Programming in Apache Qpid

Cross-Platform AMQP Messaging
in Java JMS, .NET, C++, and Python

Programming in Apache Qpid: Cross-Platform AMQP Messaging in
Java JMS, .NET, C++, and Python

Table of Contents

O [gL oo (0 1o o R PP PPPPTI 1
2. Using the QPid MeSSaginNg APlouuiiiiii e e e 2
2.1. A Simple Messaging Program in CH ... 2
2.2. A Simple Messaging Program in PythOnoiiiiiiiii e 4
2.3. A Simple Messaging Program in .NET CH ..o 4
24, AQAIESSES ..ottt 6
241, ACAIrESS SIINGS ...eevveneieeii ettt ettt ettt e e eeena e eenans 7
24,2, SUDJECES ..ttt 8
2.4.3. Adress String OPLIONSuuuiiiiiiieeeiii et 11
2.4.4, Adress StiNg GIamMIMareeeeueneeieiie et e e e eenans 18

2.5. Sender CapaCity and REPIAYcveeueiiiiii et 19
2.6. Receiver CapaCity (PrefefCh)ieee e 20
2.7. Acknowledging RECEIVED MESSA0EScuuuniiiiiiieee ittt 20
2.8. Receiving Messages from MUltiple SOUICESveiiiiiieiiiiieeiei e 20
2.9, THANSACLIONS ...ttt ettt e ettt et e et et e et ettt e e e b e e e enan s 21
2.10. CONNECLION OPLIONS ... eeeetteeeeiti e ettt e et e e et e e et e e e e et e e e ee e e e eaba e e eenne e eeenes 22
2.11. Maps in MeSSAgE CONLENTeeuuiiiiii ettt e eeneans 24
2.11.1. Qpid Maps iN PYThONcooiiiiiii e 25
2.11.2. QPid M@PS iN CH oottt 26
2.11.3. QPid MapS iN INET ..ottt 27

2.12. The Request / RESPONSE PaTEINciiiiieiiii et 29
2.13. PerfOrMANCE TIPS c.vuueeeitieeeeii ettt ettt ettt ettt ettt e et e e e rb e e enaans 30
214, CIUSIEr FaAllOVED ...ttt e 31
P S oo o 1 o TSP PP TR SPPPPT 31
280 I oo o1 o I T T O PR 32
2.15.2. Logging in PYINONcoouuniiii e 32

2.16. The AMQP 0-10 MBEPPING ...eevrenetintieteeii ettt et e e e e e eei e e ena e eennans 32
3.Using the QPid IMS ClIENToiieii et 35
3.1. A Simple Messaging Program in JaVa IMSoooiiiiiiiiiii e 35
3.2. Apache Qpid JNDI Properties for AMQP MESSagINGuuevevrrneiiiiieiiiiiieeeiiieeeennens 37
3.2.1. INDI Properties for Apache QpPidvveiiiiiieiiiii e 38
3.2.2. CONNECHION URLS ...ttt 38

3.3. Java IMS MESSATE PrOPEITIES ...cevvuieiiiii ettt ettt et e e e e eees 41
3.4, IMS MBPMESSAGE TYPES ... eerieieieirt ettt ettt ettt e e e e e e e e ea e ens 41
3.5, IMS ClieNt LOGGING - eeettnetentiietetti ettt ettt e et e et e e et e e e et e e e enaes 43
4. Using the QPid WECE CHENE ...t 44
4.1. XML and Binary BiNGiNGSccoouuiiiiiiiaiiii et 44
A.2. ENOPOINS ..ttt ettt e e ettt e e e e e e e e ene 48
4.3. MESSAPE HBAUEIS ...ttt e 49
A4, SECUEY ettt ettt ettt ettt e et e e et et e e ettt e e et e b e e e e e e e 49
A5, TIANSACHIONS ... eeeeeiie ettt ettt ettt ettt e et b e et et e e e et e e e e b 50
5. The .NET Binding for the C++ Messaging Clientcooiiiiiiiiiiii e 51
5.1. .NET Binding for the C++ Messaging Client Component Architecture.......................... 51
5.2. .NET Binding for the C++ Messaging Client EXamples...........ocooviiieiiiinieiiiineeeeiie, 52
5.3. .NET Binding Class Mapping to Underlying C++ Messaging APlcccoveviiiiiiiennnnn. 54
5.3.1. .NET Binding for the C++ Messaging APl Class: Address............ccooeveeeviinienenns 54
5.3.2. .NET Binding for the C++ Messaging APl Class: Connectionccc.uune... 55
5.3.3. .NET Binding for the C++ Messaging APl Class: Durationcccceeeeeevnnnnn. 57
5.3.4. .NET Binding for the C++ Messaging APl Class: FailoverUpdates...................... 58
5.3.5. .NET Binding for the C++ Messaging APl Class: MeSsage.............ccovevvvvenenenn. 59
5.3.6. .NET Binding for the C++ Messaging APl Class: RECEIVEYcoeevvvviiieeennnnnn. 62

Programming in Apache Qpid

5.3.7. .NET Binding for the C++ Messaging APl Class; Sender
5.3.8. .NET Binding for the C++ Messaging API Class: Session............
5.3.9. .NET Binding for the C++ Messaging APl Class: SessionReceiver

List of Tables

2.1 AQAreSS SIHNQG OPLIONSeieeiie ettt ettt et e e et e e et e e e e eaa s 16
2.2. NOOE PrOPEITIES ...ttt ettt e et e et e e e e 16
2.3, LiNK PrOPertiEs ...ttt e e e eae 17
2.4, CONNECLION OPLIONS ... eeeeitn ettt ettt ettt ettt ettt et et et et et e e e e e enereeenbe e e ennans 23
2.5. Python DatatyPes iN MaIS ... ccceueneieiii ettt ettt ettt e e e e ennes 25
2.6. CH+ Da@yPeS iN IM@PS .. .ceviiieiiiii ettt ettt ettt e et e et et et e e e e 27
2.7. Datatype Mapping between C++ and .NET bindingc.ooviiiiiiiiiiii e 29
2.8. Mapping to AMQP 0-10 MeSSage Propertiesoveeuiiieiiiii e 33
3.1. INDI Properties supported by Apache QPidc.uuiiiiiiiiieiiii e 38
3.2. ConNECLiON URL PrOPEIMIES .. .coiiiiieiieiiie ettt ettt e et e e et e e e e e eeees 38
3.3, BroKer LiSt OPLIONSuuieiiiiiieeeiit ettt 40
3.4. Java IMS Mapping to AMQP 0-10 Message Propertiesovevevenieieiiineeiiiieecei e 41
3.5. Java DAtatyPeS iN MBS ... ceeri ettt 43
4.1. WCF Binding Par@MELErScoeeeiieiieii ettt ettt ettt ettt e e e e e e enees 48
5.1. .NET Binding for the C++ Messaging Client Component Architecture.............cccoooevvvvinienennn. 51
5.2. EXAMPIE 1 ClIENE = SEIVEL ...ttt e et e e s 52
5.3. Example : Map Sender — Map RECEIVEYoiiiiiiiieiiiii et 52
5.4. EXaMPIE : SPOUL = DIBIN ..ceutiiiiiiiiee ettt ettt ettt e e ettt e e e e et e e e enan e eeen 53
5.5. Example : Map Callback Sender — Map Callback RECEIVESc.uiviiiiiiiiiiiiic e, 53
5.6. Example - DEClare QUEUESccoeiuieeiiii ettt ettt ettt e e e ne s 53
5.7. Example: Direct Sender - DIireCt RECEIVESiiiiiiiiieiiiii e 53
5.8. Examples HEIO WOITA ... oo 53
5.9. .NET Binding for the C++ Messaging APl Class: Adressoveviiiiiieiiiiiieciiineeeeiieeees 54
5.10. .NET Binding for the C++ Messaging APl Class: CONNECLIONcccuuieeiiiiiieeiiiiineeeeiinnnn, 55
5.11. .NET Binding for the C++ Messaging APl Class, DUrationccouuuiveiiiiinieeiiiineeeeiinnnn. 57
5.12. .NET Binding for the C++ Messaging APl Class: FailoverUpdates.............ccooevvvviiiiiiiinnneenns 58
5.13. .NET Binding for the C++ Messaging APl Class: MESSA0eveviiviiieiiiiieeeeiiieeeeeie 59
5.14. .NET Binding for the C++ Messaging APl Class; RECEIVEScoovviiiiiiiiiiiiiiiiiieeecie, 62
5.15. .NET Binding for the C++ Messaging APl Class: SENCEroveviiiiiieiiiiiiieeei e 64
5.16. .NET Binding for the C++ Messaging APl Class; SESSIONcccuvuieiiiiiiieeiiiiieeeciiie e 65

List of Examples

2.1 "HEO WOTTI™ TN Cr oo et ettt e e et e e ee e eee 3
2.2. "Hello WOrld!™ iN PYERONee e e e 4
2.3. "HEo WOrTA!I™ iN INET CH ..ottt e 5
2. QUEUES ...ttt et h e h e e et et e ea et e e e e aeaae 6
S oo ox: ST PSPPSR 7
2.6. USING SUDJECES ..t eeet ettt ettt ettt e ettt s e ettt e e et et e e e et e e eeaa e eee 9
2.7. Subjects With MUILI-WOID KEYScoeeeiiii e 10
2.8. ASSEITIONS ON NOGES ...ttt et ettt et et e e e b e e e 12
2.9. Creating a Queue AULOMALTCAITYuuniiiiiieee e 12
2.10. BrowSIiNG @ QUEUEceutineeeeti ettt ettt et e et e e e et et e e e et e et et b e et e e e e n e e enaans 13
2.11. Using the XML EXChangeooieiiiiiii e 15
2.12. Receiving Messages from MUItiple SOUICEScoouviieiiiiiieee e 21
P R I = 0= o (o PP PPTT PP 22
2.14. Specifying Connection Optionsin C++ and Python ..o, 23
2.15. Sending QPid Maps in PYtNONociiiiiiiiii e 25
2.16. Sending QPId MaPS IN Crr oo e e 26
2.17. Sending QPid MapS in INET CHooiiiieiiii ettt 28
2.18. Request / Response AppliCationS iN C oo.uuiiiiii e 30
2.19. Tracking cluster MEmMDErSNIPoouuiiii e 31
3L "HETO WOTTAI™ TN JBVA ..ttt 36
3.2. INDI Properties File for "Hello world!" examplecoooiiiiiiiiiii e 37
3.3, INDI PropertieS File ...c.euneiiii et 38
Bl BIOKEN LISES ..iiiiiieiiiti ettt et ettt et et ettt et e e e e aee 39
3.5. Sending @ Java IMS MaPIMESSAEcovuieieiii et ettt et e e e e e e e e e 42
3.6. 1004] LOQQING PrOPEITIESceeiiieieii ettt et e e e e e 43
4.1. Traditional service model "Hello world!™ exampleoviieiiiiiiiiiic e 45
4.2. Binary "Hello world!" example using the channel model ... 47

Vi

Chapter 1. Introduction

Apache Qpid is areliable, asynchronous messaging system that supports the AM QP messaging protocol
in several common programming languages. Qpid is supported on most common platforms.

» On the Java platform, Qpid uses the established Java IMS API [http://java.sun.com/products/ims/].

» For Python, C++, and .NET, Qpid defines its own messaging API, the Qpid Messaging API, which is
conceptualy similar in each.

On the .NET platform, Qpid also provides a WCF bhinding.

* Ruby will also use the Qpid Messaging API, which will soon be implemented. (Ruby currently uses an
API that is closely tied to the AMQP version).

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

Chapter 2. Using the Qpid Messaging
API

The Qpid Messaging API is quite ssmple, consisting of only a handful of core classes.

» A message consists of astandard set of fields (e.g. subj ect, r epl y-t 0), an application-defined set
of properties, and message content (the main body of the message).

A connection represents a hetwork connection to aremote endpoint.

» A session provides a sequentially ordered context for sending and receiving messages. A session is
obtained from a connection.

» A sender sends messages to a target using the sender . send method. A sender is obtained from a
session for agiven target address.

» A receiver receives messages from a source using the r ecei ver. f et ch method. A receiver is
obtained from a session for a given source address.

The following sections show how to use these classes in a simple messaging program.

2.1. A Simple Messaging Program in C++

The following C++ program shows how to create a connection, create a session, send messages using a
sender, and receive messages using areceiver.

Using the Qpid Messaging API

Example 2.1. "Héeloworld!" in C++

#i ncl ude <qpi d/ messagi ng/ Connecti on. h>
#i ncl ude <qpi d/ messagi ng/ Message. h>

#i ncl ude <qpi d/ messagi ng/ Recei ver. h>
#i ncl ude <qpi d/ messagi ng/ Sender . h>

#i ncl ude <qpi d/ messagi ng/ Sessi on. h>

#i ncl ude <i ostreane
usi ng namespace gpi d: : messagi ng;

int main(int argc, char** argv) {
std::string broker = argc > 1 ? argv[1l] : "local host:5672";
std::string address = argc > 2 ? argv[2] : "ang.topic";

std::string connectionOptions = argc > 3 ? argv[3] : ;

Connection connecti on(broker, connectionOptions);
try {

connecti on. open();

Sessi on session = connection. createSession();

Recei ver receiver = session.createReceiver(address);
Sender sender = session. createSender (address);

sender . send(Message("Hello world!"));

Message nmessage = receiver.fetch(Duration:: SECOND * 1);
std::cout << nmessage.getContent() << std::endl;
sessi on. acknow edge(); H

connection.close(); W
return O;

} catch(const std::exception& error) {
std::cerr << error.what() << std::endl
connection. cl ose();
return 1,

—

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

Acknowledges receipt of al fetched messages on the session. This informs the broker that the
messages were transferred and processed by the client successfully.

Closesthe connection, all sessions managed by the connection, and all sendersand receivers managed
by each session.

