Apache Qpid
Open Source AMQP Messaging

Apache Qpid: Open Source AMQP Messaging

Copyright © 2010 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Y ou may obtain
acopy of the License at

http://ww. apache. org/licenses/ LI CENSE-2. 0
Unless required by applicable law or agreed to in writing, software distributed under the Licenseis distributed on an "AS1S* BASIS, WITHOUT

WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

Table of Contents

I =T = o TSSO 1
1. Apache Qpid: Open Source AMQP MESSAgINGvuueeerrtnaeiiiiiieeeeii e eenia e eeni e eenieeees 3
1. AMQP MeSSaging BroKErSccouuuiiiiiiie e 3

2. AMQP Client APIs: C++, Java, IMS, Ruby, Python, and C#..........ccoooeiiiiiiiiiinenn, 3

3. Operating Systems and PlatfOrmS:uuuiiiiiiiieieii e 3

2. AMQP (Advanced Message QUeUEiNg ProtoColoveiiuiiiieiiiiineeiiie e 5
1. Download the AMQP SPECIfiCaLIONSccvvveieiiiiiie e 5

3. GEING SEAIMTE ...ttt 7
4. Download APache QPIT cieeeieeeiii ettt 9
1. ProduCtion REIEASEScocuiiieiiii et 9

2. 0.5 REIEESE .o 9

2.1. Multiple Component PaCKageScuuuueieiiiieieiie et 9

2.2. Single Component PaCKBgEcccuuuieiiiiiie e 9

3. QPIACOMPONENTS.ONT . .evvtneeeerti e eett ettt e et e et e et e e et e e et e e eeea s 10

4. Contributed CH+ PaCKBOgESueiiiiii et 11

4.1. Pre-built LinuX PaCKAgESuiiiiiiiieeei e 11

4.2 WINdOWS INSEAIIEN ..o 11

5. S0Urce Code REPOSITONYccieriieeiiiiie ettt e e e 11

1. AMQP Messaging Broker (Implemented in CH+) ... 12
5. Running the AMQP Messaging BroKercoooiiuiiiiiiiiiei e 13
1. Running & QPid CH+ BrOKErooiiiiiieieii e 13

1.1. Building the C++ Broker and Client Librariescccoooiveviiiiiieiiiinnenens 13

1.2. RuNNing the CH+ BIroKErc..uiiiiiiiieii e 13

1.3. Most common questions getting gpidd runningccceevveveiiinneeeeiinneeeens 13

14, AUTRENTICAITION .iiiiiieiiii et 14

1.5. Slightly more complex configurationcccooeeiiiiiiieiiiiineee e, 15

1.6. Loading eXtra MOQUIESuuiiiiiiiiiiiii e 16

2. Cheat Sheet for configuring QUEUE OPLIONSuuriiiiriieeiiiii e 17

2.1. Configuring QUEUE OPLIONS ... ccvietieeiiiiiie ettt 17

3. Cheat Sheet for configuring Exchange Optionsc.uevveiiiiinieiiiiineeciiieeeeeiinnen 19

3.1. Configuring Exchange OPtioNScceuuuiiiiiiinieeiii e 19

4. USing BroKer FEOEIaliONveiiiiiieeiiiii e 21

A1, INEOAUCTION ettt ettt et e eeeaens 21

4.2. What |s Broker Federation?ooveieiuiiiiiiiieeiii e 21

4.3. The gpid-route ULHILYooooemiiiiiiii e 21

4.4, EXAMPIE SCONAITOS ... ieieeiieeiiii ettt ettt ettt e eeenens 27

4.5, AGVANCED TOPICS .vuiieiiiiieeeiii ettt ettt e et e e e e eeane s 28

ST S SO TSSOPPPPRRTIN 29

5.1 SSL HOW 0 1eiiiiiiiiiei ittt 29

LT Y @ LTS PUPP PR 30

6.1. Understanding LV Qooeiiiiiiieiiiii et 30

6.2. LVQ SEMANLICS. .tuiiiiiiiiieiie ettt e e et et e e e 31

6.3. LVQ_NO_BROWSE SEMANLICS. ...cvvuniiiiiiniiiiiiieeeii et 31

6.4. LVQ Program EXamplecoooiiiiiiiiiiiei e 32

7. Queue State REPIICALIONiieieiieiii e 36

7.1. Asynchronous Replication of Queue Statecoveveveiniiiiiiiiieiiiineeeennn 36

8. SHAItiNG A CIUSLEr ..o 40

8.1. Running @ Qpidd CIUSLErcooiiiiiiiii e 40

0. AL ittt et e e et e e aeaaaaaa 42

9.1. v2 ACL file format for brokersccooiiiiiiiiiiii e 42

9.2. DeSIgN DOCUMENTALIONuueiiiiieeieii et 45

Apache Qpid

9.3. V2 ACL USEr GUITE ...oivviiieiiiii ettt e e s 46
6. Managing the AMQP Messaging BroKerooovviiiiiiiiiiii e 48
1. Managing the CH+ BIrOKErcoccuiiiiiiciiii e e e e e e 48
0 W= 1 o o oo Kot 1 o PN 48
72 W = 1 o o oo o o 1= P 50
1.3. USING QPIA-TO0] ...ceeniiiici e 51
1.4. USiNg qPId-PrinteVENSciiiieiiieiiii e e ee e e e e e e e e s e e e e e 55
2. QMan - Qpid Management bridgeccoveiiiiiiiiiieie e 55
2.1. QMan : Qpid Management Bridgecocooiiiiiiiiiiiiiiii e 55
3. Qpid Management FrameWOrKccoeuieiiiieiiie e e e e ea e 56
3L What ISQME i 56
3.2. Getting Started With QMF ..o 57
3.3, QME CONCEPLS .iveiiiiii i 57
3.4. The QME ProtOCOlocivuiiiiieiii e e 61
3.5. How to Write a QMF CONSOIE ...ccvviiiiiiiiii i 61
3.6. HOw to Write a QMF AQENL .ovnniiiicii e e 61
4, Management DESIGN NOLEScvuuiiiiiiiiieei e e e e e e e e e e e e e et eeaa e e eanaees 61
4.1, Status Of ThiS DOCUMENT ...uuiiiiiiieeiiiis e e et e e e e et e e e e eeeees 61
2 g1 o 18 o (' o S 62
A.3. LINKS it 62
4.4, Management REQUITEMENESccvuiiiiiiiiii e e e 62
A.5. DEfiNItIoN Of TEMS ..ouuiiiiiiii e e e 63
4.6. Operational Scenarios: Basic vs. Extendedc.ccoeviiiiiiiii i 63
4.7. Architectural Frameworkcoooviiiiiiiiiii e 63
4.8. The Management EXChaNgEcccouiiiiiiiiiiiiiiiii e e e e 64
4.9. ThE ProtOCOl ...oveeiiieiii e e 65
5. QMF Python Console TULOMalcouueiiiieiiiiici e e e 79
5.1. Prerequisite - Install Qpid MESSagingc.ovevevnieiiieiiiieeiiieciieeeie e e 79
5.2. Synchronous Console OPerationSccceevviiiiiieiiieeiii e e e eaeens 79
5.3. Asynchronous Console OPErationScveeuuieeuiieeeiiieriieeeiiieeaneesneenens 84
5.4. Discovering what Kinds of Objects are Availablecccooceiiiiiiiinn, 88
1. AMQP Messaging Broker (Implemented in Java)ccoeeiiiiiiiiiiiiii e 89
7. GENErAl USEr GUITES ...vvueeieiieee et e et e ettt et e e et s e e e et e e e eaa e e e eaan e eeennns 90
1. Java Broker Feature GUILEuuiieiiiiiiieiiiiiiie et e et et eeeenin e eees 90
1.1. The Qpid pure Java broker currently supports the following features: 90
2. 0PId JAVa FAQ oo 90
2. PUIDOSE .ttt 90
3. Java Environment VariableSoiiiiiiiiiiiiiiiee e 100
3.1. Setting Qpid Environment Variablescccccoeiiiiiiiiiieii e, 100
4. Qpid Troubleshooting GUIEccevuiiiiiiiiii e e 100
4.1. I'm getting ajava.lang.UnsupportedClassV ersionError when | try to start the
broker. What does thiS MEan ?coovvuuiiiiiiiiiieei e 100
4.2. I'm having a problem binding to the required host:port at broker startup ?.... 101
4.3. I'm having problems with my classpath. How can | ensure that my classpath
1S 0K 2 ittt 101
4.4. 1 can't get the broker to start. How can | diagnose the problem ? 101
4.5. When | try to send messages to a queue I'm getting a error as the queue does
NOt exist. What Can | dO 2iiiiiiiiiis e 102
8. HOW T0S .ottt e 103
N (o I N = T B L PPN 103
1.1. Available Password file fOrmatscooviiiiiiiiiiiiiiiieecee e 103
1.2. Dynamic changes to password files.ccoiiiiiiiiiiiii e, 104
1.3. How password files and Principal Databases rel ate to authentication
MECNANISITIS ...t e e e e e et e e e eaa e e eeanes 105

Apache Qpid

2. CoNfIQUIE ACLS ovniii et e e 105

2.1, Configure ACLS .oviiiii it 105

3. Configure Java Qpid to use a SSL CONNECLION.covvneviieiiiiiei e, 105

3.1. Using SSL connection with Qpid Java.cccocevvveiiiiiiiiiiiiiec e, 105

IS [0 o PP 105

3.3. Performing the CONNECLION.oiiiiiiiii e 106

4. Configure Log4j CompositeRolling Appenderccoevviieiiiiiiiiiiicii e, 106

4.1. How to configure the CompositeRolling logdj Appenderccoeeeevnneeee. 106

5. Configure the Broker via config.Xmlccccoviiiiiiiiiiiii e 108

5.1. Broker config.Xml OVEIVIEWccvviiiiiiiiiiiiic e eaaes 108

2 @ o o BV A= = o] o P 108

6. Configure the Virtual Hosts via virtualhostsXxmlc.ccooveiiiiiiiiiiiiiineeeeeeen, 108

6.1. VirtualhoStS XMl OVEIVIEWciviiiieeiiii e 108

A 1= o100 I 0= 1 aTe 1 oo N 110

7.1. Debugging with 1ogdj configurationscccoeeviiieiiiiieiiiiccii e 110

8. How to Tune M3 Java Broker Performanceccooveviiiiiiiiiiiinieiiiiii e 114

8.1. Problem SEatemeNtccuvniiiiiiii i 114

8.2. Successful TUNING OPLIONSvvvnieiiieiie e e e e 115

8.3 NEXE SIS vttt 115

9. Qpid Java Build HOW TO ..icviiiiiicii e 116

9.1. Build INStructions - GENEralcovevieiiiieiiiiiiie e 116

9.2. BUild INStructions = TIUNKueiiiiie i 116

10. USe Priority QUEUESciviuiiiiiieiieeii e e e e e e e e e e e e e e et e e ean e e aanas 119

10.1. General INfOrMEationccouuuiiiiiiiieeeii e e 119

10.2. Defining Priority QUEUESivvveieiiieiiii e e e e e e e e e e eaa e 119

10.3. Client configuration/messaging model for priority queues 120

9. Qpid IMX Management CONSOIEcivuuiiiiiieiiiieeie e e e e e e e e e e e e e et e e e aaaeees 122
1. Qpid IMX Management CONSOIEcociuuiiiiiiiiiii e e e 122

L1 OVEIVIBIW covieiiiii et e e e e et e e et e e e et s 122

O Y=g =T 1= 0 1= oL I o 137
1. MESSAgESIONE TOOI ovviiiiii i e 137

1.1 MeSSagEStOre TOOI ...cvuieiiieiiiiei e e e e e e e e 137

2. Qpid Java Broker Management CLIcc.oiiiiiiiiiiiiii e 138

2.1. How to build Apache Qpid CLIcocovviiiiiiiiii e, 138

IV. AMQP Messaging ClientS CHENEScvuuiiiii e e e e e e aens 140
11. AMQP Java IMS Messaging ClIENtccouiiiiiiieiie e e s 142
1. General USEr GUIGESccuunieiiiiie ettt e e e e et eeeai e 142

1.1 SyStEM PrOPErtiES .oucvviiiiii i e 142

1.2. Connection URL FOMMELooviiiiiieiiiiie e 145

1.3. Binding URL FOrMAaEcccovuiiiiiciiiccie e e e 148

1.4, Java IMS SElECIOr SYNAX . cevvneiiieiiieee e e e e e e 149

2. AMQP Java IMS EXaMPIES ...ovuniiiiiieieee et 150

12. AMQP CH++ MesSsaging ClIENtuiiiiiiiiie e e e e e e e e 151
L USEN GUITES vttt et e e e ettt e e et e e e et e e e ananns 151

2. EXAMPIES ooniiiii i 151

13. AMQP .NET MeSsaging CHENtuiiiiiiiieiiiiiiieieiii et e e et eeein e e eaai e eennes 152
L USEN GUITES vttt et e e e ettt e e et e e e et e e e ananns 152

1.1. Apache Qpid: Open Source AMQP Messaging - .NET User Guide 152

1.2, EXCEl AQAIN .o 167

LB WG i e e 169

2. EXAMPIES e 170

14. AMQP Python Messaging ClIENTuiiiiniiiii e e e e e e 171
L USEN GUITES vttt et e e e ettt e e et e e e et e e e ananns 171

2. EXAMPIES e 171

Apache Qpid

G 1 gTo a1 2T o = g = P 171

3.1. Python Broker System Test SUItEc..vevvviiiiiiiiii e, 171

15. AMQP Ruby Messaging ClIENtooouiiiiiii i e e e 172
L EXAMPIES oo 172

RV N o= 3o [T 173
16. AMQP compatibility ..vuoiieeii e 175
1. AMQP Compatibility of Qpid rel€ases:cccccoviiiiiiiiiii e 175

2. Interop table by AMQP Specification VErSIONccocovvveiiiiiiiiiieiieecineeeeeeis 176

17. Qpid Interoperability DOCUMENLAEIONccvuiiiiiieiieeiie e e e e e e e e e eaeens 177
1. Qpid Interoperability DOCUMENTAtIONcccvniiiiiiiiii i e 177

T A 177

Vi

List of Tables

SO PP PP TPPPPRPRPPPPIN 9
N = (0] (< S PSPPSR SOPPTTR 9
A O 1= o | PP PTR PP 9
4.4, CtH+ DroKer ManagEmMENToiieiti ettt e et e e ettt et e et e e e et e e e eeb e e eeaba e aeees 10
4.5. Java broKer ManagemMeNtooiiiie e 10
5.1. Transport Options fOr FEUEIAioNcoouuueiiiiiie e 26
5.2. ACL Support in Qpid BroKer VEISIONScuuuiiiiiiiieiiiii et e et e e e e et eeeai e eens 42
5.3. MAPPING ACL TIPS ..eeitiieiiitii ettt et e e et e et e e et e e et et eeeena s 45
5.4. Mapping Management ACIONSTO ACLoouuiiiiiiii e 46
20 PP PPPRTR 56
L3PPSR PPPRTR 56
6.3. XML Attributes for QMF Properties and StatiStiCSccevvvueiiiiiieeiiiii et 59
B.4. QME DEIALYPESeeetieeeeti ettt ettt ettt ettt ettt ettt e e 60
6.5. XML Schema Mapping for QME TYPESciiiiiieiiiii ettt 60
LG PP PPPTTR 63
L PP PPPTTR 69
L PP PO PPPPRTR 72
L TP R P PPPRTR 72
L2 L0 PP UPPPTT 72
20 OO PP PP UPPPTT 73
L2 PP UPP PP 73
L0 PSP UPP PP 74
LT PSP PP UPPPTT 74
L2 TP UPPPTT 75
L0 LT P T UPPPP 76
L3 PSP UPPPTT 77
6.18. QMF Python Console Class MEthOOScccuuuiiiiiiiieeic e 84
7.1. Command LiNE OPLIONScceuueiiiiiie ettt et e e e 94
8.1. File Format and PrinCipal Dataasecovvruuiieiiiiiee e 105
B 2 et 115
S TSP PRSPPI 116
B e 116
B D e 117
11.1. ConNECLION URL OPLIONSeiiiiieeeitie ettt e e e e e e e et eeena s 146
11.2. BroKer URL- TFaNSPOITeieiitieeeetie ettt e ettt e ettt e ettt e e e ettt e e e eeab s e e eeneaeeeens 146
11.3. Broker URL - ConneCtion OPLIONSueeierineeiitieeeeeiiia ettt e et e e e e e 146
11.4. Broker List - FallOVer OPLIONSoceeirieeiiiiiee ettt ettt ettt e e e et e e eaa e e 147
11.5. Broker List - FallOVer OPLIONScccvurieeiiiii ettt ettt e e e et e eeeaa e e 147
11.6. BiNdiNg URL OPLIONSuiiiiiitieiiiii ettt ettt e ettt e ettt eeeeab s e e eenaaeeeens 148
16.1. AMQP Version Support by Qpid REIEASEcccviviiiiiiiie e 175
16.2. AMQP Version Support - alternate fOrmatoooveuuiiiiiiiiee e 176
17.1. SASL MEChaniSIM SUPPONT ... eeeetieeee ettt et e et e et e e e e et e e e re s 177
17.2. SASL CUSIOM MECNANISITISevvieeiiiti ettt ettt e e ettt e e ettt e e et e e e ert e e e eraaeeeens 178

Vii

List of

11.1. Queues
11.2. Topics

Examples

viii

Part |. Basics

Table of Contents

1. Apache Qpid: Open Source AMQP MESSBJING ... cvevruneieiiieeterie ettt e e e e e e eenens 3
1. AMQP MeSSaging BIrOKEIScouuuiiiiiii et 3

2. AMQP Client APIs: C++, Java, IMS, Ruby, Python, and C#...........ccooeviiiiiiiiiiiieeen, 3

3. Operating Systems and PlatfOrmMS:uiiiiiiieii e 3

2. AMQP (Advanced Message QUEUEING ProtOCO!c.uuiiiiiiiieiiiii e 5
1. Download the AMQP SPECITICAHIONSccevuueiiiiiieieiii e e e 5

3. GEING SEAITE ... ceeeeeeeeee et e ettt 7
4. Download APaChe QIcoeeei ittt 9
1. ProduCtion REIBASEScoouiiiiiiii et 9

2. 0.5 REIBASE ..o 9

2.1. Multiple Component PaCKAgESuuieierieeiiii et 9

2.2. Single Component PaCKAJEcccuuuiiiiiiieieiie ettt e 9

3. QPIACOMPONENTS.ONT .eeetteeeetieee ettt e ettt e et e et et e e e et a e e e et e e et eb e e e e e e eeenaaeeas 10

4. Contributed CH+ PaCKBOBEScieiriieieii ettt 11

4.1. Pre-built LinuX PaCKAOgESuuniiiiiiiieeie e 11

4.2 WINAOWS INSEAIEY ...t 11

5. SOUrCe Code REPOSITONYceietieiiiiie ettt ettt e et e et e e e e 11

Chapter 1. Apache Qpid: Open Source
AMQP Messaging

Enterprise Messaging systems let programs communicate by exchanging messages, much as people
communicate by exchanging email. Unlike email, enterprise messaging systems provide guaranteed
delivery, speed, security, and freedom from spam. Until recently, there was no open standard for Enterprise
Messaging systems, so programmers either wrote their own, or used expensive proprietary systems.

AMQP Advanced Message Queuing Protocol is the first open standard for Enterprise Messaging. It is
designed to support messaging for just about any distributed or business application. Routing can be
configured flexibly, easily supporting common messaging paradigms like point-to-point, fanout, publish-
subscribe, and request-response.

Apache Qpid implements the latest AMQP specification, providing transaction management, queuing,
distribution, security, management, clustering, federation and heterogeneous multi-platform support and
alot more. And Apache Qpid is extremely fast. Apache Qpid aims to be 100% AMQP Compliant [###
FIX ME ##4].

1. AMQP Messaging Brokers

Qpid provides two AMQP messaging brokers:
* Implemented in C++ - high performance, low latency, and RDMA support.
» Implemented in Java - Fully IMS compliant, runs on any Java platform.

Both AM QP messaging brokers support clientsin multiple languages, as long as the messaging client and
the messaging broker use the same version of AMQP. See Download [### FIX ME ###] to see which
messaging clients work with each broker.

2. AMQP Client APIs: C++, Java, JMS, Ruby,
Python, and C#

Qpid provides AMQP Client APIsfor the following languages:
o C++

» Java, fully conformant with IMS 1.1

C# .NET, 0-10 using WCF
* Ruby
* Python

3. Operating Systems and Platforms:

The Qpid C++ broker runs on the following operating systems:

e Linux systems

FIX ME
FIX ME
FIX ME
FIX ME
FIX ME

Apache Qpid: Open
Source AMQP Messaging

* Windows
* Solaris (coming soon)
The Qpid Java broker runs on:
e Any Javaplatform
Qpid clients can be run on the following operating systems and platforms:
o Java
« any platform, production proven on Windows, Linux, Solaris
o C++:;
e Linux
* Windows
« Solaris (coming soon)
e

« NET

Chapter 2. AMQP (Advanced Message
Queueing Protocol

AMQP Advanced Message Queuing Protocol [http://www.amgp.org/] is an open standard designed to
support reliable, high-performance messaging over the Internet. AMQP can be used for any distributed
or business application, and supports common messaging paradigms like point-to-point, fanout, publish-
subscribe, and request-response.

Apache Qpid implements AMQP, including transaction management, queuing, clustering, federation,
security, management and multi-platform support.

Apache Qpid implements the latest AMQP specification, providing transaction management, queuing,
distribution, security, management, clustering, federation and heterogeneous multi-platform support and
alot more.

Apache Qpid is highly optimized, and aims to be 100% AM QP Compliant [amqgp-compatibility.html].

1. Download the AMQP Specifications

AMQP version 0-10

AMQP 0-10 Specification (PDF) [https://jira.amgp.org/confluence/download/attachments/720900/
amgp.0-10.pdf version=1]

AMQP 0-10 Protocol Definition XML [https://jira.amqp.org/confluence/downl oad/
attachments/720900/amgp.0-10.xmlversion=1]

AMQP 0-10 Protocol Definition DTD [https://jira.amgp.org/confluence/downl oad/
attachments/720900/amqp.0-10.dfdversion=1]

AMQP version 0-9-1

AMQP 0-9-1 Specification (PDF) [https://jira.amgp.org/confluence/downl oad/attachments/720900/
amqp0-9-1.pdf version=1]

AMQP 0-9-1 Protocol Documentation (PDF) [https://jira.amqp.org/confluence/download/
attachments/720900/amgp0-9-1.xmlversion=1]

AMQP 0-9-1 Protocol Definitions (XML) [https.//jira.amgp.org/confluence/downl oad/
attachments/720900/amqp0-9-1.dtd?version=1]

AMQP version 0-9

AMQP 0-9 Specification (PDF) [https://jira.amqp.org/confluence/download/attachments/720900/
amqp0-9.pdf version=1]

AMQP 09 Protocol Documentation (PDF) [https://jira.amgp.org/confluence/download/
attachments/720900/amqp0-9.xml version=1]

AMQP 09 Protocol Definitions (XML) [https.//jira.amqgp.org/confluence/downl oad/
attachments/720900/amqp0-9.dtd?version=1]

http://www.amqp.org/
http://www.amqp.org/
amqp-compatibility.html
amqp-compatibility.html
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.dfd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.dfd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.dfd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.dtd?version=1

AMQP (Advanced Message
Queueing Protocol

AMQP version 0-8

* AMQP 0-8 Specification (PDF) [https://jira.amgp.org/confluence/download/attachments/720900/
amqp0-8.pdf version=1]

* AMQP 0-8 Protocol Documentation (PDF) [https://jira.amgp.org/confluence/download/
attachments/720900/amgp0-8.dtdversion=1]

« AMQP 08 Protocol Definitions (XML) [https.//jira.amgp.org/confluence/download/
attachments/720900/amgp0-8.xml version=1]

https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.xml?version=1

Chapter 3. Getting Started

To get started with Apache Qpid, follow the steps below.
1. Download Apache Qpid.
2. Start abroker.
» Section 1, “ Running a Qpid C++ Broker ”
» Chapter 6, Managing the AMQP Messaging Broker (AMQP 0-10, workswith the Qpid C++ broker)

3. Run an example program from the downloaded software, or from the following URL s (these are svn
URLSs, which you can use to browse the examples or check them out):

« C++(AMQP0-10):
o Examples:
https://svn.apache.org/repos/asf/qpi d/trunk/qpid/cpp/examples/
¢ Running the C++ Examples:
https://svn.apache.org/repos/ast/qpi d/trunk/qpid/cpp/exampl ey README.txt
» JavaJMS (AMQP 0-10):
o Examples:
https://svn.apache.org/repos/ast/qpid/trunk/qpid/java/client/exampl e/
* Script for Running the Java JM S Examples
https://svn.apache.org/repos/asf/qpid/trunk/gpid/javalclient/exampl e/src/main/javalrunSample.sh
« Python (AMQP 0-10):
o Examples:
https://svn.apache.org/repos/asf/qpid/trunk/qpi d/python/examples/
* Running the Python Examples
https://svn.apache.org/repos/asf/qpi d/trunk/qpid/python/exampless README
« Ruby (AMQP 0-10):
o Examples:
https://svn.apache.org/repos/ast/qpid/trunk/qgpid/ruby/exampl es/
« .NET (AMQP 0-10):

o Exvambples:
EXaMPHeS:

https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/README.txt
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/runSample.sh
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/README
https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples/

Getting Started

http://svn.apache.org/viewvc/qgpid/trunk/qpid/dotnet/client-010/examples/
e Section 1.1.1, “ Tutorial ”
4. Read the APl Guides and Documentation
« C++ Client APl (AMQP 0-10)
http://qpid.apache.org/docs/api/cpp/html/index.html
o« M7
« Python Client APl (AMQP 0-10)
http://qpid.apache.org/docs/api/python/html/index.html
5. Get your Questions Answered
* Read the 7??
» Ask aquestion on the user list

mailto: users-subscribe@aqpid.apache.org

http://svn.apache.org/viewvc/qpid/trunk/qpid/dotnet/client-010/examples/
http://qpid.apache.org/docs/api/cpp/html/index.html
http://qpid.apache.org/docs/api/python/html/index.html

Chapter 4. Download Apache Qpid

1. Production Releases

These releases are well tested and appropriate for production use. 0.5 is the latest release of Qpid.

Qpid supportsthelatest version of AMQP 0-10, and some components al so the AMQP 0-8 and 0-9, earlier
versions. The Java Broker and Client provide protocol negotiation. Other versions can be found at http://
www.apache.org/dist/qpid/

For details on cross component compatibility among rel eases, see: AM QP Release Compatibility for Qpid|
AMQP compatibility [### FIX ME ##]

If you have any questions about these rel eases, please mail the user list (gpid-user@incubator.apache.org
[mailto:qpid-user@incubator.apache.org]).

2. 0.5 Release
2.1. Multiple Component Packages

Table4.1.
Component Download AMQP 0-10 AMQP 0-8/0-9
Full release & keys http://www.apache.org/ |Y Y
dist/qpid/0.5/
C++ broker & client http://www.apache.org/ |Y
dist/qpid/0.5/qpid-
cpp-0.5.tar.gz
Java broker, client & http://www.apache.org/ |client Y
tools dist/qpid/0.5/qpid-
java-0.5.tar.gz

2.2. Single Component Package

Table4.2. Broker

Language Download AMQP 0-10 AMQP 0-8/0-9
Java http://www.apache.org/ Y
dist/qpid/0.5/qgpid-java
broker-0.5.tar.gz

Table4.3. Client

Language Download AMQP 0-10 AMQP 0-8/0-9

C# (.NET, WCF, Excel) | http://www.apache.org/ |Y
0-10 client (C++ Broker |dist/qpid/0.5/qpid-
Compatible) dotnet-0-10-0.5.zip

http://www.apache.org/dist/qpid/
http://www.apache.org/dist/qpid/
FIX ME
FIX ME
FIX ME
mailto:qpid-user@incubator.apache.org
mailto:qpid-user@incubator.apache.org
http://www.apache.org/dist/qpid/0.5/
http://www.apache.org/dist/qpid/0.5/
http://www.apache.org/dist/qpid/0.5/qpid-cpp-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-cpp-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-cpp-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-broker-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-broker-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-broker-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-10-0.5.zip
http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-10-0.5.zip
http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-10-0.5.zip

Download Apache Qpid

Language Download AMQP 0-10 AMQP 0-8/0-9
C# (.NET) 0-8 http://www.apache.org/ Y
client (Java Broker dist/qpid/0.5/qpid-
Compatible) dotnet-0-8-0.5.zip
Java http://www.apache.org/ |Y Y
dist/qpid/0.5/qgpid-java-
client-0.5.tar.gz
Python http://www.apache.org/ |Y Y
dist/qpid/0.5/qpid-
python-0.5.tar.gz
Ruby http://www.apache.org/ |Y Y
dist/qpid/0.5/qpid-
ruby-0.5.tar.gz

Table 4.4. C++ broker management

Component Download AMQP 0-10

cmd line (packaged with python) | http://www.apache.org/dist/ Y
qpid/0.5/gpid-python-0.5.tar.gz

QMan JMX bridge, WS-DM http://www.apache.org/dist/ Y
gpid/0.5/qpid-management-
client-0.5.tar.gz

Table 4.5. Java broker management

Component Download

Eclipse RCP client Linux x86 [http://www.apache.org/dist/qpid/0.5/
gpid-management-eclipse-plugin-0.5-linux-gtk-
x86.tar.gz] Linux x86_64 [http://www.apache.org/
dist/qpid/0.5/gpid-management-eclipse-plugin-0.5-
linux-gtk-x86_64.tar.gz] Mac OS X [http://
www.apache.org/dist/qpid/0.5/gpid-management-
eclipse-plugin-0.5-macosx.zip] Windows x86
[http://www.apache.org/dist/qpid/0.5/qpid-
management-eclipse-plugin-0.5-win32-win32-
x86.zip]

Command line interface http://www.apache.org/dist/qpid/0.5/gpid-
management-tools-gpid-cli-0.5.tar.gz

3. QpidComponents.org

http://QpidComponents.org provides further componentsfor Apache Qpid, including both persistence and
management tools. These components are open source, but are not developed as part of the Apache Qpid
project due to licensing or other restrictions.

10

http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-8-0.5.zip
http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-8-0.5.zip
http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-8-0.5.zip
http://www.apache.org/dist/qpid/0.5/qpid-java-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-ruby-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-ruby-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-ruby-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86_64.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86_64.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86_64.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86_64.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-macosx.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-macosx.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-macosx.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-macosx.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-win32-win32-x86.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-win32-win32-x86.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-win32-win32-x86.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-win32-win32-x86.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-tools-qpid-cli-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-tools-qpid-cli-0.5.tar.gz
http://QpidComponents.org

Download Apache Qpid

4. Contributed C++ Packages

4.1. Pre-built Linux Packages
4.1.1. Fedora 8, 9, 10

On Fedora, Qpid can be installed using yum. Because Java RPMs are not yet available in Fedora repos,
the Java client is not in these distributions.

Toinstall the server:

yuminstall qgpidd

To install C++ and Python clients:
yuminstall gpidc-devel

yuminstall amgp python-qpid

To install documentation:

yuminstall rhmdocs

Toinstall persistence using an external store module;

yuminstall rhm

4.2. Windows Installer

The Windows installer is available from http://www.apache.org/dist/qpid/0.5-windows/gpidc-0.5.msi. It
isbuilt from the 0.5 C++ broker and client source distribution listed above. It has been tested for Windows
XP SP2 and above.

The Windows executables require the Visual C++ 2008 SP1 run-time components. If the
Visua C++ 2008 SP1 runtime is not available, the Qpid broker will not execute. If you
intend to run the broker and Visua C++ 2008 is not installed, you must install the
Visua C++ 2008 SP1 Redistributable. Please see http://www.microsoft.com/downloads/details.aspx?
familyid=A5C84275-3B97-4AB7-A40D-3802B2A F5FC2& displaylang=en for download and installation
instructions.

If you intend to develop Qpid client applications using this kit, you should install Boost version 1.35
[http://www.boostpro.com/download/boost_1 35 O setup.exe] (please be sure to select VC9 support
when installing) in addition to Visual Studio 2008 SP1.

5. Source Code Repository

The latest version of the code is always available in the Source Repository.

11

http://www.apache.org/dist/qpid/0.5-windows/qpidc-0.5.msi
http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-3802B2AF5FC2&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-3802B2AF5FC2&displaylang=en
http://www.boostpro.com/download/boost_1_35_0_setup.exe
http://www.boostpro.com/download/boost_1_35_0_setup.exe
Source Repository

Part Il. AMQP Messaging
Broker (Implemented in C++)

Qpid provides two AMQP messaging brokers:
* Implemented in C++ - high performance, low latency, and RDMA support.
» Implemented in Java - Fully IMS compliant, runs on any Java platform.

Both AMQP messaging brokers support clients in multiple languages, as long as the messaging client and the
messaging broker use the same version of AMQP. See ?7?? to see which messaging clients work with each broker.

This section contains information specific to the broker that isimplemented in C++.

Chapter 5. Running the AMQP
Messaging Broker

1. Running a Qpid C++ Broker
1.1. Building the C++ Broker and Client Libraries

Theroot directory for the C++ distribution is named gpidc-0.4. The README file in that directory gives
instructions for building the broker and client libraries. In most cases you will do the following:

[gpidc-0.4]$./configure
[gpidc-0.4]$ nmake

1.2. Running the C++ Broker

Once you have built the broker and client libraries, you can start the broker from the command line:

[gpidc-0.4]$ src/qpidd

Use the --daemon option to run the broker as a daemon process:

[qpidc-0.4]$ src/qpidd --daenon

Y ou can stop a running daemon with the --quit option:

[gpidc-0.4]% src/gpidd --quit

You can see all available options with the --help option

[gpidc-0.4]$ src/gpidd --help
1.3. Most common questions getting gpidd running

1.3.1. Error when starting broker: "no data directory”

The gpidd broker requires you to set a data directory or specify --no-data-dir (see help for more details).
Thedatadirectory isused for thejournal, so it isimportant when reliability counts. Make sure your process
has write permission to the data directory.

The default location is

/1ib/var/gpidd

An alternate location can be set with --data-dir

13

Running the AMQP
Messaging Broker

1.3.2. Error when starting broker: "that process is locked"

Note that when gpidd startsit createsalock fileisdatadirectory are being used. If you have aun-controlled
exit, please mail the trace from the core to the dev@qpid.apache.org mailing list. To clear the lock run

./qpidd -q

It should also be noted that multiple brokers can be run on the same host. To do so set aternate data
directories for each gpidd instance.

1.3.3. Using a configuration file

Each option that can be specified on the command line can also be specified in a configuration file. To
see available options, use --help on the command line:

./gqpidd --help

A configuration file uses name/value pairs, one on each line. To convert a command line option to a
configuration file entry:

a.) remove the '--' from the beginning of the option. b.) place a'=" between the option and the value (use
yes or true to enable options that take no value when specified on the command line). ¢.) place one option
per line.

For instance, the --daemon option takes no value, the --log-to-syslog option takes the values yes or no.
The following configuration file sets these two options:

daenon=yes
| og-to-sysl og=yes

1.3.4. Can | use any Language client with the C++ Broker?

Yes, al the clients work with the C++ broker; it is written in C+, but uses the AMQP wire protocol. Any
broker can be used with any client that uses the same AMQP version. When running the C+ broker, it is
highly recommended to run AMQP 0-10.

Note that IM S a so works with the C++ broker.

1.4. Authentication
1.4.1. Linux

The PLAIN authentication is done on a username+password, which is stored in the sasldb_path file.
Usernames and passwords can be added to the file using the command:

sasl passwd2 -f /var/li b/ gpidd/gpidd. sasl db -u <REALM> <USER>

The REALM isimportant and should be the same as the --auth-realm option to the broker. This lets the
broker properly find the user in the sasidb file.

Existing user accounts may be listed with:

14

Running the AMQP
Messaging Broker

sasl dbli stusers2 -f /var/lib/qpidd/ gpi dd. sasl db

NOTE: The sasldb file must be readable by the user running the gpidd daemon, and should be readable
only by that user.

1.4.2. Windows

On Windows, the users are authenticated against the local machine. Y ou should add the appropriate users
using the standard Windows tools (Control Panel->User Accounts). To run many of the examples, you
will need to create a user "guest” with password "guest"”.

If you cannot or do not want to create new users, you can run without authentication by specifying the
no-auth option to the broker.

1.5. Slightly more complex configuration

The easiest way to get afull listing of the broker's options are to use the --help command, run it locally for
the latest set of options. These options can then be set in the conf file for convenience (see above)

./gpidd --help

Usage: qpi dd OPTI ONS

Opt i ons:
-h [--help] Di spl ays the hel p nessage
-v [--version] Di spl ays version information

--config FILE (/etc/qgpidd.conf) Reads configuration fromFILE

Modul e opti ons:
--nmodul e-dir DIR (/usr/lib/gpidd) Load all .so nmodules in this directory
- -1 oad- nodul e FILE Speci fies additional nodule(s) to be | oaded
--no-nodul e-di r Don't | oad nmodul es from nodul e directory

Br oker Opti ons:
--data-dir DIR (/var/lib/qpidd) Directory to contain persistent data generated

--no-data-dir Don't use a data directory. No persistent
configuration will be | oaded or stored

-p [--port] PORT (5672) Tells the broker to listen on PORT

--worker-threads N (3) Sets the broker thread pool size

- - max- connecti ons N (500) Sets the maxi mum al | owed connecti ons

--connecti on-backl og N (10) Sets the connection backlog Iimt for the

server socket
--stagi ng-threshold N (5000000) St ages nessages over N bytes to disk
-m[--ngnt-enable] yes|no (1) Enabl e Managenent
--ngnt - pub-interval SECONDS (10) Managenent Publish Interval

--ack N (0) Send session.ack/solicit-ack at |east every
N franes. O disables voluntary ack/solitict
-ack

Daenmon opti ons:
-d [--daenon] Run as a daenon.
-w][--wait] SECONDS (10) Sets the maxinmumwait time to initialize the
daenmon. |If the daenmon fails to initialize, prints
an error and returns 1

15

Running the AMQP

Messaging Broker
-c [--check] Prints the daenon's process ID to stdout and
returns O if the daenon is running, otherw se
returns 1
-q [--quit] Tells the daenmon to shut down

Loggi ng opti ons:

--log-output FILE (stderr) Send log output to FILE. FILE can be a file nane
or one of the special values:
stderr, stdout, syslog

-t [--trace] Enabl es all | ogging

--log-enabl e RULE (error+) Enables logging for selected | evels and conponent
s. RULE is in the form'LEVEL+: PATTERN
Level s are one of:
trace debug info notice warning error critica
For exanpl e:
'--10g-enabl e warni ng+ logs all warning, error
and critical messages.
'--10g-enabl e debug: fram ng' | ogs debug nmessages
fromthe fram ng nanespace. This option can be
used nultiple tines

--log-time yes|no (1) Include tinme in | og messages

--log-level yes|no (1) I nclude severity level in | og nmessages
--1og-source yes|no (0) I nclude source file:line in | og nessages
--log-thread yes|no (0) Include thread IDin | og nmessages
--log-function yes|no (0) I ncl ude function signature in | og nessages

1.6. Loading extra modules

By default the broker will load all the modules in the module directory, however it will NOT display
options for modules that are not loaded. So to see the options for extra modules loaded you need to load
the module and then add the help command like this:

./ gpidd --1oad-nodul e |ibbdbstore.so --help
Usage: qpi dd OPTI ONS

Opt i ons:
-h [--help] Di spl ays the hel p nessage
-v [--version] Di spl ays version information

--config FILE (/etc/qgpidd.conf) Reads configuration fromFILE

/[.... non nodule options would be here ... /

Store Options:

--store-directory DIR Store directory location for persistence (overrides
--data-dir)
--store-async yes|no (1) Use async persistence storage - if store supports

it, enables Al O O DI RECT.

--store-force yes|no (0) Force changing nodes of store, will delete al
existing data if node is changed. Be SURE you want
to do this!

