
Installation Guide

Apache Roller
Version 2.3-incubating

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. The
ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License. For additional information regarding copyright in this work, please see the NOTICE file in
the top level directory of this distribution.

Table of Contents

INTRODUCTION...3
STEP 1: BEFORE YOU INSTALL ROLLER..4
STEP 2: UNPACK THE ROLLER DISTRIBUTION..5
STEP 3: INSTALL REQUIRED THIRD PARTY JARS..6

STEP 3.1: Download and install Hibernate...6
STEP 3.2: Install JDBC driver jar(s)...6
STEP 3.3: Install JavaMail and Activation jars...7

STEP 4: CREATE ROLLER TABLES IN YOUR DATABASE..8
STEP 5: DEPLOY ROLLER TO YOUR APPLICATION SERVER...................................9
STEP 6: CHECK YOUR INTERNATIONALIZATION SETTINGS..................................11
STEP 7: SETUP ROLLER DATA DIRECTORIES ...12

STEP 7.1: Create uploads directory..12
STEP 7.2: Create search-index directory..12
STEP 7.3: Create planet-cache directory (optional)..12
STEP 7.4: Make sure that the logs subdirectory exists...13

STEP 8: REVIEW ROLLER CONFIGURATION...14
STEP 8.1: Review the WEB-INF/classes/roller.properties file...14

Where to define custom properties...14
STEP 8.2: Change keys in the WEB-INF/security.xml file..15

STEP 9: START TOMCAT AND START USING ROLLER..16
APPENDIX A: UPGRADING AN EXISTING ROLLER INSTALLATION...........................17

STEP 1: Shutdown and backup your old Roller ...17
STEP 2: Install the new Roller ...17
STEP 3: Copy resources and update configs ..18

3.1 Copy your old resources and other files you've added...18
3.2 Remove JavaMail jars if duplicated...18
3.3 Review configuration properties...18

STEP 4: Upgrade the database ...18
STEP 5: Startup your app server ..19

APPENDIX B: THE WEB-INF/ROLLER.PROPERTIES FILE...................................20

Introduction

This document describes how to install Roller in the following environment:

• Operating System: UNIX or Windows based operating system
• Java development kit: Java 2 SE 1.4 SDK (or later)
• Application server: Tomcat 5.X (or later)
• Relational Database: MySQL 4.X (or later)

NOTE: If you're upgrading from an earlier release of Roller, read Appendix A first

What do you need to know to install Roller? You need to know how to use the UNIX or Windows
command-line, how to set environment variables, how to create a database in MySQL and how to start
and stop Tomcat.

What about other servlet containers? These instructions target Tomcat, but you should be able to make
Roller work with just about any standard Servlet 2.3 compatible application server. For full support of
Roller's internationalization features, we recommend Servlet 2.4. If you deploy Roller to a non-Tomcat
server, please contribute your install notes to help others who might want to do the same.

What about other databases? These instructions target MySQL, but Roller also includes database setup
scripts for PostgreSQL 7.X later, Apache Derby, IBM DB2, Oracle and HSQL-DB.

What platform combinations are known to work? For information on which platforms we can vouch
for, see the the Platforms page on the Roller wiki.

STEP 1: Before you install Roller

Before you install Roller software you should install and configure the Java development kit, your
application server and your database.

As part of the Tomcat install you should have set the environment variable CATALINA_HOME to point
to your Tomcat installation directory. If not, you might want to set it now because we will refer to it in
this installation guide. Below are some examples that show how to set this variable. Make sure you
substitute the right path to your Tomcat installation.

For UNIX with bash shell:

% export CATALINA_HOME=/opt/jakarta-tomcat-5.5.9

For UNIX with c-shell:

% setenv CATALINA_HOME /opt/jakarta-tomcat-5.5.9

For Windows with DOS shell

C> set CATALINA_HOME d:\jakarta-tomcat-5.5.9

NOTES

• For MySQL, make sure you enable UTF-8 support. See the page Setting Up UTF-8 on MySQL
page on the Roller wiki for details.

• For MySQL, make sure that TCP/IP networking is enabled. In some versions of MySQL, this
option is off by default. See the page Debian MySQL for details. The Connector/J JDBC driver
can only access MySQL via TCP/IP.

STEP 2: Unpack the Roller distribution

Pick a directory on your computer and unpack the Roller distribution using either GNU tar on UNIX or
WinZip on Windows. Hereinafter, we'll refer to that directory as your Roller installation directory,
$ROLLER in the UNIX examples or %ROLLER% in the Windows examples.

Here are some examples to show you how you might unpack Roller on your computer.

UNIX example

Assuming you download the distribution into your home directory and you'd like to install Roller into
/usr/local you might do something like this:

% cd /usr/local
% tar xzvf ~/roller-2.3.tar.gz

That would create the Roller installation directory /usr/local/roller.

Windows example

Use WinZip to extract the Roller distribution file into the directory of your choice for example, no
example necessary.

