
Installation Guide

Apache Roller
Version 3.1

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. The ASF
licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License
for the specific language governing permissions and limitations under the License. For additional information
regarding copyright in this work, please see the NOTICE file in the top level directory of this distribution.

Table of Contents

INTRODUCTION..4
STEP 1: BEFORE YOU INSTALL ROLLER..5
STEP 2: UNPACK THE ROLLER DISTRIBUTION..6

UNIX example..6
Windows example..6
Roller distribution layout..6
The ROLLER environment variable..6

STEP 3: INSTALL REQUIRED THIRD PARTY JARS..7
STEP 3.1: Download and install Hibernate...7
STEP 3.2: Install JDBC driver jar(s)...7

UNIX example..7
Windows example..7
NOTES...7

STEP 3.3: Install JavaMail and Activation jars...9
UNIX example..9
Windows example..9
NOTES...9

STEP 4: CREATE ROLLER TABLES IN YOUR DATABASE..10
UNIX example..10
Windows example..10

STEP 5: DEPLOY ROLLER TO YOUR APPLICATION SERVER...12
STEP 6: CHECK YOUR INTERNATIONALIZATION SETTINGS..14

Check your application server's URI encoding setting!..14

STEP 7: SETUP ROLLER DATA DIRECTORIES ...15
STEP 7.1: Create uploads directory..15
STEP 7.2: Create search-index directory..15
STEP 7.3: Create planet-cache directory (optional)..15
STEP 7.4: Make sure that the logs subdirectory exists...15

STEP 8: REVIEW ROLLER CONFIGURATION...16
STEP 8.1: Review the WEB-INF/classes/roller.properties file...16

Where to define custom properties...16
What properties you should set...16

STEP 8.2: Change keys in the WEB-INF/security.xml file..17
STEP 8.3: Verify the database dialet setting in the Hibernate configuration file..17

STEP 9: START TOMCAT AND START USING ROLLER..18
UNIX example..18
Windows example..18
You're done! ..18

APPENDIX A: UPGRADING AN EXISTING ROLLER INSTALLATION.....................................19
Important notes about Roller 3.0...19
UPGRADE STEP 1: Shutdown and backup your old Roller ...20
UPGRADE STEP 2: Install the new Roller ...20
UPGRADE STEP 3: Copy resources and update configs ..20

3.1 Copy your old resources and other files you've added...20
3.2 Remove JavaMail jars if duplicated..20
3.3 Review configuration properties...21

UPGRADE STEP 4: Upgrade the database ...21
UPGRADE STEP 5: Startup your app server ..21

And you're done! ...21

APPENDIX B: THE WEB-INF/ROLLER.PROPERTIES FILE...23

Introduction

This document describes how to install Roller in the following environment:

• Operating System: UNIX or Windows based operating system
• Java development kit: Java 2 SE 1.4 SDK (or later)
• Application server: Tomcat 5.X (or later)
• Relational Database: MySQL 4.X (or later)

NOTE: If you're upgrading from an earlier release of Roller, read Appendix A first

What do you need to know to install Roller? You need to know how to use the UNIX or Windows command-
line, how to set environment variables, how to create a database in MySQL and how to start and stop Tomcat.

What about other servlet containers? These instructions target Tomcat, but you should be able to make Roller
work with just about any standard Servlet 2.3 compatible application server. For full support of Roller's
internationalization features, we recommend Servlet 2.4. If you deploy Roller to a non-Tomcat server, please
contribute your install notes to help others who might want to do the same.

What about other databases? These instructions target MySQL, but Roller also includes database setup scripts
for PostgreSQL 7.X later, Apache Derby, IBM DB2, Oracle and HSQL-DB.

What platform combinations are known to work? For information on which platforms we can vouch for, see
the the Platforms page on the Roller wiki.

STEP 1: Before you install Roller

Before you install Roller software you should install and configure the Java development kit, your application
server and your database.

As part of the Tomcat install you should have set the environment variable CATALINA_HOME to point to your
Tomcat installation directory. If not, you might want to set it now because we will refer to it in this installation
guide. Below are some examples that show how to set this variable. Make sure you substitute the right path to
your Tomcat installation.

For UNIX with bash shell:

% export CATALINA_HOME=/opt/jakarta-tomcat-5.5.9

For UNIX with c-shell:

% setenv CATALINA_HOME /opt/jakarta-tomcat-5.5.9

For Windows with DOS shell

C> set CATALINA_HOME d:\jakarta-tomcat-5.5.9

NOTES

• For MySQL, make sure you enable UTF-8 support. See the page Setting Up UTF-8 on MySQL page on
the Roller wiki for details.

• For MySQL, make sure that TCP/IP networking is enabled. In some versions of MySQL, this option is off
by default. See the page Debian MySQL for details. The Connector/J JDBC driver can only access
MySQL via TCP/IP.

STEP 2: Unpack the Roller distribution

Pick a directory on your computer and unpack the Roller distribution using either GNU tar on UNIX or WinZip
on Windows. Here are some examples to show you how you might unpack Roller on your computer.

UNIX example

Assuming you download the distribution into your home directory and you'd like to install Roller into
/usr/local you might do something like this in the bash shell:

% cd /usr/local
% tar xzvf ~/apache-roller-3.1.tar.gz

That would create the Roller installation directory /usr/local/apache-roller-3.1

Windows example

You can Use WinZip to extract the Roller distribution file into the directory of your choice.

Roller distribution layout

Once you've extracted the files you'll see that the Roller release contains two directories and a couple of text files:

docs Directory containing Roller documentation

webapp/roller Directory containing rhe Roller web application in WAR directory layout

README.txt Explains what Roller is

CHANGES.txt Lists changes made in each release

NOTICE.txt Copyright notices and credits

LICENSE.txt The Apache Software License

The ROLLER environment variable

In this guide, we'll refer to the Roller web application directory using the ROLLER environment variable. In
UNIX this will be $ROLLER. In Windows, it will be %ROLLER%. You don't have to set the ROLLER
environment variable, we just use it to simplify the installation guide, but here's how you'd do it.

UNIX example (assuming you installed into /usr/local):

% set $ROLLER = /usr/local/apache-roller-3.1/webapp/roller

Windows example (assuming you installed into c:\)

% set %ROLLER% = c:\apache-roller-3.1/webapp/roller

STEP 3: Install required third party jars

You also need to download and install some third-party jars, jars that we can't include in Roller due to licensing
restrictions. These are the JDBC driver, JavaMail and Activation jars.

