
Space Details
Key: XW

Name: XWork

Description:

Creator (Creation Date): plightbo (Apr 18, 2004)

Last Modifier (Mod. Date): phil (Jan 03, 2007)

Available Pages

• Documentation

• Annotations
• After Annotation
• AnnotationWorkflowInterceptor
• Before Annotation
• BeforeResult Annotation
• Conversion Annotation
• ConversionErrorFieldValidator Annotation
• CreateIfNull Annotation
• CustomValidator Annotation

• ValidationParameter annotation
• DateRangeFieldValidator Annotation
• DoubleRangeFieldValidator Annotation
• Element Annotation
• EmailValidator Annotation
• ExpressionValidator Annotation
• FieldExpressionValidator Annotation
• IntRangeFieldValidator Annotation
• Key Annotation
• KeyProperty Annotation
• RegexFieldValidator Annotation
• RequiredFieldValidator Annotation
• RequiredStringValidator Annotation
• StringLengthFieldValidator Annotation
• StringRegexValidator Annotation
• TypeConversion Annotation
• UrlValidator Annotation
• Validation Annotation
• Validations Annotation
• VisitorFieldValidator Annotation

• Building XWork
• Colophon
• Configuring XWork in xwork.xml

Document generated by Confluence on Apr 01, 2008 04:35 Page 1

• Action configuration
• Include configuration
• Interceptor Configuration
• Namespace Configuration
• Package Configuration
• Result Configuration

• Creating a distribution
• Documentation Style Guide
• Precise Error Reporting
• Reloading
• XWork Actions
• XWork Architecture
• XWork Articles
• XWork Configurations
• XWork Conversion
• XWork Core Concepts
• XWork FAQs
• XWork Features
• XWork Hibernate Integration
• XWork Installation
• XWork Interceptors
• XWork Localization
• XWork Object Factory
• XWork package
• XWork PreResultListeners
• XWork Profiling
• XWork Requirements And Dependencies
• Xwork Results
• XWork specific OGNL Features
• Xwork Spring Integration
• XWork Tutorial

• XWork2 Hello World Tutorial
• XWork Validation
• XWork Value Stack

Document generated by Confluence on Apr 01, 2008 04:35 Page 2

Documentation

This page last changed on Jan 03, 2007 by phil.

XWork2 documentation is out of date due to some stuff added to make it works with Struts2. The
XWork1 documentation is merged into WebWork

About XWork

• Features
• Concepts
• Team
• Contributing
• Bugs and Issues
• Articles
• License

Getting Started

• Download
• Installation
• Requirements and Dependencies
• Tutorial

Reference

• API
• Architecture
• xwork.xml
• Configurations
• Interceptors
• Package
• Actions
• Pre Result Listeners
• Results
• Object Factory
• Conversion
• Validation
• Profiling
• Value Stack
• Annotations
• Reloading
• OGNL
• Localization

Integration

• Spring

Document generated by Confluence on Apr 01, 2008 04:35 Page 3

http://wiki.opensymphony.com/display/WW/WebWork
http://www.opensymphony.com/xwork/members.action
http://www.opensymphony.com/xwork/contribute.action
http://www.opensymphony.com/xwork/reporting.action
http://www.opensymphony.com/xwork/license.action
https://xwork.dev.java.net/servlets/ProjectDocumentList?folderID=6088
http://www.opensymphony.com/xwork/api

• Hibernate

Help

• FAQs

Contributors Guide

Source

• Building the Framework from Source
• How to Write Doc Comments for the Javadoc Tool (Sun)
• Precise Error Reporting
• Distribution

Documentation

• Documentation Colophon
• Documentation Style Guide

Document generated by Confluence on Apr 01, 2008 04:35 Page 4

http://java.sun.com/j2se/javadoc/writingdoccomments/

Annotations

This page last changed on Jan 17, 2007 by phil.

In many places, applications can use use Java 5 annotations as an alternative to XML and Java properties
configuration. This page serves as a reference for all annotations across the framework.

Interceptor Annotations

To use these annotations, you have to specify the AnnotationWorkflowInterceptor to your interceptor
stack.

Annotation Description

After Annotation Marks an action method that needs to be executed
after the main method and the result.

Before Annotation Marks an action method that needs to be executed
before the main action method.

BeforeResult Annotation Marks an action method that needs to be executed
before the result.

Validation Annotations

If you want to use annotation based validation, you have to annotate the class or interface with
Validation Annotation.

These are the standard validator annotations that come with XWork-tiger:

Annotation Description

ConversionErrorFieldValidator Annotation Checks if there are any conversion errors for a
field.

DateRangeFieldValidator Annotation Checks that a date field has a value within a
specified range.

DoubleRangeFieldValidator Annotation Checks that a double field has a value within a
specified range.

EmailValidator Annotation Checks that a field is a valid e-mail address.

ExpressionValidator Annotation Validates an expression.

FieldExpressionValidator Annotation Uses an OGNL expression to perform its validator.

IntRangeFieldValidator Annotation Checks that a numeric field has a value within a
specified range.

RegexFieldValidator Annotation Validates a regular expression for a field.

RequiredFieldValidator Annotation Checks that a field is non-null.

Document generated by Confluence on Apr 01, 2008 04:35 Page 5

RequiredStringValidator Annotation Checks that a String field is not empty.

StringLengthFieldValidator Annotation Checks that a String field is of the right length.

StringRegexValidator Annotation

UrlValidator Annotation Checks that a field is a valid URL.

Validation Annotation Marker annotation for validation at Type level.

Validations Annotation Used to group validation annotations.

VisitorFieldValidator Annotation

CustomValidator Annotation Use this annotation for your custom validator
types.

Type Conversion Annotations

If the xwork-tigerjar is added to the classpath, you will directly have type conversion support for Maps
and Collections using generics.

In short, instead of specifying the types found in collections and maps as documented in Type
Conversion, the collection's generic type is used. This means you most likely don't need any
ClassName-conversion.properties files.

If you want to use annotation based type conversion, you have to annotate the class or interface with the
Conversion Annotation.

Annotation Description

Conversion Annotation Marker annotation for type conversions at Type
level.

CreateIfNull Annotation For Collection and Map types: Create the types
within the Collection or Map, if null.

Element Annotation For Generic types: Specify the element type for
Collection types and Map values.

Key Annotation For Generic types: Specify the key type for Map
keys.

KeyProperty Annotation For Generic types: Specify the key property name
value.

TypeConversion Annotation Used for class and application wide conversion
rules.

Document generated by Confluence on Apr 01, 2008 04:35 Page 6

After Annotation

This page last changed on Dec 01, 2006 by rainerh.

After Annotation

Marks a action method that needs to be called after the main action method and the result was executed.
Return value is ignored.

Usage

The After annotation can be applied at method level.

Parameters

Parameter Required Default Notes

priority no 10 Priority order of method
execution

Examples

public class SampleAction extends ActionSupport {

@After
public void isValid() throws ValidationException {

// validate model object, throw exception if failed
}

public String execute() {
// perform action
return SUCCESS;

}
}

Document generated by Confluence on Apr 01, 2008 04:35 Page 7

AnnotationWorkflowInterceptor

This page last changed on Dec 01, 2006 by rainerh.

AnnotationWorkflowInterceptor Interceptor

Invokes any annotated methods on the action. Specifically, it supports the following annotations:

• @Before - will be invoked before the action method. If the returned value is not null, it is returned
as the action result code

• @BeforeResult - will be invoked after the action method but before the result execution
• @After - will be invoked after the action method and result execution

There can be multiple methods marked with the same annotations, but the order of their execution is not
guaranteed. However, the annotated methods on the superclass chain are guaranteed to be invoked
before the annotated method in the current class in the case of a Before annotations and after, if the
annotations is After.

Examples

public class BaseAnnotatedAction {
protected String log = "";

<p/>
@Before
public String baseBefore() {

log = log + "baseBefore-";
return null;

}
}
<p/>
public class AnnotatedAction extends BaseAnnotatedAction {

@Before
public String before() {

log = log + "before";
return null;

}
<p/>

public String execute() {
log = log + "-execute";
return Action.SUCCESS;

}
<p/>

@BeforeResult
public void beforeResult() throws Exception {

log = log +"-beforeResult";
}

<p/>
@After
public void after() {

log = log + "-after";
}

}

Configure a stack in xwork.xml that replaces the PrepareInterceptor with the
AnnotationWorkflowInterceptor:

Document generated by Confluence on Apr 01, 2008 04:35 Page 8

<interceptor-stack name="annotatedStack">
<interceptor-ref name="staticParams"/>
<interceptor-ref name="params"/>
<interceptor-ref name="conversionError"/>
<interceptor-ref name="annotationWorkflow"/>

</interceptor-stack>

Given an Action, AnnotatedAction, add a reference to the AnnotationWorkflowInterceptor interceptor.

<action name="AnnotatedAction" class="com.examples.AnnotatedAction">
<interceptor-ref name="annotationInterceptor"/>
<result name="success" type="freemarker">good_result.ftl</result>

</action>

With the interceptor applied and the action executed on AnnotatedAction the log instance variable will
contain baseBefore-before-execute-beforeResult-after.

Document generated by Confluence on Apr 01, 2008 04:35 Page 9

Before Annotation

This page last changed on Dec 01, 2006 by rainerh.

Before Annotation

Marks a action method that needs to be executed before the main action method.

Usage

The Before annotation can be applied at method level.

Parameters

Parameter Required Default Notes

priority no 10 Priority order of method
execution

Examples

public class SampleAction extends ActionSupport {

@Before
public void isAuthorized() throws AuthenticationException {

// authorize request, throw exception if failed
}

public String execute() {
// perform secure action
return SUCCESS;

}
}

Document generated by Confluence on Apr 01, 2008 04:35 Page 10

BeforeResult Annotation

This page last changed on Dec 01, 2006 by rainerh.

BeforeResult Annotation

Marks a action method that needs to be executed before the result. Return value is ignored.

Usage

The BeforeResult annotation can be applied at method level.

Parameters

Parameter Required Default Notes

priority no 10 Priority order of method
execution

Examples

public class SampleAction extends ActionSupport {

@BeforeResult
public void isValid() throws ValidationException {

// validate model object, throw exception if failed
}

public String execute() {
// perform action
return SUCCESS;

}
}

Document generated by Confluence on Apr 01, 2008 04:35 Page 11

Conversion Annotation

This page last changed on Dec 01, 2006 by rainerh.

A marker annotation for type conversions at Type level.

Usage

The Conversion annotation must be applied at Type level.

Parameters

Parameter Required Default Description

conversion no used for Type Conversions
applied at Type level.

Examples

@Conversion()
public class ConversionAction implements Action {
}

Document generated by Confluence on Apr 01, 2008 04:35 Page 12

ConversionErrorFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks if there are any conversion errors for a field and applies them if they exist. See Type
Conversion Error Handling for details.

Usage

The ConversionErrorFieldValidator annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

Examples

@ConversionErrorFieldValidator(message = "Default message", key = "i18n.key", shortCircuit =
true)

Document generated by Confluence on Apr 01, 2008 04:35 Page 13

http://wiki.opensymphony.com/display/XW/Type+Conversion+Error+Handling
http://wiki.opensymphony.com/display/XW/Type+Conversion+Error+Handling

CreateIfNull Annotation

This page last changed on Dec 01, 2006 by rainerh.

Sets the CreateIfNull for type conversion.

Usage

The CreateIfNull annotation must be applied at field or method level.

Parameters

Parameter Required Default Description

value no false The CreateIfNull property
value.

Examples

@CreateIfNull(value = true)
private List<User> users;

Document generated by Confluence on Apr 01, 2008 04:35 Page 14

CustomValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This annotation can be used for custom validators. Use the ValidationParameter annotation to supply
additional params.

Usage

The annotation must be applied at method or type level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

Examples

@CustomValidator(type ="customValidatorName", fieldName = "myField")

Adding Parameters

Use the ValidationParameter annotation to add custom parameter values.

Document generated by Confluence on Apr 01, 2008 04:35 Page 15

ValidationParameter annotation

This page last changed on Dec 01, 2006 by rainerh.

ValidationParameter Annotation

The ValidationParameter annotation is used as a parameter for CustomValidators.

Usage

The annotation must embedded into CustomValidator annotations as a parameter.

Parameters

Parameter Required Default Notes

name yes parameter name.

value yes parameter value.

Examples

@CustomValidator(
type ="customValidatorName",
fieldName = "myField",
parameters = { @ValidationParameter(name = "paramName", value = "paramValue") }

)

Document generated by Confluence on Apr 01, 2008 04:35 Page 16

DateRangeFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a date field has a value within a specified range.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

min no Date property. The
minimum the date must
be.

max no Date property. The
maximum date can be.

If neither min nor max is set, nothing will be done.

Examples

@DateRangeFieldValidator(message = "Default message", key = "i18n.key", shortCircuit = true,
min = "2005/01/01", max = "2005/12/31")

Document generated by Confluence on Apr 01, 2008 04:35 Page 17

DoubleRangeFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a double field has a value within a specified range. If neither min nor max is
set, nothing will be done.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

minInclusive no Double property. The
inclusive minimum the
number must be.

maxInclusive no Double property. The
inclusive maximum
number can be.

minExclusive no Double property. The
exclusive minimum the
number must be.

maxExclusive no Double property. The
exclusive maximum
number can be.

If neither min nor max is set, nothing will be done.

The values for min and max must be inserted as String values so that "0" can be handled as a possible
value.

Examples

Document generated by Confluence on Apr 01, 2008 04:35 Page 18

@DoubleRangeFieldValidator(message = "Default message", key = "i18n.key", shortCircuit = true,
minInclusive = "0.123", maxInclusive = "99.987")

Document generated by Confluence on Apr 01, 2008 04:35 Page 19

Element Annotation

This page last changed on Dec 01, 2006 by rainerh.

Sets the Element for type conversion.

Usage

The Element annotation must be applied at field or method level.

Parameters

Parameter Required Default Description

value no java.lang.Object.class The element property
value.

Examples

// The key property for User objects within the users collection is the <code>userName</code>
attribute.
@Element(value = com.acme.User)
private Map<Long, User> userMap;

@Element(value = com.acme.User)
public List<User> userList;

Document generated by Confluence on Apr 01, 2008 04:35 Page 20

EmailValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a field is a valid e-mail address if it contains a non-empty String.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

Examples

@EmailValidator(message = "Default message", key = "i18n.key", shortCircuit = true)

Document generated by Confluence on Apr 01, 2008 04:35 Page 21

ExpressionValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

ExpressionValidator Annotation

This non-field level validator validates a supplied regular expression.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

shortCircuit no false If this validator should
be used as shortCircuit.

expression yes An OGNL expression
that returns a boolean
value.

