Programming in Apache Qpid

Cross-Platform AMQP Messaging
in Java JMS, .NET, C++, and Python

Programming in Apache Qpid: Cross-Platform AMQP Messaging in
Java JMS, .NET, C++, and Python

Table of Contents

O [gL oo (0 1o o R PP PPPPTI 1
2. Using the QPid MeSSaginNg APlouuiiiiii e e e 2
1. A Simple Messaging Program in CHt ... 2
2. A Simple Messaging Program in Python ... 4
3. A Simple Messaging Program in .INET CHoooiiiiiiiiii e 4
A, AUIESSES ...ttt et 6
A1, AAUIESS SHINOS .vteeieiie ettt et e et e et e e e et e e e ebe e e e e abe e eeens 7

4.2, SUDJECES ...ttt 8

4.3. AAAress StrNG OPLIONSceeeeueieii ettt ettt e e e e 11

4.4, AAAress StHNG GraMMEccoeuuueieeri et e et e et et eet e e et e e enna e eenaes 17

I oo o 1 0T RO P PP TTSPPPTTPPP 18
3N oo o 1o o N1 I O PP 18

5.2. L0gging iN PYINONoouuniiiii e 18

6. Receiving Messages from MUItiple SOUICEScoouuuieiiiiiiieeii e 19
7. REQUESE / RESPONSE ...ttt ettt e e e et e et eeaba s 19
8. MaPS IN MESSAPE CONLENT ...eeevieeiiii ettt e et e e et e e erb e eeees 20
8.1. Qpid Maps iN PYthONiiiiiii e 21

8.2. QPId MRS IN CH et 21

9. PEITOMANGCE ... ettt 23
9.1. Batching ACKNOWIEAgEMENTScveeeieiiiiie et 23

9.2 PrefetCh ..o 23

9.3. Sizing the Replay BUFTEro oo 24

10, REIADIHTTY eeveeeeee et 24
JO.1. RECOMMECEevuiieieiet ettt ettt et ettt e e e e e e eae e eees 24

10.2. Guaranteed DEIIVENYcoouiiiiiiii e 25

10.3. Reliability Options in Senders and RECEIVEISuviiiiiiiiiiiiiieee e 26

10.4. CIUSEEr FAIlOVES ..ooeiiiiiiiie et 26

L1, SBOUIEY eeetneeeett e ettt ettt ettt e ettt e et e bt e e et et e et e et r e e et et n e e e en b e e eenbnaaeaes 26
12, TFANSACHIONS ...ttt ettt ettt ettt e et e et et e e et e e e eba s 27
13. The AMQP 0-20 MEPPING ..evvtnneeiitieee ettt e et e et e et e e et eeeena s 28
3.Using the QPid IMS ClIENToiieii et 30
1. A Simple Messaging Program in JAVaJMScoouuiiiiiiiiicie e 30
2. Apache Qpid INDI Properties for AMQP MESSEQINGccevvvuiiiiiiieeiiiiieeeeiieeeeeiiaeeees 32
2.1. INDI Properties for Apache QPidcoouuuiiiiiiiieiii e 32

2.2. CONNECLION URLS ...ttt ettt e eeans 33

3. Java IMS MeSSage Propertiescciei e 35
4. IMS MAPMESSAOE TYPES ..evueirieieiie ittt ettt ettt e et et e e e e e e e ena e 36
5. IMS ClI@Nt LOGOING .. etttneeiiiieeeeite e ettt ettt e et e et s e et et s e e e et e e e eebt e eeeenaaeeees 38
4. Using the QPIid WECE CHENEiiiiiii e e e 39
1. XML and Binary BiNGINGSccoeuuniiiiiiaeiiii ettt ettt e e e e e eeni e eees 39
2. ENOPOINTS ..t 43
3. MESSAE HEAOEIS ...ttt 44
S o U 1 PSP PPPRT 44
B, TFANSACHIONS ...ttt ettt ettt e et e et e e e et e e e 45

List of Tables

2.1,
2.2,
2.3.
24,
2.5.
2.6.
2.7.
2.8.
3.1
3.2
3.3.
3.4.
3.5.
4.1.

AdAress StHNG OPLIONScceeeeieeeiii ettt ettt e et e et e e et eaeaaa s 15
NOGE PrOPEITIES ...ttt ettt ettt e et et e e e ena e e enanns 15
LINK PrOPEITIES ..ottt ettt et et ettt e 16
Python DatatyPeS iN IM@DScevueiiiiie ettt e e e e s 21
CH+ DAEYPES 1N MBS ...ttt 23
CONNECEION OPLIONS ...ttt ettt ettt e e ettt e e et et e e ettt e e e ert e e e eeataaeaeens 25
SSL Client Environment Variables for CH++ ClIentSovvveviiiiiiiiiieci e 27
Mapping to AMQP 0-10 MeSSAgE ProParti€Sccevvuieiiiii et 29
JINDI Properties supported by Apache QPidooveueiiiiii e 32
ConNECion URL Propertiesccouueieiiii ettt et 33
BrOKEr LISt OPLIONSceeeitieeeiite ettt ettt et ettt ettt et et et e e e rbe e e enaans 34
Java IMS Mapping to AMQP 0-10 MeSSage PropeErtieSoevvvviiiiiii et 35
Java DatatyPeS iN IMADSeevieiiiii et ettt et et e e 38
WCF Binding Par@MELErScceeiiii ittt ettt et e a e e e eenes 43