STEP 3.1: Download and install Hibernate

Roller requires Hibernate Version 3.1.2, which you must download separately from Roller. \

Download Hibernate 3.1.2 from SourceForge

http://prdownloads.sourceforge.net/hibernate/hibernate-3.1.2.tar.gz

Copy the following files from Hibernate into the Roller WEB-INF/lib directory:

• hibernate3.jar
• asm-attrs.jar
• asm.jar
• cglib-2.1.3.jar
• dom4j.1.6.1.jar
• ehcache-1.1.jar
• jdbc2_0-stdext.jar
• jta.jar

The Roller Support project at Java.Net offers some bundles that might make this part of the installation easier.
Visit http://roller.dev.java.net for more information.

STEP 3.2: Install JDBC driver jar(s)

Download the JDBC driver jar for your database and put it in the classpath of your application server. For
example, assuming Tomcat and MySQL, you'd download the J/Connector JDBC driver from mysql.com and
you'd place it in the Tomcat common/lib directory.

UNIX example

% cp mysql-connector.jar $CATALINA_HOME/common/lib

Windows example

C> copy mysql-connector.jar %CATALINA_HOME%\common\lib

NOTES

• For MySQL 4.1.X users, we recommend that you use the J/Connector 3.0.X JDBC drivers instead of the
newer 3.1.X series. If you must use J/Connector/J 3.1.X then please read Installation FAQ page item #13
on the Roller wiki.

• For MySQL 5.X users, we recommend that you use the J/Connector 3.1.X JDBC drivers instead of the
newer 3.1.X series, you'll also need to change the Hibernate configuration file to use the MySQL5 dialect
(see Section 8.3 for details on that).

• For Oracle users, we recommend that you use the 10g (10.1.0.2 or higher) drivers which should
be packaged as ojdbc14.jar -- even if operating on Oracle 9 server.

http://prdownloads.sourceforge.net/hibernate/hibernate-3.1.2.tar.gz
http://10.1.0.2/
http://roller.dev.java.net/

STEP 3.3: Install JavaMail and Activation jars

If you like to use Roller's e-mail notification features, you'll need to add the JavaMail and Activation jars to your
application server's classpath. You can find them here: http://java.sun.com/products/javamail/. Add them to
Tomcat common/lib directory, or your server's equivalent location.

UNIX example

% cp mail.jar $CATALINA_HOME/common/lib

% cp activation.jar $CATALINA_HOME/common/lib

Windows example

c> copy mail.jar %CATALINA_HOME%\common\lib

C> copy activation.jar %CATALINA_HOME%\common\lib

NOTES

• To enable the Roller's e-mail notification features, you'll also need to setup a mail session resource in your
application server configuration file (see the next section) and you'll need to configure e-mail notification
in the Roller UI.

• The Roller Support project at Java.Net offers some bundles that might make this part of the installation
easier. It includes both mail.jar and activation.jar. Visit http://roller.dev.java.net for more information.

http://roller.dev.java.net/
http://java.sun.com/products/javamail/

STEP 4: Create Roller tables in your database

Create a new database within your MySQL installation, create a user with all privileges within that database and
run the Roller database creation script to create tables within that new database. Roller includes database creation
scripts for a variety of database, but MySQL is the most widely used and best supported option. You can find the
database creation scripts in the Roller webapp directory $ROLLER/WEB-INF/dbscripts/<dbname>.
Here's the list of scripts currently in Roller:

• WEB-INF/dbscripts/mysql/creatdb.sql

• WEB-INF/dbscripts/postgresql/creatdb.sql

• WEB-INF/dbscripts/hsqldb/creatdb.sql

• WEB-INF/dbscripts/derby/creatdb.sql

• WEB-INF/dbscripts/db2/creatdb.sql

• WEB-INF/dbscripts/oracle/creatdb.sql

Here are some examples to show you how you might create the Roller tables in MySQL:

UNIX example

% cd $ROLLER/WEB-INF/dbscripts/mysql
% mysql -u root -p
password: *****
mysql> create database roller;
mysql> grant all on roller.* to scott@'%' identified by 'tiger';
mysql> grant all on roller.* to scott@localhost identified by 'tiger';
mysql> use roller;
mysql> source createdb.sql
mysql> quit

Windows example

C> cd %ROLLER%\WEB-INF\dbscripts\mysql
C> mysql -u root -p
password: *****
mysql> create database roller;
mysql> grant all on roller.* to scott@'%' identified by 'tiger';
mysql> grant all on roller.* to scott@'localhost' identified by 'tiger';
mysql> use roller;
mysql> source createdb.sql
mysql> quit

NOTES

• For MySQL, don't forget to call flush privileges to commit your changes to MySQL.

• To check whether your MySQL is setup properly, use the command line mysql program to connect using
the user name and password you created. For example (we use 127.0.0.1 here instead of localhost to
ensure that TCP/IP networking is enabled):

mysql roller -h 127.0.0.1 -u scott -ptiger

STEP 5: Deploy Roller to your application server

To deploy Roller you will need to inform your application server:

• Where to find the Roller installation directory
• How to configure the Roller database data-source under the JNDI name jdbc/rollerdb
• How to configure the Roller email session under the JNDI name mail/Session

For Tomcat you can do this by creating what's known as a context configuration file named roller.xml and
placing that file in the Tomcat conf/Catalina/localhost directory.

Example context configuration file for Tomcat 5.0.X users

The portions shown in bold are the ones that you'll probably have to change. Make sure you set the docBase to
point to your Roller installation directory. Make sure you set the JDBC connection string to point to your database
and the database username and password too.

<Context path="/roller"
 docBase="/usr/local/apache-roller-3.1/webapp/roller" debug="0">
 <Resource name="jdbc/rollerdb" auth="Container" type="javax.sql.DataSource" />
 <ResourceParams name="jdbc/rollerdb">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.jdbc.Driver</value>
 </parameter>
 <parameter>
 <name>url</name>
 <value>
 jdbc:mysql://localhost:3306/roller?autoReconnect=true&useUnicode=true&
amp;characterEncoding=utf-8&mysqlEncoding=utf8
 </value>
 </parameter>
 <parameter><name>username</name><value>scott</value></parameter>
 <parameter><name>password</name><value>tiger</value></parameter>
 <parameter><name>maxActive</name><value>20</value></parameter>
 <parameter><name>maxIdle</name><value>3</value></parameter>
 <parameter><name>removeAbandoned</name><value>true</value></parameter>
 <parameter><name>maxWait</name><value>3000</value></parameter>
 </ResourceParams>
 <!-- If you want e-mail features, un-comment the section below -->
 <!--
 <Resource name="mail/Session" auth="Container" type="javax.mail.Session"/>
 <ResourceParams name="mail/Session">
 <parameter>
 <name>mail.smtp.host</name>
 <value>mailhost.example.com</value>
 </parameter>
 </ResourceParams>
 -->
</Context>

Example context configuration file for Tomcat 5.5.X users

The portions shown in bold are the ones that you'll probably have to change. Make sure you set the docBase to
point to your Roller installation directory. Make sure you set the JDBC connection string to point to your database
and the database username and password too.

