Programming in Apache Qpid

Cross-Platform AMQP Messaging
In Java JMS, .NET, C++, and Python

Programming in Apache Qpid: Cross-Platform AMQP Messaging in
Java JMS, .NET, C++, and Python

Table of Contents

IO | oo [0 (o o I ORI 1
2. Using the Qpid MeSSaging APlciiiiiiiii e e e e e e e 2
2.1. A Simple Messaging Program in CH+ ... 2
2.2. A Simple Messaging Program in PythOncoeviiiiiiiii e 3
2.3. A Simple Messaging Program in .INET CHccoovuiiiiiiiiiiie e eeee s ee e 4
24, AQAIESSES ..ottt a et aaes 6
Nt B N0 o 1= S T 1 7
S o= o £t 8
2.4.3. Address String OPtioNSeveeniiiiiiei e e e e 10
2.4.4. Address String GramMarceueeruieeiieeeiireeie e e e e e e e eeanaeeanaees 16

2.5. Sender Capacity and REPIAYccvuiviiiieiiii e 18
2.6. Receiver Capacity (PrefetCh)coovviiiii i 18
2.7. Acknowledging ReCEIVEd MESSA0ESuivvuueiiieiiie e e e e e e e e e e e e e eanaeees 18
2.8. Receiving Messages from MuUltiple SOUICESevviiiiiieiiiiecie e 18
P I = 0= o o ST 19
2250 L0 R @0 0= 1o g T @ 1o - 20
2.11. Maps and Lists in Message CONMENtevvuneiiiieiiieei e e e e et e e eenas 22
2.11.1. Qpid Maps and Lists in Pythonccccoiiiiiiiiii e 23
2.11.2. Qpid Maps and LiStS iN CH+ ...uviiiiiciii e 24
2.11.3. Qpid Maps and ListS iN INETcovviiiiiiiiiicceees e e e e 26

2.12. The Request / ReSPONSE Patterncvvuiiii i eae e 28
2.13. PerfOrmManCe TIPS .uuvee i eiei e e et e e e e e e e e e e e e e e e e et e e et e e e e an s 29
214, ClUSEES FAIlOVEN ..uiiiiii ettt e et e eeeab e eeees 30
2250 L T I o 1 o 31
2250 L T o o o1 o I T T 31
2.15.2. Logging in PYthONcoeveii e 31

2.16. The AMQP 0-10 MEPPING «.vvunerrnnerrinieeieeriie e eeataeeeteeeaaesaaeeaneeaneeenaeeenas 31
2.16.1. 0-10 Message Property KeYSceviieiiii i e 33

2.17. USING MESSAYE GIOUPS .. .evvuerrineeeuneeeiniesttaesanaesstnsesanaesansessneesnnaeetnaersnaernnnares 34
2.17.1. Creating Message Group QUEUEScevueiieeeiieeeiieeeeieeeeneesaneeeanneennnnns 34
2.17.2. Sending Grouped MESSAgESuueerueeiiieeiieeeieeeireeea e e e eateeeaaeeanees 35
2.17.3. Recaiving Grouped MESSAQEScvvvuieiinieiiieeie e e e e e e e e e eanes 36

3. Using the QPid JIMS ClIENEieiiiiii e e e e e e e eanaeees 37
3.1. A Simple Messaging Program in JAVa JMScooiiiiiiiii e 37
3.2. Apache Qpid JNDI Properties for AMQP M€eSSagingcccvvvevivniiiieeiiiienieeennneenn 39
3.2.1. INDI Properties for Apache QPidcoevvnieiiiiiiiii e 40
3.2.2. CONNECLION URLS ...ciitiiiiiii ettt eeeai e eees 40

3.3. JaAva IMS M ESSA0E PrOPEITIES ..vu it e e e aens 44
34, IMS MaPMESSAGE TYPES 1euetneeteeteeet et et et et e et e e et e et e et e et e et e e e eaneeaeeneens 44
N | ISR @ 1= oo T] oo 46
3.6. Configuring the IMS ClIENtcovniii e 46
3.6.1. QPid VM AFQUMENESuuiiieieiiiieeei et s e e aaeeanneees 48

4. Using the Qpid WCF Clientcoouniiii e e e e 57
4.1. XML and Binary BiNAINGSccuuieiiiieiiieiii e e e e e e e e e e e e eaeeees 57
A 0T oo]) P 60
4.3. MESSAPE HEAHEIS ... e e 61
S o 1 1) Y/ 61
N I =01 o o = OSSP 62
5. The .NET Binding for the C++ Messaging Clientcoovuiiiiiiiiiiiiece e 63
5.1. .NET Binding for the C++ Messaging Client Component Architecture..................... 63
5.2. .NET Binding for the C++ Messaging Client EXampleS...........cocvevvviiiieiiierinnennnn. 64
5.3. .NET Binding Class Mapping to Underlying C++ Messaging APlccccceevnneeee. 65
5.3.1. .NET Binding for the C++ Messaging API Class: Address...........ccooeevvnneeen. 66
5.3.2. .NET Binding for the C++ Messaging APl Class: Connection...................... 67
5.3.3. .NET Binding for the C++ Messaging API Class. Duration 68

Programming in Apache Qpid

5.34..
5.35..
5.3.6..
5.3.7..
5.38..
5.39..

NET Binding for the C++ Messaging API Class. FailoverUpdates............... 69
NET Binding for the C++ Messaging APl Class: MeSsage..........uoveeverennnnn. 70
NET Binding for the C++ Messaging APl Class: Recaivercccceeveeeee. 71
NET Binding for the C++ Messaging APl Class: Sendercccooeveevinnnnen. 72
NET Binding for the C++ Messaging APl Class, Sessioncc.uceveeeennnnn. 73
NET Binding Class. SEeSSIONRECEIVESviiiiiiiiiiiiiie e 74

List of Tables

2.1, Address String OPLiONSvvuueiiiieei et e e e e e e e e e e e e e eaa
A N\ (o L= = (0] = 1=
G T I 1 = (0] ==
P @735 = o [0 0 @ o 1 o
2.5. Map and List Representation in Supported LangUAagESceuuevriiieeiieiiieeeiiieeaineeainens
2.6. Python Datatypes iN IMaDS ...vuunieii e e e e e e e e e e e e e et e e e e e eaneee
2.7. CH+ DatatyPES IN IMADS ..u.ieveieiiii e et e et e e e e e e e e e e e e e e e et e e e e
2.8. Datatype Mapping between C++ and .NET bindingccoooeiiiiiiiiiiecie e
2.9. Mapping to AMQP 0-10 MeSsage Propertiesoevuiiieiiieii e e e e e
3.1. INDI Properties supported by Apache QPidc..ovviviiiiiiiiii e,
3.2. ConNECtion URL PrOPErtiESuiiiieiiiiieii e e e e e e e e e e e anas
TG 2 o 1= BT A o1 o]
3.4. Java IMS Mapping to AMQP 0-10 Message PropertieSocvvveveiiieiiii e eeeies
3.5. Java DatatyPeS IN MaDS .uuuiiii i e e e e
3.6. Config Options For ConNection BENAVIOUIoeeeuiiiiiieii e ee e e e
3.7. Config Options FOr SessioN BENAVIOUNcivuiiiiiiieii e e e e
3.8. Config Options For ConsumMer BENAVIOUNcouuiviiiiiiii e ee e e e e e e
3.9. Config Options For Producer BENAVIOUNcouuiiiiieiiiieiii e e e e e e e e
3.10. Config Options FOr TAreadingcc.uiiiiiiiiiii e
3.11. Config OPLIONS FOr 11O ... e e e e e e eaes
3.12. Config OPtioNS FOr SECUMLY ...uuivieiiii e e e e e e e e e e e e e et e e e aanaees
3.13. Config Options For Security - Standard VM properties needed when using GSSAPI as
the SASL MECNENISIM. ..uuiiiii e
3.14. Config Options For Security - Using SSL for securing connections or using

EXTERNAL as the SASL MEChaNISIM.iiiiiiiiiiiiiiie et eees
3.15. Config Options For Security - Standard VM properties needed when Using SSL for
securing connections or using EXTERNAL as the SASL mechanism.c.cccooeviiiiiiiieennnns
4.1, WCF Binding ParaMeterSc.uuiiiiiieiiieei e e e e e e s e s e e e et e e et e e et e e e e eaneees
5.1. .NET Binding for the C++ Messaging Client Component Architecture................cccveeeennne.
5.2, EXampPle : Client - SEIVEN .uuiii e e e e e e e e e e ee
5.3. Example : Map Sender — Map RECEIVENcovuiiiiiiiiii e e e e
5.4. EXample : SPOUL = DFGIN ...couniiiiiiie e e e e e e e e e e e e e e e ee
5.5. Example : Map Callback Sender — Map Callback Recelverccoovviiiviiiiiiiciiieee
5.6. Example - DECIare QUEUEScovuuiiiiiei e et e e e e e e e e e e e et e e e e e e eanes
5.7. Example: Direct Sender - DIreCt RECEIVESccuviiiiiiii e e e
5.8. EXample: HEIO WOIIoeinii e e e e e
5.9. .NET Binding for the C++ Messaging APl Class: Address..........cocccevvviiiiiiiiiciineeieeann,
5.10. .NET Binding for the C++ Messaging APl Class: CONNeCtioncccevvveviviieiinneninnanns
5.11. .NET Binding for the C++ Messaging APl Class: DUrationcccoeevviieiiinieiineennnnnns
5.12. .NET Binding for the C++ Messaging APl Class: FailoverUpdates...........ccooevvvvevinnnnnn..
5.13. .NET Binding for the C++ Messaging APl Class: MESSAgEccuvevvveveineeiiieeeiiieeaeeennn,
5.14. .NET Binding for the C++ Messaging APl Class: RECEIVENccvevvveiiiieiiiiieiieeiis
5.15. .NET Binding for the C++ Messaging APl Class: Senderccocovvvviiiiiiiiciiii e,
5.16. .NET Binding for the C++ Messaging APl Class: SESSIONccuuveviiieeiiiieiiiieeiineeiieens

54

55

56
60

List of Examples

2.1 "HETO WOTTAI™ TN C e e e e et e e e e e eaaens 3
2.2. "Hello world!™ in PYIhON ... 4
2.3. "HEO WOTTA!™ iN INET CH ..ottt e et e e et eeeeaa e eees 5
O 1= 1 = SN 6
228 N o oo 7
2.6. USING SUDJECES ...euuiiiiciie e et e e e e et e et e e et e e e e e e e et e et e e et e e st e e st s eeanneeannaees 8
2.7. Subjects With MUIti-WOrd KEYScoouniii e 9
2.8. ASSErTIONS ON NOUEScevtiieiii e e e e e ettt e e e et e e e e aa s 11
2.9. Creating a Queue AUtOMALICAIlYcuuiviii e e 11
2.10. BrowSING @ QUEUEuuiiieeeeieeitieeai e et e e et s e e e e et e e et s e e e e aa e e et e e et e eetn s eeaneeanaaees 12
2.11. Using the XML EXChangecceuuiiiii et e e e e e e e 13
2.12. Receiving Messages from MUltiple SOUCESovvvniiiiiiiii e, 19
P2 I I =01 o (o PP 20
2.14. Specifying Connection Optionsin C++, Python, and NETcccoiiviiiviiiiiieeeee, 21
2.15. Sending Qpid Maps and ListS in PythOnccoviiiiiiii i 23
2.16. Sending Qpid Maps and LiStSin CHtiiviiiiiicii e 25
2.17. Sending Qpid Maps and ListSin .NET CHocuvvviiiiiiiiicii e e e e 26
2.18. Request / Response ApPliCationNS iN CH ..uu.iviiiii e e e 29
2.19. Tracking cluster MeMBErShiIP .. ccuu i e 30
2.20. Accessing the AMQP 0-10 Message Timestamp in Pythonccooveviveiiivineeeiee, 34
2.21. Accessing the AMQP 0-10 Message Timestamp in CH+ ... 34
2.22. Message Group Queue Creation - Pythoncocoiiiii i, 34
2.23. Message Group QUEUE Creation - CH .ouuiii e ee e e e e e e e e e eanaeeaen 35
2.24. Message Group QUEUE Creation = JAVAccuuueveuneeeieeiiieesieeeaiieesteeeaeeeanaeeaneaaenaaes 35
2.25. Sending Grouped Messages - PYthONcoeuiiiiiiiiiic e 35
2.26. Sending Grouped MESSAgES - CH ..vuuuiiiiiiiiiieiieee e e e e e e e e e e e e e e 36
2.27. Sending Grouped MESSAZES = JAVAuuuiruueeiiietiieeeii e e e e e e e et e e e e e e e et e e e eaneees 36
3L "HETO WOTTA!™ TN JBVA vt 38
3.2. INDI Properties File for "Hello world!" examplecccoveviiiiiiii i, 39
3.3. INDI Properti€S Fil ...t e e e 39
I B =T (02 g T S PP 42
3.5. Sending a Java JMS MapMESSA0E ... ccuuuiiineeiiieei e e e e e e e e e e et e e e e et e e et e e eanaees 45
3.6. 1004] LOQOiNG PrOPEItIES .. iviiiei et e e e e e e 46
4.1. Traditional service model "Hello world!" exampleccovviiiiiiiiiiciiii e 57
4.2. Binary "Hello world!" example using the channel modelcccoooviiiiii i, 58

Vi

Chapter 1. Introduction

Apache Qpid is a reliable, asynchronous messaging system that supports the AMQP messaging
protocol in several common programming languages. Qpid is supported on most common platforms.

* On the Javaplatform, Qpid uses the established Java JM S API [http://java.sun.com/products/jms/].

 For Python, C++, and .NET, Qpid definesits own messaging API, the Qpid Messaging API, which
is conceptually similar in each.

On the .NET platform, Qpid also provides a WCF binding.

* Ruby will also usethe Qpid Messaging API, which will soon beimplemented. (Ruby currently uses
an API that is closely tied to the AMQP version).

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Chapter 2. Using the Qpid Messaging
API

The Qpid Messaging API is quite simple, consisting of only a handful of core classes.

» A message consists of astandard set of fields (e.g. subj ect , r epl y- t 0), an application-defined
set of properties, and message content (the main body of the message).

A connection represents a hetwork connection to a remote endpoint.

» A session provides a sequentially ordered context for sending and receiving messages. A session
is obtained from a connection.

» A sender sends messages to atarget using the sender . send method. A sender is obtained from
asession for agiven target address.

* A receiver receives messages from a source using ther ecei ver . f et ch method. A receiver is
obtained from a session for a given source address.

The following sections show how to use these classes in a simple messaging program.

2.1. A Simple Messaging Program in C++

Thefollowing C++ program shows how to create a connection, create a session, send messages using
a sender, and recelve messages using areceiver.

Using the Qpid Messaging AP

Example2.1. "Heloworld!" in C++

#i
#i
#i
#i
#i

4

ncl ude <qpi d/ nessagi ng/ Connecti on. h>
ncl ude <qpi d/ nessagi ng/ Message. h>
ncl ude <qgpi d/ messagi ng/ Recei ver. h>
ncl ude <qpi d/ messagi ng/ Sender . h>

ncl ude <qpi d/ nessagi ng/ Sessi on. h>

ncl ude <i ostreane

usi ng namespace gpi d: : messagi ng;

int main(int argc, char** argv) {

std::string broker = argc > 1 ? argv[1l] : "local host:5672";
std::string address = argc > 2 ? argv[2] : "any.topic";
std::string connectionOptions = argc > 3 ? argv[3] : "";

Connecti on connection(broker, connectionQOptions);

try {
connection.open(); H
Sessi on session = connection. createSession(); H
Recei ver receiver = session.createReceiver(address); H
Sender sender = session.createSender(address); H
sender . send(Message("Hello world!"));
Message nmessage = receiver.fetch(Duration::SECOND * 1); H
std::cout << nessage.getContent() << std::endl
sessi on. acknow edge(); B
connection.close(); W
return O;
} catch(const std::exception& error) {

[o] mNENME
B ad

std::cerr << error.what() << std::endl
connection. cl ose();
return 1;

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

Receives the next message. The duration is optional, if omitted, will wait indefinitely for the
next message.