Examples

@ExpressionValidator(message = "Default message", key = "i18n.key", shortCircuit = true,
expression = "an OGNL expression")

Document generated by Confluence on Apr 01, 2008 04:35 Page 22

FieldExpressionValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator uses an OGNL expression to perform its validator. The error message will be added to the
field if the expression returns false when it is evaluated against the value stack.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

expression yes An OGNL expression
that returns a boolean
value.

Examples

@FieldExpressionValidator(message = "Default message", key = "i18n.key", shortCircuit = true,
expression = "an OGNL expression")

Document generated by Confluence on Apr 01, 2008 04:35 Page 23

IntRangeFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a numeric field has a value within a specified range. If neither min nor max is
set, nothing will be done.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

min no Integer property. The
minimum the number
must be.

max no Integer property. The
maximum number can
be.

If neither min nor max is set, nothing will be done.

The values for min and max must be inserted as String values so that "0" can be handled as a possible
value.

Examples

@IntRangeFieldValidator(message = "Default message", key = "i18n.key", shortCircuit = true, min
= "0", max = "42")

Document generated by Confluence on Apr 01, 2008 04:35 Page 24

Key Annotation

This page last changed on Dec 01, 2006 by rainerh.

Sets the Key for type conversion.

Usage

The Key annotation must be applied at field or method level.

Parameters

Parameter Required Default Description

value no java.lang.Object.class The key property value.

Examples

// The key property for User objects within the users collection is the <code>userName</code>
attribute.
@Key(value = java.lang.Long.class)
private Map<Long, User> userMap;

Document generated by Confluence on Apr 01, 2008 04:35 Page 25

KeyProperty Annotation

This page last changed on Dec 01, 2006 by rainerh.

Sets the KeyProperty for type conversion.

Usage

The KeyProperty annotation must be applied at field or method level. This annotation should be used with
Generic types, if the key property of the key element needs to be specified.

Parameters

Parameter Required Default Description

value no id The key property value.

Examples

// The key property for User objects within the users collection is the <code>userName</code>
attribute.
@KeyProperty(value = "userName")
protected List<User> users = null;

Document generated by Confluence on Apr 01, 2008 04:35 Page 26

RegexFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

Validates a string field using a regular expression.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

expression yes The regex to validate
the field value against.

Examples

@RegexFieldValidator(key = "regex.field", expression = "yourregexp")

Document generated by Confluence on Apr 01, 2008 04:35 Page 27

RequiredFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a field is non-null.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

Examples

@RequiredFieldValidator(message = "Default message", key = "i18n.key", shortCircuit = true)

Document generated by Confluence on Apr 01, 2008 04:35 Page 28

RequiredStringValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a String field is not empty (i.e. non-null with a length > 0).

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

trim no true Boolean property.
Determines whether the
String is trimmed before
performing the length
check.

Examples

@RequiredStringValidator(message = "Default message", key = "i18n.key", shortCircuit = true,
trim = true)

Document generated by Confluence on Apr 01, 2008 04:35 Page 29

StringLengthFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a String field is of the right length. It assumes that the field is a String. If
neither minLength nor maxLength is set, nothing will be done.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

trim no true Boolean property.
Determines whether the
String is trimmed before
performing the length
check.

minLength no Integer property. The
minimum length the
String must be.

maxLength no Integer property. The
maximum length the
String can be.

If neither minLength nor maxLength is set, nothing will be done.

Examples

@StringLengthFieldValidator(message = "Default message", key = "i18n.key", shortCircuit = true,
trim = true, minLength = "5", maxLength = "12")

Document generated by Confluence on Apr 01, 2008 04:35 Page 30

Document generated by Confluence on Apr 01, 2008 04:35 Page 31

StringRegexValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

An error occurred:
http://svn.opensymphony.com/svn/xwork/trunk/src/java/com/opensymphony/xwork2/validator/annotations/StringRegexValidator.java.
The system administrator has been notified.

Usage

An error occurred:
http://svn.opensymphony.com/svn/xwork/trunk/src/java/com/opensymphony/xwork2/validator/annotations/StringRegexValidator.java.
The system administrator has been notified.

Parameters

An error occurred:
http://svn.opensymphony.com/svn/xwork/trunk/src/java/com/opensymphony/xwork2/validator/annotations/StringRegexValidator.java.
The system administrator has been notified.

Examples

An error occurred:
http://svn.opensymphony.com/svn/xwork/trunk/src/java/com/opensymphony/xwork2/validator/annotations/StringRegexValidator.java.
The system administrator has been notified.

Document generated by Confluence on Apr 01, 2008 04:35 Page 32

TypeConversion Annotation

This page last changed on Dec 01, 2006 by rainerh.

This annotation is used for class and application wide conversion rules.

Class wide conversion:
The conversion rules will be assembled in a file called XXXAction-conversion.properties within the
same package as the related action class. Set type to: type = ConversionType.CLASS

Allication wide conversion:
The conversion rules will be assembled within the xwork-conversion.properties file within the
classpath root. Set type to: type = ConversionType.APPLICATION

Usage

The TypeConversion annotation can be applied at property and method level.

Parameters

Parameter Required Default Description

key no The annotated
property/key name

The optional property
name mostly used within
TYPE level annotations.

type no ConversionType.CLASS Enum value of
ConversionType.
Determines whether the
conversion should be
applied at application or
class level.

rule no ConversionRule.PROPERTYEnum value of
ConversionRule. The
ConversionRule can be a
property, a Collection or a
Map.

converter either this or value The class name of the
TypeConverter to be used
as converter.

value either converter or this The value to set for
ConversionRule.KEY_PROPERTY.

Examples

@Conversion()
public class ConversionAction implements Action {

private String convertInt;

Document generated by Confluence on Apr 01, 2008 04:35 Page 33

private String convertDouble;
private List users = null;

private HashMap keyValues = null;

@TypeConversion(type = ConversionType.APPLICATION, converter =
"com.opensymphony.xwork2.util.XWorkBasicConverter")

public void setConvertInt(String convertInt) {
this.convertInt = convertInt;

}

@TypeConversion(converter = "com.opensymphony.xwork2.util.XWorkBasicConverter")
public void setConvertDouble(String convertDouble) {

this.convertDouble = convertDouble;
}

@TypeConversion(rule = ConversionRule.COLLECTION, converter = "java.util.String")
public void setUsers(List users) {

this.users = users;
}

@TypeConversion(rule = ConversionRule.MAP, converter = "java.math.BigInteger")
public void setKeyValues(HashMap keyValues) {

this.keyValues = keyValues;
}

@TypeConversion(type = ConversionType.APPLICATION, property = "java.util.Date", converter =
"com.opensymphony.xwork2.util.XWorkBasicConverter")

public String execute() throws Exception {
return SUCCESS;

}
}

Document generated by Confluence on Apr 01, 2008 04:35 Page 34

UrlValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

This validator checks that a field is a valid URL.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

type yes ValidatorType.FIELD Enum value from
ValidatorType. Either
FIELD or SIMPLE can be
used here.

Examples

@UrlValidator(message = "Default message", key = "i18n.key", shortCircuit = true)

Document generated by Confluence on Apr 01, 2008 04:35 Page 35

Validation Annotation

This page last changed on Dec 01, 2006 by rainerh.

If you want to use annotation based validation, you have to annotate the class or interface with
Validation Annotation.

Usage

The Validation annotation must be applied at Type level.

Parameters

Parameter Required Default Notes

validations yes

Examples

An Annotated Interface

• Mark the interface with @Validation()
• Apply standard or custom annoations at method level

@Validation()
public interface AnnotationDataAware {

void setBarObj(Bar b);

Bar getBarObj();

@RequiredFieldValidator(message = "You must enter a value for data.")
@RequiredStringValidator(message = "You must enter a value for data.")
void setData(String data);

String getData();
}

An Annotated Class

@Validation()
public class SimpleAnnotationAction extends ActionSupport {

@RequiredFieldValidator(type = ValidatorType.FIELD, message = "You must enter a value for
bar.")

@IntRangeFieldValidator(type = ValidatorType.FIELD, min = "6", max = "10", message = "bar
must be between ${min} and ${max}, current value is ${bar}.")

public void setBar(int bar) {
this.bar = bar;

}

public int getBar() {
return bar;

Document generated by Confluence on Apr 01, 2008 04:35 Page 36

}

@Validations(
requiredFields =

{@RequiredFieldValidator(type = ValidatorType.SIMPLE, fieldName =
"customfield", message = "You must enter a value for field.")},

requiredStrings =
{@RequiredStringValidator(type = ValidatorType.SIMPLE, fieldName =

"stringisrequired", message = "You must enter a value for string.")},
emails =

{ @EmailValidator(type = ValidatorType.SIMPLE, fieldName = "emailaddress",
message = "You must enter a value for email.")},

urls =
{ @UrlValidator(type = ValidatorType.SIMPLE, fieldName = "hreflocation",

message = "You must enter a value for email.")},
stringLengthFields =

{@StringLengthFieldValidator(type = ValidatorType.SIMPLE, trim = true,
minLength="10" , maxLength = "12", fieldName = "needstringlength", message = "You must enter a
stringlength.")},

intRangeFields =
{ @IntRangeFieldValidator(type = ValidatorType.SIMPLE, fieldName =

"intfield", min = "6", max = "10", message = "bar must be between ${min} and ${max}, current
value is ${bar}.")},

dateRangeFields =
{@DateRangeFieldValidator(type = ValidatorType.SIMPLE, fieldName =

"datefield", min = "-1", max = "99", message = "bar must be between ${min} and ${max}, current
value is ${bar}.")},

expressions = {
@ExpressionValidator(expression = "foo > 1", message = "Foo must be greater

than Bar 1. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 2", message = "Foo must be greater

than Bar 2. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 3", message = "Foo must be greater

than Bar 3. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 4", message = "Foo must be greater

than Bar 4. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 5", message = "Foo must be greater

than Bar 5. Foo = ${foo}, Bar = ${bar}.")
}
)
public String execute() throws Exception {

return SUCCESS;
}

}

Document generated by Confluence on Apr 01, 2008 04:35 Page 37

Validations Annotation

This page last changed on Dec 01, 2006 by rainerh.

If you want to use several annotations of the same type, these annotations must be nested within the
@Validations() annotation.

Usage

Used at METHOD level.

Parameters

Parameter Required Notes

requiredFields no Add list of
RequiredFieldValidators

customValidators no Add list of CustomValidators

conversionErrorFields no Add list of
ConversionErrorFieldValidators

dateRangeFields no Add list of
DateRangeFieldValidators

emails no Add list of EmailValidators

fieldExpressions no Add list of
FieldExpressionValidators

intRangeFields no Add list of
IntRangeFieldValidators

requiredStrings no Add list of
RequiredStringValidators

stringLengthFields no Add list of
StringLengthFieldValidators

urls no Add list of UrlValidators

visitorFields no Add list of VisitorFieldValidators

regexFields no Add list of RegexFieldValidator

expressions no Add list of ExpressionValidator

Examples

@Validations(
requiredFields =

{@RequiredFieldValidator(type = ValidatorType.SIMPLE, fieldName =
"customfield", message = "You must enter a value for field.")},

Document generated by Confluence on Apr 01, 2008 04:35 Page 38

requiredStrings =
{@RequiredStringValidator(type = ValidatorType.SIMPLE, fieldName =

"stringisrequired", message = "You must enter a value for string.")},
emails =

{ @EmailValidator(type = ValidatorType.SIMPLE, fieldName = "emailaddress",
message = "You must enter a value for email.")},

urls =
{ @UrlValidator(type = ValidatorType.SIMPLE, fieldName = "hreflocation",

message = "You must enter a value for email.")},
stringLengthFields =

{@StringLengthFieldValidator(type = ValidatorType.SIMPLE, trim = true,
minLength="10" , maxLength = "12", fieldName = "needstringlength", message = "You must enter a
stringlength.")},

intRangeFields =
{ @IntRangeFieldValidator(type = ValidatorType.SIMPLE, fieldName =

"intfield", min = "6", max = "10", message = "bar must be between ${min} and ${max}, current
value is ${bar}.")},

dateRangeFields =
{@DateRangeFieldValidator(type = ValidatorType.SIMPLE, fieldName =

"datefield", min = "-1", max = "99", message = "bar must be between ${min} and ${max}, current
value is ${bar}.")},

expressions = {
@ExpressionValidator(expression = "foo > 1", message = "Foo must be greater than

Bar 1. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 2", message = "Foo must be greater than

Bar 2. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 3", message = "Foo must be greater than

Bar 3. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 4", message = "Foo must be greater than

Bar 4. Foo = ${foo}, Bar = ${bar}."),
@ExpressionValidator(expression = "foo > 5", message = "Foo must be greater than

Bar 5. Foo = ${foo}, Bar = ${bar}.")
}
)
public String execute() throws Exception {

return SUCCESS;
}

Document generated by Confluence on Apr 01, 2008 04:35 Page 39

VisitorFieldValidator Annotation

This page last changed on Dec 01, 2006 by rainerh.

The validator allows you to forward validator to object properties of your action using the objects own
validator files. This allows you to use the ModelDriven development pattern and manage your validations
for your models in one place, where they belong, next to your model classes.

The VisitorFieldValidator can handle either simple Object properties, Collections of Objects, or Arrays. The
error message for the VisitorFieldValidator will be appended in front of validator messages added by the
validations for the Object message.

Usage

The annotation must be applied at method level.

Parameters

Parameter Required Default Notes

message yes field error message

key no i18n key from language
specific properties file.

fieldName no

shortCircuit no false If this validator should
be used as shortCircuit.

context no action alias Determines the context
to use for validating the
Object property. If not
defined, the context of
the Action validation is
propogated to the
Object property
validation. In the case
of Action validation, this
context is the Action
alias.

appendPrefix no true Determines whether the
field name of this field
validator should be
prepended to the field
name of the visited field
to determine the full
field name when an
error occurs. For
example, suppose that
the bean being

Document generated by Confluence on Apr 01, 2008 04:35 Page 40

validated has a "name"
property. If
appendPrefix is true,
then the field error will
be stored under the
field "bean.name". If
appendPrefix is false,
then the field error will
be stored under the
field "name".

If you are using the

VisitorFieldValidator to
validate the model from
a ModelDriven Action,
you should set
appendPrefix to false
unless you are using
"model.name" to
reference the properties
on your model.

Examples

@VisitorFieldValidator(message = "Default message", key = "i18n.key", shortCircuit = true,
context = "action alias", appendPrefix = true)

Document generated by Confluence on Apr 01, 2008 04:35 Page 41

Building XWork

This page last changed on Dec 01, 2006 by rainerh.

Why Build?

Most developers will never need to build the framework from source. The distribution package contains
everything a developer needs to get started and become productive with the framework. For more on
how to go to work with the distributed binaries right away, see Ready, Set, Go\!. However, there are
situations when someone will want to build the framework from scratch. You may want to try out new
tweaks and patches, or you might want to try writing your own tweak or patch.