<Context path="/roller"
 docBase="/usr/local/apache-roller-3.2/webapp/roller" debug="0">
 <Resource name="jdbc/rollerdb" auth="Container"
 type="javax.sql.DataSource"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/roller?autoReconnect=true&useUnicod
e=true&characterEncoding=utf-8&mysqlEncoding=utf8"
 username="scott"
 password="tiger"
 maxActive="20"
 maxIdle="3"
 removeAbandoned="true"
 maxWait="3000" />
 <!-- If you want e-mail features, un-comment the section below -->
 <!--
 <Resource name="mail/Session" auth="Container"
 type="javax.mail.Session"
 mail.smtp.host="mailhost.example.com" />
 -->
</Context>

NOTES

• Email configuration. If you want to use email notification of comments, group blogging invitations and
other events, you'll have to enable that in your application server. For Tomcat, you can do that by
uncommenting the indicated sections of the context configuration file above. No matter what application
server you use, you'll also have to uncomment the mail/Session resource reference <resource-
ref> near the end of the roller/WEB-INF/web.xml file.

• The max_user_connections error. If Roller starts up fine but later fails and you find an error like the one
below in your roller.log file then try dropping your maxActive, maxIdle, and removeAbandoned
values. Depending on your database configuration you may have to go pretty low, such as setting
maxActive to 6, maxIdle to 3 and removeAbandonedTimeout to 60.

User scott@localhost has more than 'max_user_connections' active connections

STEP 6: Check your internationalization settings

Roller's approach to internationalization (I18N) is to do everything in UTF-8. So, if you want I18N to work
properly, you'll need to configure your application server and your web server to use UTF-8 encoding.

Check your application server's URI encoding setting!

Make sure that your web application server uses UTF-8 to encode URI's. This allows you to use diacritical
characters like 'ç' in your URLs. This is important for Roller because weblog entry titles are used in URLs.

For example, in Tomcat the URI encoding is specified in the connectors that are configured in the Tomcat
configuration file conf/server.xml. Here's a connector with the URI encoding attribute set properly:

 <Connector port="8080"
 maxThreads="150"
 minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false"
 redirectPort="8443"
 acceptCount="100"
 debug="0"
 connectionTimeout="20000"
 disableUploadTimeout="true"
 URIEncoding="UTF-8" />

And make sure you do this for every connector through which you use Roller. For example, if you use the AJP
connector or HTTPS connector you need to add the URIEncoding="UTF-8" attribute to those connectors as
well.

STEP 7: Setup Roller data directories

Roller stores file uploads, search index files, cache files and log files on disk. So before you start, check to make
sure the directories that Roller expects exist and are writable by the Tomcat process.

STEP 7.1: Create uploads directory

By default, Roller saves uploaded files under the directory:

${user.home}/roller_data/uploads

Where ${user.home}is the Java system property that normally evaluates to the home directory of the user
identity executing the server's JVM process.

In most cases, this default will probably work fine for you. However, for security reasons some application servers
are set up to run as a server user identity whose home directory does not exist or is not writable by the server user
itself. If this is the case for your server, override the property uploads.dir in the roller.properties
file. See step 8 for more information on the roller.properties file.

STEP 7.2: Create search-index directory

By default, Roller creates and maintains its text search index data in files under the directory

${user.home}/roller_data/search-index

Again, ${user.home} is the Java system property that normally evaluates to the home directory of the user
identity executing the server's JVM process. You can specify a different directory by overriding the property
search.index.dir in roller.properties. See step 8 for more information on the Roller
configuration override file.

STEP 7.3: Create planet-cache directory (optional)

You only need to do this if you are planning on using Roller's integrated planet aggregator: create a directory for
the planet cache (e.g. /var/roller/planet-cache). See the Roller User Guide for more information on
configuring Roller's built-in aggregator.

STEP 7.4: Make sure that the logs subdirectory exists

The roller.log file is written to the location:

${catalina.base}/logs/roller.log

Make sure that that this directory exists. Tomcat 5.0.X users will normally have this directory by default. Tomcat
5.5.x users may need to create this subdirectory under their base directory.

STEP 8: Review Roller configuration

Before you start Roller for the first time, review your configuration.

STEP 8.1: Review the WEB-INF/classes/roller.properties file

Roller tries to pick a good set of configuration defaults which should let anyone start up the application without
much work, but here are a few properties which are custom to each install and should be set before you start up
Roller. We'll first talk about what ways there are for defining your custom Roller configuration, then show which
properties we think you should set. NOTE: the default roller.properties file is shown in Appendix B.

Don't edit roller.properties directly! Create an override file instead

There are two ways you can alter the default configuration for Roller.

1) Define a roller-custom.properties file and place it somewhere at the root of one of your classpath
locations. This is the recommended way to override Roller configuration properties. For example:

$TOMCAT_HOME/common/classes/roller-custom.properties

2) Specify a custom properties file via JVM option. This is another good option but is more dependant on what
servlet container you use. For example:

this is how you might do it for tomcat
JAVA_OPTS="-Droller.custom.config=/path/to/properties/file"
export $JAVA_OPTS
$TOMCAT_HOME/bin/startup.sh

What properties you should set

We are going to assume you have defined a roller-custom.properties file and placed it in your
classpath somewhere. To override any of the default Roller properties you simply add a line with the proper key
and the new value you wish to use.

Here is a sample roller-custom.properties with the few properties that should be overridden

 uploads.dir=/app/roller/roller_data/uploads
search.index.dir=/app/roller/roller_data/search-index

 passwds.encryption.enabled=true

etc, etc, etc ... any other properties you want to override

NOTE: Setting password encryption to true is a very good idea for new Roller sites, but if you are upgrading
an existing Roller site you'll need to come up with a strategy for converting your old unencrypted passwords
before you turn encryption on.

STEP 8.2: Change keys in the WEB-INF/security.xml file

Starting with version 2.1, Roller uses the Acegi security infrastructure. Several of the security features rely on
keys that are intended to be site-specific. These keys are used to compute HMAC (hash-based message
authentication code) values for Remember Me cookies. Knowledge of these keys could allow an attacker to forge
invalid cookies, and thereby gain unauthorized access to your Roller installation (at the application level).