STEP 3: Install required third party jars

You also need to download and install some third-party jars, jars that we can't include in Roller due to
licensing restrictions. These are the JDBC driver, JavaMail and Activation jars.

STEP 3.1: Download and install Hibernate

Roller requires the Hibernate persistence library, which you must download separately from Roller.

Download Hibernate 3.1.2 from SourceForge

http://prdownloads.sourceforge.net/hibernate/hibernate-3.1.2.tar.gz

Copy the following files from Hibernate into the Roller WEB-INF/lib directory:

• hibernate3.jar

• asm-attrs.jar

• asm.jar

• cglib-2.1.3.jar

• dom4j.1.6.1.jar

• ehcache-1.1.jar

• jdbc2_0-stdext.jar

• jta.jar

The Roller Support project at Java.Net offers some bundles that might make this part of the installation
easier. Visit http://roller.dev.java.net for more information.

STEP 3.2: Install JDBC driver jar(s)

Download the JDBC driver jar for your database and put it in the classpath of your application server. For
example, assuming Tomcat and MySQL, you'd download the J/Connector JDBC driver from mysql.com
and you'd place it in the Tomcat common/lib directory.

UNIX example

% cp mysql-connector.jar $CATALINA_HOME/common/lib

Windows example

C> copy mysql-connector.jar %CATALINA_HOME%\common\lib

NOTES

• For MySQL 4.1.X users, we recommend that you use the J/Connector 3.0.X JDBC drivers instead
of the newer 3.1.X series. If you must use J/Connector/J 3.1.X then please read Installation FAQ
page item #13 on the Roller wiki.

http://prdownloads.sourceforge.net/hibernate/hibernate-3.1.2.tar.gz
http://roller.dev.java.net/

STEP 3.3: Install JavaMail and Activation jars

If you like to use Roller's e-mail notification features, you'll need to add the JavaMail and Activation jars
to your application server's classpath. Currently, we ship these jars with Roller, but you will need to
move them from the Roller WEB-INF/lib directory and into the Tomcat common/lib directory, or
your server's equivalent location.

UNIX example

% mv $ROLLER/WEB-INF/lib/mail.jar $CATALINA_HOME/common/lib

% mv $ROLLER/WEB-INF/lib/activation.jar $CATALINA_HOME/common/lib

Windows example

c> move %ROLLER%\WEB-INF\lib\mail.jar %CATALINA_HOME%\common\lib

C> move %ROLLER%\WEB-INF\lib\activation.jar %CATALINA_HOME%\common\lib

NOTES

• To enable the Roller's e-mail notification features, you'll also need to setup a mail session
resource in your application server configuration file (see the next section) and you'll need to
configure e-mail notification in the Roller UI.

STEP 4: Create Roller tables in your database

Create a new database within your MySQL installation, create a user with all privileges within that
database and run the Roller database creation script to create tables within that new database.

Roller includes database creation scripts for a variety of database, but MySQL is the most widely used
and best supported option. You can find the database creation scripts in the Roller installation directory
under WEB-INF/dbscripts/<dbname>. Here's the list of scripts currently in Roller:

• WEB-INF/dbscripts/mysql/creatdb.sql

• WEB-INF/dbscripts/postgresql/creatdb.sql

• WEB-INF/dbscripts/hsqldb/creatdb.sql

• WEB-INF/dbscripts/derby/creatdb.sql

• WEB-INF/dbscripts/db2/creatdb.sql

• WEB-INF/dbscripts/oracle/creatdb.sql

Here are some examples to show you how you might create the Roller tables in MySQL:

UNIX example:

% cd $ROLLER/WEB-INF/dbscripts/mysql
% mysql -u root -p
password: *****
mysql> create database roller;
mysql> grant all on roller.* to scott@'%' identified by 'tiger';
mysql> grant all on roller.* to scott@localhost identified by 'tiger';
mysql> use roller;
mysql> source createdb.sql
mysql> quit

Windows example:

C> cd %ROLLER%\WEB-INF\dbscripts\mysql
C> mysql -u root -p
password: *****
mysql> create database roller;
mysql> grant all on roller.* to scott@'%' identified by 'tiger';
mysql> grant all on roller.* to scott@'localhost' identified by 'tiger';
mysql> use roller;
mysql> source createdb.sql
mysql> quit

NOTES

• For MySQL, don't forget to call flush privileges to commit your changes to MySQL.

• To check whether your MySQL is setup properly, use the command line mysql program to
connect using the user name and password you created. For example (we use 127.0.0.1 here
instead of localhost to ensure that TCP/IP networking is enabled):

mysql roller -h 127.0.0.1 -u scott -ptiger

STEP 5: Deploy Roller to your application server

To deploy Roller to your application server you need to inform your application server:

• Where to find the Roller installation directory
• How to configure the Roller datasource under the JNDI name jdbc/rollerdb

For Tomcat you can do this by creating what's known as a context configuration file named
roller.xml and placing that file in the Tomcat conf/Catalina/localhost directory.