Getting the Sources

The source code for the framework is available as distribution you can download directly or from the
source code repository.

Distribution

The distributions of the framework contain all sources, as well as all needed libraries for building JARs and
running. Distributions can be downloaded from here.

After downloading simply unzip it using:

unzip ./xwork-xxx.zip -d ./xwork

Respository (SVN)

Use Subversion to checkout the source code.

svn --username xxx --password xxxx checkout https://svn.opensymphony.com/svn/xwork/trunk
./xwork

or without username and password

svn checkout https://svn.opensymphony.com/svn/xwork/trunk ./xwork

Building XWork2 using Maven2

Building XWork2 requires JDK 1.5 (Tiger)

Document generated by Confluence on Apr 01, 2008 04:35 Page 42

http://www.opensymphony.com/xwork/download.action
http://subversion.tigris.org/

To build XWork2 one will need Maven2 which could be obtained here. More information about Maven2
could be obtained here.

To generate a packaged jar file, run

mvn clean package

This will do some clean up, compile (both the core and tests) and the core as a jar file under /target
directory

To install it in one's local repository simply run,

mvn clean install

Building XWork2 for Java 1.4

To build a Java 1.4 compliant version of the jars, we use retroweaver to translate the classes.

You need to have a Java 1.4 VM installed

On Windows/Linux/Solaris point the java14.jar property to tools.jar

mvn clean install -Pj4 -Djava14.jar=$JAVA14_HOME/../Classes/classes.jar

Document generated by Confluence on Apr 01, 2008 04:35 Page 43

http://maven.apache.org/download.html
http://maven.apache.org

Colophon

This page last changed on Dec 01, 2006 by rainerh.

The XWork2 documentation is maintained online and posted to the OpenSymphony web site on a regular
basis. A snapshot of the documentation is bundled with each distribution, so that people are able to refer
to the documentation for that distribution.

The online version represents the latest development version ("nightly build") and may document
features not available in your release. See the documentation bundled with each distribution for
the best information about the features available in that distribution.

The HTML version of the documentation is maintained using the AutoExport plugin. (JAR annexed.)

The documentation "single sources" code segments using the Snippet macro. (JAR annexed.) For more
about using snippets, see the Documentation Style Guide.

Document generated by Confluence on Apr 01, 2008 04:35 Page 44

http://wiki.opensymphony.com/
http://www.opensymphony.com/xwork/documentation.action
http://could.it/autoexport/
https://opensymphony.dev.java.net/source/browse/opensymphony/wiki/snippet/

Configuring XWork in xwork.xml

This page last changed on Dec 01, 2006 by rainerh.

Overview

All action configuration is done from within xwork.xml.
In this section we discuss the various elements that make up the action configuration, such as actions,
interceptors, results, and package.

1. Package Configuration
2. Namespace Configuration
3. Include configuration
4. Action configuration
5. Result Configuration
6. Interceptor Configuration

Document generated by Confluence on Apr 01, 2008 04:35 Page 45

Action configuration

This page last changed on Dec 01, 2006 by rainerh.

Actions are the basic "unit-of-work" in XWork, they define, well, actions. An action will usually be a
request, (and usually a button click, or form submit). The main action element has two parts, the friendly
name (referenced in the URL, i.e. saveForm.action) and the corresponding "handler" class.

<action name="formTest" class="com.opensymphony.xwork.example.SampleAction"
method="processSample">

The optional "method" parameter tells XWork which method to call based upon this action. If you leave
the method parameter blank, XWork will call the method execute() by default. If there is no execute()
method and no method specified in the xml file, XWork will throw an exception.

Also, you can tell XWork to invoke "doSomething" method in your action by using the pattern
"actionName!something" in your form. For example, "sampleTest!save.action" will invoke the
method "save" in SampleAction class. The method must be public, take no arguments and also returns a
String which indicate the name of the result to be executed:

public String save() throws Exception
{

...
return SUCCESS;

}

All the configuration for "actionName" will be used for "actionName!something" (interceptors, result
types, etc...)

Action Support

Action class attribute could be left out such as following

<action name="myAction">
....

</action>

In this case, the class will default to com.opensymphony.xwork.ActionSupport which have an execute()
method that returns SUCCESS by default.

Default Action Reference

You are also able to specify a default action to be executed when no other action is matched in the
xwork.xml. This feature is provided mainly to eliminate the need to create an action class and/or element
for very simple or similar results. The default action name can be set inside the package element like

Document generated by Confluence on Apr 01, 2008 04:35 Page 46

below:

<package name="myPackage">

...

<default-action-ref name="simpleViewResultAction">

<!--
An example of a default action that is just a simple class
that has 3 fields: successUrl, errorUrl, and inputUrl. This action
parses the request url to set the result values. In the normal case
it just renders velocity results of the same name as the requested url.
-->
<action name="simpleViewResultAction" class="SimpleViewResultAction">

<result type="velocity">${successUrl}</result>
<result name="error" type="velocity">${errorUrl}</result>
<result name="input" type="velocity">${inputUrl}</result>

</action>

...

</package>

Caution
This feature should be configured such that there is only one default action per namespace.
Therefore if you have multiple packages declaring a default action with the same namespace, it is
not guaranteed which action will be the default.

Note

Note that the name attribute is left out for the first result, as XWork will default to "success" if it is
left out.

In this case any request to action not defined in this package will automatically trigger action with alias
"simpleViewResultAction" to be executed.

Document generated by Confluence on Apr 01, 2008 04:35 Page 47

Include configuration

This page last changed on Dec 01, 2006 by rainerh.

Description

To make it easy to manage large scale development (lots of actions + configuration), XWork allows you
to include other configuration files from xwork.xml :

<xwork>
<include file="xwork-default.xml"/>
<include file="xwork-extension.xml"/>
<include file="xwork-mail.xml"/>
<include file="xwork-xmlrpc.xml"/>
....

</xwork>

The included files must be the same format as xwork.xml (with the doctype and everything) and be
placed on classpath.

Document generated by Confluence on Apr 01, 2008 04:35 Page 48

Interceptor Configuration

This page last changed on Dec 01, 2006 by rainerh.

Description

Interceptors allow you to define code to be executed before and/or after the execution of an action.
Interceptors can be a powerful tool when writing web applications. Some of the most common
implementations of an Interceptor might be:

• Security Checking (ensuring the user is logged in)
• Trace Logging (logging every action)
• Bottleneck Checking (start a timer before and after every action, to check bottlenecks in your

application)

You can also chain Interceptors together to create an interceptor stack. If you wanted to do a login
check, security check, and logging all before an Action call, this could easily be done with an interceptor
package.

Intercepters must first be defined (to give name them) and can be chained together as a stack:

<interceptors>
<interceptor name="security" class="com.mycompany.security.SecurityInterceptor"/>
<interceptor-stack name="defaultComponentStack">

<interceptor-ref name="component"/>
<interceptor-ref name="defaultStack"/>

</interceptor-stack>
</interceptors>

To use them in your actions:

<action name="VelocityCounter" class="com.opensymphony.xwork.example.counter.SimpleCounter">
<result name="success">...</result>
<interceptor-ref name="defaultComponentStack"/>

</action>

NOTE: Reference name can be either the name of the interceptor or the name of a stack

For more details, see Interceptors reference.

Document generated by Confluence on Apr 01, 2008 04:35 Page 49

Namespace Configuration

This page last changed on Dec 01, 2006 by rainerh.

Namespaces

The namespace attribute allows you to segregate action configurations into namespaces, so that you may
use the same action alias in more than one namespace with different classes, parameters, etc.

Default Namespace

The default namespace, which is "" (an empty string) is used as a "catch-all" namespace, so if an action
configuration is not found in a specified namespace, the default namespace will also be searched. This
allows you to have global action configurations outside of the "extends" hierarchy. It is also intended that
the namespace functionality can be used for security, thus allowing the use of J2EE declarative security
on paths to be easily implemented and maintained.

Root Namesapce

Root namespace, which is "/" is also allowed in WebWork. It will be the namespace when a request
directly under the context path is received. As with other namespace, it will fall back to the default
namespace if no such action alias is found in it.

Namespace example

<package name="default">
<action name="foo" class="mypackage.simpleAction>

<result name="success" type="dispatcher">greeting.jsp</result>
</action>
<action name="bar" class="mypackage.simpleAction">

<result name="success" type="dispatcher">bar1.jsp</result>
</action>

</package>

<package name="mypackage1" namespace="/">
<action name="moo" class="mypackage.simpleActtion">

<result name="success" type="dispatcher">moo.jsp</result>
</action>

</package>

<package name="mypackage2" namespace="/barspace">
<action name="bar" class="mypackage.simpleAction">

<result name="success" type="dispatcher">bar2.jsp</result>
</action>

</package>

Explanation

Document generated by Confluence on Apr 01, 2008 04:35 Page 50

If a request for /barspace/bar.action is made, '/barspace' namespace is searched and if it is found the bar
action is executed, else it will fall back to the default namespace. In this example bar alias do exists in
the '/barspace' namespace, so it will get executed and if success, the request will be forwarded to
bar2.jsp.

Note: If a request is made to /barspace/foo.action, the action foo will be searched for in a namespace of
/barspace. If the action is not found, the action will then be searched for in the default namespace.
Unless specified, the default namespace will be "". In our example above, their is no action foo in the
namespace /barspace, therefore the default will be searched and /foo.action will be executed.

If a request for /moo.action is made, the root namespace ('/') is searched for 'moo' action alias, if it is not
found it will fall back to trying to find it in the default namespace. In this example, moo action alias does
exists and hence will be executed. Upon sucess, the request will get forwarded to bar2.jsp.

Note: If a request is made to '/foo.action', '/' namespace will be searched and if it is found it will be
execueted, else an attempt to try to find it in the default namespace will occurred. In this example foo
action alias does not exist in the '/' namespace, hence it will falled back to the default namespace and
execute the foo alias there.

Note: Namespace is only one level. For example if the url '/barspace/myspace/bar.action' is requested,
Webwork will try to search for namespace '/barspace/myspace', which does not exist in this case, and will
fall back to the default namespace '' and tried the search for action with 'bar' alias. As a result the bar
action in the default will be used.

Document generated by Confluence on Apr 01, 2008 04:35 Page 51

Package Configuration

This page last changed on Dec 01, 2006 by rainerh.

Overview

Packages are a way to group Actions, Results, Result Types, Interceptors and Stacks into a logical unit
that shares a common configuration. Packages are similiar to objects in that they can be extended and
have individual parts overridden by "sub" packages.

Packages

The package element has one required attribute, "name", which acts as the key for later reference to this
package. The "extends" attribute is optional and allows one package to inherit the configuration of one or
more previous packages including all interceptor, interceptor-stack, and action configurations. Note that
the configuration file is processed sequentially down the document, so the package referenced by an
"extends" should be defined above the package which extends it. The "abstract" optional attribute allows
you to make a package abstract, which will allow you to extend from it without the action configurations
defined in the abstract package actually being available at runtime.

Attribute Required Description

name yes key to for other packages to
reference

extends no inherits package behavior of the
package it extends

namespace no see Namespace Configuration

abstract no declares package to be abstract
(no action configurations
required in package)

Document generated by Confluence on Apr 01, 2008 04:35 Page 52

Result Configuration

This page last changed on Dec 01, 2006 by rainerh.

Description

Results are string constants that Actions return to indicate the status of an Action execution. A standard
set of Results are defined by default: error, input, login, none and success. Developers are, of course,
free to create their own Results to indicate more application specific cases. Results are mapped to defined
Result Types using a name-value pair structure.

• Global results
• Default results

Result tags

Result tags tell XWork what to do next after the action has been called. There are a standard set of result
codes built-in to XWork, (in the Action interface) they include:

String SUCCESS = "success";
String NONE = "none";
String ERROR = "error";
String INPUT = "input";
String LOGIN = "login";

You can extend these as you see fit. Most of the time you will have either SUCCESS or ERROR, with
SUCCESS moving on to the next page in your application;

<result name="success" type="dispatcher">
<param name="location">/thank_you.jsp</param>

</result>

...and ERROR moving on to an error page, or the preceding page;

<result name="error" type="dispatcher">
<param name="location">/error.jsp</param>

</result>

Results are specified in a xwork xml config file (xwork.xml) nested inside <action>. If the location

param is the only param being specified in the result tag, you can simplify it as follows:

<action name="bar" class="myPackage.barAction">
<result name="success" type="dispatcher">

<param name="location">foo.jsp</param>
</result>

</action>

Document generated by Confluence on Apr 01, 2008 04:35 Page 53

or simplified

<action name="bar" class="myPackage.barAction">
<result name="success" type="dispatcher">foo.jsp</result>

</action>

or even simplified further

<action name="bar" class="myPackage.barAction">
<result>foo.jsp</result>

</action>

Default Action Class

If the class attribute is not specified in the action tag, it will default to XWork's ActionSupport.

Default Location Parameter

If no param tag eg. <param name="location"> ,,, </param> is given as child of the <result ..>
tag, XWork will assume the text enclosed within the <result> </result> tags to be the location.

Default Result Type

If no type attribute is specified in the <result ...> tag, XWork assume the type to be dispatcher.
(Analogus to Servlet's Specs. SerlvetDispatcher's forward).

Document generated by Confluence on Apr 01, 2008 04:35 Page 54

Creating a distribution

This page last changed on Dec 02, 2006 by rainerh.

Update the docs

Export the wiki docs from Confluence http://wiki.opensymphony.com/display/XW

1 Add a press release page for the new release

2 Click on browse Space # Advanced Tab # Export
Space

3 Check OFF everything that isn't under XWork2,
except for the path to Documentation (ie: XWork)

4 Uncheck include comments

5 Open to disable the refresh buttons for the export
of wiki pages
http://wiki.opensymphony.com/plugins/snippet/toggle.action

6 Export both HTML and PDF (will take a while...)

7 Open to enable the refresh buttons for the
SNIPPET macro
http://wiki.opensymphony.com/plugins/snippet/toggle.action

8 Delete everything in docs/wikidocs, remove from
SVN and commit

9 Add everything back in, when the HTML stuff is
one

10 Add the PDF to docs/wikidocs/docs.pdf

11 Commit changes to SVN

Build the release bundles with maven

1 Update the POMs to remove "-SNAPSHOT" from
the version

2 Commit the POM changes

3 Tag the release by making a SVN copy of the head
or designated revision

svn copy -r ######
https://svn.opensymphony.com/svn/xwork/trunk/
https://svn.opensymphony.com/svn/xwork/tags/xwork_#_#_#
-m "Tag r###### as XWork #.#.#"

4 Assemble the release

Document generated by Confluence on Apr 01, 2008 04:35 Page 55

http://wiki.opensymphony.com/display/XW
http://wiki.opensymphony.com/plugins/snippet/toggle.action
http://wiki.opensymphony.com/plugins/snippet/toggle.action

mvn clean install site assembly:assembly
-Pj4
-Djava14.jar=/System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Home/../Classes/classes.jar

5 Upload the release bundles to
https://xwork.dev.java.net/servlets/ProjectDocumentList

Create a new folder for the release as Version
#.#.#

Upload the file bundles and add file comments

6 Deploy the artifacts to our Maven repository

You need shell access for this step!