--numjfiles N (8) Nunber of files in persistence journa

--jfile-size-pgs N (24) Size of each journal file in multiples of read
pages (1 read page = 64ki B)

16

Running the AMQP
Messaging Broker

2. Cheat Sheet for configuring Queue Options
2.1. Configuring Queue Options

The C++ Broker M4 or later supports the following additional Queue constraints.
» Section 2.1, “ Configuring Queue Options”

e « Section 2.1.1, “ Applying Queue Sizing Constraints”

Section 2.1.2, “ Changing the Queue ordering Behaviors (FIFO/LVQ) ”
e Section 2.1.3, “ Setting additional behaviors”

e o Section 2.1.3.1,“ Persist Last Node”

e Section 2.1.3.2, “ Queue event generation ”

¢ Section 2.1.4, “ Other Clients”

2.1.1. Applying Queue Sizing Constraints

This allows to specify how to size a queue and what to do when the sizing constraints have been reached.
The queue size can be limited by the number messages (message depth) or byte depth on the queue.

Once the Queue meets/ exceeds these constraints the follow policies can be applied

» REJECT - Reject the published message

« FLOW_TO DISK - Flow the messages to disk, to preserve memory

* RING - start overwriting messages in aring based on sizing. If head meetstail, advance head

* RING_STRICT - start overwriting messages in a ring based on sizing. If head meets tail, AND the
consumer has the tail message acquired it will reject

Examples:

Create a queue an auto delete queue that will support 100 000 bytes, and then REJECT

#i nclude "qpid/client/QeueOptions. h"

QueueOpti ons qo;
go. set Si zePol i cy(REJECT, 100000, 0) ;

sessi on. queueDecl are(ar g: : queue=queue, arg::autoDel ete=true, arg::argunments=qo

Create a queue that will support 1000 messages into a RING buffer

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons qo;
go. set Si zePol i cy(RI NG, 0, 1000) ;

17

Running the AMQP
Messaging Broker

sessi on. queueDecl are(ar g: : queue=queue, arg::argunent s=qo);

2.1.2. Changing the Queue ordering Behaviors (FIFO/LVQ)

The default ordering in a queue in Qpid is FIFO. However additional ordering semantics can be used
namely LVQ (Last Value Queue). Last Value Queue is define as follows.

If | publish symbols RHT, IBM, JAVA, MSFT, and then publish RHT before the consumer is able to
consume RHT, that message will be over written in the queue and the consumer will receive the last
published value for RHT.

Example:

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons qo;
go. set Orderi ng(LVQ ;

sessi on. queueDecl are(ar g: : queue=queue, arg::argunent s=qo);

st r| .ng key;
go. get LVKey(key) ;

for each nessage, set the into application headers before transfer
nmessage. get Header s() . set Stri ng(key, "RHT") ;

Notes:

» Messagesthat are dequeued and the re-queued will have the following exceptions. a.) if a new message
has been queued with the same key, the re-queue from the consumer, will combine these two messages.
b.) If an update happens for a message of the same key, after the re-queue, it will not update the re-
queued message. Thisis doneto protect a client from being able to adversely manipulate the queue.

» Acquire: When a message is acquired from the queue, no matter it's position, it will behave the same
as adegueue

* LVQ does not support durable messages. If the queue or messages are declared durable on an LVQ,
the durability will be ignored.

A fully worked Section 6.4, “ LVQ Program Example” can be found here
2.1.3. Setting additional behaviors
2.1.3.1. Persist Last Node

This option is used in conjunction with clustering. It allows for a queue configured with this option to
persist transient messages if the cluster fails down to the last node. If additional nodes in the cluster are
restored it will stop persisting transient messages.

Note

« if acluster is started with only one active node, this mode will not be triggered. It is only triggered the
first time the cluster fails down to 1 node.

18

Running the AMQP
Messaging Broker

e The queue MUST be configured durable

Example:

#i ncl ude "qgpi d/ client/QueueOptions. h"

QueueOpti ons qo;
go. cl ear Per si st Last Node() ;

sessi on. queueDecl are(ar g: : queue=queue, arg::durabl e=true, arg::argunments=qo);
2.1.3.2. Queue event generation
This option is used to determine whether enqueue/dequeue events representing changes made to queue
state are generated. These events can then be processed by plugins such asthat used for Section 7, “ Queue
State Replication ”.

Example:

#i nclude "qpid/client/QeueQOptions. h"

QueueOpti ons options;
options. enabl eQueueEvent s(1);
sessi on. queueDecl are(ar g: : queue="mny-queue", arg::argunents=options);

The boolean option indicates whether only enqueue events should be generated. The key set by thisis
‘gpid.queue_event_generation' and the value is and integer value of 1 (to replicate only enqueue events)
or 2 (to replicate both enqueue and dequeue events).

2.1.4. Other Clients

Note that these options can be set from any client. QueueOptions just correctly formats the arguments
passed to the QueueDeclare() method.

3. Cheat Sheet for configuring Exchange
Options

3.1. Configuring Exchange Options

The C++ Broker M4 or later supportsthe following additional Exchange optionsin addition to the standard
AMOQP define options

» Exchange Level Message sequencing

* Initial Value Exchange

Note that these features can be used on any exchange type, that has been declared with the options set.
It also supports an additional option to the bind operation on a direct exchange

e Exclusive binding for key

19

Running the AMQP
Messaging Broker

3.1.1. Exchange Level Message sequencing

This feature can be used to place a sequence number into each message's headers, based on the order they
pass through an exchange. The sequencing starts at 0 and then wrapsin an AMQP int64 type.

Thefield name used is "qgpid.msg_sequence”

To use this feature an exchange needs to be declared specifying this option in the declare

Fi el dTabl e args;
args. setlnt("qgpid. msg_sequence", 1);

/1 now decl are the exchange
sessi on. exchangeDecl are(ar g: : exchange="di rect", arg::arguments=args);

Then each message passing through that exchange will be numbersin the application headers.

unit64_t segNo;
/lafter nessage transfer
segNo = nessage. get Header s() . get Asl nt 64(" gpi d. nsg_sequence") ;

3.1.2. Initial Value Exchange

This feature caches alast message sent to an exchange. When a new binding is created onto the exchange
it will then attempt to route this cached messaged to the queue, based on the binding. Thisallowsfor topics
or the creation of configurations where a new consumer can receive the last message sent to the broker,
with matching routing.

To use this feature an exchange needs to be declared specifying this option in the declare

Fi el dTabl e args;
args.setlnt("gpid.ive", 1);

/1 now decl are the exchange
sessi on. exchangeDecl are(ar g: : exchange="di rect", arg::arguments=args);

now use the exchange in the same way you would use any other exchange.

3.1.3. Exclusive binding for key

Direct exchanges in gpidd support a gpid.exclusive-binding option on the bind operation that causes the
binding specified to bethe only onefor the given key. |.e. if thereisaready abinding at this exchange with
thiskey it will be atomically updated to bind the new queue. This means that the binding can be changed
concurrently with an incoming stream of messages and each message will be routed to exactly one queue.

Fi el dTabl e args;
args. setlnt("qgpid. exclusive-binding", 1);

20

Running the AMQP

Messaging Broker
//the following will cause the only binding fromanyg.direct with 'ny-key'
//to be the one to 'ny-queue'; if there were any previous bindings for that
//key they will be renopved. This is atomic w.r.t nmessage routing through the

/ I exchange.
sessi on. exchangeBi nd(ar g: : exchange="ang. di rect", arg::queue="ny-queue",
ar g: : bi ndi ngKey="ny-key", arg::argunents=args);

4. Using Broker Federation

4.1. Introduction

Please note: Whereas broker federation was introduced in the M3 milestone rel ease, the discussion in this
document is based on the richer capabilities of federation in the M4 release.

4.2. What Is Broker Federation?

The Qpid C++ messaging broker supports broker federation, a mechanism by which large messaging
networks can be built using multiple brokers. Some scenarios in which federation is useful:

» Connecting disparate locations across a wide area network. In this case full connectivity across the
enterprise can be achieved while keeping local message traffic isolated to a single location.

» Departmental brokersthat have a policy which controls the flow of inter-departmental message traffic.

 Scaling of capacity for expensive broker operations. High-function exchanges like the XML exchange
can be replicated to scale performance.

» Co-Resident brokers Some applications benefit from having a broker co-resident with the client. This
is particularly true if the client produces data that must be delivered reliably but connectivity to the
consumer(s) is non-reliable. In this case, a co-resident broker provides queueing and durablilty not
available in the client alone.

 Bridging digoint IP networks. Message brokers can be configured to allow message connectivity
between networks where there is no IP connectivity. For example, an isolated, private IP network can
have messaging connectivity to brokers in other outside | P networks.

4.3. The gpid-route Utility

The gpid-route command line utility is provided with the Qpid broker. This utility is used to configure
federated networks of brokers and to view the status and topology of networks.

gpid-route accesses the managed brokers remotely. It does not need to be invoked from the same host on
which the broker is running. If network connectivity permits, an entire enterprise can be configured from
asinglelocation.

In the following sections, federation concepts will be introduced and illustrated using gpid-route.

4.3.1. Links and Routes

Federation occurswhen alink is established between two brokers and one or moreroutes are created within
that link. A link is a transport level connection (tcp, rdma, sdl, etc.) initiated by one broker and accepted
by another. The initiating broker assumes the role of client with regard to the connection. The accepting
broker annotates the connection as being for federation but otherwisetreatsit asanormal client connection.

21

Running the AMQP
Messaging Broker

A route is associated with an AMQP session established over the link connection. There may be multiple
routes sharing the samelink. A route controlsthe flow of messages acrossthelink between brokers. Routes
always consist of a session and a subscription for consuming messages. Depending on the configuration,
aroute may have a private queue on the source broker with a binding to an exchange on that broker.

Routes are unidirectional. A single route provides for the flow of messagesin one direction across alink.
If bidirectional connectivity is required (and it aimost always is), then a pair of routes must be created,
one for each direction of message flow.

The gpid-route utility allows the administrator to configure and manage links and routes separately.
However, when aroute is created and a link does not already exist, gpid-route will automatically create
the link. It is typically not necessary to create a link by itself. It is, however, useful to get alist of links
and their connection status from a broker:

$ qpid-route link list |ocal host: 10001

Host Por t Transport Durable State Last Error

| ocal host 10002 tcp N Qper at i onal

| ocal host 10003 tcp N Qper at i onal

| ocal host 10009 tcp N Waiting Connection refused

The example above shows alink list query to the broker at "localhost:10001". In the example, this broker
has three links to other brokers. Two are operational and the third is waiting to connect because there is
not currently a broker listening at that address.

4.3.1.1. The Life Cycle of aLink

When alink is created on a broker, that broker attempts to establish a transport-level connection to the
peer broker. If it fails to connect, it retries the connection at an increasing timeinterval. If the connection
fails due to authentication failure, it will not continue to retry as administrative intervention is needed to
fix the problem.

If an operational link is disconnected, the initiating broker will attempt to re-establish the connection with
the same interval back-off.

The shortest retry-interval is 2 seconds and the longest is 64 seconds. Once enough consecutive retries
have occurred that the interval has grown to 64 seconds, the interval will then stay at 64 seconds.

4.3.1.2. Durable Links and Routes

If, when alink or aroute is created using gpid-route, the --durable option is used, it shall be durable. This
means that its life cycle shall span restarts of the broker. If the broker is shut down, when it is restarted,
the link will be restored and will begin establishing connectivity.

A non-durable route can be created for a durable link but a durable route cannot be created for a non-
durablelink.

$ qpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed.topic
$ qpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed.topic2 --durable
Failed: Can't create a durable route on a non-durable |ink

In the above example, atransient (non-durable) dynamic route was created between local host; 10003 and
localhost:10004. Becausetherewasno link in place, anew transient link was created. The second command
is attempting to create a durable route over the same link and isrejected asillegal.

22

Running the AMQP
Messaging Broker

4.3.2. Dynamic Routing

Dynamic routing providesthe simplest configuration for anetwork of brokers. When configuring dynamic
routing, the administrator need only expressthelogical topology of the network (i.e. which pairs of brokers
are connected by a unidirectional route). Queue configuration and bindings are handled automatically by
the brokersin the network.

Dynamic routing uses the Distributed Exchange concept. From the client's point of view, al of the brokers
in the network collectively offer asinglelogica exchange that behaves the same asasingle exchangein a
single broker. Each client connectsto its local broker and can bind its queues to the distributed exchange
and publish messages to the exchange.

When a consuming client binds a queue to the distributed exchange, information about that binding is
propagated to the other brokers in the network to ensure that any messages matching the binding will be
forwarded to the client's local broker. Messages published to the distributed exchange are forwarded to
other brokers only if there are remote consumers to receive the messages. The dynamic binding protocol
ensures that messages are routed only to brokers with eligible consumers. This includes topologies where
messages must make multiple hops to reach the consumer.

When creating a dynamic routing network, The type and name of the exchange must be the same on each
broker. It isstrongly recommended that dynamic routes NOT be created using the standard exchanges (that
isunless al messaging isintended to be federated).

A simple, two-broker network can be configured by creating an exchange on each broker then a pair of
dynamic routes (one for each direction of message flow):

Create exchanges.

$ gpid-config -a | ocal host: 10003 add exchange topic fed.topic
$ qpid-config -a | ocal host: 10004 add exchange topic fed.topic

Create dynamic routes:

$ gpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed. topic
$ gpid-route dynam c add | ocal host: 10004 | ocal host: 10003 fed. topic

Information about existing routes can be gotten by querying each broker individualy:

$ gpid-route route list |ocal host: 10003
| ocal host: 10003 | ocal host: 10004 fed. topic <dynanic>
$ gpid-route route Iist |ocal host: 10004
| ocal host: 10004 | ocal host: 10003 fed. topic <dynanic>

A nicer way to view the topology isto use gpid-route route map. The argument to thiscommandisasingle
broker that serves as an entry point. gpid-route will attempt to recursively find al of the brokersinvolved
in federation relationships with the starting broker and map all of the routes it finds.

$ gpid-route route map | ocal host: 10003

Fi ndi ng Li nked Brokers:
| ocal host: 10003... &
| ocal host: 10004... &

23

Running the AMQP
Messaging Broker

Dynam ¢ Rout es:

Exchange fed.topic:
| ocal host: 10004 <=> | ocal host: 10003

Stati ¢ Routes:
none found

More extensive and realistic examples are supplied later in this document.

4.3.3. Static Routing

Dynamic routing provides simple, efficient, and automatic handling of the bindings that control routing
as long as the configuration keeps within a set of constraints (i.e. exchanges of the same type and name,
bidirectional traffic flow, etc.). However, there are scenarios where it is useful for the administrator to
have a bit more control over the details. In these cases, static routing is appropriate.

4.3.3.1. Exchange Routes

An exchange route is like a dynamic route except that the exchange binding is statically set at creation
time instead of dynamically tracking changes in the network.

When an exchange route is created, a private queue (auto-delete, exclusive) is declared on the source
broker. The queue is bound to the indicated exchange with the indicated key and the destination broker
subscribes to the queue with a destination of the indicated exchange. Since only one exchange name is
supplied, this means that exchange routes require that the source and destination exchanges have the same
name.

Static exchange routes are added and deleted using gpid-route route add and gpid-route route del
respectively. The following example creates a static exchange route with a binding key of "global .#" on
the default topic exchange:

$ gpid-route route add | ocal host: 10001 | ocal host: 10002 any. topic gl obal . #

The route can be viewed by querying the originating broker (the destination in this case, see discussion
of push and pull routes for more on this):

$ gpid-route route list |ocal host: 10001
| ocal host: 10001 | ocal host: 10002 ang.topic gl obal . #

Alternatively, the route map feature can be used to view the topology:

$ gpid-route route map | ocal host: 10001
Fi ndi ng Li nked Brokers:

| ocal host:10001... Ck

| ocal host:10002... Ck

Dynam ¢ Rout es:
none found

Stati ¢ Routes:

24

Running the AMQP
Messaging Broker

| ocal host: 10001(ex=ang. topi ¢c) <= | ocal host: 10002(ex=ang. topi c) key=gl obal . #

This example causes messages delivered to the amg.topic exchange on broker localhost: 10002 that have
akey that matches global .# (i.e. starts with the string "global.") to be delivered to the amg.topic exchange
on broker localhost: 10001. This delivery will occur regardless of whether there are any consumers on
localhost: 10001 that will receive the messages.

Note that thisis a uni-directional route. No messages will be forwarded in the opposite direction unless
another static routeis created in the other direction.

The following diagram illustrates the result, in terms of AMQP objects, of the example static exchange
route. In this diagram, the exchanges, both named "amq.topic" exist prior to the creation of the route.
The creation of the route causes the private queue, the binding, and the subscription of the queue to the
destination to be created.

___ + o e e e e e e e e e e - =
| ocal host: 10002 | | local host: 10001
| |
S + | | S
| | | | |
| | global . # --------------- + |
| amg.topic |----------- > private queue |--------------- > ang.topic
| | e v | |
| | | | |
S + | | S
| |
| |
___ + o e e e e e e e e e e - =

4.3.3.2. Queue Routes

A queue route causes the destination broker to create a subscription to a pre-existing, possibly shared,
gueue on the source broker. There's no requirement that the queue be bound to any particular exchange.
Queue routes can be used to connect exchanges of different names and/or types. They can also be used to
distribute or balance traffic across multiple destination brokers.

Queue routes are created and del eted using the gpid-route queue add and gpid-route queue del commands
respectively. The following example creates a static queue route to a public queue called "public" that
feeds the amg.fanout exchange on the destination:

Create a queue on the source broker:

$ gpid-config -a | ocal host: 10002 add queue public

Create a queue route to the new queue

$ qpi d-route queue add | ocal host: 10001 | ocal host: 10002 ang. f anout public
4.3.3.3. Pull vs. Push Routes

When gpid-route creates or deletes a route, it establishes a connection to one of the brokers involved in
the route and configures that broker. The configured broker then takes it upon itself to contact the other
broker and exchange whatever information is needed to complete the setup of the route.

25

Running the AMQP
Messaging Broker

Thenotion of pushvs. pull isconcerned with whether the configured broker isthe source or the destination.
The normal case is the pull route, where gpid-route configures the destination to pull messages from the
source. A push route occurs when gpid-route configures the source to push messages to the destination.

Dynamic routes are always pull routes. Static routes are normally pull routes but may beinverted by using
the src-local option when creating (or deleting) a route. If src-local is specified, gpid-route will make its
connection to the source broker rather than the destination and configure the route to push rather than pull.

Push routes are useful in applications where brokers are co-resident with data sources and are configured
to send datato a central broker. Rather than configure the central broker for each source, the sources can
be configured to send to the destination.

4.3.4. gpid-route Summary and Options

$ gpid-route

Usage:

gpi d-route
gpi d-route

gpi d-route
gpi d-route
gpi d-route
gpi d-route
gpi d-route
gpi d-route
gpi d-route

gpi d-route
gpi d-route
gpi d-route

Opt i ons:

--tinmeout seconds (10)

-V[
-q
-d[
-e[
-S[

--ack N

-t <transport> |

dest - br oker

ex:

| ocal host,

[OPTI ONS]
[OPTI ONS]

[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]

[OPTI ONS]
[OPTI ONS]
[OPTI ONS]

--verbose]
--quiet]
--durabl e]

--del -enpty-1link]
--src-local]

and src- broker

dynam c add <dest - broker > <src- broke
dynam c del <dest-broker> <src-broke
route add <dest - br oker > <src- br oke
route del <dest - br oker > <src- br oke
gueue add <dest - br oker > <src- br oke
queue del <dest - br oker > <src- br oke
route list [<dest-broker>]

route flush [<dest-broker>]

route map [<br oker >]

link add <dest-broker> <src-broker>
link del <dest-broker> <src-broker>
link I'ist [<dest-broker>]

Maxi mumtime to wait for

br oker conn

Ver bose out put

Qui et
Added

Delete link after deleting |ast
Make connection to source broker

out put, don't
configuration shall be durable

r out
(pu

r>
r>

<exchange>
<exchange>

r>
r>
r>
r>

<exchange>
<exchange>
<exchange>
<exchange>

ection

print duplicate warnings

e on the link
sh route)

<ro
<ro
<qu
<qu

Acknowl edge transfers over the bridge in batches of N

are in the form

--transport <transport>]
Specify transport to use for

| i nks,

[user nane/ passwor d

defaults to tcp

@ hostnane |

10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

There are several transport options available for the federation link:

Table5.1. Transport Optionsfor Federation

Transport

Description

tcp

(default) A cleartext TCP connection

sd

A secure TLS/SSL over TCP connection

rdma

A Connection using the RDMA interface (typically

for an Infiniband network)

26

i p-

Running the AMQP
Messaging Broker

Thetag and exclude-list arguments are not needed. They have been | eft in place for backward compatibility
and for advanced userswho might have very unusual requirements. If you're not sureif you need them, you
don't. Leave them alone. If you must know, please refer to "Message Loop Prevention™” in the advanced
topics section below. The prevention of message looping is now automatic and requires no user action.

If the link between the two sites has network latency, this can be compensated for by increasing the ack
frequency with --ack N to achieve better batching across the link between the two sites.

4.3.5. Caveats, Limitations, and Things to Avoid

4.3.5.1.

4.3.5.2.

4.3.5.3.

Redundant Paths

The current implementation of federation in the M4 broker imposes constraints on redundancy in the
topology. If there are parallel paths from a producer to a consumer, multiple copies of messages may be
received.

A future release of Qpid will solve this problem by allowing redundant paths with cost metrics. This will
allow the deployment of networks that are tolerant of connection or broker loss.

Lack of Flow Control

M4 broker federation uses unlimited flow control on the federation sessions. Flow control back-pressure
will not be applied on inter-broker subscriptions.

Lack of Cluster Failover Support

The client functionality embedded in the broker for inter-broker links does not currently support cluster
fail-over. Thiswill be added in a subsequent release.

4.4. Example Scenarios

4.4.1. Using QPID to bridge disjoint IP networks

44.1.1.

Multi-tiered topology

R +
| 5 |
R +
/ \
R + R +
|2 | | 6 |
R + R +
A |\
R + Ao + Ao + Ao + Ao +
Il [31 | 41 | 71 1 8|
R + Ao + Ao + Ao + Ao +

This topology can be configured using the following script.

##

Define URLs for the brokers
##

br oker 1=| ocal host : 10001

27

Running the AMQP
Messaging Broker

br oker 2=I ocal host :
br oker 3=l ocal host:
br oker 4=| ocal host :
br oker 5=I ocal host:
br oker 6=I ocal host:
br oker 7=l ocal host :
br oker 8=l ocal host :

##

10002
10003
10004
10005
10006
10007
10008

Create Topi c Exchanges

#

gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config

-a
-a
-a
-a
-a
-a
-a
-a

$br oker 1
$br oker 2
$br oker 3
$br oker 4
$br oker 5
$br oker 6
$br oker 7
$br oker 8

add
add
add
add
add
add
add
add

exchange
exchange
exchange
exchange
exchange
exchange
exchange
exchange

t opi
t opi
t opi
t opi
t opi
t opi
t opi
t opi

f ed

f ed

f ed

OO0 0000O0O0

. t opi
fed.
fed.

t opi
t opi

. t opi
fed.
fed.

t opi
t opi

. t opi
f ed.

t opi

#
Create Topic Routes
#
gpi d-route dynan c add
gpi d-route dynan c add

$br oker 1
$br oker 2

add
add

$br oker 3
$br oker 2

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 4
$br oker 2

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 2
$br oker5

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker5
$br oker 6

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 6
$br oker 7

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 6
$br oker 8

gpi d-route
gpi d-route

dynam c
dynam c

4.4.1.2. Load-sharing across brokers

4.5. Advanced Topics

4.5.1. Federation Queue Naming

4.5.2. Message Loop Prevention

$br oker 2
$br oker 1

$br oker 2
$br oker 3

$br oker 2
$br oker 4

$br oker5
$br oker 2

$br oker 6
$br oker 5

$br oker 7
$br oker 6

$br oker 8
$br oker 6

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

OO0 00000O0

28

Running the AMQP
Messaging Broker

5. SSL

5.1. SSL How to
5.1.1. C++ broker (M4 and up)

» You need to get a certificate signed by a CA, trusted by your client.

« If you require client authentication, the clients certificate needs to be signed by a CA trusted by the
broker.

* Setting up the certificates for testing.
 For testing purposes you could use the ??? to setup your certificates.
* Insummary you need to create aroot CA and import it to the brokers certificate data base.

« Create a certificate for the broker, sign it using the root CA and then import it into the brokers
certificate data base.

* Load theacl module using --load-module or if loading more than one module, copy sdl.so to the location
pointed by --module-dir

Ex if running fromsource. ./qgpidd --load-nmodule /Iibs/ssl.so
» Specify the password file (a plain text file with the password), certificate database and the brokers
certificate name using the following options
Ex ./gpidd ... --ssl-cert-password-file ~/pfile --ssl-cert-db ~/server_db/ --ssl-

« If you require client authentication you need to add --sdl-require-client-authentication as a command
line argument.

 Please note that the default port for SSL connectionsis 5671, unless specified by --sd-port

Here is an example of a broker instance that requires SSL client side authenticaiton

./qpidd ./qpidd --load-nmodule /1libs/ssl.so --ssl-cert-password-file ~/pfile --ssl-

5.1.2. Java Client (M4 and up)

e Thisguideisfor connecting with the Qpid c++ broker.

* Setting up the certificates for testing. In summary,
¢ You need to import the trusted CA in your trust store and keystore
* Generate keysfor the certificate in your key store
« Create a certificate request using the generated keys

 Create a certficate using the request, signed by the trusted CA.

29

Running the AMQP
Messaging Broker

 Import the signed certificate into your keystore.

 Passthefollowing VM argumentsto your client.

- D avax. net. ssl . keySt or e=/ home/ bob/ ssl _t est/ keystore.jks
- D avax. net . ssl . keySt or ePasswor d=passwor d
- D avax. net. ssl . trust Store=/ hone/ bob/ssl _test/certstore.jks
- Dy avax. net. ssl . trust St or ePasswor d=passwor d

5.1.3. .Net Client (M4 and up)

« If the Qpid broker requires client authentication then you need to get acertificate signed by aCA, trusted
by your client.

Use the connectSSL instead of the standard connect method of the client interface.

connectSSL signatureis as follows:

public void connectSSL(String host, int port, String virtual Host, String usernane,
Where

* host: Host name on which a Qpid broker is deployed

* port: Qpid broker port

* virtualHost: Qpid virtual host name

» username: User Name

* password: Password

+ serverName: Name of the SSL server

* certPath: Path to the X509 certificate to be used when the broker requires client authentication

* rgjectUntrusted: If true connection will not be established if the broker is not trusted (the server
certificate must be added in your truststore)

5.1.4. Python & Ruby Client (M4 and up)

Simply use amgps:// in the URL string as defined above

6. LVQ
6.1. Understanding LVQ

Last Vaue Queues are useful youUser Documentation are only interested in the latest value entered into
aqueue. LVQ semantics are typically used for things like stock symbol updates when all you care about
isthe latest value for example.

Qpid C++ M4 or later supports two types of LVQ semantics:

30

Running the AMQP
Messaging Broker

. LVQ

« LVQ NO_BROWSE

6.2. LVQ semantics:

LVQ uses aheader for akey, if the key matches it replaces the message in-place in the queue except a.) if
the message with the matching key has been acquired b.) if the message with the matching key has been
browsed In these two cases the message is placed into the queuein FIFO, if another message with the same
key isreceived it will the ‘un-accessed' message with the same key will be replaced

These two exceptions protect the consumer from missing the last update where a consumer or browser
accesses a message and an update comes with the same key.

An example

[l ocal host tests]$./lvqtest --npde create_|vqg
[l ocal host tests]$./lvqtest --npde wite
Sendi ng Data: keyl=keyl. Ox7fffdf3f3180

Sendi ng Dat a: key2=key2. 0Ox7f ffdf 3f 3180

Sendi ng Dat a: key3=key3. Ox7f ffdf 3f 3180

Sendi ng Data: keyl=keyl. Ox7fffdf3f3180

Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --npde browse

Recei vi ng Dat a: keyl.
Recei vi ng Dat a: key2.
Recei vi ng Dat a: key3.

Ox7f f fdf 3f 3180
Ox7f f fdf 3f 3180
Ox7f f fdf 3f 3180

Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqtest --npde wite
Sendi ng Data: keyl=keyl. Ox7fffedc7fall
Sendi ng Dat a: key2=key2. 0x7fffedc7fall
Sendi ng Dat a: key3=key3. 0x7fffedc7fall
Sendi ng Data: keyl=keyl. Ox7fffedc7fall
Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --npde browse
Recei vi ng Dat a: keyl. Ox7fffedc7fall
Recei vi ng Dat a: key2. Ox7f f f edc7f al0
Recei vi ng Dat a: key3. Ox7f f f edc7f al0
Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqgtest --npde consume
Recei vi ng Dat a: keyl. Ox7f f f df 3f 3180
Recei vi ng Dat a: key2. Ox7f f f df 3f 3180
Recei vi ng Dat a: key3. Ox7f f f df 3f 3180
Recei vi ng Dat a: | ast
Recei vi ng Dat a: keyl.
Recei vi ng Dat a: key2.
Recei vi ng Dat a: key3.
Recei vi ng Dat a: | ast

6.3. LVQ_NO_BROWSE semantics:

LVQ uses a header for akey, if the key matches it replaces the message in-place in the queue except a.)
if the message with the matching key has been acquired In these two cases the message is placed into the

Ox7fffedc7fall
Ox7fffedc7fall
Ox7fffedc7fall

31

Running the AMQP
Messaging Broker

gueue in FIFO, if another message with the same key is received it will the 'un-accessed' message with
the same key will be replaced

Note, in this case browsed messaged are not invalidated, so updates can be missed.

An example

[l ocal host tests]$./lvqtest --node create_|l vg_no_browse
[l ocal host tests]$./lvqgtest --npde wite
Sendi ng Dat a: keyl=keyl.Ox7fffce5fb390
Sendi ng Dat a: key2=key2. 0x7fffce5f b390
Sendi ng Dat a: key3=key3. 0x7fffce5f b390
Sendi ng Dat a: keyl=keyl.Ox7fffce5fb390
Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --npde wite
Sendi ng Dat a: keyl=keyl.Ox7fff346ae440
Sendi ng Dat a: key2=key2. 0x7fff 346ae440
Sendi ng Dat a: key3=key3. 0x7fff 346ae440
Sendi ng Dat a: keyl=keyl.Ox7fff346ae440
Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --node browse
Recei vi ng Dat a: keyl. Ox7f f f 346ae440
Recei vi ng Dat a: key2. Ox7f f f 346ae440
Recei vi ng Dat a: key3. Ox7f f f 346ae440
Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqgtest --node browse
Recei vi ng Dat a: keyl. Ox7f f f 346ae440
Recei vi ng Dat a: key2. Ox7f f f 346ae440
Recei vi ng Dat a: key3. Ox7f f f 346ae440
Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqgtest --npde wite
Sendi ng Dat a: keyl=keyl.Ox7fff606583e0
Sendi ng Dat a: key2=key2. 0x7fff606583e0
Sendi ng Dat a: key3=key3. 0x7fff606583e0
Sendi ng Dat a: keyl=keyl.Ox7fff606583e0
Sendi ng Data: | ast=l ast

[l ocal host tests]$./lvqtest --npde consune
Recei vi ng Dat a: keyl. Ox7f f f 606583e0
Recei vi ng Dat a: key2. Ox7f f f 606583e0
Recei vi ng Dat a: key3. Ox7f f f 606583e0
Recei vi ng Dat a: | ast

[l ocal host tests]$

6.4. LVQ Program Example

Li censed to the Apache Software Foundation (ASF) under one
or nore contributor |icense agreenents. See the NOTICE file
distributed with this work for additional information

b B

32

Running the AMQP
Messaging Broker

regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the

"License"); you may not use this file except in conpliance
with the License. You may obtain a copy of the License at

http: //ww. apache. org/ | i censes/ LI CENSE- 2. 0

software distributed under the License is distributed on an
"AS | S" BASI S, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing perm ssions and limtations

*
*
*
*
*
*
*
* Unless required by applicable |law or agreed to in witing,
*
*
*
*
* under the License.

*

*

#i ncl ude <qpi d/client/AsyncSessi on. h>

#i ncl ude <qpi d/client/Connection. h>

#i ncl ude <qpi d/client/Subscripti onManager. h>
#i ncl ude <qpi d/client/Session. h>

#i ncl ude <qpid/client/Message. h>

#i ncl ude <qpi d/client/MessagelLi st ener. h>

#i ncl ude <qpi d/client/QueueOptions. h>

#i ncl ude <i ostreant

usi ng nanmespace gpid::client;
usi ng nanmespace qpid::fram ng
usi ng namespace gpi d: : sys;
usi ng namespace gpi d;

usi ng namespace std;

enum Mode { CREATE LVQ CREATE_LVQ NO BROWSE, WRI TE, BROASE, CONSUME}
const char* nodeNames[] = { "create_|Ivqg","create_|vg_no_browse","wite", "browse","

/] istream ostream ops so Options can read/display Mde
i stream& operator>>(istrean& i n, Mdde& node) ({
string s;
in >>s;
int i = find(nodeNanmes, nodeNanmes+5, s) - nodeNanes;
if (i >=5) throw Exception("lnvalid node: "+s);
node = Mode(i);
return in;

}

ost ream& oper at or <<(ostream& out, Mdde node) {
return out << nodeNanes[node];

}

struct Args : public gpid::Options,
public qpid::client::ConnectionSettings
{

33

Running the AMQP

Messaging Broker
bool hel p;
Mode node
Args() : gpid::Options("Sinple latency test optins"), help(false),
{
usi ng nanmespace gpi d;
addOpti ons()
("hel p", optValue(help), "Print this usage statement")
(" broker, b", optVal ue(host, "HOST"), "Broker host to connect to")
("port,p", optValue(port, "PORT"), "Broker port to connect to")
("username", optVal ue(usernane, "USER'), "user nane for broker log in
("password", optVal ue(password, "PASSWORD'), "password for broker |og
(" nmechani sni', opt Val ue(nechani sm "MECH'), "SASL nechanismto use when
("tcp-nodel ay", optVal ue(tcpNoDel ay), "Turn on tcp-nodel ay")
("node", optValue(node, "'see below "), "Action node."
"\'ncreate_|vqg: create a new queue of type lvg.\n"
"\'ncreate_|vg_no_browse: create a new queue of type Ivg with no lvg o
"\nwite: wite a bunch of data & keys.\n"
"\ nbrowse: browse the queue.\n"
"\'nconsune: consune fromthe queue.\n");
}
b
cl ass Listener : public Messageli stener
{ .
private:
Sessi on session
Subscri pti onManager subscriptions;
std::string queue;
Message request;
QueueOpt i ons args;
publi c:
Li st ener (Sessi on& sessi on);
voi d setup(bool browse);
void send(std::string kv);
voi d recei ved(Message& nessage) ;
voi d browse();
voi d consumne();
b

Li st ener: : Li st ener (Sessi on& s)
session(s), subscriptions(s),
gqueue("LVQester")

{}
voi d Listener::setup(bool browse)
{ /1 set queue node
args. set O deri ng(browse?LVQ NO BRONSE: LVQ) ;
sessi on. queueDecl are(ar g: : queue=queue, arg::excl usi ve=fal se,
}

node(BROABE

arg: : aut oDel et e=f

Running the AMQP

Messaging Broker
voi d Listener::browse()
{
subscri ptions. subscri be(*this, queue, SubscriptionSettings(Fl owContr ol
subscriptions.run();
}
voi d Listener::consume()
{
subscri ptions. subscri be(*this, queue, SubscriptionSettings(Fl owContr ol
subscriptions.run();
}
voi d Listener::send(std::string kv)
{
request. get DeliveryProperties().setRoutingKey(queue);
std::string key;
ar gs. get LVQKey(key) ;
request. get Headers().set String(key, kv);
std::ostringstream data
data << kv;
if (kv I'="last") data << "." << hex << this;
request. setData(data.str());
cout << "Sending Data: " << kv << "=" << data.str() << std::endl
async(sessi on). nessageTransfer (arg::content=request);
}
voi d Listener::received(Mssage& response)
{

cout << "Receiving Data:" << response.getData() << std::endl
/* if (response.getData() == "last"){
subscri ptions. cancel (queue);

}
*/
}
int main(int argc, char** argv)
{
Args opts;

opts. parse(argc, argv);

if (opts.help) {
std::cout << opts << std::endl
return O;

}

Connection connection
try {
connecti on. open(opts);
Sessi on session = connection. newSessi on();

35

ounlim

ounlim

Running the AMQP
Messaging Broker

Li stener listener(session);

switch (opts. node)

{

case CONSUME:
listener.consume();
br eak;

case BROWBE:
| istener. browse();
br eak;

case CREATE LVQ
listener.setup(false);
br eak;

case CREATE_LVQ NO BROWSE:
listener.setup(true);
br eak;

case WRI TE:
istener.send("keyl");
istener.send("key2");
listener.send("key3");
istener.send("keyl");
listener.send("last");
br eak;

}

connection. cl ose();

return O;

} catch(const std::exception& error) {
std::cout << error.what() << std::endl;

}

return 1;

7. Queue State Replication

7.1. Asynchronous Replication of Queue State

7.1.1. Overview
Thereis support in gpidd for selective asynchronous replication of queue state. Thisis achieved by:
(a) enabling event generation for the queues in question

(b) loading a plugin on the 'source’ broker to encode those events as messages on areplication queue (this
pluginis called replicating_listener.so)

(c) loading a custom exchange plugin on the 'backup' broker (thispluginiscalled replication_exchange.so)
(d) creating an instance of the replication exchange type on the backup broker

(e) establishing a federation bridge between the replication queue on the source broker and the replication
exchange on the backup broker

36

Running the AMQP
Messaging Broker

The bridge established between the source and backup brokers for replication (step (€) above) should have
acknowledgements turned on (this may be done through the --ack N option to gpid-route). This ensures
that replication events are not lost if the bridge fails.

Thereplication protocol will also eliminate duplicates to ensure reliably replicated state. Note though that
only one bridge per replication exchange is supported. If clients try to publish to the replication exchange
or if more than a the single required bridge from the replication queue on the source broker is created,
replication will be corrupted. (Access control may be used to restrict access and help prevent this).

Thereplicating event listener plugin (step (b) above) has the following options:

Queue Replication Options:
--replication-queue QUEUE Queue on which events for
ot her queues are recorded
--replication-listener-nane NAMVE (replicator) name by which to register the
replicating event |istener

--create-replication-queue if set, the replication wll
be created if it does not
exi st

The name of the queue is required. It can either point to a durable queue whose definition has been
previously recorded, or the --create-replication-queue option can be specified in which case the queue will
be created a simple non-durable queue if it does not already exist.

7.1.2. Use with Clustering

The source and/or backup brokers may also be clustered brokers. In this case the federated bridge will be
re-established between replicas should either of the originally connected nodes fail. There are however
the following limitations at present:

» Thebackup site does not process membership updates after it establishesthefirst connection. In order for
newly added members on a source cluster to be eligible asfailover targets, the bridge must be recreated
after those members have been added to the source cluster.

» New membersadded to abackup cluster will not receiveinformation about currently established bridges.
Therefore in order to allow the bridge to be re-established from these members in the event of failure
of older nodes, the bridge must be recreated after the new members have joined.

e Only asingle URL can be passed to create the initial link from backup site to the primary site. this
means that at the time of creating the initial connection theinitial node in the primary site to which the
connection is made needs to be running. Once connected the backup site will receive a membership
update of al the nodesin the primary site, and if theinitial connection nodein the primary fails, the link
will be re-established on the next node that was started (time) on the primary site.

Due to the acknowledged transfer of events over the bridge (see note above) manual recreation of the

bridge and automatic re-establishment of te bridge after connection failure (including failover where either
or both ends are clustered brokers) will not result in event loss.

7.1.3. Operations on Backup Queues

When replicating the state of a queue to a backup broker it is important to recognise that any other
operations performed directly on the backup queue may break the replication.

37

Running the AMQP
Messaging Broker

If the backup queueisto bean active (i.e. accessed by clientswhilereplication ison) only enqueues should
be selected for replication. In this mode, any message enqueued on the source brokers copy of the queue
will also be enqueued on the backup brokers copy. However not attempt will be made to remove messages
from the backup queue in response to removal of messages from the source queue.

