
Programming in Apache Qpid

Cross-Platform AMQP Messaging
in Java JMS, .NET, C++, and Python



Programming in Apache Qpid: Cross-Platform AMQP Messaging in
Java JMS, .NET, C++, and Python



iii

Table of Contents
1. Introduction ...................................................................................................................  1
2. Using the Qpid Messaging API .........................................................................................  2

1. A Simple Messaging Program in C++ ........................................................................  2
2. A Simple Messaging Program in Python .....................................................................  4
3. A Simple Messaging Program in .NET C# ................................................................... 4
4. Addresses ..............................................................................................................  6

4.1. Address Strings ............................................................................................  7
4.2. Subjects ......................................................................................................  8
4.3. Address String Options ................................................................................  11
4.4. Address String Grammar ..............................................................................  17

5. Logging ...............................................................................................................  18
5.1. Logging in C++ .......................................................................................... 18
5.2. Logging in Python ......................................................................................  18

6. Receiving Messages from Multiple Sources ...............................................................  19
7. Request / Response ................................................................................................  19
8. Maps in Message Content .......................................................................................  20

8.1. Qpid Maps in Python ..................................................................................  21
8.2. Qpid Maps in C++ ......................................................................................  21

9. Performance .........................................................................................................  23
9.1. Batching Acknowledgements ........................................................................  23
9.2. Prefetch ....................................................................................................  23
9.3. Sizing the Replay Buffer ..............................................................................  24

10. Reliability ..........................................................................................................  24
10.1. Reconnect ................................................................................................  24
10.2. Guaranteed Delivery ..................................................................................  25
10.3. Reliability Options in Senders and Receivers ..................................................  26
10.4. Cluster Failover ........................................................................................  26

11. Security .............................................................................................................  26
12. Transactions .......................................................................................................  27
13. The AMQP 0-10 mapping .....................................................................................  28

3. Using the Qpid JMS client .............................................................................................. 30
1. A Simple Messaging Program in Java JMS ................................................................  30
2. Apache Qpid JNDI Properties for AMQP Messaging ...................................................  32

2.1. JNDI Properties for Apache Qpid ..................................................................  32
2.2. Connection URLs .......................................................................................  33

3. Java JMS Message Properties ..................................................................................  35
4. JMS MapMessage Types ........................................................................................  36
5. JMS Client Logging ..............................................................................................  38

4. Using the Qpid WCF client ............................................................................................  39
1. XML and Binary Bindings ......................................................................................  39
2. Endpoints ............................................................................................................. 43
3. Message Headers ..................................................................................................  44
4. Security ...............................................................................................................  44
5. Transactions .........................................................................................................  45



iv

List of Tables
2.1. Address String Options ................................................................................................  15
2.2. Node Properties ..........................................................................................................  15
2.3. Link Properties ...........................................................................................................  16
2.4. Python Datatypes in Maps ............................................................................................  21
2.5. C++ Datatypes in Maps ...............................................................................................  23
2.6. Connection Options .....................................................................................................  25
2.7. SSL Client Environment Variables for C++ clients ...........................................................  27
2.8. Mapping to AMQP 0-10 Message Properties ...................................................................  29
3.1. JNDI Properties supported by Apache Qpid .....................................................................  32
3.2. Connection URL Properties ..........................................................................................  33
3.3. Broker List Options ....................................................................................................  34
3.4. Java JMS Mapping to AMQP 0-10 Message Properties ......................................................  35
3.5. Java Datatypes in Maps ...............................................................................................  38
4.1. WCF Binding Parameters .............................................................................................  43



v

List of Examples
2.1. "Hello world!" in C++ ..................................................................................................  3
2.2. "Hello world!" in Python ...............................................................................................  4
2.3. "Hello world!" in .NET C# ............................................................................................  5
2.4. Queues .......................................................................................................................  6
2.5. Topics ........................................................................................................................  7
2.6. Using subjects .............................................................................................................  9
2.7. Subjects with multi-word keys ......................................................................................  10
2.8. Assertions on Nodes .................................................................................................... 12
2.9. Creating a Queue Automatically ....................................................................................  12
2.10. Browsing a Queue .....................................................................................................  13
2.11. Using the XML Exchange ..........................................................................................  14
2.12. Receiving Messages from Multiple Sources ...................................................................  19
2.13. Request / Response Applications in C++ .......................................................................  20
2.14. Sending Qpid Maps in Python .....................................................................................  21
2.15. Sending Qpid Maps in C++ ........................................................................................  22
2.16. Prefetch ...................................................................................................................  23
2.17. Sizing the Replay Buffer ............................................................................................  24
2.18. Specifying Connection Options in C++ and Python .........................................................  24
2.19. Guaranteed Delivery ..................................................................................................  25
2.20. Cluster Failover in C++ .............................................................................................  26
2.21. Transactions .............................................................................................................  28
3.1. JNDI Properties File for "Hello world!" example ..............................................................  30
3.2. "Hello world!" in Java .................................................................................................  31
3.3. JNDI Properties File .................................................................................................... 32
3.4. Broker Lists ...............................................................................................................  34
3.5. Sending a Java JMS MapMessage .................................................................................  37
3.6. log4j Logging Properties ..............................................................................................  38
4.1. Traditional service model "Hello world!" example ............................................................  40
4.2. Binary "Hello world!" example using the channel model ....................................................  42



1

Chapter 1. Introduction
Apache Qpid is a reliable, asynchronous messaging system that supports the AMQP messaging protocol
in several common programming languages. Qpid is supported on most common platforms.

• On the Java platform, Qpid uses the established Java JMS API [http://java.sun.com/products/jms/].

• On the .NET platform, Qpid defines a WCF binding [http://qpid.apache.org/wcf.html].

• For Python, C++, and .NET, Qpid defines its own messaging API, the Qpid Messaging API, which is
conceptually similar in each supported language.

• Support for this API in Ruby will be added soon (Ruby currently uses an API that is closely tied to
the AMQP version).

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://qpid.apache.org/wcf.html
http://qpid.apache.org/wcf.html


2

Chapter 2. Using the Qpid Messaging
API

The Qpid Messaging API is quite simple, consisting of only a handful of core classes.

• A message consists of a standard set of fields (e.g. subject, reply-to), an application-defined set
of properties, and message content (the main body of the message).

• A connection represents a network connection to a remote endpoint.

• A session provides a sequentially ordered context for sending and receiving messages. A session is
obtained from a connection.

• A sender sends messages to a target using the sender.send method. A sender is obtained from a
session for a given target address.

• A receiver receives messages from a source using the receiver.fetch method. A receiver is
obtained from a session for a given source address.

The following sections show how to use these classes in a simple messaging program.

1. A Simple Messaging Program in C++
The following C++ program shows how to create a connection, create a session, send messages using a
sender, and receive messages using a receiver.



Using the Qpid Messaging API

3

Example 2.1. "Hello world!" in C++

#include <qpid/messaging/Connection.h>
#include <qpid/messaging/Message.h>
#include <qpid/messaging/Receiver.h>
#include <qpid/messaging/Sender.h>
#include <qpid/messaging/Session.h>

#include <iostream>

using namespace qpid::messaging;

int main(int argc, char** argv) {
    std::string broker = argc > 1 ? argv[1] : "localhost:5672";
    std::string address = argc > 2 ? argv[2] : "amq.topic";
    Connection connection(broker); 
    try {
        connection.open();  1

        Session session = connection.createSession(); 2

        Receiver receiver = session.createReceiver(address); 3

        Sender sender = session.createSender(address); 4

        sender.send(Message("Hello world!"));

        Message message = receiver.fetch(Duration::SECOND * 1); 5

        std::cout << message.getContent() << std::endl;
        session.acknowledge(); 6

        
        connection.close(); 7

        return 0;
    } catch(const std::exception& error) {
        std::cerr << error.what() << std::endl;
        connection.close();
        return 1;   
    }
}

1 Establishes the connection with the messaging broker.
2 Creates a session object, which maintains the state of all interactions with the messaging broker, and

manages senders and receivers.
3 Creates a receiver that reads from the given address.
4 Creates a sender that sends to the given address.
5 Reads the next message. The duration is optional, if omitted, will wait indefinitely for the next

message.
6 Acknowledges messages that have been read. To guarantee delivery, a message remains on the

messaging broker until it is acknowledged by a client. session.acknowledge() acknowledges all
unacknowledged messages for the given session—this allows acknowledgements to be batched,
which is more efficient than acknowledging messages individually.

7 Closes the connection, all sessions managed by the connection, and all senders and receivers managed
by each session.



Using the Qpid Messaging API

4

2. A Simple Messaging Program in Python
The following Python program shows how to create a connection, create a session, send messages using
a sender, and receive messages using a receiver.

Example 2.2. "Hello world!" in Python

import sys
from qpid.messaging import *

broker =  "localhost:5672" if len(sys.argv)<2 else sys.argv[1]
address = "amq.topic" if len(sys.argv)<3 else sys.argv[2]

connection = Connection(broker)

try:
  connection.open()  1

  session = connection.session()   2

  sender = session.sender(address)  3

  receiver = session.receiver(address)  4

  sender.send(Message("Hello world!"));

  message = receiver.fetch(timeout=1)  5

  print message.content
  session.acknowledge() 6

except MessagingError,m:
  print m
finally:
  connection.close()  7

1 Establishes the connection with the messaging broker.
2 Creates a session object, which maintains the state of all interactions with the messaging broker, and

manages senders and receivers.
4 Creates a receiver that reads from the given address.
3 Creates a sender that sends to the given address.
5 Reads the next message. The duration is optional, if omitted, will wait indefinitely for the next

message.
6 Acknowledges messages that have been read. To guarantee delivery, a message remains on the

messaging broker until it is acknowledged by a client. session.acknowledge() acknowledges all
unacknowledged messages for the given session—this allows acknowledgements to be batched,
which is more efficient than acknowledging messages individually.