Roller ships with default values, and these should assumed to be widely known. You should change your keys to
be secret values specific to your own site.

Here is how to change the keys.

1. Find your WEB-INF/security.xml file and open it in a text editor.
2. For the beans with ids "anonymousAuthenticationProvider" and "anonymousProcessingFilter" change the
value field of the property with name="key" to be different from the default value of "anonymous".
You can use any string value of your choosing. It should be a secret specific to your site. Use the same key
value in these two beans; they must match.

3. For the beans with ids "rememberMeServices" and "rememberMeAuthenticationProvider" change the
value field of the property with name="key" to be different from the default value of
"rollerlovesacegi". You can use any string value of your choosing. It should be a secret specific to your
site. Use the same key value in these two beans; they must match

NOTES
• The reason one should change the anonymous provider key is that a granted authorities list is embedded

within the anonymous authentication token.

STEP 8.3: Verify the database dialect setting in the Hibernate configuration file

If you're using MySQL 4.X for Roller, then you can skip this step.

If you're using some other database with Roller, then you must override the Hibernate dialect. In your roller-
custom.properties override file, override the hibernate.dialect property. For example, to set the dialect for
MySQL 5, you would add this to your override file:

 hibernate.dialect=org.hibernate.dialect.MySQL5Dialect

Here are all of the available dialect settings:

 org.hibernate.dialect.HQLDBDialect
 org.hibernate.dialect.PostgreSQLDialect
 org.hibernate.dialect.DB2Dialect
 org.hibernate.dialect.DerbyDialect
 org.hibernate.dialect.Oracle9Dialect
 org.hibernate.dialect.SQLServerDialect

STEP 9: Start Tomcat and start using Roller

Start your Servlet Container, open your web browser, browse to the Roller start page and start using Roller.

UNIX example

% cd $CATALINA_HOME/bin
% ./startup.sh

Windows example

C> cd %CATALINA_HOME%\bin
C> startup

If you installed Roller on Tomcat then your Roller start page URL is probably:

http://localhost:8080/roller

When Roller starts up, it will display a startup page that gives you instructions on how to complete the installation
by creating a Roller user account, creating a weblog and designating the front-page weblog for the site. Follow
those instructions and . . .

You're done!

Roller should be working perfectly now. If not, then please consult the Installation FAQ page on the Roller wiki
and then check with the experts on the Roller mailing lists. Somebody has probably encountered the very same
problems that you are encountering.

Appendix A: Upgrading an existing Roller installation

This document describes how to upgrade an existing installation to the latest release of Roller by upgrading the
Roller database and replacing the old Roller files (which are typically found in tomcat/webapps/roller)
with the new release. The steps are:

• STEP 1: Shutdown and backup your old Roller
• STEP 2: Install the new Roller
• STEP 3: Copy old configuration
• STEP 4: Upgrade the database
• STEP 5: Startup Tomcat

Important notes for those upgrading from Roller 2.x to Roller 3.1

WARNING! Roller 3.0 was a major release and made some big changes to the way that Roller works. If you're
upgrading from the 2.x series you need to be aware of the new URL structure and the new template system.

The new URL structure

The most significant change is the new URL structure – we've completely change all of the Roller weblog URLs.
We continue to support old Roller URLs, but they are redirected (using HTTP 301) redirects to the new system.
That ensures that nobody will get a 404 when accessing your weblog using an old URL, but you'll still want to
encourage people to change links that point to your weblog's old URL, which was of the format:

http://<hostname>/roller/page/<weblog-handle>

To use the new format, which is:

http://<hostname>/roller/<weblog-handle>

Unfortunately, some custom templates that use relative URLs will have problem with this new URL structure. So,
before you go live you should set-up a test server and allow your users to take a look at their weblogs.

The new template system

We've developed a completely new and greatly improved template system for Roller, which includes new models
and new macros. We want to encourage people to start using this new system for all new template and theme
development, so we have made it the default. And, by default, we've turned off the old system.

So, if you are upgrading and you want your weblogs to work, you MUST override this Roller property to enable
the old “legacy” template system to work:

rendering.legacyModels.enabled=true

See section 8 for information on overriding Roller startup properties.

Non-core themes removed

The Roller project is establishing a community site for sharing and maintaining of themes and plugins.

From now only, Roller will ship with only a core set of four themes (Basic, BrushedMetal, Sotto and a new
Frontpage themes, which is just for site-wide front-page weblogs) . All other themes have been removed from
Roller and moved to the Roller Support project at Java.net (http://roller.dev.java.net). If you or your users use any
other themes, then you'll need to download and install them according to the instructions on that site.

Non-core plugins removed

The same applies to plugins. The JSPWiki, Textile and Read More plugins have also been moved to the Roller
Support project at Java.net (http://roller.dev.java.net) to become part of a community maintained repository. If you
or your users use any other themes, then you'll need to download and install them according to the instructions on
that site.

http://roller.dev.java.net/
http://roller.dev.java.net/

UPGRADE STEP 1: Shutdown and backup your old Roller

Before you get started with your upgrade, you should shutdown your existing Roller install, make a backup of
your data, and move the old Roller files out of the way. Here is an example of how you'd do this with a
Tomcat/MySQL setup:

Run shutdown.sh to stop Tomcat, for example:

 % cd $CATALINA_HOME/bin
 % ./shutdown.sh

Backup your database to somewhere safe on your system or to a remote file-system, for example if you use
MySQL you might do something like this:

 % mysqldump -u scott -p rollerdb > \
 /somewhere/safe/roller-backup-20050420.dmp

Here's an example for PostgreSQL users:

 pg_dump -h 127.0.0.1 -W -U scott rollerdb > roller.db

Move your Roller files to somewhere safe, for example:

 % cd $CATALINA_HOME/webapps
 % mkdir /somewhere/safe/roller-old
 % mv roller /somewhere/safe/roller-old

UPGRADE STEP 2: Install the new Roller

Follow the normal installation instructions to install Roller, except:

• Don't create a new database for Roller, instead point the new Roller to your old Roller database
• DO NOT start Tomcat when you are done with the installation, we'll do that later

UPGRADE STEP 3: Copy resources and update configs

3.1 Copy your old resources and other files you've added

User uploaded files are, by default, stored in the /resources sub-directory of the Roller context directory. You
should copy your old resources directory into your new Roller installation.