[o] NN ME

Using the Qpid Messaging API

2.2. A Simple Messaging Program in Python

The following Python program shows how to create a connection, create a session, send messages using
a sender, and receive messages using a receiver.

Example 2.2. " Helloworld!" in Python

i mport sys

from qgpi d. nessagi ng i nport *

broker = "l ocal host:5672" if |en(sys.argv)<2 else sys.argv[1]
address = "ang.topic" if len(sys.argv)<3 else sys.argv|[2]

connection = Connection(broker)

try:
connecti on. open()
sessi on = connecti on. sessi on()

sender = session. sender (address)
recei ver = session.receiver(address) H#

sender . send(Message("Hello world!"));

nessage = receiver.fetch(tinmeout=1)
print message. content
sessi on. acknow edge() H

except Messagi ngError, m
print m

finally:
connecti on. cl ose()

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

Acknowledges receipt of all fetched messages on the session. This informs the broker that the
messages were transfered and processed by the client successfully.

Closesthe connection, al sessions managed by the connection, and all sendersand receivers managed
by each session.

[o] mENNME

2.3. A Simple Messaging Program in .NET C#

Thefollowing .NET C# program shows how to create a connection, create a session, send messages using
a sender, and receive messages using a receiver. The .NET binding for the Qpid C++ Messaging AP
appliesto al .NET Framework managed code languages. C# was chosen for illustration purposes only.

Using the Qpid Messaging API

Example 2.3. "Heloworld!" in .NET C#

usi ng System
usi ng Org. Apache. Qpi d. Messagi ng;

nanespace O g. Apache. Qi d. Messagi ng {
cl ass Program {
static void Main(string[] args) {

String broker = args.Length > 0 ? args[0] : "l ocal host:5672";
String address = args.Length > 1 ? args[1] : "ang.topic";
Connection connection = null;
try {

connection = new Connecti on(broker);

connecti on. Open();

Sessi on session = connection. Creat eSession();

Recei ver receiver = session. CreateReceiver (address);
Sender sender = session. Creat eSender (address);

sender. Send(new Message("Hello world!"));

Message message = new Message();

nmessage = receiver. Fetch(DurationConstants. SECOND * 1);
Consol e. WiteLine("{0}", nessage.GetContent());

sessi on. Acknowl edge() ;

connection. d ose(); 8]
} catch (Exception e) {
Consol e. Wi telLi ne("Exception {0}.", e);
if (null !'= connection)
connection. d ose();

Selects the Qpid Messaging namespace. A project reference to the Org.Apache.Qpid.Messaging dll
defines the Qpid Messaging namespace objects and methods.

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

Acknowledges receipt of al fetched messages on the session. This informs the broker that the
messages were transfered and processed by the client successfully.

Closesthe connection, all sessions managed by the connection, and all sendersand receivers managed
by each session.

B RN MmN ™

[ol |

Using the Qpid Messaging API

2.4. Addresses

An address is the name of a message target or message source. ! The methods that create senders and
receivers require an address. The details of sending to a particular target or receiving from a particular
source are then handled by the sender or receiver. A different target or source can be used smply by using
adifferent address.

An address resolves to anode. The Qpid Messaging APl recognises two kinds of nodes, queues and topics
2 A gueue stores each message until it has been received and acknowledged, and only one receiver can
receive a given message A topic immediately delivers amessageto al eligible receivers; if there are no
eligible receivers, it discards the message. In the AMQP 0-10 implementation of the API, 4 queues map
to AMQP queues, and topics map to AMQP exchanges. s

Intherest of thistutorial, we present many examples using two programsthat take an addressasacommand
line parameter. spout sends messages to the target address, drain receives messages from the source
address. The source code is available in C++, Python, and .NET C# and can be found in the examples
directory for each language. These programs can use any address string as a source or a destination, and
have many command line options to configure behavior—use the -h option for documentation on these
options. 5The examples in this tutorial also use the qpid-config utility to configure AMQP 0-10 queues
and exchanges on a Qpid broker.

Example 2.4. Queues

Create a queue with qpid-config, send a message using spout, and read it using drain:
$ gpid-config add queue hello-world

$./spout hello-world

$./drain hello-world

Message(properti es={spout-id: c877e622- d57b- 4df 2- bf 3e- 6014c68dalea: 0}, content="")

The queue stored the message sent by spout and delivered it to drain when requested.
Once the message has been delivered and and acknowledged by drain, it is no longer available on the

queue. If we run drain one more time, no messages will be retrieved.

$./drain hello-world
$

Ynthe programs we have just seen, we used any. t opi ¢ asthe default addressif noneis passed in. Thisisthe name of a standard exchange that
aways exists on an AMQP 0-10 messaging broker.

’Theterms gueue and topic here were chosen to align with their meaning in JMS. These two addressing ‘patterns, queue and topic, are sometimes
refered as point-to-point and publish-subscribe. AMQP 0-10 has an exchange type called a topic exchange. When the term topic occurs aone, it
refersto a Messaging API topic, not the topic exchange.

*There are exceptionsto thisrule; for instance, areceiver can use br owse mode, which |eaves messages on the queue for other receivers to read.
“The AMQP 0-10 implementation is the only one that currently exists.

5In AMQP 0-10, messages are sent to exchanges, and read from queues. The Messaging APl also allows a sender to send messages to a queue;
internally, Qpid implements this by sending the message to the default exchange, with the name of the queue as the routing key. The Messaging
API dso allows a receiver to receive messages from atopic; internally, Qpid implements this by setting up a private subscription queue for the
receiver and binding the subscription queue to the exchange that corresponds to the topic.

6Current|y, the C++, Python, and .NET C# implementations of drain and spout have dlightly different options. This tutorial uses the C++
implementation. The options will be reconciled in the near future.

Using the Qpid Messaging API

Example 2.5. Topics
This exampleis similar to the previous example, but it uses atopic instead of a queue.

First, use gpid-config to remove the queue and create an exchange with the same name:

$ gpid-config del queue hello-world
$ gpi d-config add exchange topic hello-world

Now run drain and spout the same way we did in the previous example:

$./spout hello-world
$./drain hello-world

$

Topics deliver messages immediately to any interested receiver, and do not store messages. Because there
were no receivers at the time spout sent the message, it was simply discarded. When we ran drain, there
were No messages to receive.

Now let'srun drain first, using the - t option to specify atimeout in seconds. While drain iswaiting for
messages, run spout in another window.

First Window:

$./drain -t 30 hello-word

Second Window:

$./spout hello-word

Once spout has sent a message, return to the first window to see the output from drain:

Message(properti es={spout-id: 7da2d27d- 93e6- 4803- 8a61- 536d87b8d93f: 0}, content="")

You can run drain in several separate windows; each creates a subscription for the exchange, and each
receives all messages sent to the exchange.

2.4.1. Address Strings

So far, our examples have used address strings that contain only the name of a node. An address string
can also contain a subject and options.

The syntax for an address string is:

Using the Qpid Messaging API

2.4.2.

address_string ::= <address> [/ <subject>] [; <options>]
options ::= { <key>: <value> ... }

Addresses, subjects, and keys are strings. Vaues can be numbers, strings (with optional single or double
guotes), maps, or lists. A complete BNF for address strings appears in Section 2.4.4, “Address String
Grammar”.

So far, the address strings in this tutorial have only used simple names. The following sections show how
to use subjects and options.

Subjects

Every message has a property called subject, which is analogous to the subject on an email message. If no
subject is specified, the message's subject is null. For convenience, address strings also allow a subject.
If a sender's address contains a subject, it is used as the default subject for the messages it sends. If a
receiver'saddress containsasubject, it isused to select only messagesthat match the subject—the matching
algorithm depends on the message source.

In AMQP 0-10, each exchange type has its own matching algorithm. This is discussed in Section 2.16,
“The AMQP 0-10 mapping”.

Note

Currently, a receiver bound to a queue ignores subjects, receiving messages from the queue
without filtering. Support for subject filtering on queues will be implemented soon.

Using the Qpid Messaging API

Example 2.6. Using subjects
In this example we show how subjects affect message flow.

First, let's use gpid-config to create a topic exchange.

$ qpi d-config add exchange topic news-service

Now we use drain to receive messages from news- ser vi ce that match the subject sport s.

First Window:

$./drain -t 30 news-service/sports

In a second window, let's send messages to news- ser vi ce using two different subjects:

Second Window:

$./spout news-service/sports
$./spout news-service/news

Now look at thefirst window, the messagewith the subject spor t s hasbeen received, but not the message
with the subject news:

Message(properties={qpi d. subj ect:sports, spout-id:9441674e-al57-4780-a78e-f7ccea99

If you run drain in multiple windows using the same subject, all instances of drain receive the messages
for that subject.

The AMQP exchange type we are using here, ant. t opi ¢, can also do more sophisticated matching.
A sender's subject can contain multiple words separated by a “.” delimiter. For instance, in a news
application, the sender might use subjects like usa. news, usa. weat her, eur ope. news, or
eur ope. weat her . The receiver's subject can include wildcard characters— “#’ matches one or more
wordsinthe message's subject, “*” matchesasingleword. For instance, if the subject in the source address
is*. news, it matches messages with the subject eur ope. news or usa. news; if itiseur ope. #, it
matches messages with subjects like eur ope. news or eur ope. pseudo. news.

Using the Qpid Messaging API

Example 2.7. Subjectswith multi-word keys

This example uses drain and spout to demonstrate the use of subjects with two-word keys.

Let's use drain with the subject *. news to listen for messages in which the second word of the key is
news.

First Window:

$./drain -t 30 news-servicel/*. news

Now let's send messages using severa different two-word keys:

Second Window:

$./spout news-service/usa. news

$./spout news-service/usa.sports

$./spout news-service/europe.sports
$./spout news-service/europe. news

In the first window, the messages with news in the second word of the key have been received:

Message(properties={qpi d. subj ect: usa. news, spout-id: 73f c8058-5af 6-407c-9166- b49a90
Message(properties={qpi d. subj ect: europe. news, spout-id:f72815aa-7be4-4944-99f d- c64

Next, let's use drain with the subject #. news to match any sequence of words that ends with news.

First Window:

$./drain -t 30 news-servicel#. news

In the second window, let's send messages using a variety of different multi-word keys:

Second Window:

./ spout news-servi ce/ news

./ spout news-servicel/sports

./ spout news-servi ce/ usa. news

./ spout news-service/ usa.sports

./ spout news-service/ usa. f aux. news
./ spout news-service/ usa. faux. sports

LR

In the first window, messages with news in the last word of the key have been received:

Message(properties={qpi d. subj ect: news, spout-id:cbd42b0f-c87b-4088-8206-26d7627c96
Message(properties={qpi d. subj ect: usa. news, spout-id: 234a78d7- daeb-4826-90el- 1c6540
Message(properties={qpi d. subj ect: usa. f aux. news, spout-id: 6029430a- cf ch-4700-8e9b-c

10

Using the Qpid Messaging API

2.4.3. Address String Options

The options in an address string can contain additional information for the senders or receivers created
for it, including:

Policies for assertions about the node to which an address refers.

For instance, in the address string nmy- queue; {assert: always, node:{ type:
queue }}, the node named ny- queue must be a queue; if not, the address does not resolve to a
node, and an exception is raised.

Policies for automatically creating or deleting the node to which an address refers.

For instance, in the address string xoxox ; {create: al ways},thequeuexoxox iscreated, if
it does not exist, before the addressis resolved.

Extension points that can be used for sender/receiver configuration.

For instance, if the address for areceiver isny- queue; {node: browse}, thereceiver worksin
br owse mode, leaving messages on the queue so other receivers can receive them.

Extension points providing more direct control over the underlying protocol.

For instance, the x- bi ndi ngs property allows greater control over the AMQP 0-10 binding process
when an addressis resolved.

Let's use some examples to show how these different kinds of address string options affect the behavior
of senders and receives.

2.4.3.1. assert

Inthissection, weusetheassert optionto ensurethat the address resolvesto anode of the required type.

11

Using the Qpid Messaging API

Example 2.8. Assertionson Nodes
Let's use qpid-config to create a queue and atopic.

$ gpid-confi g add queue ny-queue
$ qpid-config add exchange topic my-topic

We can now use the address specified to drain to assert that it is of a particular type:

$./drain 'my-queue; {assert: always, node:{ type: queue }}'

$./drain 'my-queue; {assert: always, node:{ type: topic }}'

2010-04-20 17:30: 46 warni ng Exception received from broker: not-found: not-found:
Exchange my-queue does not exi st

Thefirst attempt passed without error as my-queue isindeed a queue. The second attempt however failed;
my-queue is not atopic.

We can do the same thing for my-topic:

$./drain 'nmy-topic; {assert: always, node:{ type: topic }}'

$./drain 'nmy-topic; {assert: always, node:{ type: queue }}'

2010-04-20 17:31: 01 warni ng Exception received from broker: not-found: not-found:
Queue ny-topic does not exist

Now let'susethe cr eat e option to create the queue xoxox if it does not already exist:

2.4.3.2. create

In previous examples, we created the queue beforelistening for messagesonit. Usingcr eat e; al ways,
the queue is automatically created if it does not exist.

Example 2.9. Creating a Queue Automatically

First Window:

$./drain -t 30 "xoxox ; {create: always}"

Now we can send messages to this queue:

Second Window:

$./spout "xoxox ; {create: always}"

Returning to the first window, we see that drain has received this message:

Message(properti es={spout-id: 1ala3842- 1a8b- 4f 88- 8940- b4096e615a7d: 0}, content='")

The details of the node thus created can be controlled by further options within the node. See Table 2.2,
“Node Properties’ for details.

12

Using the Qpid Messaging API

2.4.3.3. browse

Some options specify message transfer semantics; for instance, they may state whether messages should
be consumed or read in browsing mode, or specify reliability characteristics. The following example uses
the br ows e option to receive messages without removing them from a queue.