Warning
Don't forget to upload the pom.xml as well!

Prune any obsolete snapshots from
opensymphony.com://opt/repository/ibiblio.org/opensymphony/jars/

7 Update the POMs to next version number and add
the "-SNAPSHOT" suffix

8 Commit the POM changes

9 Deploy the new snapshot

mvn -N install

10 Add the next version to our issue tracker for
scheduling new features and fixes

11 Update docs/meta.xml with the newly added
download bundles

12 Clear the project cache so that he latest meta.xml
information is used
www.opensymphony.com/clearProjectCache.jsp

13 Verify the download link

14 Announce the release
http://blogs.opensymphony.com

Document generated by Confluence on Apr 01, 2008 04:35 Page 56

https://xwork.dev.java.net/servlets/ProjectDocumentList
http://blogs.opensymphony.com

Documentation Style Guide

This page last changed on Dec 01, 2006 by rainerh.

It's well-known that a consistent user interface is easier to use. Consistency helps users focus on the task
rather than the user interface. Likewise, a consistent documentation style helps users focus on the
information, rather than the formatting.

A related goal is to design the documentation so that it is easy to maintain, so that it tends to remain
internally consistent with the framework itself.

Do it now. Do it once. Do it well.

Overall, there are three goals for the documentation system.

• Say it all
• Say it once
• Say it well

First, we want the documentation to be both complete and concise. This is job one! The documentation
should also be a quick but practical introduction to the framework, so newcomers can get started as
easily as possible. To keep people coming back, the documenation should also be a repository of the tips
and tricks we use in our own applications, so that people can find it here instead of asking over and over
again on the list.

Second, the documentation should be easy to maintain. Ideally, we should cover the detail of each topic
once, and draw as much detail from the source code and examples as possible (using the snippet macro).

Third, the documentation should be text-book quality; if not in the first draft, then in the next. Don't
hesitate to hack in a new page. Better that we have the page than we don't. (See Job One!) But, as time
allows, we should try to make each page the best that it can be. A great many people access the
documentation, and it's worth the effort to make the "documentation experience" productive and
enjoyable.

Capitalization of common terms

• Java
• Javadoc
• HTML
• XML

General Punctuation and Grammar

Good online resources for punctuation, grammar, and text style include

Document generated by Confluence on Apr 01, 2008 04:35 Page 57

• Punctuation Made Simple
• Associated Press Style Guide Essentials
• Wikipedia Manual of Style

In print, two excellent (and inexpensive!) resources are

• The Elements of Style
• Associated Press Stylebook

Also excellent, but more expensive:

• Chicago Manual of Style

Quick Tips

• Use as few words as possible. Instead of "but there are some quirks about it" try "but there are
quirks".

• If a list of items includes both a term and an explanation, consider using a table instead of bullets.
• Avoid using "This" by itself. Instead of "This lets us" try "This strategy lets us".

° Ask yourself: "This what?"
• References to other wiki pages can be unqualified. Instead of "See WW:Documentation Style Guide

page", try "See WW:Documentation Style Guide."

Don't be smurfy!

A lot of API members use the term "action". We have

• action extensions on pages,
• action attributes in forms,
• action elements in configuration files, and
• Action Java classes, some of which may implement the
• Action interface.

Here are some terms that can be used to help clarify which action is which.

• Use "the framework" or "XWork" to refer to the codebase as a whole, including any frameworks we
use internally, like OGNL.

• Use "Action class" or "action handler" to refer to the Java class incorporated by the action element.
• Use "action mapping" to refer to the object created by the action element.

Page Save Comment

Try to include a brief description of a change when saving a page. The comments are included in the
page's history. The comments are also included on the daily change report. In a group environment, it's
important to help each other follow along.

Document generated by Confluence on Apr 01, 2008 04:35 Page 58

http://lilt.ilstu.edu/golson/punctuation/
http://www.wwu.edu/depts/journalism/207labmanUL.htm
http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
http://www.amazon.com/exec/obidos/tg/detail/-/020530902X/apachesoftwar-20/
http://www.amazon.com/exec/obidos/tg/detail/-/0465004881/apachesoftwar-20/
http://www.chicagomanualofstyle.org/

Parent Pages

Use the Parent Page feature to create a hierarchy of pages. The parent pages are reflected in the "bread
crumb" menu. If propertly used, parent pages can help browsers "visualize" the documenation as an
outline.

The root of the documentation is the "Home" page, which is also the "Welcome" page. The
documnentation is ordered into three main areas: Tutorials, FAQs, and Guides. Each area has a contents
page, whose parent is Home. Other pages within each section can also serve as parents, to help organize
the documentation into a coherent outline.

Labels

Pages can be cross-indexed with the Label feature. Labels are not be used much yet, except for internal
authoring.

FIXME A page that mentions a problem in the distribution
that we intend to fix. Review these pages before
tagging a distribution to see if the issue has been
resolved.

TODO A page that is incomplete. Try to complete these
pages before tagging a distribution

Shortcuts Links

The Shortcut Link feature should be used for any external reference that may be used elsewhere.
Shortcuts being used include

jira A ticket in our issue tracker

primer A bookmark in our Key Technologies Primer

xwork/api A class in the XWork Javadocs

java/api A class in the Java Javadocs

wiki/help A topic the Confluence help system

Please add new shortcuts as needed.

About Headings

This section refers to: [Notation Guide >> Headings|section=headings@wiki].

About h1

Document generated by Confluence on Apr 01, 2008 04:35 Page 59

Don't use h1. at the top of each page. The page title serves as the "top level header". This is not as
obvious online, but it is very apparent when the documentation is exported to HTML or PDF.

Try to start each page with some introductory text, to separate the page title from the rest of content.

Likewise, try to have some content between all page headings. Avoid placing headings one after the
other.

Document sections

Headings can help you divide your document in sections, subsections, sub-subsections and so forth.

Advantages

Your document becomes more organized.

Disadvantages

Too many headings can fragment the text.

Here we go again!

This segment an example of overusing headings. This whole "Headings" section has so few
paragraphs that it really should have been written in just one section. The "advantages" and
"disadvantages" would be just as easy to render as a table.

Headings capitalization

Try to use intial capitals for h1 and h2 headers.

For h3 and smaller headings, try to capitalize only the first word, and any proper nouns.

By using different capilazation sytles, we emphasize the importance of bigger headings.

Avoid skipping headers

The headers form an outline for the page. When writing term papers, it is not a good practice to skip
outline levels. When writing hypertext, it is not a good practice to skip heading levels either. Try not to
skip from a h2 to a h4.

Too many headings?

If you find yourself writting too many h2 headings in a single page, consider breaking the page
into child pages.

Document generated by Confluence on Apr 01, 2008 04:35 Page 60

More on Text Effects

This section refers to: Notation Guide >> Text Effects.

Text effects like strong, emphasis, and inserted can be used in the usual way to denote important parts
of a sentence.

Monospaced should be used to files, tags, and methods, like xwork.xml, <xmltag />, and execute. Class
and Interface names may be left in normal face, like Action and Interceptor.

A panel should be preferred to a block quote.

The color fonts should be avoided or used only with great care. Some people have difficulty seeing some
colors, and the colors may not be apparent if the page is printed.

Text Breaks

This section refers to: Notation Guide >> Text Breaks.

Text breaks should not be used to format blocks on the screen. If there is an issue with the way
paragraphs or headings are being rendered, we should customize the stylesheet.

Lists

This section refers to: Notation Guide >> Lists.

Unordered lists should be created only with the * (star) notation.

Ordered list should be used when numbering the items is important. Otherwise, prefer unordered lists.

• This is an unordered list in star notation;
• Items can have sub-items

° That can have sub-items
- That can have sub-items ...

- What is the limit?
• Mixing ordered and unordered lists is possible:

1. One;
2. Two;
3. Three.

Images

This section refers to: Notation Guide >> Images and Notation Guide >> Misc.

Document generated by Confluence on Apr 01, 2008 04:35 Page 61

http://wiki.opensymphony.com/renderer/notationhelp.action?section=texteffects
http://wiki.opensymphony.com/renderer/notationhelp.action?section=breaks
http://wiki.opensymphony.com/renderer/notationhelp.action?section=lists
http://wiki.opensymphony.com/renderer/notationhelp.action?section=images
http://wiki.opensymphony.com/renderer/notationhelp.action?section=miscellaneous

Avoid using external images for bullets or icons. Prefer the equivalents provided with Confluence.

Images can be inclued by URL or annexing the binary to the page. Prefer annexing when possible, since
URLs are subject to change.

Always observe copyright issues. Do not annex images unless it an orginal or public domain work, or the
author has donated the image to the foundation.

Example: Cannot resolve external resource into attachment.

Icons

Use , , , and to bullet important one-liners. Use to highlight cross references.

Used carefully, icons can make the content easier to read and understand.

However, if icons are overused, they lose impact (and can make a page look like a ransom note).

Casual icons like and should be used with care or avoided.

Tables

This section refers to: Notation Guide >> Tables.

Prefer lists for single-value entries. Prefer tables for lists with multiple columns.

Tables are very useful when lists just don't do it. Meaning: don't write a table when a list suffices. Tables
are more organized, because you can align the text in columns. Since the markup text for tables in
Confluence is not easy to read, complex and big tables can be hard to maintain.

File Optional Location (relative to
webapp)

Purpose

web.xml no /WEB-INF/ Web deployment
descriptor to include all
necessary WebWork
components

xwork.xml no /WEB-INF/classes/ Main configuration,
contains result/view
types, action mappings,
interceptors, and so
forth

Advanced Formatting

Document generated by Confluence on Apr 01, 2008 04:35 Page 62

http://wiki.opensymphony.com/renderer/notationhelp.action?section=tables

This section refers to: Notation Guide >> Advanced Formatting.

Panels should be used as needed. Try to select the right panel for the content.

Try to give all panels and {code} blocks meaningful titles. People scan the pages looking for likely tips
and examples.

Avoid generic titles like "Warning" or "Example". Style the headings like they were h3. or smaller.

When a panel contains a file or a class, the panel title should refer to the filename or classname.

Try to specify the language for {code} blocks.

/** Hello World class. */
public class HelloWorld {

/** Main method. */
public static void main(String[] args) {

System.out.println("Hello, World!");
}

}

Try to use snippets for code blocks whenever possible!

Avoid tabs in code blocks, use two spaces instead. Long lines should be formatted to fit in a 800x600
resolution screen, without resorting to horizontal scrolling.

A typical example of noformat would be the command line statements to compile and run the code
above.

Either the code or noformat block can be used to represent command line windows. The terminal notation
({$}} should be used to represent a system prompt.

$ javac HelloWorld.java

$ java HelloWorld
Hello, World!

Change Happens

Anyone who has worked with databases knows the value of normalizing the schema. Ideally, we want to
store each fact exactly once, and then use query system to retrieve that fact whereever it is needed. If
we store a fact once, we only need to update it once, and we avoid inconsistencies in our data set.

To the extent possible, we want to "normalize" our technical documentation. Like a database, all technical
documentation is subject to change. When change happens, we want the documentation to be as easy to
update as possible. One way to do that is to try and minimize redudency (without sacrificing ease of use).

Single sourcing with snippets

Document generated by Confluence on Apr 01, 2008 04:35 Page 63

http://wiki.opensymphony.com/renderer/notationhelp.action?section=advanced

The "holy grail" of technical documentation is single sourcing. One way we try to single-source
documentation is to pull content directly from the Javadocs and source code into the documentation.

Using a [snippet macro], we are able to tag portions of the Javadocs and source code for reuse. The
macro fetches those snippets from the repository and merges the content into the documentation.

Use the Source!

Before writing any new content, ask yourself if we could place the content in the repository in
either one of the example applications or the Javadocs. Rather than contrive an example, can you
pull a snippet from one of the applications? Rather than reiterate Javadoc, could we update the
Javadoc and make it a snippet?

• Javadoc
° {snippet:id=javadoc|javadoc=true|url=com.opensymphony.xwork2.Result}

• Coding Examples
° {snippet:id=example|lang=xml|javadoc=true|url=src/java/com/opensymphony/xwork2/Result.java}

Snippet Attributes

id The name of the snippet (required).

url The URL where the snippet can be found
(required).

lang The language that the code block. If this snippet is
simply text, don't include this parameter and the
content will be printed outside of a code block.

javadoc If true, the content is within a Javadoc block. If
this is set to true, then the preceeding "* "
(asterisk-space) characters will be stripped before
merging the content. Also, the content is assumed
to be already HTML escaped and won't be escaped
again.

All snippets are marked off by the pattern START SNIPPET: XXX and END SNIPPET: XXX where XXX is the
name of the snippet that is assigned in the id attribute of the macro. The URL is typically a location that
points to the project's source control contents. |

About URLs

As you probably noticed in the examples, there are several formats for URL patterns. A fully-qualified URL
is always allowed, though that is often not practical. We've customized the macro to be a bit more
intelligent with the URL attribute.

• If the URL appears to be a class, we assume it lives in src/java, convert all the dots to slashes, and
then append .java to it.

• If the URL doesn't start with "http", then it is assumed to start with
https://opensymphony.dev.java.net/source/browse/*checkout*/ , as you saw in the third

Document generated by Confluence on Apr 01, 2008 04:35 Page 64

http://en.wikipedia.org/wiki/Single_source_publishing
http://en.wikipedia.org/wiki/Javadoc
https://opensymphony.dev.java.net/source/browse/*checkout*/_

example.

About snippet markers

When possible, all snippet markers should be in comment blocks. How they are commented depends on
where the snippet is being embedded.

<!-- START SNIPPET: xxx -->
...
<!-- END SNIPPET: xxx -->

if (true != false) {
// START SNIPPET: xxx
System.out.println("This is some silly code!");
// END SNIPPET: xxx

}

If the snippet is embedded in Javadocs, use HTML comments as they won't render in the Javadocs. For
XML examples in Javadocs can be tricky. (See Timer Interceptor for an example.). Javadocs want to use
the <pre> tag, but you don't want that tag in the snipped content.

One technique is to embed the snippet markers inside the <pre> tag.

* <pre>
* <!-- START SNIPPET: example -->
* <!-- records only the action's execution time -->
* <action name="someAction" class="com.examples.SomeAction">
* <interceptor-ref name="completeStack"/>
* <interceptor-ref name="timer"/>
* <result name="success">good_result.ftl</result>
* </action>
* <!-- END SNIPPET: example -->

Document generated by Confluence on Apr 01, 2008 04:35 Page 65

Precise Error Reporting

This page last changed on Dec 01, 2006 by rainerh.