Acknowledges receipt of all fetched messages on the session. This informs the broker that the
messages were transferred and processed by the client successfully.

Closes the connection, all sessions managed by the connection, and all senders and receivers
managed by each session.

2.2. A Simple Messaging Program in Python

The following Python program shows how to create a connection, create a session, send messages
using a sender, and receive messages using areceiver.

Using the Qpid Messaging AP

Example2.2. "Helloworld!" in Python

i mport sys

from qgpi d. messagi ng i nport *

broker = "local host:5672" if |len(sys.argv)<2 else sys.argv[1]
address = "ang.topic" if len(sys.argv)<3 else sys.argv|[2]

connection = Connecti on(broker)

try:
connecti on. open()
sessi on = connection. session()

sender = session. sender (address)
recei ver = session.receiver (address)

sender . send(Message("Hello world!"));

nessage = receiver.fetch(tinmeout=1)
print message. content
sessi on. acknow edge() H

except Messagi ngError, m
print m

finally:

connecti on. cl ose()

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

Receives the next message. The duration is optional, if omitted, will wait indefinitely for the
next message.

Acknowledges receipt of all fetched messages on the session. This informs the broker that the
messages were transfered and processed by the client successfully.

Closes the connection, all sessions managed by the connection, and all senders and receivers
managed by each session.

(o)} NN Mm

2.3. A Simple Messaging Program in .NET C#

Thefollowing .NET C# 1 program shows how to create a connection, create a session, send messages
using a sender, and receive messages using areceiver.

1 The .NET bindi ng for the Qpid C++ Messaging APl appliesto all .NET Framework managed code languages. C# was chosen for illustration
purposes only.

Using the Qpid Messaging AP

Example2.3. "Helloworld!" in .NET C#

RN N

[O |

usi ng System
usi ng Org. Apache. Qpi d. Messagi ng;

namespace Org. Apache. Qoi d. Messagi ng {
cl ass Program {
static void Main(string[] args) {

String broker = args.Length > 0 ? args[0] : "local host:5672";
String address = args.Length > 1 ? args[1] : "ang.topic";
Connection connection = null;

try {

connection = new Connecti on(broker);

connecti on. Qpen();

Sessi on session = connection. Creat eSessi on();

Recei ver receiver = session. CreateRecei ver (address);
Sender sender = session. Creat eSender (address);

sender. Send(new Message("Hello world!"));

Message nmessage = new Message();

nessage = receiver. Fetch(DurationConstants. SECOND * 1); 6]
Consol e. WitelLine("{0}", nessage.GetContent());

sessi on. Acknow edge() ;

connection. d ose(); 8]

} catch (Exception e) {

Consol e. WitelLi ne("Exception {0}.", e);
if (null !'= connection)

connection. d ose();

}
}
}
}

Permits use of Org.Apache.Qpid.Messaging types and methods without explicit nhamespace
qualification. Any .NET project must have a project reference to the assembly file
Org. Apache. pi d. Messagi ng. dl | in order to obtain the definitions of the .NET
Binding for Qpid Messaging namespace.

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

Receives the next message. The duration is optional, if omitted, will wait indefinitely for the
next message.

Acknowledges receipt of all fetched messages on the session. This informs the broker that the
messages were transfered and processed by the client successfully.

Closes the connection, all sessions managed by the connection, and all senders and receivers
managed by each session.

Using the Qpid Messaging AP

2.4. Addresses

An addressis the name of a message target or message source. 2 The methods that create senders and
receiversrequire an address. The details of sending to a particul ar target or receiving from a particular
source are then handled by the sender or receiver. A different target or source can be used ssmply by
using adifferent address.

An address resolves to a node. The Qpid Messaging API recognises two kinds of nodes, queues and
topics A queue stores each message until it has been received and acknowledged, and only one
receiver canreceiveagiven meﬁage“. A topicimmediately deliversamessageto all eligiblereceivers,
if there are no eligible receivers, it discards the message. In the AMQP 0-10 implementation of the
API,°® gueues map to AMQP queues, and topics map to AMQP exchanges. 6

In the rest of this tutorial, we present many examples using two programs that take an address as a
command line parameter. spout sends messages to the target address, drain receives messages from
the source address. The source code is available in C++, Python, and .NET C# and can be found in
the examples directory for each language. These programs can use any address string as a source
or a destination, and have many command line options to configure behavior—use the -h option for
documentation on these options. " The examples in this tutorial also use the gpid-config utility to
configure AMQP 0-10 gueues and exchanges on a Qpid broker.

Example 2.4. Queues
Create a queue with gpid-config, send a message using spout, and read it using drain:
$ gpid-config add queue hello-world

$./spout hello-world
$./drain hello-world

Message(properti es={spout-id: c877e622- d57b- 4df 2- bf 3e- 6014c68dalea: 0},

The queue stored the message sent by spout and delivered it to drain when requested.
Once the message has been delivered and and acknowledged by drain, it isno longer available on the

gueue. If werun drain one more time, no messages will be retrieved.

$./drain hello-world

$

2Inthe programs we have just seen, we used ant. t opi ¢ asthe default addressif none is passed in. Thisis the name of a standard exchange
that always exists on an AMQP 0-10 messaging broker.

3The terms queue and topic here were chosen to align with their meaning in IMS. These two addressing 'patterns, queue and topic, are
sometimes refered as point-to-point and publish-subscribe. AMQP 0-10 has an exchange type called a topic exchange. When the term topic
occurs alone, it refersto aMessaging AP topic, not the topic exchange.

“There are exceptions to this rule; for instance, a receiver can use br owse mode, which leaves messages on the queue for other receivers
to read.

5The AMQP 0-10 implementation is the only one that currently exists.

51n AMQP 0-10, messages are sent to exchanges, and read from queues. The Messaging API a so allows a sender to send messages to a queue;
internally, Qpid implementsthis by sending the messageto the default exchange, with the name of the queue asthe routing key. The Messaging
API also allows a receiver to receive messages from a topic; internally, Qpid implements this by setting up a private subscription queue for
the receiver and binding the subscription queue to the exchange that corresponds to the topic.

7Currently, the C++, Python, and .NET C# implementations of drain and spout have dlightly different options. This tutorial uses the C++
implementation. The options will be reconciled in the near future.

conten

Using the Qpid Messaging AP

2.4.1.

Example 2.5. Topics
This exampleis similar to the previous example, but it uses atopic instead of a queue.
First, use qpid-config to remove the queue and create an exchange with the same name:

$ gpid-config del queue hello-world
$ gpi d-config add exchange topic hello-world

Now run drain and spout the same way we did in the previous example:

$./spout hello-world
$./drain hello-world
$

Topics deliver messages immediately to any interested receiver, and do not store messages. Because
there were no receivers at the time spout sent the message, it was ssimply discarded. When we ran
drain, there were no messages to receive.

Now let'srun drain first, using the - t option to specify atimeout in seconds. While drain iswaiting
for messages, run spout in another window.

First Window:
$./drain -t 30 hello-word
Second Window:
$./spout hello-word
Once spout has sent a message, return to the first window to see the output from drain:
Message(properties={spout-id: 7da2d27d- 93e6- 4803- 8a61- 536d87b8d93f : 0},

You can run drain in several separate windows, each creates a subscription for the exchange, and
each receives al messages sent to the exchange.

Address Strings

So far, our examples have used address strings that contain only the name of anode. An address string
can also contain a subject and options.

The syntax for an address string is:

address_string ::= <address> [/ <subject>] [; <options>]
options ::= { <key>: <value> ... }

Addresses, subjects, and keys are strings. Values can be numbers, strings (with optional single or
double quotes), maps, or lists. A complete BNF for address strings appearsin Section 2.4.4, “ Address
String Grammar”.

conten

Using the Qpid Messaging AP

So far, the address strings in this tutorial have only used simple names. The following sections show
how to use subjects and options.

2.4.2. Subjects

Every message has a property called subject, which is analogous to the subject on an email message.
If no subject is specified, the message's subject is null. For convenience, address strings also allow
a subject. If a sender's address contains a subject, it is used as the default subject for the messages
it sends. If areceiver's address contains a subject, it is used to select only messages that match the
subject—the matching algorithm depends on the message source.

In AMQP 0-10, each exchange type hasits own matching algorithm. Thisisdiscussed in Section 2.16,
“The AMQP 0-10 mapping”.

Note

Currently, areceiver bound to a queue ignores subjects, receiving messages from the queue
without filtering. Support for subject filtering on queues will be implemented soon.

Example 2.6. Using subjects
In this example we show how subjects affect message flow.

First, let's use gpid-config to create a topic exchange.
$ qpi d-config add exchange topic news-service

Now we use drain to receive messages from news- ser vi ce that match the subject sport s.

First Window:
$./drain -t 30 news-service/sports

In a second window, let's send messages to news- ser vi ce using two different subjects:

Second Window:

$./spout news-service/sports
$./spout news-servicel/ news

Now look at the first window, the message with the subject spor t s has been received, but not the
message with the subject news:

Message(properties={qpi d. subj ect:sports, spout-id:9441674e-al57-4780-a78e-

If you run drain in multiple windows using the same subject, all instances of drain receive the
messages for that subject.

The AMQP exchange type we are using here, ant. t opi ¢, can also do more sophisticated matching.
A sender's subject can contain multiple words separated by a “.” delimiter. For instance, in a news
application, the sender might use subjects like usa. news, usa. weat her, eur ope. news, or
eur ope. weat her . The receiver's subject can include wildcard characters— “#’ matches one or
more words in the message's subject, “*” matches a single word. For instance, if the subject in the

Using the Qpid Messaging AP

source addressis™* . news, it matches messages with the subject eur ope. news or usa. news; if it
iseur ope. #, it matches messageswith subjectslikeeur ope. news or eur ope. pseudo. news.

Example 2.7. Subjects with multi-word keys

This example uses drain and spout to demonstrate the use of subjects with two-word keys.

Let'suse drain with the subject * . news to listen for messages in which the second word of the key
isnews.

First Window:

$./drain -t 30 news-servicel/*. news

Now let's send messages using severa different two-word keys:

Second Window:
$./spout news-service/usa. news
$./spout news-service/usa.sports
$./spout news-service/europe.sports
$./spout news-service/europe. news

In the first window, the messages with news in the second word of the key have been received:

Message(properties={qpi d. subj ect: usa. news, spout-id: 73f c8058-5af 6-407c-916
Message(properties={qpi d. subj ect: europe. news, spout-id:f72815aa-7bed-4944-

Next, let's use drain with the subject #. news to match any sequence of words that ends with news.

First Window:

$./drain -t 30 news-servicel#. news

In the second window, |et's send messages using avariety of different multi-word keys:

Second Window:

./ spout news-servi ce/ news

./ spout news-servicel/sports

./ spout news-servi ce/ usa. news

./ spout news-service/usa.sports

./ spout news-servi ce/ usa. f aux. news
./ spout news-service/usa. faux. sports

LR R

In the first window, messages with news in the last word of the key have been received:

Message(properties={qpi d. subj ect: news, spout-id:cbd42b0f-c87b-4088-8206-26
Message(properties={qpi d. subj ect: usa. news, spout-id:234a78d7- daeb-4826-90e
Message(properties={qpi d. subj ect: usa. faux. news, spout-id: 6029430a-cfcb-470

Using the Qpid Messaging AP

2.4.3. Address String Options

The optionsin an address string can contain additional information for the senders or receivers created
for it, including:

* Policiesfor assertions about the node to which an address refers.
For instance, in the address string ny- queue; {assert: always, node:{ type:
queue }}, the node named ny- queue must be a queue; if not, the address does not resolve to
anode, and an exception is raised.

 Policiesfor automatically creating or deleting the node to which an address refers.

For instance, inthe addressstringxoxox ; {create: al ways},thequeuexoxox iscreated,
if it does not exist, before the address is resolved.

» Extension points that can be used for sender/receiver configuration.

For instance, if the addressfor areceiver isnmy- queue; {node: browse},thereceiver works
in br owse mode, leaving messages on the queue so other receivers can receive them.

» Extension points providing more direct control over the underlying protocol.

For instance, the x- bi ndi ngs property allows greater control over the AMQP 0-10 binding
process when an address is resol ved.

L et'suse some examplesto show how these different kinds of address string options affect the behavior
of senders and receives.

2.4.3.1. assert

Inthissection, weusetheassert option to ensure that the address resolves to anode of the required
type.

10

Using the Qpid Messaging AP

Example 2.8. Assertions on Nodes
Let's use qpid-config to create a queue and a topic.

$ gpid-config add queue ny-queue
$ qpi d-config add exchange topic my-topic

We can now use the address specified to drain to assert that it is of a particular type:

$./drain 'my-queue; {assert: always, node:{ type: queue }}'

$./drain 'my-queue; {assert: always, node:{ type: topic }}'

2010-04-20 17:30: 46 warni ng Exception received from broker: not-found: n
Exchange mny-queue does not exi st

The first attempt passed without error as my-queue is indeed a queue. The second attempt however
failed; my-queueis not atopic.

We can do the same thing for my-topic:
$./drain 'nmy-topic; {assert: always, node:{ type: topic }}'
$./drain 'nmy-topic; {assert: always, node:{ type: queue }}'

2010-04-20 17:31: 01 warni ng Exception received from broker: not-found: n
Queue ny-topic does not exist

Now let'susethe cr eat e option to create the queue xoxox if it does not already exist:

2.4.3.2. create

In previous examples, we created the queue before listening for messages on it. Using cr eat e:
al ways, the queueis automatically created if it does not exist.

Example 2.9. Creating a Queue Automatically

First Window:

$./drain -t 30 "xoxox ; {create: always}"

Now we can send messages to this queue:

Second Window:

$./spout "xoxox ; {create: always}"

Returning to the first window, we see that drain has received this message:

Message(properti es={spout-id: 1ala3842- 1a8b- 4f 88- 8940- b4096e615a7d: 0}, content="

Thedetails of the node thus created can be controlled by further optionswithin the node. See Table 2.2,
“Node Properties’ for details.

2.4.3.3. browse

Some options specify message transfer semantics; for instance, they may state whether messages
should be consumed or read in browsing mode, or specify reliability characteristics. The following
example uses the br ows e option to receive messages without removing them from a queue.

11

Using the Qpid Messaging AP

Example 2.10. Browsing a Queue

L et's use the browse mode to receive messages without removing them from the queue. First we send
three messages to the queue;

$./spout ny-queue --content one
$./spout ny-queue --content two
$./spout ny-queue --content three

Now we use drain to get those messages, using the browse option:

$./drain 'nmy-queue; {node: browse}'

Message(properti es={spout-id: fbb93f30-0e82-4b6d-8cld-be60ebh132530: 0},
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f : 0},
Message(properti es={spout-id: ea75d64d- ea37-47f 9- 96a9- d38e01c97925: 0},

We can confirm the messages are still on the queue by repeating the drain:

$./drain 'ny-queue; {nobde: browse}'

Message(properties={spout-id: f bb93f 30- 0e82- 4b6d- 8c1ld- be60eb132530: 0},
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f : 0},
Message(properti es={spout-id: ea75d64d- ea37-47f 9- 96a9- d38e01c97925: 0},

2.4.3.4. x-bindings

Greater control over the AMQP 0-10 binding process can be achieved by including an x- bi ndi ngs
option in an address string. For instance, the XML Exchange is an AMQP 0-10 custom exchange
provided by the Apache Qpid C++ broker. It allows messagesto be filtered using X Query; queries can
address either message properties or XML content in the body of the message. The xquery is specified
in the arguments field of the AMQP 0-10 command. When using the messaging APl an xquery can
be specified in and address that resolves to an XML exchange by using the x-bindings property.