Example context configuration file for Tomcat 5.0.X users

The portions shown in bold are the ones that you'll probably have to change. Make sure you set the
docBase to point to your Roller installation directory. Make sure you set the JDBC connection string to
point to your database and the database username and password too.

<Context path="/roller" docBase="/usr/local/roller" debug="0">
 <Resource name="jdbc/rollerdb" auth="Container" type="javax.sql.DataSource" />
 <ResourceParams name="jdbc/rollerdb">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.jdbc.Driver</value>
 </parameter>
 <parameter>
 <name>url</name>
 <value>
 jdbc:mysql://localhost:3306/roller?autoReconnect=true&useUnicode=true&am
p;characterEncoding=utf-8&mysqlEncoding=utf8
 </value>
 </parameter>
 <parameter><name>username</name><value>scott</value></parameter>
 <parameter><name>password</name><value>tiger</value></parameter>
 <parameter><name>maxActive</name><value>20</value></parameter>
 <parameter><name>maxIdle</name><value>3</value></parameter>
 <parameter><name>removeAbandoned</name><value>true</value></parameter>
 <parameter><name>maxWait</name><value>3000</value></parameter>
 </ResourceParams>
 <!-- If you want e-mail features, un-comment the section below -->
 <!--
 <Resource name="mail/Session" auth="Container" type="javax.mail.Session"/>
 <ResourceParams name="mail/Session">
 <parameter>
 <name>mail.smtp.host</name>
 <value>mailhost.example.com</value>
 </parameter>
 </ResourceParams>
 -->
</Context>

Example context configuration file for Tomcat 5.5.X users

The portions shown in bold are the ones that you'll probably have to change. Make sure you set the
docBase to point to your Roller installation directory. Make sure you set the JDBC connection string to
point to your database and the database username and password too.

<Context path="/roller" docBase="/usr/local/roller" debug="0">
 <Resource name="jdbc/rollerdb" auth="Container" type="javax.sql.DataSource"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/roller?autoReconnect=true&useUnicode=true&
amp;characterEncoding=utf-8&mysqlEncoding=utf8"
 username="scott"
 password="tiger"
 maxActive="20"
 maxIdle="3"
 removeAbandoned="true"
 maxWait="3000" />
 <!-- If you want e-mail features, un-comment the section below -->
 <!--
 <Resource name="mail/Session" auth="Container" type="javax.mail.Session"
 mail.smtp.host="mailhost.example.com" />
 -->
</Context>

NOTES

• If Roller starts up fine but later fails and you find an error like the one below in your roller.log file
then try dropping your maxActive, maxIdle, and removeAbandoned values. Depending
on your database configuration you may have to go pretty low, such as setting maxActive to 6,
maxIdle to 3 and removeAbandonedTimeout to 60.

User scott@localhost has more than 'max_user_connections' active connections

STEP 6: Check your internationalization settings

Roller's approach to internationalization (I18N) is to do everything in UTF-8. So, if you want I18N to
work properly, you'll need to configure your application server and your web server to use UTF-8
encoding.

Check your application server's URI encoding setting!

Make sure that your web application server uses UTF-8 to encode URI's. This allows you to use
diacritical characters like 'ç' in your URLs. This is important for Roller because weblog entry titles are
used in URLs.

For example, in Tomcat the URI encoding is specified in the connectors that are configured in the
Tomcat configuration file conf/server.xml. Here's a connector with the URI encoding attribute set
properly:

 <Connector port="8080"
 maxThreads="150"
 minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false"
 redirectPort="8443"
 acceptCount="100"
 debug="0"
 connectionTimeout="20000"
 disableUploadTimeout="true"
 URIEncoding="UTF-8" />

And make sure you do this for every connector through which you use Roller. For example, if you use the
AJP connector or HTTPS connector you need to add the URIEncoding="UTF-8" attribute to those
connectors as well.

STEP 7: Setup Roller data directories

Roller stores file uploads, search index files, cache files and log files on disk. So before you start, check
to make sure the directories that Roller expects exist and are writable by the Tomcat process.

STEP 7.1: Create uploads directory

By default, Roller saves uploaded files under the directory:

${user.home}/roller_data/uploads

Here ${user.home} is the Java system property that normally evaluates to the home directory of the
user identity executing the server's JVM process.

In most cases, this default will probably work fine for you. However, for security reasons some
application servers are set up to run as a server user identity whose home directory does not exist or is not
writable by the server user itself. If this is the case for your server, override the property uploads.dir
in the roller.properties file. See step 8 for more information on the roller.properties
file.

STEP 7.2: Create search-index directory

By default, Roller creates and maintains its text search index data in files under the directory

${user.home}/roller_data/roller-index

Again, ${user.home} is the Java system property that normally evaluates to the home directory of
the user identity executing the server's JVM process. You can specify a different directory by overriding
the property search.index.dir in roller.properties. See step 8 for more information on
the roller.properties file.

STEP 7.3: Create planet-cache directory (optional)

You only need to do this if you are planning on using Roller's integrated planet aggregator: create a
directory for the planet cache (e.g. /var/roller/planet-cache).