List of Examples

2.1 "HEO WOTTI™ TN Cr oo et ettt e e et e e ee e eee 3
2.2. "Hello WOrld!™ iN PYERONee e e e 4
2.3. "HEo WOrTA!I™ iN INET CH ..ottt e 5
2. QUEUES ...ttt et h e h e e et et e ea et e e e e aeaae 6
S oo ox: ST PSPPSR 7
2.6. USING SUDJECES ..t eeet ettt ettt ettt e ettt s e ettt e e et et e e e et e e eeaa e eee 9
2.7. Subjects With MUILI-WOID KEYScoeeeiiii e 10
2.8. ASSEITIONS ON NOGES ...ttt et ettt et et e e e b e e e 12
2.9. Creating a Queue AULOMALTCAITYuuniiiiiieee e 12
2.10. BrowSIiNG @ QUEUEceutineeeeti ettt ettt et e et e e e et et e e e et e et et b e et e e e e n e e enaans 13
2.11. Using the XML EXChangeooieiiiiiii e 14
2.12. Receiving Messages from MUItiple SOUICEScoouviieiiiiiieee e 19
2.13. Request / Response AppliCationS iN G .o.uuniiiii e 20
2.14. Sending QPid Maps in PYtNONooiiiiiiiii e 21
2.15. Sending QPId MapS iN Crr oo et 22
216, PrefefCh ..o 23
2.17. Sizing the REPlay BUFTENo 24
2.18. Specifying Connection Optionsin C++ and Python ..., 24
2.19. GUArANLEEH DEIIVENY ...oeeeiiiiii ettt et e e e e e 25
2.20. Cluster FalloVer IN Gt oot 26
2,20, TFANSACHIONS ... eeeitie ettt ettt e et e et e et e et et e et e e e et e na e e nnaans 28
3.1. INDI Properties File for "Hello world!" examplecoooiiiiiiiiiiii e 30
3.2, "HEO WOTTAI™ TN JBVA ..ttt e s 31
3.3, INDI PropertieS File ...c..uieeieie et 32
Bl BIOKEN LISES ..iiiiiieiiiti ettt et ettt et et ettt et e e e e aee 34
3.5. Sending @ Java IMS MaPIMESSAEcovuieieiii et ettt et e e e e e e e e e 37
3.6. 1004] LOQQING PrOPEITIESceeiiieieii ettt et e e e e e 38
4.1. Traditional service model "Hello world!™ exampleoviieeiiiiiiiie e 40
4.2. Binary "Hello world!" example using the channel model ... 42

Chapter 1. Introduction

Apache Qpid is areliable, asynchronous messaging system that supports the AM QP messaging protocol
in several common programming languages. Qpid is supported on most common platforms.

On the Java platform, Qpid uses the established Java JMS API [http://java.sun.com/products/ims/].
On the .NET platform, Qpid defines a WCF binding [http://qpid.apache.org/wcf.html].

For Python, C++, and .NET, Qpid defines its own messaging API, the Qpid Messaging API, which is
conceptually similar in each supported language.

Support for this APl in Ruby will be added soon (Ruby currently uses an API that is closely tied to
the AMQP version).

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://qpid.apache.org/wcf.html
http://qpid.apache.org/wcf.html

Chapter 2. Using the Qpid Messaging
API

The Qpid Messaging API is quite ssmple, consisting of only a handful of core classes.

» A message consists of astandard set of fields (e.g. subj ect, r epl y-t 0), an application-defined set
of properties, and message content (the main body of the message).

A connection represents a hetwork connection to aremote endpoint.

» A session provides a sequentially ordered context for sending and receiving messages. A session is
obtained from a connection.

» A sender sends messages to a target using the sender . send method. A sender is obtained from a
session for agiven target address.

» A receiver receives messages from a source using the r ecei ver. f et ch method. A receiver is
obtained from a session for a given source address.

The following sections show how to use these classes in a simple messaging program.

1. A Simple Messaging Program in C++

The following C++ program shows how to create a connection, create a session, send messages using a
sender, and receive messages using areceiver.

Using the Qpid Messaging API

Example 2.1. "Héeloworld!" in C++

#i ncl ude <qpi d/ messagi ng/ Connecti on. h>
#i ncl ude <qpi d/ messagi ng/ Message. h>

#i ncl ude <qpi d/ messagi ng/ Recei ver. h>
#i ncl ude <qpi d/ messagi ng/ Sender . h>

#i ncl ude <qpi d/ messagi ng/ Sessi on. h>

#i ncl ude <i ostreant

usi ng namespace gpi d: : messagi ng;

i nt

mNm ~Nm inad

[o]

mai n(int argc, char** argv) {

std::string broker = argc > 1 ? argv[1l] : "local host:5672";
std::string address = argc > 2 ? argv[2] : "ang.topic";
Connection connecti on(broker);

try {

connecti on. open();
Sessi on session = connection. createSession();

Recei ver receiver = session.createReceiver(address);
Sender sender = session. createSender (address);

sender . send(Message("Hello world!"));

Message nmessage = receiver.fetch(Duration:: SECOND * 1);
std::cout << nmessage.getContent() << std::endl;
sessi on. acknow edge(); H

connection.close(); W
return O;

} catch(const std::exception& error) {
std::cerr << error.what() << std::endl
connection. cl ose();
return 1,

Establishes the connection with the messaging broker.

Creates a session object, which maintains the state of all interactions with the messaging broker, and
manages senders and receivers.

Creates areceiver that reads from the given address.

Creates a sender that sends to the given address.

Reads the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

Acknowledges messages that have been read. To guarantee delivery, a message remains on the
messaging broker until it is acknowledged by a client. session.acknowledge() acknowledges all
unacknowledged messages for the given session—this allows acknowledgements to be batched,
which is more efficient than acknowledging messages individually.

Closesthe connection, all sessions managed by the connection, and all sendersand receivers managed
by each session.

Using the Qpid Messaging API

2. A Simple Messaging Program in Python

The following Python program shows how to create a connection, create a session, send messages using
a sender, and receive messages using a receiver.

Example 2.2. "Helloworld!" in Python

i mport sys

from qgpi d. messagi ng i nport *

broker = "local host:5672" if |len(sys.argv)<2 else sys.argv[1]
address = "ang.topic" if len(sys.argv)<3 else sys.argv|[2]

connection = Connecti on(broker)

try:

connecti on. open()
sessi on = connection. session()

sender = session. sender (address)
recei ver = session.receiver(address)

sender . send(Message("Hello world!"));

nessage = receiver.fetch(tinmeout=1)
print message. content
sessi on. acknow edge() HE

except Messagi ngError, m
print m

finally:
connecti on. cl ose()

[l o o ~Nm

Establishes the connection with the messaging broker.

Creates a session object, which maintains the state of all interactions with the messaging broker, and
manages senders and receivers.

