
Tapestry Design Review

Thu Apr 4 2000

7/19/2000 Primix Solutions, Inc. Slide 2

Introduction

✔ We’re still in the dark ages of web
applications

✔ We’re told:
– Receive a request
– Process it
– Send a reply

✔ That’s a lie!

7/19/2000 Primix Solutions, Inc. Slide 3

Introduction

✔ Web applications aren’t about requests
– They’re about interactivity
– Responding to user in a custom way
– Unifying behavior throughout application

✔ Most solutions focus on the request alone
– ASP, JSP, WebMacro, XMLC, FreeMarker
– Scripting languages
– Unique, ugly, incompatible

7/19/2000 Primix Solutions, Inc. Slide 4

Introduction

✔ Scripting only helps for one part of
interaction
– Each page includes “potentials” … links and

forms with some behavior
– To build one page, you need to know how to

invoke actions, some on other pages
– Tricky URLs to encode action, parameters, etc.
– Scripting only knows URLs, not actions
– Different developers, different approaches

7/19/2000 Primix Solutions, Inc. Slide 5

Introduction

✔ Scripting too weak
– Too many easy mistakes
– Too hard to debug
– Too much user-written code
– HTML full of “wierdness”
– Little possibility for re-use (non-static)
– Lots of plumbing for little effect

7/19/2000 Primix Solutions, Inc. Slide 6

Introduction

✔ CGI very procedural
✔ Start here, do this, stop
✔ APIs based on CGI very procedural
✔ Time for objects!

7/19/2000 Primix Solutions, Inc. Slide 7

Introduction

✔ Thus, Tapestry!
✔ Build app from component objects
✔ Let framework do “the plumbing”
✔ Reduce amount of code
✔ Increase amount of interactivity
✔ Eliminate bugs from ad-hoc solutions

7/19/2000 Primix Solutions, Inc. Slide 8

Tapestry Goals

✔ Portable code (JDK
1.1, Servlets 2.1)

✔ Minimal HTML
markup

✔ Tapestry handles
building/parsing URLs

✔ Make difficult easy:
– Debugging
– Deployment
– Localization
– Reuse
– Monitoring /

performance analysis

✔ Robust exception
support

7/19/2000 Primix Solutions, Inc. Slide 9

Tapestry Goals

✔ Reduce amount of Java code
✔ Zero code generation
✔ Work well for failover, load balancing
✔ Good interfaces, simple implementations

– Grow Tapestry by creating new
implementations

– Existing code works well into the future

7/19/2000 Primix Solutions, Inc. Slide 10

Overview

✔ Components
✔ Parameters
✔ Pages
✔ Applications
✔ Application Servlet
✔ Request Cycle
✔ Application Services

✔ Persistent Page State
✔ Dynamic Page State

7/19/2000 Primix Solutions, Inc. Slide 11

Components

✔ Tapestry component
– Specification
– HTML template (optional)
– Java Class (usually, not always)

✔ Component parameters
– Define data needed by component
– Ex: insert component has ‘value’
– Dynamic: based on JavaBeans properties

7/19/2000 Primix Solutions, Inc. Slide 12

Components

✔ Recursive
– Components contain other components
– Aggregation
– Part of the component specification
– Arbitrary depth
– Ex: ShoppingCartEditor contains form,

textfield, insert, foreach, conditional, ...

7/19/2000 Primix Solutions, Inc. Slide 13

Components

border : Border

navBar: NavBar

insertPageTitle: Insert

ifShowNavigation: Conditional

e: Foreach

insertPageName: Insert

pageLink: Action

7/19/2000 Primix Solutions, Inc. Slide 14

Components

✔ Re-usable
– Parameters to adapt component to page and

application
– “Black box” design

7/19/2000 Primix Solutions, Inc. Slide 15

Parameters

✔ Parameters are “plugs” in the Component
black-box

✔ Mostly, data “pulled” into Component
– Insert: value to insert into HTML
– Conditional: value to evaluate
– Action: listener to notify if action triggered
– form components: initial value for form fields