With the multiple levels of configuration, constant overrides, and bean selection, it can be confusing as to
how the framework is configured and how it got there. To assist debugging and provide the ability to
continue to provide more line-precise error reporting, the configuration loader remembers the location of
not only XML elements, but also Java Properties file properties.

How it works is instead of storing configuration properties in a plain java.util.Properties object, we have a
special LocatableProperties class in XWork. This class leverages the location classes in XWork to store
location information for the whole properties file but also individual properties. We use this to gather
configuration properties during configuration loading. This will allow us to display at any given point the
location of each property setting. This capability should be very useful when trying to determine what
XML or Properties file overwrote what and when.

Interestingly, in addition to remembering the URI and line number of Properties properties, the parser we
"borrowed" from Commons Configuration even gathers preceding comments, which are also stored in the
Location object.

There are some very interesting possibilities here to increase the transparency of the framework in error
and debugging conditions.

Document generated by Confluence on Apr 01, 2008 04:35 Page 66

Reloading

This page last changed on Jan 17, 2007 by phil.

It is possible to configure XWork2 to keeps reloading its configuration files (eg. xwork.xml,
*-conversion.xml, *-validation.xml). This is done as follows:

FileManager.setReloadingConfigs(true)

Configuration reloading by default is "off".

Obviously, this feature does not come for free. It will cause your application to run considerably
slower.

Document generated by Confluence on Apr 01, 2008 04:35 Page 67

XWork Actions

This page last changed on Oct 15, 2006 by tm_jee.

XWork2 Action serves as to capture a particular execution logic. It is distinguished by its unique name
and namespace combination.

XWork2 parses its xml configuration according to order. If an action extends off another parent
action, the parent action MUST be defined before the action that planned to extend it

Name and namespace

An action is identified by its name and namespace combination. By default, if an action with a specified
name and namespace does not exists, it will fall back to an action with the same name but a default
namespace (empty namespace) if such a combination exists.

<xwork>
<package name="default" namespace="/myNamespace">

...
<action name="myAction" ...>

....
</action>
...

</package>
</xwork>

Action class

An action class could be :-

• plain pojo (extends java.lang.Object which by default every java class does)
• implements com.opensymphony.xwork2.Action interface
• extends com.opensymphony.xwork2.ActionSupport

Action Context

Action could access its context using ActionContext. Parmameter passing could be done using this action
context. Following is an example

ActionProxyFactory factory = ActionProxyFactory.getFactory();
factory.createActionProxy(configuration, "actionAlias", "/namespace",

new LinkedHashMap() {
{

// pass in parameter
put("someParameter", "some parameter value");

}
}

);

Document generated by Confluence on Apr 01, 2008 04:35 Page 68

// latter on, we could do this

ActionContext context = ActionContext.getContext();
Map contextMap = context.getContextMap();
contextMap.get("someParameter");

Document generated by Confluence on Apr 01, 2008 04:35 Page 69

XWork Architecture

This page last changed on Nov 13, 2006 by jmitchell.

XWork2 is designed around the concept of GOF's Command Design Pattern.

Command Design Pattern

General

A Command design pattern, abstract the logic of a particular execution into an object, the command
object. If an originator is to interact with a receiver using a command pattern, direct reference between
them could be abstracted away. Originator would probably create a command object, that when executed
will know how to get its receiver and perform the necessary logics. There could be a variety of command
that being able to communicate with a variety of receivers, most probably created through some sort of
Factory pattern.

Relation with XWork2

Command in XWork2 sense would be XWork2 Action, while the originator would most possibly translate
to the client that grab hold of a copy of XWork2 Action. A receiver will most likely be XWork2 Result.
XWork2 enhance the concept a bit with the introduction of ActionProxy, a thin layer representing the
action such that action could be loaded differently and ActionInvocation which details the actual execution
of the action itself.

Architecture

Document generated by Confluence on Apr 01, 2008 04:35 Page 70

Document generated by Confluence on Apr 01, 2008 04:35 Page 71

XWork Articles

This page last changed on Oct 13, 2006 by tm_jee.

Anybody who have an article about XWork2, please feel free to drop me a line and I'll have it up
in here. Cheers.

// TODO: Articles related to XWork2

Document generated by Confluence on Apr 01, 2008 04:35 Page 72

XWork Configurations

This page last changed on Jan 03, 2007 by mrdon.

Configuring XWork2 centers around the following classes:-

• ConfigurationManager
• ConfigurationProvider
• Configuration

where by both ConfigurationProvider and Configuration are java interface.

ConfigurationManager

This is the center for configuring XWork2. It allows ConfigurationProvider to be pluged in and setting a
custom Configuration to be used. Typically one would like to just create one instance of
ConfigurationManager for a XWork2 usage.

Code

To create a ConfigurationManager :-

ConfigurationManager confManager = new ConfigurationManager();

ConfigurationProvider

ConfigurationProvider helps configuring a Configuration, populating it with information regarding what
actions it has, how does the results get mapped and what interceptors are there and how they are related
to each action etc. A default ConfigurationProvider that comes with XWork2 would be
XmlConfigurationProvider and as the name suggest populate information into a Configuration object
according the the xml provided.

Code

To create a plug in a custom configuration provider

ConfigurationManager confManager = new ConfigurationManager();
confManager.addConfigurationProvider(

new MyCustomConfigurationProvider(....));

To create an XmlConfigurationProvider that points to a particular xml file in the classpath:-

ConfigurationManager confManager = new ConfigurationManager();

Document generated by Confluence on Apr 01, 2008 04:35 Page 73

confManager.addConfigurationProvider(
new XmlConfigurationProvider("foo/bar/myConf.xml"));

Configuration

Configuration is a typical value object that contains configuration information. There's only one instance
of it for each ConfigurationManager, where it is passed to different ConfigurationProvider in order for
information to get stoted in it. The default implementation would be DefaultConfiguration.

Code

To plug in a custom Configuration

ConfigurationManager confManager = new ConfigurationManager();
confManager.setConfiguration(new MyCustomConfiguration(...));

The following illustrates typically how XWork2 is configured in the xwork.xml configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xwork PUBLIC

"-//OpenSymphony Group//XWork 1.1.1//EN"
"http://www.opensymphony.com/xwork/xwork-1.1.1.dtd">

<xwork>
<include file="xwork-default.xml" />
<package name="default-hello-world" extends="xwork-default" namespace="/helloWorld">

<result-types>
<result-type name="printToConsole"

class="com.opensymphony.xwork2.showcase.PrintToConsoleResult" />
</result-types>

<action name="helloWorld"
class="com.opensymphony.xwork2.showcase.helloworld.HelloWorldAction">

<result type="printToConsole">
<param name="param">${message}</param>

</result>
</action>

</package>
</xwork>

Document generated by Confluence on Apr 01, 2008 04:35 Page 74

XWork Conversion

This page last changed on Nov 26, 2006 by husted.

• how conversion works (plugin in through Ognl)
• how to have custom converters
• examples

XWork2 supports validation at a global and action level

How it works

XWork2 make use of Ognl to do its conversion, by plugging in XWork2 specifi PropertyAccessor,
MethodAccessor, NullHandler and TypeConverter etc. into Ognl runtime.

Global Level

To create a global level conversion, create an file called 'xwork-conversion.properties' at the root level of
classpath. The entry in 'xwork-conversion.properties' should be a key-value pair just like any Java
property file, where the key represents the FQN (Fully-Qualified-Name) of a particular object where
conversion is to be done, whereas the value would be the FQN of the XWork2 converter itself.

The following is an example of a hypotenical 'xwork-conversion.properties'

....
java.lang.Boolean=foo.bar.MyBooleanConverter
foo.bar.MyObject=foo.bar.MyObjectConverter
...

Action Level

To create an action-level conversion, create a file called 'ActionClassName-conversion.properties' in the
same location at the classpath where the Action class itself resides. Eg. if the action class name is
MyAction, the action-level convertion properties file should be named 'MyAction-conversion.properties'.

Assuming that 'MyAction' action class looks as follows. Note the properties it has.

public class MyAction extends ActionSupport {
private Boolean myBool;
private Double myDouble;

public Boolean getMyBool() { return this.myBool; }
public void setMyBool(Boolean myBool) { this.myBool = myBool; }

public Double getMyDouble() { return this.myDouble; }

Document generated by Confluence on Apr 01, 2008 04:35 Page 75

public void setMyDouble(Double myDouble) { this.myDouble = myDouble; }

.....
}

The following would an example of a hypotenical 'MyAction-conversion.properties'.

myBool=foo.bar.MyBooleanConverter
myDouble=foo.bar.MyDoubleConverter

Custom Converter

The following is an example of a converter. It extends DefaultTypeConverter (part of Ognl).

public class MyConverter extends DefaultTypeConverter {
public Object convertValue(Map context, Object target, Member member, String propertyName,

Object value, Class toType) {
// type conversion goes here.
....

}
}

Document generated by Confluence on Apr 01, 2008 04:35 Page 76

XWork Core Concepts

This page last changed on Jan 02, 2007 by rainerh.

XWork Core Concepts

XWork is based on a number of core concepts that helps to explain how the framework works. The core
concepts can be broken down into two parts: Architecture Concepts and Terminology.

Architecture Concepts

• Explain Command Driven Architecture (in general)
• Explain the implementation in XWork

Terminology

Actions

Actions are classes that get invoked in response to a request, execute some code and return a Result.
Actions implement at a minimum a single method, execute(), that defines the entry point called by the
framework. This method allows developers to define a unit of work that will be executed each time the
Action is called.

ActionContext

The ActionContext provides access to the execution environment in the form of named objects during an
Action invocation. A new ActionContext is created for each invocation allowing developers to
access/modify these properties in a thread safe manner. The ActionContext makes a number of
properties available that are typically set to appropriate values by the framework. In WebWork 2 for
example, the ActionContext session map wraps an underlying HttpSession object. This allows access to
environment specific properties without tying the core framework to a specific execution environment. For
more information, see ActionContext in Basics.

Interceptors

In XWork, Interceptors are objects that dynamically intercept Action invocations. They provide the
developer with the opportunity to define code that can be executed before and/or after the execution of
an action. They also have the ability to prevent an action from executing. Interceptors provide developers
a way to encapulate common functionality in a re-usable form that can be applied to one or more Actions.
See Interceptors for further details.

Stacks

Document generated by Confluence on Apr 01, 2008 04:35 Page 77

To handle the case where developers want to apply more than a single Interceptor to an Action, Stacks
have been introduced. Stacks are an ordered list of Interceptors and/or other Stacks that get applied
when an Action is invoked. Stacks centralize the declaration of Interceptors and provide a convenient way
to configure mutiple actions.

Results

Results are string constants that Actions return to indicate the status of an Action execution. A standard
set of Results are defined by default: error, input, login, none and success. Developers are, of course,
free to create their own Results to indicate more application specific cases.

Result Types

Result Types are classes that determine what happens after an Action executes and a Result is returned.
Developers are free to create their own Result Types according to the needs of their application or
environment. In WebWork 2 for example, Servlet and Velocity Result Types have been created to handle
rendering views in web applications.

Packages

Packages are a way to group Actions, Results, Result Types, Interceptors and Stacks into a logical unit
that shares a common configuration. Packages are similiar to objects in that they can be extended and
have individual parts overridden by "sub" packages.

ValueStack

The ValueStack is a stack implementation built on top of an OGNL core. The OGNL expression language
can be used to traverse the stack and retrieve the desired object. The OGNL expression language
provides a number of additional features including: automatic type conversion, method invocation and
object comparisons. For more information, see the OGNL Website.

Components

XWork provides the ComponentManager interface (and a corresponding implementation in the
DefaultComponentManager class) to apply a design pattern known as Inversion of Control (or IoC for
short). In a nutshell, the IoC pattern allows a parent object (in this case XWork's ComponentManager
instance) to control a client object (usually an action, but it could be any object that implements the
appropriate enabler). See Components for further details.

Next: XWork Articles

Document generated by Confluence on Apr 01, 2008 04:35 Page 78

http://ognl.org/

XWork FAQs

This page last changed on Oct 14, 2006 by tm_jee.

Please feel free to add any FAQs that's appropriate

General

Interceptor

Action

Result

PreResultListener

Conversion

Validation

Configuration

Document generated by Confluence on Apr 01, 2008 04:35 Page 79

XWork Features

This page last changed on Jan 02, 2007 by rainerh.

About XWork

XWork 2 is a generic command pattern framework. It forms the core of Struts 2. It features:

• Flexible and customizable configuration based on a simple Configuration interface, allowing you to
use XML , programmatic, or even product-integrated configuration

• Core command pattern framework which can be customized and extended through the use of
interceptors to fit any request / response environment

• Built in type conversion and action property validation using OGNL
• Powerful validation framework based on runtime attributes and a validation interceptor

Overview

Xwork is a command pattern framework centralized around an Action interface. You define action classes
by implementing an Action interface, then XWork will setup and execute your actions. XWork is most
widely known from the web MVC framework called Webwork. However, XWork can be used by itself, so
its important to understand the XWork layers and how actions are set up and executed. This section
describes the core layers within Xwork and provides a simple example of how to execute actions.

• Action Interface
• ActionProxy interface
• ActionInvocation interface
• ActionContext
• A simple example

Actions

Actions are the basic unit of execution...

The Action Interface

The basic interface which all XWork actions must implement. It provides several standard return values
like SUCCESS and INPUT, and only contains one method:

public interface Action {
public static final String SUCCESS = "success";
public static final String NONE = "none";
public static final String ERROR = "error";
public static final String INPUT = "input";
public static final String LOGIN = "login";

Document generated by Confluence on Apr 01, 2008 04:35 Page 80

http://struts.apache.org
http://www.ognl.org

public String execute() throws Exception;

In general, Actions can simply extend the com.opensymphony.xwork.ActionSupport class, which
implements the Action interface and provides default behavior for the most common actions.

ActionProxy

Action lifecycles are maintained thru the ActionProxy interface. ActionProxy is the top layer in the Xwork
API and should be the starting point to setup and execute actions. XWork provides a factory as an entry
point to instantiate action proxies. Most of the implementations of each xwork layer are hidden behind
interfaces making it very easy to override the default implementations for complete customization.

Example how to obtain the default impl of ActionProxy (DefaultActionProxy.java)

ActionProxyFactory.getFactory().createActionProxy("", "viewBook", objectMap);

If I need to register my own implementation of ActionProxy, then I may do so within the factory

class CustomizedActionProxyFactory extends DefaultActionProxyFactory{
createActionProxy(...){ return new CustomizedActionProxy(...); }

}

ActionProxyFactory.setFactory(new CustomizedActionProxyFactory());
ActionProxy proxy = ActionProxyFactory.getFactory().createActionProxy(...);

ActionInvocation

Underneath the ActionProxy layer, exists the ActionInvocation interface. ActionInvocation represents the
execution state of an action holding the action instance along with any interceptors that wrap before/after
processing of the action.