Creates areceiver that reads from the given address.

Creates a sender that sends to the given address.

Reads the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

Acknowledges messages that have been read. To guarantee delivery, a message remains on the
messaging broker until it is acknowledged by a client. session.acknowledge() acknowledges all
unacknowledged messages for the given session—this allows acknowledgements to be batched,
which is more efficient than acknowledging messages individually.

Closesthe connection, all sessionsmanaged by the connection, and all sendersand receivers managed
by each session.

3. A Simple Messaging Program in .NET C#

Thefollowing .NET C# program shows how to create a connection, create a session, send messages using
a sender, and recelve messages using areceiver.

Using the Qpid Messaging API

Example 2.3. "Heloworld!" in .NET C#

usi ng System
usi ng Org. Apache. Qpi d. Messagi ng;

nanespace O g. Apache. Qi d. Messagi ng {

R BN ™™ ™

cl ass Program {
static void Main(string[] args) {

String broker = args.Length > 0 ? args[0] : "l ocal host:5672";
String address = args.Length > 1 ? args[1] : "ang.topic";
Connection connection = null;
try {
connection = new Connecti on(broker);
connecti on. Open();
Sessi on session = connection. Creat eSessi on();
Recei ver receiver = session. CreateReceiver(address);
Sender sender = session. Creat eSender (address);

sender. Send(new Message("Hello world!"));

Message message = new Message();

nmessage = receiver. Fetch(DurationConstants. SECOND * 1);
Consol e. WitelLine("{0}", nessage.GetContent());

sessi on. Acknow edge() ;

connection. d ose(); 8]
} catch (Exception e) {
Consol e. Wi telLi ne("Exception {0}.", e);
if (null = connection)
connection. d ose();

Selects the Qpid Messaging namespace. A project reference to the Org.Apache.Qpid.Messaging dll
defines the Qpid Messaging namespace objects and methods.

Establishes the connection with the messaging broker.

Creates a session object, which maintains the state of all interactions with the messaging broker, and
manages senders and receivers.

Creates areceiver that reads from the given address.

Creates a sender that sends to the given address.

Reads the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

Acknowledges messages that have been read. To guarantee delivery, a message remains on the
messaging broker until it is acknowledged by a client. session.acknowledge() acknowledges all
unacknowledged messages for the given session—this allows acknowledgements to be batched,
which is more efficient than acknowledging messages individually.

Closesthe connection, all sessions managed by the connection, and all sendersand receivers managed
by each session.

Using the Qpid Messaging API

4. Addresses

An address is the name of a message target or message source. In the programs we have just seen, we
used the address any. t opi ¢ (which is the name of an exchange on an AMQP 0-10 messaging broker).
The methods that create senders and receivers require an address. The details of sending to a particular
target or receiving from a particular source are then handled by the sender or receiver. A different target
or source can be used simply by using a different address.

An address resolves to anode. The Qpid Messaging API recognises two kinds of nodes, queues and topics
1. A queue stores each message until it has been received and acknowledged, and only one receiver can
receive agiven message 2. A topic immediately delivers amessageto all eigible receivers; if there are no
eligible receivers, it discards the message. In the AMQP 0-10 implementation of the API, 3 queues map
to AMQP queues, and topics map to AMQP exchanges. 4

Intherest of thistutorial, we present many examples using two programsthat take an addressasacommand
line parameter. spout sends messages to the target address, drain receives messages from the source
address. The source code is available in C++, Python, and .NET C# and can be found in the examples
directory for each language. These programs can use any address string as a source or a destination, and
have many command line options to configure behavior—use the -h option for documentation on these
options. >The examples in this tutorial also use the qpid-config utility to configure AMQP 0-10 queues
and exchanges on a Qpid broker.

Example 2.4. Queues

Create a queue with gpid-config, send a message using spout, and read it using drain:
$ gpid-config add queue hello-world

$./spout hello-world

$./drain hello-world

Message(properti es={spout-id: c877e622- d57b- 4df 2- bf 3e- 6014c68dalea: 0}, content="")

The queue stored the message sent by spout and delivered it to drain when requested.
Once the message has been delivered and and acknowledged by drain, it is no longer available on the

queue. If we run drain one more time, no messages will be retrieved.

$./drain hello-world
$

Theterms gueue and topic here were chosen to align with their meaning in JMS. These two addressing ‘patterns, queue and topic, are sometimes
refered as point-to-point and publish-subscribe. AMQP 0-10 has an exchange type called a topic exchange. When the term topic occurs aone, it
refers to a Messaging API topic, not the topic exchange.

’There are exceptionsto thisrule; for instance, areceiver can use br owse mode, which |eaves messages on the queue for other receivers to read.
*The AM QP 0-10 implementation is the only one that currently exists.

“In AMQP 0-10, messages are sent to exchanges, and read from queues. The Messaging APl also allows a sender to send messages to a queue;
internally, Qpid implements this by sending the message to the default exchange, with the name of the queue as the routing key. The Messaging
API dso allows a receiver to receive messages from atopic; internally, Qpid implements this by setting up a private subscription queue for the
receiver and binding the subscription queue to the exchange that corresponds to the topic.

5Current|y, the C++, Python, and .NET C# implementations of drain and spout have dlightly different options. This tutorial uses the C++
implementation. The options will be reconciled in the near future.

Using the Qpid Messaging API

Example 2.5. Topics
This exampleis similar to the previous example, but it uses atopic instead of a queue.

First, use gpid-config to remove the queue and create an exchange with the same name:

$ gpid-config del queue hello-world
$ gpi d-config add exchange topic hello-world

Now run drain and spout the same way we did in the previous example:

$./spout hello-world
$./drain hello-world

$

Topics deliver messages immediately to any interested receiver, and do not store messages. Because there
were no receivers at the time spout sent the message, it was simply discarded. When we ran drain, there
were No messages to receive.

Now let'srun drain first, using the - t option to specify atimeout in seconds. While drain iswaiting for
messages, run spout in another window.