Example 2.10. Browsing a Queue

L et's use the browse mode to receive messages without removing them from the queue. First we send three
messages to the queue:

$./spout ny-queue --content one
$./spout ny-queue --content two
$./spout ny-queue --content three

Now we use drain to get those messages, using the browse option:

$./drain 'ny-queue; {node: browse}'

Message(properti es={spout-id: f bb93f 30- 0e82- 4b6d- 8c1d- be60ebh132530: 0}, content="one
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f: 0}, content="two
Message(properti es={spout-i d: ea75d64d- ea37-47f 9- 96a9- d38e01¢c97925: 0}, content="thr

We can confirm the messages are still on the queue by repeating the drain:

$./drain 'nmy-queue; {nobde: browse}'

Message(properti es={spout-id: f bb93f 30- 0e82- 4b6d- 8c1ld- be60eb132530: 0}, content =' one
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f: 0}, content='two
Message(properti es={spout-id: ea75d64d- ea37-47f 9- 96a9- d38e01c97925: 0}, content="thr

2.4.3.4. x-bindings

Greater control over the AMQP 0-10 binding process can be achieved by including an x- bi ndi ngs
option in an address string. For instance, the XML Exchangeisan AMQP 0-10 custom exchange provided
by the Apache Qpid C++ broker. It allows messagesto befiltered using X Query; queries can address either
message properties or XML content in the body of the message. The xquery is specified in the arguments
field of the AMQP 0-10 command. When using the messaging APl an xquery can be specified in and
address that resolvesto an XML exchange by using the x-bindings property.

An instance of the XML Exchange must be added before it can be used:
$ gpi d-config add exchange xm xni

When using the XML Exchange, areceiver provides an XQuery as an x-binding argument. If the query
contains a context item (a path starting with “.”), then it is applied to the content of the message, which
must be well-formed XML. For instance, . / weat her isavalid XQuery, which matches any message in
which the root element is named weat her . Here is an address string that contains this query:

13

Using the Qpid Messaging API

xm; {
link: {
x-bi ndi ngs: [{exchange: xm , key:weather, argunents:{xquery:"./weather"} }]
}
}

When using longer queries with drain, it is often useful to place the query in afile, and use cat in the
command line. We do thisin the following example.

14

Using the Qpid Messaging API

Example 2.11. Using the XML Exchange

This example uses an x-binding that contains queries, which filter based on the content of XML messages.
Here is an XQuery that we will usein this example:

let $w := ./ weat her
return $w station = 'Ral ei gh-Durham International Airport (KRDU)'
and $w' tenperature_f > 50
and $w' tenperature_f - $w dewpoint > 5
and $w wi nd_speed_nph > 7
and $w wi nd_speed_nph < 20

We can specify thisquery in an x-binding to listen to messagesthat meet the criteria specified by the query:

First Window:

$./drain -f "xm; {link:{x-bindings:[{key:'weather',
argurment s: {xquery:\"$(cat rdu.xquery)\"}}]1}}"

In another window, let's create an XML message that meets the criteria in the query, and place it in the
filerdu. xm :

<weat her >
<st ati on>Ral ei gh-Durham I nternational Airport (KRDU)</station>
<wi nd_speed_nph>16</w nd_speed_nph>
<tenperature_f>70</tenperature_f>
<dewpoi nt >35</ dewpoi nt >

</ weat her >

Now let's use spout to send this message to the XML exchange:

Second Window:
spout --content "$(cat rdu.xm)" xm /weather

Returning to the first window, we see that the message has been received:

$./drain -f "xm; {link:{x-bindings:[{exchange:' xm "', key:'weather', argunents:{x
Message(properti es={qpi d. subj ect: weat her, spout-id: 31c431de-593f-4bec-a3dd-29717bd
cont ent =' <weat her >

<st ati on>Ral ei gh- Durham I nternati onal Airport (KRDU)</station>

<wi nd_speed_nph>16</w nd_speed_nph>

<t enperature_f>40</tenperature_f>

<dewpoi nt >35</ dewpoi nt >
</ weat her>")

15

Using the Qpid Messaging API

2.4.3.5. Address String Options - Reference

Table 2.1. Address String Options

option value semantics
assert one of: always, never, sender or|Assertsthat the propertiesspecifiedin
receiver the node option match whatever the
address resolves to. If they do not,
resolution fails and an exception is
raised.
create one of: aways, never, sender or|Creates the node to which an address
receiver refers if it does not exist. No error
is raised if the node does exist. The
details of the node may be specifiedin
the node option.
delete one of: always, never, sender or|Delete the node when the sender or
receiver receiver is closed.
node A nested map containing the|Specifies properties of the node to
entries shown in Table 2.2, “Node|which the address refers. These are
Properties’. used in conjunction with the assert or
create options.
link A nested map containing the entries|Used to control the establishment of
showninTable2.3,“Link Properties’.|a conceptua link from the client
application to or from the target/
source address.
mode one of:: browse, consume This option is only of relevance for

source addresses that resolve to a
queue. If browse is specified the
messages delivered to the receiver are
left on the queue rather than being
removed. If consume is specified the
normal behaviour applies; messages
are removed from the queue once the
client acknowledges their receipt.

Table 2.2. Node Properties

property value semantics
type topic, queue Indicates the type of the node.
durable True, False Indicates whether the node survives
a loss of voldtile storage eg. if the
broker is restarted.
x-declare A nested map whose values These values are used to fine tune
correspond to the valid fields on|the creation or assertion process.
an AMQP 0-10 queue-declare or|Note however that they are protocol
exchange-declare command. specific.
x-bindings A nested list in which each binding|In conjunction with the create option,

is represented by a map. The entries
of the map for a binding contain the

each of thesebindingsisestablished as
the addressisresolved. In conjunction

16

Using the Qpid Messaging API

property

value

semantics

fields that describe an AMQP 0-10
binding. Here is the format for x-
bindings:

with the assert option, the existence
of each of these hindings is verified
during resolution. Again, these are
protocol specific.

{
exchange: <exchange>,
queue: <queue>,
key: <key>,
argument s: {
<key_ 1>: <val ue_1>,
<key n>: <value_n> }
} il
]
Table2.3. Link Properties
option value semantics
reliability one of; unreliable, at-least-once, at-|Reliability indicates the level of
most-once, exactly-once reliability that the sender or receiver.
unrel i abl e and at - npst - once
are currently treated as synonyms,
and allow messages to be lost if a
broker crashes or the connection to
a broker is lost. at - | east - once
guarantees that a message is not
lost, but duplicates may be received.
exact |l y-once guarantees that
a message is not lost, and is
delivered precisely once. Currently
onlyunrel i abl eandat - | east -
once are supported. 2
durable True, False Indicates whether the link survives
a loss of volatile storage e.g. if the
broker is restarted.
x-declare A nested map whose values|Thesevaluescan beusedtocustomise
correspond to the valid fields of an|the subscription queue in the case
AMQP 0-10 queue-declare command. |of receiving from an exchange.
Note however that they are protocol
specific.
x-subscribe A nested map whose values|Thesevaluescan beusedto customise
correspond to the valid fields of |the subscription.
an AMQP 0-10 message-subscribe
command.
x-bindings A nested list each of whose entries| These bindings are established during

is a map that may contain fields
(queue, exchange, key and arguments)
describing an AMQP 0-10 binding.

resolution independent of the create
option. They are considered logically

17

Using the Qpid Messaging API

option value semantics

part of the linking process rather than
of node creation.

4f at-most-once is requested, unreliable will be used and for durable messages on durable queues there is the possibility that messages will be
redelivered; if exactly-onceis requested, at-most-once will be used and the application needs to be able to deal with duplicates.

2.4.4. Address String Grammar

This section provides aformal grammar for address strings.

Tokens. The following regular expressions define the tokens used to parse address strings:

LBRACE: \\{

RBRACE: \\}

LBRACK: \\[

RBRACK: \\]

COLON: :

SEM : ;

SLASH. /

COWA:

NUMBER: [+-]7?[0-9]*\\.?[0-9]+

I D [a-zA-Z] (?:[a-zA-Z20-9 -]*[a-zA-Z0-9])7?
STRING "(2:[MANNNTT VNN) > PV (20 AWV VN) =
ESC. VANV Aux] VWA x[0-9a-FA-F][0-9a-fA-F] | \\\\u[0-9a-fA-F][0-9a-f A-F] [0-9a-f A-
SYM [. #* %@ +-]

WEPACE: [\\n\\r\\t]+

Grammar. The formal grammar for addresses is given below:

address := name [SLASH subject] [";" options]

nane := (part | quoted)+
subject := (part | quoted | SLASH)*
guoted := STRING / ESC

part := LBRACE / RBRACE/ COLON/ COWA / NUMBER / ID/ SYM
options := map

map = "{" (keyval ("," keyval)*)? "}"

keyval "= 1D ":" val ue

value := NUMBER / STRING/ ID/ map / list

list :="[" (value ("," value)*)? "]"

Address String Options. The address string options map supports the following parameters:

<nanme> [/ <subject>] ; {

create: always | sender | receiver | never,
del ete: always | sender | receiver | never,
assert: always | sender | receiver | never,
node: browse | consune,
node: {

type: queue | topic,

durabl e: True | Fal se,

18

Using the Qpid Messaging API

x-declare: { ... <declare-overrides> ... },
X-bi ndi ngs: [<binding_1> ... <binding_n>]
} 1
link: {

name: <l ink-nanme>,
durabl e: True | Fal se,
reliability: unreliable | at-npbst-once | at-l|east-once | exactly-once,

x-declare: { ... <declare-overrides> ... },
X-bi ndi ngs: [<binding_1>, ... <binding_n>],
X-subscribe: { ... <subscribe-overrides> ... }

}
}

Create, Delete, and Assert Policies

The create, delete, and assert policies specify who should perfom the associated action:
 always: the action is performed by any messaging client

 sender: the action is only performed by a sender

* receiver: theaction is only performed by areceiver

* never: the action is never performed (thisis the default)

Node-Type
The node-type is one of:

* topic: in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be used
to specify other exchange types

» queue: thisisthe default node-type

2.5. Sender Capacity and Replay

The send method of a sender has an optional second parameter that controls whether the send call is
synchronous or not. A synchronous send call will block until the broker has confirmed receipt of the
message. An asynchronoussend call will return beforethe broker confirmsreceipt of the message, allowing
for example further send calls to be made without waiting for a roundtrip to the broker for each message.
Thisis desirable where increased throughput isimportant.

The sender maintains a list of sent messages whose receipt has yet to be confirmed by the broker. The
maximum number of such messages that it will hold is defined by the capacity of the sender, which can
be set by the application. If an application tries to send with a sender whose capacity is already fully used
up, the send call will block waiting for capacity regardless of the value of the sync flag.

The sender can be queried for the available space (i.e. the unused capacity), and for the current count
of unsettled messages (i.e. those held in the replay list pending confirmation by the server). When the
unsettled count is zero, all messages on that sender have been successfully sent.

If the connection failsand istransparently reconnected (see Section 2.10, “ Connection Options’ for details
on how to control this feature), the unsettled messages for each sender over that connection will be re-

19

Using the Qpid Messaging API

2.6.

transmitted. This provides a transparent level of reliability. This feature can be controlled through the
link's reliability as defined in the address (see Table 2.3, “Link Properties’). At present only at-least-once
guarantees are offered.

Receiver Capacity (Prefetch)

By default, areceiver requests the next message from the server in response to each fetch call, resulting in
messages being sent to the receiver one at atime. Asin the case of sending, it is often desirable to avoid
this roundtrip for each message. This can be achieved by allowing the receiver to prefetch messages in
anticipation of fetch calls being made. The receiver needs to be able to store these prefetched messages,
the number it can hold is controlled by the receivers capacity.

2.7. Acknowledging Received Messages

Applicationsthat receive messages should acknowledge their receipt by calling the session's acknowledge
method. Asin the case of sending messages, acknowledged transfer of messages to receivers provides at-
least-once reliability, which means that the loss of the connection or a client crash does not result in lost
messages; durable messages are not lost even if the broker is restarted. Some cases may not require this
however and thereliability can be controlled through alink property in the address options (see Table 2.3,
“Link Properties’).

The acknowledge call acknowledges all messages received on the session (i.e. all message that have been
returned from afetch call on areceiver created on that session).

The acknowledge call also support an optional parameter controlling whether the call is synchronous
or not. A synchronous acknowledge will block until the server has confirmed that it has received the
acknowledgement. In the asynchronous case, when the call returns there is not yet any guarantee that the
server has received and processed the acknowledgement. The session may be queried for the number of
unsettled acknowledgements; when that count is zero all acknowledgements made for received messages
have been successful.

2.8. Receiving Messages from Multiple Sources

A receiver can only read from one source, but many programs need to be able to read messages from
many sources. In the Qpid Messaging API, a program can ask a session for the “next receiver”; that is,
the receiver that is responsible for the next available message. The following example shows how thisis
donein C++, Python, and .NET C#.

Note that to use this pattern you must enable prefetching for each receiver of interest so that the broker will
send messages beforeafetch call ismade. See Section 2.6, “ Receiver Capacity (Prefetch)” for moreonthis.

20

Using the Qpid Messaging API

Example 2.12. Receiving M essages from Multiple Sour ces

C++:

Recei ver receiverl = session. createReceiver(addressl);
recei ver 1. set Capaci ty(10);
Recei ver receiver2 = session.createReceiver (address?);
recei ver 2. set Capaci ty(10);

Message nmessage = session. nextReceiver().fetch();
std::cout << nmessage.getContent() << std::endl;
sessi on. acknow edge(); // acknow edge message recei pt

Python:

receiverl = session.receiver(addressl)
recei ver1l. capacity = 10

recei ver2 = session.receiver (address)
recei ver2. capacity = 10

message = session. next_receiver().fetch()
print message. content

sessi on. acknow edge()

NET C#

Recei ver receiverl sessi on. Creat eRecei ver (addressl);

recei verl. Capacity = 10;
Recei ver receiver2 = session. CreateRecei ver (address?);
recei ver2. Capacity = 10;

Message message = new Message();

message = session. Next Receiver (). Fetch();
Consol e. WiteLine("{0}", nessage.GetContent());
sessi on. Acknowl edge() ;

2.9. Transactions

Sometimes it is useful to be able to group messages transfers - sent and/or received - on a session into
atomic grouping. This can be done be creating the session as transactional. On atransactional session sent
messages only become availabl e at the target address on commit. Likewiseany received and acknowledged
messages are only discarded at their source on commit [

"Note that this currently is only true for messages received using a reliable mode e.g. at-least-once. Messages sent by a broker to a receiver in
unreliable receiver will be discarded immediately regardless of transctionality.