For example, on UNIX you can use cp -r to copy the whole directory:

 % cd %CATALINA_HOME/webapps/roller
 % cp -r /somewhere/safe/roller-old/roller/resources .

NOTE: If you have any new themes under roller/themes, make sure to copy those as well.

3.2 Review configuration properties

Review properties as described in Section 8.0 of the installation guide.

• NOTE: Make sure you set the right Hibernate dialect for your database in your roller-custom.properties
file as discussed in Section 8.3.

• NOTE: In Roller 3.1 we changed the scheduled task properties, so if you were overriding the
tasks.daily or tasks.hourly properties you need to change your roller-custom.properties file.
Refer to the notes in roller.properties in the section “Scheduled Background Tasks” for details.

• NOTE: In Roller 2.3 we changed the Roller package names from org.roller to org.apache.roller. Because
of this you MUST review your roller-custom.properties file, search for the string “org.roller”and replace
all occurances of it with “org.apache.roller”.

• NOTE: The files required for Roller's JSPWiki plugin, Ekit editor and Javascript enhanced editor have
been removed from the Roller distribution. If you'd like to continue to use these plugins, please visit the
Roller Support project on Java.Net (http://roller.dev.java.net).

UPGRADE STEP 4: Upgrade the database

Use the appropriate database upgrade script to upgrade your database. To do this, login to your database and run
one (or more) of the Roller upgrade scripts located in Roller's WEB-INF/dbscripts directory that
corresponds to your database. There's a directory for MySQL, PostgreSQL, HSQLDB and more.

The database script directories

• WEB-INF/dbscripts/mysql
• WEB-INF/dbscripts/postgresql
• WEB-INF/dbscripts/hsql
• and more...

There is an upgrade script for each release of Roller. If you're upgrading from Roller 2.3, which was the last
release before 3.0 you'll need to run three scripts: 230-to-240-migration.sql, 240-to-300-
migration.sql (Roller 2.4 was never officially released) and finally 300-to-310-migration.sql.
For example, here's how you'd do that for a MySQL database running on UNIX:

 % cd $CATALINA_HOME/webapps/roller/WEB-INF/dbscripts/mysql
 % mysql -u root -p
 password: *****
 mysql> use roller;
 mysql> source 230-to-240-migration.sql
 mysql> source 240-to-300-migration.sql
 mysql> source 300-to-310-migration.sql
 mysql> quit

If you're upgrading from an earlier release you'll have to run each of the older scripts in order to upgrade your
database.

UPGRADE STEP 5: Startup your app server

Use the standard Tomcat startup.sh (or startup.bat on Windows) script to start Tomcat. As Roller
starts up, it will perform some final steps to upgrade your database, this may take few seconds longer than your
average Roller startup.

NOTE: before you startup Tomcat, you should remove contents of the Tomcat work directory, a temporary, it
may contain old classes from your previous Roller installation directory.

And you're done!

If Roller doesn't come up, check the logs for exceptions and error messages. You should see these messages in the
tomcat/logs/catalina.out file and in tomcat/logs/roller.log. If you still can't diagnose and
fix your startup program, then subscribe to the Roller user mailing list for help. If there are any interesting
messages in the log files, send those along too.

Appendix B: The WEB-INF/roller.properties file

This file defines the default start-up properties for Roller. See step 8 for instructions on how to override the
properties in this file.

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. The ASF licenses this file to You
under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. For additional information regarding
copyright in this work, please see the NOTICE file in the top level
directory of this distribution.

roller.properties
#
This file is for meant for Roller deployment properties
Any properties that don't change at runtime are defined here
#
You can override the values in this file in a couple ways ..
1. define a roller-custom.properties file and place it somewhere
at the root of one of your classpath locations.
for example:
$TOMCAT_HOME/common/classes
$ROLLER_LOCATION/WEB-INF/classes
#
2. specify a custom properties file via jvm option
example:
roller.custom.config=/path/to/properties/file
#
**NOTE: if you run multiple instances of roller on the same server
then you should beware of the fact that the override options above
may affect *all* of you running instances. if you want to do
custom overrides for each instance then you must do it by
placing a roller-custom.properties file at WEB-INF/classes/ in
each of you roller installations.
#
properties in this file are accessed like this ...
RollerConfig.getProperty("propname");

#---------------------------------
Database configuration settings

Hibernate dialect: You must override this to use a database other than MySQL4
hibernate.dialect=org.hibernate.dialect.MySQLDialect

#---------------------------------
User management settings

True to enable group blogging. False to prevent users from creating more
than one weblog and from joining other weblogs.
groupblogging.enabled=true

#---------------------------------

Property expansion settings

Values of the properties in this list get system property expansion
applied to them when loaded.
config.expandedProperties=uploads.dir,search.index.dir

#----------------------------------
Upload settings

The directory in which Roller will upload files
uploads.dir=${user.home}/roller_data/uploads

The context path under which resoures will be made available
uploads.url=/resources

#----------------------------------
Themes settings

The directory in which Roller will look for themes
themes.dir=${webapp.context}

#----------------------------------
Search index settings

Enables indexing of weblog entries and comments and enables search servlet
search.enabled=true

Directory in which search index is to be created (delete this directory to
force Roller to recreate the entire search index)
search.index.dir=${user.home}/roller_data/search-index

Whether or not to include comments in the search index. If this
is false, comments are not included in the index.
search.index.comments=true

#----------------------------------
Rendering system settings.

Are the old pre-3.0 models and macros enabled?
rendering.legacyModels.enabled=false

The set of default Roller renderer factories.
rendering.rollerRendererFactories=\
org.apache.roller.ui.rendering.velocity.VelocityRendererFactory

The set of user defined renderer factories. These are prepended to the list above.
rendering.userRendererFactories=

The set of default Roller request mappers
rendering.rollerRequestMappers=\
org.apache.roller.ui.rendering.WeblogRequestMapper

The set of user defined request mappers. These are prepended to the list above.
rendering.userRequestMappers=

Url path elements which can NEVER be considered a weblog url
each represents a url at the application root, i.e. /<elem>/*
rendering.weblogMapper.rollerProtectedUrls=\
roller-ui,images,theme,themes,CommentAuthenticatorServlet,\
index.jsp,favicon.ico,robots.txt,taglibs.jsp,\
page,flavor,rss,atom,language,search,comments,rsd,resource,xmlrpc,planetrss

Set of user defined protected urls. These are added to the set above.