An instance of the XML Exchange must be added before it can be used:

$ qpi d-config add exchange xm xnl

When using the XML Exchange, areceiver providesan X Query asan x-binding argument. If the query
containsacontext item (apath starting with “.”), then it isapplied to the content of the message, which
must bewell-formed XML. For instance, . / weat her isavalid XQuery, which matches any message
in which the root element is named weat her . Here is an address string that contains this query:

xm o {

link: {

X-bi ndi ngs: [{exchange: xm , key:weather, argunents:{xquery:"./weather"} }]
}

}

When using longer queries with drain, it is often useful to place the query in afile, and use cat in the
command line. We do thisin the following example.

12

col
col
col

Ccol
Ccol
Ccol

Using the Qpid Messaging AP

Example 2.11. Using the XML Exchange

This example uses an x-binding that contains queries, which filter based on the content of XML
messages. Here is an XQuery that we will usein this example:

et $w := ./weat her

return $w station = ' Ral ei gh-Durham I nternational Airport (KRDU)'
and $w tenperature f > 50

and $wtenperature f - $w dewpoint > 5

and $w wi nd_speed_nph > 7

and $w wi nd_speed_nph < 20

We can specify this query in an x-binding to listen to messages that meet the criteria specified by
the query:

First Window:

$./drain -f "xm; {link:{x-bindings:[{key:"' weather',
argurment s: {xquery:\"$(cat rdu.xquery)\"}}]1}}"

In another window, let's create an XML message that meets the criteriain the query, and place it in
thefiler du. xmi :

<weat her >

<station>Ral ei gh- Durham I nternati onal Airport (KRDU)</station>
<wi nd_speed_nph>16</w nd_speed_nph>
<tenperature_f>70</tenperature_f>

<dewpoi nt >35</ dewpoi nt >

</ weat her >

Now let's use spout to send this message to the XML exchange:

Second Window:

spout --content "$(cat rdu.xm)" xm /weather

Returning to the first window, we see that the message has been received:

$./drain -f "xm; {link:{x-bindings:[{exchange:' xm "', key:'weather', arguments
Message(properties={qpi d. subj ect: weat her, spout-id:31c431de-593f-4bec- a3
cont ent =' <weat her >
<stati on>Ral ei gh- Durham I nternati onal Airport (KRDU)</station>
<wi nd_speed_nph>16</w nd_speed_nph>
<t enperature_f>40</tenperature_f>
<dewpoi nt >35</ dewpoi nt >
</ weat her>")

13

Using the Qpid Messaging AP

2.4.3.5. Address String Options - Reference

Table2.1. Address String Options

option

value

semantics

assert

one of: aways, never, sender or
receiver

Asserts that the properties specified
in the node option match whatever
the address resolves to. If they do
not, resolution failsand an exception
israised.

create

one of: aways, never, sender or
receiver

Creates the node to which an address
refers if it does not exist. No error
israised if the node does exist. The
details of the node may be specified
in the node option.

delete

one of: aways, never, sender or
receiver

Delete the node when the sender or
receiver is closed.

node

A nested map containing the
entries shown in Table 2.2, “Node
Properties’.

Specifies properties of the node to
which the address refers. These are
used in conjunction with the assert or
create options.

link

A nested map containing the
entries shown in Table 2.3, “Link
Properties’.

Used to control the establishment
of a conceptual link from the client
application to or from the target/
source address.

mode

one of: browse, consume

This option is only of relevance
for source addresses that resolve
to a queue. If browse is specified
the messages delivered to the
receiver are left on the queue rather
than being removed. If consume
is specified the norma behaviour
applies; messages are removed
from the queue once the client
acknowledges their receipt.

14

Using the Qpid Messaging AP

Table 2.2. Node Properties

correspond to the valid fields on
an AMQP 0-10 queue-declare or
exchange-declare command.

property value semantics

type topic, queue Indicates the type of the node.

durable True, False Indicates whether the node survives
aloss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values|These values are used to fine tune

the creation or assertion process.
Note however that they are protocol
specific.

x-bindings A nested list in which each binding
is represented by a map. The entries
of the map for a binding contain the
fields that describe an AMQP 0-10
binding. Here is the format for x-
bindings:

[
{

exchange: <exchange
queue: <queue>,
key: <key>,
argunents: {
<key_1>: <val ue_1>,
<key_n>: <val ue_n>

},

In conjunction with the create
option, each of these bindings
is established as the address is
resolved. In conjunction with the
assert option, the existence of each
of these bindings is verified during
resolution. Again, these are protocol
specific.

>

15

Using the Qpid Messaging AP

Table2.3. Link Properties

option

value

semantics

reliability

one of: unreliable, at-least-once, at-
most-once, exactly-once

Reliability indicates the level of
reliability that the sender or
receiver. unreliable and at-
nost - once are currently treated
as synonyms, and allow messages
to be lost if a broker crashes or
the connection to a broker is lost.
at - | east - once guaranteesthat a
message is not lost, but duplicates
may be received. exact | y- once
guarantees that a message is not
lost, and is delivered precisely once.
Currently only unrel i abl e and
at - | east - once are supported. 2

durable

True, False

Indicates whether the link survives
a loss of volatile storage e.g. if the
broker isrestarted.

x-declare

A nested map whose vaues
correspond to the valid fields
of an AMQP 0-10 queue-declare
command.

These values can be used to
customise the subscription queue
in the case of recelving from an
exchange. Note however that they
are protocol specific.

X-subscribe

A nested map whose values
correspond to the valid fields of
an AMQP 0-10 message-subscribe
command.

These values can be used to
customise the subscription.

x-bindings

A nested list each of whose
entries is a map that may contain
fields (queue, exchange, key and
arguments) describing an AMQP
0-10 binding.

These bindings are established
during resolution independent of the
create option. They are considered
logically part of the linking process
rather than of node creation.

8f at-most-once is requested, unreliable will be used and for durable messages on durable queues there s the possibility that messages will be
redelivered; if exactly-onceis requested, at-least-once will be used and the application needs to be able to deal with duplicates.

2.4.4. Address String Grammar

This section provides aformal grammar for address strings.

Tokens. The following regular expressions define the tokens used to parse address strings:

LBRACE:
RBRACE:
LBRACK:
RBRACK:
COLON:
SEM : ;
SLASH. /
COMMVA:
NUVBER:
I D:
STRI NG
ESC.
SYM

W\ {
\\}
W[
\\]

[+-1?[0-9]*\\.?[0-9] +
[a-zA-Z_](?:[a-zA-Z20-9_-]*[a-zA-Z0-9_])?

CCR2CLANANNNTT VNN) ET N (2 AV TV) R
VAWV [Aux] [V X[0-9a-fTA-F][0-9a-fA-F] |\ \\\u[0-9a-f A-F] [0-9a-f A-F] [0- 9a
[.#* %! +-]

16

Using the Qpid Messaging AP

WEPACE: [\\n\\r\\t]+

Grammar. The formal grammar for addresses is given below:

address := name [SLASH subject] [";" options]
nane := (part | quoted)+
subject := (part | quoted | SLASH)*

quoted := STRING / ESC
part := LBRACE / RBRACE/ COLON/ COWA / NUMBER / ID/ SYM

options := nap

map = "{" (keyval ("," keyval)*)? "}"
keyval "= 1D ":" val ue

value := NUMBER / STRING/ ID/ map / list
list :="[" (value ("," value)*)? "]"

Address String Options. The address string options map supports the following parameters:

<name> [/ <subject>] ; {

create: always | sender | receiver | never,
del ete: always | sender | receiver | never,
assert: always | sender | receiver | never,
node: browse | consune,

node: {

type: queue | topic,

durabl e: True | Fal se,

x-declare: { ... <declare-overrides> ... },
X-bi ndi ngs: [<binding_1>, ... <binding_n>]
} 1

link: {

nane: <link-name>,
durabl e: True | Fal se,
reliability: unreliable | at-npbst-once | at-l|east-once | exactly-once,

x-declare: { ... <declare-overrides> ... },
X-bi ndi ngs: [<binding_1>, ... <binding_n>],
X-subscribe: { ... <subscribe-overrides> ... }
}

}

Create, Delete, and Assert Policies

The create, delete, and assert policies specify who should perfom the associated action:
» always: the action is performed by any messaging client

 sender: the action isonly performed by a sender

* receiver: the action is only performed by areceiver

» never: the action is never performed (thisis the default)
Node-Type

The node-type is one of:

* topic: in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be
used to specify other exchange types

17

Using the Qpid Messaging AP

» queue: thisisthe default node-type

2.5. Sender Capacity and Replay

The send method of a sender has an optional second parameter that controls whether the send call is
synchronous or not. A synchronous send call will block until the broker has confirmed receipt of the
message. An asynchronous send call will return before the broker confirms receipt of the message,
allowing for example further send calls to be made without waiting for a roundtrip to the broker for
each message. Thisis desirable where increased throughput isimportant.

The sender maintains alist of sent messages whose receipt has yet to be confirmed by the broker. The
maximum number of such messages that it will hold is defined by the capacity of the sender, which
can be set by the application. If an application tries to send with a sender whose capacity is aready
fully used up, the send call will block waiting for capacity regardless of the value of the sync flag.

The sender can be queried for the available space (i.e. the unused capacity), and for the current count
of unsettled messages (i.e. those held in the replay list pending confirmation by the server). When the
unsettled count is zero, all messages on that sender have been successfully sent.

If the connection fails and is transparently reconnected (see Section 2.10, “Connection Options” for
details on how to control this feature), the unsettled messages for each sender over that connection
will be re-transmitted. This provides a transparent level of reliability. This feature can be controlled
through the link's reliability as defined in the address (see Table 2.3, “Link Properties’). At present
only at-least-once guarantees are offered.

2.6. Receiver Capacity (Prefetch)

By default, areceiver requeststhe next message from the server in responseto each fetch call, resulting
in messages being sent to the receiver one at atime. Asin the case of sending, it is often desirable
to avoid this roundtrip for each message. This can be achieved by alowing the receiver to prefetch
messages in anticipation of fetch calls being made. The receiver needs to be able to store these
prefetched messages, the number it can hold is controlled by the receivers capacity.

2.7. Acknowledging Received Messages

Applications that receive messages should acknowledge their receipt by caling the session's
acknowledge method. As in the case of sending messages, acknowledged transfer of messages to
receivers provides at-least-once reliability, which means that the loss of the connection or a client
crash does not result in lost messages; durable messages are not lost even if the broker is restarted.
Some cases may hot require this however and the reliability can be controlled through alink property
in the address options (see Table 2.3, “Link Properties’).

The acknowledge call acknowledges all messages received on the session (i.e. all message that have
been returned from afetch call on areceiver created on that session).

The acknowledge call also support an optional parameter controlling whether the call is synchronous
or not. A synchronous acknowledge will block until the server has confirmed that it has received
the acknowledgement. In the asynchronous case, when the call returns there is not yet any guarantee
that the server has received and processed the acknowledgement. The session may be queried for
the number of unsettled acknowledgements; when that count is zero all acknowledgements made for
received messages have been successful.

2.8. Receiving Messages from Multiple
Sources

A receiver can only read from one source, but many programs need to be able to read messages from
many sources. In the Qpid Messaging API, a program can ask a session for the “next receiver”; that

18

Using the Qpid Messaging AP

is, the receiver that is responsible for the next available message. The following examples show how
thisisdonein C++, Python, and .NET C#.

Note that to use this pattern you must enable prefetching for each receiver of interest so that the broker
will send messages before a fetch call is made. See Section 2.6, “Receiver Capacity (Prefetch)” for
more on this.

Example 2.12. Receiving M essages from Multiple Sour ces

C++:

Recei ver receiverl = session.createReceiver(addressl);
recei ver 1. set Capaci ty(10);
Recei ver receiver2 = session. createReceiver (address?);
recei ver 2. set Capaci ty(10);

Message nessage = session. nextReceiver().fetch();
std::cout << nessage.getContent() << std::endl;
sessi on. acknow edge(); // acknow edge nessage recei pt

Python:

recei verl = session.receiver(addressl)
receiverl. capacity = 10

recei ver2 = session.receiver (address)
receiver2.capacity = 10

nessage = session. next_receiver().fetch()
print message. content

sessi on. acknow edge()

NET C#

Recei ver receiverl = session. CreateRecei ver (addressl);
recei verl. Capacity 10;
Recei ver receiver2 = session. CreateRecei ver (address?);
recei ver2. Capacity 10;

Message nmessage = new Message();

nmessage = session. Next Receiver (). Fetch();
Consol e. WitelLine("{0}", nessage.GetContent());
sessi on. Acknow edge() ;

2.9. Transactions

Sometimes it is useful to be able to group messages transfers - sent and/or received - on a session
into atomic grouping. This can be done be creating the session as transactional. On a transactional
session sent messages only become available at the target address on commit. Likewise any received
and acknowledged messages are only discarded at their source on commit 8,

8Note that this currently is only true for messages received using a reliable mode e.g. at-least-once. Messages sent by a broker to a receiver
in unreliable receiver will be discarded immediately regardless of transctionality.

19

Using the Qpid Messaging AP

Example 2.13. Transactions

C++:

Connecti on connecti on(broker);
Sessi on session = connection. createTransacti onal Session();

if (smellsCk())
session.conmit();

el se

session. rol | back();

.NET C#:
Connecti on connection = new Connection(broker);
Sessi on session = connection. CreateTransacti onal Session();
if (snellsCk())
session. Commit () ;

el se
sessi on. Rol | back();

2.10. Connection Options

Aspects of the connections behaviour can be controlled through specifying connection options. For
exampl e, connections can be configured to automatically reconnect if the connection to abroker islost.

20

Using the Qpid Messaging AP

Example 2.14. Specifying Connection Optionsin C++, Python, and .NET

In C++, these options can be set using Connecti on: : set Opti on() or by passing in a set of
options to the constructor. The options can be passed in asamap or in string form:

Connection connection("l ocal host:5672", "{reconnect: true}");
try {

connecti on. open();

I SNIP 11!

or

Connection connection("l ocal host:5672");
connection. set Option("reconnect"”, true);
try {

connection. open();

I SNIP 11!

In Python, these options can be set as attributes of the connection or using named arguments in the
Connect i on constructor:

connection = Connection("l ocal host:5672", reconnect=True)
try:

connecti on. open()

Iy SNEP 1Y

or

connection = Connection("l ocal host:5672")
connection.reconnect = True

try:

connecti on. open()

'Y SNIP 11!

In .NET, these options can be set using Connect i on. Set Opti on() or by passing in a set of
options to the constructor. The options can be passed in asamap or in string form:

Connecti on connection= new Connection("local host:5672", "{reconnect:

try {
connecti on. Open();
I SNIP 111

or

Connection connecti on = new Connection("l ocal host:5672");
connection. Set Opti on("reconnect", true);

try {

connection. Open();

I SNIP 11!

See the reference documentation for details in each language.

21

true}")

Using the Qpid Messaging AP

The following table lists the supported connection options.

Table 2.4. Connection Options

option name valuetype semantics

user name string The wusername to use when
authenticating to the broker.

password string The password to use when
authenticating to the broker.

sasl _nmechani sns string The specific SASL mechanisms to
use with the python client when
authenticating to the broker. The
value is a space separated list.

reconnect boolean Transparently reconnect if the
connection islost.

reconnect _ti meout integer Total number of seconds to continue
reconnection attempts before giving
up and raising an exception.

reconnect _limt integer Maximum number of reconnection

attemptsbeforegiving up and raising
an exception.

reconnect _interval _mn

integer representing time in seconds

Minimum number of seconds
between reconnection attempts. The
first reconnection attempt is made
immediately; if that fails, the first
reconnection delay is set to the value
of reconnect _interval _mn;
if that attempt fails, the reconnect
interval increases exponentially until
a reconnection attempt succeeds or
reconnect i nterval _nax is
reached.

reconnect i nterval _nax

integer representing time in seconds

Maximum reconnect interval.

reconnect _i nterval

integer representing time in seconds

Sets both
reconnecti on_i nterval _mn
and
reconnecti on_i nterval _max
to the same value.

hear t beat

integer representing time in seconds

Requests that heartbeats be sent
every N seconds. If two successive
heartbeats are missed the connection
is considered to be lost.

pr ot ocol

string

Sets the underlying protocol used.
The default option is'tcp’. To enable
sd, set to 'sd. The C++ client
additionally supports 'rdma.

t cp- nodel ay

boolean

Set tcp no-delay, i.e. disable Nagle
algorithm. [C++ only]

2.11. Maps and Lists in Message Content

Many messaging applications need to exchange data across languages and platforms, using the native
datatypes of each programming language.