ActionContext

ActionContext provides access to the execution environment in the form of named objects during an
Action invocation. A new ActionContext is created for each invocation allowing developers to
access/modify these properties in a thread safe manner. The ActionContext makes a number of
properties available that are typically set to appropriate values by the framework. In WebWork 2 for
example, the ActionContext session map wraps an underlying HttpSession object. This allows access to
environment specific properties without tying the core framework to a specific execution environment.

The ActionContext is acquired through the static ActionContext.getContext() method. The ActionContext
is a thread local variable and thus the properties of the ActionContext will be relative to the current
request thread. The ActionContext has several methods for commonly used properties as well as get()
and set() methods which can be used for application specific properties.

Document generated by Confluence on Apr 01, 2008 04:35 Page 81

A simple example

Lets look at a simple example starting with a simple javabean.

public class Book {
String id;
String title;
Set authors;
public void setId(id){ this.id = id; }
public void setTitle(String title){ this.title = title; }
public void setAuthors(Set authors){ this.authors = authors; }
public String getId(){ }
public String getTitle{ }
public Set getAuthors{ }

}

Lets say that we need to retrieve a book object from a data source and pass it back to the caller. We can
write an action to handle this. An action in xwork is typically a very simple class. The only requirement is
that it implements the Action interface. These days you'll see actions as simple as javabeans with an
execute method (Validation, Type conversion, and so forth can all be seperated out to provide a good
separation of concerns). The purpose of action execution is typically to provide access and manipulation
to your data. The result of the action execution is a simple string representation that should define
delegation of the action after invocation. So a result could be a success string, a failure string, a forward
string, or what ever. In our current example, a book object can be populated in the action if found with a
result of "success" or if the book is not found then a "notFound" can be returned. From this, you can
easily have a controlling object setup to return the book or possible forward the request off to a different
inventory source if the book isn't found.

public class ViewBookAction implements Action{
Book book;
String id;

public String execute() throws Exception{

// lets pretend we have a data access object that will return a book from
storage

book = bookDAO.findById(id, Book.class);
if(book != null) return "success";
return "notFound";

}
public Book getBook(){ return this.book; }
public setId(String id){this.id = id; }

}

Now that we have an action defined with a simple model, lets setup an action proxy and execute the
action.
Setting up XWork to execute the action:

// obtain inputs from the caller. For this example, we can just define some dummy params.
Map paramMap = new HashMap();
paramMap.put("id", "0123456789");

// set the ActionContext parameters
Map context = new HashMap();
context.put(ActionContext.PARAMETERS, paramMap);

// create an action proxy with no namespace, action alias (defined in xwork.xml), and a map of
the context info
ActionProxy proxy = ActionProxyFactory.getFactory().createActionProxy("","viewBook", context);

Document generated by Confluence on Apr 01, 2008 04:35 Page 82

// we have the action proxy instance, lets execute it and retrieve the action
String result = proxy.execute();
if ("success".equals(result)){

ViewBookAction action = (ViewBookAction) proxy.getAction();

// return info back to caller or just print to screen for this example
System.out.println(action.getBook().getTitle());

} else if("notFound".equals(result){
// forward to another inventory source

} else {
throw new RuntimeException("Im lazy");

}

Not quite done yet, we need to define some configuration in xwork.xml so XWork can find the appropriate
class to execute based on the action alias we provided within the createActionProxy(...) method.

<xwork>
<include file="xwork-default.xml"/>
<package name="default" extends="xwork-default">

<action name="viewBook" class="com.opensymphony.xwork.example.ViewBookAction"/>
</package>

</xwork>

Next: XWork Core Concepts

Document generated by Confluence on Apr 01, 2008 04:35 Page 83

XWork Hibernate Integration

This page last changed on Nov 11, 2006 by tm_jee.

XWork2 could have Hibernate integration as well. However such an integration is not build in by default.
In other words, it doesn't come bundled with XWork2 itself.

Senario

Typical senario would be to have Hibernate session prepared before the action is actually executed and
clear after the action and result are done executing. This could be handled by a XWork2 interceptor.

Code

public class HibernateInterceptor implements Interceptor {
...
public String intercept(ActionInvocation invocation) throws Exception {

Session session = null;
try {

// please refer to Hibernate site for imlpementation of HibernateUtil
(www.hibernate.org)

session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
Object action = invocation.getAction();
if (action instanceof HibernateSessionAware) {

((HibernateSessionAware) action).setHibernateSession(session);
}
invocation.invoke();
session.getTransaction().commit();

}
catch(Exception e) {

exceptionHandler(e);
session.getTransaction().rollback();

}
}
...
/**
* Hook for subclass to handle exception.
*/
protected void handleException(e) {

// maybe we could do better than this.
LOG.error(e.toString(), e);

}
...

}

public interface HibernateSessionAware {
void setHibernateSession(Session session);

}

The above is just a simple code to show one possibility of how Hibernate / XWork2 integration could be
done.

Document generated by Confluence on Apr 01, 2008 04:35 Page 84

XWork Installation

This page last changed on Jan 03, 2007 by mrdon.

XWork2 works best with at least JDK 5 (Tiger), but it also ships with a Java 1.4-compatible jar
built using RetroTranslator .

To start using XWork2, it is required to have the folloing in the classpath :-

• XWork2 jar
• xwork.xml
• Other jar dependencies

Using command line

Assuing the following structure.

+ classes/
+ xwork2-xxx.jar
+ xwork.xml
+ otherJars.jar
+ myPackage/
+ MyMain.class

// Linux / Unix like environment
java -cp xwork-xxx.jar:xwork.xml:otherJars.jar myPackage.MyMain

// Windows
java -cp xwork-xxx.jar;xwork.xml;ohterJars.jar myPackage.MyMain

Using ant

Assuming the following structure

+ src
+ myPackage
+ MyMain.java

+ lib
+ xwork2-xxx.jar
+ ... jar

+ classes
+ myPackage
+ MyMain.class

+ resources
+ xwork.xml

<procject ... >
...
<path id="classpath">

<fileset dir="lib">
<include name="**/*.jar"/>

Document generated by Confluence on Apr 01, 2008 04:35 Page 85

http://retrotranslator.sourceforge.net/

</fileset>
<pathelement location="resources"/>

</path>
....
<target ...>

<!-- your target refer to path with id as 'classpath' when necessary -->
</target>

Using maven2

When using maven2, one might want to have the following dependencies

<pom ...>
....

<dependency>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
<version>1.0.4</version>

</dependency>
<dependency>

.... other dependencies
</dependency>

.....
</pom>

Next: XWork Requirements And Dependencies

Document generated by Confluence on Apr 01, 2008 04:35 Page 86

XWork Interceptors

This page last changed on Jan 06, 2007 by rainerh.

Interceptor is a core component with XWork2. XWork2 has been designed with action interception in
mind from ground up. Basically and interceptor wrappes around XWork2 Action. It is cappable of
influencing the overall result, and hence affecting which result eventually get executed. In the process it
have access to XWork2 Action, its proxy (ActionProxy), ActionInvocation etc. such that the interceptor
could inspect the internals of XWork2 before comming up with a overall conclusion of what it should do.

Default interceptors that comes with XWork2

<interceptor name="timer" class="com.opensymphony.xwork2.interceptor.TimerInterceptor"/>
<interceptor name="logger" class="com.opensymphony.xwork2.interceptor.LoggingInterceptor"/>
<interceptor name="chain" class="com.opensymphony.xwork2.interceptor.ChainingInterceptor"/>
<interceptor name="staticParams"
class="com.opensymphony.xwork2.interceptor.StaticParametersInterceptor"/>
<interceptor name="params" class="com.opensymphony.xwork2.interceptor.ParametersInterceptor"/>
<interceptor name="filterParams"
class="com.opensymphony.xwork2.interceptor.ParameterFilterInterceptor"/>
<interceptor name="removeParams"
class="com.opensymphony.xwork2.interceptor.ParameterRemoverInterceptor"/>
<interceptor name="modelDriven"
class="com.opensymphony.xwork2.interceptor.ModelDrivenInterceptor"/>
<interceptor name="scopedModelDriven"

class="com.opensymphony.xwork2.interceptor.ScopedModelDrivenInterceptor"/>
<interceptor name="validation"
class="com.opensymphony.xwork2.validator.ValidationInterceptor"/>
<interceptor name="workflow"
class="com.opensymphony.xwork2.interceptor.DefaultWorkflowInterceptor"/>
<interceptor name="prepare" class="com.opensymphony.xwork2.interceptor.PrepareInterceptor"/>
<interceptor name="conversionError"
class="com.opensymphony.xwork2.interceptor.ConversionErrorInterceptor"/>
<interceptor name="alias" class="com.opensymphony.xwork2.interceptor.AliasInterceptor"/>
<interceptor name="exception"
class="com.opensymphony.xwork2.interceptor.ExceptionMappingInterceptor"/>
<interceptor name="i18n" class="com.opensymphony.xwork2.interceptor.I18nInterceptor"/>

Document generated by Confluence on Apr 01, 2008 04:35 Page 87

XWork Localization

This page last changed on Dec 01, 2006 by rainerh.

Overview

Any action can indicate that it supports localization by implementing
com.opensymphony.xwork.TextProvider. To access a localized message, simply use one of the various
getText() method calls.

The default implementation for this is com.opensymphony.xwork.TextProviderSupport, which in turn
relies on com.opensymphony.xwork.util.LocalizedTextUtil. Any Action that extends
com.opensymphony.xwork.ActionSupport will automatically gain localization support via
TextProviderSupport.

In this implementation, when you attempt to look up a message, it attempts to do the following:

• Look for the message in the Action's class hierarchy.
° Look for the message in a resource bundle for the class
° If not found, look for the message in a resource bundle for any interface implemented by the

class
° If not found, get the super-class and repeat from the first sub-step unless the super-class is

Object

• If not found and the Action is a ModelDriven Action, then look for the message in
the model's class hierarchy (repeat sub-steps listed above).

• If not found, look for the message in a child property. This is determined by evaluating the message
key as an OGNL expression. For example, if the key is user.address.state, then it will attempt to see
if "user" can be resolved into an object. If so, repeat the entire process fromthe beginning with the
object's class and address.state as the message key.

• If not found, look for the message in the Action's package hierarchy.

• If still not found, look for the message in the default resource bundles.

Default Resource Bundles.

It is possible to register default resource bundles with XWork via
LocalizedTextUtil.addDefaultResourceBundle().

Message lookup in the default resource bundles is done in reverse order of their registration (i.e. the first
resource bundle registered is the last to be searched).

By default, one default resource bundle name is registered with LocalizedTextUtil –
"com/opensymphony/xwork/xwork-messages" – which is bundled with the XWork jar file to provide
system-level message texts.

Document generated by Confluence on Apr 01, 2008 04:35 Page 88

Example

Given a ModelDriven Action called BarnAction where getModel() returns a Horse object, and the Horse
object has the following class structure:

interface acme.test.Animal;
class acme.test.AnimalImpl implements Animal;
interface acme.test.Quadraped extends Animal;
class acme.test.QuadrapedImpl extends Animal implements Quadraped;
class acme.test.Horse extends QuadrapedImpl;

Then the localization system will attempt to look up the message in the following resource bundles in this
order:

acme.test.BarnAction.properties
acme.test.Horse.properties
acme.test.QuadrapedImpl.properties
acme.test.Quadraped.properties
acme.test.AnimalImpl.properties
acme.test.Animal.properties
acme.test.package.properties
acme.package.properties

Message Key Interpolation

When looking for the message, if the key indexes a collection (e.g. user.phone0) and a message for that
specific key cannot be found, the general form will also be looked up (i.e. user.phone*).

Message Interpolation

If a message is found, it will also be interpolated. Anything within ${...} will be treated as an OGNL
expression and evaluated as such.

Document generated by Confluence on Apr 01, 2008 04:35 Page 89

XWork Object Factory

This page last changed on Jan 03, 2007 by mrdon.

ObjectFactory is an abstraction from XWork2 responsible for all the creation of XWork2 related objects.
Its how XWork2 integrate with IoC containers like Spring, Pico, Plexus etc.

Customization

To customize an ObjectFactory, you will need to create a subclass of ObjectFactory, then tell XWork to
use it in the configuration. To configure your ObjectFactory in xwork.xml, declare your custom
ObjectFactory implementation:

<bean name="default" type="com.opensymphony.xwork2.ObjectFactory"
class="com.mycompany.MyObjectFactory" />

Now, XWork will use your ObjectFactory instead of the default implementation.

Document generated by Confluence on Apr 01, 2008 04:35 Page 90

XWork package

This page last changed on Oct 14, 2006 by tm_jee.

XWork2 introduce the notion of package to group related action under the same namepsace. Its much
like how java package being used to group related class. Just that XWork2 package supports multiple
inheritance.

Namespace

XWork2 package defines the namespace its containing action is under. Without this attribute specified,
the action will be automatically considered to be under the default (empty) namespace.

<xwork>
...
<package name="default" namespace="/myNamespace">
...

</package>
...

</xwork>

Abstraction

An action can be abstract, meaning that it will not be recognized by XWork2 but it does exists. This mean
to identify action whose sole purpose tends to be a convenience for other action to subclass.

<xwork>
...
<package name="default-abstract" abstract="true">
...

</package>

<package name="default" extends="default-abstract">
...
<!-- more specific action here. -->

</package>
...

</xwork>

Extendability

XWork2 action support inheritance such that an action could extend form anohter parent action. XWork2
action could extends off multiple action. The extending action will inherit all its parent package
s action, interceptor, result-types etc.

<xwork>
...
<package name="default" namespace="/myNamespace" extends="parent1-default, parent2-default">
...

</package>
...

</xwork>

Document generated by Confluence on Apr 01, 2008 04:35 Page 91

Document generated by Confluence on Apr 01, 2008 04:35 Page 92

XWork PreResultListeners

This page last changed on Oct 14, 2006 by tm_jee.

PreResultListener serves as a hook to influence the currect action invocation before the result is
executed, pretty much clear from the name itself.

Example

Through Action class

public class MyAction extends ActionSupport {
...
public String execute() throws Exception {

ActionContext context = ActionContext.getContext();
ActionInvocation invocation = context.getActionInvocation();
invocation.addPreResultListener(

new PreResultListener() {
public void beforeResult(ActionInvocation invocation, String resultCode) {

// do my magic here
}

});
}
...

}

Through Interceptor class

public MyInterceptor implements Interceptor {
....
public String intercept(ActionInvocation invocation) throws Exception {

invocation.addPreResultListener(
new PreResultListener() {

public void beforeResult(ActionInvocation invocation, String resultCode) {
// do my magic here

}
});

}
....