21

Using the Qpid Messaging API

Example 2.13. Transactions
C++:
Connection connecti on(broker);
Session session = connection. createTransacti onal Session();
if (smellsCk())
session.comm t();

el se
sessi on. rol | back();

2.10. Connection Options

Aspects of the connections behaviour can be controlled through specifying connection options. For
example, connections can be configured to automatically reconnect if the connection to a broker islost.

22

Using the Qpid Messaging API

Example 2.14. Specifying Connection Optionsin C++ and Python

In C++, these options can be set using Connect i on: : set Opti on() or by passing in aset of options
to the constructor. The options can be passed in as amap or in string form:

Connection connection("l ocal host:5672", "{reconnect: true}");
try {

connecti on. open();

Iy SNIP 1Y

or

Connection connection("l ocal host:5672");
connection. set Opti on("reconnect", true);
try {

connecti on. open();

I SNIP 11

In Python, these options can be set as attributes of the connection or using hamed arguments in the
Connect i on constructor:

connection = Connection("l ocal host:5672", reconnect=True)

try:
connecti on. open()
I SNIP 11!

or

connection = Connection("l ocal host:5672")
connection.reconnect = True

try:
connecti on. open()
It SNIEP I
See the reference documentation for details in each language.

The following table lists the supported connection options.

Table 2.4. Connection Options

option name valuetype semantics

username string The username to wuse when
authenticating to the broker.

password string The password to wuse when
authenticating to the broker.

sasl-mechanism string The specific SASL mechanism to
use with the c++ client when

23

Using the Qpid Messaging API

option name

valuetype

semantics

authenticating to the broker. Only
a single value can be specified at
present. [C++ only].

sasl_mechanisms

string

The specific SASL mechanism to
use with the python client when
authenticating to the broker. Thevalue
is a space separated list in order of
preference. [Python only].

reconnect

boolean

Transparently reconnect if the
connection islost.

reconnect_timeout

integer

Total number of seconds to continue
reconnection attempts before giving
up and raising an exception.

reconnect_limit

integer

Maximum number of reconnection
attempts before giving up and raising
an exception.

reconnect_interval_min

integer representing time in seconds

Minimum number of seconds
between reconnection attempts. The
first reconnection attempt is made
immediately; if that fals, the first
reconnection delay is set to the value
of reconnect _interval _mn;
if that attempt fails, the reconnect
interval increases exponentially until
a reconnection attempt succeeds
orreconnect _i nterval _max is
reached.

reconnect_interval_max

integer representing time in seconds

Maximum reconnect interval.

reconnect_interval

integer representing time in seconds

Sets both
reconnection_interval _mn
and

reconnection_i nterval _max
to the same value.

heartbeat

integer representing time in seconds

Requests that heartbeats be sent
every N seconds. If two successive
heartbeats are missed the connection
is considered to be lost.

protocol

string

Setsthe underlying protocol used. The
default option is 'tcp'. To enable sd,
setto 'sdl'. The C++ client additionally
supports 'rdma.

tcp-nodelay

boolean

Set tcp no-delay, i.e. disable Nagle
algorithm. [C++ only]

2.11. Maps in Message Content

Many messaging applications need to exchange data across languages and platforms, using the native
datatypes of each programming language.

24

Using the Qpid Messaging API

The Qpid Messaging APl supports maps in message content. 8 These maps are supported in each
language using the conventions of the language. In Java, we implement the MapMessage interface 9,
in Python, we support di ct and | i st in message content; in C++, we provide the Var i ant : : Map
and Vari ant : : Li st classesto represent maps and lists. In all languages, messages are encoded using
AMQP's portable datatypes.

Tip
Because of the differencesin type systems among languages, the simpl est way to provide portable

messages is to rely on maps, lists, strings, 64 bit signed integers, and doubles for messages that
need to be exchanged across languages and platforms.

2.11.1. Qpid Maps in Python

In Python, Qpid supportsthedi ct andl i st typesdirectly in message content. Thefollowing code shows
how to send these structuresin a message:

Example 2.15. Sending Qpid Mapsin Python

from qgpi d. nessagi ng i nport *

111 SNIP 111
content = {'1d" : 987654321, 'name' : 'Wdget', 'percent' : 0.99}
content['colours'] =['red, 'green', 'white']

content['dinmensions'] = {'length" : 10.2, "width' : 5.1,"depth" : 2.0};
content[' parts'] [[1,2,5], [8,2,5]]

content[' specs'] {'colors' : content['colours'],
"di mensions' : content['dinensions'],
"parts' : content['parts'] }

nessage = Message(cont ent =cont ent)
sender . send(nmessage)

The following table shows the datatypes that can be sent in a Python map message, and the corresponding
datatypes that will be received by clientsin Java or C++.

Table 2.5. Python Datatypesin Maps

Python Datatype #C++ # Java

bool bool boolean

int int64 long

long int64 long

float double double

unicode string javalang.String
uuid gpid::types::Uuid java.util.UUID
dict Variant::Map java.util.Map
list Variant::List java.util.List

8Unlike MS, thereis not a specific message type for map messages.
Note that the Qpid JMS client supports M apM essages whose val ues can be nested maps or lists. Thisis not standard M S behaviour.

25

Using the Qpid Messaging API

2.11.2. Qpid Maps in C++

In C++, Qpid definesthetheVari ant : : Map and Vari ant : : Li st types, which can be encoded into
message content. The following code shows how to send these structures in a message:

Example 2.16. Sending Qpid Mapsin C++

usi ng nanmespace gpid::types;
[/ 111 SNIP 11

Message nessage;

Variant:: Map content;

content["id"] = 987654321
content["name"] = "Wdget";
content["percent”] = 0.99;
Variant::List colours;

col ours. push_back(Variant("red"));
col ours. push_back(Variant("green"));
col ours. push_back(Variant ("white"));
content["col ours"] = col ours;

Vari ant:: Map di mensi ons;
di mensions["length"] =1
di mensions["wi dth"] =
di mensi ons["depth"] =

content["di mensi ons"] = di nensi ons;

0. 2;
5.1;
2.0;
[
Variant::List partil;

part 1. push_back(Variant(1));

part 1. push_back(Variant(2));
part 1. push_back(Variant(5));

Variant::List part?2;

part 2. push_back(Variant(8));
part 2. push_back(Variant(2));
part 2. push_back(Variant(5));

Variant::List parts;

parts. push_back(part1l);
parts. push_back(part2);
content["parts"]= parts;

Variant:: Map specs;

specs["col ours"] = col ours;
specs["di nensi ons"] = di nensi ons;
specs["parts"] = parts;
content["specs"] = specs;

encode(content, message);
sender . send(nessage, true);

26

Using the Qpid Messaging API

The following table shows the datatypes that can be sent in a C++ map message, and the corresponding
datatypes that will be received by clientsin Java and Python.

Table 2.6. C++ Datatypesin Maps

C++ Datatype # Python # Java

bool bool boolean

uintl6 int | long short

uint32 int | long int

uint64 int [long long

int16 int | long short

int32 int | long int

int64 int [long long

float float float

double float double

string unicode java.lang.String
gpid::types::Uuid uuid java.util.UUID
Variant::Map dict javautil.Map
Variant::List list java.util.List

2.11.3. Qpid Maps in .NET

The .NET binding for the Qpid Messaging APl binds .NET managed data types to C++ Var i ant data
types. The following code shows how to send Map and List structures in a message:

27

Di ctionary<string, object> content = new Dictionary<string, object>();
Di ctionary<string, object> subMap = new Dictionary<string, object>();
Col | ecti on<obj ect> col ors = new Col | ecti on<obj ect>();

Using the Qpid Messaging API

[T add sinple types
content["id"] = 987654321;
Eoampl & 2mBneSénding\Qaiet Mapsin .NET C#

content["percent”] = 0.99;

/1 add nested anqgp/ map
subMap["nanme"] = "Smth";
subMap["nunber"] = 354;
content["nestedMap"] = subMap;

/1 add an angp/li st

colors. Add("red");

col ors. Add("green");

colors. Add("white");
content["col orsList"] = colors;

/1 add one of each supported amgp data type
bool nybool = true;
content["nybool "] = nybool;

byte nybyte = 4;

content["nybyte"] = nybyte;
Untl6é nyUntl6e = 5;
content["nyU nt16"] = nyUl nt 16;
U nt32 nyUnt32 = 6;
content["nyU nt32"] = nyUl nt32;
Unté4 nyunt64 = 7;
content["nyU nt64"] = nyUl nt 64;
char mychar = 'h';
content["nychar"] = nychar;
Intl6 nylntl6e = 9;
content["nylnt16"] = nylnt16;
Int32 nmylnt32 = 10;
content["nylnt32"] = nylnt32;
Int64 nmylnt64 = 11,
content["nylnt64"] = nylnt 64,

Si ngl e nySingl e

= (Single)l12.12;
content["nySingl e"]

= nySi ngl e;

Doubl e nyDoubl e = 13. 13;
content ["nyDoubl e"] = nyDoubl e;

GQuid nyGuid = new Gui d("000102030405060708090a0b0c0d0eOf ") ;
content["nyGuid"] = nyCuid;

Message nmessage = new Message(content);
Send(message, true);

28

Using the Qpid Messaging API

2.12.

The following table shows the mapping between datatypesin .NET and C++,

Table 2.7. Datatype M apping between C++ and .NET binding

C++ Datatype # .NET binding
void nullptr

bool bool

uint8 byte

uint16 Uintl6

uint32 Ulnt32

uint64 Ulnt64

uint8 char

int16 Int16

int32 Int32

int64 Int64

float Single

double Double

string string B
gpid::types::Uuid Guid

Variant::Map Dictionary<string, object> E
Variant::List Collection<object> E

E Stringsare currently interpreted only with UTF-8 encoding.

The Request / Response Pattern

Request / Response applications use the reply-to property, described in Table 2.8, “Mapping to AMQP
0-10 Message Properties’, to allow a server to respond to the client that sent a message. A server sets up
a service queue, with a name known to clients. A client creates a private queue for the server's response,
creates a message for a request, sets the request's reply-to property to the address of the client's response
gueue, and sends the request to the service queue. The server sends the response to the address specified
in the request's reply-to property.

29

Using the Qpid Messaging API

Example 2.18. Request / Response Applicationsin C++
This example shows the C++ code for a client and server that use the request / response pattern.

The server creates a service queue and waits for a message to arrive. If it receives a message, it sends a
message back to the sender.

Recei ver receiver = session.createReceiver("service_queue; {create: always}");

Message request = receiver.fetch();
const Address&anp; address = request.getReplyTo(); // Get "reply-to" fromrequest
if (address) {
Sender sender = session.createSender(address); // ... send response to "reply-to
Message response("pong!");
sender . send(response) ;
sessi on. acknowl edge();

Theclient creates asender for the service queue, and also creates aresponse queue that is deleted when the
client closes the receiver for the response queue. In the C++ client, if the address starts with the character
#, it isgiven aunigue name.

Sender sender = session. creat eSender ("service_queue");

Addr ess responseQueue(" #response- queue; {create: al ways, del ete: always}");
Recei ver receiver = session.createReceiver(responseQueue);

Message request;

request. set Repl yTo(responseQueue) ;

request. set Content (" pi ng");

sender. send(request);

Message response = receiver.fetch();

std::cout << request.getContent() << " -> " << response. getContent() << std::endl

The client sends the string pi ng to the server. The server sends the response pong back to the same
client, using ther epl yTo property.

2.13. Performance Tips

» Consider prefetching messages for receivers (see Section 2.6, “Receiver Capacity (Prefetch)”). This
helps eliminate roundtrips and increases throughput. Prefetch is disabled by default, and enabling it is
the most effective means of improving throughput of received messages.

* Send messages asynchronously. Again, this helps eliminate roundtrips and increases throughput. The C
++and .NET clients send asynchronously by default, however the python client defaultsto synchronous
sends.

» Acknowledge messagesin batches (see Section 2.7, “ Acknowl edging Received Messages’). Rather than
acknowledging each message individually, consider issuing acknowledgements after n messages and/
or after a particular duration has elapsed.

30

Using the Qpid Messaging API

» Tune the sender capacity (see Section 2.5, “ Sender Capacity and Replay”). If the capacity is too low
the sender may block waiting for the broker to confirm receipt of messages, before it can free up more

capacity.

* If you are setting a reply-to address on messages being sent by the c++ client, make sure the address
typeis set to either queue or topic as appropriate. This avoids the client having to determine which type
of node is being refered to, which is required when hanling reply-to in AMQP 0-10.

» For latency sensitive applications, setting tcp-nodelay on gpidd and on client connections can help
reduce the latency.

2.14. Cluster Failover

The messaging broker can be run in clustering mode, which provides high reliability through replicating
state between brokers in the cluster. If one broker in a cluster fails, clients can choose another broker in
the cluster and continue their work. Each broker in the cluster also advertises the addresses of all known
brokers 1% . A client can use thisinformation to dynamically keep thelist of reconnection urls up to date.