7/19/2000 Primix Solutions, Inc. Slide 16

Parameters

✔ Sometimes, data “pushed” out from
Component
– Foreach: current value
– form components: updated value when form

submitted

7/19/2000 Primix Solutions, Inc. Slide 17

Parameters

✔ Bindings provide values for parameters
✔ Specified in containing Component’s

specification
✔ Static bindings

– Fixed string value
– Often coerced to int or bool
– read-only

7/19/2000 Primix Solutions, Inc. Slide 18

Parameters

✔ Dynamic bindings
– Specifies JavaBeans property to get or set value
– Relative to containing Component
– read, write, read/write -- if Component

implements accessors, mutators
– Can use property path

• Ex: page.application.specification.name

7/19/2000 Primix Solutions, Inc. Slide 19

Parameters

source:
selectionOptions

value:
currentSelection

value:
currentSelection

home: HomePage

e: Foreach

insertCurrentSelection:
Insert

7/19/2000 Primix Solutions, Inc. Slide 20

Pages

✔ Specialization of Component
✔ Point of interaction with application
✔ Focus for persistence of server-side state
✔ Contain other components
✔ Specific Locale for localization
✔ No parameters - no containing Component

7/19/2000 Primix Solutions, Inc. Slide 21

Pages
home: HomePage

e: Foreach

changeSelection: Action

insertCurrentSelection: Insert

e: Foreach

insertPageName: Insert

pageLink: Action

border: Border

navBar: NavBar

border.navbar.e

border.navbar.pageLink

7/19/2000 Primix Solutions, Inc. Slide 22

Applications

✔ Provide support to everything else
– Page recorder for each page
– Page source: pool of reusable pages
– Application services (for building URLs)
– Runs the request cycle
– Access to templates & specifications

✔ One instance for each client, stored in
HttpSession

7/19/2000 Primix Solutions, Inc. Slide 23

Applications

✔ Central location for common values and
logic

✔ Serializable: may move to a different JVM
because of failover or load balancing

✔ Maps page names to page components
✔ Provides framework for handling

exceptions
✔ Can provide new services

7/19/2000 Primix Solutions, Inc. Slide 24

Application Servlet

✔ Single servlet for entire application
✔ Very little code: locates the Application

object in the HttpSession, or creates it
✔ Delegates everything else to the Application

7/19/2000 Primix Solutions, Inc. Slide 25

Application Servlet
Servlet

Container
:

ApplicationServlet
:

RequestContext
: (Logical

View::javax::ser
: IApplication

1. doGet(HttpServletRequest, HttpServletResponse)

1.2. getApplication(RequestContext)

1.2.1. getSessionAttribute(String)

1.2.1.1. getValue(String)

1.3. service(RequestContext)

1.1. RequestContext(HttpServlet, HttpServletRequest, HttpServletResponse)

7/19/2000 Primix Solutions, Inc. Slide 26

Request Cycle

✔ Represents processing a single request and
rendering a response HTML page

✔ Tracks state of components
✔ Knows ‘where on the page’ during

renderring … needed to build URLs

7/19/2000 Primix Solutions, Inc. Slide 27

Application Service

✔ Builds URLs for components
✔ Later, parses URL and kicks off request

cycle
✔ URLS:

– servlet path / service name / service info
– Each service defines its own service info
– Ex: Page service, info is name of page

✔ Usually linked to a specific Component

7/19/2000 Primix Solutions, Inc. Slide 28

Application Service
 : IComponent :

IRequestCycle
 : IApplication :

IApplicationService
 :

IResponseWriter

1. render(IResponseWriter, IRequestCycle)
1.1. getApplication()

1.2. getService(String)

1.3. buildURL(IRequestCycle, IComponent, String[])

1.4. various ...