7.1.4. Selecting Queues for Replication

Queues are selected for replication by specifying the types of events they should generate (it is from these
events that the replicating plugin constructs messages which are then pulled and processed by the backup
site). Thisis done through options passed to the initial queue-declare command that creates the queue and
may be done either through gpid-config or similar tools, or by the application.

With gpid-config, the --generate-queue-events optionsiis used:

- - gener at e- queue-events N
If set to 1, every enqueue will generate an event that ca
registered listeners (e.g. for replication). If set to 2,
generated for enqueues and dequeues

From an application, the arguments field of the queue-declare AMQP command is used to convey this
information. An entry should be added to the map with key 'gpid.queue_event_generation’ and an integer
value of 1 (to replicate only enqueue events) or 2 (to replicate both enqueue and dequeue events).

Applications written using the c++ client API may fine the gpid::client::QueueOptions class convenient.
This has a enableQueueEvents() method on it that can be used to set the option (the instance of
QueueOptions is then passed as the value of the arguments field in the queue-declare command. The
boolean option to that method should be set to true if only enequeue events should be replicated; by default
it is false meaning that both enqueues and dequeues will be replicated. E.g.

QueueOpti ons options;
options. enabl eQueueEvent s(fal se);
sessi on. queueDecl are(arg: : queue="nmny-queue", arg::argunents=options);

7.1.5. Example

L ets assume we will run the primary broker on host1 and the backup on host2, have installed gpidd on
both and have the replicating_listener and replication_exchange plugins in gpidd's module directory(* 1).

On host1 we start the source broker and specifcy that a queue called ‘replication’ should be used for storing
the events until consumed by the backup. We also request that this queue be created (as transient) if not
already specified:

gpidd --replication-queue replication-queue --create-replication-queue true --
On host2 we start up the backup broker ensuring that the replication exchange module is loaded:

gpi dd

38

Running the AMQP
Messaging Broker

We can then create the instance of that replication exchange that we will use to process the events:

gpi d-config -a host2 add exchange replication replication-exchange

If this fails with the message "Exchange type not implemented: replication”, it means the replication
exchange module was not loaded. Check that the module is installed on your system and if necessary
provide the full path to the library.
We then connect the replication queue on the source broker with the replication exchange on the backup
broker using the gpid-route command:
gpi d-route --ack 50 queue add host2 hostl replication-exchange rep
The example above configures the bridge to acknowledge messages in batches of 50.
Now create two queues (on both source and backup brokers), one replicating both enqueues and degqueues
(queue-a) and the other replicating only dequeues (queue-b):
gpi d-config -a hostl add queue queue-a --generate-queue-events 2
gpi d-config -a hostl add queue queue-b --generate-queue-events 1
gpi d-config -a host2 add queue queue-a
gpi d-config -a host2 add queue queue-b
We are now ready to use the queues and see the replication.
Any message enqueued on queue-a will be replicated to the backup broker. When the message is
acknowledged by a client connected to host1 (and thus dequeued), that message will be removed from the
copy of the queue on host2. The state of queue-a on host2 will thus mirror that of the equivalent queue on
host1, albeit with asmall lag. (Note however that we must not have clients connected to host2 publish to-
or consume from- queue-a or the state will fail to replicate correctly due to conflicts).
Any message enqueued on queue-b on host1 will also be enqueued on the equivalent queue on host2.
However the acknowledgement and consequent dequeuing of messages from queue-b on host1 will have
no effect on the state of queue-b on host2.
(*1) If not the paths in the above may need to be modified. E.g. if using modules built from a gpid svn
checkout, the following would be added to the command line used to start qpidd on host1.:
--load-nodul e <path-to-qpid-dir>/src/.libs/replicating_listener.so

and the following for the equivalent command line on host2:

--l oad-nodul e <path-to-qgpid-dir>/src/.libs/replication_exchange. so

39

l'ication-que

Running the AMQP
Messaging Broker

8. Starting a cluster
8.1. Running a Qpidd cluster

There are several pre-requisites to running agpidd cluster:

8.1.1. Install and configure openais/corosync

Qpid clustering usesamulticast protocol provided by the corosync (formerly called openais) library. Install
whichever is available on your OS. E.g. in fedoralO: yuminstall corosync.

The configuration file is /etc/ais/openais.conf on openais, /etc/corosync.conf on early corosync versions
and /etc/corosync/corosync.conf on recent corosync versions. Y ou will need to edit the default file created
when you installed

Here is an example, with places marked that you will change. (Below, | will describe how to change the
file.)

Pl ease read the openais.conf.5 manual page

totem {

version: 2

secaut h: off

threads: 0

interface {
ri ngnunber: 0
You must change this address
bi ndnet addr: 20.0.100.0
ncast addr: 226.94. 32. 36
ncast port: 5405

}
}
| oggi ng {
debug: off
ti mestanp: on
to file: yes
logfile: /tnp/aisexec.!|og
}
anf {
node: di sabl ed
}

You must sent the bindnetaddr entry in the configuration file to the network address of your network
interface. This must be areal network interface, not the loopback address 127.0.0.1

Y ou can find your network interface by running ifconfig. Thiswill list the address and the mask, e.g.

i net addr:20.0.20.32 Bcast:20.0.20.255 WMask: 255.255.255.0

The bindnetaddr isthe logical AND of the inet addr and mask values, in the example above 20.0.20.0

40

Running the AMQP
Messaging Broker

8.1.2. Open your firewall

In the above examplefile, | use mcastport 5405. Thisimpliesthat your firewall must allow UDP protocol
over port 5405, or that you disable the firewall

8.1.3. Use the proper identity.
The gpidd process must be started with the correct identity in order to use the corosync/openais library.

For openais and early corosync versionstheinstallation of openAl S/corosync on your system will create a
new group called "ais". The user that startsthe qpidd processes of the cluster must have"ais' asitseffective
group id. You can create a user specifically for this purpose with ais as the primary group, or a user that
has ais as a secondary group can use "newgrp" to set the primary group to ais when running gpidd.

For recent corosync versions you no longer need to set your group to "ais" but you do need to create a
file in /etc/corosync/uidgid.d/ to allow access for whatever user/group ID you want to use. For example
create /etc/corosync/uidgid.d/gpid th the contents:

uidgid {
uid: gpid
gid: gpid
}

8.1.4. Starting a Cluster

To beamember of acluster you must pass the --cluster-name argument to gpidd. Thisisthe only required
option to join a cluster, other options can be set as for anormal gpidd.

For exampleto start acluster of 3 brokers on the current host Here is an example of starting a cluster of 3
members, all on the current host but with different ports and different log files:

gpi dd - p5672 --cluster-nane=MY_CLUSTER - -1 og-out put=cluster0.log -d --no-data-dir
gpi dd -p5673 --cluster-nane=MY_CLUSTER - -1 og-out put=cluster0.log -d --no-data-dir
gpi dd - p5674 --cluster-nane=MY_CLUSTER - -1| og-out put=cluster0.log -d --no-data-dir

In a deployed system, cluster members will normally be on different hosts but for development its useful
to be able to create a cluster on a single host.

8.1.5. SELinux conflicts

Developers will often start openais/corosync as a service like this:

service openais start

But will then will start a cluster-broker without using the service script like this:
/usr/shin/gpidd --cluster-name my_cluster ...

If SELinux is in enforcing mode this may cause gpidd to hang due because of the different SELinux
contexts. There are 3 waysto resolve this:

* run both gpidd and openais/corosync as services.

* run both gpidd and openais/corosync as user processes.

41

Running the AMQP
Messaging Broker

e make selinux permissive:

To check what mode selinux is running:

getenforce

To change the mode:

setenforce perm ssive

Note that in a deployed system both openais/corosync and gpidd should be started as services, in which
case there is no problem with SELinux running in enforcing mode.

8.1.6. Troubleshooting checklist.

If you have trouble starting your cluster, make sure that:

1. You have edited the correct openais/corosync configuration file and set bindnetaddr correctly 1. Y our
firewall allows UDP on the openais/corosync mcastport 2. Your effective group is "ais' (openais/old
corosync) or you have created an appropriate ID file (new corosync) 3. Your firewall allows TCP on the
ports used by gpidd. 4. If you're starting openais as a service but running gpidd directly, ensure selinux
isin permissive mode

9. ACL
9.1. v2 ACL file format for brokers

This new ACL implementation has been designed for implementation and interoperability on al Qpid
brokers. It is currently supported in the following brokers:

Table5.2. ACL Support in Qpid Broker Versions

Broker Version

C++ M4 onward
Java M5 anticipated
Contents

» Section 9.1, " v2 ACL file format for brokers”
e ¢ Section9.1.1, “ Specification”

e Section9.1.2, " Validation "

e Section 9.1.3, “ Examplefile:”
» Section 9.2, “ Design Documentation ”

e ¢ Section 9.2.1, “ Mapping of ACL trapsto action and type”

Section 9.3, “ v2 ACL User Guide”

42

Running the AMQP
Messaging Broker

e ¢ Section 9.3.1, “ Writing Good/Fast ACL "
e Section 9.3.2,“ Getting ACL toLog”

e Section 9.3.3, “ User Id / domains running with C++ broker ”

9.1.1. Specification
Notes on file formats
* A line starting with the character '# will be considered a comment, and are ignored.

» Since the '# char (and others that are commonly used for comments) are commonly found in routing
keys and other AMQP literals, it is simpler (for now) to hold off on allowing trailing comments (ie
comments in which everything following a'# is considered a comment). This could be reviewed later
once therest of the format is finalized.

Empty lines (
ignored.

) and lines that contain only whitespace (any combination of "', \f', \n', \r', \', V') are

All tokens are case sensitive. "namel” !="Namel" and "create" |= "CREATE".

» Group lists may be extended to the following line by terminating the linewith the'\' character. However,
thismay only occur after the group hame or any of the namesfollowing the group name. Empty extension
lines (iejust a'\' character) are not permitted.

Exanpl es of extending group lists using a trailing '"\' character
group groupl namel nanme2 \

nanme3 name4 \

name5

group group2 \
groupl \
nane6

The following are illegal:

'\' nust be after group nane
group \
group3 nanme?7 namnme8

No enpty extension |lines
group group4 name9 \
\
nanel0

» Additional whitespace (ie more than one whitespace char) between and after tokensisignored. However
group and acl definitionsmust start with "group™ or "acl" respectively and with no preceding whitespace.

» All acl rules are limited to asingle line.

* Rules are interpreted from the top of the file down until the name match is obtained; at which point
processing stops.

43

Running the AMQP
Messaging Broker

e Thekeyword "all" is reserved, and matches all individuals, groups and actions. It may be used in place
of agroup or individual name and/or an action - eg "acl allow all all", "acl deny al al" or "acl deny
userlall”.

* Thelast line of the file (whether present or not) will be assumed to be "acl deny all all”. If present in
the file, any lines below this one are ignored.

» Names and group names may contain only a-z, A-Z, 0-9, -, ".

* Rules must be preceded by any group definitions they may use; any name not previously defined as a
group will be assumed to be that of an individual.

e ACL rules must have the following tokens in order on asingle line:
e Thestring literal "acl";
e The permission;
» The name of asingle group or individual or the keyword "all";
* The name of an action or the keyword "all";
¢ Optionally, asingle object name or the keyword "all”;
« If the object is present, then optionally one or more property name-value pair(s) (in the form

property=value).

user = usernane[@omai n[/real n]
user-list = userl user2 user3 ...
group- name-1list = groupl group2 group3 ...

group <group-nanme> = [user-list] [group-nane-list]
perm ssion = [all ow al | ow | og| deny| deny- | og]
action = [consune| publish|create|access]| bi nd| unbi nd| del et e| pur ge| updat e]

obj ect = [virtual host| queue| exchange]| broker || i nk| rout e| met hod]
property = [nane| durabl e| owner|routingkey| passi ve| aut odel et e|] excl usi ve|type|altern

acl perm ssion {<group-nane>| <user-nanme>|"all"} {action|"all"} [object]|"all™] [pro

9.1.2. Validation

Thenew ACL fileformat needsto perform validation on the acl rules. The validation should be performed
depending on the set value:

strict-acl-validation=none The default setting should be 'warn'

On validation of this acl the following checks would be expected:

acl allow client publish routingkey=exanpl eQueue exchange=any. di r ect

1. Thelf the user 'client' cannot be found, if the authentication mechanism cannot be queried then a'user’
value should be added to the file.

Running the AMQP
Messaging Broker

2. Thereisan exchange called ‘amq.direct'
3. Thereisaqueue bound to 'exampleQueue’ on 'amg.direct’
Each of these checks that fail will result in alog statement being generated.

In the case of afatal logging the full file will be validated before the broker shuts down.

9.1.3. Example file:

Sone groups
group admin ted@PI D nmarti n@yPl D
group user-consurme marti n@PI D ted@Pl D
group group2 ki m@yrl D user-consunme rob@Pl D
group publisher group2 \
t om@Pl D andr ew@Pl D debbi e@Pl D

Sone rul es

acl allow carlt@PlI D create exchange nane=carl . *

acl deny rob@XPI D create queue

acl allow guest @PI D bi nd exchange name=ang.topi c routingkey=stocks.ibm#
acl allow user-consune create queue nane=tnp.*

acl allow publisher publish all durabl e=fal se

acl allow publisher create queue nane=Request Queue
acl allow consuner consunme queue durabl e=true

acl allow fred@PID create all

acl allow bob@X¥PI D all queue

acl allow adnin all

acl deny ki m@aPl D all

acl allow all consume queue owner=self

acl allow all bind exchange owner =sel f

Last (default) rule
acl deny all all

9.2. Design Documentation

9.2.1. Mapping of ACL traps to action and type

The C++ broker maps the ACL traps in the follow way for AMQP 0-10: The Java broker currently only
performs ACLs on the AMQP connection not on management functions:

Table5.3. Mapping ACL Traps

Object Action Properties Trap C++ Trap Java

Exchange Create name type aternate| ExchangeHandl erl mjitxcleahgreDeclareHandl er
passive durable

Exchange Delete name ExchangeHandlerl mjatxclabeigeDel eteHandler

Exchange Access name ExchangeHandlerlmpl::query

45

owner =s

Running the AMQP

Messaging Broker
Object Action Properties Trap C++ Trap Java
Exchange Bind name routingkey | ExchangeHandlerl m@ubumBindHandl er
gueuename owner
Exchange Unbind nameroutingkey | ExchangeHandlerl mjiixclmoageUnbindHandler
Exchange Access name queuename|ExchangeHandlerlmpl::bound
routingkey
Exchange Publish name routingKey | SemanticState::routeBasi cPublishM ethodHandl er
Queue Access name QueueHandlerlmpl:jquery
Queue Create name alternate| QueueHandl erl mpl : j@@akareD eclareHandler
passive durable
exclusive
autodelete
Queue Purge name QueueHandlerlmpl:] @ugaePurgeHandl er
Queue Purge name Management::Queue::purge
Queue Delete name QueueHandlerlmpl:dgietgeDel eteHandl e
Queue Consume name (possibly add | MessageHandlerlmpBasiooitmimeM ethodHandler
in future?) BasicGetMethodHandler
<Object> Update ManagementProperty::set
<Object> Access M anagementProperty::read
Link Create M anagement::connect
Route Create Management:: -
createFederationRoute-
Route Delete Management:: -
del eteFederationRoute-
Virtualhost Access name TBD ConnectionOpenM ethodHandler

Management actions that are not explicitly given a name property it will default the name property to
management method name, if the action is'W' Action will be 'Update, if 'R' Action will be 'Access.

for example, if the mgnt method ‘joinCluster' was not mapped in schema it will be mapped in ACL file

asfollows

Table5.4. Mapping M anagement Actionsto ACL

Object

Action

Property

Broker

Update

name=joinCluster

9.3. v2 ACL User Guide
9.3.1. Writing Good/Fast ACL

The file gets read top down and rule get passed based on the first match. In the following example the
first ruleisadead rule. |.e. the second rule is wider than the first rule. DON'T do this, it will force extra
analysis, worst case if the parser does not kill the dead rule you might get afalse deny.

al | ow peter @PI D create queue name=tnp <--

dead rul e!!

46

Running the AMQP
Messaging Broker

al |l ow peter @PI D create queue
deny all all

By default files end with

deny all all

the mode of the ACL engine can be swapped to be allow based by putting thefollowing at the end of thefile

allow all all

Note that 'allow' based file will be a LOT faster for message transfer. This is because the AMQP
specification does not allow for creating subscribes on publish, so the ACL is executed on every message
transfer. Also, ACL'srules using less properties on publish will in general be faster.

9.3.2. Getting ACL to Log

In order to get log messages from ACL actions use alow-log and deny-log for example

allow1log john@PID all all
deny-1og guest@PID all all

9.3.3. User Id / domains running with C++ broker

The user-id used for ACL is taken from the connection user-id. Thus in order to use ACL the broker
authentication has to be setup. i.e. (if --auth no is used in combination with ACL the broker will deny
everything)

Theuser idinthe ACL fileis of the form <user-id>@<domain> The Domain is configured viathe SASL
configuration for the broker, and the domain/realm for gpidd is set using --realm and default to '‘QPID'.

To load the ACL module use, load the acl module cmd line or viathe config file

./src/qgpidd --1oad-nodule src/.libs/acl.so

The ACL plugin provides the following option --acl-file'. If do ACL file is supplied the broker will not
enforce ACL. If an ACL file name is supplied, and the file does not exist or is invalid the broker will

not start.
ACL Options:
--acl-file FILE The policy file to load from |oaded fromdata dir

47

Chapter 6. Managing the AMQP
Messaging Broker

1. Managing the C++ Broker

There are quite afew ways to interact with the C++ broker. The command line tools include:

 gpid-route - used to configure federation (a set of federated brokers)

 gpid-config - used to configure queues, exchanges, bindings and list them etc

 qpid-tool - used to view management information/statistics and call any management actions on the

broker

* gpid-printevents - used to receive and print QMF events

1.1. Using gpid-config

This utility can be used to create queues exchanges and bindings, both durable and transient. Always check
for latest options by running --help command.

$ gpid-config --help

Usage: qgpid-config [OPTI ONS]
gpi d-config [OPTI ONS] exchanges [filter-string]
gpi d-confi g [OPTI ONS] queues [filter-string]
gpi d-config [OPTI ONS] add exchange <type> <name> [AddExchangeOpti ons]
gpi d-config [OPTI ONS] del exchange <nane>
gpi d-config [OPTI ONS] add queue <nane> [AddQueueOpti ons]
gpi d-config [OPTI ONS] del queue <nane>
gpi d-config [OPTI ONS] bi nd <exchange- nane> <queue- nane> [bi ndi ng- key]
gpi d-confi g [OPTI ONS] unbi nd <exchange-nane> <queue-nane> [bi ndi ng- key]

Opt i ons:
-b [--bindings]
-a [--broker-addr]

Show bi ndi ngs i n queue or exchange |
Address (Il ocal host) Address of qpidd broker

broker-addr is in the form [user nane/ passwor d@ hostname | i p-address

ex: |l ocal host,

Add Queue Opti ons:
--durabl e
--cluster-durable
--file-count N (8)
--file-size N (24)
- - max- queue-si ze N
- - max- queue-count N
--limt-policy [none

10. 1. 1. 7:10000, broker-host: 10000, guest/guest @ ocal host

Queue is durable
Queue becones durable if there is only one functioning cl
Nunber of files in queue's persistence journa
File size in pages (64Kib/page)
Maxi mum i n- menory queue size as bytes
Maxi mum i n- menory queue size as a nunber of nessages
| reject | flowto-disk | ring | ring-strict]
Action taken when queue Iimt is reached:
none (default) - Use broker's default policy

rej ect - Rej ect enqueued messages
fl owto-disk - Page nessages to disk
ring - Repl ace ol dest unacquired nessage w

48

Managing the AMQP

--order

[fifo |

Messaging Broker
ring-strict - Repl ace ol dest nessage, reject if o
lvg | |vg-no-browse]
Set queue ordering policy:
fifo (default) - First in, first out
lvg - Last Val ue Queue ordering, allows qu
| vg- no- browse - Last Val ue Queue ordering, browsing

--gener at e- queue- events N

If set to 1, every enqueue will generate an event that ca
registered listeners (e.g. for replication). If set to 2,
generated for enqueues and dequeues

Add Exchange Opti ons:

--durabl e
- -sequence

--ive

Get the summary page

$ qpid-config
Tot al

Tot al

List the queues

Exchanges:

t opi c:
headers:
fanout :
direct:
Queues:
dur abl e:
non- dur abl e:

Exchange is durable

Exchange will insert a 'gpid.nsg_sequence' field in the nmessage h
with a value that increments for each nmessage forwarded.

Exchange wi Il behave as an 'initial-val ue-exchange', keeping a re
to the | ast nmessage forwarded and enqueui ng that nmessage to newy
queues.

~NO~NNEPEFEPDNO

$ gpi d-config queues

Queue Nane

pub_start
pub_done
sub_r eady
sub_done
perftestO

repl y- dhcp-100- 18- 254. bos. redhat . com 20713
t opi c- dhcp- 100- 18- 254. bos. redhat . com 20713

Attributes

--durabl e
aut o- de
aut o- de

excl
excl

List the exchanges with bindings

$./qpid-config -
"' (direct)
bi nd pub_start

Exchange

b exchanges

=> pub_start

bi nd pub_done => pub_done
bi nd sub_ready => sub_ready
bi nd sub_done => sub_done

49

Managing the AMQP
Messaging Broker

bi nd
bi nd
bi nd
Exchange
bi nd
bi nd
bi nd
Exchange
Exchange
Exchange
Exchange
bi nd

perftest0 => perftestO

ngnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15
repl - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15
"ang.direct' (direct)

=>
=>

repl - 3206f f 16-f b29- 4a30- 82ea- e76f 50dd7d15 =>
repl - df 06¢c7a6- 4ce7-426a- 9f 66- da91a2a6a837 =>
repl - c55915c2- 2f da- 43ee- 9410- blclcbb3ed4ae =>
"ang.topic' (topic)

"anyg. fanout' (fanout)

"ang. mat ch' (headers)

' qpi d. managenent' (topic)
nmgnt . # => ngnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50

1.2. Using qpid-route

ngnt - 3206f f 16- f b29- 4a30- 82ea
repl - 3206f f 16- f b29- 4a30- 82ea

repl - 3206f f 16- f b29- 4a30- 82ea

repl - df 06¢c7a6- 4ce7-426a- 9f 66
repl - c55915c2- 2f da- 43ee- 9410

dd7d15

This utility is to create federated networks of brokers, This allows you for forward messages between
brokersin anetwork. Messages can be routed statically (using "qpid-route route add") where the bindings
that control message forwarding are supplied in the route. Message routing can also be dynamic (using
"gpid-route dynamic add") where the messages are automatically forwarded to clients based on their
bindings to the local broker.

$ gpid-r
Usage:

Opt i ons:
-V[
-q [
-d [
_e[
'S[
_t <

dest-b
ex: |

oute
gpi d-route [OPTIONS] dynam ¢ add <dest - broker >
gpi d-route [OPTIONS] dynam ¢ del <dest-broker>
gpi d-route [OPTIONS] route add <dest - br oker >
gpi d-route [OPTIONS] route del <dest - br oker >
gpi d-route [OPTI ONS] queue add <dest - br oker >
gpi d-route [OPTI ONS] queue del <dest - br oker >
gpi d-route [OPTIONS] route list |[<dest-broker
gpi d-route [OPTIONS] route flush [<dest-broker
gpi d-route [OPTIONS] route map [<br oker >]
gpi d-route [OPTIONS] |ink add
gpi d-route [OPTIONS] link de
gpid-route [OPTIONS] link Iist [<dest-broker>]
--verbose] Ver bose out put
--quiet] Qui et output, don't print
--durable] Added configuration shal
--del -enpty-link] Delete link after deletin
--src-local] Make connection to source
transport> [--transport <transport>]

Specify transport to use for

r oker
ocal host,

and src-broker are in the form [userna
10.1.1.7:10000, broker-host: 10000, g

A few examples:

gpi d-rou

te dynam c add hostl host2 fed.topic

<src- broker>
<src- broker>

<exchange>
<exchange>

[ta

<src- broker>
<src- broker>
<src- broker>
<src- broker>
>]
>]

<exchange>
<exchange>
<exchange>
<exchange>

<ro
<ro
<qu
<qu

<dest - br oker > <sr c- br oker >
<dest - br oker > <sr c- br oker >

dupl i cat e war ni ngs

be durabl e
g last route on the link
br oker (push route)
links, defaults to tcp

nme/ password@ host nane |
uest/ guest @ ocal host

i p-

50

Managing the AMQP
Messaging Broker

gpi d-route dynanm c add host2 hostl fed.topic

gpid-route -v route add host1l host2 hubl.topic hub2.topic.stock. buy
gpid-route -v route add host1l host2 hubl.topic hub2.topic.stock. sel
gpid-route -v route add hostl1l host2 hubl.topic 'hub2.topic.stock.#
gpid-route -v route add hostl host2 hubl.topic 'hub2. #

gpid-route -v route add hostl1l host2 hubl.topic 'hub2.topic.#
gpid-route -v route add hostl host2 hubl.topic 'hub2. gl obal.#

The link map feature can be used to display the entire federated network configuration by supplying a
single broker as an entry point:

$ gpid-route route map | ocal host: 10001

Fi ndi ng Li nked Brokers:
| ocal host: 10001. .
| ocal host: 10002. .
| ocal host: 10003. .
| ocal host: 10004. .
| ocal host: 10005. .
| ocal host: 10006. .
| ocal host: 10007. .
| ocal host: 10008. .

QLRIQRAQQIAR

Dynam ¢ Rout es:

Exchange fed. topic:

| ocal host: 10002 <=> | ocal host: 10001
| ocal host: 10003 <=> | ocal host: 10002
| ocal host: 10004 <=> | ocal host: 10002
| ocal host: 10005 <=> | ocal host: 10002
| ocal host: 10006 <=> | ocal host: 10005
| ocal host: 10007 <=> | ocal host: 10006
| ocal host: 10008 <=> | ocal host: 10006

Exchange fed. direct:
| ocal host: 10002 => | ocal host: 10001
| ocal host: 10004 => | ocal host: 10003
| ocal host: 10003 => | ocal host: 10002
| ocal host: 10001 => | ocal host: 10004

Static Routes:

| ocal host: 10003(ex=any. di rect) <= | ocal host: 10005(ex=ang. di rect) key=rkey
| ocal host: 10003(ex=any. di rect) <= | ocal host: 10005(ex=anyg. di rect) key=rkey2

1.3. Using qpid-tool

This utility provided a telnet style interface to be able to view, list al stats and action all the methods.
Simplecapture below. Best tojust play with it and mail thelist if you have questions or want features added.

gpi d:

51

Managing the AMQP

Messaging Broker
gpi d: help
Management Tool for QPID
Conmands:
list - Print summary of existing objects by class
[ist <classNane> - Print list of objects of the specified class
[ist <classNane> all - Print contents of all objects of specified c
list <classNane> active - Print contents of all non-del eted objects of
list <list-of-IDs> - Print contents of one or nore objects (infer
list <classNanme> <list-of-1Ds> - Print contents of one or nore objects
list is space-separated, ranges may be specified (i.e. 1004-1010)
call <ID> <met hodNanme> <args> - |Invoke a nethod on an object
schema - Print summary of object classes seen on the
schema <cl assNanme> - Print details of an object class
set tine-format short - Sel ect short tinestanp format (default)
set tine-format | ong - Select long timestanp format
quit or ~D - Exit the program
gpid: list
Management Obj ect Types:
hj ect Type Active Deleted
gpi d. bi ndi ng 21 0
gpi d. br oker 1 0
gpi d.client 1 0
gpi d. exchange 6 0
gpi d. queue 13 0
gpi d. sessi on 4 0
gpi d. system 1 0
gpi d. vhost 1 0

gpid: list gpid.system
hj ects of type gpid.system
I D Creat ed Destroyed | ndex

1000 21:00:02 - host

gpid: list 1000

nj ect of type gpid.system (last sanple tine: 21:26:02)
Type El ement 1000

config osNane Li nux
config nodeNane | ocal host. | ocal domain
config release 2.6.24.4-64.fc8
config version #1 SMP Sat Mar 29 09:15:49 EDT 2008
config rmachine x86_64
gpi d: schema queue
Schema for class 'qgpid. queue'

El ement Type Uni t Access Not es Descri pt
vhost Ref reference ReadCreate index

nane short-string ReadCreate index

dur abl e bool ean ReadCr eat e

aut oDel et e bool ean ReadCr eat e

excl usi ve bool ean ReadCr eat e

argunent s field-table ReadOnl y Ar gunrent
st or eRef reference ReadOnl y Ref er enc

52

Managing the AMQP

Messaging Broker
nmsgTot al Enqueues ui nt 64 nmessage Total ne
nmsgTot al Dequeues ui nt 64 nmessage Total ne
msgTxnEnqueues ui nt 64 nmessage Tr ansact
msgTxnDequeues ui nt 64 nmessage Tr ansact
nmsgPer si st Enqueues ui nt 64 nmessage Persi ste
nmsgPer si st Dequeues ui nt 64 nmessage Persi ste
nmsgDept h ui nt 32 nmessage Current
nmsgDept hHi gh ui nt 32 nmessage Current
msgDept hLow ui nt 32 nmessage Current
byt eTot al Enqueues ui nt 64 oct et Total ne
byt eTot al Dequeues ui nt 64 oct et Total ne
byt eTxnEnqueues ui nt 64 oct et Transact
byt eTxnDequeues ui nt 64 oct et Transact
byt ePer si st Enqueues ui nt 64 oct et Persi ste
byt ePer si st Dequeues ui nt 64 oct et Persi ste
byt eDept h ui nt 32 oct et Current
byt eDept hHi gh ui nt 32 oct et Current
byt eDept hLow ui nt 32 oct et Current
enqueueTxnStarts ui nt 64 transacti on Total en
enqueueTxnConmi t s ui nt 64 transacti on Total en
enqueueTxnRej ect s ui nt 64 transacti on Total en
enqueueTxnCount ui nt 32 transacti on Current
enqueueTxnCount Hi gh ui nt 32 transacti on Current
enqueueTxnCount Low ui nt 32 transacti on Current
dequeueTxnStarts ui nt 64 transacti on Total de
dequeueTxnConmi t s ui nt 64 transacti on Total de
dequeueTxnRej ect s ui nt 64 transacti on Total de
dequeueTxnCount ui nt 32 transacti on Current
dequeueTxnCount Hi gh ui nt 32 transacti on Current
dequeueTxnCount Low ui nt 32 transacti on Current
consumers ui nt 32 consuner Current
consuner sHi gh ui nt 32 consurmer Current
consumner sLow ui nt 32 consuner Current
bi ndi ngs ui nt 32 bi ndi ng Current
bi ndi ngsHi gh ui nt 32 bi ndi ng Current
bi ndi ngsLow ui nt 32 bi ndi ng Current
unackedMessages ui nt 32 nmessage Messages
unackedMessagesHi gh ui nt 32 nmessage Messages
unackedMessagesLow ui nt 32 nmessage Messages
nmessagelLat encySanples delta-tine nanosecond Br oker |
nmessagelat encyM n delta-tinme nanosecond Br oker |
nmessagelat encyMax delta-tinme nanosecond Br oker
nmessagelat encyAverage delta-tine nanosecond Br oker

Met hod ' purge' Discard all messages on queue
gpi d: list queue
nj ects of type gpid. queue

I D Creat ed Destroyed | ndex

1012 21:08:13 - 1002. pub_start

1014 21:08:13 - 1002. pub_done

1016 21:08:13 - 1002. sub_r eady

1018 21:08:13 - 1002. sub_done

1020 21:08:13 - 1002. perftestO

1038 21:09:08 - 1002. ngnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15

53

Managing the AMQP

Messaging Broker

1040 21:09:08 - 1002. r epl - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15

1046 21:09:32 - 1002. mgnt - df 06c7a6- 4ce7- 426a- 9f 66- da91a2a6a837

1048 21:09:32 - 1002. repl - df 06c7a6- 4ce7- 426a- 9f 66- da91a2a6a837

1054 21:10:01 - 1002. mgnt - ¢55915c2- 2f da- 43ee- 9410- blclcbb3edae

1056 21:10:01 - 1002. repl - ¢55915c2- 2f da- 43ee- 9410- blclcbb3e4dae

1063 21:26:00 - 1002. mgnt - 8d621997- 6356- 48c3- acab- 76a37081d0f 3

1065 21:26:00 - 1002. repl - 8d621997- 6356- 48c3- acab- 76a37081d0f 3
gpid: list 1020
nj ect of type qgpid.queue: (last sanple time: 21:26:02)

Type El ement 1020

config vhost Ref 1002

config nane perftestO

config durable Fal se

config autoDelete Fal se

config exclusive Fal se

config argunents {"gpid. max_si ze': 0, 'qgpid.max_count': 0}

config storeRef NULL

i nst nmsgTot al Enqueues 500000 nessages

i nst nmsgTot al Dequeues 500000

i nst msgTxnEnqueues 0

i nst msgTxnDequeues 0

i nst nmsgPer si st Enqueues 0

i nst nmsgPer si st Dequeues 0

i nst nmsgDept h 0

i nst nmsgDept hHi gh 0

i nst msgDept hLow 0

i nst byt eTot al Enqueues 512000000 octets

i nst byt eTot al Dequeues 512000000

i nst byt eTxnEnqueues 0

i nst byt eTxnDequeues 0

i nst byt ePer si st Enqueues 0

i nst byt ePer si st Dequeues 0

i nst byt eDept h 0

i nst byt eDept hHi gh 0

i nst byt eDept hLow 0

i nst enqueueTxnStarts 0 transacti ons

i nst enqueueTxnConmi t s 0

i nst enqueueTxnRej ect s 0

i nst enqueueTxnCount 0

i nst enqueueTxnCount Hi gh 0

i nst enqueueTxnCount Low 0

i nst dequeueTxnStarts 0

i nst dequeueTxnConmi t s 0

i nst dequeueTxnRej ect s 0

i nst dequeueTxnCount 0

i nst dequeueTxnCount Hi gh 0

i nst dequeueTxnCount Low 0

i nst CONSUNer s 0 consuners

i nst consuner sHi gh 0

i nst consumner sLow 0

i nst bi ndi ngs 1 bi ndi ng

i nst bi ndi ngsHi gh 1

i nst bi ndi ngsLow 1

Managing the AMQP

Messaging Broker
i nst unackedMessages 0 nessages
i nst unackedMessagesHi gh 0
i nst unackedMessagesLow 0
i nst messagelat encySanmples 0
i nst nmessagelat encyM n 0
i nst nmessagelat encyMax 0
i nst messagelLat encyAverage O

gpi d:
1.4. Using gpid-printevents

This utility connects to one or more brokers and collects events, printing out aline per event.

$ qpid-printevents --help
Usage: qpid-printevents [options] [broker-addr]...

Collect and print events fromone or nore Qid nessage brokers. |f no broker-
addr is supplied, gpid-printevents will connect to 'l ocal host:5672'. broker-
addr is of the form [usernane/password@ hostnanme | ip-address [:<port>] ex:

| ocal host, 10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

Options:
-h, --help show this help nmessage and exit

You get theidea... have fun!

2. QMan - Qpid Management bridge
2.1. QMan : Qpid Management Bridge

QMan is a management bridge for Qpid. It allows external clients to manage and monitor one or more
Qpid brokers.

Please note: All WS-DM related concerns have to be considered part of M5 release.

QMan exposes the broker management interfaces using Java Management Extensions (JMX) and / or
OASIS Web Services Distributed Management (WSDM). While the first one is supposed to be used by
java based clients only the latter is an interoperable protocol that enables management clients to access
and receive natifications of management-enabled resources using Web Services.

QMan can be easily integrated in your preexisting system in different ways :

» Asastandalone application : inthis caseit runsas aserver. More specifically it enables communication
viaRMI (for IMX) or viaHTTP (for WS-DM); Note that when the WS-DM adapter is used the IMX
interface is not exposed;

» Asadeployable unit : it is also available as a standard Java web application (war); Thisis useful when
there's a preexisting Application Server in your environment and you don't want start another additional
server in order to run QMan.

2.1.1. User Documentation

With "User Documentation™ we mean all information that you need to know in order to use QMan from
auser perspective. Those information include :

55

Managing the AMQP

Messaging Broker

Table6.1.

Section Description

m? How toinstall & start QMan.

?7?7? QMan (WS-DM version only) Administration
Console.

7? Describes each IMX interface exposed by QMan.

7? Describes each WS-DM interface exposed by
QMan.

7? Informational / Debug / Error / Warning messages
catalogue.

2.1.2. Technical Documentation

If you are interested in technical details about QMan and related technol ogies thisis agood starting point.
In general this section provides information about QMan design, interfaces, patterns and so on...

Table6.2.

Section Description

7? A short introduction about QMan deployment
context.

7? Describes QMan components, their interactions and
responsibilities.

3. Qpid Management Framework

» Section 3.1, “ What IsQMF "

» Section 3.2, “ Getting Started with QMF”

» Section 3.3, “ QMF Concepts”

e ¢ Section 3.3.1, “ Console, Agent, and Broker ”

¢ Section 3.3.2, “ Schema”

e Section 3.3.3, “ Class Keysand Class Versioning ”

» Section 3.4, “ The QMF Protocol ”
» Section 3.5, “ How to Write aQMF Console”

» Section 3.6, “ How to WriteaQMF Agent ”

Please visit the ??? for information about the future of QMF.

3.1. What Is QMF

QMF (Qpid Management Framework) is a general-purpose management bus built on Qpid Messaging. It
takes advantage of the scalability, security, and rich capabilities of Qpid to provide flexible and easy-to-

use manageability to alarge set of applications.

Managing the AMQP
Messaging Broker

3.2. Getting Started with QMF

QMF is used through two primary APIs. The console APl is used for console applications that wish to
access and mani pulate manageable components through QMF. The agent API is used for application that
wish to be managed through QMF.

Thefastest way to get started with QMF isto work through the"How To" tutorialsfor consoles and agents.
For a deeper understanding of what is happening in the tutorials, it is recommended that you look at the
Qmf Concepts section.

3.3. QMF Concepts

This section introduces important concepts underlying QMF.

3.3.1. Console, Agent, and Broker

The major architectural components of QMF are the Console, the Agent, and the Broker. Console
components are the "managing" components of QM F and agent components are the "managed" parts. The
broker isacentral (possibly distributed, clustered and fault-tolerant) component that manages name spaces
and caches schema information.

A console application may be a command-line utility, a three-tiered web-based GUI, a collection and
storage device, a specialized application that monitors and reacts to events and conditions, or anything
else somebody wishes to develop that uses QMF management data.

An agent application is any application that has been enhanced to allow itself to be managed via QMF.

o m e e e e oo + . + Fom e e e e o oo + o e e e e e oo
| CLI utility | | Vb app | | Audit storage | | Event correlation
o m e e e e oo + . + Fom e e e e o oo + o e e e e e oo
N N N N |
I I I I
% % % % %
e mmm e MR e memmmmmeeme e Ee e e E e e eEmEEm e mmmmmmm e mmmmmmm..m ... m.=m.. ... -----an
Qi d Messaging Bus (with QW Broker capability)
e mmm e MR e memmmmmeeme e Ee e e E e e eEmEEm e mmmmmmm e mmmmmmm..m ... m.=m.. ... -----an
N N N
I I I
% % %
o e o - + o e o - + o e o - +
| Manageabl e app | | Manageabl e app | | Manageabl e app |
o e o - + o e o - + o e o - +

In the above diagram, the Manageable apps are agents, the CLI utility, Web app, and Audit storage are
consoles, and Event corrélation is both a console and an agent because it can create events based on the
aggregation of what it sees.

3.3.2. Schema

A schema describes the structure of management data. Each agent provides a schema that describes its
management model including the object classes, methods, events, etc. that it provides. In the current QMF

57

Managing the AMQP
Messaging Broker

3.3.2.1.

distribution, the agent's schema is codified in an XML document. In the near future, there will also be
ways to programatically create QMF schemata.

Package

Each agent that exports a schema identifies itself using a package name. The package provides a unique
namespace for the classes in the agent's schema that prevent collisions with identically named classes in
other agents schemata.

