# Python Binding --- Python binding provides APIs for configuring a training job following [keras](http://keras.io/), including the configuration of neural net, training algorithm, etc. It replaces the configuration file (e.g., *job.conf*) in protobuf format, which is typically long and error-prone to prepare. We will add python functions to interact with the layer and neural net objects (see [here](python_interactive_training.html)), which would enable users to train and debug their models interactively. Here is the layout of python related code, SINGAROOT/tool/python |-- pb2 (has job_pb2.py) |-- singa |-- model.py |-- layer.py |-- parameter.py |-- initialization.py |-- utils |-- utility.py |-- message.py |-- examples |-- cifar10_cnn.py, mnist_mlp.py, , mnist_rbm1.py, mnist_ae.py, etc. |-- datasets |-- cifar10.py |-- mnist.py ## Compiling and running instructions In order to use the Python APIs, users need to add the following arguments when compiling SINGA, ./configure --enable-python --with-python=PYTHON_DIR make where PYTHON_DIR has Python.h The training program is launched by bin/singa-run.sh -exec where user_main.py creates the JobProto object and passes it to Driver::Train to start the training. For example, cd SINGAROOT bin/singa-run.sh -exec tool/python/examples/cifar10_cnn.py ## Examples ### MLP Example This example uses python APIs to configure and train a MLP model over the MNIST dataset. The configuration content is the same as that written in *SINGAROOT/examples/mnist/job.conf*. ``` X_train, X_test, workspace = mnist.load_data() m = Sequential('mlp', sys.argv) m.add(Dense(2500, init='uniform', activation='stanh')) m.add(Dense(2000, init='uniform', activation='stanh')) m.add(Dense(1500, init='uniform', activation='stanh')) m.add(Dense(1000, init='uniform', activation='stanh')) m.add(Dense(500, init='uniform', activation='stanh')) m.add(Dense(10, init='uniform', activation='softmax')) sgd = SGD(lr=0.001, lr_type='step') topo = Cluster(workspace) m.compile(loss='categorical_crossentropy', optimizer=sgd, cluster=topo) m.fit(X_train, nb_epoch=1000, with_test=True) result = m.evaluate(X_test, batch_size=100, test_steps=10, test_freq=60) ``` ### CNN Example This example uses python APIs to configure and train a CNN model over the Cifar10 dataset. The configuration content is the same as that written in *SINGAROOT/examples/cifar10/job.conf*. ``` X_train, X_test, workspace = cifar10.load_data() m = Sequential('cnn', sys.argv) m.add(Convolution2D(32, 5, 1, 2, w_std=0.0001, b_lr=2)) m.add(MaxPooling2D(pool_size=(3,3), stride=2)) m.add(Activation('relu')) m.add(LRN2D(3, alpha=0.00005, beta=0.75)) m.add(Convolution2D(32, 5, 1, 2, b_lr=2)) m.add(Activation('relu')) m.add(AvgPooling2D(pool_size=(3,3), stride=2)) m.add(LRN2D(3, alpha=0.00005, beta=0.75)) m.add(Convolution2D(64, 5, 1, 2)) m.add(Activation('relu')) m.add(AvgPooling2D(pool_size=(3,3), stride=2)) m.add(Dense(10, w_wd=250, b_lr=2, b_wd=0, activation='softmax')) sgd = SGD(decay=0.004, lr_type='manual', step=(0,60000,65000), step_lr=(0.001,0.0001,0.00001)) topo = Cluster(workspace) m.compile(updater=sgd, cluster=topo) m.fit(X_train, nb_epoch=1000, with_test=True) result = m.evaluate(X_test, 1000, test_steps=30, test_freq=300) ``` ### RBM Example This example uses python APIs to configure and train a RBM model over the MNIST dataset. The configuration content is the same as that written in *SINGAROOT/examples/rbm*.conf*. ``` rbmid = 3 X_train, X_test, workspace = mnist.load_data(nb_rbm=rbmid) m = Energy('rbm'+str(rbmid), sys.argv) out_dim = [1000, 500, 250] m.add(RBM(out_dim, w_std=0.1, b_wd=0)) sgd = SGD(lr=0.1, decay=0.0002, momentum=0.8) topo = Cluster(workspace) m.compile(optimizer=sgd, cluster=topo) m.fit(X_train, alg='cd', nb_epoch=6000) ``` ### AutoEncoder Example This example uses python APIs to configure and train an autoencoder model over the MNIST dataset. The configuration content is the same as that written in *SINGAROOT/examples/autoencoder.conf*. ``` rbmid = 4 X_train, X_test, workspace = mnist.load_data(nb_rbm=rbmid+1) m = Sequential('autoencoder', sys.argv) hid_dim = [1000, 500, 250, 30] m.add(Autoencoder(hid_dim, out_dim=784, activation='sigmoid', param_share=True)) agd = AdaGrad(lr=0.01) topo = Cluster(workspace) m.compile(loss='mean_squared_error', optimizer=agd, cluster=topo) m.fit(X_train, alg='bp', nb_epoch=12200) ``` ### To run SINGA on GPU Users need to set a list of gpu ids to `device` field in fit() or evaluate(). The number of GPUs must be the same to the number of workers configured for cluster topology. ``` gpu_id = [0] m.fit(X_train, nb_epoch=100, with_test=True, device=gpu_id) ``` ### TIPS Hidden layers for MLP can be configured as ``` for n in [2500, 2000, 1500, 1000, 500]: m.add(Dense(n, init='uniform', activation='tanh')) m.add(Dense(10, init='uniform', activation='softmax')) ``` Activation layer can be specified separately ``` m.add(Dense(2500, init='uniform')) m.add(Activation('tanh')) ``` Users can explicitly