rendering.weblogMapper.userProtectedUrls=

Set of models to be made available for weblog page rendering
rendering.pageModels=\
org.apache.roller.ui.rendering.model.PageModel,\
org.apache.roller.ui.rendering.model.ConfigModel,\
org.apache.roller.ui.rendering.model.UtilitiesModel,\
org.apache.roller.ui.rendering.model.URLModel,\
org.apache.roller.ui.rendering.model.MessageModel,\
org.apache.roller.ui.rendering.model.CalendarModel,\
org.apache.roller.ui.rendering.model.MenuModel

Set of models to be made available for weblog feed rendering
rendering.feedModels=\
org.apache.roller.ui.rendering.model.FeedModel,\
org.apache.roller.ui.rendering.model.ConfigModel,\
org.apache.roller.ui.rendering.model.UtilitiesModel,\
org.apache.roller.ui.rendering.model.URLModel,\
org.apache.roller.ui.rendering.model.MessageModel

Set of models to be made available for weblog search rendering
rendering.searchModels=\
org.apache.roller.ui.rendering.model.SearchResultsModel,\
org.apache.roller.ui.rendering.model.ConfigModel,\
org.apache.roller.ui.rendering.model.UtilitiesModel,\
org.apache.roller.ui.rendering.model.URLModel,\
org.apache.roller.ui.rendering.model.MessageModel,\
org.apache.roller.ui.rendering.model.CalendarModel,\
org.apache.roller.ui.rendering.model.MenuModel

Set of models to be made available for weblog page *preview* rendering
NOTE: this *does* have some differences between the pageModels
rendering.previewModels=\
org.apache.roller.ui.rendering.model.PreviewPageModel,\
org.apache.roller.ui.rendering.model.ConfigModel,\
org.apache.roller.ui.rendering.model.UtilitiesModel,\
org.apache.roller.ui.rendering.model.PreviewURLModel,\
org.apache.roller.ui.rendering.model.MessageModel,\
org.apache.roller.ui.rendering.model.CalendarModel,\
org.apache.roller.ui.rendering.model.MenuModel

Set of page models specifically for site-wide rendering
rendering.siteModels=\
org.apache.roller.ui.rendering.model.SiteModel

Velocity settings
velocity.properties=/WEB-INF/velocity.properties

Old velocity macro libraries
velocity.oldMacroLibraries=\
deprecated/roller.vm,deprecated/bookmark.vm,deprecated/comments.vm,\
deprecated/navbar.vm,deprecated/newsfeed.vm,deprecated/referer.vm,\
deprecated/atommacros.vm,deprecated/rssmacros.vm,deprecated/user.vm,\
deprecated/weblog.vm,deprecated/website.vm

#----------------------------------
Cache settings.
Remember ... times are in seconds
Default settings suitable for 100 user system

Cache properties all follow the given format ...
cache.<cache_id>.<prop>=<value>
we then pass all <prop>=<value> pairs into the cache manager when the cache

is being constructed. this makes it easy to add cache properties that can
be used by the specified CacheFactory you are using.
#
NOTE: it is expected that property validation happens in the CacheFactory
#-----------------------------------

The default cache implementation we want to use
cache.defaultFactory=org.apache.roller.util.cache.ExpiringLRUCacheFactoryImpl
cache.customHandlers=

set "true" to NOT cache the custom pages for users who are logged in
cache.excludeOwnerEditPages=false

This sets how many minutes into the future we look to prepare
entries posted into the future which need to be invalidated from the cache.
It is very unlikely that this should ever need to be changed
cache.futureInvalidations.peerTime=3

Site-wide cache (all content for site-wide frontpage weblog)
cache.sitewide.enabled=true
cache.sitewide.size=50
cache.sitewide.timeout=1800

Weblog page cache (all the weblog content)
cache.weblogpage.enabled=true
cache.weblogpage.size=400
cache.weblogpage.timeout=3600

Feed cache (xml feeds like rss, atom, etc)
cache.weblogfeed.enabled=true
cache.weblogfeed.size=200
cache.weblogfeed.timeout=3600

Planet cache (planet page and rss feed)
cache.planet.enabled=true
cache.planet.size=10
cache.planet.timeout=1800

#----------------------------------
Secure login configs

Enables HTTPS for login page only
securelogin.enabled=false

Enable scheme enforcement?
Scheme enforcement ensures that specific URLs are viewed only via HTTPS
schemeenforcement.enabled=false
URL patterns that require HTTPS
schemeenforcement.https.urls=/j_security_check,/roller-ui/login-redirect.jsp,\
/roller-ui/login.do,/roller-ui/user.do,/roller-ui/yourProfile.do,\
/roller-ui/admin/user.do,/roller-ui/authoring/userdata

Password security settings
passwds.encryption.enabled=false
passwds.encryption.algorithm=SHA

#----------------------------------
Enabled plugins ... remember, order does matter!!

Weblog entry plugins
plugins.page=\
org.apache.roller.ui.rendering.plugins.ConvertLineBreaksPlugin \
,org.apache.roller.ui.rendering.plugins.TopicTagPlugin \

,org.apache.roller.ui.rendering.plugins.ObfuscateEmailPlugin \
,org.apache.roller.ui.rendering.plugins.SmileysPlugin
#,org.apache.roller.ui.rendering.plugins.WikipediaLinkPlugin \
#,org.apache.roller.ui.rendering.plugins.GoogleLinkPlugin \
#,org.apache.roller.ui.rendering.plugins.AcronymsPlugin \
#,org.apache.roller.ui.rendering.plugins.BookmarkPlugin

The list of configured WeblogEntryEditors available to users
plugins.weblogEntryEditors=\
org.apache.roller.ui.core.plugins.TextEditor,\
org.apache.roller.ui.core.plugins.XinhaEditor

The "id" of the default editor to use. NOT the class name
plugins.defaultEditor=editor-text.jsp

#----------------------------------
Scheduled Background Tasks ... all times are in minutes.
#
Task properties should follow the given format ...
tasks.<taskname>.<prop>=<value>
#
The *enabled* tasks are defined by tasks.enabled=<taskname>[,<taskname>]
#-----------------------------------

Tasks which are enabled. Only tasks listed here will be run.
tasks.enabled=ResetHitCountsTask,TurnoverReferersTask,PingQueueTask

Reset hit counts
tasks.ResetHitCountsTask.class=org.apache.roller.business.runnable.ResetHitCountsTask
tasks.ResetHitCountsTask.startTime=startOfDay
tasks.ResetHitCountsTask.interval=1440
tasks.ResetHitCountsTask.leaseTime=30

Reset referer counts
tasks.TurnoverReferersTask.class=org.apache.roller.business.runnable.TurnoverReferersTask
tasks.TurnoverReferersTask.startTime=startOfDay
tasks.TurnoverReferersTask.interval=1440
tasks.TurnoverReferersTask.leaseTime=30