Package names are in "reverse domain name" form with levels of hierarchy separated by periods. For
example, the Qpid messaging broker uses package "org.apache.qpid.broker" and the Access Control List
plugin for the broker uses package "org.apache.qpid.acl". In general, the package name should be the
reverse of the internet domain name assigned to the organization that owns the agent software followed
by identifiersto uniquely identify the agent.

The XML document for a package's schema uses an enclosing <schema> tag. For example:

<schema package="or g. apache. gpi d. br oker" >

</ schema>

3.3.2.2. Object Classes

Object classes define types for manageable objects. The agent may create and destroy objects which are
instances of object classesinthe schema. An object classisdefined inthe XML document using the <class>
tag. An object classis composed of properties, statistics, and methods.

<cl ass nane="Exchange" >

<property nane="vhost Ref" type="obj 1 d" references="Vhost" access="RC
<property nane="namne" type="sstr" access="RC' index="y"/>
<property nanme="type" type="sstr" access="RO'/>
<property nane="dur abl e" type="bool" access="RC'/>
<property nane="argunents" type="map" access="R0O' desc="Argunents supplied
<statistic name="producerCount" type="hil 032" desc="Current producers on exch
<statistic name="bi ndi ngCount" type="hilo032" desc="Current bindings"/>
<statistic name="nsgRecei ves" type="count 64" desc="Total nessages received"/
<statistic name="nsgDrops" type="count 64" desc="Total nessages dropped (n
<statistic name="nsgRout es" type="count 64" desc="Total routed nessages"/>
<statistic name="byteReceives" type="count64" desc="Total bytes received"/>
<statistic name="byteDrops" type="count 64" desc="Total bytes dropped (no n
<statistic name="byteRout es" type="count 64" desc="Total routed bytes"/>

</ cl ass>

3.3.2.3. Properties and Statistics

<property> and <statistic> tags must be placed within <schema> and </schema> tags.

Properties, statistics, and methods are the building blocks of an object class. Properties and statistics are
both object attributes, though they are treated differently. If an object attribute is defining, seldom or never
changes, or islargein size, it should be defined as a property. If an attribute israpidly changing or is used
to instrument the object (counters, etc.), it should be defined as a statistic.

The XML syntax for <property> and <statistic> have the following X ML-attributes:

58

Managing the AMQP
Messaging Broker

Table6.3. XML Attributesfor QMF Properties and Statistics

Attribute <property> <statistic> Meaning

name Y Y The name of the attribute

type Y Y The data type of the
attribute

unit Y Y Optional unit name - use
the singular (i.e. MByte)

desc Y Y Description to annotate
the attribute

references Y If the type is "objld",
names the referenced
class

access Y Access rights (RC, RW,
RO)

index Y "y" if this property is

used to uniquely identify
the object. There may
be more than one index
property in aclass

parentRef Y "y* if this property
references an object in
which this object isin a
child-parent relationship.

optional Y "y" if this property is
optional (i.e. may be
NUL L/not-present)

min Y Minimum vaue of a
numeric attribute

max Y Maximum value of a
numeric attribute

maxLen Y Maximum length of a
string attribute

3.3.2.4. Methods
<method> tags must be placed within <schema> and </schema> tags.

A method isaninvokablefunctionto be performed on instances of the object class (i.e. aRemote Procedure
Call). A <method> tag has aname, an optional description, and encloses zero or more arguments. Method
arguments are defined by the <arg> tag and have a name, atype, a direction, and an optional description.
The argument direction can be "I", "O", or "|O" indicating input, output, and input/output respectively.
An example:

<nmet hod name="echo" desc="Request a response to test the path to the nanagenent
<arg nane="sequence" dir="10" type="uint32"/>
<arg nane="body" dir="10" type="Istr"/>

</ met hod>

59

Managing the AMQP
Messaging Broker

3.3.2.5. Event Classes

3.3.2.6. Data Types

Object attributes, method arguments, and event arguments have data types. The data types are based on
the rich data typing system provided by the AM QP messaging protocol. The following table describes the
data types available for QMF:

Table 6.4. QMF Datatypes

QMF Type Description

REF QMF Object ID - Used to reference another QMF
object.

us 8-bit unsigned integer

ui16 16-hit unsigned integer

u32 32-bit unsigned integer

u64 64-bit unsigned integer

S8 8-hit signed integer

S16 16-hit signed integer

S32 32-bit signed integer

S64 64-bit signed integer

BOOL Boolean - True or False

SSTR Short String - String of up to 255 bytes

LSTR Long String - String of up to 65535 bytes

ABSTIME Absolute time since the epoch in nanoseconds (64-
bits)

DELTATIME Delta time in nanoseconds (64-hits)

FLOAT Single precision floating point number

DOUBLE Double precision floating point number

uUuID UUID - 128 hits

FTABLE Field-table - std::map in C++, dictionary in Python

In the XML schema definition, types go by different names and there are a number of special cases. This
is because the XML schemais used in code-generation for the agent API. It provides options that control
what kind of accessors are generated for attributes of different types. The following table enumerates the
types availablein the XML format, which QMF types they map to, and other special handling that occurs.

Table 6.5. XML Schema Mapping for QMF Types

XML Type QMF Type Accessor Style Specia Characteristics
objld REF Direct (get, set)
uint8,16,32,64 U8,16,32,64 Direct (get, set)
int8,16,32,64 $8,16,32,64 Direct (get, set)
bool BOOL Direct (get, set)
sstr SSTR Direct (get, set)

60

Managing the AMQP

Messaging Broker

Istr LSTR Direct (get, set)

absTime ABSTIME Direct (get, set)

deltaTime DELTATIME Direct (get, set)

float FLOAT Direct (get, set)

double DOUBLE Direct (get, set)

uuid UuID Direct (get, set)

map FTABLE Direct (get, set)

hil08,16,32,64 U8,16,32,64 Counter (inc, dec) Generates value,
valueMin, valueMax

count8,16,32,64 U8,16,32,64 Counter (inc, dec)

mma32,64 U32,64 Direct Generates valueMin,
valueMax,
valueAverage,
valueSamples

mmaTime DELTATIME Direct Generates valueMin,
valueMax,
valueAverage,
valueSamples

I mportant

When writing a schemausing the XML format, types used in <property> or <arg> must be types

that have Direct accessor style. Any type may be used in <statistic> tags.

3.4. The QMF Protocol

3.3.3. Class Keys and Class Versioning

The QMF protocol defines the message formats and communication patterns used by the different QMF
components to communicate with one another.

A description of the current version of the QMF protocol can be found at 72?2,

A proposal for an updated protocol based on map-messagesisin progress and can be found at ?7??.

3.5. How to Write a QMF Console

Please see the ??? for information about using the console API with Python.

3.6. How to Write a QMF Agent

4. Management Design notes
4.1. Status of This Document

This document does not track any current development activity. It is the specification of the management
framework implemented in the M3 release of the C++ broker and will be |eft here for user and devel oper

reference.

61

Managing the AMQP
Messaging Broker

Development continues on the Qpid Management Framework (QMF) for M4. If you are using M3, thisis
the document you need. If you are using the SVN trunk, please refer to ??? for up-to-date information.

4.2. Introduction

This document describes the management features that are used in the QPID C++ broker as of the M3
milestone. These features do not appear in earlier milestones nor are they implemented in the Java broker.

This specificationisnot astandard and isnot endorsed by the AM QP working group. When such astandard
is adopted, the QPID implementation will be brought into compliance with that standard.

4.3. Links

The schema is checked into ??7?.

4.3.1. Design note for getting info in and out via JMX

4.4. Management Requirements

Must operate from aformally defined management schema.

Must natively use the AMQP protocol and its type system.

Must support the following operations

e SET operation on configurable (persistent) aspects of objects

* GET operation on all aspects of objects

 METHOD invocation on schema-defined object-specific methods
« Distribution of unsolicited periodic updates of instrumentation data

» Data updates shall carry an accurate sample timestamp for rate calculation

» Updates shall carry object create/del ete timestamps.

» Transient objects shall be fully accounted for via updates. Note that short-lived transient objects
may come and go within asingle updateinterval. All of theinformation pertaining to such an object
must be captured and transmitted.

« Digtribution of unsolicited event and/or alert indications (schema defined)
Role-based access control at object, operation, and method granularity

End-to-end encryption and signing of management content

Schema must be self-describing so the management client need not have prior knowledge of the
management model of the system under management.

Must be extensible to support the management of objects beyond the QPID component set. This allows
AMQP to be used as a general -purpose management protocol.

62

Managing the AMQP
Messaging Broker

4.5. Definition of Terms

Table6.6.

class

A type definition for a manageabl e object.

package

A grouping of class definitions that are related to a
single software component. The package concept is
used to extend the management schema beyond just
the QPID software components.

object

Also "manageable object". An instantiation of a
class. An object represents a physical or logical
component in the core function of the system under
management.

property

A typed member of a class which represents a
configurable attribute of the class. In generd,
properties don't change frequently or may not
change at al.

statistic

A typed member of a class which represents an
instrumentation attribute of the class. Statistics are
aways read-only in nature and tend to change

rapidly.

method

A member of a class which represents a callable
procedure on an object of the class. Methods may
have an arbitrary set of typed arguments and may
supply a return code. Methods typically have side
effects on the associated object.

A member of aclasswhich representsthe occurence
of an event of interest within the system under
management.

management broker

A software component built into the messaging
broker that handles management traffic and
distributes management data.

management agent

A software component that is separate from the
messaging broker, connected to the management
broker viaan AMQP connection, which allows any
software component to be managed remotely by
QPID.

4.6. Operational Scenarios: Basic vs. Extended

The extensibility requirement introduces complexity to the management protocol that is unnecessary and
undesirable for the user/devel oper that wishes only to manage QPID message brokers. For thisreason, the
protocol is partitioned into two parts: The basic protocol, which contains only the capability to manage
a single broker; and the extended protocol, which provides the hooks for managing an extended set of
components. A management console can be implemented using only the basic protocol if the extended

capabilities are not needed.

4.7. Architectural Framework

777

63

Managing the AMQP
Messaging Broker

4.8. The Management Exchange

The management exchange (called "gpid.management" currently) is a special type of exchange used for
remote management access to the Qpid broker. The management exchange is an extension of the standard
"Topic" exchange. It behaves like atopic exchange with the following exceptions:

1. When aqueueis successfully bound to the exchange, amethod isinvoked on the broker's management
agent to notify it of the presence of a new remote managment client.

2. When messages arrive at the exchange for routing, the exchange examines the message's routing key
and if the key represents a management command or method, it routes it directly to the management
agent rather than routing it to queues using the topic algorithm. The management exchange is used by

the management agent to distribute unsolicited management data. Such datais classified by the routing
key allowing management clients to register for only the data they need.

4.8.1. Routing Key Structure
As noted above, the structure of the binding and routing keys used on the management exchange is
important to the function of the management architecture. The routing key of a management message
determines:
1. Thetype of message (i.e. operation request or unsolicited update).
2. The class of the object that the message pertains to.

3. The specific operation or update type.

4. The namespace in which the class belongs. This allows for plug-in expansion of the management
schema for manageabl e objects that are outside of the broker itself.

Placing thisinformation in the routing key providesthe ability to enforce access control at class, operation,
and method granularity. It also separates the command structure from the content of the management
message (i.e. element values) alowing the content to be encrypted and signed end-to-end while till
allowing access control at the message-transport level. This means that special access control code need
not be written for the management agent. There are two general types of routing/binding key:
» Command messages use the key: agent.<bank#> or broker
» Unsolicited keys have the structure: mgmt.<agent>.<type>.<package>.<class>.<severity> where

« <agent> isthe uuid of the originating management agent,

e <type>isoneof "schema’, "prop", "stat", or "event",

« <package> is the namespace in which the <class> nameisvalid, and

» <class> isthe name of the class as defined in the schema.

o <severity>isrelevant for eventsonly. It isone of “critical", "error", "warning", or "info".

In both cases, the content of the message (i.e. method arguments, element values, etc.) is carried in the
body segment of the message.

The <package> namespace allows this management framework to be extended with the addition of other
software packages.

Managing the AMQP
Messaging Broker

4.9. The Protocol
4.9.1. Protocol Header

The body segments of management messages are composed of sequences of binary-encoded data fields,
in amanner consistent with the 0-10 version of the AMQP specification.

All management messages begin with a message header:

octet O 1 2 3 4 5 6
E SR E SR E SR E SR E SR E SR E SR +- - -
| A | M | 1 | op-code | sequence
E SR E SR E SR E SR E SR E SR E SR +- - -

The first three octets contain the protocol magic number "AM1" which is used to identify the type and
version of the message.

The opcode field identifies the operation represented by the message

4.9.2. Protocol Exchange Patterns
The following patterns are followed in the design of the protocol:
* Reguest-Response
e Query-Indication
 Unsolicited Indication
4.9.2.1. The Request-Response Pattern

In the request-response pattern, a requestor sends arequest message to one of its peers. The peer then does
one of two things: If the request can be successfully processed, a single response message is sent back to
the requestor. This response contains the requested results and serves as the positive acknowledgement
that the request was successfully completed.

If the request cannot be successfully completed, the peer sends a command complete message back to the
requestor with an error code and error text describing what went wrong.

The sequence number in the response or command complete message is the same as the sequence number

in the request.

Request or Peer
| |
| --- Request (S€Q) ----------mmmm oo > |
| |
IR L Response (seq) --- |
| |

Request or Peer
| |
| --- Request (S€Q) -------------m o m i m e > |
| |
| <-mmmem e Conmmand Conpl ete (seq, error) --- |

65

Managing the AMQP
Messaging Broker

|
4.9.2.2. The Query-Indication Pattern

The query-indication pattern is used when there may be zero or more answers to a question. In this case,
the requestor sends a query message to its peer. The peer processes the query, sending as many indication
messages as needed back to the requestor (zero or more). Once the last indication has been sent, the peer
then sends a command compl ete message with a success code indicating that the query is complete.

If thereis an error in the query, the peer may reply with a command complete message containg an error
code. In this case, no indication messages may be sent.

All indication and command complete messages shall have the same sequence number that appeared in

the query message.

Request or
|
| --- Query (seq) ---------somsisoieome e
|
R e I ndi cation (seq) ---
R e I ndi cation (seq) ---
R e I ndi cation (seq) ---
R e I ndi cation (seq) ---
R e I ndi cation (seq) ---
|
RS R T R T Command Conpl ete (seq, success) ---
|

Request or
|
| --- Query (seq) ---------oomsosoosoome e >
|
| <o Command Conpl ete (seq, error) ---
|

4.9.2.3. The Unsolicited-Indication Pattern

The unsolicited-indication pattern is used when one peer needs to send unsolicited information to another
peer, or to broadcast information to multiple peers via atopic exchange. In this case, indication messages
are sent with the sequence number field set to zero.

Peer
|
RS R TR I ndi cation (seq = 0) ---
RS R TR I ndi cation (seq = 0) ---
RS R TR I ndi cation (seq = 0) ---
RS R TR I ndi cation (seq = 0) ---
|

4.9.3. Object Identifiers

Manageabl e objects are tagged with a unique 64-bit object identifier. The object identifier spaceis owned
and managed by the management broker. Objects managed by a single management broker shall have

66

Managing the AMQP
Messaging Broker

unique object identifiers. Objects managed by separate management brokers may have the same object

identifier.

If a management console is designed to manage multiple management brokers, it must use the broker

identifier as well as the object identifier to ensure global uniqueness.

62 48 47 24 23
BRI i T
| O] sequence | bank | obj ect
BRI i T
bit 63 - reserved, nust be zero

bits 63 .. 48 - broker boot sequence (32K)
bits 47 .. 24 bank (16M
bits 23 .. 0 - object (16M

* For persistent I Ds, boot-sequence is zero

 For non-persistent I Ds, boot sequenceis aconstant number which increments each time the management

broker is restarted.
+ Bank number:
e 0-reserved
1 - broker-persistent objects
e 2.4 - store-persistent objects

e >4 - transient objects

4.9.4. Establishing Communication Between Client and Agent

Communication is established between the management client and management agent using normal

AMQP procedures. The client creates a connection to the broker and then establishes a session with its

corresponding channel.

Two private queues are then declared (only one if method invocation is not needed). A management queue

isdeclared and bound to the gpid.management exchange. If the binding key is"mgmt.#", all management-
related messages sent to the exchange will be received by this client. A more specific binding key will
resultin amore restricted set of messages being received (see the section on Routing Key Structure below).

If methods are going to be invoked on managed objects, a second private queue must be declared so the

client can receive method replies. This queue is bound to the amg.direct exchange using a routing key

equal to the name of the queue.

When a client successfully binds to the gpid.management exchange, the management agent schedules a

schema broadcast to be sent to the exchange. The agent will publish, via the exchange, a description of

the schemafor all manageable objectsin its control.

dient

--- Queue.declare (private data queue) ------------------

[
|
| --- AMQP Connection and Session Setup -------------------
|
|

67

Br oker

Managing the AMQP
Messaging Broker

--- Bind queue to exchange 'qgpid. managenment' key 'mgnt.# -->

|
|
| --- Queue.declare (private nethod-reply queue) ------------- >
| --- Bind queue to exchange 'ang.direct’ -------------------- >
|
| --- Broker Request -----------ommmmm o >
R e Br oker Response ---
|
|
|
| <------- Managenment schenma vi a exchange ' gpi d. managenent’ ---
|

4.9.5. Broadcast of Configuration and Instrumentation Updates

The management agent will periodically publish updates to the configuration and instrumentation of
management objects under its control. Under normal circumstances, these updates are published only if
they have changed since the last time they were published. Configuration updates are only published if
configuration has changed and instrumentation updates are only published if instrumentation has changed.
The exception to this rule is that after a management client binds to the qpid.management exchange, all
configuration and instrumentation records are published as though they had changed whether or not they
actualy did.

dient Br oker
I I
| <------mmeeee - hj ect properties via 'mgnt.*.prop. # --- | |
| <------mmeeee - hj ect statistics via 'mgnt.*.stat.# --- | |
I ||
I ||
I ||
I ||
I | Vv
| <------mmeeee - hj ect properties via 'ngnt.*.prop.# --- |
| <------mmeeee - hj ect statistics via 'ngnt.*.stat.# --- |
I I

4.9.6. Invoking a Method on a Managed Object

When the management client wishes to invoke a method on a managed object, it sends a method request
message to the gpid.management exchange. The routing key contains the object class and method name
(refer to Routing Key Structure below). The method request must have a header entry (reply-to) that
contains the name of the method-reply queue so that the method response can be properly routed back
to the requestor.

The method request contains a sequence number that is copied to the method reply. This number is opaque
to the management agent and may be used by the management client to correlate the reply to the request.
The asynchronous nature of requests and replies allows any number of methods to be in-flight at atime.
Note that there is no guarantee that methods will be replied to in the order in which they were requested.

dient Br oker

| --- Method Request (to exchange 'qgpid. management') --------- >

68

Publ i s

Managing the AMQP
Messaging Broker

|
|
| <-------mee---- Met hod Reply (via exchange 'ang.direct') --
|

4.9.7. Messages for the Basic Scenario

The principals in a management exchange are the management client and the management agent. The

management agent is integrated into the QPID broker and the management client is a remote entity. A
management agent may be managed by zero or more management clients at any given time. Additionally,
amanagement client may manage multiple management agents at the same time.

For authentication and access control, management relies on the mechanisms supplied by the AMQP
protocol.

4.9.7.1. Basic Opcodes

Tableb6.7.

opcode

message

description

IBI

Broker Request

This message contains a
broker request, sent from the
management consol e to the broker
to initiate a management session.

Broker Response

This message contains a broker
response, sent from the broker
in response to a broker request

message.

Command Completion

This message is sent to indicate
the completion of arequest.

Class Query

Class query messages are used by
a management console to request
a list of schema classes that
are known by the management
broker.

Class Indication

Sent by the management broker,
aclassindication notifies the peer
of the existence of aschemaclass.

Schema Request

Schema request messages are
used to request the full schema
detailsfor aclass.

Schema Response

Schemaresponse message contain
afull description of the schemafor
aclass.

Heartbeat Indication

This message is published once
per publish-interval. It can be used
by aclient to positively determine
which objects did not change
during the interval (since updates
are not published for objects with
no changes).

69

Managing the AMQP
Messaging Broker

‘¢, 'd Content Indication This message contains a content
record. Content records contain
the values of all properties or
statistics in an object. Such
records are broadcast on a
periodic interval if 1) a change
has been made in the value of
one of the elements, or 2) if
a new management client has
bound a queue to the management
exchange.

‘G Get Query Sent by a management console,
a get query requests that
the management broker provide
content indications for all objects
that match the query criteria.

‘™' Method Request This message contains a method
request.

Method Response This message contains a method
result.

4.9.7.2. Broker Request Message

When a management client first establishes contact with the broker, it sends a Hello message to initiate

the exchange.
+--m o - +--m o - +--m o - +--m o - o m e e a - +
| "A | "M | "1 | 'B | 0
+--m o - +--m o - +--m o - +--m o - o m e e a - +

The Broker Reguest message has no payload.
4.9.7.3. Broker Response Message

When the broker receives a Broker Request message, it responds with a Broker Response message. This
message contains an identifier unique to the broker.

Fomm - - Fomm - - Fomm - - Fomm - - o m e e e e e e e e oo +

| "A | "M | "1 | "b" | 0

Fomm - - Fomm - - Fomm - - Fomm - - o m e e e e e e e e oo Fom e e e e e e e ma
| brokerld (uuid)

e e e e e m e e e e e e e mmm e m e mmmememmmmmmmmmmmememmmmmmmmmemememmmmmmmmememememm-mmm———---a

+- - - - +- - - - +- - - - +- - - - oo e e e e oo oo - +

| A M] seq

+- - - - +- - - - +- - - - +- - - - oo e e e e oo oo - +

| Conpletion Code |

oo e e e e oo oo - oo e e e e e e e e e e e e e o - - +

70

Managing the AMQP
Messaging Broker

| Conpletion Text

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo +

| "A "M | T] Q| seq

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo S +
| package nane (str8)

oo o e oo o +

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo +

| A "M | "1 | g | seq

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo S +
| package nane (str8) |
oo o e oo o +
| class nane (str8) |
oo o e oo o +
| schema hash (binl28) |
oo o e oo o +

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo +

| A | "M | "1 | 'S | seq

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo S +
| packageNanme (str8) |
oo o e oo o +
| cl assNane (str8) |
oo o e oo o +
| schema- hash (binl128) |
oo o e oo o +

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo +

| "A | "M | "1 | 's" | seq

+- - - - +- - - - +- - - - +- - - - oo e e e oo oo S +

| packageNanme (str8) |

oo o e oo o +

| cl assNane (str8) |

oo o e oo o +

| schema- hash (binl128) |

T —— T —— T —— T —— S +

| propCnt | statCnt | methodCnt | eventCnt |

T —— T —— T —— T —— oo e e e e e e oo oo
| propCnt property records

Fe mmm e mmmmmmmmmmmmmmmmm e mm o m ==

71

Managing the AMQP
Messaging Broker

| statCnt statistic records
| methodCnt met hod records

| eventCnt event records

Each property record isan AMQP map with thefollowing fields. Optional fieldsmay optionally be omitted
from the map.

Table6.8.

field name optional description

name no Name of the property

type no Type code for the property

access no Access code for the property

index no 1=index element, 0= not anindex
element

optional no 1 = optional element (may be not
present), 0 = mandatory (always
present)

unit yes Units for numeric values (i.e.
seconds, bytes, etc.)

min yes Minimum value for numerics

max yes Maximum value for numerics

maxlen yes Maximum length for strings

desc yes Description of the property

Each dtatistic record is an AMQP map with the following fields:

Table6.9.

field name optional description

name no Name of the statistic

type no Type code for the statistic

unit yes Units for numeric values (i.e
seconds, bytes, etc.)

desc yes Description of the statistic

method and event records contain a main map that describes the method or header followed by zero or
more maps describing arguments. The main map contains the following fields:

Table 6.10.

field name optional description

name no Name of the method or event

argCount no Number of argument records to
follow

72

Managing the AMQP

Messaging Broker
desc yes Description of the method or
event

Argument maps contain the following fields:

Table6.11.

field name method event optional description

name yes yes no Argument name

type yes yes no Type code for the
argument

dir yes no yes Direction code for
method arguments

unit yes yes yes Units for numeric
values (i.e. seconds,
bytes, etc.)

min yes no yes Minimum value for
numerics

max yes no yes Maximum value for
numerics

maxlen yes no yes Maximum length
for strings

desc yes yes yes Description of the
argument

default yes no yes Default value for
the argument

type codes are numerics with the following values:

Table6.12.

value type

1 uint8

2 uint16

3 uint32

4 uint64

6 str8

7 str16

8 absTime(uint64)
9 deltaTime(uint64)
10 objectReference(uint64)
11 boolean(uint8)

12 float

13 double

14 uuid

73

Managing the AMQP

Messaging Broker
15 map
16 int8
17 int16
18 int32
19 int64

access codes are numerics with the following values:

Table6.13.

value access

1 Read-Create access
2 Read-Write access
3 Read-Only access

direction codes are numerics with the following values:

Table6.14.

value direction

1 Input (from client to broker)
2 Output (from broker to client)
3 10 (bidirectional)

4.9.7.9. Heartbeat Indication

S S S S ot +
| 1} AI | 1} M | 1} 1I | 1} hl | O |
S S S S ot +
| timestanmp of current interval (datetine) |
o m e e e e e e e e e e e e e e e e e m e e e e +

4.9.7.10. Configuration and Instrumentation Content Messages

Content messages are published when changes are made to the values of properties or statistics or when
new management clients bind a queue to the management exchange.

+- - - - +- - - - +- - - - F o e e e e oo oo +

| "A | "M | "1 |'dglcli"| seq

+- - - - +- - - - +- - - - F o e e e e oo oo F - +
| packageNane (str8) |
o o e oo o +
| cl assNane (str8) |
o o e oo o +
| cl ass hash (binl28) |
+- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - S +
| timestanmp of current sanple (datetine)

+- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +

74

Managing the AMQP

Messaging Broker

| time object was created (datetine) |

+- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +

| time object was deleted (datetine) |

+- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +

| objectld (uint64) |

+- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +

| presence bitmasks (0 or nore uint8 fields) |

+- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - +- - - - o e e o - -
| config/inst values (in schema order)

de mmmmmmmmmmmmmmm e — - - - - -

All timestamps are uint64 val ues representing nanoseconds since the epoch (January 1, 1970). The objectld
isauint64 value that uniquely identifies this object instance.

If any of the properties in the object are defined as optional, there will be 1 or more "presence bitmask"
octets. There areasmany octetsasare needed to provide onebit per optional property. Thebitsare assigned
to the optional propertiesin schema order (first octet first, lowest order bit first).

For example: If there are two optional propertiesin the schemacalled "option1" and "option2" (defined in
that order), there will be one presence bitmask octet and the bits will be assigned as bit 0 controls optionl
and bit 1 controls option2.

If the bit for a particular optional property is set (1), the property will be encoded normally in the "values"
portion of the message. If the bit is clear (0), the property will be omitted from the list of encoded values
and will be considered "NULL" or "not present".

The element values are encoded by their type into the message in the order in which they appeared in the
schema message.

4.9.7.11. Get Query Message

A Get Request may be sent by the management console to cause a management agent to immediately send
content information for objects of aclass.

+-- - - +-- - - +-- - - +-- - - e +

| A "M | "1 | "G | seq

+-- - - +-- - - +-- - - +-- - - e RS +
| Get request field table |
o +

The content of a get request is afield table that specifies what objects are being requested. Most of the
fields are optional and are available for use in more extensive deployments.

Table6.15.
Field Key Mandatory Type Description
" class' yes short-string The name of the class of
objects being requested.
" package" no short-string The name of the

extension package the
class belongs to. |If
omitted, the package
defaults to "gpid" for

75

Managing the AMQP
Messaging Broker

access to objects in the
connected broker.

" agent" no uuid The management agent
that is the target of the
request. If omitted, agent
defaults to the connected
broker.

When the management agent receives a get request, it sends content messages describing the requested
objects. Once the last content message is sent, it then sends a Command Compl etion message with the

same sequence number supplied in the request to indicate to the requestor that there are no more messages
coming.

4.9.7.12. Method Request

M ethod request messages have the following structure. The sequence number is opaque to the management
agent. It is returned unchanged in the method reply so the calling client can correctly associate the reply
to the request. The objectld isthe unique ID of the object on which the method is to be executed.

+-- - - - +-- - - - +-- - - - +-- - - - o e e +
| A | "M | "1 | "M | seq |
+-- - - - +-- - - - +-- - - - +-- - - - o e e +
| objectld (uint64) |
o m o e e e e e e e e e e e e e e e e e e e mme e +
| nethodNane (str8) |
o m o e e e e e e e e e e e e e e e e e e e mme e Fom e e e e oo

| input and bidirectional argument values (in schema order)

4.9.7.13. Method Response

Method reply messages have the following structure. The sequence number is identical to that supplied
in the method request. The status code (and text) indicate whether or not the method was successful and
if not, what the error was. Output and bidirectional arguments are only included if the status code was
0 (STATUS_OK).

+-- - - - +-- - - - +-- - - - +-- - - - i +

| "A | "M | 1 | seq

+-- - - - +-- - - - +-- - - - +-- - - - i +

| status code |

i i +

| status text (str8) |
i i S

| output and bidirectional argunment values (in schema order)

o o e e e e e
status code values are:

Table 6.16.

value description

0 STATUS OK - successful completion

76

Managing the AMQP
Messaging Broker

1 STATUS_UNKNOWN_OBJECT - objectld not
found in the agent

2 STATUS_UNKNOWN_METHOD - method is not
known by the object type

3 STATUS_NOT_IMPLEMENTED - method is not
currently implemented

4.9.8. Messages for Extended Scenario

4.9.8.1. Extended Management Protocol

Qpid supports management extensions that allow the management broker to be a central point for the
management of multiple external entities with their own management schemas.

Br oker Renpt e Agent
I I
IR L Attach Request --- |
| --- Attach ResponsSe ---------mmmmm o > |
I I
R e Package Indication --- |
R e Package Indication --- |
I I
R e Class Indication --- |
R e Class Indication --- |
R e Class Indication --- |
R e Class Indication --- |
R e Class Indication --- |
I I
| --- Schema Request (class key) --------c-mmmmmmm i > |
R e Schema Response --- |
I I
| --- Schema Request (class key) --------c-mmmmmmm i > |
R e Schema Response --- |
I I
I I

4.9.8.2. Extended Opcodes

Table6.17.

opcode message description

P Package Query This message contains a schema
package query request, requesting
that the broker dump the list of
known packages

0 Package Indication This message contains a schema
package indication, identifying a
package known by the broker

A Agent Attach Request This message is sent by a remote
agent when it wishesto attachto a
management broker

7

Managing the AMQP
Messaging Broker

Agent Attach Response

The management broker sends
this response if an attaching
remote agent is permitted to join

Console Added Indication

This message is sent to all remote
agents by the management broker
when a new console binds to the

management exchange

4.9.8.3. Package Query

+- - - - +- - - - +- - - - +- - - - oo e e e e oo oo -
A 'M | "1] TP seq
+- - - - +- - - - +- - - - +- - - - oo e e e e oo oo -
----- T T T
AL M] seq
----- T T
package nane (str8)
----- T
A 'M | "1 A seq
----- T T e L
| abel (str8)
_______________________ Fe e e e e e e e e e e e e e e e e e e, ———. -
systemid (uuid)
_______________________ Fe e e e e e e e e e e e e e e e e e e, ———. -
requested objld bank
_______________________ +
----- T T T
A 'M | L tat | seq
----- T T T
assi gned broker bank
_______________________ +
assi gned objld bank
_______________________ +
----- T
A "M | "1 "X seq
----- T

78

Managing the AMQP
Messaging Broker

5. QMF Python Console Tutorial

» Section 5.1, “ Prerequisite - Install Qpid Messaging ”

» Section 5.2, “ Synchronous Console Operations ”
e ¢ Section5.2.1, “ Creating a QMF Console Session and Attaching to a Broker ”
e Section5.2.2, “ Accessing Managed Objects”
e o Section5.2.2.1,“ Viewing Properties and Statistics of an Object ”
e Section 5.2.2.2, “ Invoking Methods on an Object ”
» Section 5.3, “ Asynchronous Console Operations”
e ¢ Section 5.3.1, “ Creating a Console Class to Receive Asynchronous Data”
e Section5.3.2, “ Receiving Events”
e Section 5.3.3, “ Receiving Objects”
e Section 5.3.4, “ Asynchronous Method Calls and Method Timeouts ”

e Section 5.4, “ Discovering what Kinds of Objects are Available”

5.1. Prerequisite - Install Qpid Messaging

QMF uses AMQP Messaging (QPid) asits means of communication. To use QMF, Qpid messaging must
beinstalled somewhere in the network. Qpid can be downloaded as source from Apache, is packaged with
anumber of Linux distributions, and can be purchased from commercial vendorsthat use Qpid. Please see
http://gpid.apache.orgfor information as to where to get Qpid Messaging.

Qpid Messaging includes a message broker (qpidd) which typically runs as a daemon on a system. It also
includes client bindings in various programming languages. The Python-language client library includes
the QMF console libraries needed for this tutorial.

Please note that Qpid Messaging has two broker implementations. One is implemented in C++ and the
other in Java. At presstime, QMF is supported only by the C++ broker.

If the goal isto get the tutorial examples up and running as quickly as possible, all of the Qpid components
can be installed on a single system (even a laptop). For more realistic deployments, the broker can be
deployed on a server and the client/QMF librariesinstalled on other systems.

5.2. Synchronous Console Operations

The Python console API for QMF can be used in a synchronous style, an asynchronous style, or a
combination of both. Synchronous operations are conceptually simple and are well suited for user-
interactive tasks. All operations are performed in the context of a Python function call. If communication
over the message bus is required to complete an operation, the function call blocks and waits for the
expected result (or timeout failure) before returning control to the caller.

5.2.1. Creating a QMF Console Session and Attaching to a Broker

For the purposes of thistutorial, code examples will be shown asthey are entered in an interactive python
session.

79

http://qpid.apache.org

Managing the AMQP
Messaging Broker

$ python

Python 2.5.2 (r252:60911, Sep 30 2008, 15:41: 38)

[GCC 4.3.2 20080917 (Red Hat 4.3.2-4)] on linux2

Type "hel p", "copyright", "credits" or "license" for nore information.
>>>

We will begin by importing the required libraries. If the Python client is properly installed, these libraries
will be found normally by the Python interpreter.

>>> from gnf. consol e i nport Session

We must now create a Session object to manage this QM F consol e session.

>>> sess = Session()

If no arguments are supplied to the creation of Session, it defaults to synchronous-only operation. It also
defaults to user-management of connections. More on thisin amoment.

We will now establish a connection to the messaging broker. If the broker daemon is running on the local
host, smply use the following:

>>> broker = sess. addBroker ()

If the messaging broker is on aremote host, supply the URL to the broker in the addBroker function call.
Here's how to connect to alocal broker using the URL.

>>> broker = sess. addBroker ("angp://| ocal host")

The call to addBroker is synchronous and will return only after the connection has been successfully
established or hasfailed. If afailure occurs, addBroker will raise an exception that can be handled by the
console script.

>>> try:
br oker = sess. addBroker ("anqgp://I| ocal host: 1000")
except :
print "Connection Fail ed"

Connection Fail ed
>>>

This operation fails because there is no Qpid Messaging broker listening on port 1000 (the default port
for gpidd is 5672).

If preferred, the QMF session can manage the connection for you. In this case, addBroker returns
immediately and the session attempts to establish the connection in the background. Thiswill be covered
in detail in the section on asynchronous operations.

5.2.2. Accessing Managed Objects

The Python console API provides accessto remotely managed objectsviaaproxy model. The API givesthe
client an object that servesasaproxy representing the"real" object being managed on the agent application.
Operations performed on the proxy result in the same operations on the real object.

80

Managing the AMQP
Messaging Broker

The following examples assume prior knowledge of the kinds of objects that are actually available to be
managed. There is a section later in this tutorial that describes how to discover what is manageable on
the QMF bus.

Proxy abjects are obtained by calling the Session.getObjects function.

Toillustrate, we'll get alist of objects representing queues in the message broker itself.

>>> queues = sess. get bj ects(_class="queue", _package="org. apache. qpi d. broker")

gueues is an array of proxy objects representing real queues on the message broker. A proxy object can
be printed to display a description of the object.

>>> for g in queues:
print g

or g. apache. gqpi d. br oker: queue[0- 1537- 1- 0- 58] 0-0-1-0-1152921504606846979: repl y-1 oca
or g. apache. gqpi d. br oker: queue[0- 1537- 1- 0- 61] 0-0-1-0-1152921504606846979: t opi c-1 oca
>>>

5.2.2.1. Viewing Properties and Statistics of an Object

Let us now focus our attention on one of the queue objects.

>>> queue = queues|[0]

Theattributes of an object are partitioned into properties and statistics. Though the distinction is somewhat
arbitrary, properties tend to be fairly static and may also be large and statistics tend to change rapidly and
arerelatively small (counters, etc.).

There are two ways to view the properties of an object. An array of properties can be obtained using the
getProperties function:

>>> props = queue. get Properties()
>>> for prop in props:
print prop

(vhost Ref, 0-0-1-0-1152921504606846979)
(name, u'reply-Ilocal host. | ocal donmai n. 32004")
(durabl e, Fal se)

(aut obDel ete, True)

(excl usive, True)

(argunents, {})

>>>

The getProperties function returns an array of tuples. Each tuple consists of the property descriptor and
the property value.

A more convenient way to access properties is by using the attribute of the proxy object directly:

>>> queue. aut oDel et e

81

Managing the AMQP
Messaging Broker

True

>>> gueue. nanme

u' reply-1ocal host. | ocal domai n. 32004’
>>>

Statistics are accessed in the same way:

>>> stats = queue.getStatistics()
>>> for stat in stats:
print stat

(msgTot al Enqueues, 53)
(msgTot al Dequeues, 53)
(msgTxnEnqueues, 0)
(msgTxnDequeues, 0)
(msgPer si st Enqueues, 0)
(msgPer si st Dequeues, 0)
(rmsgDept h, 0)

(byt eDept h, 0)

(byt eTot al Enqueues, 19116)
(byt eTot al Dequeues, 19116)
(byt eTxnEnqueues, 0)

(byt eTxnDequeues, 0)

(byt ePer si st Enqueues, 0)
(byt ePer si st Dequeues, 0)
(consuner Count, 1)
(consumer Count Hi gh, 1)
(consuner Count Low, 1)

(bi ndi ngCount, 2)

(bi ndi ngCount Hi gh, 2)

(bi ndi ngCount Low, 2)
(unackedMessages, 0)
(unackedMessagesHi gh, 0)
(unackedMessagesLow, 0)
(messagelat encySanmpl es, 0)
(rmessagelLat encyM n, 0)
(rmessagelat encyMax, 0)
(rmessagelat encyAver age, 0)
>>>

or aternatively:

>>> queue. byt eTot al Enqueues
19116
>>>

The proxy objects do not automatically track changes that occur on the real objects. For example, if the
real queue enqueues more bytes, viewing the byteTotal Enqueues statistic will show the same number asit
did the first time. To get updated data on a proxy object, use the update function call:

>>> queue. updat e()
>>> queue. byt eTot al Enqueues

82

Managing the AMQP

Messaging Broker
19783
>>>
Be Advised
The update method was added after the M4 release of Qpid/Qmif. It may not be available in your
distribution.

5.2.2.2. Invoking Methods on an Object

Up to this point, we have used the QM F Console API to find managed objects and view their attributes,
aread-only activity. The next topic to illustrate is how to invoke a method on a managed object. Methods
allow consoles to control the managed agents by either triggering a one-time action or by changing the
values of attributes in an object.

First, we'll cover some background information about methods. A QMF object class (of which a QMF
object isan instance), may have zero or more methods. To obtain alist of methods available for an object,
use the getMethods function.

>>> net hodLi st = queue. get Met hods()

getMethods returns an array of method descriptors (of type gmf.console.SchemaMethod). To get a
summary of amethod, you can simply printit. The_repr_ function returnsastring that lookslikeafunction
prototype.

>>> print nethodLi st
[purge(request)]
>>>

For the purposes of illustration, we'll use a more interesting method available on the broker object which
represents the connected Qpid message broker.