7 Closes the connection, all sessions managed by the connection, and all senders and receivers managed
by each session.

3. A Simple Messaging Program in .NET C#
The following .NET C# program shows how to create a connection, create a session, send messages using
a sender, and receive messages using a receiver.



Using the Qpid Messaging API

5

Example 2.3. "Hello world!" in .NET C#

using System;
using Org.Apache.Qpid.Messaging;  1

namespace Org.Apache.Qpid.Messaging {
    class Program {
        static void Main(string[] args) {
            String broker = args.Length > 0 ? args[0] : "localhost:5672";
            String address = args.Length > 1 ? args[1] : "amq.topic";

            Connection connection = null;
            try {
                connection = new Connection(broker);
                connection.Open();   2

                Session session = connection.CreateSession();   3

                Receiver receiver = session.CreateReceiver(address);   4

                Sender sender = session.CreateSender(address);   5

                sender.Send(new Message("Hello world!"));

                Message message = new Message();
                message = receiver.Fetch(DurationConstants.SECOND * 1);   6

                Console.WriteLine("{0}", message.GetContent());
                session.Acknowledge();   7

                connection.Close();   8

            } catch (Exception e) {
                Console.WriteLine("Exception {0}.", e);
                if (null != connection)
                    connection.Close();
            }
        }
    }
}

1 Selects the Qpid Messaging namespace. A project reference to the Org.Apache.Qpid.Messaging dll
defines the Qpid Messaging namespace objects and methods.

2 Establishes the connection with the messaging broker.
3 Creates a session object, which maintains the state of all interactions with the messaging broker, and

manages senders and receivers.
4 Creates a receiver that reads from the given address.
5 Creates a sender that sends to the given address.
6 Reads the next message. The duration is optional, if omitted, will wait indefinitely for the next

message.
7 Acknowledges messages that have been read. To guarantee delivery, a message remains on the

messaging broker until it is acknowledged by a client. session.acknowledge() acknowledges all
unacknowledged messages for the given session—this allows acknowledgements to be batched,
which is more efficient than acknowledging messages individually.

8 Closes the connection, all sessions managed by the connection, and all senders and receivers managed
by each session.



Using the Qpid Messaging API

6

4. Addresses
An address is the name of a message target or message source. In the programs we have just seen, we
used the address amq.topic (which is the name of an exchange on an AMQP 0-10 messaging broker).
The methods that create senders and receivers require an address. The details of sending to a particular
target or receiving from a particular source are then handled by the sender or receiver. A different target
or source can be used simply by using a different address.

An address resolves to a node. The Qpid Messaging API recognises two kinds of nodes, queues and topics
1. A queue stores each message until it has been received and acknowledged, and only one receiver can
receive a given message 2. A topic immediately delivers a message to all eligible receivers; if there are no
eligible receivers, it discards the message. In the AMQP 0-10 implementation of the API, 3 queues map
to AMQP queues, and topics map to AMQP exchanges. 4

In the rest of this tutorial, we present many examples using two programs that take an address as a command
line parameter. spout sends messages to the target address, drain receives messages from the source
address. The source code is available in C++, Python, and .NET C# and can be found in the examples
directory for each language. These programs can use any address string as a source or a destination, and
have many command line options to configure behavior—use the -h option for documentation on these
options. 5 The examples in this tutorial also use the qpid-config utility to configure AMQP 0-10 queues
and exchanges on a Qpid broker.

Example 2.4. Queues

Create a queue with qpid-config, send a message using spout, and read it using drain:

$ qpid-config add queue hello-world
$ ./spout hello-world
$ ./drain hello-world

Message(properties={spout-id:c877e622-d57b-4df2-bf3e-6014c68da0ea:0}, content='')
        

The queue stored the message sent by spout and delivered it to drain when requested.

Once the message has been delivered and and acknowledged by drain, it is no longer available on the
queue. If we run drain one more time, no messages will be retrieved.

$ ./drain hello-world
$
 

1The terms queue and topic here were chosen to align with their meaning in JMS. These two addressing 'patterns', queue and topic, are sometimes
refered as point-to-point and publish-subscribe. AMQP 0-10 has an exchange type called a topic exchange. When the term topic occurs alone, it
refers to a Messaging API topic, not the topic exchange.
2There are exceptions to this rule; for instance, a receiver can use browse mode, which leaves messages on the queue for other receivers to read.
3The AMQP 0-10 implementation is the only one that currently exists.
4In AMQP 0-10, messages are sent to exchanges, and read from queues. The Messaging API also allows a sender to send messages to a queue;
internally, Qpid implements this by sending the message to the default exchange, with the name of the queue as the routing key. The Messaging
API also allows a receiver to receive messages from a topic; internally, Qpid implements this by setting up a private subscription queue for the
receiver and binding the subscription queue to the exchange that corresponds to the topic.
5Currently, the C++, Python, and .NET C# implementations of drain and spout have slightly different options. This tutorial uses the C++
implementation. The options will be reconciled in the near future.



Using the Qpid Messaging API

7

Example 2.5. Topics

This example is similar to the previous example, but it uses a topic instead of a queue.

First, use qpid-config to remove the queue and create an exchange with the same name:

$ qpid-config del queue hello-world
$ qpid-config add exchange topic hello-world
        

Now run drain and spout the same way we did in the previous example:

$ ./spout hello-world
$ ./drain hello-world
$
        

Topics deliver messages immediately to any interested receiver, and do not store messages. Because there
were no receivers at the time spout sent the message, it was simply discarded. When we ran drain, there
were no messages to receive.

Now let's run drain first, using the -t option to specify a timeout in seconds. While drain is waiting for
messages, run spout in another window.

First Window:

$ ./drain -t 30 hello-word
        

Second Window:

$ ./spout hello-word
        

Once spout has sent a message, return to the first window to see the output from drain:

Message(properties={spout-id:7da2d27d-93e6-4803-8a61-536d87b8d93f:0}, content='')
        

You can run drain in several separate windows; each creates a subscription for the exchange, and each
receives all messages sent to the exchange.

4.1. Address Strings
So far, our examples have used address strings that contain only the name of a node. An address string
can also contain a subject and options.

The syntax for an address string is:



Using the Qpid Messaging API

8

address_string ::=  <address> [ / <subject> ] [ ; <options> ]
options ::=  { <key> : <value>, ... }

Addresses, subjects, and keys are strings. Values can be numbers, strings (with optional single or double
quotes), maps, or lists. A complete BNF for address strings appears in Section 4.4, “Address String
Grammar”.

So far, the address strings in this tutorial have used only addresses. The following sections show how to
use subjects and options.

4.2. Subjects

Every message has a property called subject, which is analogous to the subject on an email message. If no
subject is specified, the message's subject is null. For convenience, address strings also allow a subject.
If a sender's address contains a subject, it is used as the default subject for the messages it sends. If a
receiver's address contains a subject, it is used to select only messages that match the subject—the matching
algorithm depends on the message source.

In AMQP 0-10, each exchange type has its own matching algorithm, and queues do not provide filtering.
This is discussed in Section 13, “The AMQP 0-10 mapping”.

Note

Currently, a receiver bound to a queue ignores subjects, receiving messages from the queue
without filtering. In the future, if a receiver is bound to a queue, and its address contains a subject,
the subject will be used as a selector to filter messages.



Using the Qpid Messaging API

9

Example 2.6. Using subjects

In this example we show how subjects affect message flow.

First, let's use qpid-config to create a topic exchange.

$ qpid-config add exchange topic news-service
        

Now we use drain to receive messages from news-service that match the subject sports.

First Window:

$ ./drain -t 30 news-service/sports
        

In a second window, let's send messages to news-service using two different subjects:

Second Window:

$ ./spout news-service/sports
$ ./spout news-service/news
        

Now look at the first window, the message with the subject sports has been received, but not the message
with the subject news:

Message(properties={qpid.subject:sports, spout-id:9441674e-a157-4780-a78e-f7ccea998291:0}, content='')
        

If you run drain in multiple windows using the same subject, all instances of drain receive the messages
for that subject.

The AMQP exchange type we are using here, amq.topic, can also do more sophisticated matching.
A sender's subject can contain multiple words separated by a “.” delimiter. For instance, in a news
application, the sender might use subjects like usa.news, usa.weather, europe.news, or
europe.weather. The receiver's subject can include wildcard characters— “#” matches one or more
words in the message's subject, “*” matches a single word. For instance, if the subject in the source address
is *.news, it matches messages with the subject europe.news or usa.news; if it is europe.#, it
matches messages with subjects like europe.news or europe.pseudo.news.



Using the Qpid Messaging API

10

Example 2.7. Subjects with multi-word keys

This example uses drain and spout to demonstrate the use of subjects with two-word keys.

Let's use drain with the subject *.news to listen for messages in which the second word of the key is
news.

First Window:

$ ./drain -t 30 news-service/*.news
     

Now let's send messages using several different two-word keys:

Second Window:

$ ./spout news-service/usa.news
$ ./spout news-service/usa.sports
$ ./spout news-service/europe.sports
$ ./spout news-service/europe.news
     

In the first window, the messages with news in the second word of the key have been received:

Message(properties={qpid.subject:usa.news, spout-id:73fc8058-5af6-407c-9166-b49a9076097a:0}, content='')
Message(properties={qpid.subject:europe.news, spout-id:f72815aa-7be4-4944-99fd-c64c9747a876:0}, content='')
     

Next, let's use drain with the subject #.news to match any sequence of words that ends with news.