In C++, theFai | over Updat es class provides this functionality:

Example 2.19. Tracking cluster member ship

In C++:

#i ncl ude <qpi d/ messagi ng/ Fai | over Updat es. h>

Connection connection("l ocal host:5672");
connection. set Option("reconnect", true);

try {
connecti on. open();

std::auto_ptr<Fail over Updat es> updat es(new Fai | over Updat es(connection));

In python:

i mport qpid. messaging. util

connection = Connection("l ocal host:5672")
connection. reconnect = True
try:

connecti on. open()

aut o_fetch_reconnect _url s(connecti on)

2.15. Logging

To simplify debugging, Qpid provides alogging facility that prints out messaging events.

OThisis done viathe amq.faillover exchange in AMQP 0-10

31

Using the Qpid Messaging API

2.15.1. Logging in C++

The Qpidd broker and C++ clients can both use environment variables to enable logging. Use
QPID_LOG_ENABLE to set the level of logging you areinterested in (trace, debug, info, notice, warning,
error, or critical):

$ export QPI D_LOG ENABLE="war ni ng+"

The Qpidd broker and C++ clientsuse QPID_LOG_OUTPUT to determine where logging output should

be sent. Thisis either afile name or the special values stderr, stdout, or syslog:

export QPID LOG TO FILE="/tnp/ nyclient.out"

2.15.2. Logging in Python

2.16.

The Python client library supports logging using the standard Python logging module. The easiest way to
do logging is to use the basicConfig(), which reports al warnings and errors:

from |l ogging inport basicConfig
basi cConfi g()

Qpidd also provides a convenience method that makes it easy to specify the level of logging desired. For
instance, the following code enables logging at the DEBUG level:

fromaqgpid.log i nport enabl e, DEBUG
enabl e(" gpi d. messagi ng. i 0", DEBUG

For more information on Python logging, see http://docs.python.org/lib/node425.ntml. For more
information on Qpid logging, use $ pydoc gpid.log.

The AMQP 0-10 mapping

This section describes the AMQP 0-10 mapping for the Qpid Messaging API.

The interaction with the broker triggered by creating a sender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker to
determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transfered to the
default (or nameless) exchange. When sending to an exchange, the message is transfered to that exchange
and the routing key is set to the message subject if one is specified. A default subject may be specified
in the target address. The subject may also be set on each message individually to override the default if
required. In each case any specified subject is aso added as a gpid.subject entry in the application-headers
field of the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client sends
a message-subscribe request for the queue in question. The accept-mode is determined by the reliability
option in the link properties; for unreliable links the accept-mode is none, for reliable links it is explicit.
The default for aqueueisreliable. The acquire-mode is determined by the value of the mode option. If the
mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired. The exclusive
and arguments fields in the message-subscribe command can be controlled using the x-subscribe map.

32

http://docs.python.org/lib/node425.html

Using the Qpid Messaging API

When receiving from an exchange, the client creates a subscription queue and binds that to the exchange.
The subscription queue's arguments can be specified using the x-declare map within the link properties.
The reliability option determines most of the other parameters. If the reliability is set to unreliable then
an auto-deleted, exclusive queue is used meaning that if the client or connection fails messages may be
lost. For exactly-once the queue is not set to be auto-deleted. The durability of the subscription queue is
determined by the durable option in the link properties. The binding process depends on the type of the
exchange the source address resolves to.

* For atopic exchange, if no subject isspecified and no x-bindings are defined for thelink, the subscription
gueue is bound using a wildcard matching any routing key (thus satisfying the expectation that any
message sent to that address will be received from it). If a subject is specified in the source address
however, itisused for the binding key (this meansthat the subject in the source address may be abinding
pattern including wildcards).

« For afanout exchangethebinding key isirrelevant to matching. A receiver created from asource address
that resolves to afanout exchange receives all messages sent to that exchange regardless of any subject
the source address may contain. An x-bindings element in the link properties should be used if thereis
any need to set the arguments to the bind.

 For adirect exchange, the subject is used as the binding key. If no subject is specified an empty string
isused as the binding key.

 For aheadersexchange, if no subject is specified the binding arguments simply contain an x-match entry
and no other entries, causing all messagesto match. If a subject is specified then the binding arguments
contain an x-match entry set to all and an entry for gpid.subject whose value is the subject in the source
address (this means the subject in the source address must match the message subject exactly). For more
control the x-bindings element in the link properties must be used.

» Forthe XML exchange,11 if asubject isspecified it isused asthe binding key and an XQuery is defined
that matches any message with that value for gpid.subject. Again this means that only messages whose
subject exactly match that specified in the source address are received. If no subject is specified then
the empty string is used as the binding key with an xquery that will match any message (this means that
only messageswith an empty string astherouting key will be received). For more control the x-bindings
element in the link properties must be used. A source address that resolves to the XML exchange must
contain either a subject or an x-bindings element in the link properties as there is no way at present to
receive any message regardless of routing key.

If an x-bindings list is present in the link options a binding is created for each element within that list.
Each element is a nested map that may contain values named queue, exchange, key or arguments. If the
gueue value is absent the queue name the address resolves to isimplied. If the exchange value is absent
the exchange name the address resolves to isimplied.

The following table shows how Qpid Messaging APl message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table nsg refers to the Message class defined in the
Qpid Messaging API, np refersto an AMQP 0-10 nessage- pr oper ti es struct, and dp refersto an
AMQPO0-10del i very- properti es struct.

Table 2.8. Mapping to AMQP 0-10 M essage Properties

Python API C++ API AM QP 0-10 Property?

msg.id msg.{ get,set} Messagel d() mp.message id

msg.subject msg.{ get,set} Subject() mp.application_headerg[" gpid.subject’
msg.user_id msg.{ get,set} Userld() mp.user_id

msg.reply_to msg.{ get,set} ReplyTo() mp.repl y_tob

33

[—

Using the Qpid Messaging API

Python API C++ APl AMQP 0-10 Property?

msg.correlation _id msg.{ get,set} Correlationl d() mp.correlation_id

msg.durable msg.{ get,set} Durable() dp.delivery_mode ==
delivery_mode.persistent®

msg.priority msg.{ get,set} Priority() dp.priority

msg.ttl msg.{ get,set} Ttl() dp.ttl

msg.redelivered msg.{ get,set} Redelivered() dp.redelivered

msg.properties msg.{ get,set} Properties() mp.application_headers

msg.content_type msg.{ get,set} ContentType() mp.content_type

3 n these entries, np refers to an AMQP message property, and dp refers to an AMQP delivery property.
®The reply_to is converted from the protocol representation into an address.
“Note that msg.durable is a boolean, not an enum.

The 0-10 mapping aso recognises certain special property keys. If the properties contain entries
for x- amgp- 0- 10. app-i d or x- angp- 0- 10. cont ent - encodi ng, the values will be used to
set nessage- properti es. app-i d and mnessage- properties. cont ent - encodi ng onthe
resulting 0-10 message transfer. Likewise if an incoming transfer has those properties set, they will be
exposed in the same manner. In addition the routing key on incoming transfers will be exposed directly
viathe custom property with key x- angp- 0- 10. r out i ng- key.

Chapter 3. Using the Qpid JMS client
3.1. A Simple Messaging Program in Java JMS

Thefollowing program shows how to send and receive amessage using the Qpid IM Sclient. IM Sprograms
typically use JNDI to obtain connection factory and destination objects which the application needs. In
this way the configuration is kept separate from the application code itself.

In this example, we create a INDI context using a properties file, use the context to lookup a connection
factory, create and start a connection, create a session, and lookup a destination from the JINDI context.
Then we create a producer and a consumer, send a message with the producer and receive it with the
consumer. This code should be straightforward for anyone familiar with Java M S.

35

Using the Qpid IMS client

Example 3.1. "Héeloworld!" in Java

package org. apache. gpi d. exanpl e. j meexanpl e. hel | o;

i mport javax.jms.*;

i mport javax.nam ng. Cont ext;
i mport javax.nam ng.Initial Context;
i mport java.util.Properties;

public class Hello {

}

public Hello() {

}

public static void main(String[] args) {
Hel | o producer = new Hell o();
producer.runTest ();

}

private void runTest() {
try {

}

}

Properties properties =

new Properties();
properties.|l oad(this.getC ass().getResourceAsStream "hello. properties"));
Context context = new Initial Context(properties); 2]

Connecti onFact ory connecti onFactory
= (ConnectionFactory) context.|ookup("qpi dConnectionfactory”); H
connecti onFactory. createConnection(); H

Connecti on connection =
connection.start(); H

Sessi on sessi on=connecti on. creat eSessi on(fal se, Sessi on. AUTO_ACKNOWNLEDGE) ; B
nati on) context.| ookup("topi cExchange");

Destinati on destination

(Dest

MessagePr oducer messagePr oducer
MessageConsuner messageConsuner

sessi on. creat eProducer (destination);
sessi on. creat eConsuner (destination);

Text Message nmessage = session. createText Message("Hello world!");
nmessagePr oducer . send(nessage) ;

nmessage = (Text Message) nessageConsuner.receive(); 10}
System out . printl n(message. get Text ());

connection.close();
cont ext. cl ose(); 12]

catch (Exception exp) {

}

exp. print StackTrace();

36

Using the Qpid IMS client

E LoadstheJNDI propertiesfile, which specifies connection properties, queues, topics, and addressing
options. See Section 3.2, “Apache Qpid JNDI Properties for AMQP Messaging” for details.

E Createsthe INDI initial context.

E CreatesaJMS connection factory for Qpid.

E Creates aJMS connection.

E Activatesthe connection.

E Creates a session. This session is not transactional (transactions='false'), and messages are
automatically acknowledged.

I Createsadestination for the topic exchange, so senders and receivers can useit.

E Createsaproducer that sends messages to the topic exchange.

E Createsaconsumer that reads messages from the topic exchange.

& Readsthe next available message.

Closesthe connection, all sessions managed by the connection, and all sendersand receivers managed
by each session.

% Closesthe JNDI context.

The contents of the hello.properties file are shown below.

Example 3.2. INDI PropertiesFilefor "Helloworld!" example

java.nam ng.factory.initial
= org. apache. gpi d. jndi.PropertiesFilelnitial ContextFactory

connectionfactory.[]jndi nanme] = [ConnectionURL]
connecti onfact ory. gpi dConnecti onfactory
= anqgp: // guest: guest @l i entid/test?brokerlist="tcp://local host:5672
destination.[jndinane] = [address_string]
destinati on. t opi cExchange = anmg.topic

E Definesaconnectionfactory from which connections can be created. The syntax of aConnectionURL
isgivenin Section 3.2, “Apache Qpid JNDI Properties for AMQP Messaging”.

E Definesadestination for which MessageProducers and/or M essageConsumers can be created to send
and receive messages. The value for the destination in the properties file is an address string as
described in Section 2.4, “ Addresses’. In the IM S implementation M essageProducers are anal ogous
to senders in the Qpid Message API, and M essageConsumers are analogous to receivers.

3.2. Apache Qpid JNDI Properties for AMQP
Messaging

Apache Qpid defines INDI propertiesthat can be used to specify JIM S Connections and Destinations. Here
isatypical INDI propertiesfile:

37

Using the Qpid IMS client

Example 3.3. INDI PropertiesFile

java. nam ng.factory.initial
= org. apache. gpi d. jndi.PropertiesFilelnitial ContextFactory

connectionfactory. [jndi name] = [Connecti onURL]
connecti onfactory. gpi dConnect i onfactory
= amqgp: // guest: guest @l i enti d/test?brokerlist="tcp://local host:5672
destination.[jndinane] = [address_string]
desti nati on.topi cExchange = ang.topic

The following sections describe the INDI properties that Qpid uses.

3.2.1. INDI Properties for Apache Qpid

Apache Qpid supports the properties shown in the following table:

Table 3.1. INDI Properties supported by Apache Qpid

Property Purpose

connectionfactory.<jndiname> The Connection URL that the connection factory
uses to perform connections.

gueue.<jndiname> A JMS queue, which is implemented as an
amg.direct exchange in Apache Qpid.

topic.<jndiname> A JM Stopic, which isimplemented as an amg.topic
exchange in Apache Qpid.

destination.<jndiname> Can be used for defining all amqg destinations,
queues, topics and header matching, using an
address string. 2

@inding URLS, which were used in earlier versions of the Qpid Java JMS client, can still be used instead of address strings.

3.2.2. Connection URLSs

In INDI properties, a Connection URL specifies properties for a connection. The format for a Connection
URL is:

amgp: / /[<user >: <pass>@]|[<cl i enti d>] <vi rt ual host >[?<opti on>="' <val ue>' [&opti on>=" <v

For instance, the following Connection URL specifies a user name, a password, aclient ID, avirtual host
("test"), abroker list with asingle broker, and a TCP host with the host name “localhost” using port 5672:

angp: // user nane: password@l i enti d/test?brokerlist="tcp://|ocal host: 5672’

Apache Qpid supports the following propertiesin Connection URLS:

Table 3.2. Connection URL Properties

Option Type Description

brokerlist see below The broker to use for this connection.
In the current release, precisely one
broker must be specified.

38

Using the Qpid IMS client

Type Description

maxprefetch -- The maximum number of pre-fetched

messages per destination.

sync_publish {'persistent’ | 'al'} A sync command is sent after every

persistent message to guarantee that
it has been received; if the value
is 'persistent’, this is done only for
persistent messages.

Boolean A sync command is sent after every
acknowledgement to guarantee that it
has been received.

use legacy map_msg_format Boolean If you are using IMS Map messages

and deploying a new client with any
JMS client older than 0.8 release, you
must set this to true to ensure the
older clients can understand the map
message encoding.

{'roundrobin’ | 'failover_exchange’} |If roundrobin is selected it will try
each broker given in the broker list.
If failover_exchange is selected it
connects to the initial broker given
in the broker URL and will receive
membership updates via the failover
exchange.

Broker lists are specified using a URL in this format:
brokerlist=<transport>://<host>[:<port>](?<paranp=<val ue>) ?(&par anmr=<val ue>) *
For instance, thisis atypical broker list:

brokerlist="tcp://|ocal host: 5672

A broker list can contain more than one broker address; if so, the connection is made to the first broker in
thelist that is available. In generadl, it is better to use the failover exchange when using multiple brokers,
sinceit allows applicationsto fail over if a broker goes down.