2. service(RequestContext)
2.1. getService(String)

2.2. service(IRequestCycle, ResponseOutputStream)

7/19/2000 Primix Solutions, Inc. Slide 29

Persistent Page State
✔ Pages have server-side state
✔ Data specific to state
✔ Lifespan is same as session
✔ Examples:

– Show / hide details
– Form data, or errors in submitted form
– Navigation through complicated data
– Handles of EJBs, database connections, etc.

✔ Rich state for rich interaction

7/19/2000 Primix Solutions, Inc. Slide 30

Persistent Page State

✔ Traditionally (Servlets, JSPs)
– A lot of “plumbing”
– Stored as session attributes, cookies, hidden

form fields, encoded URLs, etc.
– Lots of ‘ad-hoc’, buggy solutions
– Life span of data hard to control

7/19/2000 Primix Solutions, Inc. Slide 31

Persistent Page State

✔ Stored in instance variables of page
✔ Problem:

– Pages are complicated to build … whole tree of
components, bindings, templates …

– Pages are pooled between requests
– Pooled pages shared between client sessions
– Need to separate page state from instances of

pages

7/19/2000 Primix Solutions, Inc. Slide 32

Persistent Page State

✔ Page Recorders
✔ Notified of changes to persistent properties

public void setActiveSelection(String value)
{

activeSelection = value;
fireObservedChange("activeSelection", value);

}

✔ Can rollback a page to a prior state
✔ Components can use their page’s recorder

7/19/2000 Primix Solutions, Inc. Slide 33

Persistent Page State

✔ Page Recorders have a version number
✔ Incremented every request cycle if a

property changes
✔ Incorporated into URLs
✔ Used to identify “stale links”

7/19/2000 Primix Solutions, Inc. Slide 34

Dynamic Page State

✔ State that changes during renderring a page
✔ Examples:

– Iterating a list of line items in a shopping cart
– Building an option list of answers in a survey

✔ Same components used multiple times in
same render

✔ Parameters different each time

7/19/2000 Primix Solutions, Inc. Slide 35

Dynamic Page State

✔ Problem: actions
– Knowing component id not enough
– What is dynamic state (ex: currentSelection)?

source:
selectionOptions

value:
currentSelection

value:
currentSelection

home: HomePage

e: Foreach

insertCurrentSelection:
Insert

changeSelection: Action listener:
listener

7/19/2000 Primix Solutions, Inc. Slide 36

Dynamic Page State

✔ Solution: encode in URL info needed to
restore dynamic state

✔ How?
– Allocate action ids during render
– Simple ascending sequence
– Automatically accounts for Foreach,

Conditional, etc.

7/19/2000 Primix Solutions, Inc. Slide 37

Dynamic Page State

✔ Restoring page state:
– Roll back page state
– Re-render page, discarding output
– Action ids allocated again
– When current action id matches encoded action

id, state has been restored
– Action component invokes actionTriggered()

on its listener
– Called “rewind stage”

7/19/2000 Primix Solutions, Inc. Slide 38

In Detail

✔ Understanding the
Request Cycle

✔ Application Services
– page
– direct
– action

✔ HTML Templates
✔ Component

Specification

✔ Application
Specification

7/19/2000 Primix Solutions, Inc. Slide 39

Understanding the Request Cycle

✔ Servlet Container invokes Application
Servlet

✔ Servlet locates/creates Application object,
invokes service()

✔ Application digs service out of URL
✔ Application finds correct Application

Service, invokes service()

7/19/2000 Primix Solutions, Inc. Slide 40

Understanding the Request Cycle

✔ Service runs rest of request cycle
✔ Generally:

– Load page, restore its state
– Find component identified in URL
– Invoke component’s listener’s

actionTriggered()
– Render a result page

7/19/2000 Primix Solutions, Inc. Slide 41

Understanding the Request Cycle
Servlet

Container
 :

ApplicationServlet
 :

RequestContext
 : (Logical

View::javax::ser
 : IApplication

1. doGet(HttpServletRequest, HttpServletResponse)

1.2. getApplication(RequestContext)

1.2.1. getSess ionAttribute(String)

1.2.1.1. getValue(String)

1.3. service(RequestContext)