>>> br = sess.get Obj ects(_class="broker", _package="org. apache. gpi d. broker")[0]
>>> mist = br.getMethods()
>>> for min mist:

print m

echo(sequence, body)

connect (host, port, durable, authMechani sm usernanme, password, transport)
gueueMoveMessages(srcQueue, dest Queue, qty)

>>>

We have just learned that the broker object has three methods. echo, connect, and queueMoveMessages.
WEe'll use the echo method to "ping" the broker.

>>> result = br.echo(1, "Message Body")

>>> print result

XK (0) - {'body': u Message Body', 'sequence': 1}
>>> print result.status

0

>>> print result.text

(014

83

Managing the AMQP
Messaging Broker

>>> print result.outArgs
{' body': u' Message Body', 'sequence': 1}
>>>

In the above example, we have invoked the echo method on the instance of the broker designated by the
proxy "br" with a sequence argument of 1 and a body argument of "Message Body". The result indicates
success and contains the output arguments (in this case copies of the input arguments).

Tobemore precise... Calling echo on the proxy causestheinput argumentsto be marshalled and sent to the
remote agent where the method is executed. Once the method execution completes, the output arguments
are marshalled and sent back to the console to be stored in the method result.

You are probably wondering how you are supposed to know what types the arguments are and which
arguments are input, which are output, or which are both. Thiswill be addressed later in the "Discovering
what Kinds of Objects are Available" section.

5.3. Asynchronous Console Operations

QMF is built on top of a middleware messaging layer (Qpid Messaging). Because of this, QMF can use
some communication patterns that are difficult to implement using network transports like UDP, TCP,
or SSL. One of these patterns is called the Publication and Subscription pattern (pub-sub for short). In
the pub-sub pattern, data sources publish information without a particular destination in mind. Data sinks
(destinations) subscribe using a set of criteria that describes what kind of data they are interested in
receiving. Data published by a source may be received by zero, one, or many subscribers.

QMF uses the pub-sub pattern to distribute events, object creation and deletion, and changes to properties
and statistics. A console application using the QMF Console API can receive these asynchronous and
unsolicited eventsand updates. Thisisuseful for applicationsthat store and analyze events and/or statistics.
It isalso useful for applications that react to certain events or conditions.

Note that console applications may always use the synchronous mechanisms.

5.3.1. Creating a Console Class to Receive Asynchronous Data

Asynchronous API operation occurs when the console application supplies a Console object to the session
manager. The Console object (which overrides the gmf.console.Consol e class) handles al asynchronously
arriving data. The Console class has the following methods. Any number of these methods may be
overridden by the console application. Any method that is not overridden defaults to anull handler which
takes no action when invoked.

Table 6.18. QM F Python Console Class M ethods

Method Arguments Invoked when...

brokerConnected broker a connection to a broker is
established

brokerDisconnected broker aconnection to a broker islost

newPackage name anew packageisseen onthe QMF
bus

newClass kind, classKey a new class (event or object) is
seen on the QMF bus

newAgent agent a new agent appears on the QMF
bus

Managing the AMQP

Messaging Broker

delAgent agent an agent disconnects from the
QMF bus

objectProps broker, object the properties of an object are
published

objectStats broker, object the datistics of an object are
published

event broker, event an event is published

heartbeat agent, timestamp a heartbeat is published by an
agent

brokerinfo broker information about a connected
broker is available to be queried

methodResponse broker, seq, response the result of an asynchronous
method call isreceived

Supplied with the API is a class called DebugConsole. This is a test Console instance that overrides all
of the methods such that arriving asynchronous data is printed to the screen. This can be used to see all
of the arriving asynchronous data.

5.3.2. Receiving Events

WEll start the example from the beginning to illustrate the reception and handling of events. In this
example, we will create a Console class that handles broker-connect, broker-disconnect, and event
messages. We will also allow the session manager to manage the broker connection for us.

Begin by importing the necessary classes:

>>> from gnf. consol e i nport Session, Console

Now, create a subclass of Console that handles the three message types:

>>> cl ass Event Consol e(Consol e):
def broker Connected(sel f, broker):
print "brokerConnected:", broker
def brokerDi sconnected(sel f, broker):
print "brokerDi sconnected:", broker
def event(self, broker, event):
print "event:", event

>>>
Make an instance of the new class:

>>> myConsol e = Event Consol e()

Create a Session class using the console instance. In addition, we shall request that the session manager do
the connection management for us. Notice also that we are requesting that the session manager not receive
objects or heartbeats. Since this example is concerned only with events, we can optimize the use of the
messaging bus by telling the session manager not to subscribe for object updates or heartbeats.

85

Managing the AMQP
Messaging Broker

>>> sess = Session(nmyConsol e, nmanageConnecti ons=True, rcvbjects=Fal se, rcvHeartbe
>>> broker = sess. addBroker ()
>>>

Once the broker is added, we will begin to receive asynchronous events (assuming there is a functioning
broker available to connect to).

br oker Connect ed: Broker connected at: | ocal host: 5672
event: Thu Jan 29 19:53:19 2009 | NFO org.apache. qpi d. broker: bi nd broker =l ocal host

5.3.3. Receiving Objects

To illustrate asynchronous handling of objects, a small console program is supplied. The entire program
is shown below for convenience. We will then go through it part-by-part to explain its design.

This console program receives object updates and displays a set of statistics as they change. It focuses
on broker queue objects.

I nport needed cl asses
from gnf.consol e inport Session, Console
fromtime i mport sl eep

Declare a dictionary to nmap object-ids to queue nanes
gueueMap = {}

Custom ze the Console class to receive object updates.
cl ass MyConsol e(Consol e):

Handl e property updates
def objectProps(self, broker, record):

Verify that we have received a queue object. Exit otherw se.
cl assKey = record. get d assKey()
i f classKey.getd assNanme() != "queue":

return

If this object has not been seen before, create a new mapping fromobjectID
oid = record. get Cbj ectld()
if oid not in queueMap:

gueueMap[oi d] = record. nane

Handl e statistic updates
def objectStats(self, broker, record):

lgnore updates for objects that are not in the map
oid = record. get Cbj ectld()
if oid not in queueMap:

return

Print the queue nanme and sone statistics
print "%: enqueues=% dequeues=%l" % (queueMap[oid], record. nmsgTot al Enqueues,

86

Managing the AMQP
Messaging Broker

if the delete-tine is non-zero, this object has been deleted. Renmove it fro
if record.getTinestanps()[2] > O:
gueueMap. pop(oi d)

Create an instance of the QVF session manager. Set userBindings to True to allo
this programto choose which objects classes it is interested in.
sess = Sessi on(M/Consol e(), manageConnecti ons=True, rcvEvents=Fal se, userBi ndi ngs=

Regi ster to receive updates for broker:queue objects.
sess. bi ndCl ass("org. apache. gpi d. br oker™, "queue")
br oker = sess. addBroker ()

Suspend processing while the asynchronous operations proceed.
try:
whil e True:
sl eep(1)
except:
pass

Di sconnect the broker before exiting.
sess. del Broker (br oker)

Before going through the code in detail, it isimportant to understand the differences between synchronous
object access and asynchronous object access. When objects are obtained synchronously (using the
getObjectsfunction), theresulting proxy containsall of the object's attributes, both propertiesand statistics.
When object data is published asynchronously, the properties and statistics are sent separately and only
when the session first connects or when the content changes.

The script wishes to print the queue name with the updated statistics, but the queue name is only present
with the properties. For this reason, the program needs to keep some state to correlate property updates
with their corresponding statistic updates. This can be done using the Objectld that uniquely identifies
the object.

If this object has not been seen before, create a new mapping from object|D
oid = record. get bj ectld()
if oid not in queueMap:

gueueMap[oi d] = record. nane

Theabove codefragment getsthe object ID from the proxy and checksto seeif itisinthemap (i.e. hasbeen
seen before). If it isnot inthe map, anew map entry isinserted mapping the object | D to the queue's name.

if the delete-tine is non-zero, this object has been deleted. Renove it fro
if record.getTinestanps()[2] > O:
gqueueMap. pop(oi d)

This code fragment detects the deletion of a managed object. After reporting the statistics, it checks the
timestamps of the proxy. getTimestamps returns alist of timestamps in the order:

* Current - The timestamp of the sending of this update.
» Create - Thetime of the object's creation

» Delete - Thetime of the object's deletion (or zero if not del eted)

87

Managing the AMQP
Messaging Broker

This code structure is useful for getting information about very-short-lived objects. It is possible that an
object will be created, used, and deleted within an update interval. In this case, the property update will
arrive first, followed by the statistic update. Both will indicate that the object has been deleted but a full
accounting of the object's existence and final state is reported.

Create an instance of the QVF session nmanager. Set userBindings to True to allo
this programto choose which objects classes it is interested in.
sess = Sessi on(My/Consol e(), manageConnections=True, rcvEvents=Fal se, userBi ndi ngs=

Regi ster to receive updates for broker:queue objects.
sess. bi ndC ass("org. apache. gpi d. br oker", "queue")

The above code isillustrative of the way a console application can tune its use of the QMF bus. Note that
rcvEventsis set to False. This prevents the reception of events. Note also the use of userBindings=True
and the call to sess.bindClass. If userBindings is set to False (its default), the session will receive object
updatesfor al classesof object. Inthe case above, the applicationisonly interested in broker:queue objects
and reduces its bus bandwidth usage by requesting updates to only that class. bindClass may be called as
many times as desired to add classes to the list of subscribed classes.

5.3.4. Asynchronous Method Calls and Method Timeouts

Method calls can aso be invoked asynchronously. This is useful if alarge number of calls needs to be
made in a short time because the console application will not need to wait for the complete round-trip
delay for each call.

Method calls are synchronous by default. They can be made asynchronous by adding the keyword-
argument _async=True to the method call.

In a synchronous method call, the return value is the method result. When a method is called
asynchronously, the return value is a sequence number that can be used to correlate the eventual result
to the request. This sequence number is passed as an argument to the methodResponse function in the
Console interface.

It isimportant to realize that the methodResponse function may be invoked before the asynchronous call
returns. Make sure your code is written to handle this possibility.

5.4. Discovering what Kinds of Objects are Available

88

Part IlIl. AMQP Messaging
Broker (Implemented in Java)

Qpid provides two AMQP messaging brokers:
* Implemented in C++ - high performance, low latency, and RDMA support.
» Implemented in Java - Fully IMS compliant, runs on any Java platform.

Both AMQP messaging brokers support clients in multiple languages, as long as the messaging client and the
messaging broker use the same version of AMQP. See ?7?? to see which messaging clients work with each broker.

This section contains information specific to the broker that isimplemented in Java.

Chapter 7. General User Guides

1. Java Broker Feature Guide

1.1. The Qpid pure Java broker currently supports the
following features:

* All features required by the Sun IMS 1.1 specification, fully tested

 Transaction support

* Persistence using a pluggable layer

* Pluggable security using SASL

» Management using IMX and an Eclipse Management Console application

* High performance header-based routing for messages

» Message Priorities

 Configurable logging and log archiving

» Threshold alerting

* ACLs

» Extensively tested on each release, including performance & reliability testing

» Automatic client failover using configurable connection properties

 Durable Queues/Subscriptions

1.1.1. Upcoming features:
* Flow To Disk
e IPWhitdist

e AMQP 0-10 Support (for interoperability)
2. Qpid Java FAQ
2.1. Purpose

Herearealist of commonly asked questions and answers. Click on the the bolded questions for the answer
to unfold. If you have any questions which are not on thislist, please email our gpid-user list.

2.1.1. What is Qpid ?

The java implementation of Qpid is a pure Java message broker that implements the AMQP protocol.
Essentialy, Qpid is arobust, performant middleware component that can handle your messaging traffic.

90

General User Guides

It currently supports the following features:

High performance header-based routing for messages

All features required by the IMS 1.1 specification. Qpid passes all tests in the Sun IMS compliance
test suite

Transaction support

Persistence using the high performance Berkeley DB Java Edition. The persistence layer is aso
pluggable should an aternative implementation be required. The BDB store is available from the
Section 3, “QpidComponents.org” page

Pluggable security using SASL. Any Java SASL provider can be used
Management using IMX and a custom management console built using Eclipse RCP

Naturally, interoperability with other clients including the Qpid .NET, Python, Ruby and C++
implementations

2.1.2. Why am | getting a ConfigurationException at broker
startup ?

2.1.2.1. InvocationTargetException

If you get a javalang.reflect.InvocationTargetException on startup, wrapped as ConfigurationException
like this:

Error configuring nessage broker: org.apache. conmons. confi gurati on. Confi gurati onEx
2008-09- 26 15:14:56,529 ERROR [mai n] server.Miin (Min.java: 206) - Error configuri
or g. apache. commons. confi gurati on. Confi gurati onException: java.lang.reflect.I|nvocat

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

or g. apache. gqpi d. server. security. aut h. dat abase. Confi gurati onFi |l ePri nci pal Dat abas
or g. apache. gqpi d. server. security. aut h. dat abase. Confi gurati onFi | ePri nci pal Dat abas
or g. apache. gqpi d. server. security. aut h. dat abase. Confi gurati onFi | ePri nci pal Dat abas
org. apache. gqpi d. server.regi stry. Configurati onFil eApplicationRegistry.initialise
org. apache. qpi d. server.regi stry. ApplicationRegistry.initialise(ApplicationRegis
org. apache. qpi d. server.regi stry. ApplicationRegistry.initialise(ApplicationRegis
or g. apache. gpi d. server. Mai n. start up(Mai n. j ava: 260)

or g. apache. gpi d. server. Mai n. execut e(Mai n. j ava: 196)

or g. apache. gpi d. server. Mai n. <i ni t >(Mai n. j ava: 96)

or g. apache. gqpi d. server. Mai n. nai n(Mai n. j ava: 454)

sun. refl ect. Nati veMet hodAccessor | npl . i nvokeO(Native Met hod)

sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . java: 39)
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessorlnmpl.ja
java.l ang. refl ect. Met hod. i nvoke(Met hod. j ava: 597)
comintellij.rt.execution.application.AppMi n. nai n(AppMai n. j ava: 90)

Caused by: java.lang.reflect.lnvocationTarget Exception

at
at
at
at
at

sun. refl ect. Nati veMet hodAccessor | npl . i nvokeO(Native Met hod)

sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . java: 39)
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessorlnmpl.ja
java.l ang. refl ect. Met hod. i nvoke(Met hod. j ava: 597)

or g. apache. gqpi d. server. security. aut h. dat abase. Confi gurati onFi | ePri nci pal Dat abas

.. then it means you have a missing password file.

91

General User Guides

Y ou need to create a password file for your deployment and update your config.xml to reflect the location
of the password file for your instance.

The config.xml can be alittle confusing in terms of element names and file names for passwords.

To do this, you need to edit the passwordDir element for the broker, which may have a comment to that
effect:

<passwor dDi r><!-- Change to the location --></passwordDir>

Thefile should be named passwd by default but if you want to you can change this by editing this element:

<val ue>${ passwor dDi r}/ passwd</ val ue>
2.1.2.2. Cannot locate configuration source null/virtualhosts.xml

If you get this message, wrapped inside a ConfigurationException then you've come across aknown issue,
see JIRA 777

The work around is to use a qualified path as the parameter value for your -c option, rather than (as you
migth be) starting the broker from your installed etc directory. Even going up one level and using a path
relative to your AEQPID_HOME directory would sort this e.g gpid-server -c ./etc/myconfig.xml

2.1.3. How do | run the Qpid broker ?

The broker comes with a script for unix/linux/cygwin called gpid-server, which can be found in the bin
directory of the installed package. This command can be executed without any paramters and will then
use the default configuration file provided on install.

For the Windows OS, please use qpid-server.bat.

There'sno need to set your classpath for QPID as the scripts take care of that by adding jar's with classpath
defining manifest files to your classpath.

For more information on running the broker please see our Chapter 3, Getting Started page.

2.1.4. How can | create a connection using a URL ?

Please see the ??? documentation.

2.1.5. How do | represent a JMS Destination string with QPID ?
2.1.5.1. Queues
A queue can be created in QPID using the following URL format.
direct://amg.direct/<Destination>/<Queue Name>
For example: direct://amqg.direct/<Destination>/simpleQueue
Queue names may consist of any mixture of digits, letters, and underscores.

The Section 1.3, “ Binding URL Format ” is described in more detail on it's own page.

92

General User Guides

2.1.5.2. Topics
A topic can be created in QPID using the following URL format.
topic://amq.topic/<Topic Subscription>/
The topic subscription may only contain the letters A-Z and a-z and digits 0-9.

The topic subscription is formed from a series of words that may only contain the letters A-Z and a-z and
digits 0-9. The words are delimited by dots. Each dot represents a new level.

For example: stocks.nyse.ibm

Wildcards can be used on subscription with the following meaning.
» match asingle level # match zero or more levels

For example: With two clients 1 - stocks.*.ibm 2 - stocks.#.ibm

Publishing stocks.nyse.ibm will be received by both clients but stocks.ibm and stocks.world.us.ibm will
only be received by client 2.

The topic currently does not support wild cards.

2.1.6. How do | connect to the broker using JNDI ?

2.1.7. I'm using Spring and Weblogic - can you help me with the
configuration for moving over to Qpid ?

Here is a donated Spring configuration file appContext.zip [http://qpid.apache.org/qpid-java-fag.datal/
appContext.zip] which shows the config for Qpid side by side with Weblogic. HtH !

2.1.8. How do | configure the logging level for Qpid ?

The system property

angj . | oggi ng. | evel

can be used to configure the logging level. For the broker, you can use the environment variable
AMQJ LOGGING_LEVEL which is picked up by the gpid-run script (called by gpid-server to start the
broker) at runtime.

For client code that you've written, simply pass in a system property to your command line to set it to
thelevel you'd likei.e.
- Dangj . | oggi ng. | evel =1 NFO

Thelog level for the broker defaultsto INFO if the env variableis not set, but you may find that your logdj
properties affect this. Setting the property noted above should address this.

93

http://qpid.apache.org/qpid-java-faq.data/appContext.zip
http://qpid.apache.org/qpid-java-faq.data/appContext.zip
http://qpid.apache.org/qpid-java-faq.data/appContext.zip

General User Guides

2.1.9. How can | configure my application to use Qpid client
logging?

If you don't already have alogging implementation in your classpath you should add sIf4-log4j12-1.4.0.jar
and log4j-1.2.12 jar.

2.1.10. How can | configure the broker ?

Thebroker configuration is contained in the <installed-dir>/etc/config.xml file. Y ou can copy and edit this
file and then specify your own configuration file as a parameter to the startup script using the -c flag i.e.
gpid-server -c <your_config_file's_path>

For more detailed information on configuration, please see ???

2.1.11. What ports does the broker use?

The broker defaults to use port 5672 at startup for AMQP traffic. If the management interface is enabled
it starts on port 8999 by default.

The IMX management interface actually requires 2 ports to operate, the second of which is indicated to
the client application during connection initiation to the main (default: 8999) port. Previoudly this second
port has been chosen at random during broker startup, however since Qpid 0.5 this has been fixed to aport
100 higher than the main port(ie Default:9099) in order to ease firewall navigation.

2.1.12. How can | change the port the broker uses at runtime ?

The broker defaults to use port 5672 at startup for AMQP traffic. The broker also uses port 8999 for the
JMX Management interface.

To change the AMQP traffic port use the -p flag at startup. To change the management port use -mi.e.
gpid-server -p <port_number_to_use> -m <port_number_to use>

Use this to get round any issues on your host server with port 5672/8999 being in use/unavailable.

For additional details on what ports the broker uses see Section 2.1.11, “ What ports does the broker use?
" FAQ entry. For more detailed information on configuration, please see ?7??

2.1.13. What command line options can | pass into the gpid-server
script ?

The following command line options are available:

The following options are available:

Table7.1. Command Line Options

Option Long Option Description
b bind Bind to the specified address
overriding any valuein the config
file
config Use the given configuration file
help Printslist of options

94

General User Guides

I logconfig Use the specified logdj.xml file
rather than that in the etc directory
m mport Specify port to listen on for

the IMX Management. Overrides
valuein config file

p port Specify port to listen on.
Overrides valuein config file

v version Print version information and exit

w logwatch Specify interval for checking for

logging config changes. Zero
means no checking

2.1.14. How do | authenticate with the broker ? What user id &
password should | use ?

Y ou should login as user guest with password guest

2.1.15. How do | create queues that will always be instantiated at
broker startup ?

Y ou can configure queueswhich will be created at broker startup by tailoring acopy of the virtualhosts.xml
file provided in the installed gpid-version/etc directory.

So, if you're using a queue called 'devqueue’ you can ensure that it is created at startup by using an entry
something like this:

<vi rtual host s>
<def aul t >t est </ def aul t >
<vi rtual host >
<nane>t est </ nane>
<test>
<queue>
<nanme>devqueue</ nane>
<devqueue>
<exchange>ang. di r ect </ exchange>
<maxi munfueueDept h>4235264</ maxi mumQueuebDept h> <!-- 4Mo -->
<mexi nunvessageSi ze>2117632</ maxi nunivessageSi ze> <l -- 2My -->
<maxi munvessageAge>600000</ maxi munivessageAge> <!-- 10 mins -->
</ devqueue>
</ queue>
</test>
</virtual host >
</virtual host s>

Note that the name (in thie example above the name is 'test’) element should match the virtualhost that
you're using to create connections to the broker. This is effectively a namespace used to prevent queue
name clashes etc. Y ou can also see that we've set the 'test' virtual host to be the default for any connections
which do not specify avirtua host (in the <default> tag).

You can amend the config.xml to point at a different virtualhosts.xml file by editing the <virtualhosts/
> element.

95

General User Guides

2.1.16.

2.1.17.

2.1.18.

2.1.19.

So, for example, you could tell the broker to use afilein your homedirectory by creating anew config.xml
file with the following entry:

<virtual hosts>/home/myhomedir/virtual hosts.xml </virtual hosts>

Y ou can then pass this amended config.xml into the broker at startup using the -c flag i.e. gpid-server -
¢ <path>/config.xml

How do | create queues at runtime?

Queues can be dynamically created at runtime by creating a consumer for them. After they have been
created and bound (which happens automatically when a IMS Consumer is created) a publisher can send
messages to them.

How do | tune the broker?

There are anumber of tuning options available, please see the Section 8, “ How to Tune M3 Java Broker
Performance” page for more information.

Where do undeliverable messages end up ?

At present, messageswith aninvalid routing key will be returned to the sender. If you register an exception
listener for your publisher (easiest to do by making your publisher implement the ExceptionListener
interface and coding the onException method) you'll see that you end up in onException in this case. Y ou
can expect to be catching a subclass of org.apache.qpid.AMQUndeliveredException.

Can | configure the name of the Qpid broker log file at

runtime ?

2.1.19.1.

2.1.19.2.

2.1.20.

If you smply start the Qpid broker using the default configuration, then the log file is written to
$QPID_WORK/log/gpid.log

This is not ideal if you want to run several instances from one install, or acrhive logs to a shared drive
from several hosts.

Tomakelifeeasier, there aretwo optional waysto configure the naming convention used for the broker log.
Setting a prefix or suffix
Users should set the following environment variables before running gpid-server:

QPID_LOG_PREFIX - will prefix the log file name with the specified value e.g. if you set this value to
be the name of your host (for example) it could look something like host123qpid.log

QPID_LOG_SUFFIX - will suffix the file name with the specified value e.g. if you set thisvalueto be the
name of your application (for example) if could look something like gpidMyApp.log

Including the PID

Setting either of these variables to the special value PID will introduce the process id of the java process
into the file name as a prefix or suffix as specified**

My client application appears to have hung?

The client code currently has various timeouts scattered throughout the code. These can cause your client
to appear like it has hung when it is actually waiting for the timeout ot compelete. One example is when

96

General User Guides

2.1.21.

2.1.22.

2.1.23.

the broker becomes non-responsive, the client code has a hard coded 2 minute timeout that it will wait
when closing a connection. These timeouts need to be consolidated and exposed. see 7?7

How do | contact the Qpid team ?

For general questions, please subscribe to the users@qpid.apache.org [mailto:users@qpid.apache.org]
mailing list.

For development questions, please subscribe to the dev@qpid.apache.org [mailto:dev@qpid.apache.org]
mailing list.

More details on these lists are available on our ??? page.

How can | change a user's password while the broker is up ?

You can do this via the ??2. To do this simply log in to the management console as an admin user
(you need to have created an admin account in the jmxremote.access file first) and then select the
'UserManagement' mbean. Select the user in the table and click the Set Password button. Alternatively,
update the password file and use the management console to reload the file with the button at the bottom
of the 'UserManagement’ view. In both cases, this will take effect when the user next logsini.e. will not
cause them to be disconnected if they are already connected.

For more information on the Management Consol e please see our Section 1.1.5, “ Qpid IM X Management
Console User Guide”

How do | know if there is a consumer for a message | am

going to send?

2.1.24.

Knowing that there is a consumer for a message is quite tricky. That said using the
gpid.jms.Session#createProducer with immediate and mandatory set to true will get you part of the way
there.

If you are publishing to awell known queue then immediate will let you know if thereisany consumer able
to pre-fetch that message at thetimeyou sendit. If not it will bereturned to you onyour connection listener.

If you are sending to a queue that the consumer creates then the mandatory flag will let you know if they
have not yet created that queue.

These flags will not be ableto tell you if the consuming application has received the message and is able
to processiit.

How do | use an InVM Broker for my own tests?

| would take alook at the testPassiveTTL in TimeToLiveTest.java[https://svn.apache.org/repos/asf/qpid/
trunk/qpi d/javalsystests/src/main/javalorg/apache/qpid/server/queue/ TimeToLiveTest.java]

The setUp and tearDown methods show how to correctly start up a broker for InVM testing. If you write
your tests using afile for the INDI you can then very easily swap between running your tests InVM and
against areal broker.

See our ??? on how to confgure it

Basically though you just need to set two System Properites:

97

mailto:users@qpid.apache.org
mailto:users@qpid.apache.org
mailto:dev@qpid.apache.org
mailto:dev@qpid.apache.org
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/systests/src/main/java/org/apache/qpid/server/queue/TimeToLiveTest.java
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/systests/src/main/java/org/apache/qpid/server/queue/TimeToLiveTest.java
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/systests/src/main/java/org/apache/qpid/server/queue/TimeToLiveTest.java

General User Guides

java.naming.factory.initial = org.apache.qpid.jndi.PropertiesFil el nitial ContextFactory
java.naming.provider.url = <your JNDI file>

and call getlnitial Context() in your code.

You will of course need to have the broker libraries on your class path for this to run.

2.1.25. How can linspect the contents of my MessageStore?
There are two possibilities here:

1) The management console can be used to interogate an active broker and browse the contents of a
gueue.See the ?7?? page for further details.

2) The ??? can be used to inspect the contents of a persistent message store. Note: this can currently only
be used when the broker is offline.

2.1.26. Why are my transient messages being so slow?

You should check that you aren't sending persistent messages, this is the default. If you want to send
transient messages you must explicitly set this option when instantiating your MessageProducer or on the
send() method.

2.1.27. Why does my producer fill up the broker with messages?

The Javabroker doesnot currently implement producer flow control. Publishesare currently asynchronous,
so there is no ability to rate limit this automatically. While this is something which will be addressed in
the future, it is currently up to applications to ensure that they do not publish faster than the messages are
being consumed for signifcant periods of time.

2.1.28. The broker keeps throwing an OutOfMemory exception?

The broker can no longer store any more messages in memory. Thisis particular evident if you are using
the MemoryMessageStore. To aleviate this issue you should ensure that your clients are consuming all
the messages from the broker.

You may also want to increase the memory alowance to the broker though this will only delay the
exception if you are publishing messages faster than you are consuming. See ??? for details of changing
the memory settings.

2.1.29. Why am | getting a broker side exception when | try to
publish to a queue or atopic ?

If you get a stack trace like this when you try to publish, then you may have typo'd the exchange typein
your queue or topic declaration. Open your virtualhosts.xml and check that the

<exchange>ang. di r ect </ exchange>

2009-01-12 15:26: 27,957 ERROR [pool -11-t hread-2] protocol. AMM naPr ot ocol Sessi on (
java. |l ang. Nul | Poi nt er Excepti on
at org.apache. qpi d. server.security.access. Princi pal Perm ssi ons. aut hori se(P
at org.apache. qpi d. server.security.access. plugi ns. Si npl eXM.. aut hori se(Si np

98

General User Guides

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
java.util.concurrent.
java.util.concurrent.

gpi d.
gpi d.
gpi d.
gpi d.
gpi d.
gpi d.
gpi d.
gpi d.
gpi d.
m na.
m na.
m na.

gpi d.
i na.
na.
na.
na.
na.

3.33333333

gpi d.

server.
server.

handl er. QueueBi ndHandl er . met hodRecei ved(QueueBi n
handl er. Ser ver Met hodDi spat cher | npl . di spat chQueue

fram ng. angp_8_0. QueueBi ndBodyl npl . execut e(QueueBi ndBod

server.
server.

st at e. AMQSt at eManager . net hodRecei ved(AMXSt at eMan
pr ot ocol . AMQM naPr ot ocol Sessi on. met hodFr anmeRecei

fram ng. AMQVet hodBodyl npl . handl e(AMQVet hodBodyl npl . j ava

server.
server.

server

comon

pr ot ocol . AMQM naPr ot ocol Sessi on. franmeRecei ved(AV
pr ot ocol . AMQM naPr ot ocol Sessi on. dat aBl ockRecei ve

. pr ot ocol . AMQPFast Pr ot ocol Handl er. nessageRecei ved
conmon.
conmon.

support. Abstract| oFilterChain$Tail Filter. message
support. Abstract | oFil terChain. cal | Next MessageRec

. support. AbstractloFilterChain.access$1200(Abstra
. conmon.

support. Abstract| oFi | t er Chai n$Ent ryl npl $1. messag

pool . Pool i ngFi | t er. messageRecei ved(Pool i ngFilter.java: 3

filter

comon

. Ref erenceCount i ngl oFi | t er. nessageRecei ved(Ref ere
conmon.
conmon.

support. Abstract | oFil terChain. cal | Next MessageRec
support. Abstract | oFi |l ter Chai n. access$1200(Abstra

. support. Abstract!| oFilterChai n$Entryl npl $1. nessag
filter.
filter.
. conmon
. conmon.
. conmon.
. pool . Event $Recei vedEvent . process(Event.j ava: 86)
. pool . Job. processAl | (Job. java: 110)

codec. support. Si npl ePr ot ocol Decoder Qut put . fl ush(
codec. Qpi dPr ot ocol CodecFi | t er. nessageRecei ved(Q

. support. Abstractl oFilterChain.call Next MessageRec

support. Abstract | oFi |l ter Chai n. access$1200(Abstra
support. Abstract| oFi | t er Chai n$Ent ryl npl $1. nessag

pool . Job. run(Job. j ava: 149)

Thr eadPool Execut or $Wr ker . runTask(Thr eadPool Execut
Thr eadPool Execut or $Wr ker . run(Thr eadPool Execut or . j

java.l ang. Thread. run(Thread. j ava: 619)

2.1.30. Why is there a lot of AnonymousloService threads

These threads are part of the thread pool used by Mina to process the socket. In the future we may
provide tuning guidelines but at this point we have seen no performance implications from the current
configuration. As the threads are part of a pool they should remain inactive until required.

2.1.31. "unable to certify the provided SSL certificate using the
current SSL trust store" when connecting the Management Console

to the broker.

Y ou have not configured the console's SSL trust store properly, see ??? for more details.

2.1.32. Client keeps throwing 'Server did not respond in atimely
fashion' [error code 408: Request Timeout].

Certain operations wait for a response from the Server. One such operations is commit. If the server does
not respond to the commit request within a set time a Request Timeout [error code: 408] exception is
thrown (Server did not respond in atimely fashion). Thisisto ensure that a server that has hung does not

cause the client process to be come unresponsive.

However, it ispossiblethat the server just needs along timeto processagive request. For example, sending
a large persistent message when using a persistent store will take some time to a) Transfer accross the
network and b) to be fully written to disk.

99

General User Guides

These situations require that the default timeout value be increased. A cilent ???
‘amgj.default_syncwrite timeout' can be set on the client to increase the wait time. The default in 0.5 is
30000 (30s).

2.1.33. Can ause TCP_KEEPALIVE or AMQP heartbeating to keep
my connection open?

3. Java Environment Variables

3.1. Setting Qpid Environment Variables
3.1.1. Qpid Deployment Path Variables

There are two main Qpid environment variables which are required to be set for Qpid deployments,
QPID_HOME and QPID_WORK.

QPID_HOME - Thisvariable is used to tell the Qpid broker where it'sinstalled homeis, which isin turn
used to find dependency JARs which Qpid uses.

QPID_WORK - This variable is used by Qpid when creating all 'writeable' directories that it uses. This
includes the log directory and the storage location for any BDB instances in use by your deployment (if
you're using persistencewith BDB). If you do not set thisvariable, then the broker will default (in the gpid-
server script) to use the current user's homedir as the root directory for creating the writeable locations
that it uses.

3.1.2. Setting Max Memory for the broker

If you simply start the Qpid broker, it will default to use a-Xmx setting of 1024M for the broker VM.
However, we would recommend that you make the maximum -Xmx heap size available, if possible, of
3Gb (for 32-bit platforms).

Y ou can control the memory setting for your broker by setting the QPID_JAVA_ MEM variable before
starting the broker e.g. -Xmx3668m . Enclose your value within quotes if you also specify a-Xmsvalue.
Thevaluein useisecho'd by the gpid-server script on startup.

4. Qpid Troubleshooting Guide

4.1. I'm getting a
java.lang.UnsupportedClassVersionError when | try to
start the broker. What does this mean ?

The QPID broker requires JDK 1.5 or later. If you're seeing this exception you don't have that version in
your path. Set JAVA_HOME to the correct version and ensure the bin directory is on your path.

java.lang.UnsupportedClassVersionError: org/apache/gpid/server/Main (Unsupported major.minor
version 49.0) at java.lang.ClasslL oader.defineClass(Ljava.lang.String;
[BIILjava.security.ProtectionDomain;)Ljava.lang.Class;(Unknown Source) at
java.security.SecureClassL oader.defineClass(Ljava.lang.String;

100

General User Guides

[BIILjava.security.CodeSource;)Ljava.lang.Class;(SecureClassL oader.java: 123) at

java.net. URL ClassL oader.defineClass(L java.lang.String; L sun.misc.Resource;)Ljava.lang.Class;

(URLClassL oader.java:251) at java.net. URL ClassL oader.access
$100(Ljava.net. URL ClassL oader; L java.lang.String;L sun.misc.Resource;)Ljava.lang.Class;

(URLClassL oader.java:55) at javanet. URL ClassL oader$l.run()Ljava.lang.Object;

(URLClassL oader.java:194) at
jrockit.vm.AccessController.do_privileged exc(Ljava.security.PrivilegedExceptionAction;Ljava.security.AccessControl C
(Unknown Source) at

jrockit.vm.AccessController.doPrivileged(Ljava.security.PrivilegedExceptionAction;Ljava.security .AccessControl Context
(Unknown Source) a java.net.URLClassLoader.findClass(Ljava.lang.String;)Ljava.lang.Class;
(URLClassLoader.java:187) at javalang.ClassLoader.loadClass(Ljava.lang.String;Z)Ljava.lang.Class;

(Unknown Source) at sun.misc.Launcher

$AppClassL oader.loadClass(Ljava.lang.String;Z)Ljava.lang.Class; (L auncher.java: 274) at
java.lang.ClasslLoader.loadClass(Ljava.lang.String;)Ljava.lang.Class; (Unknown Source) at
java.lang.ClasslL oader.loadClassFromNative(l1)Ljava.lang.Class, (Unknown Source)

4.2. I'm having a problem binding to the required
host:port at broker startup ?

This error probably indicates that another processis using the port you the broker is trying to listen on. If
you haven't amended the default configuration this will be 5672. To check what process is using the port
you can use 'netstat -an |grep 5672'.

To changethe port your broker uses, either edit the config.xml you are using. Y ou can specify an alternative
config.xml from the one provided in /etc by using the -c flag i.e. gpid-server -c <my config file path>.

Y ou can also amend the port more simply using the -p option to gpid-server i.e. gpid-server -p <my port
number'

4.3. I'm having problems with my classpath. How can |
ensure that my classpath is ok ?

When you are running the broker the classpath is taken care of for you, via the manifest entries in the
launch jars that the gpid-server configuration file adds to the classpath.

However, if you are running your own client code and experiencing classspath errors you need to ensure
that the client-launch.jar from the installed Qpid lib directory is on your classpath. The manifest for this
jar includes the common-launch.jar, and thus al the code you need to run a client application.

4.4. | can't get the broker to start. How can | diagnose
the problem ?

Firstly have alook at the broker log file - either on stdout or in $QPID_WORK/log/qgpid.log or in SHOME/
log/gpid.log if you haven't set QPID_WORK.

Y ou should see the problem logged in here vialog4j and a stack trace. Have alook at the other entries on
this page for common problems. If the log fileincludes aline like:

"2006-10-13 09:58:14,672 INFO [main] server.Main (Main.java:343) - Qpid.AM QP listening on non-SSL
address 0.0.0.0/0.0.0.0:5672"

... then you know the broker started up. If not, then it didn't.

101

General User Guides

4.5. When | try to send messages to a queue I'm getting
a error as the queue does not exist. What can | do ?

In Qpid queues need a consumer before they really exist, unless you have used the virtualhosts.xml file
to specify queues which should always be created at broker startup. If you don't want to use this config,
then simply ensure that you consume first from queue before staring to publish to it. See the entry on our

??? for more details of using the virtualhosts.xml route.

102

Chapter 8. How Tos
1. Add New Users

The Qpid Java Broker has a single reference source (???) that defines all the usersin the system.

To add a new user to the broker the password file must be updated. The details about adding entries and
when these updates take effect are dependent on the file format each of which are described below.

1.1. Available Password file formats

There are currently two different file formats available for use depending on the Principal Database that is
desired. In all cases the clients need not be aware of the type of Principal Database in use they only need
support the SASL mechanisms they provide.

* Section1.1.1,” Pain”

* Section 1.1.3, “ Base64MD5 Password File Format ”

1.1.1. Plain

The plain file has the following format:

Plain password authentication file.
default name : passwd

Format <user name>: <passwor d>

#e. g.

martin: password

As the contents of the file are plain text and the password is taken to be everything to the right of the
"'(colon). The password, therefore, cannot contain a':' colon, but this can be used to delimit the password.

Lines starting with a'# are treated as comments.

1.1.2. Where is the password file for my broker ?

The location of the password file in use for your broker is as configured in your config.xml file.

<princi pal - dat abases>
<pri nci pal - dat abase>
<nane>passwor df i | e</ nane>
<cl ass>or g. apache. gpi d. server. security. aut h. dat abase. Pl ai nPassword
<attributes>
<attri bute>
<nane>passwor dFi | e</ nane>
<val ue>${ conf }/ passwd</ val ue>
</attribute>
</attributes>
</ princi pal - dat abase>
</ princi pal - dat abases>

103

How Tos

So in the example config.xml file this password file lives in the directory specified as the conf directory
(at the top of your config.xml file).

If you wish to use Base64 encoding for your password file, then in the <class> element above you should
specify org.apache.qpid.server.security.auth.database. Base64M D5PasswordFil ePrinci pal Database

The default is:;

<conf >${prefi x}/etc</conf>

1.1.3. Base64MD5 Password File Format

Thisformat can be used to ensure that SAs cannot read the plain text password values from your password
file on disk.

The Base64M D5 file uses the following format:

Base64MD5 password authentication file

default name : gpid. passwd

Format <usernane>: <Base64 Encoded MD5 hash of the users password>
#e. g.

mar ti n: X03MOLgnZdYdgyf eul LPn(Q==

As with the Plain format the line is delimited by a':'(colon). The password field contains the MD5 Hash
of the users password encoded in Base64.

Thisfileisread on broker start-up and is not re-read.