}

Document generated by Confluence on Apr 01, 2008 04:35 Page 93

XWork Profiling

This page last changed on Oct 16, 2006 by tm_jee.

XWork2 supports build-in profiling.

Profiling aspects

XWork2 profiling aspects involves the following :-

• creation of DefaultActionProxy
• ° creation of DefaultActionInvocation

° - creation of Action
• execution of DefaultActionProxy
• ° invocation of DefaultActionInvocation

° - invocation of Interceptors
- invocation of Action
- invocation of PreResultListener
- invocation of Result

Activating / Deactivating Profiling

Activating / Deactivating of the profiling feature could be done through:-

Through System property

-Dxwork.profile.activate=true

This could be done in the container startup script eg. CATALINA_OPTS in catalina.sh (tomcat) or using
"java -Dxwork.profile.activate=true -jar start.jar" (jetty)

Through code

UtilTimerStack.setActivate(true);

// or

System.setProperty("xwork.profile.activate", "true");

// or

System.setProperty(UtilTimerStack.ACTIVATE_PROPERTY, "true");

This could be done in a static block, in a Spring bean with lazy-init="false", in a Servlet with
init-on-startup as some numeric value, in a Filter or Listener's init method etc.

Document generated by Confluence on Apr 01, 2008 04:35 Page 94

Filtering profile information

One could filter out the profile logging by having a System property as follows. With this
'xwork.profile.mintime' property, one could only log profile information when its execution time exceed
those specified in 'xwork.profile.mintime' system property. If no such property is specified, it will be
assumed to be 0, hence all profile information will be logged.

-Dxwork.profile.mintime=10000

Write profiling code

One could extend the profiling feature provided by Struts2 in their web application as well.

Using UtilTimerStack's push and pop

String logMessage = "Log message";
UtilTimerStack.push(logMessage);
try {

// do some code
}
finally {

UtilTimerStack.pop(logMessage); // this needs to be the same text as above
}

Using a UtilTimerStack's ProfileBlock template

String result = UtilTimerStack.profile("purchaseItem: ",
new UtilTimerStack.ProfilingBlock<String>() {

public String doProfiling() {
// do some code
return "Ok";

}
});

Profiling Log files

Profiled result is logged using commons-logging under the logger named
'com.opensymphony.xwork2.util.profiling.UtilTimerStack'. Depending on the underlying logging
implementation say if it is Log4j, one could direct the log to appear in a different file, being emailed to
someone or have it stored in the db.

Document generated by Confluence on Apr 01, 2008 04:35 Page 95

XWork Requirements And Dependencies

This page last changed on Jan 03, 2007 by mrdon.

The version number specified are being used to build and test XWork2, later version might most
probably work, but there is no guarantee.

Mandatory dependencies

Libraries Version Scope

commons-logging 1.0.3 Runtime

ognl 2.6.9 Runtime

spring-mock 1.2.6 Test

junit 3.8.1 Test

mockobjects-core 0.09 Test

easymock 2.0 Test

Optional dependencies

Libraries Version

spring-core 1.2.6

spring-aop 1.2.6

spring-beans 1.2.6

spring-context 1.2.6

spring-web 1.2.6

cglib 2.1

Next: XWork Tutorial

Document generated by Confluence on Apr 01, 2008 04:35 Page 96

Xwork Results

This page last changed on Jan 03, 2007 by mrdon.

Result represents the 'receiver' in a command pattern. It might be used to generate a response for a
webapp, render ui for a Swing base app, execute a batch update etc.

Code

XWork2 result should extends off Result interface. The custom result could have paremeter injected into
it from xwork.xml file as well, just be sure to have getter / setters for those parameters.

The parameter needs to be String, however one could write up a Abstract result which allows
syntax like ${...} to be evaluated against XWork2 Ognl Value Stack. StrutsResultSupport does
that actually. In order to help out with that, XWork2 have an utility class called TextParseUtil that
does that parsing functionality.

public class MyResult implements Result {
// let's have getter/setter for our 'injectable' paremeter.
private String myParam;
public String getMyParam() { return this.myParam; }
public void setMyParam(String myParam) { this.myParam = myParam; }

....
public void execute(ActionInvocation invocation) throws Exception {

....
}
....

}

and registered it in xwork.xml before using it

<xwork>
<package name="myPackage" ...>

<!-- registre our custom result -->
<result-types>

<result-type name="myResult" class="foo.bar.MyResult">
<param name="myParam">some param value</param>

</result>
<result-types>

<action>
<!-- Now we could use it -->
<result type="myResult" ...>

....
</result>

</action>
</package>

</xwork>

Default result types

<result-types>
<result-type name="chain" class="com.opensymphony.xwork2.ActionChainResult"/>

Document generated by Confluence on Apr 01, 2008 04:35 Page 97

</result-types>

Document generated by Confluence on Apr 01, 2008 04:35 Page 98

XWork specific OGNL Features

This page last changed on Dec 01, 2006 by rainerh.

OGNL is the Object Graph Navigation Language - see http://www.ognl.org for the full documentation of
OGNL. In this document we will only show the additional language features that are provided on top of
the base OGNL EL.

XWork-specific Language Features

The ValueStack

The biggest addition that XWork provides on top of OGNL is the support for the ValueStack. While OGNL
operates under the assumption there is only one "root", XWork's ValueStack concept requires there be
many "roots".

For example, suppose we are using standard OGNL (not using XWork) and there are two objects in the
OgnlContext map: "foo" -> foo and "bar" -> bar and that the foo object is also configured to be the single
root object. The following code illustrates how OGNL deals with these three situations:

#foo.blah // returns foo.getBlah()
#bar.blah // returns bar.getBlah()
blah // returns foo.getBlah() because foo is the root

What this means is that OGNL allows many objects in the context, but unless the object you are trying to
access is the root, it must be prepended with a namespaces such as @bar. XWork, however, is a little
different...

In XWork, the entire ValueStack is the root object in the context. But rather than having your expressions
get the object you want from the stack and then get properties from that (ie: peek().blah), XWork has a
special OGNL PropertyAccessor that will automatically look at the all entries in the stack (from the top
down) until it finds an object with the property you are looking for.

For example, suppose the stack contains two objects: Animal and Person. Both objects have a "name"
property, Animal has a "species" property, and Person has a "salary" property. Animal is on the top of the
stack, and Person is below it. The follow code fragments help you get an idea of what is going on here:

species // call to animal.getSpecies()
salary // call to person.getSalary()
name // call to animal.getName() because animal is on the top

In the last example, there was a tie and so the animal's name was returned. Usually this is the desired
effect, but sometimes you want the property of a lower-level object. To do this, XWork has added support
for indexes on the ValueStack. All you have to do is:

\[0\].name // call to animal.getName()
\[1\].name // call to person.getName()

Document generated by Confluence on Apr 01, 2008 04:35 Page 99

http://www.ognl.org

Note that the ValueStack is essentially a List. Calling [1] on the stack returns a sub-stack beginning with
the element at index 1. It's only when you call methods on the stack that your actual objects will be
called. Said another way, let's say I have a ValueStack that consists of a model and an action ([model,
action]). Here's how the following OGNL expressions would resolve:

\[0\] // a CompoundRoot object that contains our stack, \[model, action\]
\[1\] // another CompoundRoot that contains only \[action\]
\[0\].toString() // calls toString() on the first object in the ValueStack

// (excluding the CompoundRoot) that supports the toString() method
\[1\].foo // call getFoo() on the first object in the ValueStack starting from action

// (excluding the CompoundRoot) that supports a getFoo() method

Accessing static properties

OGNL supports accessing static properties as well as static methods. As the OGNL docs point out, you can
explicetly call statics by doing the following:

@some.package.ClassName@FOO_PROPERTY
@some.package.ClassName@someMethod()

However, XWork allows you to avoid having to specify the full package name and call static properties
and methods of your action classes using the "vs" (short for ValueStack) prefix:

@vs@FOO_PROPERTY
@vs@someMethod()

@vs1@FOO_PROPERTY
@vs1@someMethod()

@vs2@BAR_PROPERTY
@vs2@someOtherMethod()

The important thing to note here is that if the class name you specify is just "vs", the class for the object
on the top of the stack is used. If you specify a number after the "vs" string, an object's class deeper in
the stack is used instead.

The top keyword

XWork also adds a new keyword – top – that can be used to access to first object in the ValueStack.

Document generated by Confluence on Apr 01, 2008 04:35 Page 100

Xwork Spring Integration

This page last changed on Nov 11, 2006 by tm_jee.

XWork2 allows its "components" like XWork2's action, interceptor, results etc. to be configured using
Spring.

Configuration

To configured XWork2 to integrate with Spring, one need to use SpringObjectFactory. XWork2
"components" are created through ObjectFactory. SpringObjectFactory and its subclass are extension of
ObjectFactory coded for Spring integration.

static {
// setup Spring's ApplicationContext, probably an ClassPathXmlApplicationContext or others.
ApplicationContext appContext =

// create XWork2's ObjectFactory for Spring integration
SpringObjectFactory springObjectFactory = new SpringObjectFactory();

// hook up Spring's ApplicationContext
springObjectFactory.setApplicationContext(xmlConfigurationApplicationContext);

// set our auto-wiring strategy
springObjectFactory.setAuowiringStrategy(AutowireCapableBeanFactory.AUTOWIRE_BYNAME);

// do we want to cache classes loaded through Spring?
springObjectFactory.setUseClassCache(true);

ObjectFactory.setObjectFactory(springObjectFactory);
}

Hereafter, whenever XWork2 needs an object it will go through ObjectFactory which will allows Spring
beans to be returned.

Integration

XWork's Action, Interceptor, Result class name are actually intepreted as Spring beans name. For
example,

<xwork ...>
<package ...>

<result-types>
...
<result name="myResult" class="myResultBean" />
...

</result-types>

...
<interceptors>

...
<interceptor name="myInterceptor" class="myInterceptorBean" />
...

</interceptors>
...

<action name="myAction" class="myActionBean">
...
<interceptor-ref name="myInterceptor" />

Document generated by Confluence on Apr 01, 2008 04:35 Page 101

...
<result name="success" type="myResult" />
...

</action>
</package>

</xwork>

<beans>
<!-- XWork2 Result instantiated, wired using Spring -->
<bean name="myResultBean" class="...." singleton="false">

....
</bean>

<!-- XWork2 Interceptor instantiated, wired using Spring -->
<bean name="myInterceptorBean" class="...." singleton="false">
.....

</bean>

<!-- XWork2 Action instantiated, wired using Spring -->
<bean name="myActionBean" class="...." singleton="false">
....

</bean>
</beans>

XWork2 action needs to be configured with singleton="false", cause XWork2 expect Action a new
instance for each request / invocation

XWork2 result is preferably configured with singleton="false", unless some information needs to
be kept between invocation. By default, without using SpringObjectFactory, a new instance of
Result would be created per invocation.

XWork2 interceptors are created once and being repeatably used unless XWork2 is configured to
be reloadable. It is preferable that XWork interceptors being configured with singleton="false" as
well.

With this configuration, XWork2's "components" could be instantiated and possibly have its dependencies
wired-up through Spring.

Document generated by Confluence on Apr 01, 2008 04:35 Page 102

XWork Tutorial

This page last changed on Jan 03, 2007 by mrdon.

The following tutorials are available for XWork 2:

• XWork2 Hello World Tutorial — The objective of this simple 'Hello World' tutorial is to be a gentle
introduction of the components in xwork2.

Document generated by Confluence on Apr 01, 2008 04:35 Page 103

XWork2 Hello World Tutorial

This page last changed on Feb 10, 2008 by trix.

The objective of this simple 'Hello World' tutorial is to be a gentle introduction of the components in
xwork2.
It shows the required libraries and how to execute a command (an action) that simply prints out 'Hello
World' the XWork 2 way.

Step 1: Prepare Project Libraries

You need the following two libraries:

• ognl-2.6.11.jar (or ognl.jar)
• xwork-2.1.0.jar (or xwork.jar)

Step 2: Write up xwork.xml

The xwork.xml configuration file, in this case named xwork-hello-world.xml, defines a simple package
that contains one action and a simple result that prints the data to the console.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xwork PUBLIC

"-//OpenSymphony Group//XWork 1.1.1//EN"
"http://www.opensymphony.com/xwork/xwork-1.1.1.dtd">

<xwork>
<include file="xwork-default.xml" />
<package name="default-hello-world" extends="xwork-default" namespace="/helloWorld">

<result-types>
<result-type name="printToConsole"

class="com.opensymphony.xwork2.showcase.PrintToConsoleResult" />
</result-types>

<action name="helloWorld"
class="com.opensymphony.xwork2.showcase.helloworld.HelloWorldAction">

<result type="printToConsole">
<param name="param">${message}</param>

</result>
</action>

</package>
</xwork>

Step 3: Code it up

Next, we need to write the Java code that will initialize XWork and execute our action. The entry point
into our application will be a class titled
com.opensymphony.xwork2.showcase.helloworld.HelloWorldTutorial.

01. /*
02. * Copyright (c) 2002-2006 by OpenSymphony

Document generated by Confluence on Apr 01, 2008 04:35 Page 104

03. * All rights reserved.
04. */
05. package com.opensymphony.xwork2.showcase.helloworld;
06.
07. import java.util.LinkedHashMap;
08.
09. import com.opensymphony.xwork2.ActionProxy;
10. import com.opensymphony.xwork2.ActionProxyFactory;
11. import com.opensymphony.xwork2.config.Configuration;
12. import com.opensymphony.xwork2.config.ConfigurationManager;
13. import com.opensymphony.xwork2.config.providers.XmlConfigurationProvider;
14.
15. /**
16. *
17. * @author tm_jee
18. * @version $Date$ Id
19. */
20. public class HelloWorldTutorial {
21.
22. public static void main(String[] args) throws Exception {
23.
24. ConfigurationManager confManager = new ConfigurationManager();
25. confManager.addConfigurationProvider(
26. new XmlConfigurationProvider(
27.
"com/opensymphony/xwork2/showcase/helloworld/xwork-hello-world.xml",
28. true));
29.
30. Configuration conf = confManager.getConfiguration();
31. ActionProxyFactory actionProxyFactory =
conf.getContainer().getInstance(ActionProxyFactory.class);
32. ActionProxy actionProxy = actionProxyFactory.createActionProxy(
33. "/helloWorld", "helloWorld", new LinkedHashMap());
34.
35.
36. actionProxy.execute();
37. }
38. }

Lines 24-28 show the XWork framework being initialized with our configuration file. Lines 30-33 show
how we obtain an ActionProxy object that handles the Action, Interceptors, and Result execution.
Finally, in line 36, we execute XWork.