First Window:

$ ./drain -t 30 news-service/#.news
     

In the second window, let's send messages using a variety of different multi-word keys:

Second Window:

$ ./spout news-service/news
$ ./spout news-service/sports
$ ./spout news-service/usa.news
$ ./spout news-service/usa.sports
$ ./spout news-service/usa.faux.news
$ ./spout news-service/usa.faux.sports
     

In the first window, messages with news in the last word of the key have been received:

Message(properties={qpid.subject:news, spout-id:cbd42b0f-c87b-4088-8206-26d7627c9640:0}, content='')
Message(properties={qpid.subject:usa.news, spout-id:234a78d7-daeb-4826-90e1-1c6540781eac:0}, content='')
Message(properties={qpid.subject:usa.faux.news, spout-id:6029430a-cfcb-4700-8e9b-cbe4a81fca5f:0}, content='')
        



Using the Qpid Messaging API

11

4.3. Address String Options

The options in an address string contain additional information for the senders or receivers created for
it, including:

• Policies for assertions about the node to which an address refers.

For instance, in the address string my-queue; {assert: always, node:{ type:
queue }}, the node named my-queue must be a queue; if not, the address does not resolve to a
node, and an exception is raised.

• Policies for automatically creating or deleting the node to which an address refers.

For instance, in the address string xoxox ; {create: always}, the queue xoxox is created, if
it does not exist, before the address is resolved.

• Extension points that can be used for sender/receiver configuration.

For instance, if the address for a receiver is my-queue; {mode: browse}, the receiver works in
browse mode, leaving messages on the queue so other receivers can receive them.

• Extension points that rely on the functionality of specific node types.

For instance, the Qpid XML exchange can use XQuery to do content-based routing for XML messages,
or to query message data using XQuery. Queries can be specified using options.

Let's use some examples to show how these different kinds of address string options affect the behavior
of senders and receives.

4.3.1. assert

In this section, we use the assert option to ensure that the address resolves to a node of the required type.



Using the Qpid Messaging API

12

Example 2.8. Assertions on Nodes

Let's use qpid-config to create a queue and a topic.

$ qpid-config add queue my-queue
$ qpid-config add exchange topic my-topic
 

We can now use the address specified to drain to assert that it is of a particular type:

$ ./drain 'my-queue; {assert: always, node:{ type: queue }}'
$ ./drain 'my-queue; {assert: always, node:{ type: topic }}'
2010-04-20 17:30:46 warning Exception received from broker: not-found: not-found: Exchange not found: my-queue (../../src/qpid/broker/ExchangeRegistry.cpp:92) [caused by 2 \x07:\x01]
Exchange my-queue does not exist
 

The first attempt passed without error as my-queue is indeed a queue. The second attempt however failed;
my-queue is not a topic.

We can do the same thing for my-topic:

$ ./drain 'my-topic; {assert: always, node:{ type: topic }}'
$ ./drain 'my-topic; {assert: always, node:{ type: queue }}'
2010-04-20 17:31:01 warning Exception received from broker: not-found: not-found: Queue not found: my-topic (../../src/qpid/broker/SessionAdapter.cpp:754) [caused by 1 \x08:\x01]
Queue my-topic does not exist
 

Now let's use the create option to create the queue xoxox if it does not already exist:

4.3.2. create

In previous examples, we created the queue before listening for messages on it. Using create: always,
the queue is automatically created if it does not exist.

Example 2.9. Creating a Queue Automatically

First Window:

$ ./drain -t 30 "xoxox ; {create: always}"

Now we can send messages to this queue:

Second Window:

$ ./spout "xoxox ; {create: always}"

Returning to the first window, we see that drain has received this message:

Message(properties={spout-id:1a1a3842-1a8b-4f88-8940-b4096e615a7d:0}, content='')

4.3.3. browse

Some options specify message transfer semantics; for instance, they may state whether messages should
be consumed or read in browsing mode, or specify reliability characteristics. The following example uses
the browse option to receive messages without removing them from a queue.



Using the Qpid Messaging API

13

Example 2.10. Browsing a Queue

Let's use the browse mode to receive messages without removing them from the queue. First we send three
messages to the queue:

$ ./spout my-queue --content one
$ ./spout my-queue --content two
$ ./spout my-queue --content three
        

Now we use drain to get those messages, using the browse option:

$ ./drain 'my-queue; {mode: browse}'
Message(properties={spout-id:fbb93f30-0e82-4b6d-8c1d-be60eb132530:0}, content='one')
Message(properties={spout-id:ab9e7c31-19b0-4455-8976-34abe83edc5f:0}, content='two')
Message(properties={spout-id:ea75d64d-ea37-47f9-96a9-d38e01c97925:0}, content='three')
        

We can confirm the messages are still on the queue by repeating the drain:

$ ./drain 'my-queue; {mode: browse}'
Message(properties={spout-id:fbb93f30-0e82-4b6d-8c1d-be60eb132530:0}, content='one')
Message(properties={spout-id:ab9e7c31-19b0-4455-8976-34abe83edc5f:0}, content='two')
Message(properties={spout-id:ea75d64d-ea37-47f9-96a9-d38e01c97925:0}, content='three')
        

4.3.4. x-bindings

x-bindings allows an address string to specify properties AMQP 0-10 bindings. For instance, the
XML Exchange is an AMQP 0-10 custom exchange provided by the Apache Qpid C++ broker. It allows
messages to be filtered using XQuery; queries can address either message properties or XML content in
the body of the message. These queries can be specified in addresses using x-bindings

An instance of the XML Exchange must be added before it can be used:

$ qpid-config add exchange xml xml
 

When using the XML Exchange, a receiver provides an XQuery as an x-binding argument. If the query
contains a context item (a path starting with “.”), then it is applied to the content of the message, which
must be well-formed XML. For instance, ./weather is a valid XQuery, which matches any message in
which the root element is named weather. Here is an address string that contains this query:

xml; {
 link: { 
  x-bindings: [{exchange:xml, key:weather, arguments:{xquery:"./weather"} }] 
 } 
}
  

When using longer queries with drain, it is often useful to place the query in a file, and use cat in the
command line. We do this in the following example.



Using the Qpid Messaging API

14

Example 2.11. Using the XML Exchange

This example uses an x-binding that contains queries, which filter based on the content of XML messages.
Here is an XQuery that we will use in this example:

   
let $w := ./weather 
return $w/station = 'Raleigh-Durham International Airport (KRDU)' 
   and $w/temperature_f > 50
   and $w/temperature_f - $w/dewpoint > 5
   and $w/wind_speed_mph > 7
   and $w/wind_speed_mph < 20 
 

We can specify this query in an x-binding to listen to messages that meet the criteria specified by the query:

First Window:

$ ./drain -f "xml; {link:{x-bindings:[{key:'weather', 
arguments:{xquery:\"$(cat rdu.xquery )\"}}]}}"
 

In another window, let's create an XML message that meets the criteria in the query, and place it in the
file rdu.xml:

<weather>
  <station>Raleigh-Durham International Airport (KRDU)</station>
  <wind_speed_mph>16</wind_speed_mph>
  <temperature_f>70</temperature_f>
  <dewpoint>35</dewpoint>
</weather>
 

Now let's use spout to send this message to the XML exchange:

Second Window:

spout --content "$(cat rdu.xml)" xml/weather
 

Returning to the first window, we see that the message has been received:

$ ./drain -f "xml; {link:{x-bindings:[{exchange:'xml', key:'weather', arguments:{xquery:\"$(cat rdu.xquery )\"}}]}}"
Message(properties={qpid.subject:weather, spout-id:31c431de-593f-4bec-a3dd-29717bd945d3:0}, 
content='<weather>
  <station>Raleigh-Durham International Airport (KRDU)</station>
  <wind_speed_mph>16</wind_speed_mph>
  <temperature_f>40</temperature_f>
  <dewpoint>35</dewpoint>
</weather>') 
 



Using the Qpid Messaging API

15

4.3.5. Address String Options - Reference

Table 2.1. Address String Options

option value semantics

assert one of: always, never, sender or
receiver

Asserts that the properties specified in
the node option match whatever the
address resolves to. If they do not,
resolution fails and an exception is
raised.

create one of: always, never, sender or
receiver

Creates the node to which an address
refers if it does not exist. No error
is raised if the node does exist. The
details of the node may be specified in
the node option.

delete one of: always, never, sender or
receiver

Delete the node when the sender or
receiver is closed.

node A nested map containing the
entries shown in Table 2.2, “Node
Properties”.

Specifies properties of the node to
which the address refers. These are
used in conjunction with the assert or
create options.

link A nested map containing the entries
shown in Table 2.3, “Link Properties”.

Used to control the establishment of
a conceptual link from the client
application to or from the target/
source address.

mode one of: browse, consume This option is only of relevance for
source addresses that resolve to a
queue. If browse is specified the
messages delivered to the receiver are
left on the queue rather than being
removed. If consume is specified the
normal behaviour applies; messages
are removed from teh queue once the
client acknoweldges their receipt.

Table 2.2. Node Properties

property value semantics

type topic, queue Indicates the type of the node.

durable True, False Indicates whether the node survives
a loss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values
correspond to the valid fields on
an AMQP 0-10 queue-declare or
exchange-declare command.

These values are used to fine tune
the creation or assertion process.
Note however that they are protocol
specific.

x-bindings A nested list in which each binding
is represented by a map. The entries
of the map for a binding contain the

In conjunction with the create option,
each of these bindings is established as
the address is resolved. In conjunction



Using the Qpid Messaging API

16

property value semantics

fields that describe an AMQP 0-10
binding. Here is the format for x-
bindings:

[
 {
  exchange: <exchange>,
  queue: <queue>,
  key: <key>,
  arguments: { 
    <key_1>: <value_1>, 
    ..., 
    <key_n>: <value_n> }
 },
 ...
]

with the assert option, the existence
of each of these bindings is verified
during resolution. Again, these are
protocol specific.