The planet aggregator is off by default. To enable it, you'll have to override the
planet.aggregator.enabled property (see the ConfigurationGuide). Once you've got Roller up
and running, login (as an adminstrator), go to the Planet:Configuration page and set full-path to the
directory you choose for the planet-cache.

Currently, you must specify the location of the planet-cache directory through the Roller web UI (but we
planning to move it to roller.properties because it is really a startup property).

http://www.rollerweblogger.org/wiki/Wiki.jsp?page=ConfigurationGuide

STEP 7.4: Make sure that the logs subdirectory exists

The roller.log file is written to the location:

${catalina.base}/logs/roller.log

Make sure that that this directory exists. Tomcat 5.0.X users will normally have this directory by default.
Tomcat 5.5.x users may need to create this subdirectory under their base directory.

STEP 8: Review Roller configuration

Before you start Roller for the first time, review your configuration.

STEP 8.1: Review the WEB-INF/classes/roller.properties file

Roller tries to pick a good set of configuration defaults which should let anyone start up the application
without much work, but here are a few properties which are custom to each install and should be set
before you start up Roller. We'll first talk about what ways there are for defining your custom Roller
configuration, then show which properties we think you should set. NOTE: the default
roller.properties file is shown in Appendix B.

Where to define custom properties

There are three ways you can alter the default configuration for Roller.

1) Define a roller-custom.properties file and place it somewhere at the root of one of your
classpath locations. This is the recommended way to override Roller configuration properties. For
example:

$TOMCAT_HOME/common/classes/roller-custom.properties
Or...

$TOMCAT_HOME/webapps/$ROLLER_WEBAPP/WEB-INF/classes/roller-custom.properties

2) Specify a custom properties file via JVM option. This is another good option but is more dependant on
what servlet container you use. For example:

this is how you might do it for tomcat
JAVA_OPTS="-Droller.custom.config=/path/to/properties/file"
export $JAVA_OPTS
$TOMCAT_HOME/bin/startup.sh

3) If you like, you can open up the default roller config file and change the values there. This option
should not be necessary and is NOT recommended. For example:

$TOMCAT_HOME/webapps/$ROLLER_WEBAPP/WEB-INF/classes/roller.properties

What properties you should set

We are going to assume you have defined a roller-custom.properties file and placed it in
your classpath somewhere. To override any of the default Roller properties you simply add a line with the
proper key and the new value you wish to use.

Here is a sample roller-custom.properties with the few properties that should be overridden

uploads.dir=/app/roller/roller_data/uploads
search.index.dir=/app/roller/roller_data/search-index
etc, etc, etc ... any other properties you want to override

STEP 8.2: Change keys in the WEB-INF/security.xml file

Starting with version 2.1, Roller uses the Acegi security infrastructure. Several of the security features
rely on keys that are intended to be site-specific. These keys are used to compute HMAC (hash-based
message authentication code) values for Remember Me cookies. Knowledge of these keys could allow an
attacker to forge invalid cookies, and thereby gain unauthorized access to your Roller installation (at the
application level).

Roller ships with default values, and these should assumed to be widely known. You should change your
keys to be secret values specific to your own site.

Here is how to change the keys.

1. Find your WEB-INF/security.xml file and open it in a text editor.
2. For the beans with ids "anonymousAuthenticationProvider" and "anonymousProcessingFilter"

change the value field of the property with name="key" to be different from the default value
of "anonymous". You can use any string value of your choosing. It should be a secret specific to
your site. Use the same key value in these two beans; they must match.

3. For the beans with ids "rememberMeServices" and "rememberMeAuthenticationProvider" change
the value field of the property with name="key" to be different from the default value of
"rollerlovesacegi". You can use any string value of your choosing. It should be a secret specific to
your site. Use the same key value in these two beans; they must match

NOTES
• The reason one should change the anonymous provider key is that a granted authorities list is

embedded within the anonymous authentication token.

STEP 9: Start Tomcat and start using Roller

Start your Servlet Container, open your web browser, browse to the Roller start page and start using
Roller. If you are installing Roller on Tomcat then your Roller start page URL is probably
http://localhost:8080/roller.

UNIX example

% cd $CATALINA_HOME/bin
% ./startup.sh

Windows example

C> cd %CATALINA_HOME%\bin
C> startup

NOTE: the first user you create will have administrator privileges, so make sure you create the first user
yourself. An admin user can grant and revoke admin rights from other users.

NOTE: if you'd like to use Roller's JSPWiki plugin, which allows you to enter blog entries using
JSPWiki syntax, then you'll have to download and install separately the JSPWiki jars. See Appendix C
for more information.

You're done!

Roller should be working perfectly now. If not, then please consult the Installation FAQ page on the
Roller wiki and then check with the experts on the Roller mailing lists. Somebody has probably
encountered the very same problems that you are encountering.

Appendix A: Upgrading an existing Roller installation

This document describes how to upgrade an existing installation to the latest release of Roller by
upgrading the Roller database and replacing the old Roller files (which are typically found in
tomcat/webapps/roller) with the new release.