1.1.4. How can | update a Base64MD5 password file ?

To update the file there are two options:

1. Edit thefile by hand using the gpid-passwd tool that will generatethe required lines. The output fromthe
tool isthe text that needsto be copied in to your active password file. Thistool islocated in the broker
bin directory. Eventualy it is planned for this tool to emulate the functionality of ??? for gpid passwd
files. NOTE: For the changes to be seen by the broker you must either restart the broker or reload the
data with the management tools (see Section 1.1.5, * Qpid IMX Management Console User Guide ")

2. Usethe management toolsto create anew user. The changeswill be made by the broker to the password
file and the new user will be immediately available to the system (see Section 1.1.5, “ Qpid IMX
Management Console User Guide).

1.2. Dynamic changes to password files.

The Plain password file and the Base64M D5 format file are both only read once on start up.

To make changes dynamically there aretwo options, both require administrator access viathe M anagement
Console (see Section 1.1.5, “ Qpid IMX Management Console User Guide ")

1. You can replace the file and use the console to reload its contents.

2. The management console provides an interface to create, delete and amend the users. These changes
are written back to the active password file.

104

How Tos

1.3. How password files and PrincipalDatabases relate
to authentication mechanisms

For each type of password file a PrincipalDatabase exists that parses the contents. These
Principal Databases load various SASL mechanism based on their supportability. e.g. the Base64MD5 file
format can't support Plain authentication asthe plain password is not available. Any client connecting need
only be concerned about the SASL modul e they support and not the type of Principal Database. So | client
that understands CRAM-MD5 will work correctly with a Plain and Base64M D5 Principal Database.

Table 8.1. File Format and Principal Database

FileFormat/Principal Database SASL
Plain AMQPLAIN PLAIN CRAM-MD5
Base64MD5 CRAM-MD5 CRAM-MD5-HASHED

For details of SASL support see 7??

2. Configure ACLs

2.1. Configure ACLs
2.1.1. Specification

« 77?

e Section9,“ ACL"”
2.1.2. C++ Broker

The C++ broker supports Section 9, “ ACL ” of the ACLs

2.1.3. Java Broker

« 7

» Support for Version 2 specification isin progress.

3. Configure Java Qpid to use a SSL
connection.

3.1. Using SSL connection with Qpid Java.

This section will show how to use SSL to enable secure connections between a Java client and broker.

3.2. Setup
3.2.1. Broker Setup

Thebroker configuration file (config.xml) needsto be updated to include the SSL keystorelocation details.

105

How Tos

<l-- Additions required to Connector Section -->

<ssl >
<enabl ed>t r ue</ enabl ed>
<ssl Onl y>true</ssl Onl y>
<keyst or ePat h>/ pat h/ t o/ keyst or e. ks</ keyst or ePat h>
<keyst or ePasswor d>keyst or epass</ keyst or ePasswor d>
</ssl >

The sdOnly option isincluded here for completeness however this will disable the unencrypted port and
leave only the SSL port listening for connections.

3.2.2. Client Setup

The best placeto start looking is class SS_Configuration thisis provided to the connection during creation
however there is currently no example that demonstrates its use.

3.3. Performing the connection.

4. Configure Log4j CompositeRolling
Appender

4.1. How to configure the CompositeRolling log4j
Appender

There are several sections of our default log4j file that will need your attention if you wish to fully use
this Appender.

1. Enable the Appender

The default log4j.xml file uses the FileAppender, swap this for the ArchivingFileAppender asfollows:

<l-- Log all info events to file -->
<r oot >
<priority value="info"/>

<appender-ref ref="ArchivingFi| eAppender"/>
</ root >

2. Configure the Appender

The Appender has a number of parameters that can be adjusted depending on what you are trying to
achieve. For clarity lets take a quick look at the complete default appender:

<appender name="Archi vi ngFi | eAppender" cl ass="org. apache. | og4j . Qi dConposi t eRo
<l-- Ensure that |ogs allways have the dateFormt set-->
<param nane="Stati cLogFi | eName" val ue="fal se"/>
<param nanme="Fil e" val ue="${QPI D WORK}/ | og/ ${| ogpr ef i x} qpi d${| ogsuf fi x}.
<par am nanme="Append" val ue="fal se"/>
<l-- Change the direction so newer files have bigger nunbers -->

106

How Tos

<I-- Solog.1is witten then log.2 etc This prevents a lot of file rena
<par am nane="Count Di rection" val ue="1"/>

<l-- Use default 10MB -->

<! --param nane="MaxFi | eSi ze" val ue="100000"/-->

<par am nane="Dat ePattern” val ue="'."'yyyy- VWM dd- HH mmi'/ >

<l-- Unlimted nunber of backups -->

<par am nane="MaxSi zeRol | Backups" val ue="-1"/>

<l-- Conpress(gzip) the backup files-->

<par am nane=" Conpr essBackupFi | es" val ue="true"/>

<l-- Conpress the backup files using a second thread -->
<par am nane=" Conpr essAsync" val ue="true"/>

<l-- Start at zero nunbered files-->

<par am nane="Zer oBased" val ue="true"/>

<l-- Backup Location -->

<par am name="backupFi | esToPat h" val ue="${ QPl D_WORK} / backup/ | og"/ >

<l ayout cl ass="org. apache.| og4j. PatternLayout">
<par am nane="Conversi onPattern” value="%l %5p [%] %{2} (%:%A) -
</l ayout >
</ appender >

The appender configuration has three groups of parameter configuration.

Thefirst group isfor configuration of the file name. The default isto write alog fileto QPID_WORK/
log/gpid.log (Remembering you can use the logprefix and logsuffix values to modify the file name,
see Property Config).

<l-- Ensure that |ogs always have the dateFormat set-->

<par am nane="St ati cLogFi | eNane" val ue="fal se"/>

<param nane="Fi |l e" val ue="${QPI D WORK}/ | og/ ${| ogpr ef i x} gpi d${| ogsuffi x}.
<par am nane=" Append" val ue="fal se"/>

The second section allows the specification of aMaximum File Size and a DatePattern that will be used
to move on to the next file.

When MaxFileSize is reached a new log file will be created The DataPattern is used to decide when
to create a new log file, so here a new file will be created for every minute and every 10Meg of data.
So if 15MB of datais made every minute then there will be two log files created each minute. One at
the start of the minute and a second when the file hit 10MB. When the next minute arrives a new file
will be made even though it only has 5SMB of content. For a production system it would be expected
to be changed to something like 'yyyy-MM-dd' which would make a new log file each day and keep
the files to a max of 10MB.

The final MaxSizeRollBackups allows you to limit the amount of disk you are using by only keeping
the last n backups.

<l-- Change the direction so newer files have bigger nunbers -->

<l-- Solog.1is witten then log.2 etc This prevents a lot of file rena
<par am nane="Count Di rection" val ue="1"/>

<l-- Use default 10MB -->

<! --param nane="MaxFi | eSi ze" val ue="100000"/-->

<par am nane="Dat ePattern” val ue="'."'yyyy- VW dd- HH mmi'/ >

<l-- Unlimted nunber of backups -->

107

How Tos

<par am nane="MaxSi zeRol | Backups" val ue="-1"/>

Thefina section allows the old log files to be compressed and copied to a new location.

<l-- Conpress(gzip) the backup files-->
<par am nane=" Conpr essBackupFi | es" val ue="true"/>

<l-- Conpress the backup files using a second thread -->
<par am nane="Conpr essAsync" val ue="true"/>

<l-- Start at zero nunbered files-->

<par am nane="Zer oBased" val ue="true"/>

<!-- Backup Location -->

<par am nane="backupFi | esToPat h" val ue="${ QPI D WORK}/ backup/ | og"/ >

5. Configure the Broker via config.xml

5.1. Broker config.xml Overview

The broker config.xml file which is shipped in the etc directory of any Qpid binary distribution details
various options and configuration for the Java Qpid broker implementation.

In tandem with the virtualhosts.xml file, the config.xml file allows you to control much of the deployment
detail for your Qpid broker in aflexible fashion.

Note that you can pass the config.xml you wish to use for your broker instance to the broker using the -c
command line option. In turn, you can specify the paths for the broker password file and virtual hosts.xml
filesin your config.xml for simplicity.

For more information about command line configuration options please see ?7??.

5.2. Qpid Version

The config format has changed between versions here you can find the configuration details on a per
version basis.

6. Configure the Virtual Hosts via
virtualhosts.xmli

6.1. virtualhosts.xml Overview

This configuration file contains details of al queues and topics, and associated properties, to be created
on broker startup. These details are configured on a per virtual host basis.

Note that if you do not add details of a queue or topic you intend to use to thisfile, you must first create
aconsumer on a queue/topic before you can publish to it using Qpid.

Thus most application deployments need a virtualhosts.xml file with at least some minimal detail.

108

How Tos

6.1.1. XML Format with Comments

Thevirtualhosts.xml which currently shipsas part of the Qpid distributionisreally targeted at devel opment
use, and supports various artifacts commonly used by the Qpid development team.

As aresult, it is reasonably complex. In the example XML below, | have tried to simplify one example
virtual host setup which is possibly more useful for new users of Qpid or development teams looking to
simply make use of the Qpid broker in their deployment.

| have also added some inline comments on each section, which should give some extra information on
the purpose of the various elements.

<vi rtual host s>

<I-- Sets the default virtual host for connections which do not specify a vh -
<def aul t >l ocal host </ def aul t >
<l-- Define a virtual host and all it's config -->

<vi rtual host >
<nane>| ocal host </ nane>
<l ocal host >
<l-- Define the types of additional AMJQP exchange available for this v
<I-- Always get anyg.direct (for queues) and ang.topic (for topics) by
<exchanges>
<I-- Exanple of declaring an additional exchanges type for devel op
<exchange>
<type>direct</type>
<nane>t est . di r ect </ nanme>
<dur abl e>t r ue</ dur abl e>
</ exchange>
</ exchanges>

<l-- Define the set of queues to be created at broker startup -->
<queues>
<l-- The properties configured here will be applied as defaults to
<I-- queues subsequently defined unless explicitly overridden -->
<exchange>ang. di r ect </ exchange>
<l-- Set threshold values for queue nmonitor alerting to log -->

<maxi munfueueDept h>4235264</ maxi mumQueueDept h> <!-- 4Mo -->
<maxi munmvessageSi ze>2117632</ maxi numvessageSi ze> <! -- 2My -->

<maxi munvessageAge>600000</ maxi munmvessageAge> <I-- 10 mins -->
<l-- Define a queue with all default settings -->
<queue>

<name>pi ng</ nane>
</ queue>
<l-- Exanple definitions of queues with overriden settings -->
<queue>

<nane>t est - queue</ nane>
<t est - queue>
<exchange>t est . di r ect </ exchange>
<dur abl e>t r ue</ dur abl e>
</test-queue>
</ queue>
<queue>

109

How Tos

<nane>t est - pi ng</ nane>
<t est - pi ng>
<exchange>t est . di r ect </ exchange>
</test-ping>
</ queue>
</ queues>
</l ocal host >
</ virtual host >
</ vi rtual host s>

6.1.2. Using your own virtualhosts.xml

Note that the config.xml file shipped as an example (or developer default) in the Qpid distribution contains
an element which defines the path to the virtualhosts.xml.

When using your own virtualhosts.xml you must edit this path to point at the location of your file.
7. Debug using log4j
7.1. Debugging with log4j configurations

Unfortunately setting of logging in the Java Broker is not simply a matter of setting one of
WARN,INFO,DEBUG. At some point in the future we may have more BAU logging that falls in to that
category but more likely isthat we will have a varioius config files that can be swapped in (dynamically)
to understand what is going on.

This page will be host to a variety of useful configuration setups that will allow a user or developer to
extract only the information they are interested in logging. Each section will be targeted at logging in a
particular areaand will include afull log4j file that can be used. In addition the logging category elements
will be presented and discussed so that the user can create their own file.

Currently the configuration that is available has not been fully documented and as such there are gaps
in what is desired and what is available. Some times this is due to the desire to reduce the overhead in
message processing, but sometimes it is simply an oversight. Hopefully in future releases the latter will
be addressed but care needs to be taken when adding logging to the 'Message Flow' path as this will have
performance implications.

7.1.1. Logging Connection State *Deprecated*

deprecation notice Version 0.6 of the Java broker includes ??? functionality which improves upon these
messages and as such enabling status logging would be more beneficial. The configuration file has been
left here for assistence with broker versions prior to 0.6.

The goals of this configuration are to record:
* New Connections

* New Consumers

Identify slow consumers

Closing of Consumers

Closing of Connections

110

How Tos

An additional goal of this configuration isto minimise any impact to the 'message flow' path. So it should
not adversely affect production systems.

<l og4j: configuration xmns:|og4j="http://]jakarta.apache.org/l og4j/">
<appender nane="Fil eAppender" cl ass="org. apache. | og4j.Fi | eAppender">
<param nane="Fi | e" val ue="${ QPI D WORK}/ | og/ ${| ogpr efi x} gpi d${| ogsuffi x}.lo
<par am nane=" Append" val ue="fal se"/>

<l ayout cl ass="org. apache.| og4j. PatternLayout">
<par am nane="Conversi onPattern” value="% %5p [%] %{2} (%:%) - %
</l ayout >

</ appender >
<appender nane="STDOUT" cl ass="org. apache. | og4j . Consol eAppender" >

<l ayout cl ass="org. apache.| og4j. PatternLayout">
<par am nane="Conversi onPattern” value="% %5p [%] %2} (%:%) - %
</l ayout >
</ appender >

<cat egory nane="(Qpi d. Broker">

<priority val ue="debug"/>
</ cat egory>

<l-- Provide warnings to standard out put -->
<cat egory nane="org. apache. qpi d">

<priority value="warn"/>
</ cat egory>

<I-- Connection Logging -->

<l-- Log details of client starting connection -->

<cat egory nane="org. apache. qpi d. server. handl er. Connecti onSt art CkMet hodHand!| er "
<priority value="info"/>

</ cat egory>

<l-- Log details of client closing connection -->

<cat egory nane="or g. apache. qpi d. server. handl er. Connecti onCl oseMet hodHandlI er " >
<priority value="info"/>

</ cat egory>

<l-- Log details of client responding to be asked to cl osing connection -->

<cat egory nane="or g. apache. qpi d. server. handl er. Connecti onCl oseCkMet hodHand!| er "
<priority value="info"/>
</ cat egory>

<l'-- Consuner Logging -->
<l-- Provide details of Consumers connecting-->

111

How Tos

<cat egory nane="org. apache. qpi d. server. handl er. Basi cConsuneMet hodHandl| er" >
<priority val ue="debug"/>
</ cat egory>

<l-- Provide details of Consumers disconnecting, if the call it-->

<cat egory nane="org. apache. qpi d. server. handl er. Basi cCancel Met hodHandl er " >
<priority val ue="debug"/>

</ cat egory>

<I-- Provide details of when a channel closes to attenpt to match to the Consu

<cat egory nane="org. apache. qpi d. server. handl er. Channel C oseHandl er" >
<priority value="info"/>

</ cat egory>

<l-- Provide details of Consumers starting to consune-->

<cat egory nane="org. apache. gqpi d. server. handl er. Channel Fl owHandl er " >
<priority val ue="debug"/>

</ cat egory>

<l-- Provide details of what consumers are going to be consum ng-->

<cat egory nane="or g. apache. qpi d. server. handl er. QueueBi ndHandl er" >
<priority value="info"/>

</ cat egory>

<I-- No way of determining if publish nessage is returned, client |og should s

<r oot >
<priority val ue="debug"/>
<appender-ref ref="STDOUT"/ >
<appender-ref ref="Fil eAppender"/>
</root >

</l og4j :configuration>

7.1.2. Debugging My Application
Thisisthe most often asked for set of configuration. The goals of this configuration are to record:
* New Connections
* New Consumers
* Message Publications
* Message Consumption
¢ |dentify slow consumers
» Closing of Consumers
» Closing of Connections

NOTE: This configuration enables message logging on the 'message flow' path so should only be used
were message volume is low. Every message that is sent to the broker will generate at least four logging
statements

112

How Tos

<l og4j: configuration xmns:|og4j="http://]jakarta.apache.org/l og4j/">
<appender nane="Fil eAppender" cl ass="org. apache. | og4j.Fi | eAppender">
<param nane="Fi | e" val ue="${ QPI D WORK} /| og/ ${| ogpr efi x} gpi d${| ogsuffix}.lo
<par am nane=" Append" val ue="fal se"/>

<l ayout cl ass="org. apache.| og4j. PatternLayout">
<par am nane="Conversi onPattern” value="% %5p [%] %2} (%:%) - %
</l ayout >

</ appender >
<appender nane="STDOUT" cl ass="org. apache. | og4j. Consol eAppender" >

<l ayout cl ass="org. apache.| og4j. PatternLayout">
<par am nane="Conversi onPattern” value="%l %5p [%] %2} (%:%) - %
</l ayout >
</ appender >

<cat egory nane="(Qpi d. Broker" >

<priority val ue="debug"/>
</ cat egory>

<l-- Provide warnings to standard out put -->
<cat egory nane="org. apache. qpi d">

<priority value="warn"/>
</ cat egory>

<I-- Connection Logging -->

<l-- Log details of client starting connection -->

<cat egory nane="org. apache. qpi d. server. handl er. Connecti onSt art CkMet hodHand!| er "
<priority value="info"/>

</ cat egory>

<l-- Log details of client closing connection -->

<cat egory nane="or g. apache. qpi d. server. handl er. Connecti onCl oseMet hodHandlI er " >
<priority value="info"/>

</ cat egory>

<l-- Log details of client responding to be asked to closing connection -->

<cat egory nane="or g. apache. qpi d. server. handl er. Connecti onCl oseCkMet hodHand!| er "
<priority value="info"/>
</ cat egory>

<l'-- Consuner Logging -->

<l-- Provide details of Consumers connecting-->

<cat egory nane="org. apache. qpi d. server. handl er. Basi cConsuneMet hodHandl| er" >
<priority val ue="debug"/>

</ cat egory>

<l-- Provide details of Consumers disconnecting, if the call it-->

113

How Tos

<cat egory nane="org. apache. qpi d. server. handl er. Basi cCancel Met hodHandl er " >
<priority val ue="debug"/>
</ cat egory>
<I-- Provide details of when a channel closes to attenpt to match to the Consu
<cat egory nane="org. apache. qpi d. server. handl er. Channel C oseHandl er" >
<priority value="info"/>
</ cat egory>

<l-- Provide details of Consumers starting to consune-->

<cat egory nane="org. apache. qpi d. server. handl er. Channel Fl owHandl er " >
<priority val ue="debug"/>

</ cat egory>

<l-- Provide details of what consumers are going to be consum ng-->

<cat egory nane="or g. apache. qpi d. server. handl er. QueueBi ndHandl er" >
<priority value="info"/>

</ cat egory>

<I-- No way of determining if publish nessage is returned, client |og should s

<I'-- WARNI NG DO NOT ENABLE THI S I N PRODUCTI ON - ->

<l-- WII generate mnimumone | og statenments per published nmessage -->

<l-- WII generate will log receiving of all body franme, count will vary on si
<l-- Enmpty Message = no body, Body is up to 64kb of data -->

<I-- WII generate three |log statements per recevied nessage -->

<l-- Log nessages flow->

<cat egory nane="org. apache. qpi d. server. AMXhannel ">

<priority val ue="debug"/>
</ cat egory>

<r oot >
<priority val ue="debug"/>
<appender-ref ref="STDOUT"/ >
<appender-ref ref="Fil eAppender"/>
</root >

</l og4j : configuration>

8. How to Tune M3 Java Broker Performance

8.1. Problem Statement

During destructive testing of the Qpid M3 Java Broker, we tested some tuning techniques and deployment
changesto improve the Qpid M3 Java Broker's capacity to maintain high levels of throughput, particularly
in the case of a slower consumer than produceer (i.e. a growing backlog).

The focus of this pageisto detail the results of tuning & deployment changes trialled.

The successful tuning changes are applicable for any deployment expecting to see bursts of high volume
throughput (1000s of persistent messages in large batches). Any user wishing to use these options must
test them thoroughly in their own environment with representative volumes.

114

How Tos

8.2. Successful Tuning Options

Thekey scenario being taregetted by these changesisabroker under heavy load (processing alarge batch of
persistent messages)can be seen to perform slowly when filling up with an influx of high volume transient
messages which are queued behind the persistent backlog. However, the changes suggested will be equally
applicable to general heavy load scenarios.

The easiest way to address thisisto separate streams of messages. Thus alowing the separate streams of
messages to be processed, and preventing a backlog behind a particular slow consumer.

These strategies have been successfully tested to mitigate this problem:

Table 8.2.

Strategy Result

Seperate connections to one broker for separate| Messages processed successfully, no problems
streams of messages. experienced

Seperate brokers for transient and persistent| Messages processed successfully, no problems
messages. experienced

Separate Connections Using separate connections effectively means that the two streams of data are not
being processed via the same buffer, and thus the broker gets & processes the transient messages while
processing the persistent messages. Thus any build up of unprocessed datais minimal and transitory.

Separate Brokers Using separate brokers may mean more work in terms of client connection details being
changed, and from an operational perspective. However, it is certainly the most clear cut way of isolating
the two streams of messages and the heaps impacted.

8.2.1. Additional tuning

It is worth testing if changing the size of the Qpid read/write thread pool improves performance (eg. by
setting JAVA_OPTS="-Damgj.read_write_pool_size=32" before running gpid-server). By default thisis
equal to the number of CPU cores, but a higher number may show better performance with some work
loads.

It is also important to note that you should give the Qpid broker plenty of memory - for any serious
application at least a-Xmx of 3Gh. If you are deploying on a 64 bit platform, alarger heap is definitely
worth testing with. We will be testing tuning options around alarger heap shortly.

8.3. Next Steps

These two options have been testing using a Qpid test case, and demonstrated that for atest case with a
profile of persistent heavy load following by constant transient high load traffic they provide significant
improvment.

However, the deploying project must complete their own testing, using the same destructive test cases,
representative message paradigms & volumes, in order to verify the proposed mitigation options.

The using programme should then choose the option most applicable for their deployment and perform
BAU testing before any implementation into a production or pilot environment.

115

How Tos

9. Qpid Java Build How To

9.1. Build Instructions - General

9.1.1. Check out the source

Firstly, check the source for Qpid out of our subversion repository:

9.1.2. Prerequisites

For the broker code you need JDK 1.5.0_15 or later. You should set JAVA_HOME and include the bin
directory in your PATH.

Check it's ok by executing java-v !

If you are wanting to run the python tests against the broker you will of course need a version of python.

9.2. Build Instructions - Trunk

Our build system has reverted to ant as of May 2008.

The ant target 'help' will tell you what you need to know about the build system.

9.2.1. Ant Build Scripts

Currently the Qpid java project builds using ant.

The ant build system is set up in a modular way, with a top level build script and template for module
builds and then amodule level build script which inherits from the template.

So, at thetop level there are:

Table8.3.

File Description

build.xml Top level build file for the project which defines all
the build targets

common.xml Common properties used throughout the build
system

module.xml Template used by al modules which sets up
properties for module builds

Then, in each module subdirectory thereis:

Table 8.4.

File Description

build.xml Defines al the module values for template
properties

116

How Tos

9.2.2. Build targets

The main build targets you are probably interested in are:

Table8.5.

Target Description

build Builds all source code for Qpid
test Runs the testsuite for Qpid

So, if you just want to compile everything you should run the build target in the top level build.xml file.
If you want to build an installable version of Qpid, run the archive task from the top level build.xml file.

If you want to compile an individual module, simply run the build target from the appropriate module e.g.

to compile the broker source

9.2.3. Configuring Eclipse

1. Runtheant build from theroot directory of Javatrunk. 2. New project -> create from existing file system
for broker, common, client, junit-toolkit, perftests, systests and each directory under management 4. Add
the contents of lib/ to the build path 5. Setup Generated Code 6. Setup Dependencies

9.2.3.1. Generated Code

The Broker and Common packages both depend on generated code. After running 'ant' the build/scratch
directory will contain this generated code. For the broker module add build/scratch/broker/src For the

common module add build/scratch/common/src

9.2.3.2. Dependencies

These dependencies are correct at the time of writting however, if things are not working you can check

the dependencies by looking in the modules build.xml file:

for i in find . -nanme build. xnd"™ ;

do echo "S$i:"; grep npdul e. depends $i

The module.depend value will detail which other modules are dependencies.

broker

¢ common

e management/common
client

e Common

systest

» client

e management/common

117

done

How Tos

* broker

broker/test

e common

junit-toolkit

» management/tool s/qpid-cli
perftests

. systests

* client

* broker

s common

e junit-toolkit
management/eclipse-plugin
* broker

e common

* management/common
management/console

e common

* client
management/agent

e common

» client
management/tool /gpid-cli
s common

e management/common
management/client

s common

» client

integrationtests

. systests

e client

118

How Tos

e common
* junit-toolkit

testkit

 client

* broker

e common

tools

* client

e common
client/examples

s common

 client
broker-plugins

* client

* management/common
* broker

e common

* junit-toolkit

9.2.4. What next ?

If you want to run your built Qpid package, see our ??? for details of how to do that.

If you want to run our tests, you can use the ant test or testreport (produces a useful report) targets.

10. Use Priority Queues

10.1.

10.2.

General Information

The Qpid M3 release introduces priority queues into the Java Messaging Broker, supporting JMS clients
who wish to make use of priorities in their messaging implementation.

There are some key points around the use of priority queuesin Qpid, discussed in the sections below.

Defining Priority Queues

Y ou must define a priority queue specifically before you start to use it. Y ou cannot subsequently change
aqueue to/from a priority queue (without deleting it and re-creating).

119

How Tos

You define a queue as a priority queue in the virtualhost configuration file, which the broker loads at
startup. When defining the queue, add a <priority>true</priority> element. Thiswill ensure that the queue
has 10 distinct priorities, which is the number supported by IMS.

If you require fewer priorities, it is possibleto specify a<priorities>int</priorities> element (whereintisa
valid integer value between 2 and 10 inclusive) which will give the queue that number of distinct priorities.
When messages are sent to that queue, their effective priority will be calculated by partitioning the priority
space. If the number of effective priorities is 2, then messages with priority 0-4 are treated the same as
"lower priority" and messages with priority 5-9 are treated equivalently as "higher priority".

<queue>
<nane>t est </ nane>
<t est >
<exchange>any. di r ect </ exchange>
<priority>true</priority>
</test>
</ queue>

10.3. Client configuration/messaging model for priority
queues

There are some other configuration & paradigm changes which are required in order that priority queues
work as expected.

10.3.1. Set low pre-fetch

Qpid clients receive buffered messages in batches, sized according to the pre-fetch value. The current
default is 5000.

However, if you use the default value you will probably not see desirable behaviour with messages of
different priority. Thisis because a message arriving after the pre-fetch buffer hasfilled will not leap frog
messages of lower priority. It will be delivered at the front of the next batch of buffered messages (if that
is appropriate), but thisis most likely NOT what you need.

So, you need to set the prefetch values for your client (consumer) to make this sensible. To do this set the
java system property max_prefetch on the client environment (using -D) before creating your consumer.

Setting the Qpid pre-fetch to 1 for your client means that message priority will be honoured by the Qpid
broker asit dispatches messages to your client. A default for al client connections can be set viaa system

property:
-Dmax_prefetch=1

The prefetch can be also be adjusted on a per connection basis by adding a 'maxprefetch’ value to the
Section 1.2, “ Connection URL Format ”

amgp: // guest : guest @l i ent 1/ devel oprent ?maxpr ef et ch="1' &rokerlist="tcp://1 ocal host

There is a dlight performance cost here if using the receive() method and you could test with a slightly
higher pre-fetch (up to 10) if the trade-off between throughput and prioritisation is weighted towards the
former for your application. (If you're using OnMessage() then thisis not a concern.)

120

How Tos

10.3.2. Single consumer per session

If you are using the receive() method to consume messages then you should also only use one consumer
per session with priority queues. If you're using OnMessage() then thisis not a concern.

121

Chapter 9. Qpid JMX Management
Console

1. Qpid JIMX Management Console

1.1. Overview

The Qpid IMX Management Console is a standalone Eclipse RCP application that communicates with
the broker using IMX.

1.1.1. Configuring Management Users

The Qpid Java broker has a single source of users for the system. So a user can connect to the broker to
send messages and viathe IMX console to check the state of the broker.

1.1.1.1. Adding a new management user

1.1.1.1.1.

The broker does have some minimal configuration available to limit which users can connect to the IMX
console and what they can do when they are there.

There are two steps required to add a new user with rights for the IMX console.
1. Create anew user login, see HowTo:???

2. Grant the new user permission to the IMX Console

Granting JMX Console Permissions

By default new users do not have access to the IMX console. The access to the console is controlled via
the file jmxremote.access.

Thisfile contains a mapping from user to privilege.

There are three privileges available:

1. readonly - The user is ableto log in and view queues but not make any changes.

2. readwrite - Grants user ability to read and write queue attributes such as alerting values.

3. admin - Grants the user full access including ability to edit Users and IMX Permissions in addition to
readwrite access.

Thisfileisread at start up and can forcibly be reloaded by an admin user through the management console.

1.1.1.1.2. Access File Format

Thefileis astandard Java properties file and has the following format

<user nane>=<pri vi | ege>

If the username value is not avalid user (list in the specified Principal Database) then the broker will print
awarning when it reads the file as that entry will have no meaning.

122

Qpid IMX Management Console

Only when the the username existsin both the access file and the Principal Database password file will the
user be able to login viathe IMX Console.

1.1.1.1.2.1. Example File
Thefilewill be timestamped by the management console if edited through the console.
#CGenerated by JMX Console : Last edited by user:admin
#Tue Jun 12 16:46: 39 BST 2007
adm n=admi n

guest =r eadonl y
user=readwite

1.1.2. Configuring Qpid JMX Management Console

1.1.2.1. Configuring Qpid JMX Management Console
Qpid has a IMX management interface that exposes a number of components of the running broker. Y ou
can find out more about the features exposed by the IMX interfaces ???2.

1.1.2.1.1. Installing the Qpid JMX Management Console

1. Unzip the archive to a suitable location.

SSL encrypted connections

Recent versions of the broker can make use of SSL to encrypt their RMI based JMX
connections. If abroker being connected to is making use of thisability then additional console

configuration may be required, particularly when using self-signed certificates. See ??? for
details.

JM XM P based connections

In previous rel eases of Qpid (M4 and below) the broker IM X connections could make use of the
JMXMPConnector for additional security over its default RMI based IM X configuration. Thisis
no longer the case, with SSL encrypted RMI being the favored approach going forward. However,
if you wish to connect to an older broker using IMXMP the console will support this so long as
the jmxremote_optional .jar fileis provided toit. For details see 7?2.
1.1.2.1.2. Running the Qpid JMX Management Console
The console can be started in the following way, depending on platform:
» Windows: by running the 'gpidmc.exe' executable file.
* Linux: by running the 'gpidmc' executable.
* Mac OS X: by launching the consoles application bundle (.app file).
1.1.2.1.3. Using the Qpid JMX Management Console

Please see Section 1.1.5, “ Qpid IMX Management Console User Guide” for details on using this Eclipse
RCP application.

123

Qpid IMX Management Console

1.1.2.2.

1.1.2.3.

1.1.2.4.

1.1.2.4.1.

1.1.2.4.2.

1.1.2.4.3.

Using JConsole
Using HermesJMS

HermesIM S also offers integration with the Qpid management interfaces. You can get instructions and
more information from HermesIM S [http://cwiki.apache.org/confluence/display/gpid/HermesIM §].

Using MC4J

MC4J [gpid_www.mc4j.org] is an aternative management tool. It provide a richer "dashboard” that can
customise the raw MBeans.

Installation

* First download and install MC4J for your platform. Version 1.2 beta 9 is the latest version that has
been tested.

» Copy the directory blaze/java/management/mc4j into the directory <M C4J-Installation>/dashboards
Configuration

You should create a connection the JVM to be managed. Using the Management->Create Server
Connection menu option. The connection URL should be of the form: service;jmx:rmi:///jndi/rmi://
localhost:8999/jmxrmi making the appropriate host and post changes.

Operation

Y ou can view tabular summaries of the queues, exchanges and connections using the Global Dashboards-

>QPID tree view. To drill down on individual beans you can right click on the bean. This will show any
available graphs too.

1.1.3. Management Console Security

1.1.3.1.

1.1.3.1.1.

Management Console Security

e Section 1.1.3.1.1, “ SSL encrypted RMI (0.5 and above) "

e Section1.1.3.1.2,“ IMXMP (M4 and previous) "

* Section 1.1.3.1.3, “ User Accounts & Access Rights”

SSL encrypted RMI (0.5 and above)

Current versions of the broker make use of SSL encryption to secure their RMI based JMX
ConnectorServer for security purposes. This ships enabled by default, although the test SSL keystore used

during development is not provided for security reasons (using this would provide no security as anyone
could have access to it).

1.1.3.1.1.1. Broker Configuration

The broker configuration must be updated before the broker will start. This can be done either by disabling
the SSL support, utilizing apurchased SSL certificateto createakeystore of your own, or using theexample
'create-example-sdl-stores' script in the brokers bin/ directory to generate a self-signed keystore.

124

http://cwiki.apache.org/confluence/display/qpid/HermesJMS
http://cwiki.apache.org/confluence/display/qpid/HermesJMS
qpid_www.mc4j.org
qpid_www.mc4j.org

Qpid IMX Management Console

The broker must be configured with a keystore containing the private and public keys associated with its
SSL certificate. This is accomplished by setting the Java environment properties javax.net.ssl .keySore
and javax.net.sdl .keySorePassword respectively with the location and password of an appropriate SSL
keystore. Entries for these properties exist in the brokers main configuration file alongside the other
management settings (see below), although the command line options will still work and take precedence
over the configuration file.

<managenent >

<ssl >
<enabl ed>t r ue</ enabl ed>
<l-- Update below path to your keystore |ocation, eg ${conf}/qpid. keystore

<keySt orePat h>${prefix}/../test_resources/ssl/keystore.jks</keyStorePat h>
<keySt or ePasswor d>passwor d</ key St or ePasswor d>
</ssl >
</ managenent >

1.1.3.1.1.2. JMX Management Console Configuration

If the broker makes use of an SSL certificate signed by aknown signing CA (Certification Authority), the
management console needs no extra configuration, and will make use of Java's built-in CA truststore for
certificate verification (you may however have to update the system-wide default truststore if your CA
isnot already present in it).

If however you wish to use a self-signed SSL certificate, then the management console must be
provided with an SSL truststore containing a record for the SSL certificate so that it is able to
validate it when presented by the broker. This is performed by setting the javax.net.ssl.trustSore and
javax.net.sdl.trustStorePassword environment variables when starting the console. This can be done at the
command line, or alternatively an example configuration has been made within the consol€'s gpidmc.ini
launcher configuration file that may pre-configured in advance for repeated usage. See the Section 1.1.5,
“ Qpid IMX Management Console User Guide” for more information on this configuration process.

1.1.3.1.1.3. JConsole Configuration

As with the IMX Management Console above, if the broker is using a self-signed SSL certificate then in
order to connect remotely using JConsole, an appropriate trust store must be provided at startup. See ?7??
for further details on configuration.

1.1.3.1.1.4. Additional Information

More information on Javas handling of SSL certificate verification and customizing the
keystores can be found in the http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/
JSSERef Guide.html#Customi zingStores.

1.1.3.1.2. JIMXMP (M4 and previous)

In previous releases of Qpid (M4 and below) the broker, can make use of Sun's Java Management
Extensions Messaging Protocol (JIMXMP) to provide encryption of the JMX connection, offering
increased security over the default unencrypted RMI based JM X connection.

1.1.3.1.2.1. Download and Install

Thisis possible by adding the jmxremote_optional.jar as provided by Sun. Thisjar is covered by the Sun
Binary Code License and is not compatible with the Apache License which is why this component is not
bundled with Qpid.

125

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

Qpid IMX Management Console

Download the JMX Remote APl 1.0.1 04 Reference Implementation from ???. The included
‘imxremote-1_0_1-bin\lib\jmxremote_optional.jar' file must be added to the broker classpath:

First set your classpath to something like this:

CLASSPATH=j nxr enot e_optional . jar

Then, run gpid-server passing the following additional flag:

gpi d-server -run:external -classpat h=first

Following this the configuration option can be updated to enabled use of the JIMXMP based
JM X ConnectorServer.

1.1.3.1.2.2. Broker Configuration

To enabled this security option change the security-enabled value in your broker configuration file.

<managenent >
<security-enabl ed>true</security-enabl ed>
</ managenent >

You may aso (for M2 and earlier) need to set the following system properties using the environment
variable QPID_OPTS:

QPID_OPTS="-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port=8999 -
Dcom.sun.management.jmxremote.authenti cate=fal se -Dcom.sun.management.jmxremote.ssl=fal se"

1.1.3.1.2.3. JMX Management Console Configuration

If you wish to connect to a broker configured to use IM XM P then the console also requires provision of
the Optional sections of the IMX Remote API that are not included within the JavaSE platform.

In order to make it available to the console, place the 'jmxremote_optional .jar' (rename the file if any
additional information is present in the file name) jar file within the ‘plugingjmxremote.sasl_1.0.1/" folder
of the console release (on Mac OS X you will need to select 'Show package contents' from the context
menu whilst selecting the management console bundle in order to reveal the inner file tree).

Following the the console will automatically load the IMX Remote Optional classes and attempt the
JMXMP connection when connecting to a IM XMP enabled broker.

1.1.3.1.3. User Accounts & Access Rights

In order to accessthe management operationsviaJM X, users must have an account and have been assigned
appropriate access rights. See 7?7?

1.1.4. Qpid JMX Management Console FAQ

1.1.4.1. Errors

1.1.4.1.1. How do | connect the management console to my broker using security ?

The ??? page will give you the instructions that you should use to set this up.

126

Qpid IMX Management Console

1.1.4.1.2.

| am unable to connect Qpid JMX MC/JConsole to a remote broker running on Linux, but

connecting to localhost on that machine works ?

The RMI based IMX ConnectorServer used by the broker requries two ports to operate. The console
connects to an RMI Registry running on the primary (default 8999) port and retrieves the information
actually needed to connect to the IMX Server. This information embeds the hostname of the remote
machine, and if thisisincorrect or unreachable by the connecting client the connection will fail.

This situation arises due to the hostname configuration on Linux and is generally encountered when the
remote machine doesnot haveaDNS hostname entry on thelocal network, causing the hostname command
to return aloopback IP instead of a fully qualified domain name or | P address accessible by remote client
machines. It is described in further detail at: 7??

To remedy thisissue you can set the java.rmi.server.hostname system property to control the hostname/ip
reported to the RMI runtime when advertising the IMX ConnectorServer. This can aso be used to dictate
the address returned on a computer with multiple network interfaces to control reachability. To do so, add
the value -Djava.rmi.server .hosthname=<desired hostname/ip> to the QPID_OPTS environment variable
before starting the gpid-server script.

1.1.5. Qpid JMX Management Console User Guide

1.15.1.

1.1.5.2.

1.15.2.1.

1.1.5.2.2.

Qpid JMX Management Console User Guide

The Qpid JMX Management Console is a standalone Eclipse RCP application for managing and
monitoring the Qpid Java server utilising its IMX management interfaces.

Thisguidewill give an overview of configuring the console, the features supported by it, and how to make
use of the console in managing the various IMX Management Beans (MBeans) offered by the Qpid Java
server.

Startup & Configuration

Startup

The console can be started in the following way, depending on platform:
» Windows:. by running the gpidmc.exe executable file.

 Linux: by running the gpidmc executable.

* Mac OS X: by launching the Qpid Management Console.app application bundle.

SSL configuration

Newer Qpid Javaservers can protect their IMX connectionswith SSL, and thisis enabled by default. When
attempting to connect to a server with this enabled, the console must be able to verify the SSL certificate
presented to it by the server or the connection will fail.

If the server makes use of an SSL certificate signed by aknown Signing CA (Certification Authority) then
the console needs no extra configuration, and will make use of Java's default system-wide CA TrustStore
for certificate verification (you may however have to update the system-wide default CA TrustStore if
your certified is signed by aless common CA that is not already present in it).

If however the server is equipped with a self-signed SSL certificate, then the management console must
be provided with an appropriate SSL TrustStore containing the public key for the SSL certificate, so that it

127

Qpid IMX Management Console

1.1.5.2.3.

1.1.5.3.

1.1.5.3.1.