Table 2.3. Link Properties

option value semantics

reliability one of: unreliable, at-least-once, at-
most-once, exactly-once

Reliability indicates the level of
reliability that the sender or receiver.
unreliable and at-most-once
are currently treated as synonyms,
and allow messages to be lost if a
broker crashes or the connection to
a broker is lost. at-least-once
guarantees that a message is not
lost, but duplicates may be received.
exactly-once guarantees that a
message is not lost, and is delivered
precisely once.

durable True, False Indicates whether the link survives
a loss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values
correspond to the valid fields of an
AMQP 0-10 queue-declare command.

These values can be used to customise
the subscription queue in the case
of receiving from an exchange.
Note however that they are protocol
specific.

x-subscribe A nested map whose values
correspond to the valid fields of
an AMQP 0-10 message-subscribe
command.

These values can be used to customise
the subscription.

x-bindings A nested list each of whose entries
is a map that may contain fields
(queue, exchange, key and arguments)
describing an AMQP 0-10 binding.

These bindings are established during
resolution independent of the create
option. They are considered logically
part of the linking process rather than
of node creation.



Using the Qpid Messaging API

17

4.4. Address String Grammar
This section provides a formal grammar for address strings.

Tokens. The following regular expressions define the tokens used to parse address strings:

LBRACE: \\{
RBRACE: \\}
LBRACK: \\[
RBRACK: \\]
COLON:  :
SEMI:   ;
SLASH:  /
COMMA:  ,
NUMBER: [+-]?[0-9]*\\.?[0-9]+
ID:     [a-zA-Z_](?:[a-zA-Z0-9_-]*[a-zA-Z0-9_])?
STRING: "(?:[^\\\\"]|\\\\.)*"|\'(?:[^\\\\\']|\\\\.)*\'
ESC:    \\\\[^ux]|\\\\x[0-9a-fA-F][0-9a-fA-F]|\\\\u[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F]
SYM:    [.#*%@$^!+-]
WSPACE: [ \\n\\r\\t]+

Grammar. The formal grammar for addresses is given below:

address := name [ "/" subject ] [ ";" options ]
   name := ( part | quoted )+
subject := ( part | quoted | "/" )*
 quoted := STRING / ESC
   part := LBRACE / RBRACE / COLON / COMMA / NUMBER / ID / SYM
options := map
    map := "{" ( keyval ( "," keyval )* )? "}"
 keyval "= ID ":" value
  value := NUMBER / STRING / ID / map / list
   list := "[" ( value ( "," value )* )? "]"
   

Address String Options. The address string options map supports the following parameters:

<name> [ / <subject> ] ; {
  create: always | sender | receiver | never,
  delete: always | sender | receiver | never,
  assert: always | sender | receiver | never,
  mode: browse | consume,
  node: {
    type: queue | topic,
    durable: True | False,
    x-declare: { ... <declare-overrides> ... },
    x-bindings: [<binding_1>, ... <binding_n>]
  },
  link: {
    name: <link-name>,
    durable: True | False,



Using the Qpid Messaging API

18

    reliability: unreliable | at-most-once | at-least-once | exactly-once,
    x-declare: { ... <declare-overrides> ... },
    x-bindings: [<binding_1>, ... <binding_n>],
    x-subscribe: { ... <subscribe-overrides> ... }
  }
}

Create, Delete, and Assert Policies

The create, delete, and assert policies specify who should perfom the associated action:

• always: the action is performed by any messaging client

• sender: the action is only performed by a sender

• receiver: the action is only performed by a receiver

• never: the action is never performed (this is the default)

Node-Type

The node-type is one of:

• topic: in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be used
to specify other exchange types

• queue: this is the default node-type

5. Logging
To simplify debugging, Qpid provides a logging facility that prints out messaging events.

5.1. Logging in C++
The Qpidd broker and C++ clients can both use environment variables to enable logging. Use
QPID_LOG_ENABLE to set the level of logging you are interested in (trace, debug, info, notice, warning,
error, or critical):

$ export QPID_LOG_ENABLE="warning+"

The Qpidd broker and C++ clients use QPID_LOG_OUTPUT to determine where logging output should
be sent. This is either a file name or the special values stderr, stdout, or syslog:

export QPID_LOG_TO_FILE="/tmp/myclient.out"

5.2. Logging in Python
The Python client library supports logging using the standard Python logging module. The easiest way to
do logging is to use the basicConfig(), which reports all warnings and errors:

from logging import basicConfig
basicConfig()



Using the Qpid Messaging API

19

Qpidd also provides a convenience method that makes it easy to specify the level of logging desired. For
instance, the following code enables logging at the DEBUG level:

from qpid.log import enable, DEBUG
enable("qpid.messaging.io", DEBUG)

For more information on Python logging, see http://docs.python.org/lib/node425.html. For more
information on Qpid logging, use $ pydoc qpid.log.

6. Receiving Messages from Multiple Sources
A receiver can only read from one source, but many programs need to be able to read messages from many
sources, preserving the original sequence of the messages. In the Qpid Messaging API, a program can ask
a session for the “next receiver”; that is, the receiver that is responsible for the next available message.
The following example shows how this is done in C++, Python, and .NET C#.

Example 2.12. Receiving Messages from Multiple Sources

C++:

Receiver receiver1 = session.createReceiver(address1);
Receiver receiver2 = session.createReceiver(address2);

Message message =  session.nextReceiver().fetch();
session.acknowledge(); // acknowledge message receipt
std::cout << message.getContent() << std::endl;
   

Python:

receiver1 = session.receiver(address1)
receiver2 = session.receiver(address)
message = session.next_receiver().fetch()
print message.content
   

.NET C#:

Receiver receiver1 = session.CreateReceiver(address1);
Receiver receiver2 = session.CreateReceiver(address2);

Message message = new Message();
message =  session.NextReceiver().Fetch();
session.Acknowledge();
Console.WriteLine("{0}", message.GetContent());
   

7. Request / Response
Request / Response applications use the reply-to property, described in Table 2.8, “Mapping to AMQP
0-10 Message Properties”, to allow a server to respond to the client that sent a message. A server sets up

http://docs.python.org/lib/node425.html


Using the Qpid Messaging API

20

a service queue, with a name known to clients. A client creates a private queue for the server's response,
creates a message for a request, sets the request's reply-to property to the address of the client's response
queue, and sends the request to the service queue. The server sends the response to the address specified
in the request's reply-to property.

Example 2.13. Request / Response Applications in C++

This example shows the C++ code for a client and server that use the request / response pattern.

The server creates a service queue and waits for a message to arrive. If it receives a message, it sends a
message back to the sender.

Receiver receiver = session.createReceiver("service_queue; {create: always}");

Message request = receiver.fetch();
const Address&amp; address = request.getReplyTo(); // Get "reply-to" from request ...
if (address) {
  Sender sender = session.createSender(address); // ... send response to "reply-to"
  Message response("pong!");
  sender.send(response);
  session.acknowledge();
}
     

The client creates a sender for the service queue, and also creates a response queue that is deleted when the
client closes the receiver for the response queue. In the C++ client, if the address starts with the character
#, it is given a unique name.

Sender sender = session.createSender("service_queue");

Address responseQueue("#response-queue; {create:always, delete:always}");
Receiver receiver = session.createReceiver(responseQueue);

Message request;
request.setReplyTo(responseQueue);
request.setContent("ping");
sender.send(request);
Message response = receiver.fetch();
std::cout << request.getContent() << " -> " << response.getContent() << std::endl;
   

The client sends the string ping to the server. The server sends the response pong back to the same
client, using the replyTo property.

8. Maps in Message Content
Many messaging applications need to exchange data across languages and platforms, using the native
datatypes of each programming language. AMQP provides a set of portable datatypes, but does not directly
support a set of named type/value pairs. Java JMS provides the MapMessage interface, which allows
sets of named type/value pairs, but does not provide a set of portable datatypes.

The Qpid Messaging API supports maps in message content. Unlike JMS, any message can contain maps.
These maps are supported in each language using the conventions of the language. In Java, we implement
the MapMessage interface; in Python, we support dict and list in message content; in C++, we



Using the Qpid Messaging API

21

provide the Variant::Map and Variant::List classes to represent maps and lists. In all languages,
messages are encoded using AMQP's portable datatypes.

Tip

Because of the differences in type systems among languages, the simplest way to provide portable
messages is to rely on maps, lists, strings, 64 bit signed integers, and doubles for messages that
need to be exchanged across languages and platforms.

8.1. Qpid Maps in Python
In Python, Qpid supports the dict and list types directly in message content. The following code shows
how to send these structures in a message:

Example 2.14. Sending Qpid Maps in Python

from qpid.messaging import *
# !!! SNIP !!!

content = {'Id' : 987654321, 'name' : 'Widget', 'percent' : 0.99}
content['colours'] = ['red', 'green', 'white']
content['dimensions'] = {'length' : 10.2, 'width' : 5.1,'depth' : 2.0};
content['parts'] = [ [1,2,5], [8,2,5] ]
content['specs'] = {'colors' : content['colours'], 
                    'dimensions' : content['dimensions'], 
                    'parts' : content['parts'] }
message = Message(content=content)
sender.send(message)
       

The following table shows the datatypes that can be sent in a Python map message, and the corresponding
datatypes that will be received by clients in Java or C++.