The steps are:

• STEP 1: Shutdown and backup your old Roller
• STEP 2: Install the new Roller
• STEP 3: Copy old configuration
• STEP 4: Upgrade the database
• STEP 5: Startup Tomcat

STEP 1: Shutdown and backup your old Roller

Before you get started with your upgrade, you should shutdown your existing Roller install, make a
backup of your data, and move the old Roller files out of the way. Here is an example of how you'd do
this with a Tomcat/MySQL setup:

Run shutdown.sh to stop Tomcat, for example:

 % cd $CATALINA_HOME/bin
 % ./shutdown.sh

Backup your database to somewhere safe on your system or to a remote file-system, for example if you
use MySQL you might do something like this:

 % mysqldump -u scott -p rollerdb > \
 /somewhere/safe/roller-backup-20050420.dmp

Here's an example for PostgreSQL users:

 pg_dump -h 127.0.0.1 -W -U scott rollerdb > roller.db

Move your Roller files to somewhere safe, for example:

 % cd $CATALINA_HOME/webapps
 % mkdir /somewhere/safe/roller-old
 % mv roller /somewhere/safe/roller-old

STEP 2: Install the new Roller

Follow the normal installation instructions to install Roller, except:

• Don't create a new database for Roller, instead point the new Roller to your old Roller database
• DO NOT start Tomcat when you are done with the installation, we'll do that later

STEP 3: Copy resources and update configs

3.1 Copy your old resources and other files you've added

User uploaded files are, by default, stored in the /resources sub-directory of the Roller context
directory. You should copy your old resources directory into your new Roller installation.

For example, on UNIX you can use cp -r to copy the whole directory:

 % cd %CATALINA_HOME/webapps/roller
 % cp -r /somewhere/safe/roller-old/roller/resources .

NOTE: If you have any new themes under roller/themes, make sure to copy those as well.

3.2 Remove JavaMail jars if duplicated

In an upgrade installation, you may already have the JavaMail jars mail.jar and activation.jar
in your Tomcat common/lib. If so, you should remove them from the WEB-INF/lib directory
within the web app. (Keep them only in the common/lib directory.)

3.3 Review configuration properties

Review properties as described in STEP #8 of the installation guide.

• WARNING: In Roller 2.3 we changed the Roller package names from org.roller to
org.apache.roller. Because of this you MUST review your roller-custom.properties
file, search for the string “org.roller”and replace all occurances of it with
“org.apache.roller”.

• WARNING: The files required for Roller's JSPWiki plugin, Ekit editor and
Javascript enhanced editor have been removed from the Roller distribution. If
you'd like to continue to use these plugins, please visit the Roller Support project
on Java.Net (http://roller.dev.java.net).

STEP 4: Upgrade the database

Use the appropriate database upgrade script to upgrade your database. To do this, login to your database
and run one (or more) of the Roller upgrade scripts located in Roller's WEB-INF/dbscripts
directory that corresponds to your database. There's a directory for MySQL, PostgreSQL, HSQLDB and
more.

The database script directories

• WEB-INF/dbscripts/mysql
• WEB-INF/dbscripts/postgresql
• WEB-INF/dbscripts/hsql
• and more...

There is an upgrade script for each release of Roller. If you're upgrading from Roller 2.1, which was the
last release before 2.3 you'll only need to run one script, that's 210-to-230-migration.sql. For
example, here's how you'd do it for a MySQL database running on UNIX:

 % cd $CATALINA_HOME/webapps/roller/WEB-INF/dbscripts/mysql
 % mysql -u root -p
 password: *****
 mysql> use roller;
 mysql> source 210-to-230-migration.sql
 mysql> quit

If you're upgrading from an earlier release you'll have to run each of the older scripts in order to upgrade
your database.

STEP 5: Startup your app server

Use the standard Tomcat startup.sh (or startup.bat on Windows) script to start Tomcat. As
Roller starts up, it will perform some final steps to upgrade your database, this may take few seconds
longer than your average Roller startup.

And you're done!

If Roller doesn't come up, check the logs for exceptions and error messages. You should see these
messages in the tomcat/logs/catalina.out file and in tomcat/logs/roller.log. If you
still can't diagnose and fix your startup program, then subscribe to the Roller user mailing list for help. If
there are any interesting messages in the log files, send those along too.

Appendix B: The WEB-INF/roller.properties file

This file defines the default start-up properties for Roller. See step 8 for instructions on how to override
the properties in this file.