Example 3.4. Broker Lists

A broker list can specify properties to be used when connecting to the broker, such as security options.
This broker list specifies options for a Kerberos connection using GSSAPI:

angp: // guest : guest @est/test ?sync_ack="true'
&brokerlist="tcp://ipl:5672?sasl _mechs=" GSSAPI'

This broker list specifies SSL options:

amgp: // guest : guest @est/test ?sync_ack="true'
&brokerlist="tcp://ipl:5672?ssl ="true' &sl _cert_alias="certl

39

Using the Qpid IMS client

The following broker list options are supported.

Table 3.3. Broker List Options

Option

Type

Description

heartbeat

integer

frequency of heartbeat messages (in
seconds)

sasl_mechs

For secure applications, we
suggest CRAM-MD5, DIGEST-
MD5, or GSSAPI. The
ANONYMOUS method is not
secure. The PLAIN method
is secure only when used
together with SSL. For
Kerberos, sad _mechs must be
set to GSSAPI, sad protocol
must be set to the
principal for the gpidd
broker, eg. gpidd/, and
sasl_server must be st to
the host for the SASL
server, eg. sad.com. SASL
External is supported using
SSL certification, eg.
ssl =' true' &asl _nmechs=' EX1

[ERNAL'

sasl_encryption

Boolean

If sasl_encryption='true',
the IMS client attempts to negotiate
a security layer with the broker using
GSSAPI to encrypt the connection.
Note that for this to happen, GSSAPI
must be selected as the sasl_mech.

sd

Boolean

If ssl =" true', the IMS client will
encrypt the connection using SSL.

tcp_nodelay

Boolean

If tcp_nodel ay="true', TCP
packet batching is disabled.

sasl_protocol

Used only for Kerberos.
sasl| _protocol must be set to the
principal for the gpidd broker, e.g.
gpi dd/

sasl_server

For Kerberos, sasl_mechs must be set
to GSSAPI, sad_server must be set
to the host for the SASL server, e.g.
sasl.com

trust_store

path to Keberos trust store

trust_store_password

Kerberos trust store password

key store

path to Kerberos key store

key store password

Kerberos key store password

ssl_verify_hostname

Boolean

When using SSL you can enable

hostname verification by using

40

Using the Qpid IMS client

Option Type Description
"sd_verify _hostname=true" in the
broker URL.

ssl_cert_dlias If multiple certificates are present in

the keystore, the alias will be used to
extract the correct certificate.

3.3. Java JMS Message Properties

The following table shows how Qpid Messaging APl message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table nsg refers to the Message class defined in the
Qpid Messaging API, np refersto an AMQP 0-10 nessage- pr oper ti es struct, and dp refersto an

AMQPO0-10del i very- properti es struct.

Table 3.4. Java IM S M apping to AM QP 0-10 M essage Properties

Java JM S M essage Property AM QP 0-10 Property?

JMSMessagel D mp.message _id

gpid.subj ect? mp.application_headerd[" gpid.subject"]
IMSXUserIlD mp.user_id

IMSReplyTo mp.reply_to®

IJMSCorrelationl D

mp.correlation_id

IJMSDeliveryMode

dp.delivery_mode

JM SPriority dp.priority

JM SExpiration dp.ttId

JM SRedelivered dp.redelivered

JMS Properties mp.application_headers
IJMSType mp.content_type

8 n these entries, np refers to an AMQP message property, and dp refersto an AMQP delivery property.
PThisisacustom IMS property, set automatically by the Java JMS client implementation.
“Thereply_to is converted from the protocol representation into an address.

4IM SExpiration = dp.ttl + currentTime

3.4. IMS MapMessage Types

Qpid supports the Java IMS MapMes sage interface, which provides support for maps in messages. The
following code shows how to send aMapMessage in Java IMS.

41

Using the Qpid IMS client

Example 3.5. Sending a Java JM S M apM essage

i mport java.util.ArraylList;
i mport java.util.HashMap;

i mport java.util.List;

i mport java.util.Map;

i mport javax.jnms. Connection

i mport javax.jns.Destination

i mport javax.j nms. MapMessage;

i mport javax.j ms. MessageProducer
i mport javax.j ms. Session

i mport org.apache. gpi d. client. AMQAnyDest i nati on
i mport org. apache. gpi d. client. AMQXonnecti on

i mport edu. enory. mat hcs. backport.java.util.Arrays;
[/ 111 SNIP 11
MessagePr oducer producer = session.createProducer(queue);

MapMessage m = sessi on. cr eat eMapMessage() ;
m set I ntProperty("1d", 987654321);

m set Stri ngProperty("nane", "Wdget");

m set Doubl eProperty("price", 0.99);

List<String> colors = new ArrayList<String>();
colors. add("red");

col ors. add("green");

colors. add("white");

m set Qbj ect ("col ours”, colors);

Map<St ri ng, Doubl e> di mensi ons = new HashMap<Stri ng, Doubl e>();
di mensi ons. put ("1 engt h", 10. 2);

di mensi ons. put ("wi dth",5.1);

di mensi ons. put ("dept h", 2. 0);

m set Qbj ect (" di nensi ons”, di mensi ons) ;

Li st<Li st<Integer>> parts = new Arrayli st<Li st<lnteger>>();
parts.add(Arrays. asList(new Integer[] {1,2,5}));
parts.add(Arrays. asLi st(new Integer[] {8,2,5}));

m set Qbj ect ("parts", parts);

Map<Stri ng, bj ect > specs = new HashMap<Stri ng, Obj ect>();
specs. put ("col ours", colors);

specs. put ("di mensi ons”, di mensi ons);

specs. put ("parts", parts);

m set Obj ect ("specs", specs);

producer . send(m;

42

Using the Qpid IMS client

The following table shows the datatypes that can be sent in a MapMessage, and the corresponding
datatypes that will be received by clientsin Python or C++.

Table 3.5. Java Datatypesin Maps

Java Datatype # Python #C++
boolean bool bool

short int | long int16

int int [long int32

long int [long int64

float float float

double float double
javalang.String unicode std::string
javautil.UUID uuid gpid::types::Uuid
javautil. Map? dict Variant::Map
javautil.List list Variant::List

& n Qpid, maps can nest. This goes beyond the functionality required by the JM S specification.

3.5. JMS Client Logging

The JMS Client logging is handled using the Simple Logging Facade for Java (SLF4J [http://
www.dlf4j.org/]). Asthe name implies, Sif4j is afacade that delegates to other logging systems like logdj
or JDK 1.4 logging. For more information on how to configure sif4j for specific logging systems, please
consult the sif4j documentation.

When using the log4j binding, please set the log level for org.apache.qpid explicitly. Otherwise log4j
will default to DEBUG which will degrade performance considerably due to excessive logging. The
recommended logging level for production is WARN.

The following example shows the logging properties used to configure client logging for sif4j using the
log4j binding. These properties can be placed in alogdj.propertiesfile and placed in the CLASSPATH, or
they can be set explicitly using the - DI og4j . confi gur at i on property.

Example 3.6. log4j L ogging Properties

| og4j . | ogger. org. apache. gpi d=WARN, consol e
| og4j . additivity.org.apache. gpi d=f al se

| og4j . appender . consol e=or g. apache. | og4j . Consol eAppender

| og4j . appender. consol e. Threshol d=al |

| og4j . appender. consol e. | ayout =or g. apache. | og4j . Patt er nLayout

| og4j . appender. consol e. | ayout . Conversi onPattern=% % % [%{4}] %¥m

43

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/

Chapter 4. Using the Qpid WCF client
4.1. XML and Binary Bindings

The Qpid WCEF client provides two bindings, each with support for Windows .NET transactions.

The AmgpBinding is suitable for communication between two WCF applications. By default it uses
the WCF binary .NET XML encoder (BinaryM essageEncodingBindingElement) for efficient message
transmission, but it can also use the text and Message Transmission Optimization Mechanism (MTOM)
encoders. Hereisatraditional service model sample program using the AmgpBinding. It assumes that the
gueue "hello_service_node" has been created and configured on the AMQP broker.

nanespace Apache. Qpi d. Docunent ati on. Hel | oSer vi ce
{

usi ng System

usi ng System Ser vi celsiagithe Qpid WCF client

usi ng System Servi ceMbdel . Channel s;
usi ng System Thr eadi ng;
Exanpbe Aphcheadidi onahsemate model " Helloworld!" example

[Servi ceContract]
public interface |IHelloService

{
[OperationContract (1 sOneVy = true, Action = "*")]
voi d SayHel I o(string greeting);
}
public class Hell oService : |HelloService
{
private static int greetingCount;
public static int G eetingCount
{
get { return greetingCount; }
ptatic void Main(string[] args)
{
pubfyc void SayHel | o(string greeting)
{ {
CoAsEPBi Wi ngLANEPBEBHNge=r BEWI ABEPBI ndi ggept i ng) ;
gr 8eTpByadung+8r oker Host = "l ocal host";
} angpBi ndi ng. Broker Port = 5672;
Servi ceHost serviceHost = new Servi ceHost (typeof (Hel | oService));
servi ceHost . AddSer vi ceEndpoi nt (t ypeof (1 Hel | oSer vi ce),
angpBi ndi ng, "angp: hel |l o_servi ce_node");
servi ceHost . Open();
/1 Send the service a test greeting
Ui angpdientUri=new Uri ("angp: ang. di rect ?routi ngkey=hel | o_servi ce_node")
Endpoi nt Addr ess cl i ent Endpoi nt = new Endpoi nt Address(angpClientUri);
Channel Fact ory<l Hel | oServi ce> channel Factory =
new Channel Fact or y<l Hel | oSer vi ce>(angpBi ndi ng, client Endpoi nt);
| Hel | oServi ce clientProxy = channel Fact ory. Creat eChannel ();
clientProxy. SayHel | o("G eetings fromWCF client");
/1 wait for service to process the greeting
whil e (Hell oService. Greeti ngCount == 0)
{
Thr ead. Sl eep(100);
}
channel Fact ory. Cl ose();
servi ceHost . Cl ose();
}
catch (Exception e)
{
Consol e. Wi telLi ne("Exception: {0}", e);
}
}
}

}

45

Using the Qpid WCF client

The second binding, AmgpBinaryBinding, is suitable for WCF applications that need to inter-operate
with non-WCEF clients or that wish to have direct access to the raw wire representation of the message
body. It relies on a custom encoder to read and write raw (binary) content which operates similarly to the
ByteStream encoder (introduced in .NET 4.0). The encoder presents an abstract XML infoset view of the
raw message content on input. On output, the encoder does the reverse and peels away the XML infoset
layer exposing the raw content to the wire representation of the message body. The application must do the
inverse of what the encoder doesto allow the XML infoset wrapper to cancel properly. Thisisdemonstrated
in the following sample code (using the channel programming model) which directly manipulates or
provides callbacks to the WCF message readers and writers when the content is consumed. In contrast to
the AmgpBinding sample where the simple greeting is encapsul ated in a compressed SOAP envelope, the
wire representation of the message contains the raw content and is identical and fully interoperable with
the Qpid C++ "Hello world!" example.

46

port = int.Parse(args[1]);
}

i f (args.Length Ysiaythe Qpid WCF client

1
target = args[2];

Example 4.2. Binary " Helloworld!" example using the channel model

}
}

if (args.Length > 3)
{

}

source = args[3];

AmgpBi nar yBi ndi ng bi ndi ng = new AngpBi nar yBi ndi ng() ;
bi ndi ng. Br oker Host br oker
bi ndi ng. Br oker Por t port;

| Channel Fact or y<I | nput Channel > recei ver Factory = bi ndi ng. Bui | dChannel Fact ory
recei ver Fact ory. Qpen();

I I nput Channel receiver = receiverFactory. Creat eChannel (new Endpoi nt Addr ess("
recei ver. Qpen();

| Channel Fact or y<I Qut put Channel > sender Fact ory = bi ndi ng. Bui | dChannel Fact ory<
sender Fact ory. Open();

| Qut put Channel sender = sender Factory. Creat eChannel (new Endpoi nt Addr ess(" anmg
sender . Qpen();

sender . Send(Message. Cr eat eMessage(MessageVer si on. None, "", new Hel | oWr | dBi n
Message nessage = receiver. Receive();

Xm Di cti onaryReader reader = nessage. Get Reader At BodyCont ent s();
whi | e (!reader. HasVal ue)

{
}

byte[] binaryContent = reader.ReadCont ent AsBase64();
string text = Encoding. UTF8. Get Stri ng(bi naryContent);

reader. Read() ;

Consol e. WitelLine(text);

sender Factory. Cl ose();
recei ver Factory. Cl ose();

public class Hell oWorl dBi naryBodyWiter : BodyWiter

{

public Hell owrl dBi naryBodyWiter() : base (true) {}

protected override void OnWiteBodyContents(Xm Dicti onaryWiter witer)

{

byte[] binaryContent = Encodi ng. UTF8. GetBytes("Hell o world!");

/1 wrap the content:
witer. WiteStart El ement ("Bi nary");
witer. WiteBase64(bi naryContent, 0, binaryContent.Length);

47

Using the Qpid WCF client

Bindings define Channel Factories and ChannelListeners associated with an AMQP Broker. WCF will
frequently automatically create and manage the life cycle of a these and the resulting IChannel objects
used in message transfer. The binding parameters that can be set are:

Table4.1. WCF Binding Parameters

Parameter Default Description

BrokerHost localhost The broker's server name. Currently
the WCF channel only supports
connections with a single broker.
Failover to multiple brokers will be
provided in the future.

BrokerPort 5672 The port the broker islistening on.

PrefetchLimit 0 The number of messages to prefetch
from the amgp broker before
the application actually consumes
them. Increasing this number can
dramatically increase the read
performance in some circumstances.

Shared false Indicates if separate channels to the
same broker can share an underlying
AMQP tcp connection (provided they
also share the same authentication
credentials).