Table 2.4. Python Datatypes in Maps

Python Datatype # C++ # Java

bool bool boolean

int int64 long

long int64 long

float double double

unicode string java.lang.String

uuid qpid::types::Uuid java.util.UUID

dict Variant::Map java.util.Map

list Variant::List java.util.List

8.2. Qpid Maps in C++
In C++, Qpid defines the the Variant::Map and Variant::List types, which can be encoded into
message content. The following code shows how to send these structures in a message:



Using the Qpid Messaging API

22

Example 2.15. Sending Qpid Maps in C++

using namespace qpid::types;

// !!! SNIP !!!

Message message;
Variant::Map content;
content["id"] = 987654321;
content["name"] = "Widget";
content["percent"] = 0.99;
Variant::List colours;
colours.push_back(Variant("red"));
colours.push_back(Variant("green"));
colours.push_back(Variant("white"));
content["colours"] = colours;

Variant::Map dimensions;
dimensions["length"] = 10.2;
dimensions["width"] = 5.1;
dimensions["depth"] = 2.0;
content["dimensions"]= dimensions; 

Variant::List part1;
part1.push_back(Variant(1));
part1.push_back(Variant(2));
part1.push_back(Variant(5));
 
Variant::List part2;
part2.push_back(Variant(8));
part2.push_back(Variant(2));
part2.push_back(Variant(5));
 
Variant::List parts;
parts.push_back(part1);
parts.push_back(part2);
content["parts"]= parts; 

Variant::Map specs;
specs["colours"] = colours; 
specs["dimensions"] = dimensions; 
specs["parts"] = parts; 
content["specs"] = specs;

encode(content, message);
sender.send(message, true);
     

The following table shows the datatypes that can be sent in a C++ map message, and the corresponding
datatypes that will be received by clients in Java and Python.



Using the Qpid Messaging API

23

Table 2.5. C++ Datatypes in Maps

C++ Datatype # Python # Java

bool bool boolean

uint16 int | long short

uint32 int | long int

uint64 int | long long

int16 int | long short

int32 int | long int

int64 int | long long

float float float

double float double

string unicode java.lang.String

qpid::types::Uuid uuid java.util.UUID

Variant::Map dict java.util.Map

Variant::List list java.util.List

9. Performance
Clients can often be made significantly faster by batching acknowledgements and setting the capacity of
receivers to allow prefetch. The size of a sender's replay buffer can also affect performance.

9.1. Batching Acknowledgements
Many of the simple examples we have shown retrieve a message and immediately acknowledge it.
Because each acknowledgement results in network traffic, you can dramatically increase performance by
acknowledging messages in batches. For instance, an application can read a number of related messages,
then acknowledge the entire batch, or an application can acknowledge after a certain number of messages
have been received or a certain time period has elapsed. Messages are not removed from the broker until
they are acknowledged, so guaranteed delivery is still available when batching acknowledgements.

9.2. Prefetch
By default, a receiver retrieves the next message from the server, one message at a time, which provides
intuitive results when writing and debugging programs, but does not provide optimum performance. To
create an input buffer, set the capacity of the receiver to the size of the desired input buffer; for many
applications, a capacity of 100 performs well.

Example 2.16. Prefetch

C++

Receiver receiver = session.createReceiver(address);
receiver.setCapacity(100);
Message message = receiver.fetch();
   



Using the Qpid Messaging API

24

9.3. Sizing the Replay Buffer
In order to guarantee delivery, a sender automatically keeps messages in a replay buffer until the messaging
broker acknowledges that they have been received. The replay buffer is held in memory, and is never
paged to disk. For most applications, the default size of the replay buffer works well. A large replay buffer
requires more memory, a small buffer can slow down the client because it can not send new messages if
the replay buffer is full, and must wait for existing sends to be acknowledged.

Example 2.17. Sizing the Replay Buffer

C++

Sender sender = session.createSender(address);
sender.setCapacity(100);
   

10. Reliability
The Qpid Messaging API supports automatic reconnect, guaranteed delivery via persistent messages,
reliability options in senders and receivers, and cluster failover. This section shows how programs can
take advantage of these features.

10.1. Reconnect
Connections in the Qpid Messaging API support automatic reconnect if a connection is lost. This is done
using connection options. The following example shows how to use connection options in C++ and Python.

Example 2.18. Specifying Connection Options in C++ and Python

In C++, these options are set using Connection::setOption():

Connection connection(broker);
connection.setOption("reconnect", true);
try {
    connection.open();
    !!! SNIP !!!
    

In Python, these options are set using named arguments in the Connection constructor:

connection = Connection("localhost:5672", reconnect=True)
try:
  connection.open()
  !!! SNIP !!!
  

See the reference documentation for details on how to set these on connections for each language.

The following table lists the connection options that can be used.



Using the Qpid Messaging API

25

Table 2.6. Connection Options

option value semantics

reconnect True, False Transparently reconnect if the
connection is lost.

reconnect_timeout N Total number of seconds to continue
reconnection attempts before giving
up and raising an exception.

reconnect_limit N Maximum number of reconnection
attempts before giving up and raising
an exception.

reconnect_interval_min N Minimum number of seconds
between reconnection attempts. The
first reconnection attempt is made
immediately; if that fails, the first
reconnection delay is set to the value
of reconnect_interval_min;
if that attempt fails, the reconnect
interval increases exponentially until
a reconnection attempt succeeds
or reconnect_interval_max is
reached.

reconnect_interval_max N Maximum reconnect interval.

reconnect_interval N Sets both
reconnection_interval_min
and
reconnection_interval_max
to the same value.

10.2. Guaranteed Delivery

If a queue is durable, the queue survives a messaging broker crash, as well as any durable messages
that have been placed on the queue. These messages will be delivered when the messaging broker is
restarted. Delivery is guaranteed if and only if both the message and the queue are durable. Guaranteed
delivery requires a persistence module, such as the one available from QpidComponents.org [http://
QpidComponents.org].

Example 2.19. Guaranteed Delivery

C++:

Sender sender = session.createSender("durable-queue");

Message message("Hello world!");
message.setDurable(1);

sender.send(Message("Hello world!"));

http://QpidComponents.org
http://QpidComponents.org
http://QpidComponents.org


Using the Qpid Messaging API

26

10.3. Reliability Options in Senders and Receivers
When creating a sender or a receiver, you can specify a reliability option in the address string. For instance,
the following specifies at-least-once as the reliability mode for a sender:

Sender = session.createSender("topic;{create:always,link:{reliability:at-least-once}}");
 

The modes unreliable, at-most-once, at-least-once, and exactly-once are supported.
These modes govern the reliability of the connection between the client and the messaging broker.

The modes unreliable and at-most-once are currently synonyms. In a receiver, this mode means
that messages received on an auto-delete subscription queue may be lost in the event of a broker failure. In
a sender, this mode means that the sender can consider a message sent as soon as it is written to the wire,
and need not wait for broker acknowledgement before considering the message sent.

The mode at-most-once ensures that messages are not lost, but duplicates of a message may occur. In
a receiver, this mode ensures that messages are not lost in event of a broker failure. In a sender, this means
that messages are kept in a replay buffer after they have been sent, and removed from this buffer only
after the broker acknowledges receipt; if a broker failure occurs, messages in the replay buffer are resent
upon reconnection. The mode exactly-once is similar to at-most-once, but eliminates duplicate
messages.

10.4. Cluster Failover
The messaging broker can be run in clustering mode, which provides high reliability at-least-once
messaging. If one broker in a cluster fails, clients can choose another broker in the cluster and continue
their work.

In C++, the FailoverUpdates class keeps track of the brokers in a cluster, so a reconnect can select
another broker in the cluster to connect to:

Example 2.20. Cluster Failover in C++

#include <qpid/messaging/FailoverUpdates.h>
...
Connection connection(broker);
connection.setOption("reconnect", true);
try {
    connection.open();
    std::auto_ptr<FailoverUpdates> updates(new FailoverUpdates(connection));
 

11. Security
Qpid provides authentication, rule-based authorization, encryption, and digital signing.

Authentication is done using Simple Authentication and Security Layer (SASL) to authenticate
client connections to the broker. SASL is a framework that supports a variety of authentication
methods. For secure applications, we suggest CRAM-MD5, DIGEST-MD5, or GSSAPI (Kerberos). The
ANONYMOUS method is not secure. The PLAIN method is secure only when used together with SSL.



Using the Qpid Messaging API

27

To enable Kerberos in a client, set the sals-mechanism connection option to GSSAPI:

Connection connection(broker);
connection.setOption("sasl-mechanism", "GSSAPI");
try {
    connection.open();
    ...
      

For Kerberos authentication, if the user running the program is already authenticated, e.g. using kinit,
there is no need to supply a user name or password. If you are using another form of authentication, or are
not already authenticated with Kerberos, you can supply these as connection options:

connection.setOption("username", "mick");
connection.setOption("password", "pa$$word");
      

Encryption and signing are done using SSL (they can also be done using SASL, but SSL provides stronger
encryption). To enable SSL, set the protocol connection option to ssl:

connection.setOption("protocol", "ssl");
      

Use the following environment variables to configure the SSL client:

Table 2.7. SSL Client Environment Variables for C++ clients

SSL Client Options for C++ clients

SSL_USE_EXPORT_POLICY Use NSS export policy

SSL_CERT_PASSWORD_FILE PATH File containing password to use for accessing
certificate database

SSL_CERT_DB PATH Path to directory containing certificate database

SSL_CERT_NAME NAME Name of the certificate to use. When SSL client
authentication is enabled, a certificate name should
normally be provided.