First Window:

$./drain -t 30 hello-word

Second Window:

$./spout hello-word

Once spout has sent a message, return to the first window to see the output from drain:

Message(properti es={spout-id: 7da2d27d- 93e6- 4803- 8a61- 536d87b8d93f: 0}, content="")

You can run drain in several separate windows; each creates a subscription for the exchange, and each
receives all messages sent to the exchange.

4.1. Address Strings

So far, our examples have used address strings that contain only the name of a node. An address string
can also contain a subject and options.

The syntax for an address string is:

Using the Qpid Messaging API

address_string ::= <address> [/ <subject>] [; <options>]
options ::= { <key>: <value> ... }

Addresses, subjects, and keys are strings. Vaues can be numbers, strings (with optional single or double
quotes), maps, or lists. A complete BNF for address strings appears in Section 4.4, “Address String
Grammar”.

So far, the address strings in this tutorial have used only addresses. The following sections show how to
use subjects and options.

4.2. Subjects

Every message has a property called subject, which is analogous to the subject on an email message. If no
subject is specified, the message's subject is null. For convenience, address strings also allow a subject.
If a sender's address contains a subject, it is used as the default subject for the messages it sends. If a
receiver'saddress containsasubject, it isused to select only messagesthat match the subject—the matching
algorithm depends on the message source.

In AMQP 0-10, each exchange type has its own matching algorithm, and queues do not provide filtering.
Thisisdiscussed in Section 13, “The AMQP 0-10 mapping”.

Note

Currently, a receiver bound to a queue ignores subjects, receiving messages from the queue
without filtering. Inthe future, if areceiver isbound to aqueue, and its address contains a subject,
the subject will be used as a selector to filter messages.

Using the Qpid Messaging API

Example 2.6. Using subjects
In this example we show how subjects affect message flow.

First, let's use gpid-config to create a topic exchange.

$ qpi d-config add exchange topic news-service

Now we use drain to receive messages from news- ser vi ce that match the subject sport s.

First Window:

$./drain -t 30 news-service/sports

In a second window, let's send messages to news- ser vi ce using two different subjects:

Second Window:

$./spout news-service/sports
$./spout news-service/news

Now look at thefirst window, the messagewith the subject spor t s hasbeen received, but not the message
with the subject news:

Message(properties={qpi d. subj ect:sports, spout-id:9441674e-al57-4780-a78e-f7ccea99

If you run drain in multiple windows using the same subject, all instances of drain receive the messages
for that subject.

The AMQP exchange type we are using here, ant. t opi ¢, can also do more sophisticated matching.
A sender's subject can contain multiple words separated by a “.” delimiter. For instance, in a news
application, the sender might use subjects like usa. news, usa. weat her, eur ope. news, or
eur ope. weat her . The receiver's subject can include wildcard characters— “#’ matches one or more
wordsinthe message's subject, “*” matchesasingleword. For instance, if the subject in the source address
is*. news, it matches messages with the subject eur ope. news or usa. news; if itiseur ope. #, it
matches messages with subjects like eur ope. news or eur ope. pseudo. news.

Using the Qpid Messaging API

Example 2.7. Subjectswith multi-word keys

This example uses drain and spout to demonstrate the use of subjects with two-word keys.

Let's use drain with the subject *. news to listen for messages in which the second word of the key is
news.

First Window:

$./drain -t 30 news-servicel/*. news

Now let's send messages using severa different two-word keys:

Second Window:

$./spout news-service/usa. news

$./spout news-service/usa.sports

$./spout news-service/europe.sports
$./spout news-service/europe. news

In the first window, the messages with news in the second word of the key have been received:

Message(properties={qpi d. subj ect: usa. news, spout-id: 73f c8058-5af 6-407c-9166- b49a90
Message(properties={qpi d. subj ect: europe. news, spout-id:f72815aa-7be4-4944-99f d- c64

Next, let's use drain with the subject #. news to match any sequence of words that ends with news.

First Window:

$./drain -t 30 news-servicel#. news

In the second window, let's send messages using a variety of different multi-word keys:

Second Window:

./ spout news-servi ce/ news

./ spout news-servicel/sports

./ spout news-servi ce/ usa. news

./ spout news-service/ usa.sports

./ spout news-service/ usa. f aux. news
./ spout news-service/ usa. faux. sports

LR

In the first window, messages with news in the last word of the key have been received:

Message(properties={qpi d. subj ect: news, spout-id:cbd42b0f-c87b-4088-8206-26d7627c96
Message(properties={qpi d. subj ect: usa. news, spout-id: 234a78d7- daeb-4826-90el- 1c6540
Message(properties={qpi d. subj ect: usa. f aux. news, spout-id: 6029430a- cf ch-4700-8e9b-c

10

Using the Qpid Messaging API

4.3. Address String Options

The options in an address string contain additional information for the senders or receivers created for
it, including:

Policies for assertions about the node to which an address refers.

For instance, in the address string nmy- queue; {assert: always, node:{ type:
queue }}, the node named ny- queue must be a queue; if not, the address does not resolve to a
node, and an exception is raised.

Policies for automatically creating or deleting the node to which an address refers.

For instance, in the address string xoxox ; {create: al ways},thequeuexoxox iscreated, if
it does not exist, before the addressis resolved.

Extension points that can be used for sender/receiver configuration.

For instance, if the address for areceiver isny- queue; {node: browse}, thereceiver worksin
br owse mode, leaving messages on the queue so other receivers can receive them.

Extension points that rely on the functionality of specific node types.

For instance, the Qpid XML exchange can use X Query to do content-based routing for XML messages,
or to query message data using XQuery. Queries can be specified using options.

Let's use some examples to show how these different kinds of address string options affect the behavior
of senders and receives.

4.3.1. assert

Inthissection, weusetheassert optionto ensurethat the address resolvesto anode of the required type.

11

Using the Qpid Messaging API

Example 2.8. Assertionson Nodes
Let's use qpid-config to create a queue and a topic.