22

Using the Qpid Messaging AP

The Qpid Messaging APl supportsmap and| i st in message content.

formap and | i st objects are shown in the following table.

910 gpecific language support

Table2.5. Map and List Representation in Supported L anguages

Language map list

Python di ct Iist

C++ Vari ant:: Map Vari ant::List

Java MapMessage

.NET Di ctionary<string, Col | ecti on<obj ect >
obj ect >

In all languages, messages are encoded using AMQP's portable datatypes.

Tip

Because of the differences in type systems among languages, the simplest way to provide
portable messages is to rely on maps, lists, strings, 64 bit signed integers, and doubles for
messages that need to be exchanged across languages and platforms.

2.11.1. Qpid Maps and Lists in Python

In Python, Qpid supportsthedi ct and| i st typesdirectly in message content. The following code
shows how to send these structures in a message:

Example 2.15. Sending Qpid Mapsand Listsin Python

from qgpi d. nessagi ng i nport *

111

content = {'Id'
content['colours'] =['red",
content['dinmensions'] = {'length'
content['parts'] = |
content[' specs']

" di mensi ons'
'parts’

SNIP 'l

987654321, 'nane' 'Wdget', 'percent' 0. 99}
‘green', 'white']
: 10.2, 'width' 5.1, "' depth'
[1,2,5], [8,2,5]]
= {'colors' content['colours'],

content[' di mensions'],

content['parts'] }

nessage = Message(cont ent =cont ent)
sender . send(nessage)

The following table shows the datatypes that can be sent in a Python map message, and the
corresponding datatypes that will be received by clientsin Javaor C++.

%Unlike M S, thereis not a specific message type for map messages.
10 Note that the Qpid IMS client supports MapM essages whose values can be nested maps or lists. Thisis not standard JM S behaviour.

23

2.0}

Using the Qpid Messaging AP

Table 2.6. Python Datatypesin Maps

Python Datatype # C++ # Java

bool bool boolean

int int64 long

long int64 long

float double double

unicode string javalang.String
uuid gpid::types::Uuid javautil.UUID
dict Variant::Map javautil.Map
list Variant::List javautil.List

2.11.2. Qpid Maps and Lists in C++

In C++, Qpid definesthethe Var i ant : : Map and Var i ant : : Li st types, which can be encoded
into message content. The following code shows how to send these structures in a message:

24

Using the Qpid Messaging AP

Example 2.16. Sending Qpid Mapsand Listsin C++

usi ng nanmespace qpid::types;
[/ V1L SNIP 1T

Message nessage;

Variant:: Map content;

content["id"] = 987654321
content["name"] = "Wdget";
content["percent"] = 0.99;
Variant::List colours;

col ours. push_back(Variant("red"));
col ours. push_back(Variant("green"));
col ours. push_back(Variant ("white"));
content["col ours"] = col ours;

Vari ant:: Map di mensi ons;

di nensi ons["l ength"] = 10. 2;

di mensi ons["wi dt h"] 5.1;

di nensi ons["dept h"] 2.0;
content["di mensi ons"] = di nensi ons;

Variant::List partl;

part 1. push_back(Variant(1));
part 1. push_back(Variant(2));
part 1. push_back(Variant(5));

Variant::List part?2;

part 2. push_back(Variant(8));
part 2. push_back(Variant(2));
part 2. push_back(Variant(5));

Variant::List parts;

parts. push_back(part1l);
parts. push_back(part2);
content["parts"]= parts;

Vari ant:: Map specs;

specs["col ours"] = col ours;
specs["di nensi ons"] = di nensi ons;
specs["parts"] = parts;
content["specs"] = specs;

encode(content, nessage);

sender. send(nessage, true);

Thefollowing table showsthe datatypesthat can be sent in a C++ map message, and the corresponding
datatypes that will be received by clientsin Java and Python.

25

Using the Qpid Messaging AP

Table2.7. C++ Datatypesin Maps

C++ Datatype # Python # Java

bool bool boolean

uint16 int | long short

uint32 int | long int

uint64 int | long long

int16 int | long short

int32 int | long int

int64 int | long long

float float float

double float double

string unicode javalang.String
gpid::types::Uuid uuid javautil.UUID
Variant::Map dict javautil.Map
Variant::List list javautil.List

2.11.3. Qpid Maps and Lists in .NET

The .NET binding for the Qpid Messaging API binds .NET managed data types to C++ Var i ant
data types. The following code shows how to send Map and List structures in a message:

Example 2.17. Sending Qpid Mapsand Listsin .NET C#

usi ng System
usi ng Org. Apache. Qpi d. Messagi ng;

[/ 111 SNIP I

Di ctionary<string, object> content = new Dictionary<string, object>();
Di ctionary<string, object> subMap = new Dictionary<string, object>();
Col | ecti on<obj ect> col ors = new Col | ecti on<obj ect>();

/1 add sinple types

content["id"] = 987654321;
content["nane"] = "Wdget";
content["percent"] = 0.99;

/1 add nested amgp/ nmap
subMap["nanme"] = "Smth";
subMap["nunber"] = 354;
content["nestedMap"] = subMap;

/1 add an angp/li st

col ors. Add("red");

col ors. Add("green");

col ors. Add("white");
content["col orsList"] = colors;

/1 add one of each supported angp data type
bool nybool = true;

26

Using the Qpid Messaging AP

content["nybool "] = nybool;
byte nmybyte = 4;
content["nybyte"] = nybyte;
untlé nyU ntl6 = 5;
content["myU nt16"] = nyU nt 16;
U nt32 nyU nt32 = 6;
content["myU nt32"] = nyU nt32;
unt64 nyunted4d = 7,
content["myU nt64"] = nyU nt 64;
char mychar = 'h';
content["mychar"] = mychar;

Intl6 nylntl6e = 9;
content["nylnt16"] = nylnt16;

Int32 nylnt32 = 10;
content["nmylnt32"] = nylnt32;

Int64 nylnt64 = 11,
content["nylnt64"] = nylnt 64,

Single nySingle = (Single)l2.12;
content["nySingle"] = nySingle;

Doubl e nyDoubl e = 13.13;
content ["nyDoubl e"] = nyDoubl e;

Quid nyGuid = new Gui d("000102030405060708090a0b0c0d0e0f ") ;
content["nyQuid'] = nyCGuid;

Message nmessage = new Message(content);
Send(nmessage, true);

The following table shows the mapping between datatypesin .NET and C++.

27

Using the Qpid Messaging AP

2.12.

Table 2.8. Datatype M apping between C++ and .NET binding

C++ Datatype # .NET binding
void nullptr

bool bool

uint8 byte

uint16 Ulnt16

uint32 Ulnt32

uint64 Uint64

uint8 char

int16 Int16

int32 Int32

int64 Int64

float Single

double Double

string string &
gpid::types::Uuid Guid

Variant::Map Dictionary<string, object> &
Variant::List Collection<object> 2

astrings are currently interpreted only with UTF-8 encoding.

The Request / Response Pattern

Request / Response applications use the reply-to property, described in Table 2.9, “Mapping to AMQP
0-10 Message Properties’, to allow a server to respond to the client that sent a message. A server sets
up a service queue, with a name known to clients. A client creates a private queue for the server's
response, creates a message for a request, sets the regquest's reply-to property to the address of the
client's response queue, and sends the request to the service queue. The server sends the response to

the address specified in the request's reply-to property.

28

Using the Qpid Messaging AP

Example 2.18. Request / Response Applicationsin C++
This example shows the C++ code for a client and server that use the request / response pattern.

The server creates a service queue and waits for amessage to arrive. If it receives amessage, it sends
amessage back to the sender.

Recei ver receiver = session.createReceiver("service_queue; {create:

Message request = receiver.fetch();

al ways}")

const Address&anp; address = request.getReplyTo(); // Get "reply-to" fromrequ

if (address) {

Sender sender = session.createSender(address); // ... send response to "reply-

Message response("pong!");
sender . send(r esponse) ;
sessi on. acknow edge();

}

The client creates a sender for the service queue, and also creates a response queue that is deleted
when the client closes the receiver for the response queue. In the C++ client, if the address starts with
the character #, it is given a unique name.

Sender sender = session. creat eSender ("service_queue");

Addr ess responseQueue(" #response-queue; {create: al ways, del ete: always}");

Recei ver receiver = session. createReceiver(responseQueue);

Message request;

request. set Repl yTo(responseQueue) ;
request. set Content ("pi ng");

sender. send(request);

Message response = receiver.fetch();

std::cout << request.getContent() << " -> " << response.getContent() << std::

The client sends the string pi ng to the server. The server sends the response pong back to the same
client, using ther epl yTo property.

2.13. Performance Tips

 Consider prefetching messagesfor receivers (see Section 2.6, “ Receiver Capacity (Prefetch)”). This
helps eliminate roundtrips and increases throughput. Prefetch is disabled by default, and enabling
it isthe most effective means of improving throughput of received messages.

* Send messages asynchronously. Again, this helps eliminate roundtrips and increases throughput.
The C++ and .NET clients send asynchronously by default, however the python client defaults to
synchronous sends.

» Acknowledge messages in batches (see Section 2.7, “Acknowledging Received Messages’).
Rather than acknowledging each message individually, consider issuing acknowledgements after n
messages and/or after a particular duration has el apsed.

» Tune the sender capacity (see Section 2.5, “Sender Capacity and Replay”). If the capacity is too
low the sender may block waiting for the broker to confirm receipt of messages, before it can free
up more capacity.

29

e

Using the Qpid Messaging AP

* If you are setting areply-to address on messages being sent by the c++ client, make sure the address
typeis set to either queue or topic as appropriate. This avoids the client having to determine which
type of node is being refered to, which is required when hanling reply-to in AMQP 0-10.

« For latency sensitive applications, setting tcp-nodelay on gpidd and on client connections can help
reduce the latency.

2.14. Cluster Failover

The messaging broker can be run in clustering mode, which provides high reliability through
replicating state between brokers in the cluster. If one broker in a cluster fails, clients can choose
another broker in the cluster and continue their work. Each broker in the cluster also advertises the
addresses of all known brokers 1! . A client can use this information to dynamically keep the list of
reconnection urls up to date.

In C++, the Fai | over Updat es class providesthis functionality:

Example 2.19. Tracking cluster member ship

In C++:

#i ncl ude <qpi d/ messagi ng/ Fai | over Updat es. h>

Connection connection("l ocal host:5672");
connection. set Opti on("reconnect"”, true);

try {

connecti on. open();

std::auto_ptr<Fail over Updat es> updat es(new Fai | over Updat es(connecti on));

In python:

i mport qpid. messaging. util

connection = Connection("l ocal host:5672")
connection.reconnect = True

try:

connecti on. open()

aut o_fetch_reconnect _url s(connecti on)

In.NET C#

usi ng Org. Apache. Qpi d. Messagi ng;

connection = new Connection("l ocal host:5672");

connection. Set Opti on("reconnect", true);

try {

connecti on. Qpen();

Fai | over Updat es fail over = new Fail over Updat es(connecti on);

UThisis done via the amq.failover exchangein AMQP 0-10

30

Using the Qpid Messaging AP

2.15. Logging

To simplify debugging, Qpid provides alogging facility that prints out messaging events.

2.15.1. Logging in C++

The Qpidd broker and C++ clients can both use environment variables to enable logging. Linux and
Windows systems use the same named environment variables and values.

Use QPID_LOG_ENABLE to set thelevel of logging you areinterested in (trace, debug, info, notice,
warning, error, or critical):

export QPI D LOG ENABLE="war ni ng+"

The Qpidd broker and C++ clients use QPID_LOG_OUTPUT to determine where logging output
should be sent. Thisis either afile name or the special values stderr, stdout, or syslog:

export QPID LOG TO FILE="/tnp/ nyclient.out"

From a Windows command prompt, use the following command format to set the environment
variables:

set QPI D_LOG ENABLE=war ni ng+
set QPID LOG TO FI LE=D: \t mp\ mycl i ent. out

2.15.2. Logging in Python

The Python client library supportslogging using the standard Python logging module. The easiest way
to do logging is to use the basicConfig(), which reports all warnings and errors:

from | ogging inport basicConfig
basi cConfig()

Qpidd also provides a convenience method that makes it easy to specify the level of logging desired.
For instance, the following code enables logging at the DEBUG level:

fromqpid.log inport enable, DEBUG
enabl e(" gpi d. messagi ng. i 0", DEBUG

For more information on Python logging, see http://docs.python.org/lib/node425.html. For more
information on Qpid logging, use $ pydoc gpid.log.

2.16. The AMQP 0-10 mapping

This section describes the AMQP 0-10 mapping for the Qpid Messaging API.

Theinteraction with the broker triggered by creating asender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker
to determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transfered to
the default (or nameless) exchange. When sending to an exchange, the message is transfered to that

31

http://docs.python.org/lib/node425.html

Using the Qpid Messaging AP

exchange and the routing key is set to the message subject if oneis specified. A default subject may be
specified in the target address. The subject may also be set on each message individually to override
the default if required. In each case any specified subject is also added as a gpid.subject entry in the
application-headers field of the message-properties.

When receiving from aqueue, any subject in the source addressis currently ignored. Theclient sendsa
message-subscribe request for the queue in question. The accept-mode is determined by thereliability
optioninthelink properties; for unreliablelinksthe accept-modeisnone, for reliablelinksit isexplicit.
The default for a queue isreliable. The acquire-mode is determined by the value of the mode option.
If the mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired.
The exclusive and arguments fields in the message-subscribe command can be controlled using the
x-subscribe map.

When receiving from an exchange, the client creates a subscription queue and binds that to the
exchange. The subscription queue's arguments can be specified using the x-declare map within the
link properties. The reliability option determines most of the other parameters. If the reliability is set
to unreliable then an auto-deleted, exclusive queue is used meaning that if the client or connection
fails messages may be lost. For exactly-once the queue is not set to be auto-deleted. The durability of
the subscription queue is determined by the durable option in the link properties. The binding process
depends on the type of the exchange the source address resolves to.

» For atopic exchange, if no subject is specified and no x-bindings are defined for the link, the
subscription queue is bound using a wildcard matching any routing key (thus satisfying the
expectation that any message sent to that addresswill bereceived fromit). If asubject isspecifiedin
the source address however, it is used for the binding key (this means that the subject in the source
address may be a binding pattern including wildcards).

 For afanout exchange the binding key isirrelevant to matching. A receiver created from a source
address that resolves to afanout exchange receives all messages sent to that exchange regardl ess of
any subject the source address may contain. An x-bindings element in the link properties should be
used if there is any need to set the arguments to the bind.

 For adirect exchange, the subject is used as the binding key. If no subject is specified an empty
string is used as the binding key.

* For aheaders exchange, if no subject is specified the binding arguments simply contain an x-match
entry and no other entries, causing all messages to match. If a subject is specified then the binding
arguments contain an X-match entry set to all and an entry for gpid.subject whose valueisthe subject
in the source address (this means the subject in the source address must match the message subject
exactly). For more control the x-bindings element in the link properties must be used.