TransferMode buffered Indicates whether the channe's
encoder usesthe WCF BufferManager
cache to temporarily store message
content during the encoding/decoding
phase. For small to medium sized
SOAP based messages, buffered
is usually the preferred choice.
For binary messages, streamed
TransferMode is the more efficient
mode.

4.2. Endpoints

In Qpid 0.6 the WCF Endpoints map to simple AMQP 0-10 exchanges (I OutputChannel) or AMQP 0-10
gueues (IInputChannel). The format for an 10utputChannel is

"angp: ang. direct” or "angp: nmy_exchange?r outi ngkey=nmy_routing key"

and for an lInputChannel is

"angp: ny_queue"

The routing key is in fact a default value associated with the particular channel. Outgoing messages can
always have their routing key uniquely set.

If the respective queue or exchange doesn't exist, an exception isthrown when opening the channel. Queues
and exchanges can be created and configured using gpid-config.

48

Using the Qpid WCF client

4.3. Message Headers

AMQP specific message headers can be set on or retrieved from the ServiceModel.Channels.Message
using the AmgpProperties type.

For example, on output:

AngpProperties props = new AngpProperties();

props. Durabl e = true;

props. PropertyMap. Add(" ny_cust om header", new AngpString("a custom val ue"));
Message nsg = Message. Cr eat eMessage(args);

nsg. Properti es. Add(" AngpProperties", angpProperties);

out put Channel . Send(sg) ;

On input the headers can be accessed from the Message or extracted from the operation context

public void SayHel |l o(string greeting)
{
AngpProperties props = (AmgpProperties) QperationContext.
Current. | ncom ngMessageProperti es[" AngpProperties"];
AmgpString extra = (AngpString) props. PropertyMap["my_custom header"];
Consol e. WitelLine("Service received: {0} and {1}", greeting, extra);

}

4.4. Security

Toengage TLS/SSL:

bi ndi ng. Security. Mode = AmgpSecurityMde. Transport;
bi ndi ng. Security. Transport. UseSSL = true;
bi ndi ng. Broker Port = 5671;

Currently the WCF client only provides SASL PLAIN (i.e. username and password) authentication.
To provide a username and password, you can set the DefaultAmgpCredential value in the binding.
This value can be overridden or set for a bhinding's channel factories and listeners, either by
setting the ClientCredentials as a binding parameter, or by using an AmgpCredential as a binding
parameter. The search order for credentials is the AmgpCredential binding parameter, followed by the
ClientCredentials (unless IgnoreEndpointClientCredentials has been set), and finally defaulting to the
DefaultAmqgpCredential of the binding itself. Here is a sample using ClientCredentials:

ClientCredentials credentials
credenti al s. User Nanme. User Nane "guest";

credenti al s. User Nanme. Passwor d "guest";

bi ndi ngPar anet ers = new Bi ndi ngPar aret er Col | ecti on();

bi ndi ngPar anet ers. Add(credenti al s);

reader Fact ory = bi ndi ng. Bui | dChannel Fact or y<I | nput Channel >(bi ndi ngPar anet ers) ;

new Cl i ent Credential s();

49

Using the Qpid WCF client

4.5. Transactions

The WCF channel provides a transaction resource manager module and a recovery module that together
provide distributed transaction support with one-phase optimization. Some configuration is required on
Windows machines to enable transaction support (see your installation notes or top level ReadMe.txt file
for instructions). Once properly configured, the Qpid WCF channel acts as any other System.Transactions
aware resource, capable of participating in explicit or implicit transactions.

Server code:

[Oper ati onBehavi or (Transact i onScopeRequi red = true,
Transacti onAut oConpl ete = true)]

public void SayHel | o(string greeting)
{

/1 increnent ExactlyOnceReceived counter on DB

/1 Success: transaction auto conpletes:

}

Because this operation involves two transaction resources, the database and the AM QP message broker,
this operates as a full two phase commit transaction managed by the Distributed Transaction Coordinator
service. If the transaction proceeds without error, both ExactlyOnceReceived is incremented in the
database and the AMQP message is consumed from the broker. Otherwise, ExactlyOnceReceived is
unchanged and AM QP message is returned to its queue on the broker.

For the client code a few changes are made to the non-transacted example. For "exactly once" semantics,
we set the AMQP "Durabl€" message property and enclose the transacted activitiesin a TransactionScope:

AngpProperties nmyDefaults = new AngpProperties();

nyDef aul ts. Durabl e = true;

angpBi ndi ng. Def aul t MessageProperties = nyDefaul ts;

Channel Fact ory<l Hel | oServi ce> channel Factory =

new Channel Fact or y<l Hel | oSer vi ce>(angpBi ndi ng, client Endpoi nt);
| Hel | oServi ce clientProxy = channel Factory. Creat eChannel ();

using (Transacti onScope ts = new Transacti onScope())

{
AngpProperties angpProperties = new AngpProperties();
clientProxy. SayHel | o("G eetings fromWCF client");
/1 increnent ExactlyOnceSent counter on DB
ts. Conpl ete();
}

50

Chapter 5. The .NET Binding for the C+
+ Messaging Client

5.1..
Com

The .NET Binding for the C++ Qpid Messaging Client isan intermediary program designed to make access
to C++ Qpid Messaging methods ssimple and in a way familiar to the programmer. The .NET Binding
creates and manipulates actual C++ Qpid Messaging API objects so that a .NET program will operate the
same as if the program were written in native C++.

NET Binding for the C++ Messaging Client

ponent Architecture
| Dotnet exampies 1
| Managed C# |
|
\%

|

|

|

Managed Cal	back	
org.apache. gpi d. nessagi ng.		
sessionreceiver.dll		

o e e e e e e +----+
|

managed \% \%
(. NET) R +
srririiririiiiiiiiiiiit| O NET Binding Library [coororro
unmanaged | org.apache. qpi d. messaging.dl | |
(Native Wn32/64) R LR R R +

S +

|
|
| Native exanpl es| |
| Unmanaged C++ | |
|
|

| QPID Messaging C++ Libraries |
| qpid*.dll gnf*.dll |

This diagram illustrates the code and library components of the binding and the hierarchical relationships
between them.

Table5.1. .NET Binding for the C++ Messaging Client Component Architecture

Component Name Component Function

QPID Messaging C++ Libraries The QPID Messaging C++ core run time system

51

The .NET Binding for the
C++ Messaging Client

Component Name Component Function

Unmanaged C++ Example Source Programs Ordinary C++ programs that illustrate using gpid/
cpp Messaging directly in a native Windows
environment.

.NET Messaging Binding Library The .NET Messaging library provides

interoprability between managed .NET programs
and the unmanaged, native Messaging C++ run
time system. .NET programs create a Reference to
this library thereby exposing all of the native C+
+ Messaging functionality to programs written in
any .NET language.

.NET Messaging Managed Callback Library An extension of the .NET Messaging Binding
Library that provides message callbacks in a
managed .NET environment. This component is
written purely in C#.

Managed C# .NET Example Source Programs Various C# example programs that illustrate
using .NET Messaging Binding in the .NET

environment.

5.2. .NET Binding for the C++ Messaging Client
Examples

Thischapter describesthe various sample programsthat areavailabletoillustrate common Qpid Messaging

usage.

Table5.2. Example: Client - Server

Example Client - Server

csharp.example.server Creates a Receiver and listens for messages. Upon

message reception the message content is converted
to upper case and forwarded to the received
message's ReplyTo address.

csharp.example.client Sends a series of messages to the Server and
printsthe original message content and the received
message content.

Table5.3. Example: Map Sender —Map Receiver

Example Map Sender - Map Receiver

csharp.map.receiver Creates a Receiver and listens for a map message.
Upon message reception the message is decoded
and displayed on the console.

csharp.map.sender Createsamap message and sendsit to map.receiver.
The map message contains values for every
supported .NET Messaging Binding data type.

52

The .NET Binding for the
C++ Messaging Client

Table5.4. Example: Spout - Drain

Example

Spout - Drain

csharp.example.spout

Spout is a more complex example of code that
generates a series of messages and sends them
to peer program Drain. Flexible command line
arguments allow the user to specify a variety of
message and program options.

csharp.example.drain

Drain is a more complex example of code that
receives a series of messages and displays their
contents on the console.

Table5.5. Example: Map Callback Sender — Map Callback Receiver

Example

Map Callback Sender - Map Callback Receiver

csharp.map.callback.receiver

Creates a Receiver and listens for a map message.
Upon message reception the message is decoded
and displayed on the console. This example
illustrates the use of the C# managed code callback
mechanism provided by .NET Messaging Binding
Managed Callback Library.

csharp.map.callback.sender

Creates a map message and sends it to
map_receiver. The map message contains values
for every supported .NET Messaging Binding data

type.

Table 5.6. Example - Declare Queues

Example

Declare Queues

csharp.example.declare_queues

A program to illustrate creating objects on abroker.
This program creates a queue used by spout and
drain.

Table5.7. Example: Direct Sender - Direct Receiver

Example

Direct Sender - Direct Receiver

csharp.direct.receiver

Creates a Receiver and listens for a messages.
Upon message reception the message is decoded
and displayed on the console.

csharp.direct.sender

Creates a series of messages and sends them to
csharp.direct.receiver.

Table5.8. Example: Hello World

Example

HelloWorld

csharp.example.helloworld

A program to send a message and to receive the
same message.

53

The .NET Binding for the
C++ Messaging Client

5.3. .NET Binding Class Mapping to Underlying
C++ Messaging API

This chapter describes the specific mappings between classes in the .NET Binding and the underlying C
++ Messaging API.

5.3.1. .NET Binding for the C++ Messaging API Class:
Address

Table5.9. .NET Binding for the C++ Messaging API Class: Address
.NET Binding Class: Address

Language Syntax

C++ class Address

.NET public ref class Address
Constructor

C++ Address();

NET public Address();
Constructor

C++ Address(const std::string& address);

.NET public Address(string address);
Constructor

C++ Address(const std::string& name, const std::string&

subject, const qpid::types.:Variant::Map& options,
const std::string& type="");

.NET public Address(string name, string subject,
Dictionary<string, object> options);
.NET public Address(string name, string subject,
Dictionary<string, object> options, string type);
Copy constructor
C++ Address(const Address& address);
.NET public Address(Address address);
Destructor
C++ ~Address();
NET ~Address();
Finalizer
C++ n/a
.NET IAddress();
Copy assignment operator
C++ Address& operator=(const Address&);
.NET public Address op_Assign(Address rhs);
Property: Name

The .NET Binding

for the

C++ Messaging Client

.NET Binding Class: Address
Language Syntax
C++ const std::string& getName() const;
C++ void setName(const std::string&);
.NET public string Name { get; set; }
Property: Subject
C++ const std::string& getSubject() const;
C++ void setSubject(const std::string&);
.NET public string Subject { get; set; }
Property: Options
C++ const qpid::itypes.:Variant::Map& getOptions()
const;
C++ gpid::types::Variant::Map& getOptions();
C++ void setOptions(const
gpid::types:Variant::Map&);
.NET public Dictionary<string, object> Options { get;
set; }
Property: Type
C++ std::string getType() const;
C++ void setType(const std::string&);
.NET public string Type { get; set; }
Miscellaneous
C++ std::string str() const;
NET public string ToStr();
Miscellaneous
C++ operator bool() const;
.NET n‘a
Miscellaneous
C++ bool operator !() const;
NET n/a

5.3.2. .NET Binding for the C++ Messaging API Class:

Connection

Table5.10. .NET Binding for the C++ Messaging API Class. Connection

.NET Binding Class. Connection
Language Syntax
C++ class Connection : public
gpid::messaging::Handle<Connectionl mpl>
.NET public ref class Connection

55

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Connection

Language ‘ Syntax
Constructor
C++ Connection(Connectionlmpl* impl);
NET n/‘a
Constructor
C++ Connection();
.NET TODO:
Constructor
C++ Connection(const std::string& url, const
gpid::types::Variant::Map& options =
gpid::types::Variant::Map());
.NET public Connection(string url);
.NET public Connection(string url, Dictionary<string,
object> options);
Constructor
C++ Connection(const std::string& url, const
std::string& options);
.NET public Connection(string url, string options);
Copy Constructor
C++ Connection(const Connection&);
.NET public Connection(Connection connection);
Destructor
C++ ~Connection();
.NET ~Connection();
Finalizer
C++ n/a
.NET IConnection();
Copy assignment operator
C++ Connection& operator=(const Connection&);
.NET public Connection op_Assign(Connection rhs);
Method: SetOption
C++ void setOption(const std::string& name, const
gpid::types::Variant& value);
.NET public void SetOption(string name, object value);
Method: open
C++ void open();
.NET public void Open();
Property: isOpen
C++ ‘bool isOpen();

56

The .NET Binding

for the

C++ Messaging Client

.NET Binding Class: Connection
Language Syntax
.NET public bool 1sOpen { get; }
Method: close
C++ void close();
.NET public void Close();
Method: createTransactional Session

C++ Session createT ransactional Session(const

std::string& name = std::string());
.NET public Session CreateTransactional Session();
.NET public Session CreateTransactional Session(string

name);

Method: createSession

C++ Session createSession(const std::string& name =

std::string());
.NET public Session CreateSession();
.NET public Session CreateSession(string name);

Method: getSession
C++ Session getSession(const std::string& name) const;
.NET public Session GetSession(string name);
Property: AuthenticatedUsername

C++ std::string getAuthenticatedUsername();
.NET public string GetA uthenticatedUsername();

5.3.3. .NET Binding for the C++ Messaging API Class:

Duration
Table5.11. .NET Binding for the C++ Messaging API Class. Duration
.NET Binding Class; Duration
Language Syntax
C++ class Duration
.NET public ref class Duration
Constructor
C++ explicit Duration(uint64_t milliseconds);
.NET public Duration(ulong mS);
Copy constructor
C++ n/a
.NET public Duration(Duration rhs);
Destructor
C++ default