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. The ASF licenses this file to You
under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. For additional information regarding
copyright in this work, please see the NOTICE file in the top level
directory of this distribution.

roller.properties
#
This file is for meant for Roller deployment properties
Any properties that don't change at runtime are defined here
#
You can override the values in this file in a couple ways ..
1. define a roller-custom.properties file and place it somewhere
at the root of one of your classpath locations.
for example:
$TOMCAT_HOME/common/classes
$ROLLER_LOCATION/WEB-INF/classes
#
2. specify a custom properties file via jvm option
example:
roller.custom.config=/path/to/properties/file
#
**NOTE: if you run multiple instances of roller on the same server
then you should beware of the fact that the override options above
may affect *all* of you running instances. if you want to do
custom overrides for each instance then you must do it by
placing a roller-custom.properties file at WEB-INF/classes/ in
each of you roller installations.
#
properties in this file are accessed like this ...
RollerConfig.getProperty("propname");

User management settings

True to enable group blogging. False to prevent users from creating more
than one weblog and from joining other weblogs.
groupblogging.enabled=true

#---------------------------------
Property expansion settings

Values of the properties in this list get system property expansion
applied to them when loaded.
config.expandedProperties=uploads.dir,search.index.dir

#----------------------------------
Upload settings

The directory in which Roller will upload files
uploads.dir=${user.home}/roller_data/uploads

The context path under which resoures will be made available
uploads.url=/resources

#----------------------------------
Search index settings

Enables indexing of weblog entries and comments and enables search servlet
search.enabled=true
Directory in which search index is to be created (delete this directory to
force Roller to recreate the entire search index)
search.index.dir=${user.home}/roller_data/search-index
Whether or not to include comments in the search index. If this
is false, comments are not included in the index.
search.index.comments=true

#----------------------------------
Cache settings.
Remember ... times are in seconds
Default settings suitable for 100 user system

Cache properties all follow the given format ...
cache.<cache_id>.<prop>=<value>
we then pass all <prop>=<value> pairs into the cache manager when the cache
is being constructed. this makes it easy to add cache properties that can
be used by the specified CacheFactory you are using.
#
NOTE: it is expected that property validation happens in the CacheFactory
#-----------------------------------

The default cache implementation we want to use
cache.defaultFactory=org.apache.roller.presentation.cache.ExpiringLRUCacheFactoryIm
pl
cache.customHandlers=

This sets how many minutes into the future we look to prepare
entries posted into the future which need to be invalidated from the cache.
It is very unlikely that this should ever need to be changed
cache.futureInvalidations.peerTime=3

Main page cache (this is low on purpose)
cache.mainpage.size=10
cache.mainpage.timeout=1800
set "true" to NOT cache the custom pages for users who are logged in
cache.mainpage.excludeOwnerEditPages=false

Weblog page cache (all the weblog content)
cache.weblogpage.size=400
cache.weblogpage.timeout=3600
set "true" to NOT cache the custom pages for users who are logged in

cache.weblogpage.excludeOwnerEditPages=false

Weblog page last-modified-date cache
you want this fairly high, like weblogs * 10, with long timeouts
cache.ifmodified.weblogpage.size=1000
cache.ifmodified.weblogpage.timeout=14400

Feed cache (xml feeds like rss, atom, etc)
cache.feed.size=200
cache.feed.timeout=3600

Feed last-modified-date cache
you want a reasonable size, like weblogs * 2, with long timeouts
cache.ifmodified.feed.size=200
cache.ifmodified.feed.timeout=14400

Planet cache (planet page and rss feed)
cache.planet.size=10
cache.planet.timeout=1800
set "true" to NOT cache the custom pages for users who are logged in
cache.planet.excludeOwnerEditPages=false

#----------------------------------
Secure login configs

Enables HTTPS for login page only
securelogin.enabled=false

Enable scheme enforcement?
Scheme enforcement ensures that specific URLs are viewed only via HTTPS
schemeenforcement.enabled=false
URL patterns that require HTTPS
schemeenforcement.https.urls=/j_security_check,/login-redirect.jsp,/login.jsp,\
/user.do,/editor/yourProfile.do,/admin/user.do,/editor/userdata

Password security settings
passwds.encryption.enabled=false
passwds.encryption.algorithm=SHA

#----------------------------------
Enabled plugins ... remember, order does matter!!

Weblog entry editor plugins
plugins.page=\
org.apache.roller.presentation.velocity.plugins.convertbreaks.ConvertLineBreaksPlug
in \
,org.apache.roller.presentation.velocity.plugins.topictag.TopicTagPlugin \
,org.apache.roller.presentation.velocity.plugins.search.WikipediaLinkPlugin \
,org.apache.roller.presentation.velocity.plugins.search.GoogleLinkPlugin \
,org.apache.roller.presentation.velocity.plugins.textile.TextilePlugin \
,org.apache.roller.presentation.velocity.plugins.acronyms.AcronymsPlugin \
,org.apache.roller.presentation.velocity.plugins.bookmarks.BookmarkPlugin \
,org.apache.roller.presentation.velocity.plugins.email.ObfuscateEmailPlugin \
,org.apache.roller.presentation.velocity.plugins.smileys.SmileysPlugin \
,org.apache.roller.presentation.velocity.plugins.readmore.ReadMorePlugin

#----------------------------------
scheduled tasks, each is comma separated list of classes

Comma separated list of task classnames to be executed once per day
tasks.daily=org.apache.roller.presentation.TurnoverReferersTask\