12. Transactions
In AMQP, transactions cover the semantics of enqueues and dequeues.

When sending messages, a transaction tracks enqueues without actually delivering the messages, a commit
places messages on their queues, and a rollback discards the enqueues.

When receiving messages, a transaction tracks dequeues without actually removing acknowledged
messages, a commit removes all acknowledged messages, and a rollback discards acknowledgements. A
rollback does not release the message, it must be explicitly released to return it to the queue.



Using the Qpid Messaging API

28

Example 2.21. Transactions

C++:

Connection connection(broker);
Session session =  connection.createTransactionalSession();
...
if (smellsOk())
   session.commit();
else 
   session.rollback();
   

13. The AMQP 0-10 mapping
This section describes the AMQP 0-10 mapping for the Qpid Messaging API.

The interaction with the broker triggered by creating a sender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker to
determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transfered to the
default (or nameless) exchange. When sending to an exchange, the message is transfered to that exchange
and the routing key is set to the message subject if one is specified. A default subject may be specified
in the target address. The subject may also be set on each message individually to override the default if
required. In each case any specified subject is also added as a qpid.subject entry in the application-headers
field of the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client sends
a message-subscribe request for the queue in question. The accept-mode is determined by the reliability
option in the link properties; for unreliable links the accept-mode is none, for reliable links it is explicit.
The default for a queue is reliable. The acquire-mode is determined by the value of the mode option. If the
mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired. The exclusive
and arguments fields in the message-subscribe command can be controlled using the x-subscribe map.

When receiving from an exchange, the client creates a subscription queue and binds that to the exchange.
The subscription queue's arguments can be specified using the x-declare map within the link properties.
The reliability option determines most of the other parameters. If the reliability is set to unreliable then
an auto-deleted, exclusive queue is used meaning that if the client or connection fails messages may be
lost. For exactly-once the queue is not set to be auto-deleted. The durability of the subscription queue is
determined by the durable option in the link properties. The binding process depends on the type of the
exchange the source address resolves to.

• For a topic exchange, if no subject is specified and no x-bindings are defined for the link, the subscription
queue is bound using a wildcard matching any routing key (thus satisfying the expectation that any
message sent to that address will be received from it). If a subject is specified in the source address
however, it is used for the binding key (this means that the subject in the source address may be a binding
pattern including wildcards).

• For a fanout exchange the binding key is irrelevant to matching. A receiver created from a source address
that resolves to a fanout exchange receives all messages sent to that exchange regardless of any subject
the source address may contain. An x-bindings element in the link properties should be used if there is
any need to set the arguments to the bind.



Using the Qpid Messaging API

29

• For a direct exchange, the subject is used as the binding key. If no subject is specified an empty string
is used as the binding key.

• For a headers exchange, if no subject is specified the binding arguments simply contain an x-match entry
and no other entries, causing all messages to match. If a subject is specified then the binding arguments
contain an x-match entry set to all and an entry for qpid.subject whose value is the subject in the source
address (this means the subject in the source address must match the message subject exactly). For more
control the x-bindings element in the link properties must be used.

• For the XML exchange,6 if a subject is specified it is used as the binding key and an XQuery is defined
that matches any message with that value for qpid.subject. Again this means that only messages whose
subject exactly match that specified in the source address are received. If no subject is specified then
the empty string is used as the binding key with an xquery that will match any message (this means that
only messages with an empty string as the routing key will be received). For more control the x-bindings
element in the link properties must be used. A source address that resolves to the XML exchange must
contain either a subject or an x-bindings element in the link properties as there is no way at present to
receive any message regardless of routing key.

If an x-bindings list is present in the link options a binding is created for each element within that list.
Each element is a nested map that may contain values named queue, exchange, key or arguments. If the
queue value is absent the queue name the address resolves to is implied. If the exchange value is absent
the exchange name the address resolves to is implied.

The following table shows how Qpid Messaging API message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table msg refers to the Message class defined in the
Qpid Messaging API, mp refers to an AMQP 0-10 message-properties struct, and dp refers to an
AMQP 0-10 delivery-properties struct.

Table 2.8. Mapping to AMQP 0-10 Message Properties

Python API C++ API AMQP 0-10 Propertya

msg.id msg.{get,set}MessageId() mp.message_id

msg.subject msg.{get,set}Subject() mp.application_headers["qpid.subject"]

msg.user_id msg.{get,set}UserId() mp.user_id

msg.reply_to msg.{get,set}ReplyTo() mp.reply_tob

msg.correlation_id msg.{get,set}CorrelationId() mp.correlation_id

msg.durable msg.{get,set}Durable() dp.delivery_mode ==
delivery_mode.persistentc

msg.priority msg.{get,set}Priority() dp.priority

msg.ttl msg.{get,set}Ttl() dp.ttl

msg.redelivered msg.{get,set}Redelivered() dp.redelivered

msg.properties msg.{get,set}Properties() mp.application_headers

msg.content_type msg.{get,set}ContentType() mp.content_type
aIn these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.
bThe reply_to is converted from the protocol representation into an address.
cNote that msg.durable is a boolean, not an enum.



30

Chapter 3. Using the Qpid JMS client

1. A Simple Messaging Program in Java JMS
The following program shows how to use address strings and JNDI for Qpid programs that use Java JMS.

The Qpid JMS client uses Qpid Messaging API Section 4, “Addresses” to identify sources and targets.
This program uses a JNDI properties file that defines a connection factory for the broker we are using,
and the address of the topic exchange node that we bind the sender and receiver to. (The syntax of a
ConnectionURL is given in Section 2, “Apache Qpid JNDI Properties for AMQP Messaging”.)

Example 3.1. JNDI Properties File for "Hello world!" example

java.naming.factory.initial 
  = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

# connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory 
  = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
# destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

In the Java JMS code, we use create a JNDI context, use the context to find a connection factory and create
and start a connection, create a session, and create a destination that corresponds to the topic exchange.
Then we create a sender and a receiver, send a message with the sender, and receive it with the receiver.
This code should be straightforward for anyone familiar with Java JMS.



Using the Qpid JMS client

31

Example 3.2. "Hello world!" in Java

package org.apache.qpid.example.jmsexample.hello;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;

public class Hello {

  public Hello() {
  }

  public static void main(String[] args) {
    Hello producer = new Hello();
    producer.runTest();
  }

  private void runTest() {
    try {
      Properties properties = new Properties();
      properties.load(this.getClass().getResourceAsStream("hello.properties"));  1

      Context context = new InitialContext(properties);   2

      ConnectionFactory connectionFactory 
          = (ConnectionFactory) context.lookup("qpidConnectionfactory"); 3

      Connection connection = connectionFactory.createConnection();  4

      connection.start();  5

      Session session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE); 6

      Destination destination = (Destination) context.lookup("topicExchange");  7

      MessageProducer messageProducer = session.createProducer(destination);  8

      MessageConsumer messageConsumer = session.createConsumer(destination);  9

      TextMessage message = session.createTextMessage("Hello world!");
      messageProducer.send(message);

      message = (TextMessage)messageConsumer.receive();    10

      System.out.println(message.getText());

      connection.close();  11

      context.close();   12

    }
    catch (Exception exp) {
      exp.printStackTrace();
    }
  }
}
 



Using the Qpid JMS client

32

1 Loads the JNDI properties file, which specifies connection properties, queues, topics, and addressing
options. See Section 2, “Apache Qpid JNDI Properties for AMQP Messaging” for details.

2 Creates the JNDI initial context.
3 Creates a JMS connection factory for Qpid.
4 Creates a JMS connection.
5 Activates the connection.
6 Creates a session. This session is not transactional (transactions='false'), and messages are

automatically acknowledged.
7 Creates a destination for the topic exchange, so senders and receivers can use it.
8 Creates a producer that sends messages to the topic exchange.
9 Creates a consumer that reads messages from the topic exchange.
10 Reads the next available message.
11 Closes the connection, all sessions managed by the connection, and all senders and receivers managed

by each session.
12 Closes the JNDI context.

2. Apache Qpid JNDI Properties for AMQP
Messaging

Apache Qpid defines JNDI properties that can be used to specify JMS Connections and Destinations. Here
is a typical JNDI properties file:

Example 3.3. JNDI Properties File

java.naming.factory.initial 
  = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

# connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.qpidConnectionfactory 
  = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
# destination.[jndiname] = [address_string]
destination.topicExchange = amq.topic

The following sections describe the JNDI properties that Qpid uses.

2.1. JNDI Properties for Apache Qpid

Apache Qpid supports the properties shown in the following table:

Table 3.1. JNDI Properties supported by Apache Qpid

Property Purpose

connectionfactory.<jndiname> The Connection URL that the connection factory
uses to perform connections.

queue.<jndiname> A JMS queue, which is implemented as an
amq.direct exchange in Apache Qpid.

topic.<jndiname> A JMS topic, which is implemented as an amq.topic
exchange in Apache Qpid.



Using the Qpid JMS client

33

Property Purpose

destination.<jndiname> Can be used for defining all amq destinations,
queues, topics and header matching, using an
address string. a

aBinding URLs, which were used in earlier versions of the Qpid Java JMS client, can still be used instead of address strings.