« For the XML exchange,'? if a subject is specified it is used as the binding key and an XQuery
is defined that matches any message with that value for gpid.subject. Again this means that only
messages whose subject exactly match that specified in the source address arereceived. If no subject
is specified then the empty string is used as the binding key with an xquery that will match any
message (this means that only messages with an empty string as the routing key will be received).
For more control the x-bindings element in the link properties must be used. A source address that
resolves to the XML exchange must contain either a subject or an x-bindings element in the link
properties asthere is no way at present to receive any message regardless of routing key.

If an x-bindingslist is present in the link options abinding is created for each element within that list.
Each element is a nested map that may contain values named queue, exchange, key or arguments. If
the queue value is absent the queue name the address resolves to isimplied. If the exchange value is
absent the exchange name the address resolvesto isimplied.

The following table shows how Qpid Messaging APl message properties are mapped to AMQP 0-10
message properties and delivery properties. Inthistable s g refersto the Message class defined in the
Qpid Messaging API, np refersto an AMQP 0-10 message- pr oper ti es struct, and dp refersto
an AMQPO0-10del i very- properti es struct.

32

Using the Qpid Messaging AP

Table2.9. Mapping to AMQP 0-10 M essage Properties

Python API C++API 2 AM QP 0-10 Property®

msg.id msg.{ get,set} Messagel d() mp.message _id

msg.subject msg.{ get,set} Subject() mp.application_headers[" gpid.subjeq

msg.user_id msg.{ get,set} Userld() mp.user_id

msg.reply_to msg.{ get,set} ReplyTo() mp.reply_to®

msg.correlation_id msg.{ get,set} Correlationl d() mp.correlation_id

msg.durable msg.{ get,set} Durable() dp.delivery_mode ==

delivery_mode.persi stentd

msg.priority msg.{ get,set} Priority() dp.priority

msg.ttl msg.{ get,set} Ttl() dp.ttl

msg.redelivered msg.{ get,set} Redelivered() dp.redelivered

msg.properties msg.getProperties()/ mp.application_headers
msg.setProperty()

msg.content_type msg.{ get,set} ContentType() mp.content_type

&The .NET Binding for C++ Messaging provides all the message and delivery properties described in the C++ API. See Table 5.13, “.NET
Binding for the C++ Messaging API Class: Message” .

BIn these entries, mp refersto an AMQP message property, and dp refersto an AMQP delivery property.
“Thereply_to is converted from the protocol representation into an address.
INote that msg.durable is a boolean, not an enum.

2.16.1. 0-10 Message Property Keys

The QPID Messaging APl also recognises special message property keys and automatically provides
amapping to their corresponding AM QP 0-10 definitions.

When sending amessage, if the properties contain an entry for x- angp- 0- 10. app-i d, itsvalue
will be used to set the nessage- properti es. app-i d property in the outgoing message.
Likewise, if an incoming message has message- properti es. app-i d set, its value can be
accessed viathe x- angp- 0- 10. app- i d message property key.

When sending a message, if the properties contain an entry for x- angp- 0- 10. cont ent -

encodi ng,

its value will

be used to set the nmessage-properties.content-

encodi ng property in the outgoing message. Likewise, if an incoming message has
message- properties. content-encodi ng set, its vaue can be accessed via the x-
angp- 0- 10. cont ent - encodi ng message property key.

Therouting key (del i very-properties. routing-key) inanincoming messages can be
accessed viathe x- angp- 0- 10. r out i ng- key message property.

If

the timestamp delivery property

is set

in an

incoming message (delivery-

properties.timestanp), the timestamp vaue will be made available via the x-
angp- 0- 10. ti mest anp message property. 13

33

Using the Qpid Messaging AP

Example 2.20. Accessing the AM QP 0-10 Message Timestamp in Python

Thefollowing code fragment checksfor and extracts the message timestamp from areceived message.

try:

nsg = receiver.fetch(tineout=1)

if "x-angp-0-10.ti nestanp” in neg.properties:

print("Ti mestanp=%" % str(nmsg. properties["x-angp-0-10.tinestanp"]))
except Enpty:

pass

Example 2.21. Accessing the AMQP 0-10 Message Timestamp in C++

The same example, except in C++.

nmessagi ng: : Message nsg;
if (receiver.fetch(nmsg, mnmessaging::Duration::SECOND*1)) {

if (msg.getProperties().find("x-angp-0-10.tinestanp") != nsg.getProperties
std::cout << "Tinmestanp=" << nsg.getProperties()["x-angp-0-10.tinestanp"]..
}
}

2.17. Using Message Groups

This section describes how messaging applications can use the Message Group feature provided by
the C++ Broker.

Note

The content of this section assumes the reader is familiar with the Message Group feature as
described in the AMQP Messaging Broker (C++) user's guide. Please read the section Using
Message Groups in the user's guide before using the examples given in this section.

2.17.1. Creating Message Group Queues

The following examples show how to create a message group queue that enforces ordered group
consumption across multiple consumers.

Example 2.22. M essage Group Queue Creation - Python

sender = connection. session().sender("nsg-group-q;" +
" {create:always, delete:receiver," +
node: {x-declare: {argunents:" +
" {'qpid.group_header_ key':'THE- GROUP' ," +
' 'gpid.shared_mnmsg_group':1}}}}")

Using the Qpid Messaging AP

Example 2.23. M essage Group Queue Creation - C++

std::string addr("nmsg-group-q;
" {create:always, delete:receiver,"
node: {x-declare: {argunents:"
" {qgpi d. group_header _key: ' THE- GROUF' , "
' gpi d.shared_nsg_group:1}}}}");
Sender sender = session.createSender (addr);

Example 2.24. M essage Group Queue Creation - Java

Session s = c.createSession(fal se, Session.CLI ENT_ACKNOALEDGE) ;
String addr = "nsg-group-q; {create:always, delete:receiver," +
node: {x-declare: {argunents:" +
" {'qpid.group_header_key':' THE- GROUP' ," +
' 'qpid.shared_nsg _group':1}}}}";
Destination d = (Destination) new AMQAnyDesti nati on(addr);
MessagePr oducer sender = s.createProducer(d);

The example code uses the x-declare map to specify the message group configuration that should be
used for the queue. See the AMQP Messaging Broker (C++) user's guide for a detail ed description of
these arguments. Note that the gpid.group_header_key's value MUST be a string type.

2.17.2. Sending Grouped Messages

When sending grouped messages, the client must add a message property containing the group
identifier to the outgoing message. The group identifier must be a string type. The key used for the
property must exactly match the value passed in the 'qpid.group_header_key' configuration argument.

Example 2.25. Sending Grouped M essages - Python

group = "A"
m = Message(content ="sone data", properties={"THE-GROUP": group})
sender . send(m

group = "B"
m = Message(content ="sone other group's data", properties={"THE-GROUP": group})
sender . send(m

group = "A"
m = Message(content="nore data for group 'A ", properties={"THE- GROUP": group})
sender. send(m

35

Using the Qpid Messaging AP

Example 2.26. Sending Grouped M essages - C++

const std::string groupKey("THE- GROUP");

{
Message nmeg("sone data");
nmsg. get Properties()[groupKey] = std::string("A");
sender . send(nsgQ) ;

}

{
Message nmsg("sone other group's data");
nmsg. get Properties()[groupKey] = std::string("B");
sender . send(nsgQ) ;

}

{
Message nmsg("nore data for group 'A");
nsg. get Properties()[groupKey] = std::string("A");
sender . send(negQ) ;

}

Example 2.27. Sending Grouped M essages - Java

String groupKey = "THE- GROUP";

Text Message tmsgl = s.createText Message("sone data");
tnsgl. set StringProperty(groupKey, "A");
sender. send(tnmsgl);

Text Message tnmsg2 = s.createText Message("sone other group's data");
tnsg2. set Stri ngProperty(groupKey, "B");
sender. send(t nmsg2);

Text Message tnmsg3 = s.createText Message("nore data for group "A");
tnsg3. set Stri ngProperty(groupKey, "A");
sender. send(t nmsg3);

The exampl es above send two groups worth of messages to the queue created in the previous example.
Two messages belong to group "A", and one belongs to group "B". Note that it is not necessary to
complete sending one group's messages before starting another. Also note that there is no need to
indicate to the broker when a new group is created or an existing group retired - the broker tracks
group state automatically.

2.17.3. Receiving Grouped Messages

Since the broker enforces group policy when delivering messages, no special actions are necessary
for receiving grouped messages from the broker. However, applications must adhere to the rules for
message group consumption as described in the AMQP Messaging Broker (C++) user's guide. Refer
to the section Well Behaved Consumers for details.

36

Chapter 3. Using the Qpid JMS client

3.1. A Simple Messaging Program in Java

JMS

The following program shows how to send and receive a message using the Qpid JMS client. IMS
programstypically use INDI to obtain connection factory and destination objectswhich the application
needs. In thisway the configuration is kept separate from the application code itself.

Inthisexample, we createaJNDI context using apropertiesfile, usethe context to lookup aconnection
factory, create and start aconnection, create asession, and lookup adestination from the INDI context.
Then we create a producer and a consumer, send a message with the producer and receive it with the
consumer. This code should be straightforward for anyone familiar with Java JMS.

37

Using the Qpid IMS client

Example3.1. "Helloworld!" in Java

package org. apache. gpi d. exanpl e. j meexanpl e. hel | o;

i mport javax.jnms.*;

i mport j avax. nam ng. Cont ext ;

i mport javax.nam ng. I nitial Context;
i mport java.util.Properties;

public class Hello {

public Hello() {
}

public static void main(String[] args) {
Hell o producer = new Hello();
producer.runTest();

}

private void runTest() {

try {

Properties properties = new Properties();

properties.|load(this.getd ass().getResourceAsStrean("hello.properties"));
Context context = new Initial Context(properties);

Connecti onFactory connecti onFactory

= (Connecti onFactory) context.|ookup("qgpi dConnecti onfactory");
Connecti on connecti on = connecti onFactory. creat eConnection();
connection.start();

Sessi on sessi on=connecti on. creat eSessi on(fal se, Sessi on. AUTO ACKNOALEDGE) ; @
Destination destination = (Destination) context.|ookup("topi cExchange");

MessageProducer nessageProducer = session. createProducer(destination); H
MessageConsuner nessageConsuner sessi on. creat eConsuner (destination); H

Text Message nmessage = session. createText Message("Hello world!");
nmessagePr oducer. send(nessage) ;

nmessage = (Text Message) nessageConsuner.receive();
System out . printl n(message. get Text ());

connection. cl ose();
context.cl ose();

}

catch (Exception exp) {
exp. print StackTrace();

}

}

}

E Loads the INDI properties file, which specifies connection properties, queues, topics, and
addressing options. See Section 3.2, “ Apache Qpid JNDI Properties for AMQP Messaging” for
details.

E Createsthe INDI initial context.

E CreatesaJMS connection factory for Qpid.

38

Using the Qpid IMS client

E CreatesaJMS connection.

E Activatesthe connection.

E Creates a session. This session is not transactional (transactions='false’), and messages are
automatically acknowledged.

Ik Createsadestination for the topic exchange, so senders and receivers can useit.

E Createsaproducer that sends messages to the topic exchange.

E Createsaconsumer that reads messages from the topic exchange.

& Readsthe next available message.

Closes the connection, all sessions managed by the connection, and all senders and receivers
managed by each session.

EZ Closesthe JNDI context.

The contents of the hello.properties file are shown below.

Example 3.2. INDI PropertiesFilefor "Helloworld!" example

java.nanming.factory.initial
= org. apache. gpi d. jndi.PropertiesFilelnitial ContextFactory

connectionfactory.[]jndi nanme] = [Connecti onURL]

connecti onfactory. gpi dConnecti onfactory

= amqgp: // guest: guest @l i enti d/test?brokerlist="tcp://local host:5672
destination.[jndinane] = [address_string]

destinati on. t opi cExchange = anqg.topic

E Defines a connection factory from which connections can be created. The syntax of a
ConnectionURL isgivenin Section 3.2, “Apache Qpid INDI Propertiesfor AMQP Messaging”.

E Defines a destination for which MessageProducers and/or MessageConsumers can be created
to send and receive messages. The value for the destination in the properties file is an address
string as described in Section 2.4, “ Addresses’. In the IMS implementation M essageProducers
are analogous to senders in the Qpid Message API, and MessageConsumers are analogous to
receivers.

3.2. Apache Qpid JNDI Properties for AMQP
Messaging

Apache Qpid defines INDI properties that can be used to specify JMS Connections and Destinations.
Hereisatypical JNDI propertiesfile:

Example 3.3. INDI PropertiesFile

java. nam ng.factory.initial
= org. apache. gpi d.jndi.PropertiesFilelnitial ContextFactory

connectionfactory.[]jndi name] = [Connecti onURL]

connecti onfactory. gpi dConnecti onfactory

= anqp: // guest: guest @l i entid/test?brokerlist="tcp://local host:5672
destination.[jndinane] = [address_string]

destinati on. t opi cExchange = ang.topic

The following sections describe the JINDI properties that Qpid uses.

39

Using the Qpid IMS client

3.2.1. INDI Properties for Apache Qpid

Apache Qpid supports the properties shown in the following table:

3.2.2.

Table 3.1. INDI Properties supported by Apache Qpid

Property

Purpose

connectionfactory.<jndiname>

The Connection URL that the connection factory
uses to perform connections.

gueue.<jndiname>

A IMS queue, which is implemented as an
amg.direct exchange in Apache Qpid.

topic.<jndiname>

A JMS topic, which is implemented as an
amg.topic exchange in Apache Qpid.

destination.<jndiname>

Can be used for defining all amqg destinations,
queues, topics and header matching, using an
address string. 2

@inding URLS, which were used in earlier versions of the Qpid Java JMS client, can still be used instead of address strings.

Connection URLS

In JNDI properties, a Connection URL specifies properties for a connection. The format for a

Connection URL is:

amgp: / /[<user >: <pass>@|[<cl i enti d>] <vi rt ual host >[?<opt i on>=' <val ue>' [&opti on>=

For instance, the following Connection URL specifies a user name, a password, aclient 1D, a virtual
host ("test"), a broker list with a single broker, and a TCP host with the host name “localhost” using

port 5672:

angp: // user nanme: password@l i enti d/test?brokerlist="tcp://|ocal host: 5672

Apache Qpid supports the following propertiesin Connection URLSs:

40

Using the Qpid IMS client

Option

Type

Description

'Prs%ﬁgi%? Connection URL P

SERRF Al

List of one or more broker addresses.

maxprefetch

integer

The maximum number of pre-
fetched messages per consumer. If
not specified, default value of 500 is
used.

Note: You can also set the default
per-consumer prefetch value on a
client-wide basis by configuring the
client using Java system properties.

sync_publish

{'persistent’ | 'all'’}

A sync command is sent after every
persistent message to guarantee that
it has been received; if the value
is 'persistent’, this is done only for
persistent messages.

sync_ack

Boolean

A sync command is sent after every
acknowledgement to guarantee that
it has been received.

use legacy map_msg_format

Boolean

If you are using IMS Map messages
and deploying a new client with any
JMS client older than 0.8 release,
you must set thisto trueto ensurethe
older clients can understand the map
message encoding.

failover

{'singlebroker' | ‘roundrobin’ |
‘failover_exchange' | 'nofailover' |
'<class>"}

This option controls failover
behaviour. The method
si ngl ebr oker usesonly thefirst
broker inthelist, r oundr obi n will
try each broker given in the broker
list until a connection is established,
fail over _exchange connects
to the initial broker given in
the broker URL and will receive
membership updates via the failover
exchange. nof ai | over disables
all retry and failover logic. Any other
value is interpreted as a classname
which must implement the
org. apache. gpid.jms.failg
interface.

The broker list options retri es
and connect del ay (described
below) determine the number of
timesaconnection to abroker will be
retried and the the length of time to
wait between successive connection
attempts before moving on to the
next broker in the list. The failover
option cycl ecount controls the
number of times to loop through
the list of available brokers before
finally giving up.