Needed to enable nightly fetching of blacklist
#,org.apache.roller.presentation.BlacklistUpdateTask\

Daily Planet task: syncs weblog list with Roller, refreshes Technorati stats
#,org.apache.roller.presentation.planet.SyncWebsitesTask

Comma separated list of task classnames to be executed hourly
tasks.hourly=\

Hourly Planet task: refresh latest entry list from all weblogs in list
#org.apache.roller.presentation.planet.RefreshEntriesTask

#----------------------------------
Velocity settings

velocity.properties=/WEB-INF/velocity.properties
velocity.toolbox.file=/WEB-INF/toolbox.xml

Page model implementation
velocity.pagemodel.classname=org.apache.roller.presentation.velocity.PageModel
Experimental page model that allows user's access to Planet aggregations
#velocity.pagemodel.classname=org.apache.roller.presentation.velocity.planet.Planet
PageModel

#----------------------------------
Persistence settings

persistence.roller.classname=org.apache.roller.business.hibernate.HibernateRollerIm
pl
persistence.filemanager.classname=org.apache.roller.business.FileManagerImpl

authenticator settings (experimental)
authenticator.classname=org.apache.roller.presentation.DefaultAuthenticator

#----------------------------------
comment, referrer and trackback settings

comment.authenticator.classname=org.apache.roller.presentation.velocity.MathComment
Authenticator
comment.notification.separateOwnerMessage=false
comment.notification.hideCommenterAddresses=false

enables site full blacklist check on comment posts (default: true)
site.blacklist.enable.comments=true

enables site full blacklist check at time of trackback post (default: true)
site.blacklist.enable.trackbacks=true

enables partial blacklist check (not including blacklist.txt) for each incoming
referrer
site.blacklist.enable.referrers=true

Trackback protection. Set this only if you need to limit the URLs to
which users may send trackbacks. Regex expressions are allowed, for example:
trackback.allowedURLs=http://w3.ibm.com/.*||http://another.example.com/.*
trackback.allowedURLs=

#Robot check in referral processing. If this pattern is set and the User-Agent in
the
#request matches this pattern, all referral processing is skipped; this means that
#the referral spam check is skipped, the request is allowed to proceed, but the
#referrer is not recorded and hit count is not incremented. Recommended for large
sites
#that get a lot of legitimate crawler bot traffic. The pattern here is a
suggestion that
#has been reported to work well.
#referrer.robotCheck.userAgentPattern=.*(slurp|bot|java).*

Enable built-in referrer processing?
referrers.processing.enabled=true

Change to true if you want to process referrers asynchronously.
You can choose how many threads to use and sleep time (in seconds)
referrers.asyncProcessing.enabled=false
referrers.queue.numWorkers=3
referrers.queue.sleepTime=10

#----------------------------------
ping settings

The number of attempts to try to reach a ping target before refusing to
requeue it for further retrials. If absent, this defaults to 3.
pings.maxPingAttempts=3

The interval between ping queue processing runs in minutes. Must be between
0 and 120. If set to 0, ping queue processing is disabled on this server;
this is for clustered environments. Make sure it is nonzero on one host in
a cluster. Don't use the value 0 here to disable ping functionality, you
will instead get an infinitely growing ping queue. See the documentation on
the properties below to disable ping functionality if you need to.
If absent, this defaults to 5.
pings.queueProcessingIntervalMins=5

The set of initial common ping targets. This is used to initialize the
database if there are no common ping targets at startup. Ping targets are
specified as a comma-separated list, each target in the form {{name}{url}}.
To disable initialization of common ping targets, comment this out, or set it
to the empty value. Common targets can be edited in the UI; this is just
used to set up some typical ones.
pings.initialCommonTargets=\
{{Technorati}{http://rpc.technorati.com/rpc/ping}}\
,{{Weblogs.com}{http://rpc.weblogs.com/RPC2}}\
,{{blo.gs}{http://ping.blo.gs/}}\
,{{java.blogs}{http://javablogs.com/xmlrpc}}\
,{{blogrolling.com}{http://rpc.blogrolling.com/pinger/}}

This controls whether users are allowed to add custom ping targets.
Set this to false to disallow adding custom targets; if false, the
Weblog:Custom Ping Targets menu item will not appear and associated actions
will result in access denied messages. Leave this false or commented for
normal behavior.
CAUTION: Setting this to true will cause the server to remove all users'
existing custom targets on startup.
pings.disallowCustomTargets=false

This controls whether the Weblog:Pings menu item and its associated actions
are enabled. Set this to false to disallow users from configuring autopings
and doing manual pings. If absent, this defaults to true.
NOTE: There is a separate runtime property (configurable from the
Admin:Configuration page, that can be used to suspend ping processing without
disabling the UI.
CAUTION: Setting this to true will cause the server to remove all users'
existing autoping configurations on startup. Leave this false or commented
for normal behavior.
pings.disablePingUsage=false

Setting both pings.disallowCustomTarget=true and pings.disablePingUsage=true
will effectively disable the ping functionality.