$ gpi d-config add queue ny-queue
$ gpi d-confi g add exchange topic ny-topic

We can now use the address specified to drain to assert that it is of a particular type:

$./drain 'my-queue; {assert: always, node:{ type: queue }}'

$./drain 'my-queue; {assert: always, node:{ type: topic }}'

2010-04-20 17:30: 46 warni ng Exception received from broker: not-found: not-found:
Exchange my-queue does not exi st

Thefirst attempt passed without error as my-queue isindeed a queue. The second attempt however failed;
my-queue is not atopic.

We can do the same thing for my-topic:
$./drain 'nmy-topic; {assert: always, node:{ type: topic }}'
$./drain 'nmy-topic; {assert: always, node:{ type: queue }}'

2010-04-20 17:31: 01 warni ng Exception received from broker: not-found: not-found:
Queue ny-topic does not exist

Now let'susethe cr eat e option to create the queue xoxox if it does not already exist:

4.3.2. create

In previous examples, we created the queue beforelistening for messagesonit. Usingcr eat e: al ways,
the queue is automatically created if it does not exist.

Example 2.9. Creating a Queue Automatically

First Window:

$./drain -t 30 "xoxox ; {create: always}"

Now we can send messages to this queue:

Second Window:

$./spout "xoxox ; {create: always}"

Returning to the first window, we see that drain has received this message:

Message(properti es={spout-id: 1ala3842- 1a8b- 4f 88- 8940- b4096e615a7d: 0}, content='")

4.3.3. browse

Some options specify message transfer semantics; for instance, they may state whether messages should
be consumed or read in browsing mode, or specify reliability characteristics. The following example uses
the br ows e option to receive messages without removing them from a queue.

12

Using the Qpid Messaging API

Example 2.10. Browsing a Queue

L et's use the browse mode to receive messages without removing them from the queue. First we send three
messages to the queue;

$./spout ny-queue --content one
$./spout ny-queue --content two
$./spout ny-queue --content three

Now we use drain to get those messages, using the browse option:;

$./drain 'ny-queue; {nobde: browse}'

Message(properti es={spout-id: f bb93f 30- 0e82- 4b6d- 8c1ld- be60eb132530: 0}, content =" one
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f: 0}, content='"two
Message(properti es={spout-id: ea75d64d- ea37-47f 9- 96a9- d38e01c97925: 0}, content="thr

We can confirm the messages are still on the queue by repeating the drain:;

$./drain 'nmy-queue; {nobde: browse}'

Message(properties={spout-id: f bb93f 30- 0e82- 4b6d- 8c1ld- be60eb132530: 0}, content =" one
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f: 0}, content="two
Message(properti es={spout-id: ea75d64d- ea37-47f 9- 96a9- d38e01c97925: 0}, content="thr

4.3.4. x-bindings

X-bi ndi ngs alows an address string to specify properties AMQP 0-10 bindings. For instance, the
XML Exchangeis an AMQP 0-10 custom exchange provided by the Apache Qpid C++ broker. It allows
messages to be filtered using XQuery; queries can address either message properties or XML content in
the body of the message. These queries can be specified in addresses using x-bindings

An instance of the XML Exchange must be added before it can be used:
$ gpid-config add exchange xm xmni

When using the XML Exchange, areceiver provides an XQuery as an x-binding argument. If the query
contains a context item (a path starting with “.”), then it is applied to the content of the message, which
must be well-formed XML. For instance, . / weat her isavalid XQuery, which matches any message in

which the root element is named weat her . Here is an address string that contains this query:

xm; {
link: {
x-bi ndi ngs: [{exchange: xm , key:weather, argunents:{xquery:"./weather"} }]
}
}

When using longer queries with drain, it is often useful to place the query in afile, and use cat in the
command line. We do thisin the following example.

13

Using the Qpid Messaging API

Example 2.11. Using the XML Exchange

This example uses an x-binding that contains queries, which filter based on the content of XML messages.
Here is an XQuery that we will usein this example:

let $w := ./ weat her
return $w station = 'Ral ei gh-Durham International Airport (KRDU)'
and $w' tenperature_f > 50
and $w' tenperature_f - $w dewpoint > 5
and $w wi nd_speed_nph > 7
and $w wi nd_speed_nph < 20

We can specify thisquery in an x-binding to listen to messagesthat meet the criteria specified by the query:

First Window:

$./drain -f "xm; {link:{x-bindings:[{key:'weather',
argurment s: {xquery:\"$(cat rdu.xquery)\"}}]1}}"

In another window, let's create an XML message that meets the criteria in the query, and place it in the
filerdu. xm :

<weat her >
<st ati on>Ral ei gh-Durham I nternational Airport (KRDU)</station>
<wi nd_speed_nph>16</w nd_speed_nph>
<tenperature_f>70</tenperature_f>
<dewpoi nt >35</ dewpoi nt >

</ weat her >

Now let's use spout to send this message to the XML exchange:

Second Window:
spout --content "$(cat rdu.xm)" xm /weather

Returning to the first window, we see that the message has been received:

$./drain -f "xm; {link:{x-bindings:[{exchange:' xm "', key:'weather', argunents:{x
Message(properti es={qpi d. subj ect: weat her, spout-id: 31c431de-593f-4bec-a3dd-29717bd
cont ent =' <weat her >

<st ati on>Ral ei gh- Durham I nternati onal Airport (KRDU)</station>

<wi nd_speed_nph>16</w nd_speed_nph>

<t enperature_f>40</tenperature_f>

<dewpoi nt >35</ dewpoi nt >
</ weat her>")

14

Using the Qpid Messaging API

4.3.5. Address String Options - Reference

Table 2.1. Address String Options

option value semantics
assert one of: always, never, sender or|Assertsthat the propertiesspecifiedin
receiver the node option match whatever the
address resolves to. If they do not,
resolution fails and an exception is
raised.
create one of: aways, never, sender or|Creates the node to which an address
receiver refers if it does not exist. No error
is raised if the node does exist. The
details of the node may be specifiedin
the node option.
delete one of: always, never, sender or|Delete the node when the sender or
receiver receiver is closed.
node A nested map containing the|Specifies properties of the node to
entries shown in Table 2.2, “Node|which the address refers. These are
Properties’. used in conjunction with the assert or
create options.
link A nested map containing the entries|Used to control the establishment of
showninTable2.3,“Link Properties’.|a conceptua link from the client
application to or from the target/
source address.
mode one of:: browse, consume This option is only of relevance for

source addresses that resolve to a
queue. If browse is specified the
messages delivered to the receiver are
left on the queue rather than being
removed. If consume is specified the
normal behaviour applies; messages
are removed from teh queue once the
client acknoweldges their receipt.