Ping processor, does sending of pings
tasks.PingQueueTask.class=org.apache.roller.business.pings.PingQueueTask
tasks.PingQueueTask.startTime=immediate
tasks.PingQueueTask.interval=5
tasks.PingQueueTask.leaseTime=30

Sync Roller weblogs with planet
tasks.SyncWebsitesTask.class=org.apache.roller.planet.tasks.SyncWebsitesTask
tasks.SyncWebsitesTask.startTime=startOfDay
tasks.SyncWebsitesTask.interval=1440
tasks.SyncWebsitesTask.leaseTime=30

Refresh entries for planet feeds
tasks.RefreshEntriesTask.class=org.apache.roller.planet.tasks.RefreshEntriesTask
tasks.RefreshEntriesTask.startTime=startOfHour
tasks.RefreshEntriesTask.interval=60
tasks.RefreshEntriesTask.leaseTime=30

Technorati rankings for planet feeds
tasks.TechnoratiRankingsTask.class=org.apache.roller.planet.tasks.TechnoratiRankingsTask
tasks.TechnoratiRankingsTask.startTime=startOfDay
tasks.TechnoratiRankingsTask.interval=1440
tasks.TechnoratiRankingsTask.leaseTime=30

#----------------------------------
Persistence settings

persistence.roller.classname=org.apache.roller.business.hibernate.HibernateRollerImpl
persistence.filemanager.classname=org.apache.roller.business.FileManagerImpl

#----------------------------------
comment, referrer and trackback settings

comment authenticator settings (experimental)
authenticator.classname=org.apache.roller.ui.core.DefaultAuthenticator

comment.authenticator.classname=org.apache.roller.ui.rendering.util.MathCommentAuthentica
tor
comment.notification.separateOwnerMessage=false
comment.notification.hideCommenterAddresses=false
comment.throttle.enabled=false
comment.throttle.threshold=25
comment.throttle.interval=60
comment.throttle.maxentries=250

enables site full blacklist check on comment posts (default: true)
site.blacklist.enable.comments=true

enables site full blacklist check at time of trackback post (default: true)
site.blacklist.enable.trackbacks=true

enables partial blacklist check (not including blacklist.txt) for each incoming referrer
site.blacklist.enable.referrers=true

Trackback protection. Set this only if you need to limit the URLs to
which users may send trackbacks. Regex expressions are allowed, for example:
trackback.allowedURLs=http://w3.ibm.com/.*||http://another.example.com/.*
trackback.allowedURLs=

#Robot check in referral processing. If this pattern is set and the User-Agent in the
#request matches this pattern, all referral processing is skipped; this means that
#the referral spam check is skipped, the request is allowed to proceed, but the
#referrer is not recorded and hit count is not incremented. Recommended for large sites
#that get a lot of legitimate crawler bot traffic. The pattern here is a suggestion that
#has been reported to work well.
#referrer.robotCheck.userAgentPattern=.*(slurp|bot|java).*

Enable built-in referrer processing?
referrers.processing.enabled=true

Change to true if you want to process referrers asynchronously.
You can choose how many threads to use and sleep time (in seconds)
referrers.asyncProcessing.enabled=false
referrers.queue.numWorkers=3
referrers.queue.sleepTime=10

#----------------------------------
ping settings

The number of attempts to try to reach a ping target before refusing to
requeue it for further retrials. If absent, this defaults to 3.
pings.maxPingAttempts=3

The interval between ping queue processing runs in minutes. Must be between
0 and 120. If set to 0, ping queue processing is disabled on this server;
this is for clustered environments. Make sure it is nonzero on one host in

a cluster. Don't use the value 0 here to disable ping functionality, you
will instead get an infinitely growing ping queue. See the documentation on
the properties below to disable ping functionality if you need to.
If absent, this defaults to 5.
pings.queueProcessingIntervalMins=5

The set of initial common ping targets. This is used to initialize the
database if there are no common ping targets at startup. Ping targets are
specified as a comma-separated list, each target in the form {{name}{url}}.
To disable initialization of common ping targets, comment this out, or set it
to the empty value. Common targets can be edited in the UI; this is just
used to set up some typical ones.
pings.initialCommonTargets=\
{{Technorati}{http://rpc.technorati.com/rpc/ping}}\
,{{Weblogs.com}{http://rpc.weblogs.com/RPC2}}\
,{{blo.gs}{http://ping.blo.gs/}}\
,{{java.blogs}{http://javablogs.com/xmlrpc}}\
,{{blogrolling.com}{http://rpc.blogrolling.com/pinger/}}\
,{{IceRocket}{http://rpc.icerocket.com:10080/}}

Specify variant options for known buggy ping targets.
pings.variantOptions=\
{{http://rpc.icerocket.com:10080/}{noname}}

This controls whether users are allowed to add custom ping targets.
Set this to false to disallow adding custom targets; if false, the
Weblog:Custom Ping Targets menu item will not appear and associated actions
will result in access denied messages. Leave this false or commented for
normal behavior.
CAUTION: Setting this to true will cause the server to remove all users'
existing custom targets on startup.
pings.disallowCustomTargets=false

This controls whether the Weblog:Pings menu item and its associated actions
are enabled. Set this to false to disallow users from configuring autopings
and doing manual pings. If absent, this defaults to true.
NOTE: There is a separate runtime property (configurable from the
Admin:Configuration page, that can be used to suspend ping processing without
disabling the UI.
CAUTION: Setting this to true will cause the server to remove all users'
existing autoping configurations on startup. Leave this false or commented
for normal behavior.
pings.disablePingUsage=false

Setting both pings.disallowCustomTarget=true and pings.disablePingUsage=true
will effectively disable the ping functionality.