Defaults to roundr obi n if the
brokerlist contains multiple brokers,

or si ngl ebr oker otherwise.

41

ver. Fai | over

Using the Qpid IMS client

Broker lists are specified using a URL in this format:
brokerlist=<transport>://<host>[:<port>](?<paranp='<val ue>') (&<paranr='<val ue>'
For instance, thisis atypical broker list:

brokerlist="tcp://|ocal host: 5672

A broker list can contain more than one broker address; if so, the connection is madeto the first broker
in the list that is available. In general, it is better to use the failover exchange when using multiple
brokers, sinceit allows applicationsto fail over if a broker goes down.

Example 3.4. Broker Lists
A broker list can specify propertiesto be used when connecting to the broker, such as security options.

This broker list specifies options for a Kerberos connection using GSSAP!I

angp: // guest : guest @est/test?sync_ack='true'
&brokerlist="tcp://ipl:5672?sasl _mechs=" GSSAPI "'

This broker list specifies SSL options:

angp: // guest : guest @est/test ?sync_ack='true'
&brokerlist="tcp://ipl:5672?ssl="true' &ssl _cert_alias="cert1""’

This broker list specifies two brokers using the connectdelay and retries broker options. It also
illustrates the failover connection URL property.

anmgp: // guest: guest @t est ?fai | over =' roundr obi n?cycl ecount ="' 2'"'
&brokerlist="tcp://ipl:5672?retries='5" &onnect del ay='2000' ;tcp://ip2:5672?r

The following broker list options are supported.

42

AR

seconds)

L Y

sasl_mechs

Using the Qpid IMS client

For secure applications, we suggest
CRAM-MD5, DIGEST-MD5, or

Table 3.3. Broker List Option

S

GSSAPL—The—ANONYMOUS
method is not secure. The PLAIN
method is secure only when
used together with SSL. For
Kerberos, sas_mechs must be set
to GSSAPI, sas_protocol must be
set to the principal for the gpidd
broker, e.g. gpidd/, and sad_server
must be set to the host for
the SASL server, eg. sasl.com.
SASL External is supported
using SSL certification, e.g.
ssl ="true' &asl _nmechs=" EX

sadl_encryption

Boolean

If sasl _encryption="true',
the IMS client attempts to negotiate
asecurity layer with the broker using
GSSAPI to encrypt the connection.
Note that for thisto happen, GSSAPI
must be selected as the sasl_mech.

sasl_protocol

Used only for Kerberos.
sasl _protocol must be set to
the principal for the gpidd broker,
e.g. gpi dd/

sasl_server

For Kerberos, sasl_mechs must be
set to GSSAPI, sasl_server must be
set to the host for the SASL server,
e.g.sasl .com

trust_store

path to trust store

trust_store_password

Trust store password

key store

path to key store

key store password

key store password

sd

Boolean

Ifssl =" true', theJMSclientwill
encrypt the connection using SSL.

ssl_verify_hostname

Boolean

When using SSL you can enable
hostname verification by using
ssl _verify_host nane='true
in the broker URL.

sdl_cert_alias

If multiple certificates are present in
the keystore, the aliaswill be used to
extract the correct certificate.

retries

integer

The number of times to retry
connection to each broker in the
broker list. Defaultsto 1.

connectdelay

integer

Length of time (in milliseconds) to
wait before attempting to reconnect.
Defaultsto O.

connecttimeout

integer

Length of time (in milliseconds) to
wait for the socket connection to
succeed. A value of O represents an
infinite timeout, i.e. the connection
attempt will block until established
or an error occurs. Defaultsto 30000.

tcp_nodelay

Boolean

If tcp_nodel ay='true', TCP
packet batching is disabled. Defaults

(TERNAL'

to true since Qpid 0.14.

43

Using the Qpid IMS client

3.3. Java JMS Message Properties

The following table shows how Qpid Messaging APl message properties are mapped to AMQP 0-10
message properties and delivery properties. Inthistable s g refersto the Message class defined in the
Qpid Messaging API, np refersto an AMQP 0-10 message- pr oper ti es struct, and dp refersto
an AMQPO0-10del i very- properti es struct.

Table 3.4. Java JMS Mapping to AM QP 0-10 M essage Properties

Java JM 'S M essage Property AM QP 0-10 Property?

JMSMessagel D mp.message _id

gpid.subj ect? mp.application_headers" gpid.subject"]
IMSXUserlD mp.user_id

IMSReplyTo mp.reply_to°

JMSCorrelationl D

mp.correlation_id

IJMSDeliveryMode

dp.delivery_mode

JM SPriority dp.priority

JM SExpiration dp.ttl¢

JM SRedelivered dp.redelivered

JMS Properties mp.application_headers
JMSType mp.content_type

3 n these entries, np refersto an AMQP message property, and dp refers to an AMQP delivery property.
PThisisacustom IMS property, set automatically by the Java IMS client implementation.
“Thereply_to is converted from the protocol representation into an address.

dm SExpiration = dp.ttl + currentTime

3.4. JIMS MapMessage Types

Qpid supports the Java IMS MapMessage interface, which provides support for maps in messages.
The following code shows how to send aMapMessage in Java JMS.

Using the Qpid IMS client

Example 3.5. Sending a Java JM S M apM essage

i mport java.util.Arraylist;
i mport java.util.HashMap;

i mport java.util.List;

i mport java.util.Mp;

i mport javax.j nms. Connecti on;

i mport javax.jns.Destination

i mport javax.j nms. MapMessage;

i mport javax.j ms. MessageProducer
i mport javax.j ms. Session

i mport java.util.Arrays;
[/ V1L SNIP 1T
MessagePr oducer producer = session.createProducer(queue);

MapMessage m = sessi on. cr eat eMapMessage() ;
m set I ntProperty("1d", 987654321);

m set Stri ngProperty("nane", "Wdget");

m set Doubl eProperty("price", 0.99);

Li st<String> colors = new ArrayList<String>();
col ors. add("red");

col ors. add("green");

col ors. add("white");

m set Qbj ect ("col ours", colors);

Map<St ri ng, Doubl e> di mensi ons = new HashMap<Stri ng, Doubl e>();
di nensi ons. put ("1 engt h", 10. 2);

di nensi ons. put ("w dth",5.1);

di mensi ons. put ("dept h", 2. 0);

m set Obj ect (" di nensi ons", di mensi ons) ;

Li st<Li st<l nteger>> parts = new Arrayli st<Li st<Integer>>();
parts.add(Arrays. asList(new Integer[] {1,2,5}));
parts.add(Arrays. asLi st(new Integer[] {8,2,5}));

m set Obj ect ("parts", parts);

Map<St ri ng, Obj ect > specs = new HashMap<Stri ng, Obj ect>();
specs. put ("col ours", colors);

specs. put ("di mensi ons", di mensi ons);

specs. put ("parts", parts);

m set Obj ect ("specs", specs) ;

producer. send(m;

The following table shows the datatypes that can be sent in a MapMessage, and the corresponding
datatypes that will be received by clientsin Python or C++.

45

Using the Qpid IMS client

Table 3.5. Java Datatypesin Maps

Java Datatype # Python # C++
boolean bool bool

short int | long int16

int int | long int32

long int | long int64

float float float

double float double
javalang.String unicode std::string
javautil.UUID uuid gpid::types::Uuid
java.util.Map? dict Variant::Map
java.util.List list Variant::List

8 n Qpid, maps can nest. This goes beyond the functionality required by the JIM S specification.

3.5. JMS Client Logging

The JMS Client logging is handled using the Simple Logging Facade for Java (SLF4J [http://
www.slf4j.org/]). As the name implies, sif4j is a facade that delegates to other logging systems like
log4j or IDK 1.4 1ogging. For moreinformation on how to configure slf4j for specific logging systems,
please consult the sIf4j documentation.

When using the log4j binding, please set the log level for org.apache.qpid explicitly. Otherwise log4j
will default to DEBUG which will degrade performance considerably due to excessive logging. The
recommended logging level for production is WARN.

Thefollowing exampl e showsthelogging properties used to configure client logging for dlf4j using the
log4j binding. These properties can be placed in alogdj.propertiesfile and placed in the CLASSPATH,
or they can be set explicitly using the- Dl og4j . confi gur ati on property.

Example 3.6. log4j L ogging Properties

| og4j . 1 ogger. org. apache. gpi d=WARN, consol e

| 0g4j

| 0g4j
| 0g4j
| 0g4j
| 0g4j

. appender.
. appender.
. appender.
. appender.

.additivity.org. apache. qpi d=f al se

consol e=or g. apache. | og4j . Consol eAppender
consol e. Threshol d=al |
consol e. | ayout =or g. apache. | og4j . Patt er nLayout

consol e. l ayout . ConversionPattern=% %l % [%{4}] %%

3.6. Configuring the JMS Client

The Qpid JMS Client alows severa configuration options to customize it's behaviour at different
levels of granualarity.

* VM level using VM arguments : Configuration that affects all connections, sessions, consumers
and producers created within that VM.

Ex. - Dmax_pr ef et ch=1000 property specifies the message credits to use.

» Connection level using Connection/Broker properties : Affects the respective connection and
sessions, consumers and produces created by that connection.

46

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/

Using the Qpid IMS client

Ex. angp: // guest : guest @ est/t est ?max_pr ef et ch="1000'
&rokerlist="tcp://1ocal host:5672" property specifiesthe message credits to use.
This overrides any value specified viathe VM argument max_pr ef et ch.

Please refer to the Section 3.2.2, “ Connection URLS" section for a complete list of all properties
and how to use them.

* Destination level using Addressing options : Affects the producer(s) and consumer(s) created using
the respective destination.

Ex. my- queue; {create: always, |ink:{capacity: 10}}, wherecapacity
option specifies the message credits to use. This overrides any connection level configuration.

Please refer to the Section 2.4, “Addresses” section for acompl ete understanding of addressing and
it's various options.

Some of these config options are available at all three levels (Ex. max_pr ef et ch), while othersare
available only at VM or connection level.

47

Using the Qpid IMS client

3.6.1. Qpid JVM Arguments

Table 3.6. Config Options For Connection Behaviour

Property Name

Type

Default Value

Description

gpid.amgp.version

string

0-10

Sets the AMQP version
to be used -
currently supports one
of {0-8,0-9,0-91,0-10} .

The client will
begin negotiation at
the specified version
and only negotiate
downwards if the
Broker does not support
the specified version.

gpid.heartbeat

int

120 (secs)

The heartbeat interval
in seconds. Two
consective misssed
heartbeats will result in
the connection timing
out.

This can aso be set
per connection using
the Connection URL
options.

ignore_setclientID

boolean

false

If aclient ID isspecified
in the connection URL
it's used or else an ID
is generated. If an ID is
specified after it's been
set Qpid will throw an
exception.

Setting this property to
‘true’ will disable that
check and allow you to
set a client 1D of your
choice later on.

48

Using the Qpid IMS client

Table 3.7. Config Options For Session Behaviour

Property Name

Type

Default Value

Description

gpid.session.command_|

iimit

65536

Limits the # of unacked
commands

gpid.session.byte limit

int

1048576

Limits the # of unacked
commands in terms of
bytes

gpid.use_legacy map_méssagan

fase

If set will use the old
map message encoding.
By default the Map
messages are encoded
using the 0-10 map
encoding.

This can also be set
per connection using
the Connection URL
options.

gpid.jms.daemon.dispatcheol ean

false

Controls whether the
Session dispatcher
thread is a daemon
thread or not. If this
system property is set
to true then the Session
dispatcher threads will
be created as daemon
threads. This setting is
introduced in version
0.16.

49

Using the Qpid IMS client

Property Name

l'ype

Derault Value

Description

max_ prefetch .
Tabie 3.8. Config O

int
ptions For Consumg

500 _
or Behaviour

Maximum number of
pre-fetched messages
per consumer.

This can also
be defaulted for
consumers created on
a particular connection
using the Connection
URL options, or
per destination (see
the capacity option
under link properties in
addressing)

gpid.session.max_ack_d

1000 (ms)

Timer interva to
flush message acks
in buffer when
using AUTO_ACK and
DUPS OK.

When using the above
ack modes, message
acks are batched and
sent if one of the
following conditions
are met (which ever
happens first).

* When the ack timer
fires.

o if
un_acked_msg_count
> max_prefetch/2.

The ack timer can be
disabled by setting it to
0.

sync_ack

boolean

false

If set, each message
will be acknowledged
synchronously. When
using AUTO_ACK
mode, you need to
set this to "true", in
order to get the correct
behaviour as described
by the IM S spec.

This is set to false by
default for performance
reasons, therefore by

default AUTO_ACK
behaves smilar to
DUPS OK.

This can also be set
per connection using
the Connection URL
options.

50

Using the Qpid IMS client

Table 3.9. Config Options For Producer Behaviour

Property Name Type Default Value

Description

sync_publish string """ (disabled)

If one of {persistent|
al} is st then
persistent messages or
all messageswill be sent
synchronously.

This can also be set
per connection using
the Connection URL
options.

Table 3.10. Config Options For Threading

Property Name Type Default Value

Description

gpid.thread factory string org.apache.qpid.thread.

Smdifi bseadRectdtyead
factory to use.

If using a real time
JVM, you need to set
the above property to
org. apache. gpi d. t

gpid.rt_thread priority |int 20

Specifies the priority
(1-99) for Rea time
threads created by the

real time thread factory.

51

hread. Real ti

that implements the
interface
or g. apache. qpi d. t

gpid.sync op_timeout

Using the Qpid vt
long 9 i

e

The length of time (in

Table 3.11. Config (

Dptions For 1/0

milliseconds) to wait for
asynchronousoperation
to complete.

For compatibility with
older clients, the
synonym

angj . defaul t _syn
is supported.

ransport. net

tWri te timeol

gpid.tcp_nodelay

boolean

true

Sets the
TCP_NODELAY
property of the
underlying socket. The
default was changed to
true as of Qpid 0.14.

This can also be set
per connection using
the Connection URL
options.

For compatibility with
older clients, the
synonym

anygj . t cp_nodel ay
is supported.

gpid.send_buffer_size

integer

65535

Sets the SO_SNDBUF
property of the
underlying socket.
Added in Qpid 0.16.

For compatibility with
older clients, the
synonym

anygj . sendBuf f er Si
is supported.

e

gpid.receive_buffer_size

integer

65535

Sets the SO RCVBUF
property of the
underlying socket.
Added in Qpid 0.16.

For compatibility with
older clients, the
synonym

anyj . recei veBuf f ¢
is supported.

2r Si ze

gpid.failover_method _tif

nheogt

60000

During failover, this
is the timeout for
each attempt to try
to reestablish the
connection. If a
reconnection attempt
exceeds the timeout, the
entirefailover processis
aborted.

It is only applicable for
AMQP 0-8/0-9/0-9-1
clients.

52

Using the Qpid IMS client

Table 3.12. Config Options For Security

Property Name

Type

Default Value

Description

gpid.sas_mechs

string

PLAIN

The SASL mechanism
to be used. More than
one could be specified
as a comma separated
list.

We currently support
the following
mechanisms {PLAIN |
GSSAPI |
EXTERNAL}.

This can also be set
per connection using
the Connection URL
options.

gpid.sasl_protocol

string

AMQP

When using GSSAPI as
the SASL mechanism,
sasl _protocol

must be set to the
principa for the gpidd
broker, e.g. gpi dd.

This can also be set
per connection using
the Connection URL
options.

gpid.sasl_server_name

string

local host

When using GSSAPI as
the SASL mechanism,
sasl _server must
be set to the host for
the SASL server, eg.
exanpl e. com

This can also be set
per connection using
the Connection URL
options.

53

Using the Qpid IMS client

Table 3.13. Config Options For Security - Standard JVM properties needed
when using GSSAPI asthe SASL mechanism.?