2.2. Connection URLs
In JNDI properties, a Connection URL specifies properties for a connection. The format for a Connection
URL is:

amqp://[<user>:<pass>@][<clientid>]<virtualhost>[?<option>='<value>'[&<option>='<value>']]
        

For instance, the following Connection URL specifies a user name, a password, a client ID, a virtual host
("test"), a broker list with a single broker, and a TCP host with the host name “localhost” using port 5672:

amqp://username:password@clientid/test?brokerlist='tcp://localhost:5672'
        

Apache Qpid supports the following properties in Connection URLs:

Table 3.2. Connection URL Properties

Option Type Description

brokerlist see below The broker to use for this connection.
In the current release, precisely one
broker must be specified.

maxprefetch -- The maximum number of pre-fetched
messages per destination.

sync_publish {'persistent' | 'all'} A sync command is sent after every
persistent message to guarantee that
it has been received; if the value
is 'persistent', this is done only for
persistent messages.

sync_ack Boolean A sync command is sent after every
acknowledgement to guarantee that it
has been received.

use_legacy_map_msg_format Boolean If you are using JMS Map messages
and deploying a new client with any
JMS client older than 0.7 release, you
must set this to true to ensure the
older clients can understand the map
message encoding.

failover {'roundrobin' | 'failover_exchange'} If roundrobin is selected it will try
each broker given in the broker list.
If failover_exchange is selected it
connects to the initial broker given
in the broker URL and will receive
membership updates via the failover
exchange.



Using the Qpid JMS client

34

Broker lists are specified using a URL in this format:

brokerlist=<transport>://<host>[:<port>](?<param>=<value>)?(&<param>=<value>)*

For instance, this is a typical broker list:

brokerlist='tcp://localhost:5672'
        

A broker list can contain more than one broker address; if so, the connection is made to the first broker in
the list that is available. In general, it is better to use the failover exchange when using multiple brokers,
since it allows applications to fail over if a broker goes down.

Example 3.4. Broker Lists

A broker list can specify properties to be used when connecting to the broker, such as security options.
This broker list specifies options for a Kerberos connection using GSSAPI:

amqp://guest:guest@test/test?sync_ack='true'
    &brokerlist='tcp://ip1:5672?sasl_mechs='GSSAPI'
 

This broker list specifies SSL options:

amqp://guest:guest@test/test?sync_ack='true'
   &brokerlist='tcp://ip1:5672?ssl='true'&ssl_cert_alias='cert1'
 

The following broker list options are supported.

Table 3.3. Broker List Options

Option Type Description

heartbeat integer frequency of heartbeat messages (in
seconds)

sasl_mechs -- For secure applications, we
suggest CRAM-MD5, DIGEST-
MD5, or GSSAPI. The
ANONYMOUS method is not
secure. The PLAIN method
is secure only when used
together with SSL. For
Kerberos, sasl_mechs must be
set to GSSAPI, sasl_protocol
must be set to the
principal for the qpidd
broker, e.g. qpidd/, and
sasl_server must be set to
the host for the SASL
server, e.g. sasl.com. SASL
External is supported using



Using the Qpid JMS client

35

Option Type Description

SSL certification, e.g.
ssl='true'&sasl_mechs='EXTERNAL'

sasl_encryption Boolean If sasl_encryption='true',
the JMS client attempts to negotiate
a security layer with the broker using
GSSAPI to encrypt the connection.
Note that for this to happen, GSSAPI
must be selected as the sasl_mech.

ssl Boolean If ssl='true', the JMS client will
encrypt the connection using SSL.

tcp_nodelay Boolean If tcp_nodelay='true', TCP
packet batching is disabled.

sasl_protocol -- Used only for Kerberos.
sasl_protocol must be set to the
principal for the qpidd broker, e.g.
qpidd/

sasl_server -- For Kerberos, sasl_mechs must be set
to GSSAPI, sasl_server must be set
to the host for the SASL server, e.g.
sasl.com.

trust_store -- path to Keberos trust store

trust_store_password Kerberos trust store password

key_store path to Kerberos key store

key_store_password -- Kerberos key store password

ssl_verify_hostname Boolean When using SSL you can enable
hostname verification by using
"ssl_verify_hostname=true" in the
broker URL.

ssl_cert_alias If multiple certificates are present in
the keystore, the alias will be used to
extract the correct certificate.

3. Java JMS Message Properties
The following table shows how Qpid Messaging API message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table msg refers to the Message class defined in the
Qpid Messaging API, mp refers to an AMQP 0-10 message-properties struct, and dp refers to an
AMQP 0-10 delivery-properties struct.

Table 3.4. Java JMS Mapping to AMQP 0-10 Message Properties

Java JMS Message Property AMQP 0-10 Propertya

JMSMessageID mp.message_id

qpid.subjectb mp.application_headers["qpid.subject"]

JMSXUserID mp.user_id

JMSReplyTo mp.reply_toc



Using the Qpid JMS client

36

Java JMS Message Property AMQP 0-10 Propertya

JMSCorrelationID mp.correlation_id

JMSDeliveryMode dp.delivery_mode

JMSPriority dp.priority

JMSExpiration dp.ttld

JMSRedelivered dp.redelivered

JMS Properties mp.application_headers

JMSType mp.content_type
aIn these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.
bThis is a custom JMS property, set automatically by the Java JMS client implementation.
cThe reply_to is converted from the protocol representation into an address.
dJMSExpiration = dp.ttl + currentTime

4. JMS MapMessage Types
Qpid supports the Java JMS MapMessage interface, which provides support for maps in messages. The
following code shows how to send a MapMessage in Java JMS.



Using the Qpid JMS client

37

Example 3.5. Sending a Java JMS MapMessage

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.MapMessage;
import javax.jms.MessageProducer;
import javax.jms.Session;

import org.apache.qpid.client.AMQAnyDestination;
import org.apache.qpid.client.AMQConnection;

import edu.emory.mathcs.backport.java.util.Arrays;

// !!! SNIP !!!

MessageProducer producer = session.createProducer(queue);

MapMessage m = session.createMapMessage();
m.setIntProperty("Id", 987654321);
m.setStringProperty("name", "Widget");
m.setDoubleProperty("price", 0.99);

List<String> colors = new ArrayList<String>();
colors.add("red");
colors.add("green");
colors.add("white");        
m.setObject("colours", colors);

Map<String,Double> dimensions = new HashMap<String,Double>();
dimensions.put("length",10.2);
dimensions.put("width",5.1);
dimensions.put("depth",2.0);
m.setObject("dimensions",dimensions);

List<List<Integer>> parts = new ArrayList<List<Integer>>();
parts.add(Arrays.asList(new Integer[] {1,2,5}));
parts.add(Arrays.asList(new Integer[] {8,2,5}));
m.setObject("parts", parts);

Map<String,Object> specs = new HashMap<String,Object>();
specs.put("colours", colors);
specs.put("dimensions", dimensions);
specs.put("parts", parts);
m.setObject("specs",specs);

producer.send(m);
      



Using the Qpid JMS client

38

The following table shows the datatypes that can be sent in a MapMessage, and the corresponding
datatypes that will be received by clients in Python or C++.

Table 3.5. Java Datatypes in Maps

Java Datatype # Python # C++

boolean bool bool

short int | long int16

int int | long int32

long int | long int64

float float float

double float double

java.lang.String unicode std::string

java.util.UUID uuid qpid::types::Uuid

java.util.Mapa dict Variant::Map

java.util.List list Variant::List
aIn Qpid, maps can nest. This goes beyond the functionality required by the JMS specification.

5. JMS Client Logging
The JMS Client logging is handled using SLF4J [http://www.slf4j.org/]. A user can place a slf4j binding
of their choice in the classpath and configure the respective logging mechanism to suit their needs. Ex
bindings include log4j, jdk1.4 logging ..etc

Following is an example on how to configure the client logging with the log4j binding.

For more information on how to configure log4j, please consult the log4j documentation.

If using the log4j binding please ensure to set the log level for org.apache.qpid explicitly. Otherwise
log4j will default to DEBUG which will degrade performance considerably due to excessive logging.
Recommended logging level for production is WARN.

Example 3.6. log4j Logging Properties

You could place the snippet below in a log4j.properties file and place it in the classpath or explicitly
specify it using the -Dlog4j.configuration property. The following configures the qpid client to log at the
WARN level

log4j.logger.org.apache.qpid=WARN, console
log4j.additivity.org.apache.qpid=false

log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.Threshold=all
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%t %d %p [%c{4}] %m%n

http://www.slf4j.org/
http://www.slf4j.org/


39

Chapter 4. Using the Qpid WCF client

1. XML and Binary Bindings
The Qpid WCF client provides two bindings, each with support for Windows .NET transactions.

The AmqpBinding is suitable for communication between two WCF applications. By default it uses
the WCF binary .NET XML encoder (BinaryMessageEncodingBindingElement) for efficient message
transmission, but it can also use the text and Message Transmission Optimization Mechanism (MTOM)
encoders. Here is a traditional service model sample program using the AmqpBinding. It assumes that the
queue "hello_service_node" has been created and configured on the AMQP broker.