This is used for debugging the ping mechanism in Roller. If this is set
to true, pings that would normally be sent will cause log messages to be sent
but will NOT actually result in real pings being sent. Leave this false or
commented for normal behavior.
pings.logOnly=false

#----------------------------------
Planet Aggregator settings

Set to true to enable the Planet aggregator. This will cause:
- A new menu tab will appear for Roller admin users. This allows admins to
add/remove newsfeed subscriptions in the 'external' group.
- Users can then subscribe to several newsfeeds:
- http://localhost:8080/roller/rss
- http://localhost:8080/roller/planetrss

- http://localhost:8080/roller/planetrss?group=external
- You'll be able to add the $planet model to the list of page models available
to blogs (rendering.pageModels) or to only site-wide blogs (rendering.siteModels)
(classname org.apache.roller.ui.rendering.model.SiteModel)

planet.aggregator.enabled=false

Planet cache must exist and must be writable by Roller process
planet.aggregator.cache.dir=/var/roller/planetcache

Number of queries allowed per day
planet.aggregator.technorati.limit=500

#----------------------------------
defaults for new weblogs

list of links to include in root bookmark folder of each new blog
format is like so: linktitle2|linkurl2,linktitle2|linkurl2,linktitle3|linkurl3
newuser.blogroll=\
Dave Johnson|http://rollerweblogger.org/page/roller,\
Matt Raible|http://raibledesigns.com/page/rd,\
Lance Lavandowska|http://brainopolis.dnsalias.com/roller/page/lance,\
Henri Yandell|http://blog.generationjava.com/roller/page/bayard,\
Elias Torres|http://torrez.us/,\
Jeff Blattman|http://blogs.sun.com/jtb,\
blogs.sun.com|http://blogs.sun.com,\
jroller.com|http://jroller.com,\

comma-separated list of top-level categories to be created in each new weblog
newuser.categories=General,Status,Java,Music,Politics

Default weblog editor
The list of available editors is in rollerRuntimeConfigDefs.xml
newweblog.editor=editor-text.jsp

#----------------------------------
Single-Sign-On

Enables Roller to behave differently when registering new users
in an SSO-enabled environment. You must configure security.xml appropriately.
users.sso.enabled=false

Set these properties for a custom LDAP schema (optional)
#users.sso.registry.ldap.attributes.name=cn
#users.sso.registry.ldap.attributes.email=mail
#users.sso.registry.ldap.attributes.locale=locale
#users.sso.registry.ldap.attributes.timezone=timezone

If you don't want user credentials from LDAP/etc to be stored in Roller
(possibly in clear-text) leave this alone, otherwise set to true.
i.e. you would like a backup auth mechanism in case LDAP is down.
users.sso.passwords.save=false

if you don't want passwords stored in DB, set this to the default value.
users.sso.passwords.defaultValue=<unknown>

users.sso.autoProvision.enabled=false
users.sso.autoProvision.className=org.apache.roller.ui.core.security.BasicUserAutoProvisi
on

#----------------------------------
misc settings

Characters to be allowed in user names (change at your own risk)
username.allowedChars=A-Za-z0-9

rememberme.enabled=true
debug.memory.enabled=false
compression.gzipResponse.enabled=true

specifies the max number of tags allowed in URL (/feed?tags=foo+bar+baz)
tags.queries.maxIntersectionSize=3

editor theme to be used (corresponds to directory name under /theme)
editor.theme=tan

Hibernate config resource (a classpath-based path)
NO NEED TO OVERRIDE this unless you are customizing Roller
hibernate.configResource=/hibernate.cfg.xml

JDBC configuration parameters ONLY NEEDED FOR RUNNING STANDALONE TASKS
Don't override these in the roller-custom.properties file you use with the
Roller webapp, but for the standalone tasks that you run outside of Roller
(e.g. refresh entries) you'll need to override these properties. Do it in a
separate roller-custom.properties file.
jdbc.driverClass=
jdbc.connectionURL=
jdbc.username=
jdbc.password=

#---------------------------------
settings for various plugins

Optional site-wide customization settings for the TopicTag plugin.
n.b. these default settings match the coded default values that would be
applied if these were omitted.
plugins.topictag.defaultTopicBookmarkName=Default Topic Site
plugins.topictag.defaultTopicSite=http://www.technorati.com/tag
plugins.topictag.tagRegexWithBookmark=topic:\\{(.*?)\\}\\[(.*?)\\]
plugins.topictag.tagRegexWithoutBookmark=topic:\\[(.*?)\\]
plugins.topictag.linkFormatString={2}

Set to true to allow only default topic tag site (and avoid costly bookmark queries)
plugins.topictag.ignoreBookmarks=true

#---------------------------------
Experimental settings

Atom Publishing Protocol (APP) - this is an incomplete and untested
implementation of an unfinished IETF specification.
Intended only for interoperability testing. DO NOT ENABLE IN PRODUCTION!
webservices.atomprotocol.enabled=false

Atom-like Admin Publishing Protocol (AAPP) - this is an experimental admin
protocol based on ideas from the Atom protocol.
Intended only for interoperability testing. DO NOT ENABLE IN PRODUCTION!
webservices.adminprotocol.enabled=false

#----------------------------------
legacy settings (things that should be deprecated)

settings for old #showNewseeds macro (not related to Planet stuff)
aggregator.enabled=false
aggregator.cache.enabled=
aggregator.cache.timeout=14400

	Introduction
	STEP 1: Before you install Roller
	STEP 2: Unpack the Roller distribution
	UNIX example
	Windows example
	Roller distribution layout
	The ROLLER environment variable

	STEP 3: Install required third party jars
	STEP 3.1: Download and install Hibernate
	STEP 3.2: Install JDBC driver jar(s)
	UNIX example
	Windows example
	NOTES

	STEP 3.3: Install JavaMail and Activation jars
	UNIX example
	Windows example
	NOTES

	STEP 4: Create Roller tables in your database
	UNIX example
	Windows example

	STEP 5: Deploy Roller to your application server
	STEP 6: Check your internationalization settings
	Check your application server's URI encoding setting!

	STEP 7: Setup Roller data directories
	STEP 7.1: Create uploads directory
	STEP 7.2: Create search-index directory
	STEP 7.3: Create planet-cache directory (optional)
	STEP 7.4: Make sure that the logs subdirectory exists

	STEP 8: Review Roller configuration
	STEP 8.1: Review the WEB-INF/classes/roller.properties file
	Don't edit roller.properties directly! Create an override file instead
	What properties you should set

	STEP 8.2: Change keys in the WEB-INF/security.xml file
	STEP 8.3: Verify the database dialect setting in the Hibernate configuration file

	STEP 9: Start Tomcat and start using Roller
	UNIX example
	Windows example
	You're done!

	Appendix A: Upgrading an existing Roller installation
	Important notes for those upgrading from Roller 2.x to Roller 3.1
	UPGRADE STEP 1: Shutdown and backup your old Roller
	UPGRADE STEP 2: Install the new Roller
	UPGRADE STEP 3: Copy resources and update configs
	3.1 Copy your old resources and other files you've added
	3.2 Review configuration properties

	UPGRADE STEP 4: Upgrade the database
	UPGRADE STEP 5: Startup your app server
	And you're done!

	Appendix B: The WEB-INF/roller.properties file