1.1. RequestContext(HttpServlet, HttpServletRequest, HttpServletResponse)

7/19/2000 Primix Solutions, Inc. Slide 42

Application Service: page

✔ Simple, used for basic navigation
✔ URL:

servlet path / page / page name

✔ Restores page’s persistent state
✔ Doesn’t need to find component, just

renders response page

7/19/2000 Primix Solutions, Inc. Slide 43

Application Service: page

 :
ApplicationServlet

 : IApplication :
IApplicationService

 :
IRequestCycle

 : IPageSource

1. service(RequestContext)

1.1. service(IRequestCycle, ResponseOutputStream)

1.1.1. setPage(String)

1.1.2. renderPage(IResponseWriter)

1.1.1.1. getPage(IApplication, String, IMoni tor)

7/19/2000 Primix Solutions, Inc. Slide 44

Application Service: direct

✔ For links & buttons on page that don’t rely
on dynamic state of page

✔ URL:
servlet path / direct / page name / page version / component id path /
additional parameters

✔ Invokes trigger() on the component
✔ Component invokes actionTriggered() on its

listener
✔ Can carry additional parameters in URL

7/19/2000 Primix Solutions, Inc. Slide 45

Application Service: direct
: IApplication immediate :

IApplicationService
:

IRequestCycle
: IPage : IAction :

IActionListener
:

IPageRecorder

1. service(IRequestCycle, ResponseOutputStream)

1.1. getPage(String)

1.2. getNestedComponent(String)

1.3. trigger(IRequestCycle, String[])

1.5. renderPage(IResponseWriter)

1.4. commit page changes

1.4.1. commit()

1.1.1. rollback(IPage)

1.4.2. setActive(boolean)

Ignore any changes while
the page is renderring.

1.3.1. actionTriggered(IComponent, String[], IRequestCycle)

7/19/2000 Primix Solutions, Inc. Slide 46

Application Service: action

✔ Used with forms and with actions sensitive
to dynamic page state

✔ URL:
servlet path / action / page name / page version / action id

✔ Rolls the page back, then rewinds it
✔ The action component invokes

actionTriggered() on its listener

7/19/2000 Primix Solutions, Inc. Slide 47

Application Service: action
action :

IApplicationService
:

IRequestCycle
: IPage : IComponent :

IActionListener

1. service(IRequestCycle, ResponseOutputStream)

1.1. setPage(String)

1.2. rewindPage(String)

1.2.1. renderPage(IResponseWriter, IRequestCycle)

1.2.1.1. render(IResponseWriter, IRequestCycle)

1.2.1.1.1. getNextActionId())

1.2.1.1.2. isRewound()

1.2.1.1.3. actionTriggered(IAction, IRequestCycle)
RenderRewound-
Exception thrown after
invoking method.

1.4. renderPage(IResponseWriter)

1.3. commit page recorders

7/19/2000 Primix Solutions, Inc. Slide 48

HTML Templates

✔ Goals:
– Easy localization
– Minimal HTML markup
– Efficiency

✔ Each component has a single template
✔ Template may be chosen based on Locale
✔ Templates are resources packaged in the

JAR with classes and specifications

7/19/2000 Primix Solutions, Inc. Slide 49

HTML Templates

✔ Templates are excerpts of standard HTML
documents

✔ Add a single element:
<jwc>
Java Web Component

✔ Just a placeholder for the location of of the
component

7/19/2000 Primix Solutions, Inc. Slide 50

HTML Templates

✔ Usage:
– <jwc id=“component id”> … </jwc>
– <jwc id=“component id”/>

✔ Components may wrap static HTML and
other components

✔ Affects the order in which components are
renderred (the component trace)

7/19/2000 Primix Solutions, Inc. Slide 51

HTML Templates

<p>Change it to:

<jwc id="e">
<jwc id="changeSelection">

<jwc id="insertCurrentSelection"/>
</jwc>

</jwc>

HomePage.html

7/19/2000 Primix Solutions, Inc. Slide 52

HTML Templates

✔ Each component id in the template matches
against a contained component in the
specification