NOTE: Between line 24 and 25 should come the following :
confManager.addConfigurationProvider(new XWorkConfigurationProvider());

Step 4: Create the Result and Action

The action:

01. /*
02. * Copyright (c) 2002-2006 by OpenSymphony
03. * All rights reserved.
04. */
05. package com.opensymphony.xwork2.showcase.helloworld;
06.
07. import org.apache.commons.logging.Log;
08. import org.apache.commons.logging.LogFactory;
09.
10. import com.opensymphony.xwork2.ActionSupport;
11.
12. /**
13. *
14. * @author tm_jee
15. * @version $Date$ Id

Document generated by Confluence on Apr 01, 2008 04:35 Page 105

16. */
17. public class HelloWorldAction extends ActionSupport {
18.
19. private static final long serialVersionUID = 6874543345469426109L;
20.
21. private static final Log _log = LogFactory.getLog(HelloWorldAction.class);
22.
23. private String message;
24.
25. public String getMessage() { return message; }
26. public void setMessage(String message) { this.message = message; }
27.
28. @Override
29. public String execute() throws Exception {
30.
31. _log.debug("execute ...");
32.
33. message = "Hello World";
34.
35. return SUCCESS;
36. }
37. }

The result:

01. /*
02. * Copyright (c) 2002-2006 by OpenSymphony
03. * All rights reserved.
04. */
05. package com.opensymphony.xwork2.showcase;
06.
07. import org.apache.commons.logging.Log;
08. import org.apache.commons.logging.LogFactory;
09.
10. import com.opensymphony.xwork2.ActionInvocation;
11. import com.opensymphony.xwork2.Result;
12. import com.opensymphony.xwork2.util.TextParseUtil;
13.
14.
15. /**
16. *
17. * @author tm_jee
18. * @version $Date$ Id
19. */
20. public class PrintToConsoleResult implements Result {
21.
22. private static final Log _log = LogFactory.getLog(PrintToConsoleResult.class);
23.
24. private static final long serialVersionUID = -6173326554804520601L;
25.
26. private String param = "whatsoever";
27.
28. public void setParam(String param) { this.param = param; }
29. public String getParam() { return this.param; }
30.
31. public void execute(ActionInvocation invocation) throws Exception {
32.
33. _log.debug("execute ...");
34.
35. String result = TextParseUtil.translateVariables(param, invocation.getStack());
36.
37. System.out.println(result);
38. }
39. }

Document generated by Confluence on Apr 01, 2008 04:35 Page 106

XWork Validation

This page last changed on Jan 03, 2007 by mrdon.

XWork2 have build-in validation. They are done through the following major classes:-

• ActionVaidatorManagerFactory
• ActionValidatorManager
• Validator

ActionValidatorManagerFactory

ActionValidatorManagerFactory serves as a static factory for ActionValidatorManager.

ActionValidatorManager

This class is the main entry point to trigger XWork2 validation. Its default implementation
(DefaultActionValidatorManager also takes care of loading the validators defined through xml file
(default.xml) located in XWOrk2 jar file)

To trigger validation through code use:-

ActionValidatorManager actionValidatorManager =
actionValidatorManager.validate(myAction, "actionAlias");

Validator

A validator needs to implement the Validator interface. XWork2 provides supporting base class that
makes creating a custom validator easier. Typically one would like to extends from either :-

• ValidatorSupport
• FieldValidatorSupport

Extending ValidatorSupport is ideal for if its a global level validator while extending from
FieldValidatorSupport is for validator that are meant to validate at a field level.

How to Write a Custom Validator

Global validator

public class ExpressionValidator extends ValidatorSupport {

private String expression;

Document generated by Confluence on Apr 01, 2008 04:35 Page 107

public void setExpression(String expression) {
this.expression = expression;

}

public String getExpression() {
return expression;

}

public void validate(Object object) throws ValidationException {
Boolean answer = Boolean.FALSE;
Object obj = null;

try {
obj = getFieldValue(expression, object);

} catch (ValidationException e) {
throw e;

} catch (Exception e) {
// let this pass, but it will be logged right below

}

if ((obj != null) && (obj instanceof Boolean)) {
answer = (Boolean) obj;

} else {
log.warn("Got result of " + obj + " when trying to get Boolean.");

}

if (!answer.booleanValue()) {
if (log.isDebugEnabled()) log.debug("Validation failed on expression " + expression

+ " with validated object "+ object);
addActionError(object);

}
}

}

Field validator

public class DoubleRangeFieldValidator extends FieldValidatorSupport {

String maxInclusive = null;
String minInclusive = null;
String minExclusive = null;
String maxExclusive = null;

Double maxInclusiveValue = null;
Double minInclusiveValue = null;
Double minExclusiveValue = null;
Double maxExclusiveValue = null;

public void validate(Object object) throws ValidationException {
String fieldName = getFieldName();
Double value;
try {

Object obj = this.getFieldValue(fieldName, object);
if (obj == null) {

return;
}
value = Double.valueOf(obj.toString());

} catch (NumberFormatException e) {
return;

}

parseParameterValues();
if ((maxInclusiveValue != null && value.compareTo(maxInclusiveValue) > 0) ||

(minInclusiveValue != null && value.compareTo(minInclusiveValue) < 0) ||
(maxExclusiveValue != null && value.compareTo(maxExclusiveValue) >= 0) ||
(minExclusiveValue != null && value.compareTo(minExclusiveValue) <= 0)) {

addFieldError(fieldName, object);
}

}

private void parseParameterValues() {

Document generated by Confluence on Apr 01, 2008 04:35 Page 108

this.minInclusiveValue = parseDouble(minInclusive);
this.maxInclusiveValue = parseDouble(maxInclusive);
this.minExclusiveValue = parseDouble(minExclusive);
this.maxExclusiveValue = parseDouble(maxExclusive);

}

private Double parseDouble (String value) {
if (value != null) {

try {
return Double.valueOf(value);

} catch (NumberFormatException e) {
if (log.isWarnEnabled()) {

log.warn("DoubleRangeFieldValidator - [parseDouble]: Unable to parse given
double parameter " + value);

}
}

}
return null;

}

public void setMaxInclusive(String maxInclusive) {
this.maxInclusive = maxInclusive;

}

public String getMaxInclusive() {
return maxInclusive;

}

public void setMinInclusive(String minInclusive) {
this.minInclusive = minInclusive;

}

public String getMinInclusive() {
return minInclusive;

}

public String getMinExclusive() {
return minExclusive;

}

public void setMinExclusive(String minExclusive) {
this.minExclusive = minExclusive;

}

public String getMaxExclusive() {
return maxExclusive;

}

public void setMaxExclusive(String maxExclusive) {
this.maxExclusive = maxExclusive;

}
}

Default Validators

<validators>
<validator name="required"

class="com.opensymphony.xwork2.validator.validators.RequiredFieldValidator"/>
<validator name="requiredstring"

class="com.opensymphony.xwork2.validator.validators.RequiredStringValidator"/>
<validator name="int"

class="com.opensymphony.xwork2.validator.validators.IntRangeFieldValidator"/>
<validator name="long"

class="com.opensymphony.xwork2.validator.validators.LongRangeFieldValidator"/>
<validator name="short"

class="com.opensymphony.xwork2.validator.validators.ShortRangeFieldValidator"/>
<validator name="double"

class="com.opensymphony.xwork2.validator.validators.DoubleRangeFieldValidator"/>
<validator name="date"

class="com.opensymphony.xwork2.validator.validators.DateRangeFieldValidator"/>
<validator name="expression"

class="com.opensymphony.xwork2.validator.validators.ExpressionValidator"/>
<validator name="fieldexpression"

Document generated by Confluence on Apr 01, 2008 04:35 Page 109

"com.opensymphony.xwork2.validator.validators.FieldExpressionValidator"/>
<validator name="email"

class="com.opensymphony.xwork2.validator.validators.EmailValidator"/>
<validator name="url" class="com.opensymphony.xwork2.validator.validators.URLValidator"/>
<validator name="visitor"

class="com.opensymphony.xwork2.validator.validators.VisitorFieldValidator"/>
<validator name="conversion"

class="com.opensymphony.xwork2.validator.validators.ConversionErrorFieldValidator"/>
<validator name="stringlength"

class="com.opensymphony.xwork2.validator.validators.StringLengthFieldValidator"/>
<validator name="regex"

class="com.opensymphony.xwork2.validator.validators.RegexFieldValidator"/>
<validator name="conditionalvisitor"

class="com.opensymphony.xwork2.validator.validators.ConditionalVisitorFieldValidator"/>
</validators>

Integrate validation into Action

Action-level validation

To create an action level validation, create a file 'ActionClass-validation.xml' at the same location where
the Action class itself lies. Example, if the action class is MyAction, the xml file would be named
'MyAction-validation.xml'

<action name="myAlias" class="foo.bar.MyAction">
....

</action>
<action name="myAnotherAlias" class="foo.bar.MyAction" method="create">
.....
</action>

An action-level validation allows the validation to be applied to all 'MyAction' action class. In the example
above, both action 'myAlias' and 'myAnotherAlias' will have the validation applied.

Action Alias-level validation

To create an action alias level validation, create a file 'ActionClass-actionAlias-validation.xml' at the same
location where the Action class itself lies. Example if the action class is MyAction with an alias 'myAlias',
the xml file would be named 'MyAction-myAlias-validation.xml'.

<action name="myAlias" class="foo.bar.MyAction">
...

</action>
<action name="myAnotherAlias" class="foo.bar.MyAction" method="create">

.....
</action>

An action-alias-level validation allows the validation to be applied to all 'MyAction' action class with alias
'myAlias' only, hence limiting the scope where the validation is applied compared to global-level
validation.

In the example above, action 'myAlias' will have the validation applied whereas action 'myAnotherAlias'
will not.

Document generated by Confluence on Apr 01, 2008 04:35 Page 110

Validation configuration

Following is an example how a validation xml configuration file looks like

<validators>
<validator type="expression">

<param name="expression"><![CDATA[name != null && age != null]]></param>
<message>Both fields are required</message>

</validator>
<field name="name">

<field-validator type="requiredstring">
<message>Name is mandatory</message>

</field-validator>
</field>
<field name="age">

<field-validator type="requiredstring">
<message>Age is mandatory</message>

</field-validator>
<field-validator type="int">

<param name="min">20</param>
<param name="max">50</param>
<message>Age must be between 20 and 50</message>

</field-validator>
</field>

</validators>

Document generated by Confluence on Apr 01, 2008 04:35 Page 111

XWork Value Stack

This page last changed on Nov 11, 2006 by tm_jee.

Value stack is a fundamental part of XWork2. As XWork2 processed a command request, objects of
interest could be pushed into the value stack or set into its context. This could be done by XWork2 itself,
Action, Interceptors, Results etc.

XWork2 Action itself is actually pushed into the stack during the invocation process.

Working Concept

There are two ways objects could be store in XWork2's value stack.

Top of the value stack

Objects get push into XWork2 value stack in a first-in-last-out fashion just like any ordinary stack would.

To push an Object into XWork's value stack, simply do

valueStack.push(anObject);

Actually XWork2 uses Ognl underneath. By having a CompoundRoot that allows objects to be
stack up on as Ognl root, the effect of a stack is achieved.

When value the stack is queried for object using the followng method signature eg.

valueStack.findString(String);
valueStack.findValue(String);
valueStack.findValue(String, Class);

the objects residing the XWork2 value stack will be search accordingly (with those in the top of the stack
having higher precedence).

For example, with the following value stack,

Value Stack

objectA (foo.bar.ObjectA)

• method0ne
• method1
• method2

Document generated by Confluence on Apr 01, 2008 04:35 Page 112

objectB (foo.bar.ObjectB)

• methodTwo
• method3
• method4

objectC (foo.bar.ObjectC)

• methodOne
• methodTwo
• method5
• method6

Case 1

Object o = findValue("method2");

In this case, the "methodA" of instance foo.bar.ObjectA will be invoked with its returning object returned.

Case 2

Object o = findValue("method6");

In this case, the "method6" of instance foo.bar.ObjectC will be invoked with its returning object returned.

Case 3

Object o = findValue("methodOne");

In this case, the "methodOne" of instance foo.bar.ObjectA will be invoked with its returning object
returned. This is due to instance of foo.bar.ObjectA being on the top of the stack compared to instance of
foo.bar.ObjectC, XWork2 searches down the stack and hence will find instance of foo.bar.ObjectA first.

Case 4

Object o = fincValue("methodTwo");

In this case, the "methodTwo" of instance foo.bar.ObjectB will be invoked with its returning object
returned. This is due to instance of foo.bar.ObjectB being on the top of the stack compared to instance of
foo.bar.ObjectC, XWork2 searches down the the stack and hence will find instance of foo.bar.ObjectB
first.

Value stack's context

Document generated by Confluence on Apr 01, 2008 04:35 Page 113

To store an object in XWork2's value stack's context, one could use

Map context = valueStack.getContext();
context.put("key", someObject);

To query Object from XWork2's value stack's context, one could use

valueStack.findValue("#key");

or

valueStack.getContext().get("key");

Document generated by Confluence on Apr 01, 2008 04:35 Page 114

	Space Details
	Available Pages
	Documentation
	Annotations
	After Annotation
	AnnotationWorkflowInterceptor
	Before Annotation
	BeforeResult Annotation
	Conversion Annotation
	ConversionErrorFieldValidator Annotation
	CreateIfNull Annotation
	CustomValidator Annotation
	ValidationParameter annotation

	DateRangeFieldValidator Annotation
	DoubleRangeFieldValidator Annotation
	Element Annotation
	EmailValidator Annotation
	ExpressionValidator Annotation
	FieldExpressionValidator Annotation
	IntRangeFieldValidator Annotation
	Key Annotation
	KeyProperty Annotation
	RegexFieldValidator Annotation
	RequiredFieldValidator Annotation
	RequiredStringValidator Annotation
	StringLengthFieldValidator Annotation
	StringRegexValidator Annotation
	TypeConversion Annotation
	UrlValidator Annotation
	Validation Annotation
	Validations Annotation
	VisitorFieldValidator Annotation

	Building XWork
	Colophon
	Configuring XWork in xwork.xml
	Action configuration
	Include configuration
	Interceptor Configuration
	Namespace Configuration
	Package Configuration
	Result Configuration

	Creating a distribution
	Documentation Style Guide
	Precise Error Reporting
	Reloading
	XWork Actions
	XWork Architecture
	XWork Articles
	XWork Configurations
	XWork Conversion
	XWork Core Concepts
	XWork FAQs
	XWork Features
	XWork Hibernate Integration
	XWork Installation
	XWork Interceptors
	XWork Localization
	XWork Object Factory
	XWork package
	XWork PreResultListeners
	XWork Profiling
	XWork Requirements And Dependencies
	Xwork Results
	XWork specific OGNL Features
	Xwork Spring Integration
	XWork Tutorial
	XWork2 Hello World Tutorial

	XWork Validation
	XWork Value Stack