1.1.5.3.2.

isableto validate it when presented by the server. The server shipswith a script to create an example self-
signed SSL certificate, and store the relevant entries in a KeyStore and matching TrustStore. This script
can serve as a guide on how to use the Java Keytool security utility to manipulate your own stores, and
more information can be found in the JSSE Reference Guide: http://java.sun.com/javase/6/docs/technotes/
guides/security/j sse/ JISSERef Guide.html#CustomizingStores.

Supplying the necessary details to the console is performed by setting the javax.net.ssl.trustSore and
javax.net.ssl.trustStorePassword environment variableswhen starting it. This can be done at the command
line, but the preferred option isto set the configuration within the gpidmce.ini launcher configuration file for
repeated usage. Thisfile is equipped with atemplate to ease configuration, this should be uncommented
and edited to suit your needs. It can be found in the root of the console releases for Windows, and Linux.
For Mac OS X thefileislocated within the consoles .app application bundle, and to locate and edit it you
must select 'Show Package Contents' when accessing the context menu of the application, then browse to
the Contents/MacOS sub folder to locate thefile.

JMXMP configuration

Older releases of the Qpid Java server can make use of the Java Management Extensions Messaging
Protocol (JMXMP) to provide protection for their IMX connections. This occurs when the server has its
main configuration set with the management 'security-enabled' property set to true.

In order to connect to this configuration of server, the console needs an additional library that is not
included within the Java SE platform and cannot be distributed with the console due to licensing
restrictions.

You can download the IMX Remote APl 1.0.1 04 Reference Implementation from the Sun website
???. The included jmxremote-1_0_1-bin/lib/jmxremote_optional jar file must be added to the plugins/
jmxremote.sasl_1.0.1 folder of the console release (again, in Mac OS X you will need to select 'Show
package contents' from the context menu whilst selecting the management console bundle in order to
reveal the inner file tree).

Following this the console will automatically load the IMX Remote Optional classes and negotiate the
SASL authentication profile type when encountering a IMXMP enabled Qpid Java server.

Managing Server Connections

Main Toolbar

The main toolbar of the console can be seen in the image below. The left most buttons respectively allow
for adding a new server connection, reconnecting to an existing server selected in the connection tree,
disconnecting the selected server connection, and removing the server from the connection tree.

Beside these buttons is a combo for selecting the refresh interval; that is, how often the console requests
updated information to display for the currently open areain the main view. Finally, the right-most button
enables an immediate update.

Connecting to a new server

To connect to anew server, press the Add New Server toolbar button, or select the Qpid Manager -> Add
New Connection menu item. At this point a dialog box will be displayed requesting the server details,
namely the server hostname, management port, and ausername and password. An exampleisshown below:

128

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

Qpid IMX Management Console

1.1.5.3.3.

1.1.5.3.4.

1.1.5.3.5.

1.1.54.

Once all the required details are entered, pressing Connect will initiate a connection attempt to the server.
It the attempt fails a reason will be shown and the server will not be added to the connection tree. If the
attempt is successful the server will be added to the connections list and the entry expanded to show the
initial administration MBeans the user has access to and any VirtualHosts present on the server, as can
be seen in the figure below.

If the server supports a newer management API than the console in use, once connected thisinitial screen
will contain a message on the right, indicating an upgraded console should be sought by the user to ensure
all management functionality supported by the server is being utilised.

Reconnecting to a server

If aserver has been connected to previously, it will be saved as an entry in the connection tree for further
use. On subsequent connections the server can simply be selected from the tree and using the Reconnect
toolbar button or Qpid Manager -> Reconnect menu item. At this stage the console will prompt simply for
the username and password with which the user wishesto connect, and following a successful connection
the screen will appear as shown previously above.

Disconnecting from a server

Todisconnect from a server, select the connection tree node for the server and press the Disconnect tool bar
button, or use the Qpid Manager -> Disconnect menu option.

Removing a server

To remove a server from the connection list, select the connection tree node for the server and press the
Remove toolbar button, or use the Qpid Manager -> Remove Connection menu option.

Navigating a connected server

Once connected to a server, the various areas available for administration are accessed using the Qpid
Connectionstree at the | eft side of the application. To open a particular MBean from the tree for viewing,
simply select it in the tree and it will be opened in the main view.

Asthere may be vast numbers of Queues, Connections, and Exchanges on the server these MBeans are not
automatically added to the tree along with the general administration MBeans. Instead, dedicated selection
areas are provided to allow users to select which Queue/Connection/Exchange they wish to view or add
to the tree. These areas can be found by clicking on the Connections, Exchanges, and Queues nodes in
the tree under each VirtualHost, as shown in the figure above. One or more MBeans may be selected and
added to the tree as Favourites using the button provided. These settings are saved for future use, and each
time the console connects to the server it will check for the presence of the MBean previoudly in the tree
and add them if they are still present. Queue/Connection/Exchange MBeans can be removed from the tree
by right clicking on them to expose a context menu allowing deletion.

As an dternative way to open a particular MBean for viewing, without first adding it to the tree, you can
simply double click an entry in the table within the Queue/Connection/Exchange selection areas to open
it immediately. It is aso possible to open some MBeans like this whilst viewing certain other MBeans.
When opening an MBean in either of these ways, a Back button is enabled in the top right corner of the

129

Qpid IMX Management Console

1.1.5.5.

1.1.5.6.

1.1.5.6.1.

main view. Using this button will return you to the selection area or MBean you were previously viewing.
The history resets each time the tree is used to open a new area or MBean.

ConfigurationManagement MBean

The ConfigurationManagement MBean is available on newer servers, to users with admin level
management rights. It offers the ability to perform a live reload of the Security sections defined in the
main server configuration file (e.g. defaultsto: etc/config.xml). Thisismainly to allow updating the server
Firewall configuration to new settings without a restart, and can be performed by clicking the Execute
button and confirming the prompt which follows.

LoggingManagement MBean

The LoggingManagement MBean is available on newer servers, and accessible by admin level users. It
allows live ateration of the logging behaviour, both at a Runtime-only level and at the configuration
file level. The latter can optionally affect the Runtime configuration, either through use of the servers
automated L ogWatch ability which detects changes to the configuration file and reloadsit, or by manually
requesting a reload. This functionality is split across two management tabs, Runtime Options and
ConfigurationFile Options.

Runtime Options

The Runtime Options tab allows manipulation of the logging settings without affecting the configuration
files (this means the changes will be lost when the server restarts), and gives individual access to every
Logger active within the server.

As shown in the figure above, the table in this tab presents the Effective Level of each Logger. This
is because the Loggers form a hierarchy in which those without an explicitly defined (in the logging
configuration file) Level will inherit the Level of their immediate parent; that is, the Logger whose full
name is a prefix of their own, or if none satisfy that condition then the RootLogger is their parent.
As example, take the org.apache.gpid Logger. It is parent to al those below it which begin with
org.apache.gpid and unless they have aspecific Level of their own, they will inherit its Level. Thiscan be
seen in the figure, whereby all the children Loggers visible have alevel of WARN just like their parent,
but the RootLogger Level is INFO; the children have inherited the WARN level from org.apache.qpid
rather than INFO from the RootL ogger.

To aid with this distinction, the Logger Levels that are currently defined in the configuration file
are highlighted in the List. Changing these levels at runtime will also change the Level of al their
children which haven't been set their own Level using the runtime options. In the latest versions of the
LoggingManagement MBean, it is possible to restore a child logger that has had an explicit level se, to
inheriting that of its parent by setting it to an INHERITED level that removes any previously set Level
of itsown.

In order to set one of more Loggersto anew Level, they should be selected in the table (or double click an
individual Logger to modify it) and the Edit Selected Logger(s) button pressed to load the dialog shown
above. At this point, any of the available Levels supported by the server can be applied to the Loggers
selected and they will immediately update, as will any child Loggers without their own specific Level.

130

Qpid IMX Management Console

1.1.5.6.2.

1.15.7.

1.1.5.8.

The RootLogger can be similarly edited using the button at the bottom Ieft of the window.
ConfigurationFile Options

The ConfigurationFile Options tab allows alteration of the Level settings for the Loggers defined in the
configuration file, allowing changes to persist following a restart of the server. Changes made to the
configuration file are only applied automatically while the sever is running if it was configured to enable
the LogWatch capability, meaning it will monitor the configuration file for changes and apply the new
configuration when the change is detected. If this was not enabled, the changes will be picked up when
the server isrestarted. The status of the LogWatch feature is shown at the bottom of the tab. Alternatively,
in the latest versions of the LoggingManagement MBean it is possible to reload the logging configuration
file on demand.

Manipulating the Levelsis as on the Runtime Options tab, either double-click an individual Logger entry
or select multiple Loggers and use the button to load the dialog to set the new Level.

One issue to note of when reloading the configuration file settings, either automatically using LogWatch
or manualy, isthat any Logger set to a specific Level using the Runtime Options tab that is not defined
in the configuration file will maintain that Level when the configuration file is reloaded. In other words,
if aLogger isdefined in the configuration file, then the configuration file will take precedence at reload,
otherwise the Runtime options take precedence.

Thissituation will beimmediately obvious by examining the Runtime Optionstab to seetheeffective Level
of each Logger —unlessit has been altered with the RuntimeOptions or specifically set in the configuration
file, a Logger Level should match that of its parent. In the latest versions of the LoggingManagement
MBean, it is possible to use the RuntimeOptions to restore a child logger to inheriting from its parent by
setting it with an INHERITED level that removes any previously set Level of its own.

Serverinformation MBean

The ServerInformation MBean currently only conveys various pieces of version information to alow
precise identification of the server version and its management capabilities. In futureit islikely to convey
additional server-wide details and/or functionality.

UserManagement MBean

The UserManagement MBean is accessible by admin level users, and allows manipulation of existing user
accounts and creation of new user accounts.

To add anew user, press the Add New User button, which will load the dialog shown below.

Here you may enter the new users Username, Password, and select their IMX Management Rights. This
controls whether or not they have access to the management interface, and if so what capabilities are
accessible. Read Only access allows undertaking any operations that do not alter the server state, such as
viewing messages. Read + Write access allows use of al operations which are not deemed admin-only
(such asthose in the UserManagement MBean itself). Admin access allows a user to utilize any operation,

131

Qpid IMX Management Console

and view the admin-only MBeans (currently these are ConfigurationM anagement, L oggingM anagement,
and UserManagement).

One or more users at atime may be deleted by selecting them in the table and clicking the Delete User (s)
button. The console will then prompt for confirmation before undertaking the removals. Similarly, the
accessrightsfor one or more users may be updated by sel ecting themin the table and clicking the Set Rights
button. The console will then display adialog enabling selection of the new accesslevel and confirmation
to undertake the update.

An individual user password may be updated by selecting the user in the table in and clicking the
Set Password button. The console will then display a dialog enabling input of the new password and
confirmation to undertake the update.

The server caches the user details in memory to aid performance. If may sometimes be necessary to
externally modify the password and access right files on disk. In order for these changes to be known to
the server without a restart, it must be instructed to reload the file contents. This can be done using the
provided Reload User Details button (on older servers, only the management rights file is reloaded, on
newer servers both files are. The description on screen will indicate the behaviour). After pressing this
button the console will seek confirmation before proceeding.

1.1.5.9. VirtualHostManager MBean

Each VirtualHost in the server has an associated VirtualHostManager MBean. This allows viewing,
creation, and deletion of Queues and Exchanges within the VirtualHost.

Clicking the Create button in the Queue section will open a dialog allowing specification of the Name,
Owner (optional), and durability properties of the new Queue, and confirmation of the operation.

One or more Queues may be deleted by selecting them in the table and clicking the Delete button. This
will unregister the Queue bindings, remove the subscriptions and delete the Queue(s). The console will
prompt for confirmation before undertaking the operation.

Clicking the Create button in the Exchange section will open adialog allowing specification of the Name,
Type, and Durable attributes of the new Exchange, and confirmation of the operation.

One or more Exchanges may be deleted by selecting them in the table and clicking the Delete button. This
will unregister all the related channels and Queue bindings then del ete the Exchange(s). The console will
prompt for confirmation before undertaking the operation.

Double-clicking on aparticular Queue or Exchange namein thetableswill open the MBean representing it.
1.1.5.10. Notifications

MBeans on the server can potentialy send Notifications that users may subscribe to. When managing
an individual MBean that offers Notifications types for subscription, the console supplies a Notifications
tab to allow (un)subscription to the Notifications if desired and viewing any that are received following
subscription.

In order to provide quicker access to/awareness of any received Notifications, each VirtualHost areain
the connection tree has a Notifications area that aggregates all received Notifications for MBeans in that
VirtualHost. An example of this can be seen in the figure below.

132

Qpid IMX Management Console

All received Notifications will be displayed until such time as the user removes them, either in this
aggregated view, or in the Notifications area of the individual MBean that generated the Notification.

They may be cleared selectively or al a once. To clear particular Notifications, they should be selected in
thetable before pressing the Clear button. To clear all Notifications, simply pressthe Clear button without
anything selected in the table, at which point the console will request confirmation of this clear-all action.

1.1.5.11. Managing Queues

Asmentioned in earlier discussion of Navigation, Queue MBeans can be opened either by double clicking
an entry in the Queues selection area, or adding a queue to the tree as a favourite and clicking on its tree
node. Unigueto the Queue selection screen isthe ability to view additional attributesbeyond just that of the
Queue Name. Thisis helpful for determining which Queues satisfy a particular condition, e.g. having <X>
messages on the queue. The example below shows the selection view with additional attributes Consumer
Count, Durable, MessageCount, and QueueDepth (sel ected using the Select Attributesbutton at the bottom
right corner of the table).

Upon opening a Queue MBean, the Attributes tab is displayed, as shown below. This allows viewing the
value al attributes, editing those which are writable values (highlighted in blue) if the users management
permissions allow, viewing descriptions of their purpose, and graphing certain numerical attribute values
as they change over time.

The next tab contains the operations that can be performed on the queue. The main table serves asameans
of viewing the messages on the queue, and later for selecting specific messages to operate upon. It is
possibleto view any desired range of messages on the queue by specifying thevisiblerange using thefields
at thetop and pressing the Set button. Next to thisthere are hel per buttonsto enabl e faster browsing through
the messages on the queue; these allow moving forward and back by whatever number of messages is
made visible by the viewing range set. The Queue Position column indicates the position of each message
on the queue, but is only present when connected to newer servers as older versions cannot provide the
necessary information to show this (unless only a single message position is requested).

Upon selecting a message in the table, its header properties and redelivery status are updated in the area
below the table. Double clicking a message in the table (or using the View Message Content button to its
right) will open a dialog window displaying the contents of the message.

One or more messages can be selected in the table and moved to another queue in the VirtualHost by using
the Move Message(s) button, which opens a dialog to enable selection of the destination and confirmation
of the operation. Newer servers support the ability to similarly copy the selected messagesto another queue
inasimilar fashion, or delete the selected messages from the queue after prompting for confirmation.

Finally, all messages (that have not been acquired by consumers) on the queue can be deleted using the
Clear Queue button, which will generate a prompt for confirmation. On newer servers, the status bar at
the lower left of the application will report the number of messages actually removed.

1.1.5.12. Managing Exchanges

Exchange MBeans are opened for management operations in similar fashion as described for Queues,
again showing an Attributes tab initially, with the Operations tab next:

133

Qpid IMX Management Console

Of the four default Exchange Types (direct, fanout, headers, and topic) al but headers havetheir bindings
presented in the format shown above. The left table provides the binding/routing keys present in the
exchange. Selecting one of these entries in the table prompts the right table to display al the queues
associated with this key. Pressing the Create button opens a dialog allowing association of an existing
gueue with the entered Binding.

The headers Exchange type (default instantiation amg.match or amg.headers) is presented as below:

In the previous figure, the left table indicates the binding number, and the Queue associated with the
binding. Selecting one of these entriesin the table prompts the right table to display the header values that
control when the binding matches an incoming message.

Pressing the Create button when managing a header s Exchange opens a dial og allowing creation of anew
binding, associating an existing Queue with a particular set of header keys and values. The x-match key
isrequired, and instructs the server whether to match the binding with incoming messages based on ANY
or ALL of thefurther key-value pairs entered. If it isdesired to enter more than 4 pairs, you may pressthe
Add additional field button to create a new row as many times as is required. When managing a headers
Exchange, double clicking an entry in the left-hand table will open the MBean for the Queue specified
in the binding properties.

When managing another Exchange Type, double clicking the Queue Name in the right-hand table will
open the MBean of the Queue specified.

1.1.5.13. Managing Connections

Exchange M Beans are opened for management operationsin similar fashion as described for Queues, again
showing an Attributes tab initially, with the Operations tab next, and finally a Notifications tab allowing
subscription and viewing of Notifications. The Operations tab can be seen in the figure below.

The main table shows the properties of al the Channels that are present on the Connection, including
whether they are Transactional, the Number of Unacked Messages on them, and the Default Queueif there
isone (or null if thereis not).

The main operations supported on a connection are Commiting and Rolling Back of Transactions on a
particular Channel, if the Channel is Transactional. This can be done by selecting a particular Channel in
the table and pressing the Commit Transactions or Rollback Transactions buttons at the lower right corner
of the table, at which point the console will prompt for confirmation of the action. These buttons are only
active when the selected Channel in the table is Transactional.

The final operation supported is closing the Connection. After pressing the Close Connection button, the
console will prompt for confirmation of the action. If thisis carried out, the MBean for the Connection
being managed will be removed from the server. The console will be notified of this by the server and

134

Qpid IMX Management Console

display an information dialog to that effect, asit would if any other MBean were to be unregistered whilst
being viewed.

Double clicking arow in the table will open the MBean of the associated Default Queue if thereis one.

1.1.6. Qpid Management Features

Management tool: See our ???for details of how to use various consol e options with the Qpid management
features.

The management of QPID is categorised into following types-
1. Exchange

2. Queue

3. Connection

4. Broker

1) Managing and Monitoring Exchanges: Following is the list of features, which we can have available
for managing and monitoring an Exchange running on a Qpid Server Domain-

1. Displaying the following information for monitoring purpose-
a. Thelist of queues bound to the exchange along with the routing keys.
b. Genera Exchange properties(like name, durable etc).

2. Binding an existing queue with the exchange.

2) Managing and Monitoring Queues: Following are the features, which we can have for a Queue on a
Qpid Server Domain-

1. Displaying the following information about the queue for monitoring purpose-
a. General Queue properties(like name, durable, etc.)
b. The maximum size of a message that can be accepted from the message producer.
¢. The number of the active consumers accessing the Queue.
d. Thetotal number of consumers (Active and Suspended).
e. The number of undelivered messages in the Queue.
f. Thetotal number of messages received on the Queue since startup.
g. The maximum number of bytes for the Queue that can be stored on the Server.
h. The maximum number of messages for the Queue that can be stored on the Server.
2. Viewing the messages on the Queue.
3. Deleting message from top of the Queue.

4. Clearing the Queue.

135

Qpid IMX Management Console

5.

Browsing the DeadM essageQueue - M essages which are expired or undelivered because of somereason
are routed to the DeadM essageQueue. This queue can not be deleted. [Note: The is open because it
depends on how these kind of messages will be handeled?]

3) Managing and Monitoring Connections: Following are the features, which we can havefor aconnection
on aQPID Server Domain-

1

2.

Displaying general connection properties(like remote address, etc.).

Setting maximum number of channels allowed for a connection.

. View al related channels and channel properties.

. Closing a channel.

. Commit or Rollback transactions of a channel, if the channel istransactional.
. Notification for exceeding the maximum number of channels.

. Dropping a connection.

. Thework for ???implies that there are potentially some additional requirements

a. Alert when tcp flow control kicksin
b. Information available about current memory usage available through IMX interface
¢. Dynamic removal of buffer bounds? (fundamentally not possible with Transportl O)

d. Management functionality added to IMX interface - Ul changes?

4) Managing the Broker: Features for the Broker-

1

2

w

N

Creating an Exchange.
Unregistering an Exchange.

Creating a Queue.

. Deleting a Queue.

136

Chapter 10. Management Tools

1. MessageStore Tool

1.1. MessageStore Tool

We have a number of implementations of the Qpid MessageStore interface. This tool alows the
interrogation of these stores while the broker is offline.

1.1.1. MessageStore Implementations
o« 77?
o« 7

« 77?

1.1.2. Introduction

Each of the MessageStore implementations provide different back end storage for their messages and so
would need a different tool to be able to interrogate their contents at the back end.

What thistool doesisto utilise the Java broker code base to access the contents of the storage providing
the user with a consistent means to inspect the storage contents in broker memory. The tool allows the
current messagesin the store to be inspected and copied/moved between queues. Thetool usesthe message
instance in memory for al its access paths, but changes made will be reflected in the physical store (if
one exists).

1.1.3. Usage

The tools-distribution currently includes a unix shell command 'msTool.sh' this script will launch the java
tool.

Thetool loads $QPID_HOM E/etc/config.xml by default. If an alternative broker configurationisrequired
this should be provided on the command line as would be done for the broker.

nsTool .sh -c <path to different config.xn >

On startup the user is present with a command prompt

$ nsTool . sh
MessageSt oreTool - for exam ning Persistent pid Broker MessageStore instances
bdb$

1.1.4. Available Commands

The available commands in the tool can be seen through the use of the 'help' command.

bdb$ hel p

137

Management Tools

| Avai | abl e Commands |

o o oo e oo o +
| Command | Description |
o o oo e oo o +
quit	Quit the tool.
list	list available itens.
dump	Dunmp sel ected nessage content. Default: show=content
1oad	Loads specified broker configuration file.
clear	Clears any selection.
show	Shows the nmessages headers.
select	Performa selection.
help	Provides detailed help on commands.
o o oo e oo o +
bdb$

A brief description is displayed and further usage information is shown with 'help <command>'

bdb$ help Ii st

[ist availble itens.

Usage: | i st queues [<exchange>] | exchanges | bindings [<exchange>] | all
bdb$

1.1.5. Future Work

Currently thetool only workswhilst the broker is offlinei.e. it isup, but not accepting AM QP connections.
This requires a stop/start of the broker. If this functionality was incorporated into the broker then a telnet
functionality could be provided allowing online management.

2. Qpid Java Broker Management CLI
2.1. How to build Apache Qpid CLI

2.1.1. Build Instructions - General

At the very beginning please build Apache Qpid by refering this installation guide from here ??2?.

After successfully build Apache Qpid you'll be able to start Apache Qpid Java broker,then only you are
in aposition to use Qpid CLI.

2.1.2. Check out the Source

First check out the source from subversion repository. Please visit the following link for more information
about different versions of Qpid CLI.

2.1.3. Prerequisites

For the broker code you need JDK 1.5.0_15 or later. You should set JAVA_HOME and include the bin
directory in your PATH.

Check it's ok by executing java-v !

138

Management Tools

2.1.4. Building Apache Qpid CLI

This project is currently having only an ant build system.Please install ant build system before trying to
install Qpid CLI.

2.1.5. Compiling

To compile the source please run following command

ant compile

To compile the test source run the following command

ant conpile-tests

2.1.6. Running CLI

After successful compilation set QPID_CLI environment variable to the main source directory.(set the
environment variable to the directory where ant build script stored in the SVN checkout).Please check
whether the Qpid Java broker is up an running in the appropriate location and run the following command
to start the Qpid CLI by running the gpid-cli script in the bin directory.

$QPID_CLI/bin/gpid-cli -h <hostname of the broker> -p <broker running port> For more details please
have alook in to README file which ships with source package of Qpid CLI.

2.1.7. Other ant targets

For now we are supporting those ant targets.

ant clean Clean the complete build including CLI build and test build.
ant jar Create the jar file for the project without test cases.

ant init Create the directory structure for build.

ant compile-tests This compiles all the test source.

ant test Run all the test cases.

139

Part IV. AMQP Messaging
Clients Clients

Table of Contents

11. AMQP Java IMS MeSsaging CHENtcoouuiiiiiiiieiiii ettt 142
1. GENEral USEr GUITESc.uuieiiii ettt ettt e e e e et e e s 142

1.1, SyStEM PrOPEITIESciieieieeiiti ettt ettt et e e 142

1.2. Connection URL FOIMEEcoouuniiiiiiiieeiiii e 145

1.3. Binding URL FOIMELoiieiiiiiiiii ettt 148

1.4, Java IMS SEIECION SYNEAX ..e.vunieiiiiiieeeiii ettt 149

2. AMQP Java IMS EXBMPIESeeiiiiiiie ettt 150

12. AMQP CH+ MeSSaging ClIENtiiiiiiiiiiiiii ettt e e ee e a e 151
L USEN GUITES .ottt ettt e e et e e 151

2. EXBIMPIES e e 151

13. AMQP .NET MeSSaging CHENtccouuuiiiiiiiiieiiii ettt 152
L USEN GUITES ..ottt ettt et e et e e et e s 152

1.1. Apache Qpid: Open Source AMQP Messaging - .NET User Guide 152

1.2, EXCEl AQAIN oot 167

L B W et 169

2. EXBIMPIES e e 170

14. AMQP Python Messaging ClENTcooeuiiiiii e 171
L USEN GUITES ..ottt ettt et e et e e et e s 171

2. EXBIMPIES e e 171

3. PYINONBIOKEITESE ..ottt ettt e et e e e et e e e e e e eenes 171

3.1. Python Broker System TeSt SUIEccoevueiiiiiiiiieiiiire e 171

15. AMQP Ruby Messaging CHENEccoouuiiiiiiiee e e e e 172
L EXAMPIES o 172

141

Chapter 11. AMQP Java JMS

Messaging Client

The Java Client supported by Qpid implements the Java JMS 1.1 Specification [http://java.sun.com/

products/jms/docs.html].

1. General User Guides

1.1. System Properties

1.1.1. Explanation of System properties used in Qpid

This page documents the various System Properties that are currently used in the Qpid Java code base.

1.1.1.1. Client Properties

STRICT_AMQP

STRICT_AMQP_FATAL

Type Boolean
Default FALSE
This forces the client to only send AMQP

compliant frames. Thiswill disable anumber
of IMS features.

Features disabled by
STRICT_AMQP

¢ Queue Browser
» Message Selectors
 Durable Subscriptions

* Session Recover may result in duplicate
message delivery

» Destination validation, o no

InvalidDestinationException ~ will be
thrown

This is associated with property
STRICT_AMQP_FATAL

Type Boolean
Default FALSE
This will cause any attempt to utilise

an enhanced feature to throw and
UnsupportedOperationException. When set

142

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

AMQP Java JM S Messaging Client

IMMEDIATE_PREFETCH

amgj.default_syncwrite timeout

amg.dynamicsadlregistrar.properties

amgj .heartbeat.timeoutFactor

amgj.tcpNoDelay

amgj.sendBufferSize

to false then the exception will not occur but
the feature will be disabled.

e.g. The Queue Browser will always show
no messages. Any message selector will be
removed.

Type Boolean
Default FALSE

The default with AMQPisto start prefetching
messages. However, with certain 3rd party
Java tools, such as Mule this can cause a
problem. Mule will create a consumer but
never consume from it so any any prefetched
messages will be stuck until that session is
closed. This property is used to re-instate the
default AMQP behaviour. The default Qpid
behaviour is to prevent prefetch occurring,
by starting the connection Flow Controlled,
until a request for a message is made on the
consumer either via a receive() or setting a
message listener.

Type long
Default 30000

The number length of time in millisecond to
walit for a synchronous write to compl ete.

Type String

Default org/apache/qpid/client/
security/
DynamicSas|Registrar.properties

The name of the SASL configuration
propertiesfile.

Type float
Default 2.0

The factor used to get the timeout from the
delay between heartbeats

Type Boolean
Default TRUE

Disable Nagle's algorithm on the TCP
connection.

integer Boolean

143

AMQP Java JM S Messaging Client

1.1.1.2.

Default 32768
This is the default buffer sized created by
Mina
amgj.receiveBufferSize Type integer
Default 32768
This is the default buffer sized created by
Mina.
amgj.protocol provider.class Type String
Default org.apache.qpid.server.protocol AMQPFastPi

This specifies the default loHandlerAdapter
that represents the InVM broker. The
loHandlerAdapter must have a constructor
that takes a single Integer that represents the
INVM port number.

amgj.protocol.logging.level Type Boolean
Default null
If set thiswill turn on protocol logging on the
client.

jboss.host Used by the

JBossConnectionFactorylnitialiser to specify
the host to connect to perform JNDI lookups.

jboss.port Used by the
JBossConnectionFactorylnitialiser to specify
the port to connect to perform JNDI lookups.

amgj.MaximumStateWait Default 30000

Used to set the maximum time the State
Manager should wait before timing out a
frame wait.

Management Properties
security Default null

String representing the Security level to be used to on the connection to
the broker. The null default results in no security or PLAIN. When used
with jmxconnector ‘javax.management.remote.jmxmp.JM XM PConnector’
a security value of 'CRAM-MDS5' will result in al communication to the
broker being encrypted.

jmxconnector Default null

String representing the JMXConnector class used to perform the
connection to the broker. The null default results in the standard IMX

144

AMQP Java JM S Messaging Client

connector. Utilising 'javax.management.remote.jmxmp.JM X MPConnector
and security 'CRAM-MD5' will result in al communication to the broker
being encrypted.

timeout Default 5000

Long value representing the milli seconds before connection to the broker
should timeout.

1.1.1.3. Properties used in Examples

archivepath UsedinFi | eMessageDi spat cher . Thispropertiesspecifiesthedirectory
to move payload file(s) to archive location as no error

1.2. Connection URL Format
1.2.1. Format

amgp: / /[<user >: <pass>@|[<cl i enti d>] <vi rt ual host >[?<opti on>=' <val ue>' [&opti on>=" <v

The connection url defines the values that are common across the cluster of brokers. The virtual host is
second in the list as the AM QP specification demands that it start with a'/* otherwise it be more readable
to be swapped with clientid. Thereis currently only one required option and that is the brokerlist option.
In addition the following options are recognised.

1.2.2. Worked Example

Y ou could use a URL which looks something like this:

angp: // guest : guest @l i ent 1/ devel oprent ?brokerlist="tcp://| ocal host: 5672’
Breaking this example down, here'swhat it all means:
» amgp = the protocol we're using

* guest:guest@localhost = username:password@clientid where the clientid is the name of your server
(used under the covers but don't worry about this for now). Always use the guest:guest combination
at the moment.

* development = the name of the virtualhost, where the virtualhost is a path which acts as a namespace.
You can effectively use any value here so long as you're consistent throughout. The virtualhost must
start with aslash "/" and continue with names separated by slashes. A name consists of any combination
of at least one of [A-Za-z0-9] plus zero or more of [.-_+!=1].

* brokerlist =thisisthe host addressand port for the broker you want to connect to. The connection factory
will assume tcp if you don't specify a transport protocol. The port also defaultsto 5672. Naturally you
have to put at least one broker in thislist.

Thisexampleisnot using failover so only provides one host for the broker. If you do wish to connect using
failover you can provide two (or more) brokersin the format:

145

AMQP Java JM S Messaging Client

brokerlist="tcp://host1& tcp://host2:5673'
The default failover setup will automatically retry each broker once after a failed connection. If the

brokerlist contains more than one server then these servers are tried in a round robin. Details on how to
modifiy this behaviour will follow soon !

1.2.3. Options

Table 11.1. Connection URL Options

Option Default Description

brokerlist see below The list of brokers to use for this
connection

failover see below Thetype of failover method to use
with the broker list.

maxprefetch 5000 The maximum number of
messages to prefetch from the
broker.

1.2.4. Brokerlist option

br okerli st='<broker url>[;<broker url>]"

The broker list defines the various brokers that can be used for this connection. A minimum of one broker
url isrequired additional URLSs are semi-colon(’;") delimited.

1.2.5. Broker URL format

<transport>://<host>[: <port>][?<option>=' <val ue>' [&opti on>=' <val ue>']]
There are currently quite afew default valuesthat can be assumed. Thiswas done so that the current client

examples would not have to be re-written. The result is if there is no transport, 'tcp' is assumed and the
default AMQP port of 5672 is used if no port is specified.

Table11.2. Broker URL- Transport

Transport

tcp

vim

Currently only 'tcp' and 'vm' transports are supported. Each broker can take have additional options that
are specific to that broker. The following are currently implemented options. To add support for further
transportsthe "client.transportTransportConnection" class needs updating al ong with the parsing to handle
the transport.

Table 11.3. Broker URL - Connection Options

Option Default Description

146

AMQP Java JM S Messaging Client

retries 1 The number of times to retry
connection to this Broker

ss false Use ssl on the connection

connecttimeout 30000 How long in (milliseconds) to
wait for the connection to succeed

connectdelay none How long in (milliseconds)
to wait before attempting to
reconnect

1.2.6. Brokerlist failover option

fail over ="' <net hod>[?<opti ons>]"'

Thisoption controls how failover occurswhen presented with alist of brokers. There are only two methods
currently implemented but interface gpid.jms.failover.FailoverMethod can be used for defining further
methods.

Currently implemented failover methods.

Table 11.4. Broker List - Failover Options

Method Description

singlebroker Thiswill only use the first broker in the list.

roundrobin This method tries each broker in turn.

nofailover [New in 0.5] This method disables al retry and
failover logic.

The current defaults are naturally to use the 'singlebroker' when only one broker is present and the
‘roundrobin’ method with multiple brokers. The "'method™ value in the URL may also be any valid class
on the classpath that implements the FailoverMethod interface.

The'nofailover' method isuseful if you areusing a3rd party tool such asMulethat hasitsown reconnection
strategy that you wish to use.

Table 11.5. Broker List - Failover Options

Option Default Description

cyclecount 1 The number of times to loop
through the list of available
brokers before failure.

Note: Default was changed from O to 1 in Release 0.5

1.2.7. Sample URLs

angp: ///test ?brokerlist="1ocal host'
angp: ///test ?brokerlist="tcp://anot herhost:5684?retri es="10""
angp: // guest: guest @t est ?brokerlist="vm//:1,vm//:2" & ail over="roundrobin’

147

AMQP Java JM S Messaging Client

amgp: // guest: guest @t est ?brokerlist="vm//:1,vm//:2" & ai |l over =" r oundr obi n?cycl eco
amgp:// guest: guest @l i ent/test?brokerlist="tcp://Iocal host;tcp://redundant-server:
amgp: // guest: guest @t est ?brokerlist="vm//:1" & ai |l over ="' nof ai | over"

1.3. Binding URL Format

<Exchange C ass>://<Exchange Name>/[<Desti nati on>]/[<Queue>][?<opti on>=' <val ue>'[&

ThisURL format is used for two purposesin the code base. The broker usesthisinthe XML configuration
file to create and bind queues at broker startup. It is also used by the client as a destination.

Thisformat was used because it allows an explicit description of exchange and queue relationship.
The Exchange Class is not normally required for client connection as clients only publish to a named
exchange however if exchangesare being dynamically instantiated it will berequired. The classisrequired

for the server to instantiate an exchange.

There are anumber of optionsthat are currently defined:

Table 11.6. Binding URL Options

Option type Description

exclusive boolean Isthis an exclusive connection

autodelete boolean Should this queue be deleted on
client disconnection

durable boolean Create adurable queue

clientid string Use the following client id

subscription boolean Create a subscription to this
destination

routingkey string Use this value as the routing key

Using these options in conjunction with the Binding URL format should allow future expansion as new
and custom exchange types are created.

The URL format requires that at least one Queue or routingkey option be present on the URL.

The routingkey would be used to encode a topic as shown in the exampl es section below.
1.3.1. Examples

Example 11.1. Queues

A queue can be created in QPID using the following URL format.
direct://amg.direct//<Queue Name>

For example: direct://amg.direct//simpleQueue

Queue names may consist of any mixture of digits, letters, and underscores.

148

AMQP Java JM S Messaging Client

Example 11.2. Topics
A topic can be created in QPID using the following URL format.

topic://amq.topic/<Topic Subscription>/

The topic subscription may only contain the letters A-Z and a-z and digits 0-9.

direct://ang. direct/Si npl eQueue

direct://ang. di rect/Unusual | yBoundQueue?routi ngkey="'/queue'

topi c://anyg. topi c?routi ngkey="st ocks. #'
topi c://anyg. topi c?routi ngkey="st ocks. nyse. i bni

1.4. Java JMS Selector Syntax

The AMQP Java JM S Messaging Client supports the following syntax for JIMS selectors.

Comment s:
LI NE_COMVENT: "--" (~["\n","\r"])* EOL
EQL: "\n"|"\r"|"\r\n"
BLOCK_COMMENT: /" (~["*"])* "*" ("*" | (~["*","/"] (~["*"])* "*"))* "/
Reserved Wrds (case insensitive):
NOT: " NOT™"
AND: " AND"
OoR "CR"
BETWEEN:. " BETVEEEN'
LI KE: "LI KE"
ESCAPE: " ESCAPE"
I'N: "IN
IS "l S
TRUE: " TRUE"
FALSE: " FALSE"
NULL: " NULL"
Literals (case insensitive):
DECI MAL_LI TERAL: ["21"-"9"] (["0"-"9"])* (["I","L"])"?
HEX_LI TERAL: "o" ["x","X'] (["O"-"9","a"-"f","A"-"F'])+
OCTAL_LI TERAL: "0" (["O"-"T"])*
FLOATI NG_PO NT_LI TERAL: (([f"o"-"9"1)+ "." (["0"-"9"])* (<EXPONENT>)? // match
["." (["0"-"9"])+ (<EXPONENT>)? /1 match
| (["0"-"9"])+ <EXPG\IENT>) /1 match
EXPONENT: "E'O(["+,"-"])? (["o"-"9n])+
STRI NG_LI TERAL: R (R G I I I I B
Identifiers (case insensitive):
ID: ["a"-"2z", "_", "$"] ([a" "ot , "$])
QUOTED_ID : "\"™ (("\"\"") | ~["\ 1)* \

149

AMQP Java JM S Messaging Client

G ammar :

JnsSel ect or

or Expr essi on
andExpr essi on
equal i t yExpr essi on

or Expr essi on
(andExpression (<OR> andExpression)*)
(equalityExpression (<AND> equal it yExpress
(compari sonExpression ("=" conpari sonExp
| "<>" compari sonEx
| <I'S> <NULL>
| <I'S> <NOT> <NULL>
(addExpression (">" addExpressi on
| ">=" addExpression
| "<" addExpression
| "<=" addExpression
| <LIKE> stringLitteral (
| <NOT> <LIKE> <STRING LI T
|
|
|
|

conpari sonExpr ession :

<BETWEEN> addExpr essi on
<NOT> <BETWEEN> addExpre
<IN> "(" <STRI NG_LI TERAL
<NOT> <I N> "(" <STRING L

addExpr essi on = multExpr (("+" multExpr | "-" multExpr))
mul t Expr = unaryExpr ("*" unaryExpr | "/" unaryExpr |
unar yExpr = ("+" unaryExpr | "-" unaryExpr | <NOT> unar
pri mar yExpr = (literal | variable | "(" orExpression ")"
literal = (<STRI NG_LI TERAL>

| <DECI MAL_LI TERAL>

| <HEX_LI TERAL>

| <OCTAL_LI TERAL>

| <FLOATI NG_PO NT_LI TERAL>

| <TRUE>

| <FALSE>

| <NULL>)
vari abl e = (<ID> | <QUOTED I D>)

2. AMQP Java JMS Examples

Examples Directory [https.//svn.apache.org/repos/asf/qpid/trunk/gpid/javalclient/example/]

Script for running examples [https://svn.apache.org/repos/asf/qpid/trunk/qpid/javal/client/example/src/
main/javalrunSample.sh]

Direct Example [https://svn.apache.org/repos/asf/qpid/trunk/qpid/javalclient/example/src/main/javal
org/apache/qpi d/exampl e/jmsexampl e/direct/]

Fanout Example [https://svn.apache.org/repos/asf/qpid/trunk/qpid/javalclient/example/src/main/javal
org/apache/qpi d/exampl e/jmsexampl e/fanout/]

Pub-Sub Example [https://svn.apache.org/repos/asf/qpid/trunk/qpid/javalclient/exampl e/src/main/javal
org/apache/qpi d/exampl e/jmsexampl e/ pubsub]

Request/Response Example [https://svn.apache.org/repos/asf/qpid/trunk/qpid/javalclient/example/src/
main/javalorg/apache/qpid/exampl e/j msexampl e/requestResponse/]

Transacted Example [https://svn.apache.org/repos/ast/qpid/trunk/qpid/javalclient/example/src/main/
javalorg/apache/gpid/exampl e/jmsexampl e/transacted/]

150

ion)*)
ressi on
pression

)%)

<ESCAPE> str
ERAL> (<ESC
<AND> addExp
ssion <AND>
> ("," <STR
| TERAL> (",
*

"% unaryExp
yExpr | prin
)

https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/runSample.sh
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/runSample.sh
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/runSample.sh
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/direct/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/direct/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/direct/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/fanout/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/fanout/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/fanout/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/pubsub
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/pubsub
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/pubsub
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/requestResponse/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/requestResponse/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/requestResponse/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/transacted/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/transacted/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/org/apache/qpid/example/jmsexample/transacted/

Chapter 12. AMQP C++ Messaging
Client

1. User Guides

e C++ Client APl (AMQP 0-10) [http://qpid.apache.org/docs/api/cpp/html/index.html]

2. Examples

» AMQP C++ Client Examples [https://svn.apache.org/repos/asf/qpid/trunk/gpid/cpp/examples/]

* Running the AMQP C++ Client Examples [https://svn.apache.org/repos/asf/qpid/trunk/qgpid/cpp/
examplessREADME.txt]

151

http://qpid.apache.org/docs/api/cpp/html/index.html
http://qpid.apache.org/docs/api/cpp/html/index.html
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/README.txt
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/README.txt
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/README.txt

Chapter 13. AMQP .NET Messaging
Client

Currently the .NET code base provides two client libraries that are compatible respectively with AMQP
0.8 and 0.10. The 0.8 client is located in qpi d\ dot net and the 0.10 client in: qpi d\ dot net
\client-010.