✔ Pages have templates, but are not contained
inside other components

✔ Pages do contain other components

7/19/2000 Primix Solutions, Inc. Slide 53

Component Specification

✔ Specifications are XML files
✔ Stored with class in JAR file
✔ Describe type of component
✔ Describe parameters of component
✔ Describe components contained within

component

7/19/2000 Primix Solutions, Inc. Slide 54

Component Specification

✔ Structure:
<specification>

<class>class name</class>
parameters
components
assets

</specification>

7/19/2000 Primix Solutions, Inc. Slide 55

Component Specification

✔ Class is the Java Class to instantiate
✔ Classes which use a template don’t specify

the path to the template … it is assumed to
be a neighbor of the specification (with the
.jwc extension changed to .html).

7/19/2000 Primix Solutions, Inc. Slide 56

Component Specification

✔ Parameters
<allow-body>boolean</allow-body>
<allow-informal-parameters>boolean

</allow-informal-parameters>

<parameter>
<name>name</name>
<type>type</type>
<required>boolean</required>

</parameter>

7/19/2000 Primix Solutions, Inc. Slide 57

Component Specification

✔ <allow-body>
– Some components may not wrap other elements
– ex: textfield, insert
– Defaults to true if not specified

7/19/2000 Primix Solutions, Inc. Slide 58

Component Specification

✔ <allow-informal-parameters>
– Allows additional bindings beyond the defined

parameters
– Each becomes one attribute of the tag created

by the component
– Only makes sense when the component maps

directly to a single HTML element
– Used for JavaScript, CSS
– Defaults to true if not specified

7/19/2000 Primix Solutions, Inc. Slide 59

Component Specification

✔ <parameter>
– One for each parameter
– Name should be a valid JavaBeans property

name (alphanumeric)
– Type is a class, or omit for Object (I.e., match

any)
– Required defaults to false; if true then binding

must be specified

7/19/2000 Primix Solutions, Inc. Slide 60

Component Specification

✔ Embedded components:
<component>
<id>id</id>
<type>type</type>
bindings

</component>

✔ Id must match <jwc> tag in template
✔ Type is either a specification path, or a well

known alias
✔ Built in components all have aliases

7/19/2000 Primix Solutions, Inc. Slide 61

Component Specification

✔ Components have bindings that match their
parameters

✔ Three types:
– dynamic
– static
– inherited

7/19/2000 Primix Solutions, Inc. Slide 62

Component Specification

✔ Dynamic binding:
<binding>

<name>name</name>
<property-path>property path
</property-path>

</binding>

✔ Property path is relative to containing
component

✔ May be read, write or read/write depending
on component

7/19/2000 Primix Solutions, Inc. Slide 63

Component Specification

✔ Static binding:
<static-binding>

<name>name</name>
<value>value</value>

</static-binding>

✔ Value will be the String value for the
parameter

✔ Read-only
✔ Often coerced to int or boolean

7/19/2000 Primix Solutions, Inc. Slide 64

Component Specification

✔ Inherited binding:
<inherited-binding>

<name>name</name>
<parameter-name>parameter name
</parameter-name>

</inherited-binding>

✔ Used often with aggregation
✔ Contained component shares a parameter

with its container

7/19/2000 Primix Solutions, Inc. Slide 65

Component Specification
home: HomePage

insertPageTitle: Insert

border: Border
value:

inherited
from title

title: ‘Home’
(static)

7/19/2000 Primix Solutions, Inc. Slide 66

Component Specification

✔ Assets
– Allow images, sounds, etc. to be packaged with

a component
– Supports re-use
– Described elsewhere

7/19/2000 Primix Solutions, Inc. Slide 67

Application Specification

✔ Another XML file
✔ Specifies

– Name of application
– Map from page name to page component
– Short aliases for common components

• ex: ‘NavBar’ instead of ‘/tests/tapestry/NavBar.jwc’