This is used for debugging the ping mechanism in Roller. If this is set
to true, pings that would normally be sent will cause log messages to be sent
but will NOT actually result in real pings being sent. Leave this false or
commented for normal behavior.
pings.logOnly=false

#----------------------------------
Planet Aggregator settings

Set to true to enable the Planet aggregator. This will cause:
- The main page of Roller will become an aggregated view of all blogs in the
Roller database, plus those defined in the Planet group 'external'.
- A new menu tab will appear for Roller admin users. This allows admins to
add/remove newsfeed subscriptions in the 'external' group.
- Users can then subscribe to several newsfeeds:
- http://localhost:8080/roller/rss
- http://localhost:8080/roller/planetrss
- http://localhost:8080/roller/planetrss?group=external
planet.aggregator.enabled=false

Planet cache must exist and must be writable by Roller process
planet.aggregator.cache.dir=/var/roller/planetcache

Number of queries allowed per day
planet.aggregator.technorati.limit=500

#----------------------------------
defaults for new weblogs

list of links to include in root bookmark folder of each new blog
format is like so: linktitle2|linkurl2,linktitle2|linkurl2,linktitle3|linkurl3
newuser.blogroll=\
Dave Johnson|http://rollerweblogger.org/page/roller,\
Matt Raible|http://raibledesigns.com/page/rd,\
Lance Lavandowska|http://brainopolis.dnsalias.com/roller/page/lance,\
Henri Yandell|http://blog.generationjava.com/roller/page/bayard,\
blogs.sun.com|http://blogs.sun.com,\
jroller.com|http://jroller.com

comma-separated list of top-level categories to be created in each new weblog
newuser.categories=\
General,Status,Java,Music,Politics

Default weblog editor
The list of available editors is in rollerRuntimeConfigDefs.xml

newweblog.editor=editor-text.jsp

#----------------------------------
misc settings

rememberme.enabled=true
breadcrumbs.stacksize=3
debug.memory.enabled=false

editor theme to be used (corresponds to directory name under /theme)
editor.theme=tan

#---------------------------------
settings for various plugins

Optional site-wide customization settings for the TopicTag plugin.
n.b. these default settings match the coded default values that would be
applied if these were omitted.
org.apache.roller.presentation.velocity.plugins.topictag.TopicTagPlugin.defaultTopi
cBookmarkName=Default Topic Site
org.apache.roller.presentation.velocity.plugins.topictag.TopicTagPlugin.defaultTopi
cSite=http://www.technorati.com/tag
org.apache.roller.presentation.velocity.plugins.topictag.TopicTagPlugin.tagRegexWit
hBookmark=topic:\\{(.*?)\\}\\[(.*?)\\]
org.apache.roller.presentation.velocity.plugins.topictag.TopicTagPlugin.tagRegexWit
houtBookmark=topic:\\[(.*?)\\]
org.apache.roller.presentation.velocity.plugins.topictag.TopicTagPlugin.linkFormatS
tring={2}

Set to true to allow only default topic tag site (and avoid costly bookmark
queries)
org.apache.roller.presentation.velocity.plugins.topictag.TopicTagPlugin.ignoreBookm
arks=true

#---------------------------------
Experimental settings

Atom Publishing Protocol (APP) - this is an incomplete and untested
implementation of an unfinished IETF specification. Intended only for
interoperability testing. DO NOT ENABLE IN PRODUCTION!
webservices.atomprotocol.enabled=false

#----------------------------------
legacy settings (thing that should be deprecated

settings for old #showNewseeds macro (not related to Planet stuff)
aggregator.enabled=false
aggregator.cache.enabled=
aggregator.cache.timeout=14400

	Introduction
	STEP 1: Before you install Roller
	STEP 2: Unpack the Roller distribution
	STEP 3: Install required third party jars
	STEP 3.1: Download and install Hibernate
	STEP 3.2: Install JDBC driver jar(s)
	STEP 3.3: Install JavaMail and Activation jars

	STEP 4: Create Roller tables in your database
	STEP 5: Deploy Roller to your application server
	STEP 6: Check your internationalization settings
	STEP 7: Setup Roller data directories
	STEP 7.1: Create uploads directory
	STEP 7.2: Create search-index directory
	STEP 7.3: Create planet-cache directory (optional)
	STEP 7.4: Make sure that the logs subdirectory exists

	STEP 8: Review Roller configuration
	STEP 8.1: Review the WEB-INF/classes/roller.properties file
	Where to define custom properties

	STEP 8.2: Change keys in the WEB-INF/security.xml file

	STEP 9: Start Tomcat and start using Roller
	Appendix A: Upgrading an existing Roller installation
	STEP 1: Shutdown and backup your old Roller
	STEP 2: Install the new Roller
	STEP 3: Copy resources and update configs
	3.1 Copy your old resources and other files you've added
	3.2 Remove JavaMail jars if duplicated
	3.3 Review configuration properties

	STEP 4: Upgrade the database
	STEP 5: Startup your app server

	Appendix B: The WEB-INF/roller.properties file