Using the Qpid WCF client

40

Example 4.1. Traditional service model "Hello world!" example

namespace Apache.Qpid.Documentation.HelloService
{
  using System;
  using System.ServiceModel;
  using System.ServiceModel.Channels;
  using System.Threading;
  using Apache.Qpid.Channel;

  [ServiceContract]
  public interface IHelloService
  {
    [OperationContract(IsOneWay = true, Action = "*")]
    void SayHello(string greeting);
  }

  public class HelloService : IHelloService
  {
    private static int greetingCount;

    public static int GreetingCount
    {
      get { return greetingCount; }
    }

    public void SayHello(string greeting)
    {
      Console.WriteLine("Service received: " + greeting);
      greetingCount++;
    }

    static void Main(string[] args)
    {
      try
      {
        AmqpBinding amqpBinding = new AmqpBinding();
        amqpBinding.BrokerHost = "localhost";
        amqpBinding.BrokerPort = 5672;

        ServiceHost serviceHost = new ServiceHost(typeof(HelloService));
        serviceHost.AddServiceEndpoint(typeof(IHelloService),
          amqpBinding, "amqp:hello_service_node");
        serviceHost.Open();

        // Send the service a test greeting
        Uri amqpClientUri=new Uri("amqp:amq.direct?routingkey=hello_service_node");
        EndpointAddress clientEndpoint = new EndpointAddress(amqpClientUri);
        ChannelFactory<IHelloService> channelFactory =
          new ChannelFactory<IHelloService>(amqpBinding, clientEndpoint);
        IHelloService clientProxy = channelFactory.CreateChannel();

        clientProxy.SayHello("Greetings from WCF client");

        // wait for service to process the greeting
        while (HelloService.GreetingCount == 0)
        {
          Thread.Sleep(100);
        }
        channelFactory.Close();
        serviceHost.Close();
      }
      catch (Exception e)
      {
        Console.WriteLine("Exception: {0}", e);
      }
    }
  }
}
      



Using the Qpid WCF client

41

The second binding, AmqpBinaryBinding, is suitable for WCF applications that need to inter-operate
with non-WCF clients or that wish to have direct access to the raw wire representation of the message
body. It relies on a custom encoder to read and write raw (binary) content which operates similarly to the
ByteStream encoder (introduced in .NET 4.0). The encoder presents an abstract XML infoset view of the
raw message content on input. On output, the encoder does the reverse and peels away the XML infoset
layer exposing the raw content to the wire representation of the message body. The application must do the
inverse of what the encoder does to allow the XML infoset wrapper to cancel properly. This is demonstrated
in the following sample code (using the channel programming model) which directly manipulates or
provides callbacks to the WCF message readers and writers when the content is consumed. In contrast to
the AmqpBinding sample where the simple greeting is encapsulated in a compressed SOAP envelope, the
wire representation of the message contains the raw content and is identical and fully interoperable with
the Qpid C++ "Hello world!" example.



Using the Qpid WCF client

42

Example 4.2. Binary "Hello world!" example using the channel model

namespace Apache.Qpid.Samples.Channel.HelloWorld
{
  using System;
  using System.ServiceModel;
  using System.ServiceModel.Channels;
  using System.ServiceModel.Description;
  using System.Text;
  using System.Xml;
  using Apache.Qpid.Channel;

  public class HelloWorld
  {  
    static void Main(string[] args)
    {
      String broker = "localhost";
      int port = 5672;
      String target = "amq.topic";
      String source = "my_topic_node";

      if (args.Length > 0)
      {
        broker = args[0];
      }

      if (args.Length > 1)
      {
        port = int.Parse(args[1]);
      }

      if (args.Length > 2)
      {
        target = args[2];
      }

      if (args.Length > 3)
      {
        source = args[3];
      }

      AmqpBinaryBinding binding = new AmqpBinaryBinding();
      binding.BrokerHost = broker;
      binding.BrokerPort = port;

      IChannelFactory<IInputChannel> receiverFactory = binding.BuildChannelFactory<IInputChannel>();
      receiverFactory.Open();
      IInputChannel receiver = receiverFactory.CreateChannel(new EndpointAddress("amqp:" + source));
      receiver.Open();

      IChannelFactory<IOutputChannel> senderFactory = binding.BuildChannelFactory<IOutputChannel>();
      senderFactory.Open();
      IOutputChannel sender = senderFactory.CreateChannel(new EndpointAddress("amqp:" + target));
      sender.Open();

      sender.Send(Message.CreateMessage(MessageVersion.None, "", new HelloWorldBinaryBodyWriter()));

      Message message = receiver.Receive();
      XmlDictionaryReader reader = message.GetReaderAtBodyContents();
      while (!reader.HasValue)
      {
        reader.Read();
      }

      byte[] binaryContent = reader.ReadContentAsBase64();
      string text = Encoding.UTF8.GetString(binaryContent);

      Console.WriteLine(text);

      senderFactory.Close();
      receiverFactory.Close();
    }
  }

  public class HelloWorldBinaryBodyWriter : BodyWriter
  {
    public HelloWorldBinaryBodyWriter() : base (true) {}

    protected override void OnWriteBodyContents(XmlDictionaryWriter writer)
    {
      byte[] binaryContent = Encoding.UTF8.GetBytes("Hello world!");

      // wrap the content:
      writer.WriteStartElement("Binary");
      writer.WriteBase64(binaryContent, 0, binaryContent.Length);
    }
  }
}



Using the Qpid WCF client

43

Bindings define ChannelFactories and ChannelListeners associated with an AMQP Broker. WCF will
frequently automatically create and manage the life cycle of a these and the resulting IChannel objects
used in message transfer. The binding parameters that can be set are:

Table 4.1. WCF Binding Parameters

Parameter Default Description

BrokerHost localhost The broker's server name. Currently
the WCF channel only supports
connections with a single broker.
Failover to multiple brokers will be
provided in the future.

BrokerPort 5672 The port the broker is listening on.

PrefetchLimit 0 The number of messages to prefetch
from the amqp broker before
the application actually consumes
them. Increasing this number can
dramatically increase the read
performance in some circumstances.

Shared false Indicates if separate channels to the
same broker can share an underlying
AMQP tcp connection (provided they
also share the same authentication
credentials).

TransferMode buffered Indicates whether the channel's
encoder uses the WCF BufferManager
cache to temporarily store message
content during the encoding/decoding
phase. For small to medium sized
SOAP based messages, buffered
is usually the preferred choice.
For binary messages, streamed
TransferMode is the more efficient
mode.

2. Endpoints
In Qpid 0.6 the WCF Endpoints map to simple AMQP 0-10 exchanges (IOutputChannel) or AMQP 0-10
queues (IInputChannel). The format for an IOutputChannel is

  "amqp:amq.direct" or "amqp:my_exchange?routingkey=my_routing_key"

and for an IInputChannel is

  "amqp:my_queue"

The routing key is in fact a default value associated with the particular channel. Outgoing messages can
always have their routing key uniquely set.

If the respective queue or exchange doesn't exist, an exception is thrown when opening the channel. Queues
and exchanges can be created and configured using qpid-config.



Using the Qpid WCF client

44

3. Message Headers
AMQP specific message headers can be set on or retrieved from the ServiceModel.Channels.Message
using the AmqpProperties type.

For example, on output:

AmqpProperties props = new AmqpProperties();
props.Durable = true;
props.PropertyMap.Add("my_custom_header", new AmqpString("a custom value"));
Message msg = Message.CreateMessage(args);
msg.Properties.Add("AmqpProperties", amqpProperties);
outputChannel.Send(msg);

On input the headers can be accessed from the Message or extracted from the operation context

public void SayHello(string greeting)
{
  AmqpProperties props = (AmqpProperties) OperationContext.
  Current.IncomingMessageProperties["AmqpProperties"];
  AmqpString extra = (AmqpString) props.PropertyMap["my_custom_header"];
  Console.WriteLine("Service received: {0} and {1}", greeting, extra);
}

4. Security
To engage TLS/SSL:

binding.Security.Mode = AmqpSecurityMode.Transport;
binding.Security.Transport.UseSSL = true;
binding.BrokerPort = 5671;

Currently the WCF client only provides SASL PLAIN (i.e. username and password) authentication.
To provide a username and password, you can set the DefaultAmqpCredential value in the binding.
This value can be overridden or set for a binding's channel factories and listeners, either by
setting the ClientCredentials as a binding parameter, or by using an AmqpCredential as a binding
parameter. The search order for credentials is the AmqpCredential binding parameter, followed by the
ClientCredentials (unless IgnoreEndpointClientCredentials has been set), and finally defaulting to the
DefaultAmqpCredential of the binding itself. Here is a sample using ClientCredentials:

ClientCredentials credentials = new ClientCredentials();
credentials.UserName.UserName = "guest";
credentials.UserName.Password = "guest";
bindingParameters = new BindingParameterCollection();
bindingParameters.Add(credentials);
readerFactory = binding.BuildChannelFactory<IInputChannel>(bindingParameters);



Using the Qpid WCF client

45

5. Transactions
The WCF channel provides a transaction resource manager module and a recovery module that together
provide distributed transaction support with one-phase optimization. Some configuration is required on
Windows machines to enable transaction support (see your installation notes or top level ReadMe.txt file
for instructions). Once properly configured, the Qpid WCF channel acts as any other System.Transactions
aware resource, capable of participating in explicit or implicit transactions.

Server code:

[OperationBehavior(TransactionScopeRequired = true,
                   TransactionAutoComplete = true)]

public void SayHello(string greeting)
{
  // increment ExactlyOnceReceived counter on DB

  // Success: transaction auto completes:
}

Because this operation involves two transaction resources, the database and the AMQP message broker,
this operates as a full two phase commit transaction managed by the Distributed Transaction Coordinator
service. If the transaction proceeds without error, both ExactlyOnceReceived is incremented in the
database and the AMQP message is consumed from the broker. Otherwise, ExactlyOnceReceived is
unchanged and AMQP message is returned to its queue on the broker.

For the client code a few changes are made to the non-transacted example. For "exactly once" semantics,
we set the AMQP "Durable" message property and enclose the transacted activities in a TransactionScope:

AmqpProperties myDefaults = new AmqpProperties();
myDefaults.Durable = true;
amqpBinding.DefaultMessageProperties = myDefaults;
ChannelFactory<IHelloService> channelFactory =
new ChannelFactory<IHelloService>(amqpBinding, clientEndpoint);
IHelloService clientProxy = channelFactory.CreateChannel();

using (TransactionScope ts = new TransactionScope())
{
   AmqpProperties amqpProperties = new AmqpProperties();
   clientProxy.SayHello("Greetings from WCF client");
   // increment ExactlyOnceSent counter on DB
   ts.Complete();
}


