component 'bats' first and cleanup.

The construction of the Border component is based on how it differs from page to page. You'll
see that on each page, the title (in the upper left corner) changes. The names of all three pages are

35

TAPESTRY TUTORIAL

displayed, but only two of the three will have links (the third, the current page, is just text). Lastly,
each page contains the specific content from its own HTML template.

Border.html

<HTM_>
<head>
<titl e>Reusabl e Conponent Tutorial </title>
</ head>
<body>
<t abl e border=0 bgcol or=gray cel | spaci ng=0>
<tr valign=top>
<td col span=3 al i gn=l eft>
<jw id="insertPageTitle"/>
</td>
</tr>
<tr valign=top>
<td align=right>
<f ont col or=white>
<jwe id="e">

<jwc id="Ilink"><jwc id="insertNane"/></]wc>
</jwc>

</td>
<td val i gn=top bgcol or=si | ver >
<jwc id="w apped"/>
</td>
<t d> </t d>
</tr>
<tr>
<td col span=3> </t d>
</tr>
</t abl e>
</ body>
</ HTML>

The insertPageTitle component provides the title of the page. The e, link and insertName
components provide the inter-page navigation links. Lastly, the wrapped component provides the
actual content for the page.

The Border component is designed to be usable in other Tapestry applications, so it doesn't hard
code the list of page names. These must be provided to the border component. In fact, the
application object provides the list.

<?xm version="1.0""?>

<speci ficati on>
<cl ass>tutori al . border. Bor der </ cl ass>

<par anet er >
<nane>titl e</ name>
<j ava-type>j ava. |l ang. Stri ng</j ava-t ype>
<requi red>yes</requi red>

</ par anet er >

36

TAPESTRY TUTORIAL

<par anet er >
<nane>pages</ name>
<requi red>yes</requi red>
</ par anet er >

<conponent >
<i d>i nsert PageTitle</id>
<type>l nsert</type>

<i nheri t ed- bi ndi ng>
<nane>val ue</ name>
<par anet er - name>t i t | e</ par anet er - name>
</i nherited- bi ndi ng>
</ conponent >

<conponent >
<i d>e</id>
<t ype>For each</t ype>

<i nheri t ed- bi ndi ng>

<name>sour ce</ name>

<par anet er - nane>pages</ par anet er - nane>
</i nherited- bi ndi ng>

<bi ndi ng>
<nane>val ue</ name>
<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>
</ conponent >

<conponent >
<i d>link</id>
<t ype>Page</t ype>

<bi ndi ng>

<name>page</ nanme>

<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>

<bi ndi ng>
<nane>enabl ed</ name>
<pr operty- pat h>enabl ePageLi nk</ property- pat h>
</ bi ndi ng>
</ conponent >

<conponent >
<i d>i nsert Name</i d>
<type>l nsert</type>

<bi ndi ng>
<nane>val ue</ name>
<pr opert y- pat h>pageNane</ pr operty- pat h>
</ bi ndi ng>
</ conponent >

<conponent >

37

TAPESTRY TUTORIAL

<i d>wr apped</i d>
<t ype>l nsert W apped</t ype>
</ conponent >

</ speci fi cati on>

So, the specification for the Border component must identify the parameters it needs, but also the
components it uses and how they are configured.

We start by declaring two parameters: title and pages. The first is the title that will appear on the
page. The second is the list of page names for the navigation area. We don't specify a type for
pages because we want to allow all the possibilites (List, Iterator, Java array) that are acceptible as
the source parameter to a Foreach.

Further down we see that the insertPageTitle component inherits the title parameter from its
container, the border component. Whatever binding is provided for the title parameter of the
border will also be used as the value parameter of the insertPageTitle component. Using these
inherited bindings simplifies the process of creating complex components from simple ones.

Likewise, the e component (a Foreach) needs as its source the list of pages, which it inherits from
the Border component's pages parameter.

The link component creates the link to the other pages. It has an enabled parameter; when false
the link component doesn't create the hyperlink (though it still allows the elements it wraps to
render). The Java class for the Border component, tutori al . bor der. Bor der, provides a
method, get Enabl ePageLi nk(), that returns true unless the pageName parameter (set by the e
component) matches the current page's name.

The final mystery is the wrapped component. It is used to render the elements wrapped by the
border on the page containing the border. Those elements will vary from page to page; running
the application shows that they are different on the home, credo and legal pages (different text
appears in the central light-grey box). There is no limitation on the elements either .. Tapestry is
specifically designed to allow components to wrap other components in this way, without any
arbitrary limitations.

This means that the different pages could contain forms, images or any set of components at all,
not just static HTML text.

The specification for the home page shows how the title and pages parameters are set. The title is
static, the literal value "Home" (this isn't the best approach if localization is a concern).

<?xm version="1.0"?>

<speci fi cati on>
<cl ass>com pri m x. t apest ry. BasePage</ cl ass>

<conponent >
<i d>bor der </i d>
<t ype>Bor der </ t ype>

38

TAPESTRY TUTORIAL

<st ati c- bi ndi ng>
<nanme>tit| e</ nanme>
<val ue>Home</ val ue>

</static-bi ndi ng>

<bi ndi ng>
<nane>pages</ nane>
<property- pat h>appl i cati on. pageNanmes</ property- pat h>
</ bi ndi ng>
</ conponent >

</ speci fi cati on>

The pages property is retrieved from the application, which implments a pageNames property:

BorderApplication.java (excerpt)

private static final String[] pageNanes =
{ "home", "credo", "legal" };

public String[] getPageNanes()
{

}

return pageNanes;

How did Tapestry know that the type 'Border' (shown in bold in the page specification)
corresponded to the specification / t ut ori al / bor der / Bor der . j we? Only because we defined
an alias in the application specification:

Border.application (excerpt)

<conponent >
<al i as>Bor der </ al i as>
<type>/tutorial/border/Border.jw</type>
</ conponent >

Had we failed to do this, we would have had to specify the complete resource path,
/tutorial/border/Border.jwc, on each page's specification, instead of the short alias
'Border’. There is no magic about the existing Tapestry component types (Insert, Foreach, Page,
etc.) ... they each have an alias pre-registered into every application specification. These short
aliases are simply a convienience.

	Setting up the Tutorial Project
	ServletExec Debugger
	Application Object
	Application Servlet
	Application Specification
	Home Page Specification
	Home Page Template
	Launch ServletExec Debugger
	Launching the Application
	Adding Interactivity using Listeners
	Persistant Page State and Page Pooling
	Dynamic Page State