specify hyper-parameters of weight and bias ``` par = Parameter(init='uniform', scale=0.05) m.add(Dense(2500, w_param=par, b_param=par, activation='tanh')) m.add(Dense(2000, w_param=par, b_param=par, activation='tanh')) m.add(Dense(1500, w_param=par, b_param=par, activation='tanh')) m.add(Dense(1000, w_param=par, b_param=par, activation='tanh')) m.add(Dense(500, w_param=par, b_param=par, activation='tanh')) m.add(Dense(10, w_param=par, b_param=par, activation='softmax')) ``` ``` parw = Parameter(init='gauss', std=0.0001) parb = Parameter(init='const', value=0) m.add(Convolution(32, 5, 1, 2, w_param=parw, b_param=parb, b_lr=2)) m.add(MaxPooling2D(pool_size(3,3), stride=2)) m.add(Activation('relu')) m.add(LRN2D(3, alpha=0.00005, beta=0.75)) parw.update(std=0.01) m.add(Convolution(32, 5, 1, 2, w_param=parw, b_param=parb)) m.add(Activation('relu')) m.add(AvgPooling2D(pool_size(3,3), stride=2)) m.add(LRN2D(3, alpha=0.00005, beta=0.75)) m.add(Convolution(64, 5, 1, 2, w_param=parw, b_param=parb, b_lr=1)) m.add(Activation('relu')) m.add(AvgPooling2D(pool_size(3,3), stride=2)) m.add(Dense(10, w_param=parw, w_wd=250, b_param=parb, b_lr=2, b_wd=0, activation='softmax')) ``` Data can be added in this way, ``` X_train, X_test = mnist.load_data() // parameter values are set in load_data() m.fit(X_train, ...) // Data layer for training is added m.evaluate(X_test, ...) // Data layer for testing is added ``` or this way, ``` X_train, X_test = mnist.load_data() // parameter values are set in load_data() m.add(X_train) // explicitly add Data layer m.add(X_test) // explicitly add Data layer ``` ``` store = Store(path='train.bin', batch_size=64, ...) // parameter values are set explicitly m.add(Data(load='recordinput', phase='train', conf=store)) // Data layer is added store = Store(path='test.bin', batch_size=100, ...) // parameter values are set explicitly m.add(Data(load='recordinput', phase='test', conf=store)) // Data layer is added ``` ### Cases to run SINGA (1) Run SINGA for training ``` m.fit(X_train, nb_epoch=1000) ``` (2) Run SINGA for training and validation ``` m.fit(X_train, validate_data=X_valid, nb_epoch=1000) ``` (3) Run SINGA for test while training ``` m.fit(X_train, nb_epoch=1000, with_test=True) result = m.evaluate(X_test, batch_size=100, test_steps=100) ``` (4) Run SINGA for test only Assume a checkpoint exists after training ``` result = m.evaluate(X_test, batch_size=100, checkpoint_path=workspace+'/checkpoint/step100-worker0') ``` ## Implementation Details ### Layer class (inherited) * Data * Dense * Activation * Convolution2D * MaxPooling2D * AvgPooling2D * LRN2D * Dropout * RBM * Autoencoder ### Model class Model class has `jobconf` (JobProto) and `layers` (layer list) Methods in Model class * add * add Layer into Model * 2 subclasses: Sequential model and Energy model * compile * set Updater (i.e., optimizer) and Cluster (i.e., topology) components * fit * set Training data and parameter values for the training * (optional) set Validatiaon data and parameter values * set Train_one_batch component * specify `with_test` field if a user wants to run SINGA with test data simultaneously. * [TODO] recieve train/validation results, e.g., accuracy, loss, ppl, etc. * evaluate * set Testing data and parameter values for the testing * specify `checkpoint_path` field if a user want to run SINGA only for testing. * [TODO] recieve test results, e.g., accuracy, loss, ppl, etc. ### Results fit() and evaluate() return train/test results, a dictionary containing * [key]: step number * [value]: a list of dictionay * 'acc' for accuracy * 'loss' for loss * 'ppl' for ppl * 'se' for squred error ### Parameter class Users need to set parameter and initial values. For example, * Parameter (fields in Param proto) * lr = (float) // learning rate multiplier, used to scale the learning rate when updating parameters. * wd = (float) // weight decay multiplier, used to scale the weight decay when updating parameters. * Parameter initialization (fields in ParamGen proto) * init = (string) // one of the types, 'uniform', 'constant', 'gaussian' * high = (float) // for 'uniform' * low = (float) // for 'uniform' * value = (float) // for 'constant' * mean = (float) // for 'gaussian' * std = (float) // for 'gaussian' * Weight (`w_param`) is 'gaussian' with mean=0, std=0.01 at default * Bias (`b_param`) is 'constant' with value=0 at default * How to update the parameter fields * for updating Weight, put `w_` in front of field name * for updating Bias, put `b_` in front of field name Several ways to set Parameter values ``` parw = Parameter(lr=2, wd=10, init='gaussian', std=0.1) parb = Parameter(lr=1, wd=0, init='constant', value=0) m.add(Convolution2D(10, w_param=parw, b_param=parb, ...) ``` ``` m.add(Dense(10, w_mean=1, w_std=0.1, w_lr=2, w_wd=10, ...) ``` ``` parw = Parameter(init='constant', mean=0) m.add(Dense(10, w_param=parw, w_lr=1, w_wd=1, b_value=1, ...) ``` ### Other classes * Store * Algorithm * Updater * SGD * AdaGrad * Cluster