Table 2.2. Node Properties

property value semantics
type topic, queue Indicates the type of the node.
durable True, False Indicates whether the node survives
a loss of voldtile storage eg. if the
broker is restarted.
x-declare A nested map whose values These values are used to fine tune
correspond to the valid fields on|the creation or assertion process.
an AMQP 0-10 queue-declare or|Note however that they are protocol
exchange-declare command. specific.
x-bindings A nested list in which each binding|In conjunction with the create option,

is represented by a map. The entries
of the map for a binding contain the

each of thesebindingsisestablished as
the addressisresolved. In conjunction

15

Using the Qpid Messaging API

property

value

semantics

fields that describe an AMQP 0-10
binding. Here is the format for x-
bindings:

with the assert option, the existence
of each of these hindings is verified
during resolution. Again, these are
protocol specific.

{
exchange: <exchange>,
queue: <queue>,
key: <key>,
argument s: {
<key_1>: <val ue_1>,
<key_n>: <val ue_n> }
} il
]
Table2.3. Link Properties
option value semantics
reliability one of: unreliable, at-least-once, at-|Reliability indicates the level of
most-once, exactly-once reliability that the sender or receiver.
unrel i abl e and at - npst - once
are currently treated as synonyms,
and allow messages to be lost if a
broker crashes or the connection to
a broker is lost. at - | east - once
guarantees that a message is not
lost, but duplicates may be received.
exact | y-once guarantees that a
message is not lost, and is delivered
precisely once.
durable True, False Indicates whether the link survives
a loss of voldtile storage eg. if the
broker is restarted.
x-declare A nested map whose values|Thesevaluescan be usedto customise
correspond to the valid fields of an|the subscription queue in the case
AMQP 0-10 queue-declare command. |of receiving from an exchange.
Note however that they are protocol
specific.
x-subscribe A nested map whose values|Thesevaluescan beusedto customise
correspond to the valid fields of |the subscription.
an AMQP 0-10 message-subscribe
command.
x-bindings A nested list each of whose entries| These bindings are established during

is a map that may contain fields
(queue, exchange, key and arguments)
describing an AMQP 0-10 binding.

resolution independent of the create
option. They are considered logically
part of the linking process rather than
of node creation.

16

Using the Qpid Messaging API

4.4. Address String Grammar

This section provides aformal grammar for address strings.

Tokens. The following regular expressions define the tokens used to parse address strings:

LBRACE: \\{

RBRACE: \\}

LBRACK: \\[

RBRACK: \\]

COLON:

SEM : ;

SLASH: /

COWA:

NUVBER: [+-]7?[0-9]*\\.?[0-9]+

| D [a-zA-Z] (?:[a-zA-Z0-9 -]*[a-zA-Z0-9])?
STRING "(2: [ANANAN"T NN) * " PV (20 LAV VNN) *
ESC: VWA [Aux] |\ X[0-9a-fA-F][0-9a-fA-F] |\ \\\u[0-9a-fA-F] [0-9a-f A-F] [0- 9a- f A-
SYM [. #* 9@ +-]

WSPACE: [\\n\\r\\t]+

Grammar. The formal grammar for addresses is given below:

address := nanme ["/" subject] [";" options]

nane := (part | quoted)+
subject := (part | quoted | "/")*

quoted := STRING / ESC

part := LBRACE / RBRACE / COLON/ COWA / NUMBER / ID/ SYM
options := map

map = "{" (keyval ("," keyval)*)? "}"

keyval "= 1D ":" val ue

value := NUMBER / STRING/ ID/ map / list

list :="[" (value ("," value)*)? "]"

Address String Options. The address string options map supports the following parameters:

<nanme> [/ <subject>] ; {

create: always | sender | receiver | never,
del ete: always | sender | receiver | never,
assert: always | sender | receiver | never,
node: browse | consune,
node: {

type: queue | topic,

durabl e: True | Fal se,

x-declare: { ... <declare-overrides> ... },
X-bi ndi ngs: [<binding_1>, ... <binding_n>]
} 1
link: {

nane: <link-name>,
durabl e: True | Fal se,

17

Using the Qpid Messaging API

reliability: unreliable | at-npbst-once | at-l|east-once | exactly-once,

x-declare: { ... <declare-overrides> ... },
X-bi ndi ngs: [<binding_1>, ... <binding_n>],
X-subscribe: { ... <subscribe-overrides> ... }

}
}

Create, Delete, and Assert Policies

The create, delete, and assert policies specify who should perfom the associated action:
 always: the action is performed by any messaging client

 sender: the action is only performed by a sender

* receiver: the action is only performed by areceiver

* never: the action is never performed (thisis the default)
Node-Type

The node-type is one of:

* topic: in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be used
to specify other exchange types

* queue: thisisthe default node-type

5. Logging
To simplify debugging, Qpid provides alogging facility that prints out messaging events.
5.1. Logging in C++
The Qpidd broker and C++ clients can both use environment variables to enable logging. Use

QPID_LOG_ENABLE to set thelevel of logging you areinterested in (trace, debug, info, notice, warning,
error, or critical):

$ export QPI D_LOG ENABLE="war ni ng+"
The Qpidd broker and C++ clientsuse QPID_LOG_OUTPUT to determine where logging output should

be sent. Thisis either afile name or the special values stderr, stdout, or syslog:

export QPID LOG TO FILE="/tnp/ nyclient.out"

5.2. Logging in Python

The Python client library supports logging using the standard Python logging module. The easiest way to
do logging is to use the basicConfig(), which reports al warnings and errors:

from | ogging inport basicConfig
basi cConfi g()

18

Using the Qpid Messaging API

Qpidd also provides a convenience method that makes it easy to specify the level of logging desired. For
instance, the following code enables logging at the DEBUG level:

fromqpid.log inport enable, DEBUG
enabl e(" gpi d. messagi ng. i 0", DEBUG

For more information on Python logging, see http://docs.python.org/lib/noded425.html. For more
information on Qpid logging, use $ pydoc gpid.log.