57

The .NET Binding for the
C++ Messaging Client

.NET Binding Class; Duration
Language Syntax
NET default
Finalizer
C++ n/‘a
NET default
Property: Milliseconds
C++ uinté4 t getMilliseconds() const;
NET public ulong Milliseconds{ get; }
Operator: *
C++ Duration operator*(const Duration& duration,
uinté4 t multiplier);
.NET public static Duration operator *(Duration dur,
ulong multiplier);
.NET public static Duration Multiply(Duration dur, ulong
multiplier);
C++ Duration operator*(uint64 t multiplier, const
Duration& duration);
.NET public static Duration operator *(ulong multiplier,
Duration dur);
.NET public static Duration Multiply(ulong multiplier,
Duration dur);
Constants
C++ static const Duration FOREVER;
C++ static const Duration IMMEDIATE;
C++ static const Duration SECOND;
C++ static const Duration MINUTE;
.NET public sealed class DurationConstants
.NET public static Duration FORVER,;
.NET public static Duration IMMEDIATE;
.NET public static Duration MINUTE;
.NET public static Duration SECOND;

5.3.4. .NET Binding for the C++ Messaging API Class:

FailoverUpdates

Table5.12. NET Binding for the C++ Messaging API Class. Failover Updates

.NET Binding Class. Failover Updates

Language

Syntax

C++

class FailoverUpdates

NET

public ref class FailoverUpdates

58

The .NET Binding

for the

C++ Messaging Client

.NET Binding Class. Failover Updates
Language ‘ Syntax
Constructor
C++ FailoverUpdates(Connection& connection);
.NET public FailoverUpdates(Connection connection);
Destructor
C++ ~FailoverUpdates();
.NET ~FailoverUpdates();
Finalizer
C++ n/a
.NET IFailoverUpdates();

5.3.5. .NET Binding for the C++ Messaging API Class:

Message
Table5.13. .NET Binding for the C++ Messaging API Class. M essage
.NET Binding Class. M essage
Language Syntax
C++ class Message
.NET public ref class Message
Constructor
C++ Message(const std::string& bytes = std::string());
.NET Message();
.NET M essage(System:: String theStr);
.NET M essage(System::Object ” theValue);
.NET M essage(array<System::Byte> * bytes);
Constructor
C++ Message(const char*, size t);
.NET public Message(byte]] bytes, int offset, int size);
Copy constructor
C++ M essage(const Message&);
NET public Message(M essage message);
Copy assignment operator
C++ Message& operator=(const Message&);
NET public Message op_Assign(Message rhs);
Destructor
Ct++ ~Message();
NET ~Message();
Finalizer

59

The .NET Binding

for the

C++ Messaging Client

.NET Binding Class. M essage

Language Syntax
C++ n/a
NET IMessage()
Property: ReplyTo
C++ void setReplyTo(const Address&);
C++ const Address& getReplyTo() const;
.NET public Address ReplyTo { get; set; }
Property: Subject
C++ void setSubject(const std::string&);
C++ const std::string& getSubject() const;
.NET public string Subject { get; set; }
Property: ContentType
C++ void setContentType(const std::string&);
C++ const std::string& getContentType() const;
.NET public string ContentType { get; set; }
Property: Messageld
C++ void setMessagel d(const std::string&);
C++ const std::string& getMessagel d() const;
NET public string Messageld { get; set; }
Property: Userld
C++ void setUserld(const std::string&);
C++ const std::string& getUserld() const;
.NET public string Userld { get; set; }
Property: Correlationld
C++ void setCorrelationld(const std::string&);
C++ const std::string& getCorrelationld() const;
.NET public string Correlationld { get; set; }
Property: Priority
C++ void setPriority(uint8_t);
C++ uint8_t getPriority() const;
.NET public byte Priority { get; set; }
Property: Ttl
C++ void setTtl(Duration ttl);
C++ Duration getTtl() const;
.NET public Duration Ttl { get; set; }
Property: Durable
C++ void setDurable(bool durable);
C++ bool getDurable() const;

60

The .NET Binding for the
C++ Messaging Client

.NET Binding Class. M essage

Language Syntax
.NET public bool Durable { get; set; }
Property: Redelivered
C++ bool getRedelivered() const;
C++ void setRedelivered(bool);
.NET public bool Redelivered { get; set; }
Method: SetProperty
C++ void setProperty(const std::string&, const
gpid::types::Variant&);
.NET public void SetProperty(string name, object value);
Property: Properties
C++ const gpid::itypes::Variant::Map& getProperties()
const;
C++ gpid::types::Variant::Map& getProperties();
.NET public Dictionary<string, object> Properties { get;
set; }
Method: SetContent
C++ void setContent(const std::string&);
C++ void setContent(const char* chars, size t count);
.NET public void SetContent(byte[] bytes);
.NET public void SetContent(string content);
.NET public void SetContent(byte[] bytes, int offset, int
size);
Method: GetContent
C++ std::string getContent() const;
.NET public string GetContent();
.NET public void GetContent(bytel] arr);
NET public void GetContent(Collection<object> _ p1);
.NET public void GetContent(Dictionary<string, object>
dict);
Method: GetContentPtr
C++ const char* getContentPtr() const;
NET n‘a
Property: ContentSize
C++ size t getContentSize() const;
.NET public ulong ContentSize { get; }
Struct: EncodingException
C++ struct EncodingException : gpid::types::Exception
NET n/a

61

The .NET Binding

for the

C++ Messaging Client

.NET Binding Class. M essage

Language ‘ Syntax

Method: decode

C++ void decode(const Message& message,
gpid::types::Variant::Map& map, const std::string&
encoding = std::string());

C++ void decode(const Message& message,
gpid::types:Variant::List& list, const std::string&
encoding = std::string());

NET TODO:

Method: encode

C++ void encode(const qpid::types::Variant::Map&
map, Message& message, const std::string&
encoding = std::string());

C++ void encode(const gpid::types:Variant::List& list,
Message& message, const std::string& encoding =
std::string());

NET TODO:

Method: AsString

C++ n/a

NET public string AsString(object obj);

.NET public string ListAsString(Collection<object> list);

.NET public string MapAsString(Dictionary<string,
object> dict);

5.3.6. .NET Binding for the C++ Messaging API Class:

Receiver
Table5.14. .NET Binding for the C++ Messaging API Class. Receiver
.NET Binding Class. Receiver
Language Syntax
C++ class Receiver
.NET public ref class Receiver
Constructor
.NET Constructed object is returned by
Session.CreateReceiver
Copy constructor
C++ Receiver(const Receiver&);
.NET public Receiver(Receiver receiver);
Destructor
C++ ~Receiver();
NET ~Receiver();

62

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Receiver

Language ‘ Syntax
Finalizer
C++ n/a
NET IReceiver()
Copy assignment operator
C++ Receiver& operator=(const Receiver&);
NET public Receiver op_Assign(Receiver rhs);
Method: Get
C++ bool get(Message& message, Duration
timeout=Duration::FOREVER);
.NET public bool Get(Message mmsgp);
NET public bool Get(Message mmsgp, Duration
durationp);
Method: Get
C++ Message get(Duration
timeout=Duration::FOREVER);
.NET public Message Get();
.NET public Message Get(Duration durationp);
Method: Fetch
C++ bool fetch(Message& message, Duration
timeout=Duration::FOREVER);
.NET public bool Fetch(Message mmsgp);
NET public bool Fetch(Message mmsgp, Duration
duration);
Method: Fetch
C++ Message fetch(Duration
timeout=Duration::FOREVER);
.NET public Message Fetch();
.NET public Message Fetch(Duration durationp);
Property: Capacity
C++ void setCapacity(uint32_t);
C++ uint32_t getCapacity();
.NET public uint Capacity { get; set; }
Property: Available
C++ uint32_t getAvailable();
.NET public uint Available{ get; }
Property: Unsettled
C++ uint32_t getUnsettled();
.NET public uint Unsettled { get; }

63

The .NET Binding

for the

C++ Messaging Client

.NET Binding Class: Receiver
Language ‘ Syntax
Method: Close
C++ void close();
NET public void Clos«();
Property: 1sClosed
C++ bool isClosed() const;
.NET public bool IsClosed { get; }
Property: Name
C++ const std::string& getName() const;
.NET public string Name { get; }
Property: Session
C++ Session getSession() const;
.NET public Session Session { get; }

5.3.7. .NET Binding for the C++ Messaging API Class:

Sender

Table5.15. .NET Binding for the C++ Messaging API Class. Sender

.NET Binding Class: Sender
Language Syntax
C++ class Sender
.NET public ref class Sender
Constructor
.NET Constructed object is returned by
Session.CreateSender
Copy constructor
C++ Sender(const Sender&);
.NET public Sender(Sender sender);
Destructor
C++ ~Sender();
NET ~Sender();
Finalizer
C++ n/a
NET ISender()
Copy assignment operator
C++ Sender& operator=(const Sender&);
.NET public Sender op_Assign(Sender rhs);
Method: Send

The .NET Binding for the
C++ Messaging Client

.NET Binding Class. Sender
Language Syntax
C++ void send(const Message& message, bool
sync=fase);
NET public void Send(M essage mmsgp);
.NET public void Send(M essage mmsgp, bool sync);
Method: Close
C++ void close();
NET public void Clos«();
Property: Capacity
C++ void setCapacity(uint32_t);
C++ uint32_t getCapacity();
.NET public uint Capacity { get; set; }
Property: Available
C++ uint32_t getAvailable();
.NET public uint Available{ get; }
Property: Unsettled
C++ uint32_t getUnsettled();
.NET public uint Unsettled { get; }
Property: Name
C++ const std::string& getName() const;
NET public string Name{ get; }
Property: Session
C++ Session getSession() const;
.NET public Session Session { get; }

5.3.8. .NET Binding for the C++ Messaging API Class:
Session

Table5.16. .NET Binding for the C++ Messaging API Class: Session

.NET Binding Class. Session
Language Syntax
C++ class Session
.NET public ref class Session
Constructor
.NET Constructed object is returned by
Connection.CreateSession

Copy constructor
C++ Session(const Session&);
.NET public Session(Session session);

65

The .NET Binding

for the

C++ Messaging Client

.NET Binding Class: Session
Language ‘ Syntax
Destructor
C++ ~Session();
NET ~Session();
Finalizer
C++ n/a
NET ISession()
Copy assignment operator
C++ Session& operator=(const Session&);
.NET public Session op_Assign(Session rhs);
Method: Close
C++ void close();
.NET public void Close();
Method: Commit
C++ void commit();
.NET public void Commit();
Method: Rollback
C++ void rollback();
NET public void Rollback();
Method: Acknowledge
C++ void acknowledge(bool sync=false);
C++ void acknowledge(Message& , bool sync=false);
NET public void Acknowledge();
NET public void Acknowledge(bool sync);
.NET public void Acknowledge(Message __ pl);
.NET public void Acknowledge(Message _ pl, bool
__p2);
Method: Reject
C++ void reject(Message&);
.NET public void Reject(Message __ pl);
Method: Release
C++ void release(M essages.);
NET public void Release(Message _ pl);
Method: Sync
C++ void sync(bool block=true);
NET public void Sync();
.NET public void Sync(bool block);

Property: Receivable

66

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Session

Language Syntax
C++ uint32_t getReceivable();
.NET public uint Receivable{ get; }
Property: UnsettledAcks
C++ uint32_t getUnsettledAcks();
.NET public uint UnsetledAcks { get; }
Method: NextReceiver
C++ bool nextReceiver(Receiver&, Duration
timeout=Duration::FOREVER);
.NET public bool NextReceiver(Receiver rcvr);
.NET public bool NextReceiver(Receiver rcvr, Duration
timeout);
Method: NextReceiver
C++ Receiver nextReceiver(Duration
timeout=Duration::FOREVER);
.NET public Receiver NextReceiver();
.NET public Receiver NextReceiver(Duration timeout);
Method: CreateSender
C++ Sender createSender(const Address& address);
.NET public Sender CreateSender(Address address);
Method: CreateSender
C++ Sender createSender(const std::string& address);
.NET public Sender CreateSender(string address);
Method: CreateReceiver
C++ Receiver createReceiver(const Address& address);
.NET public Receiver CreateReceiver(Address address);
Method: CreateReceiver
C++ Receiver createReceiver(const std::string&
address);
.NET public Receiver CreateReceiver(string address);
Method: GetSender
C++ Sender getSender(const std::string& name) const;
.NET public Sender GetSender(string name);
Method: GetReceiver
C++ Receiver getReceiver(const std::string& name)
const;
.NET public Receiver GetReceiver(string name);
Property: Connection
C++ Connection getConnection() const;

67

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Session
Language Syntax
.NET public Connection Connection { get; }
Property: HasError
C++ bool hasError();
.NET public bool HasError { get; }
Method: CheckError
C++ void checkError();
.NET public void CheckError();

5.3.9. .NET Binding for the C++ Messaging API Class:
SessionReceiver

The SessionReceiver class provides a convenient callback mechanism for Messages received by all
Receivers on agiven Session.

usi ng Org. Apache. Qpi d. Messagi ng;
usi ng System

nanespace O g. Apache. Qi d. Messagi ng. Sessi onRecei ver

{
public interface | SessionReceiver
{
voi d Sessi onRecei ver (Recei ver receiver, Message nessage);
}
public class Call backServer
{
public Call backServer (Session session, |SessionReceiver call back);
public void O ose();
}
}

To use this class a client program includes references to both Org.Apache.Qpid.Messaging and
Org.Apache.Qpid.Messaging.SessionReceiver. The calling program creates afunction that implementsthe
| SessionReceiver interface. Thisfunction will be called whenever message isreceived by the session. The
callback processis started by creating a CallbackServer and will continue to run until the client program
callsthe CallbackServer.Close function.

A complete operating example of using the SessionReceiver callback is contained in cpp/bindings/qpid/
dotnet/exampl es/csharp.map.callback.receiver.

68