Y ou will need an AMQP broker to fully use those client libraries. Use M4 or later C++ broker for AMQP
0.10 or Java broker for AMQP 0.8/0.9.

1. User Guides

1.1. Apache Qpid: Open Source AMQP Messaging
- .NET User Guide

1.1.1. Tutorial

Thistutorial consists of a series of examples using the three most commonly used exchange types - Direct,
Fanout and Topic exchanges. These examples show how to write applications that use the most common

messaging paradigms.
* direct

In the direct examples, a message producer writes to the direct exchange, specifying arouting key. A
message consumer reads messages from a named queue. Thisillustrates clean separation of concerns -
message producers need to know only the exchange and the routing key, message consumers need to
know only which queue to use on the broker.

» fanout

The fanout examples use a fanout exchange and do not use routing keys. Each binding specifiesthat all
messages for a given exchange should be delivered to a given queue.

* pub-sub

In the publish/subscribe examples, a publisher application writes messages to an exchange, specifying
amulti-part key. A subscriber application subscribes to messages that match the relevant parts of these
keys, using a private queue for each subscription.

* request-response

In the request/response examples, a simple service accepts requests from clients and sends responses
back to them. Clients create their own private queues and corresponding routing keys. When a client
sends a request to the server, it specifies its own routing key in the reply-to field of the request. The
server usesthe client's reply-to field as the routing key for the response.

1.1.1.1. Running the Examples

Before running the examples, you need to unzip the file Qpid.NET-net-2.0-M4.zip, the following treeis
Crested:

152

AMQP .NET Messaging Client

<hone>
| -qpid

|-1ib (contains the required dlls)
| - exanpl es
| - direct
| | - exanpl e-di rect-Li stener. exe
| | - exanpl e-di rect - Producer . exe
| - fanout
| | - exanpl e-f anout - Li st ener. exe
| | - exanpl e-f anout - Producer . exe
| - pub-sub
| | - exanpl e- pub- sub- Li st ener. exe
| | - exanpl e- pub- sub- Publ i sher. exe
| - request-response
| - exanpl e-request -response-C i ent. exe
| - exanpl e-request - r esponse- Server . exe

Make sure your PATH contains the directory <home>/qpid/lib The examples can be run by executing the
provided exefiles:

$ cd <hone>/ gqpi d/ exanpl es/ exanpl ef ol der
$ exanple-...-.exe [hostnanme] [portnunber]

where [hostname] is the gpid broker host name (default is localhost) and [portnumber] is the port number
on which the gpid broker is accepting connection (default is 5672).

1.1.1.2. Creating and Closing Sessions

All of the examples have been written using the Apache Qpid .NEt 0.10 API. The examples use the same
skeleton code to initialize the program, create a session, and clean up before exiting:

usi
usi
usi
usi
usi
usi

ng
ng
ng
ng
ng
ng

System

System | G,

System Text;

Syst em Thr eadi ng;

org. apache. gpid.client;
org. apache. gpi d. transport;

private static void Main(string[] args)
{
string host = args.Length > 0 ? args[0O] : "local host";
int port = args.Length > 1 ? Convert.Tolnt32(args[1l]) : 5672;
Client connection = new Cient();
try
{

connecti on. connect (host, port, "test", "guest", "guest");
Cli ent Sessi on sessi on = connecti on. creat eSessi on(50000) ;

153

AMQP .NET Messaging Client

[l---aeaa-- Main body of program-----------------------~-~---~-~-----
connection. cl ose();

E:atch (Exception e)

{ Console. WiteLine("Error: \n" + e.StackTrace);

}

1.1.1.3. Writing Direct Applications

This section describes two programs that implement direct messaging using a Direct exchange:
* org.apache.gpid.example.direct.Producer (from example-direct-producer) publishes messages to the
amg.direct exchange, using the routing key routing key. eorg.apache.qpid.example.direct.Listener
(from example-direct-Listener) uses a message listener to receive messages from the queue named
message_queue.

1.1.1.3.1. Running the Direct Examples
1) Make sure your PATH contains the directory <home>/qgpid/lib

2) Make sure that a gpid broker is running:

$ ps -eaf | grep gpidd

If abroker isrunning, you should see the gpidd process in the output of the above command.

3) Read the messages from the message queue using direct listener, as follows:

$ cd <home>/ qpi d/ exanpl es/ di r ect

With cygwin:

$./exanpl e-direct-Listener.exe [hostnane] [portnunber]

or with mono:

$ nono ./exanpl e-direct-Listener.exe [hostnanme] [portnunber]

This program is waiting for messages to be published, see next step:

4) Publish a series of messages to the amq.direct exchange by running direct producer, as follows:

$ cd <hone>/ gpi d/ exanpl es/ di r ect

154

AMQP .NET Messaging Client

1.1.1.3.2.

With cygwin:

$./exanpl e-direct-Producer.exe [hostnane] [portnunber]

or with mono:

$ mono ./ exanpl e-direct-Producer. exe [hostnane] [portnunber]

This program has no output; the messages are routed to the message queue, as instructed by the binding.

5) Go to the windows where you are running your listener. Y ou should see the following output:

Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: That's a

T OoOoO~NOUTA,WNEO

|, fol ks!

Now we will examine the code for each of these programs. In each section, we will discuss only the code
that must be added to the skeleton shown in Section "Creating and Closing Sessions”.

Reading Messages from the Queue
The program , listener.cs, is amessage listener that receives messages from a queue.

First it creates a queue named message _gueue, then binds it to the amg.direct exchange using the binding
key routing_key.

[f--eeemn- Main body of program ----------------“--““-“------ -

/1 Create a queue naned "nmessage_queue", and route all nessages whose
/1 routing key is "routing_key" to this newly created queue.

sessi on. queueDecl ar e(" nessage_queue");

sessi on. exchangeBi nd(" nessage_queue", "any.direct", "routing key");

The queue created by this program continues to exist after the program exits, and any message whose
routing key matches the key specified in the binding will be routed to the corresponding queue by the
broker. Note that the queue could have been be deleted using the following code:

sessi on. queueDel et e(" message_queue");

155

AMQP .NET Messaging Client

To create a message listener, create a class derived from IMessagelListener, and override the
messageTransfer method, providing the code that should be executed when a message is received.

public class Messageli stener : | Messageli stener
{

public void nessageTransfer (|l Message m

{
}

The main body of the program creates a listener for the subscription; attaches the listener to a message
gueue; and subscribe to the queue to receive messages from the queue.

| ock (session)
{
/1l Create a listener and subscribe it to the queue named "nessage_queue"
| MessagelLi stener |istener = new Messageli st ener (session);
sessi on. att achMessageli stener (Il i stener, "message_queue");
sessi on. messageSubscri be(" message_queue");
/! Receive nessages until all messages are received
Moni t or. Wi t (sessi on);

The Messagelistener's messageTransfer() function is called whenever a message is received. In this
example the message is printed and tested to see if it is the final message. Once the final message is
received, the messages are acknowledged.

Bi nar yReader reader = new Bi naryReader (m Body, Encodi ng. UTF8);
byte[] body = new byte[m Body. Length - m Body. Position];
reader. Read(body, 0, body. Length);
ASCl | Encodi ng enc = new ASCl | Encodi ng() ;
string nmessage = enc. Get String(body);
Consol e. WitelLi ne("Message: " + nessage);

/1 Add this nessage to the Iist of nessage to be acknow edged
_range.add(m 1 d);
i f(message. Equal s("That's all, folks!"))
{

/1 Acknow edge all the received nessages

_sessi on. nessageAccept (_range);

| ock(_session)

{

}
}

Moni t or . Pul se(_session);

1.1.1.3.3. Publishing Messages to a Direct Exchange

The second program in the direct example, Producer.cs, publishes messages to the amq.direct exchange
using the routing key routing_key.

156

AMQP .NET Messaging Client

First, create amessage and set arouting key. The same routing key will be used for each message we send,
so you only need to set this property once.

| Message nmessage = new Message();

/1 The routing key is a nessage property. W will use the sane
/1 routing key for each nessage, so we'll set this property

/1 just once. (In nost sinple cases, there is no need to set
/1 other message properties.)

nmessage. Del i veryProperties. set Routi ngkey("routing_key");

Now send some messages:

/1 Asynchronous transfer sends nessages as quickly as

/1 possible without waiting for confirmation

for (int i =0; i < 10; i++)

{
nessage. cl earDat a() ;
nessage. appendDat a(Encodi ng. UTF8. Get Byt es(" Message " + i));
sessi on. messageTransfer("anqg. direct", nessage);

}

Send afinal synchronous message to indicate termination:

/1 And send a syncrhonous final message to indicate ternination.
nessage. cl earDat a() ;

nessage. appendDat a(Encodi ng. UTF8. Get Bytes("That's all, folks!"));
sessi on. nessageTransfer("ang.direct", "routing key", nessage);
sessi on. sync();

1.1.1.4. Writing Fanout Applications

1.1.1.4.1.

This section describes two programs that illustrate the use of a Fanout exchange.

* Listener.cs makes a unique queue private for each instance of the listener, and binds that queue to the
fanout exchange. All messages sent to the fanout exchange are delivered to each listener's queue.

» Producer.cs publishes messages to the fanout exchange. It does not use a routing key, which is not
needed by the fanout exchange.

Running the Fanout Examples
1) Make sure your PATH contains the directory <home>/qgpid/lib

2) Make sure that a gpid broker is running:

$ ps -eaf | grep gpidd

If abroker isrunning, you should see the gpidd process in the output of the above command.

157

AMQP .NET Messaging Client

3) In separate windows, start one or more fanout listeners as follows:

$ cd <home>/ qpi d/ exanpl es/ di r ect

With cygwin:

$./ exanpl e-fanout - Li stener. exe [hostnane] [portnunber]

or with mono:

$ nono ./exanpl e-fanout-Listener.exe [hostnane] [portnunber]

Thelistener creates a private queue, bindsit to the amg.fanout exchange, and waits for messagesto arrive
on the queue. When the listener starts, you will see the following message:

Li st eni ng

This program is waiting for messages to be published, see next step:

4) In a separate window, publish a series of messages to the amq.fanout exchange by running fanout
producer, as follows:

$ cd <hone>/ gpi d/ exanpl es/ di r ect

With cygwin:

$./ exanpl e-fanout - Producer. exe [hostnane] [portnunber]

or with mono:

$ nono ./exanpl e-fanout-Producer. exe [hostnanme] [portnunber]

This program has no output; the messages are routed to the message queue, as prescribed by the binding.
5) Go to the windows where you are running listeners. You should see the following output for each

listener:

Message: Message
Message: Message
Message: Message
Message: Message

WNEFLO

158

AMQP .NET Messaging Client

Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: Message
Message: That's a

T OO ~NO O~

|, fol ks!

Now we will examine the code for each of these programs. In each section, we will discuss only the code
that must be added to the skeleton shown in Section "Creating and Closing Sessions”.

1.1.1.5. Consuming from a Fanout Exchange

The first program in the fanout example, Listener.cs, creates a private queue, binds it to the amg.fanout
exchange, and waits for messagesto arrive on the queue, printing them out asthey arrive. It usesaListener
that isidentical to the one used in the direct example:

public class MessageListener : | MessagelLi stener
{
private readonly CientSession _session
private readonly RangeSet _range = new RangeSet();
publ i c Messageli stener(C ient Sessi on session)

{
_session = session
}
public void nessageTransfer (|l Message m
{
Bi nar yReader reader = new Bi naryReader (m Body, Encodi ng. UTF8);
byte[] body = new byte[m Body. Length - m Body. Position];
reader . Read(body, 0, body.Length);
ASCl | Encodi ng enc = new ASCI | Encodi ng() ;
string message = enc. Get String(body);
Consol e. Wi telLi ne("Message: " + nessage);
/1 Add this nmessage to the Iist of nmessage to be acknow edged
_range. add(m 1d);
i f (message. Equal s("That's all, folks!"))
{
/1 Acknowl edge all the received nessages
_sessi on. messageAccept (_range);
| ock (_session)
{
Moni t or . Pul se(_sessi on);
}
}
}

The listener creates a private queue to receive its messages and binds it to the fanout exchange:

string myQueue = session. Nane;

159

AMQP .NET Messaging Client

sessi on. queueDecl are(myQueue, Opti on. EXCLUSI VE, Option. AUTO DELETE);
sessi on. exchangeBi nd(myQueue, "ang.fanout", "ny-key");

Now we create a listener and subscribe it to the queue:

| ock (session)

{
Consol e. Wi telLi ne("Listening");
/1l Create a listener and subscribe it to ny queue.
| MessagelLi stener |istener = new Messageli st ener (session);
sessi on. att achMessagelLi st ener (i stener, nyQueue);
sessi on. messageSubscri be(nyQueue) ;
/1 Receive nessages until all nessages are received
Moni t or. Wi t (sessi on);
}

1.1.1.5.1. Publishing Messages to the Fanout Exchange

The second program in this example, Producer.cs, writes messages to the fanout queue.

/1 Unlike topic exchanges and direct exchanges, a fanout

/1 exchange need not set a routing key.

| Message nessage = new Message();

/1 Asynchronous transfer sends nessages as quickly as

/1 possible without waiting for confirmation.

for (int i =0; i < 10; i++)

{
nessage. cl ear Dat a() ;
nessage. appendDat a(Encodi ng. UTF8. Get Byt es("Message " + i));
sessi on. nessageTransfer ("ang. fanout", nessage);

}

/1 And send a syncrhonous final nmessage to indicate ternination.
nessage. cl earDat a() ;

nessage. appendDat a(Encodi ng. UTF8. Get Bytes("That's all, folks!"));
sessi on. nessageTransfer ("ang. fanout", nessage);

sessi on. sync();

1.1.1.6. Writing Publish/Subscribe Applications
This section describes two programs that implement Publish/Subscribe messaging using a topic exchange.

* Publisher.cS sends messages to the amqg.topic exchange, using the multipart routing keys usa.news,
usa.weather, europe.news, and europe.weather. « Listener.cs creates private queuesfor news, weather, usa,
and europe, binding them to the amqg.topic exchange using bindings that match the corresponding parts
of the multipart routing keys.

In this example, the publisher creates messages for topics like news, weather, and sports that happen
in regions like Europe, Asia, or the United States. A given consumer may be interested in all weather
messages, regardless of region, or it may be interested in news and weather for the United States, but

160

AMQP .NET Messaging Client

1.1.1.6.1.

uninterested in items for other regions. In this example, each consumer sets up its own private queues,
which receive precisely the messages that particular consumer isinterested in.

Running the Publish-Subscribe Examples
1) Make sure your PATH contains the directory <home>/qgpid/lib

2) Make sure that a gpid broker isrunning:

$ ps -eaf | grep qpidd

If abroker is running, you should see the gpidd process in the output of the above command.

3) In separate windows, start one or more topic subscribers as follows:

$ cd <hone>/ gpi d/ exanpl es/ di rect

With cygwin:

$./ exanpl e- pub- sub- - Li st ener. exe [hostnane] [portnunber]

or with mono:

$ nono ./ exanpl e- pub-sub- Li st ener. exe [host nane] [portnunber]

You will see output similar to this:

Li stening for nmessages ...
Decl ari ng queue: usa

Decl ari ng queue: europe
Decl ari ng queue: news

Decl ari ng queue: weat her

Each topic consumer creates a set of private queues, and binds each queue to the amq.topic exchange
together with a binding that indicates which messages should be routed to the queue.

4) In another window, start the topic publisher, which publishes messages to the amg.topic exchange, as
follows:

$ cd <hone>/ gpi d/ exanpl es/ di rect

With cygwin:

$./ exanpl e- pub- sub- Producer. exe [hostnane] [portnunber]

161

AMQP .NET Messaging Client

or with mono:
$ mono ./ exanpl e- pub-sub- Producer. exe [hostnane] [portnunber]
This program has no output; the messages are routed to the message queues for each topic_consumer as

specified by the bindings the consumer created.

5) Go back to the window for each topic consumer. Y ou should see output like this;

Message: Message O from usa
Message: Message O from news
Message: Message O from weat her
Message: Message 1 from usa
Message: Message 1 from news
Message: Message 2 from usa
Message: Message 2 from news
Message: Message 3 from usa
Message: Message 3 from news
Message: Message 4 from usa
Message: Message 4 from news
Message: Message 5 from usa
Message: Message 5 from news
Message: Message 6 from usa
Message: Message 6 from news
Message: Message 7 from usa
Message: Message 7 from news
Message: Message 8 from usa
Message: Message 8 from news
Message: Message 9 from usa
Message: That's all, fol ks! from weat her
Shutting down |istener for control
Message: That's all, fol ks! from europe

Shutting down |istener for control

Now we will examine the code for each of these programs. In each section, we will discuss only the code
that must be added to the skeleton shown in Section "Creating and Closing Sessions”.

1.1.1.6.2. Publishing Messages to a Topic Exchange

The first program in the publish/subscribe example, Publisher.cs, defines two new functions: one that
publishes messages to the topic exchange, and one that indicates that no more messages are coming.

The publishM essages function publishes a series of five messages using the specified routing key.

private static void publishMessages(C ient Session session, string routing_key)

{

| Message message = new Message();
/1 Asynchronous transfer sends nessages as quickly as

162

AMQP .NET Messaging Client

1.1.1.6.3.

/1 possible without waiting for confirmation.

for (int i =0; i < 10; i++)

{
nmessage. cl earDat a() ;
nmessage. appendDat a(Encodi ng. UTF8. Get Byt es("Message " + i));
sessi on. messageTransfer("ang.topic", routing_key, nessage);

The noM oreM essages function signal sthe end of messages using the control routing key, whichisreserved
for control messages.

private static void noMreMessages(C ientSession session)

{
| Message nessage = new Message();
/1 And send a syncrhonous final nessage to indicate ternination.
nessage. cl earDat a() ;
nessage. appendDat a(Encodi ng. UTF8. Get Bytes("That's all, folks!"));
sessi on. nessageTransfer("ang.topic", "control", nessage);
sessi on. sync();

In the main body of the program, messages are published using four different routing keys, and then the
end of messages is indicated by a message sent to a separate routing key.

publ i shMessages(sessi on, "usa.news");

publ i shMessages(sessi on, "usa.weather");
publ i shMessages(sessi on, "europe. news");
publ i shMessages(sessi on, "europe.weather");

noMbr eMessages(sessi on) ;

Reading Messages from the Queue

The second program in the publish/subscribe example, Listener.cs, creates alocal private queue, with a
unique name, for each of the four binding keys it specifies: usa.#, europe#, #.news, and #.weather, and
creates alistener.

Consol e. WitelLine("Listening for nmessages ...");
/] Create a listener

prepar eQueue("usa", "usa.#", session);

pr epar eQueue(" eur ope”, "europe.#", session);
prepar eQueue(" news", "#.news", session);

prepar eQueue("weat her", "#.weather", session);

The prepareQueue() method creates a queue using a queue name and arouting key supplied as arguments
it then attaches a listener with the session for the created queue and subscribe for this receiving messages
from the queue:

163

AMQP .NET Messaging Client

/1l Create a uni que queue name for this consuner by concatenating
/1 the queue name parameter with the Session ID.

Consol e. Wi telLi ne("Decl ari ng queue: " + queue);

sessi on. queueDecl are(queue, Option. EXCLUSI VE, Opti on. AUTO DELETE);

/! Route messages to the new queue if they match the routing key.
/1 Also route any nessages to with the "control” routing key to

/1 this queue so we know when it's tine to stop. A publisher sends
/1 a nmessage with the content "That's all, Folks!", using the

/1 "control" routing key, when it is finished.

sessi on. exchangeBi nd(queue, "any.topic", routing_key);
sessi on. exchangeBi nd(queue, "any.topic", "control");

/1 subscribe the listener to the queue

| MessagelLi stener |istener = new Messageli st ener (session);
sessi on. att achMessageli stener (| i stener, queue);

sessi on. messageSubscri be(queue) ;

1.1.1.7. Writing Request/Response Applications

1.1.1.7.1.

In the request/response exampl es, we write a server that accepts strings from clients and converts them to
upper case, sending the result back to the requesting client. This example consists of two programs.

» Client.csis aclient application that sends messages to the server. « Server.csis a service that accepts
messages, converts their content to upper case, and sends the result to the amg.direct exchange, using
the request's reply-to property as the routing key for the response.

Running the Request/Response Examples
1) Make sure your PATH contains the directory <home>/qgpid/lib

2) Make sure that a gpid broker is running:

$ ps -eaf | grep gpidd

If abroker is running, you should see the gpidd process in the output of the above command.
3) Run the server.

$ cd <home>/qgpid/examples/direct

Wth cygwi n:

$.Jexample-request-response-Server.exe [hostname] [portnumber]

or with nono:

$ mono ./example-request-response-Server.exe [hostname] [portnumber]

164

AMQP .NET Messaging Client

You will see output simlar to this:

Waiting for requests

4) In a separate wi ndow, start a client:

$ cd <hone>/ gpi d/ exanpl es/ di r ect

With cygwin:

$./exanpl e-request-response-Cient.exe [hostnanme] [portnunber]

or with mono:

$ nono ./exanpl e-request-response-Cient.exe [hostnanme] [portnunber]

You will see output similar to this:

Activating response queue |istener for: clientSystem Byte[]
Waiting for all responses to arrive ...

Response: TWAS BRILLIG AND THE SLI THY TOVES

Response: DID G RE AND GYMBLE I N THE WABE.

Response: ALL M MSY WERE THE BOROGROVES,

Response: AND THE MOVE RATHS OUTGRABE.

Shutting down listener for clientSystemByte[]

Response: THAT' S ALL, FOLKS!

4) Go back to the server window, the output should be similar to this:

Waiting for requests

Request: Twas brillig, and the slithy toves
Request: Did gire and gynble in the wabe.
Request: Al minsy were the borogroves,
Request: And the nome raths outgrabe.
Request: That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only the code
that must be added to the skeleton shown in Section "Creating and Closing Sessions'.

1.1.1.7.2. The Client Application

The first program in the request-response example, Client.cs, sets up a private response queue to receive
responses from the server, then sends messages the server, listening to the response queue for the server's
responses.

165

AMQP .NET Messaging Client

string response_queue = "client" + session.getNane();

/1 Use the nane of the response queue as the routing key

sessi on. queueDecl ar e(response_queue);

sessi on. exchangeBi nd(response_queue, "ang.direct", response_queue);

/1l Create a listener for the response queue and |listen for response nessages.
Consol e. WitelLine("Activating response queue listener for: " + response_queue);
| MessagelLi stener |istener = new Client MessagelLi st ener (session);

sessi on. att achMessagelLi stener (i stener, response_queue);

sessi on. messageSubscri be(response_queue) ;

Set some properties that will be used for all requests. The routing key for arequest is request. The reply-
to property is set to the routing key for the client's private queue.

| Message request = new Message();
request. Del i veryProperties. set Routi ngkey("request");
request . MessageProperties. set Repl yTo(new Repl yTo("ang. direct™, response_queue));

Now send some requests...

string[] strs = {
"Twas brillig, and the slithy toves”,
"Did gire and gynble in the wabe.",
"Al'l mnsy were the borogroves, ",
"And the nonme raths outgrabe.”,
"That's all, folks!"
b

foreach (string s in strs)

{

request.cl earData();

request . appendDat a(Encodi ng. UTF8. Get Byt es(s));

sessi on. messageTransfer("ang. direct”, request);

}

And wait for responsesto arrive:

Consol e. WitelLine("Waiting for all responses to arrive ...");
Moni t or. Vi t (sessi on);
1.1.1.7.3. The Server Application

The second program in the request-response example, Server.cs, uses the reply-to property as the routing
key for responses.

The main body of Server.cs creates an exclusive queue for requests, then waits for messagesto arrive.

166

AMQP .NET Messaging Client

const string request_queue = "request"”;

/1 Use the nane of the request queue as the routing key

sessi on. queueDecl ar e(request _queue) ;

sessi on. exchangeBi nd(request _queue, "ang.direct", request_queue);

| ock (session)
{

/1l Create a listener and subscribe it to the request_queue
| MessagelLi stener |istener = new Messageli st ener (session);
sessi on. att achMessageli stener (Il i stener, request_queue);
sessi on. messageSubscri be(request _queue);

/! Receive nessages until all messages are received

Consol e. WitelLine("Waiting for requests”);

Moni t or. Vi t (sessi on);

Thelistener's messageTransfer() method convertsthe request's content to upper case, then sendsaresponse
to the broker, using the request's reply-to property as the routing key for the response.

Bi nar yReader reader = new Bi naryReader (request. Body, Encodi ng. UTF8);
byte[] body = new byte[request. Body. Length - request.Body. Position];
reader. Read(body, 0, body. Length);

ASCl | Encodi ng enc = new ASCI | Encodi ng();

string nmessage = enc. Get String(body);

Consol e. WitelLi ne("Request: " + nessage);

/1 Transform nessage content to upper case
string responseBody = nessage. ToUpper();

/1 Send it back to the user
response. cl earDat a() ;

response. appendDat a(Encodi ng. UTF8. Get Byt es(r esponseBody)) ;
_session. messageTransfer ("anqg. direct", routingKey, response);

1.2. Excel AddIn
1.2.1. Excel AddIn

Qpid .net comes with Excel Addinsthat are located in:
<proj ect - r oot >\ gpi d\ dot net\ cl i ent - 010\ addi ns

There are currently three projects:

ExcelAddIn An RTD excel Addin

Excel AddInProducer A sample client to demonstrate the RTD
Addin

Excel AddInM essageProcessor A sample message processor for the RTD
Addin

167

AMQP .NET Messaging Client

1.2.1.1. Qpid RDT AddIn
1.2.1.1.1. Deploying the RTD AddIn

Excel provides afunction called RTD (real-time data) that lets you specify a COM server viaits Progld
here "Qpid" so that you can push gpid messages into Excel.

The provided RTD Addin consumes messages from one queue and process them through a provided
message processor.

For using the Qpid RTD follows those steps:

1. Copy the configuration Excel.exe.config into Dr i ve\ Program Fi | es\ M crosoft O fice
\Oficel2.

2. EditExcel . exe. xm and set thetargeted Qpid broker host, port number, username and password.
3. Select the cell or cell range to contain the RTD information

4. Enter thefollowing formula=rtd(" Qpid",,"” myQueue"). Where MyQueue isthe queue from which
you wish to receive messages from.

Note: The Qpid RTD isaCOM-Addin that must be registered with Excel. Thisisdone automatically when
compiling the Addin with visual studio.

1.2.1.1.2. Defining a message processor

The default behavior of the RDT Addin is to display the message payload. This could be altered
by specifying your own message processor. A Message processor is a class that implements the
APl ExcelAddln.M essagePr ocessor. For example, the provided processor in cl i ent - 010\ addi ns
\ Excel Addl nMessagePr ocessor displays the message body and the the header price when
specified.

To use you own message processor follows those steps:
1. Write your own message processor that extends Excel AddIn.M essageProcessor

2. Edit Excel.exe.config and uncomment the entries:

<add key="Processor Assenbl y"
val ue="<pat h>\ gpi d\ dot net\ cl i ent - 010\ addi ns\ Excel Addl nMessagePr ocessor\ bi n\ Debt

<add key="Processord ass"
val ue="Excel Addl nMessagePr ocessor. Processor"/ >

* ProcessorAssembly isthe path on the Assembly that contains your processor class
» ProcessorClassis your processor class name
3. runexcel and define artd function

Note: the provided ExcelAddinProducer can be used for testing the provided message processor. As
messages are sent to queuel the following rtd function should be used =rtd(" Qpid",," queuel").

168

AMQP .NET Messaging Client

1.3. WCF

1.3.1. Introduction

WCF (Windows Communication Foundation) unifies the .Net communication capabilities
into a single, common, general Web service oriented framework. A good WCF
tutorial can be found here [http://www.netfxharmonics.com/2008/11/Understanding-WCF-Services-in-
Silverlight-2#WCFSilverlightl ntroduction].

WCF separates how servicelogiciswritten from how servicescommunicate with clients. Bindingsare used
to specify the transport, encoding, and protocol details required for clients and services to communicate
with each other. Qpid provide a WCF binding: org.apache.qpid.wcf.model.QpidBinding. WCF Services
that use the Qpid binding communicate through queues that are dynamically created on a Qpid broker.

1.3.2. How to use Qpid binding

WCEF services are implemented using:
» A service contract with one or more operation contracts.
* A service implementation for those contracts.

» A configuration file to provide that implementation with an endpoint and a binding for that specific
contract.

The following configuration file can be used to configure aHello Service:
<confi guration>

<system servi ceMbdel >
<servi ces>

<!-- the service class -->
<servi ce name="org. apache. gpi d. wef. deno. Hel | oSer vi ce" >
<host >

<baseAddr esses>
<l-- Use SOAP over AMP -->
<add baseAddr ess="soap.anmqgp:///" />
</ baseAddr esses>
</ host >

<endpoi nt
address="Hel | 0"
<I-- W& use a pid Binding, see below def -->
bi ndi ng="cust onBi ndi ng"
bi ndi ngConf i gur ati on="CQpi dBi ndi ng"
<!-- The service contract -->
contract ="org. apache. gpi d. wef. deno. | Hel | oContract™/ >
</ service>
</ services>

<bi ndi ngs>
<cust onBi ndi ng>
<l-- cf def of the qpid binding -->
<bi ndi ng nanme=" Qi dBi ndi ng" >

169

http://www.netfxharmonics.com/2008/11/Understanding-WCF-Services-in-Silverlight-2#WCFSilverlightIntroduction
http://www.netfxharmonics.com/2008/11/Understanding-WCF-Services-in-Silverlight-2#WCFSilverlightIntroduction
http://www.netfxharmonics.com/2008/11/Understanding-WCF-Services-in-Silverlight-2#WCFSilverlightIntroduction

AMQP .NET Messaging Client

<t ext MessageEncodi ng />

<l-- specify the host and port nunber of the broker -->

<Qpi dTransport
host ="192. 168. 1. 14"
port="5673" />

</ bi ndi ng>
</ cust onBi ndi ng>
</ bi ndi ngs>

<ext ensi ons>
<bi ndi ngEl enment Ext ensi ons>
<l-- use id binding elenent: org.apache. gpi d. wcf. nodel . Qoi dTransport El en
<add
nane=" Qi dTransport"
type="org. apache. gpi d. wcf . nodel . Qpi dTransport El enent, qgpi dWCFMbdel "/ >
</ bi ndi ngEl enent Ext ensi ons>
</ ext ensi ons>

</ system servi ceModel >
</ configuration>

Endpoints and bindings can also be set within the service code:

/* set HostNane, portNunmber and MyService accordingly */

Bi ndi ng bi ndi ng = new Qpi dBi ndi ng(" Host Nanme", portNunber);

Servi ceHost service = new Servi ceHost (typeof (MyService), new Uri ("soap.angp:///"))
servi ce. AddSer vi ceEndpoi nt (t ypeof (1 Booki ng), binding, "M/Service");
servi ce. Open();

2. Examples

* http://svn.apache.org/viewvc/qgpid/trunk/gpid/dotnet/client-010/examples/

170

http://svn.apache.org/viewvc/qpid/trunk/qpid/dotnet/client-010/examples/

Chapter 14. AMQP Python Messaging
Client

1. User Guides

» Python Client API Guide [http://qpid.apache.org/docs/api/python/html/index.html]

2. Examples

* AMQP Python Client Examples [https://svn.apache.org/repos/asf/qpid/trunk/gpid/python/examples/]

* Running the AMQP Python Client Examples [https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/
examplessREADME]

3. PythonBrokerTest
3.1. Python Broker System Test Suite

This is a suite of python client tests that exercise and verify broker functionality. Python allows us to
rapidly develop client test scenarios and provides a 'neutral’ set of tests that can run against any AMQP-
compliant broker.

The python/testsdirectory containsacollection of python modules, each containing several unittest classes,
each containing a set of test methods that represent some test scenario. Test classes inherit gpid.TestBas
from qpid/testlib.py, it inherits unittest. TestCase but adds some qpid-specific setUp/tearDown and
convenience functions.

TODO: get pydoc generated up to gpid wiki or website automatically?

3.1.1. Running the tests
Simplest way to run the tests:
* Run abroker on the default port
e Jrun_tests
For additional options:. ./run_tests --help
3.1.2. Expected failures
Until we complete functionality, tests may fail because the tested functionality is missing in the broker.

To skip expected failuresin the C++ or Java brokers:

.Jrun_tests -1 cpp_failing.txt
./run_tests -1 java_failing.txt

If you fix afailure, please remove it from the corresponding list.

171

http://qpid.apache.org/docs/api/python/html/index.html
http://qpid.apache.org/docs/api/python/html/index.html
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/README
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/README
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/README

Chapter 15. AMQP Ruby Messaging
Client

The Ruby Messaging Client currently has little documentation and few examples.

1. Examples

AMQP Ruby Messaging Client Examples [https://svn.apache.org/repos/asf/qpid/trunk/gpid/ruby/
examples]

172

https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples
https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples
https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples

Part V. Appendices

Table of Contents

16. AMQP COMPAELIDIHITY ...t et 175
1. AMQP Compatibility of Qpid releases.ocviiiiiiiiii e 175

2. Interop table by AMQP SPeCifiCation VErSIONcooeveieiiiiiiieiiiieeeei e 176

17. Qpid Interoperability DOCUMENTALIONceeuteeiiiiiie et e e e eai e eens 177
1. Qpid Interoperability DOCUMENTALIONiiiiiiiieiiiii e 177

L SA S e e et ee 177

174

Chapter 16. AMQP compatibility

Qpid provides the most complete and compatible implementation of AMQP. And is the most aggressive
in implementing the latest version of the specification.

There are two brokers:

» C++ with support for AMQP 0-10

» Javawith support for AMQP 0-8 and 0-9 (0-10 planned)

There are client libraries for C++, Java (JMS), .Net (written in C#), python and ruby.
 All clients support 0-10 and interoperate with the C++ broker.

* The JMS client supports 0-8, 0-9 and 0-10 and interoperates with both brokers.

» The python and ruby clients will also support al versions, but the API is dynamically driven by the
specification used and so differs between versions. To work with the Java broker you must use 0-8 or
0-9, to work with the C++ broker you must use 0-10.

e There aretwo separate C# clients, one for 0-8 that interoperates with the Java broker, one for 0-10 that
inteoperates with the C++ broker.

QMF Management is supported in Ruby, Python, C++, and via QMan for Java IMX & WS-DM.

1. AMQP Compatibility of Qpid releases:

Qpid implements the AMQP Specification, and as the specification has progressed Qpid is keeping up
with the updates. This means that different Qpid versions support different versions of AMQP. Here is
asimple guide on what use.

Here is a matrix that describes the different versions supported by each release. The status symbols are
interpreted as follows:

Y supported
N unsupported
IP inprogress

P planned

Table 16.1. AMQP Version Support by Qpid Release

Component Spec
M2.1 M3 M4 05
javaclient 0-10 Y Y Y
0-9 Y Y Y Y
0-8 Y Y Y Y
java broker 0-10 P
0-9 Y Y Y Y

175

AMQP compatibility

0-8 Y Y Y Y
ct+ client/|0-10 Y Y Y
broker
0-9 Y
python client |0-10 Y Y Y
0-9 Y Y Y Y
0-8 Y Y Y Y
ruby client 0-10 Y Y
0-8 Y Y Y Y
C# client 0-10 Y Y
0-8 Y Y Y Y

2. Interop table by AMQP specification version

Above table represented in another format.

Table 16.2. AMQP Version Support - alternate for mat

release 0-8 0-9 0-10
javaclient M3 M40.5 Y Y Y
javaclient M2.1 Y Y N
javabroker M3 M40.5 Y Y N
java broker trunk Y Y P
javabroker M2.1 Y Y N
c++ client/broker |M3M40.5 N N Y
ct++ client/broker |M2.1 N Y N
python client M3 M40.5 Y Y Y
python client M2.1 Y Y N
ruby client M3 M40.5 Y Y N
ruby client trunk Y Y P
C# client M3M40.5 Y N N
CH# client trunk Y N Y

176

Chapter 17. Qpid Interoperability
Documentation

1. Qpid Interoperability Documentation

This page documents the various interoperabl e features of the Qpid clients.

1.1. SASL

1.1.1. Standard Mechanisms
http://en.wikipedia.org/wiki/Simple_Authentication and Security Layer#SASL_mechanisms

Thistablelist the various SASL mechanismsthat each component supports. Theversion listed showswhen

this functionality was added to the product.

Table 17.1. SASL Mechanism Support

Component |ANONYMOUSRAM-MD5 |DIGEST- EXTERNAL |GSSAPI/ PLAIN
MD5 Kerberos
C++ Broker |M3[Sectichl,|M3[Sectidhl, M3[Sectidhl, M1
Standard|“ Standard Standard
Mechanisms |Mechanisms Mechanisms
" [177]] [177Bectiomh. 1, [177Bectiomh. 1,
‘ Standard “ Standard
Mechanisms Mechanisms
" [177]] " [177]]
C++ Client |M3[Sectidhl, M1
Standard
Mechanisms
" [177]]
Java Broker M1 M1
Java Client M1 M1
.Net Client |M2 M2 M2 M2 M2
Python Client ?
Ruby Client 2

1: Support for these will be in M3 (currently available on trunk).

2: C++ Broker uses Cyrus SASL [http://freshmeat.net/projects/cyrussasl/] which supports CRAM-MD5

and GSSAPI but these have not been tested yet

1.1.2. Custom Mechanisms

There have been some custom mechanisms added to our implementations.

177

http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer#SASL_mechanisms
http://freshmeat.net/projects/cyrussasl/
http://freshmeat.net/projects/cyrussasl/

Qpid Interoperability Documentation

Table17.2. SASL Custom M echanisms

Component AMQPLAIN CRAM-MD5-HASHED
C++ Broker

C++ Client

Java Broker M1 M2

Java Client M1 M2

.Net Client

Python Client M2

Ruby Client M2

1.1.2.1. AMQPLAIN

1.1.2.2. CRAM-MD5-HASHED

The Java SASL implementations require that you have the password of the user to validate the incoming
request. This then means that the user's password must be stored on disk. For this to be secure either the
broker must encrypt the password file or the need for the password being stored must be removed.

The CRAM-MD5-HASHED SASL plugin removes the need for the plain text password to be stored on
disk. The mechanism defers all functionality to the build in CRAM-MD5 module the only change is on
the client sidewhere it generates the hash of the password and usesthat value asthe password. This means
that the Java Broker only need store the password hash on thefile system. While aoneway hashisnot very
secure compared to other forms of encryption in environments where the having the password in plain
text is unacceptable thiswill provide and additional layer to protect the password. In particular this offers
some protection where the same password may be shared amongst many systems. It offers no real extra
protection against attacks on the broker (the secret is now the hash rather than the password).

178