6. Receiving Messages from Multiple Sources

A receiver can only read from one source, but many programs need to be able to read messages from many
sources, preserving the original sequence of the messages. In the Qpid Messaging API, a program can ask
a session for the “next receiver”; that is, the receiver that is responsible for the next available message.
The following example shows how thisis donein C++, Python, and .NET C#.

Example 2.12. Receiving M essages from Multiple Sour ces

C++:

Recei ver receiverl
Recei ver receiver2

= session. creat eRecei ver (addressl);
= session. creat eRecei ver (address2);
Message nessage = session. next Receiver().fetch();
sessi on. acknow edge(); // acknow edge message recei pt
std::cout << nessage.getContent() << std::endl;

Python:

receiverl = session.receiver(addressl)
receiver2 = session.receiver (address)
nmessage = session. next_receiver().fetch()
print nmessage. content

NET C#

Recei ver receiverl
Recei ver receiver?2

= session. Creat eRecei ver (addressl);
= sessi on. Creat eRecei ver (addr ess?2);
Message nmessage = new Message();

nessage = session. Next Receiver (). Fetch();

sessi on. Acknowl edge() ;

Consol e. WitelLine("{0}", nessage.GetContent());

7. Request / Response

Request / Response applications use the reply-to property, described in Table 2.8, “Mapping to AMQP
0-10 Message Properties’, to allow a server to respond to the client that sent a message. A server sets up

19

http://docs.python.org/lib/node425.html

Using the Qpid Messaging API

a service queue, with aname known to clients. A client creates a private queue for the server's response,
creates a message for a request, sets the request's reply-to property to the address of the client's response
gueue, and sends the request to the service queue. The server sends the response to the address specified
in the request's reply-to property.

Example 2.13. Request / Response Applicationsin C++

This example shows the C++ code for a client and server that use the request / response pattern.

The server creates a service queue and waits for a message to arrive. If it receives a message, it sends a
message back to the sender.

Recei ver receiver = session.createReceiver("service_queue; {create: always}");

Message request = receiver.fetch();
const Address&anp; address = request.getReplyTo(); // Get "reply-to" fromrequest
if (address) {
Sender sender = session.createSender(address); // ... send response to "reply-to
Message response("pong!");
sender . send(response) ;
sessi on. acknow edge() ;

Theclient creates asender for the service queue, and also creates aresponse queue that is deleted when the
client closes the receiver for the response queue. In the C++ client, if the address starts with the character
#, it is given aunique name.

Sender sender = session. creat eSender ("service_queue");

Addr ess responseQueue(" #response-queue; {create: al ways, del ete:always}");
Recei ver receiver = session. createReceiver(responseQueue);

Message request;

request. set Repl yTo(responseQueue) ;

request. set Content ("pi ng");

sender. send(request);

Message response = receiver.fetch();

std::cout << request.getContent() << " -> " << response.getContent() << std::endl

The client sends the string pi ng to the server. The server sends the response pong back to the same
client, using ther epl yTo property.

8. Maps in Message Content

Many messaging applications need to exchange data across languages and platforms, using the native
datatypes of each programming language. AM QP providesaset of portable datatypes, but does not directly
support a set of named type/value pairs. Java JMS provides the MapMessage interface, which allows
sets of named type/value pairs, but does not provide a set of portable datatypes.

The Qpid Messaging APl supports maps in message content. Unlike JM S, any message can contain maps.
These maps are supported in each language using the conventions of the language. In Java, we implement
the MapMessage interface; in Python, we support di ct and | i st in message content; in C++, we

20

Using the Qpid Messaging API

providetheVari ant: : Map andVari ant : : Li st classestorepresent mapsandlists. Inall languages,
messages are encoded using AM QP's portable datatypes.

Tip
Because of the differencesin type systems among languages, the simpl est way to provide portable

messages is to rely on maps, lists, strings, 64 bit signed integers, and doubles for messages that
need to be exchanged across languages and platforms.

8.1. Qpid Maps in Python

In Python, Qpid supportsthedi ct andl i st typesdirectly in message content. Thefollowing code shows
how to send these structuresin a message:

Example 2.14. Sending Qpid Mapsin Python

from gpi d. messagi ng i nport *

111 SNIP 111
content = {'1d" : 987654321, 'name' : 'Wdget', 'percent' : 0.99}
content['colours'] =['red, 'green', 'white']

content['dinmensions'] = {'length" : 10.2, "width' : 5.1,"depth" : 2.0};
content['parts'] =1 [1,2,5], [8,2,5]]

content['specs'] = {'colors' : content['colours'],
"di mensions' : content['dinensions'],
"parts' : content['parts'] }

nessage = Message(cont ent =cont ent)
sender . send(nmessage)

The following table shows the datatypes that can be sent in a Python map message, and the corresponding
datatypes that will be received by clientsin Java or C++.

Table 2.4. Python Datatypesin Maps

Python Datatype #C++ # Java

bool bool boolean

int int64 long

long int64 long

float double double

unicode string javalang.String
uuid gpid::types::Uuid java.util.UUID
dict Variant::Map java.util.Map
list Variant::List java.util.List

8.2. Qpid Maps in C++

In C++, Qpid definesthethe Var i ant : : Map and Vari ant : : Li st types, which can be encoded into
message content. The following code shows how to send these structures in a message:

21

Using the Qpid Messaging API

Example 2.15. Sending Qpid Mapsin C++

usi ng nanmespace gpi d::types;
[/ 111 SNIP 11

Message nessage;

Variant:: Map content;

content["id"] = 987654321
content["name"] = "Wdget";
content["percent”] = 0.99;
Variant::List colours;

col ours. push_back(Variant("red"));
col ours. push_back(Variant("green"));
col ours. push_back(Variant ("white"));
content["col ours"] = col ours;

Variant:: Map di mensi ons;

di mensi ons["l ength"] = 10. 2;

di mensi ons["wi dt h"] 1

di mensi ons["dept h"] 0
[

= 5.
= 2.
content["di mensi ons"] = di nensi ons;

Variant::List partil;

part 1. push_back(Variant(1));
part 1. push_back(Variant(2));
part 1. push_back(Variant(5));

Variant::List part?2;

part 2. push_back(Variant(8));
part 2. push_back(Variant(2));
part 2. push_back(Variant(5));

Variant::List parts;

parts. push_back(part1l);
parts. push_back(part2);
content["parts"]= parts;

Variant:: Map specs;

specs["col ours"] = col ours;
specs["di nensi ons"] = di nensi ons;
specs["parts"] = parts;
content["specs"] = specs;

encode(content, message);

sender . send(nessage, true);

The following table shows the datatypes that can be sent in a C++ map message, and the corresponding
datatypes that will be received by clientsin Java and Python.