Property Name

Type

Default Value

Description

javax.security.auth.useS|

Libpete@nedsOnly

true

If setto 'false', forcesthe
SASL GASSPI client
to obtain the kerberos
credentials explicitly
instead of obtaining
from the "subject" that
owns the current thread.

java.security.auth.login.

cetmf g

Specifies the jass
configuration file.

Ex-
D ava. security. al

Here is the sample
myjas.conf JASS
configuration file:

com sun. securif
com sun. securif

b

ut h. 1 ogi n. cot

y.jgss.initi
y. aut h. nodul

8Pl ease refer to the Java security documentation for a complete understanding of the above properties.

Using the Qpid IMS client

Table 3.14. Config Options For Security - Using SSL for securing connections
or using EXTERNAL asthe SASL mechanism.

Property Name Type Default Value Description
gpid.ssl_timeout long 60000 Timeout value used
by the Java SSL

engine when waiting on
operations.

gpid.ssl.KeyManagerFaq

hringl gorithm

The key manager
factory algorithm name.
If not set, defaults to
the value returned from
the Java runtime call

KeyManager Fact ory. get Def aul t,

For compatibility with
older clients, the
synonym

gpi d. ssl . keySt or eCert Type

is supported.

gpid.ssl. TrustManagerFz

astamygal gorithm

The trust manager
factory algorithm name.
If not set, defaults to
the value returned from
the Java runtime call
Trust Manager Fact

For compatibility with
older clients, the
synonym

gpi d. ssl . trust St
is supported.

Dry. get Def aul

breCert Type

55

Using the Qpid IMS client

Table 3.15. Config Options For Security - Standard JVM properties needed
when Using SSL for securing connections or using EXTERNAL as the SASL
mechanism.?

Property Name Type Default Value Description
javax.net.sdl .keyStore |string jvm default Specifies the key store
path.

This can also be set
per connection using
the Connection URL
options.

javax.net.ssl .key StorePasstriongl jvm default Specifies the key store
password.

This can also be set
per connection using
the Connection URL
options.

javax.net.sdl.trustStore |string jvm default Specifies the trust store
path.

This can also be set
per connection using
the Connection URL
options.

javax.net.sdl .trustStorePastirayd jvm default Specifies the trust store
password.

This can also be set
per connection using
the Connection URL
options.

@Qpid allows you to have per connection key and trust stores if required. If specified per connection, the VM arguments are
ignored.

56

Chapter 4. Using the Qpid WCF client
4.1. XML and Binary Bindings

The Qpid WCEF client provides two bindings, each with support for Windows .NET transactions.

The AmgpBinding is suitable for communication between two WCF applications. By default it
uses the WCF binary .NET XML encoder (BinaryM essageEncodingBindingElement) for efficient
message transmission, but it can also use the text and M essage Transmission Optimi zation Mechanism
(MTOM) encoders. Here is a traditional service model sample program using the AmgpBinding. It
assumes that the queue "hello_service _node" has been created and configured on the AMQP broker.

Example 4.1. Traditional service model " Helloworld!" example

nanespace Apache. Qoi d. Docunent ati on. Hel | oSer vi ce
{

usi ng System

usi ng System Servi ceMbdel ;

usi ng System Servi ceMbdel . Channel s;

usi ng System Thr eadi ng;

usi ng Apache. Qi d. Channel ;

[ServiceContract]

public interface | HelloService

{

[OperationContract (I sOneWy = true, Action = "*")]
voi d SayHel l o(string greeting);

}

public class Hell oService : |HelloService

{

private static int greetingCount;

public static int G eetingCount

{
get { return greetingCount; }

}

public void SayHel | o(string greeting)

{

Consol e. WitelLine("Service received: " + greeting);
gr eet i ngCount ++;

}

static void Main(string[] args)

{

try

{

AngpBi ndi ng angpBi ndi ng = new AngpBi ndi ng() ;
amgpBi ndi ng. Br oker Host = "l ocal host";
anmgpBi ndi ng. Broker Port = 5672;
Servi ceHost serviceHost = new Servi ceHost (typeof (Hel | oService));
servi ceHost . AddSer vi ceEndpoi nt (t ypeof (1 Hel | oSer vi ce),
angpBi ndi ng, "angp: hell o_servi ce_node");

57

Using the Qpid WCF client

servi ceHost . Open();

/1 Send the service a test greeting

Ui amgpdientUri=new Uri ("angp: ang. di rect ?routi ngkey=hel | o_servi ce_node"
Endpoi nt Address cl i ent Endpoi nt = new Endpoi nt Address(amgpC ientUri);

Channel Fact ory<l Hel | oServi ce> channel Factory =

new Channel Fact ory<I Hel | oSer vi ce>(amgpBi ndi ng, cli ent Endpoint);

| Hel | oServi ce clientProxy = channel Factory. Creat eChannel ();
clientProxy. SayHel | o("G eetings fromWCF client");

/1 wait for service to process the greeting
whil e (Hel |l oService. Geeti ngCount == 0)

{
Thr ead. Sl eep(100) ;

}
channel Factory. C ose();
servi ceHost . C ose();

}
catch (Exception e)

{
Consol e. Wi telLi ne("Exception: {0}", e);
}

}
}
}

The second binding, AmgpBinaryBinding, is suitable for WCF applications that need to inter-operate
with non-WCEF clients or that wish to have direct accessto the raw wire representation of the message
body. It relies on a custom encoder to read and write raw (binary) content which operates similarly to
the ByteStream encoder (introduced in .NET 4.0). The encoder presents an abstract XML infoset view
of the raw message content on input. On output, the encoder doesthe reverse and peels away the XML
infoset layer exposing the raw content to the wire representation of the message body. The application
must do the inverse of what the encoder does to alow the XML infoset wrapper to cancel properly.
This is demonstrated in the following sample code (using the channel programming model) which
directly manipulates or provides callbacks to the WCF message readers and writers when the content
is consumed. In contrast to the AmgpBinding sample where the ssimple greeting is encapsulated in a
compressed SOAP envelope, the wire representation of the message contains the raw content and is
identical and fully interoperable with the Qpid C++ "Hello world!" example.

Example 4.2. Binary "Helloworld!" example using the channel model

nanespace Apache. Qpi d. Sanpl es. Channel . Hel | oWorl d
{

usi ng System

usi ng System Servi ceMbdel ;

usi ng System Servi ceMbdel . Channel s;

usi ng System Servi ceMobdel . Descri pti on;

usi ng System Text;

usi ng System Xm ;

usi ng Apache. Qi d. Channel ;

public class Hell owrld

{
static void Main(string[] args)

{

58

Using the Qpid WCF client

String broker = "local host";
int port = 5672;

String target
String source

"any. t opi c";
"nmy_topic_node";

if (args.Length > 0)

{

broker = args[O0];

}

if (args.Length > 1)
{

port = int.Parse(args[1]);
}

if (args.Length > 2)
{

target = args[2];

}

if (args.Length > 3)
{

source = args[3];

}

AngpBi nar yBi ndi ng bi ndi ng = new AngpBi nar yBi ndi ng() ;
bi ndi ng. Br oker Host br oker
bi ndi ng. Br oker Por t port;

| Channel Fact or y<I | nput Channel > recei ver Factory = bi ndi ng. Bui | dChannel Fact
recei ver Factory. Qpen();

I I nput Channel receiver = receiverFactory. Creat eChannel (new Endpoi nt Addr es
receiver. Qpen();

| Channel Fact or y<I Qut put Channel > sender Fact ory = bi ndi ng. Bui | dChannel Fact o
sender Fact ory. Open() ;

| Qut put Channel sender = sender Factory. Creat eChannel (new Endpoi nt Addr ess("
sender . Qpen() ;

sender . Send(Message. Cr eat eMessage(MessageVer si on. None, "", new Hel | oWrl d

Message nessage = receiver. Receive();
Xm Di cti onaryReader reader = nessage. Get Reader At BodyCont ent s();
whil e (!reader. HasVal ue)

reader. Read() ;

}

byte[] binaryContent = reader.ReadCont ent AsBase64();
string text = Encoding. UTF8. Get Stri ng(bi naryContent);

Consol e. WitelLine(text);

sender Factory. C ose();
recei ver Factory. C ose();
}

}

59

Using the Qpid WCF client

public class Hell oWrl dBi naryBodyWiter : BodyWiter

{
public Hell oWrl dBi naryBodyWiter() : base (true) {}

protected override void OnWiteBodyContents(Xm Di ctionaryWiter witer)

{
byte[] binaryContent = Encodi ng. UTF8. Get Bytes("Hell o world!");

/1 wrap the content:

witer.WiteStartEl enent("Bi nary");
witer.WiteBase64(binaryContent, 0, binaryContent.Length);
}

}

}

Bindings define Channel Factories and Channel Listeners associated with an AM QP Broker. WCF will
frequently automatically create and manage the life cycle of athese and the resulting |Channel objects
used in message transfer. The binding parameters that can be set are:

Table4.1. WCF Binding Parameters

Parameter Default Description

BrokerHost local host The broker's server name. Currently
the WCF channel only supports
connections with a single broker.
Failover to multiple brokers will be
provided in the future.

BrokerPort 5672 The port the broker is listening on.

PrefetchLimit 0 The number of messages to prefetch
from the amgp broker before
the application actually consumes
them. Increasing this number can
dramatically increase the read
performance in some circumstances.

Shared fase Indicates if separate channels to
the same broker can share an
underlying AMQP tcp connection
(provided they also share the same
authentication credentials).

TransferMode buffered Indicates whether the channel's
encoder uses the WCF
BufferManager cache to temporarily
store message content during the
encoding/decoding phase. For small
to medium sized SOAP based
messages, buffered is usualy
the preferred choice. For binary
messages, streamed TransferModeis
the more efficient mode.

4.2. Endpoints

In Qpid 0.6 the WCF Endpoints map to simple AMQP 0-10 exchanges (10utputChannel) or AMQP
0-10 queues (lInputChannel). The format for an |OutputChannel is

60

Using the Qpid WCF client

"angp: ang. direct” or "angp: ny_exchange?r outi ngkey=my_routing key"

and for an lInputChannel is

"angp: ny_queue"

The routing key isin fact a default value associated with the particular channel. Outgoing messages
can always have their routing key uniquely set.

If the respective queue or exchange doesn't exist, an exception is thrown when opening the channel.
Queues and exchanges can be created and configured using gpid-config.

4.3. Message Headers

AM QP specific message headers can be set on or retrieved from the ServiceM odel.Channels.M essage
using the AmgpProperties type.

For example, on outpult:

AngpProperties props = new AngpProperties();

props. Durable = true;

props. PropertyMap. Add(" ny_cust om header", new AngpString("a custom val ue"));
Message nsg = Message. Cr eat eMessage(args);

nsg. Properti es. Add(" AngpProperties", angpProperties);

out put Channel . Send(sg) ;

On input the headers can be accessed from the Message or extracted from the operation context

public void SayHel | o(string greeting)
{
AngpProperties props = (AmgpProperties) QperationContext.
Current. | ncom ngMessageProperti es[" AngpProperties"];
AmgpString extra = (AngpString) props. PropertyMap["my_custom header"];
Consol e. WitelLine("Service received: {0} and {1}", greeting, extra);

}
4.4. Security

Toengage TLS/SSL:

bi ndi ng. Security. Mode = AmgpSecurityMde. Transport;
bi ndi ng. Security. Transport. UseSSL = true;
bi ndi ng. Broker Port = 5671,

Currently the WCF client only provides SASL PLAIN (i.e. username and password) authentication.
To provide a username and password, you can set the DefaultAmgpCredential value in the binding.
This value can be overridden or set for a binding's channel factories and listeners, either by
setting the ClientCredentials as a binding parameter, or by using an AmgpCredential as a binding
parameter. The search order for credentialsisthe AmgpCredential binding parameter, followed by the
ClientCredential s (unless IgnoreEndpointClientCredential s has been set), and finally defaulting to the
DefaultAmgpCredential of the binding itself. Here is a sample using ClientCredentials:

ClientCredentials credentials = new CientCredential s();

61

Using the Qpid WCF client

credenti al s. User Nane. User Nane = "guest";

credenti al s. User Nanme. Password = "guest";

bi ndi ngPar anet ers = new Bi ndi ngPar aret er Col | ecti on();

bi ndi ngPar anet ers. Add(credenti al s);

reader Fact ory = bi ndi ng. Bui | dChannel Fact or y<I | nput Channel >(bi ndi ngPar anet ers) ;

4.5. Transactions

The WCF channel provides a transaction resource manager module and a recovery module that
together provide distributed transaction support with one-phase optimization. Some configuration is
required on Windows machines to enable transaction support (see your installation notes or top level
ReadMe.txt file for instructions). Once properly configured, the Qpid WCF channel acts as any other
System.Transactions aware resource, capable of participating in explicit or implicit transactions.

Server code:

[Oper ati onBehavi or (Transact i onScopeRequi red = true,
Transacti onAut oConpl ete = true)]

public void SayHel | o(string greeting)
{

/1 increnent ExactlyOnceReceived counter on DB

/1 Success: transaction auto conpletes:

}

Because this operation involves two transaction resources, the database and the AMQP message
broker, this operates as a full two phase commit transaction managed by the Distributed Transaction
Coordinator service. If the transaction proceeds without error, both ExactlyOnceReceived is
incremented in the database and the AMQP message is consumed from the broker. Otherwise,
ExactlyOnceReceived is unchanged and AMQP message is returned to its queue on the broker.

For the client code a few changes are made to the non-transacted example. For "exactly once"
semantics, we set the AMQP "Durable’ message property and enclose the transacted activities in a
TransactionScope:

AnmgpProperties nmyDefaults = new AngpProperties();

nyDef aul ts. Durabl e = true;

angpBi ndi ng. Def aul t MessageProperties = nyDefaul ts;

Channel Fact ory<l Hel | oServi ce> channel Factory =

new Channel Fact or y<I Hel | oSer vi ce>(angpBi ndi ng, client Endpoi nt);
| Hel | oService clientProxy = channel Factory. Creat eChannel ();

using (TransactionScope ts = new Transacti onScope())

{
AngpProperties angpProperties = new AngpProperties();
clientProxy. SayHel | o("Geetings fromWCF client");
/1 increnent ExactlyOnceSent counter on DB
ts. Conpl ete();
}

62

Chapter 5. The .NET Binding for the C

++ Messaging Client

The .NET Binding for the C++ Qpid Messaging Client isalibrary that givesany .NET program access

to Qpid C++ Messaging objects and methods.

5.1. .NET Binding for the C++ Messaging

Client Component Architecture

| Dot net exanpl es
| Managed C#

| org.apache. qpi d. nessagi ng. |

|

|

|

| . NET Managed Cal | back | |
|

| sessionreceiver.dll | |
|

|

o m e e e +----+
|

nmanaged \% \%
(. NET) R e
ciiiiiiiiiiiiiiiiiiiiit| oNET Binding Library
unnmanaged | org.apache. qpi d. nessagi ng. dl |
(Native Wn32/64) R T LR +

o +

|
|
| Native exanpl es| |
| Unmanaged C++ | |
|
|

| QPID Messaging C++ Libraries |
| gpid*.dll gnf*.dll |
E o ek T +

This diagram illustrates the code and library components of the binding and the hierarchical

rel ationships between them.

63

The .NET Binding for the
C++ Messaging Client

Table5.1. .NET Bindingfor the C++ Messaging Client Component Ar chitecture

Component Name Component Function

QPID Messaging C++ Libraries The QPID Messaging C++ core run time system

Unmanaged C++ Example Source Programs Ordinary C++ programsthat illustrate using gpid/
cpp Messaging directly in a native Windows
environment.

.NET Messaging Binding Library The .NET Messaging Binding library provides
interoprability between managed .NET programs
and the unmanaged, native Qpid Messaging C+
+ core run time system. .NET programs create
a Reference to this library thereby exposing all
of the native C++ Messaging functionality to
programs written in any .NET language.

.NET Messaging Managed Callback Library An extension of the .NET Messaging Binding
Library that provides message callbacks in a
managed .NET environment.

