singa-incubating-1.0.0 Release Notes¶
SINGA is a general distributed deep learning platform for training big deep learning models over large datasets. It is designed with an intuitive programming model based on the layer abstraction. SINGA supports a wide variety of popular deep learning models.
This release includes following features:
Core abstractions including Tensor and Device
[SINGA-207] Update Tensor functions for matrices
[SINGA-205] Enable slice and concatenate operations for Tensor objects
[SINGA-197] Add CNMem as a submodule in lib/
[SINGA-196] Rename class Blob to Block
[SINGA-194] Add a Platform singleton
[SINGA-175] Add memory management APIs and implement a subclass using CNMeM
[SINGA-173] OpenCL Implementation
[SINGA-171] Create CppDevice and CudaDevice
[SINGA-168] Implement Cpp Math functions APIs
[SINGA-162] Overview of features for V1.x
[SINGA-165] Add cross-platform timer API to singa
[SINGA-167] Add Tensor Math function APIs
[SINGA-166] light built-in logging for making glog optional
[SINGA-164] Add the base Tensor class
IO components for file read/write, network and data pre-processing
[SINGA-233] New communication interface
[SINGA-215] Implement Image Transformation for Image Pre-processing
[SINGA-214] Add LMDBReader and LMDBWriter for LMDB
[SINGA-213] Implement Encoder and Decoder for CSV
[SINGA-211] Add TextFileReader and TextFileWriter for CSV files
[SINGA-210] Enable checkpoint and resume for v1.0
[SINGA-208] Add DataIter base class and a simple implementation
[SINGA-203] Add OpenCV detection for cmake compilation
[SINGA-202] Add reader and writer for binary file
[SINGA-200] Implement Encoder and Decoder for data pre-processing
Module components including layer classes, training algorithms and Python binding
[SINGA-235] Unify the engines for cudnn and singa layers
[SINGA-230] OpenCL Convolution layer and Pooling layer
[SINGA-222] Fixed bugs in IO
[SINGA-218] Implementation for RNN CUDNN version
[SINGA-204] Support the training of feed-forward neural nets
[SINGA-199] Implement Python classes for SGD optimizers
[SINGA-198] Change Layer::Setup API to include input Tensor shapes
[SINGA-193] Add Python layers
[SINGA-192] Implement optimization algorithms for SINGA v1 (nesterove, adagrad, rmsprop)
[SINGA-191] Add “autotune” for CudnnConvolution Layer
[SINGA-190] Add prelu layer and flatten layer
[SINGA-189] Generate python outputs of proto files
[SINGA-188] Add Dense layer
[SINGA-187] Add popular parameter initialization methods
[SINGA-186] Create Python Tensor class
[SINGA-184] Add Cross Entropy loss computation
[SINGA-183] Add the base classes for optimizer, constraint and regularizer
[SINGA-180] Add Activation layer and Softmax layer
[SINGA-178] Add Convolution layer and Pooling layer
[SINGA-176] Add loss and metric base classes
[SINGA-174] Add Batch Normalization layer and Local Response Nomalization layer.
[SINGA-170] Add Dropout layer and CudnnDropout layer.
[SINGA-169] Add base Layer class for V1.0
Examples
[SINGA-232] Alexnet on Imagenet
[SINGA-231] Batchnormlized VGG model for cifar-10
[SINGA-228] Add Cpp Version of Convolution and Pooling layer
[SINGA-227] Add Split and Merge Layer and add ResNet Implementation
Documentation
[SINGA-239] Transfer documentation files of v0.3.0 to github
[SINGA-238] RBM on mnist
[SINGA-225] Documentation for installation and Cifar10 example
[SINGA-223] Use Sphinx to create the website
Tools for compilation and some utility code
[SINGA-229] Complete install targets
[SINGA-221] Support for Travis-CI
[SINGA-217] build python package with setup.py
[SINGA-216] add jenkins for CI support
[SINGA-212] Disable the compilation of libcnmem if USE_CUDA is OFF
[SINGA-195] Channel for sending training statistics
[SINGA-185] Add CBLAS and GLOG detection for singav1
[SINGA-181] Add NVCC supporting for .cu files
[SINGA-177] Add fully cmake supporting for the compilation of singa_v1
[SINGA-172] Add CMake supporting for Cuda and Cudnn libs