Managed C# .NET Example Source Programs |Various C# example programs that illustrate
using .NET Binding for C++ Messaging in
the .NET environment.

5.2. .NET Binding for the C++ Messaging
Client Examples

This chapter describes the various sample programs that are available to illustrate common Qpid
Messaging usage.

Table5.2. Example: Client - Server

Example Name Example Description

csharp.example.server Creates a Receiver and listens for messages.
Upon message reception the message content is
converted to upper case and forwarded to the
received message's ReplyTo address.

csharp.example.client Sends a series of messagesto the Server and prints
the original message content and the received
message content.

Table5.3. Example: Map Sender —Map Receiver

Example Name Example Description

csharp.map.receiver Creates aReceiver and listens for amap message.
Upon message reception the message is decoded
and displayed on the console.

csharp.map.sender Creates a map message and sends it to
map.receiver. The map message contains values
for every supported .NET Messaging Binding
data type.

The .NET Binding for the
C++ Messaging Client

5.3..

Table 5.4. Example: Spout - Drain

Example Name

Example Description

csharp.example.spout

Spout is a more complex example of code that
generates a series of messages and sends them
to peer program Drain. Flexible command line
arguments allow the user to specify a variety of
message and program options.

csharp.example.drain

Drain is a more complex example of code that
receives a series of messages and displays their
contents on the console.

Table5.5. Example: Map Callback Sender —Map Callback Receiver

Example Name

Example Description

csharp.map.callback.receiver

Creates a Receiver and listens for a map
message. Upon message reception the message
is decoded and displayed on the console. This
example illustrates the use of the C# managed
code callback mechanism provided by .NET
Messaging Binding Managed Callback Library.

csharp.map.callback.sender

Creates a map message and sends it to
map_receiver. The map message contains values
for every supported .NET Messaging Binding
data type.

Table 5.6. Example - Declare Queues

Example Name

Example Description

csharp.example.declare_queues

A program to illustrate creating objects on a
broker. This program creates a queue used by
spout and drain.

Table5.7. Example: Direct Sender - Direct Receiver

Example Name

Example Description

csharp.direct.receiver

Creates a Receiver and listens for a messages.
Upon message reception the message is decoded
and displayed on the console.

csharp.direct.sender

Creates a series of messages and sends them to
csharp.direct.receiver.

Table5.8. Example: Hello World

Example Name

Example Description

csharp.example.helloworld

A program to send a message and to receive the
same message.

NET Binding Class Mapping to
Underlying C++ Messaging API

This chapter describes the specific mappings between classesin the .NET Binding and the underlying

C++ Messaging API.

65

e O N E T Do To—tHE L+gogfslt:lﬁgrgmg AT oaSS— YO0
C++ Address(const std::string& address);
NET pub|icAddre&(arFHrg§a§tE&§!ndigg nf.?i :?e
T Coristructor
5.3.1. NET Eﬁﬁrﬁﬁé@@a@“mﬁ&?ﬁm gﬁgmﬂ”ﬁms@fﬁs gt
Addressr public Address(string name, string subject, Dictionary<string, object> options);
NET public Address(string name, string subject, Dictionary<string, object> options, string
type);
Copy constructor
C++ Address(const Address& address);
.NET public Address(Address address);
Destructor
C++ ~Address();
NET ~Address();
Finalizer
C++ n‘a
NET IAddress();
Copy assignment operator
C++ Address& operator=(const Address&);
.NET public Address op_Assign(Address rhs);
Property: Name
C++ const std::string& getName() const;
C++ void setName(const std::string&);
.NET public string Name { get; set; }
Property: Subject
C++ const std::string& getSubject() const;
C++ void setSubject(const std::string&);
.NET public string Subject { get; set; }
Property: Options
C++ const gpid::types::Variant::Map& getOptions() const;
C++ gpid::types::Variant::Map& getOptions();
C++ void setOptions(const gpid::types::Variant::Map&);
.NET public Dictionary<string, object> Options{ get; set; }
Property: Type
C++ std::string getType() const;
C++ void setType(const std::string&);
.NET public string Type { get; set; }
Miscellaneous
C++ std::string str() const;
NET public string ToStr();
Miscellaneous
C++ operator bool() const;
.NET n/a
Miscellaneous
C++ bool operator !() const;
NET n/a

66

NET n/a
Constructor
C++ Connection(const THE: IENE& NG féiom@ gpid::types:Variant:Map& options =
qpid::types::V ariantcMapflessaging Client
.NET public Connection(string url);
5.3.2. [NET Bipdéhgdatthe, Gt essagiagd Pl Class:
Connection Constructor
C++ Connection(const std::string& url, const std::string& options);
NET public Connection(string url, string options);
Copy Constructor
C++ Connection(const Connection&);
.NET public Connection(Connection connection);
Destructor
C++ ~Connection();
.NET ~Connection();
Finalizer
C++ n‘a
.NET IConnection();
Copy assignment operator
C++ Connection& operator=(const Connection&);
NET public Connection op_Assign(Connection rhs);
Method: SetOption
C++ void setOption(const std::string& name, const gpid::types::Variant& value);
.NET public void SetOption(string name, object value);
Method: open
C++ void open();
.NET public void Open();
Property: isOpen
C++ bool isOpen();
.NET public bool 1sOpen { get; }
Method: close
C++ void close();
NET public void Clos«();
Method: createTransactional Session
C++ Session createT ransacti onal Session(const std::string& name = std::string());
.NET public Session CreateTransactional Session();
.NET public Session CreateTransactional Session(string name);
Method: createSession
C++ Session createSession(const std::string& name = std::string());
NET public Session CreateSession();
.NET public Session CreateSession(string name);
Method: getSession
C++ Session getSession(const std::string& name) const;
.NET public Session GetSession(string name);
Property: AuthenticatedUsername
C++ std::string getAuthenticatedUsername();
.NET public string GetA uthenticatedUsername();

67

The .NET Binding for the
C++ Messaging Client

5.3.3. .NET Binding for the C++ Messaging API Class:
Duration

Table5.11. .NET Binding for the C++ Messaging API Class. Duration

.NET Binding Class. Duration

Language |Syntax
C++ class Duration
.NET public ref class Duration

Constructor
C++ explicit Duration(uint64_t milliseconds);
.NET public Duration(ulong mS);

Copy constructor

C++ n/a
NET public Duration(Duration rhs);

Destructor
C++ default
.NET default

Finalizer
C++ n/a
NET default
Property: Milliseconds

C++ uint64_t getMilliseconds() const;
.NET public ulong Milliseconds { get; }

Operator: *
C++ Duration operator* (const Duration& duration, uint64 _t multiplier);
.NET public static Duration operator * (Duration dur, ulong multiplier);
.NET public static Duration Multiply(Duration dur, ulong multiplier);
C++ Duration operator* (uint64_t multiplier, const Duration& duration);
NET public static Duration operator * (ulong multiplier, Duration dur);
.NET public static Duration Multiply(ulong multiplier, Duration dur);

Constants
C++ static const Duration FOREVER;
C++ static const Duration IMMEDIATE;
C++ static const Duration SECOND;
C++ static const Duration MINUTE;
.NET public sealed class DurationConstants
.NET public static Duration FORVER,;
.NET public static Duration IMMEDIATE;
.NET public static Duration MINUTE;
.NET public static Duration SECOND;

68

The .NET Binding for the
C++ Messaging Client

5.3.4. .NET Binding for the C++ Messaging API Class:
FailoverUpdates

Table5.12. NET Binding for the C++ Messaging API Class: Failover Updates

.NET Binding Class. Failover Updates

Language |Syntax
C++ class FailoverUpdates
.NET public ref class FailoverUpdates

Constructor
C++ FailoverUpdates(Connection& connection);
.NET public FailoverUpdates(Connection connection);

Destructor
C++ ~FailoverUpdates();
.NET ~FailoverUpdates();

Finalizer

C++ n‘a
.NET IFailoverUpdates();

69

C++ DOOI getRedelivered() const,
C++ void setRedelivered(bool);
.NET public bool Redelisltgeeq\'{ée%%i r*q for the
C++ Midsstimpdg Seiiferaperty
C.\+.+.—-.- i\ void setProperty(const std Jstri ng& consI qpld ‘types:: Varlant&n) h.
5.3.5. [MET Binding=tokilmdateessaging APt Class:
Mess age Property: Properties
C++ const gpid::types::Variant::Map& getProperties() const;
C++ gpid::types::Variant::Map& getProperties();
.NET public Dictionary<string, object> Properties { get; set; }
Method: SetContent
C++ void setContent(const std::string&);
C++ void setContent(const char* chars, size t count);
.NET public void SetContent(byte[] bytes);
.NET public void SetContent(string content);
.NET public void SetContent(byte[] bytes, int offset, int size);
Method: GetContent
C++ std::string getContent() const;
.NET public string GetContent();
.NET public void GetContent(byte]] arr);
NET public void GetContent(Collection<object> __ p1);
.NET public void GetContent(Dictionary<string, object> dict);
Method: GetContentPtr
C++ const char* getContentPtr() const;
.NET n/a
Property: ContentSize
C++ size t getContentSize() const;
.NET public ulong ContentSize { get; }
Struct: EncodingException
C++ struct EncodingException : gpid::types::Exception
NET n/a
Method: decode
C++ void decode(const Message& message, qpid::types:Variant::Map& map, const
std::string& encoding = std::string());
C++ void decode(const Message& message, gpid::types:Variant:List& list, const
std::string& encoding = std::string());
NET n/a
Method: encode
C++ void encode(const gpid::itypes:Variant:Map& map, Message& message, const
std::string& encoding = std::string());
C++ void encode(const qpid::itypes::Variant::List& list, Message& message, const
std::string& encoding = std::string());
NET n/a
Method: AsString
C++ n/a
NET public string AsString(object obyj);
.NET public string ListAsString(Collection<object> list);
.NET public string MapAsString(Dictionary<string, object> dict);

70

pestructor

C++ ~Receiver();
NET ~Receiver(); The NET Binding for the
C++ Messagiri@izent
C++ n/a
5.3.6. [NET Brasltpg for the C++ Messaging API Ciass:
Receiver Copy assignment operator
C++ Receiver& operator=(const Receiver&);
NET public Receiver op_Assign(Receiver rhs);
Method: Get
C++ bool get(Message& message, Duration timeout=Duration::FOREVER);
NET public bool Get(Message mmsgp);
NET public bool Get(Message mmsgp, Duration durationp);
Method: Get
C++ Message get(Duration timeout=Duration::FOREVER);
.NET public Message Get();
.NET public Message Get(Duration durationp);
Method: Fetch
C++ bool fetch(Message& message, Duration timeout=Duration;:FOREVER);
.NET public bool Fetch(M essage mmsgp);
NET public bool Fetch(Message mmsgp, Duration duration);
Method: Fetch
C++ Message fetch(Duration timeout=Duration:;:FOREV ER);
NET public Message Fetch();
NET public Message Fetch(Duration durationp);
Property: Capacity
C++ void setCapacity(uint32 _t);
C++ uint32_t getCapacity();
.NET public uint Capacity { get; set; }
Property: Available
C++ uint32_t getAvailable();
NET public uint Available{ get; }
Property: Unsettled
C++ uint32_t getUnsettled();
.NET public uint Unsettled { get; }
Method: Close
C++ void close();
.NET public void Close();
Property: 1sClosed
C++ bool isClosed() const;
.NET public bool IsClosed { get; }
Property: Name
C++ const std::string& getName() const;
NET public string Name{ get; }
Property: Session
C++ Session getSession() const;
.NET public Session Session { get; }

71

The .NET Binding for the
C++ Messaging Client

5.3.7. .NET Binding for the C++ Messaging API Class:

Sende

Alable 5.15. .NET Binding foNHFCHINf28S Y& PI Class: Sender
Language |Syntax
C++ class Sender
.NET public ref class Sender
Constructor
.NET ‘Constructed object is returned by Session.CreateSender
Copy constructor
C++ Sender(const Sender&);
.NET public Sender(Sender sender);
Destructor
C++ ~Sender();
NET ~Sender();
Finalizer
C++ n/a
NET ISender()
Copy assignment operator
C++ Sender& operator=(const Sender&);
.NET public Sender op_Assign(Sender rhs);
Method: Send
C++ void send(const Message& message, bool sync=false);
.NET public void Send(M essage mmsgp);
.NET public void Send(M essage mmsgp, bool sync);
Method: Close
C++ void close();
.NET public void Closg();
Property: Capacity
C++ void setCapacity(uint32_t);
C++ uint32_t getCapacity();
.NET public uint Capacity { get; set; }
Property: Available
C++ uint32_t getAvailable();
.NET public uint Available{ get; }
Property: Unsettled
C++ uint32_t getUnsettled();
.NET public uint Unsettled { get; }
Property: Name
C++ const std::string& getName() const;
NET public string Name{ get; }
Property: Session
C++ Session getSession() const;
.NET public Session Session { get; }

72

oTT

VOIU Teleasa| IvViessdjed),

.NET public void Release(Message __ pl);
The NET BG4S
C++ void sync(bool blocktiug)essaging Client
NET public void Sync();
5.3.8. [NET Bindifug ok the) C++ Messaging API Class:
sSession Property: Receivable
C++ uint32_t getReceivable();
.NET public uint Receivable { get; }
Property: UnsettledAcks
C++ uint32_t getUnsettledAcks();
.NET public uint UnsetledAcks { get; }
Method: NextReceiver
C++ bool nextReceiver(Receiver&, Duration timeout=Duration::FOREVER);
.NET public bool NextReceiver(Receiver rcvr);
.NET public bool NextReceiver(Receiver rcvr, Duration timeout);
Method: NextReceiver
C++ Receiver nextReceiver(Duration timeout=Duration::FOREVER);
.NET public Receiver NextReceiver();
.NET public Receiver NextReceiver(Duration timeout);
Method: CreateSender
C++ Sender createSender(const Address& address);
.NET public Sender CreateSender(Address address);
Method: CreateSender
C++ Sender createSender(const std::string& address);
.NET public Sender CreateSender(string address);
Method: CreateReceiver
C++ Receiver createReceiver(const Address& address);
.NET public Receiver CreateReceiver(Address address);
Method: CreateReceiver
C++ Receiver createReceiver(const std::string& address);
.NET public Receiver CreateReceiver(string address);
Method: GetSender
C++ Sender getSender(const std::string& name) const;
.NET public Sender GetSender(string name);
Method: GetReceiver
C++ Receiver getReceiver(const std::string& name) const;
.NET public Receiver GetReceiver(string name);
Property: Connection
C++ Connection getConnection() const;
.NET public Connection Connection { get; }
Property: HasError
C++ bool hasError();
.NET public bool HasError { get; }
Method: CheckError
C++ void checkError();
.NET public void CheckError();

73

The .NET Binding for the
C++ Messaging Client

5.3.9. .NET Binding Class: SessionReceiver

The SessionReceiver class provides a convenient callback mechanism for Messages received by all
Receivers on agiven Session.

usi ng Org. Apache. Qpi d. Messagi ng;
usi ng System

nanespace O g. Apache. Qi d. Messagi ng. Sessi onRecei ver

{
public interface | SessionReceiver
{
voi d Sessi onRecei ver (Recei ver receiver, Message nmessage);
}
public class Call backServer
{
public Call backServer (Session session, |SessionReceiver call back);
public void O ose();
}
}

To use this class a client program includes references to both Org.Apache.Qpid.Messaging
and Org.Apache.Qpid.Messaging.SessionReceiver. The calling program creates a function that
implementsthe | SessionReceiver interface. Thisfunction will be called whenever messageisreceived
by the session. The callback process is started by creating a CallbackServer and will continue to run
until the client program calls the CallbackServer.Close function.

A complete operating example of using the SessionReceiver callback is contained in cpp/bindings/
gpid/dotnet/examples/csharp.map.callback.receiver.

74