22

Using the Qpid Messaging API

Table 2.5. C++ Datatypesin Maps

C++ Datatype # Python # Java

bool bool boolean

uintl6 int | long short

uint32 int | long int

uint64 int [long long

int16 int | long short

int32 int | long int

int64 int | long long

float float float

double float double

string unicode javalang.String
gpid::types::Uuid uuid java.util.UUID
Variant::Map dict javautil.Map
Variant::List list javautil.List

9. Performance

Clients can often be made significantly faster by batching acknowledgements and setting the capacity of
receiversto alow prefetch. The size of a sender's replay buffer can also affect performance.

9.1. Batching Acknowledgements

Many of the smple examples we have shown retrieve a message and immediately acknowledge it.
Because each acknowledgement results in network traffic, you can dramatically increase performance by
acknowledging messages in batches. For instance, an application can read a number of related messages,
then acknowledge the entire batch, or an application can acknowledge after a certain number of messages
have been received or a certain time period has elapsed. Messages are not removed from the broker until
they are acknowledged, so guaranteed delivery is till available when batching acknowledgements.

9.2. Prefetch

By default, areceiver retrieves the next message from the server, one message at atime, which provides
intuitive results when writing and debugging programs, but does not provide optimum performance. To
create an input buffer, set the capacity of the receiver to the size of the desired input buffer; for many
applications, a capacity of 100 performswell.

Example 2.16. Prefetch
C++
Recei ver receiver = session.createReceiver(address);

recei ver. set Capaci t y(100);
Message message = receiver.fetch();

23

Using the Qpid Messaging API

9.3. Sizing the Replay Buffer

In order to guarantee delivery, asender automatically keeps messagesin areplay buffer until the messaging
broker acknowledges that they have been received. The replay buffer is held in memory, and is never
paged to disk. For most applications, the default size of the replay buffer workswell. A large replay buffer
requires more memory, a small buffer can slow down the client because it can not send new messages if
the replay buffer isfull, and must wait for existing sends to be acknowledged.

Example 2.17. Sizing the Replay Buffer
C++

Sender sender = session. createSender (address);
sender . set Capaci ty(100);

10. Reliability

The Qpid Messaging APl supports automatic reconnect, guaranteed delivery via persistent messages,
reliability options in senders and receivers, and cluster failover. This section shows how programs can
take advantage of these features.

10.1. Reconnect

Connections in the Qpid Messaging API support automatic reconnect if aconnection islost. Thisis done
using connection options. Thefollowing example shows how to use connection optionsin C++ and Python.

Example 2.18. Specifying Connection Optionsin C++ and Python

In C++, these options are set using Connecti on: : set Opti on():

Connecti on connecti on(broker);
connection. set Opti on("reconnect", true);

try {
connect i on. open();

I SNIP 111
In Python, these options are set using named arguments in the Connect i on constructor:

connection = Connection("local host:5672", reconnect=True)
try:

connecti on. open()
It SNIP I

See the reference documentation for details on how to set these on connections for each language.

The following table lists the connection options that can be used.

24

Using the Qpid Messaging API

Table 2.6. Connection Options

option value semantics

reconnect True, False Transparently reconnect if the
connection is lost.

reconnect_timeout N Total number of seconds to continue
reconnection attempts before giving
up and raising an exception.

reconnect_limit N Maximum number of reconnection
attempts before giving up and raising
an exception.

reconnect_interval_min N Minimum number of seconds

between reconnection attempts. The
first reconnection attempt is made
immediately; if that fals, the first
reconnection delay is set to the value
of reconnect _interval _mn;
if that attempt fails, the reconnect
interval increases exponentially until
a reconnection attempt succeeds
orreconnect _interval _naxis
reached.

reconnect_interval_max N Maximum reconnect interval.

reconnect_interval N Sets both
reconnection_interval _mn
and

reconnection_i nterval _nmax
to the same value.

10.2. Guaranteed Delivery

If a queue is durable, the queue survives a messaging broker crash, as well as any durable messages
that have been placed on the queue. These messages will be delivered when the messaging broker is
restarted. Delivery is guaranteed if and only if both the message and the queue are durable. Guaranteed
delivery requires a persistence module, such as the one available from QpidComponents.org [http://
QpidComponents.org].

Example 2.19. Guaranteed Delivery

C++:

Sender sender = session. creat eSender ("durabl e- queue");

Message nmessage("Hello world!'");
nessage. set Durabl e(1);

sender . send(Message("Hello world!"));

25

http://QpidComponents.org
http://QpidComponents.org
http://QpidComponents.org

Using the Qpid Messaging API

10.3. Reliability Options in Senders and Receivers

When creating asender or areceiver, you can specify areliability option in the address string. For instance,
the following specifiesat - | east - once asthereliability mode for a sender:

Sender = session.createSender("topic;{create:always,link:{reliability:at-I|east-onc

Themodesunr el i abl e, at - nost - once, at - | east - once, and exact | y- once are supported.
These modes govern the reliability of the connection between the client and the messaging broker.

Themodesunr el i abl e and at - nost - once are currently synonyms. In areceiver, this mode means
that messages received on an auto-del ete subscription queue may belost in the event of abroker failure. In
a sender, this mode means that the sender can consider a message sent as soon as it is written to the wire,
and need not wait for broker acknowledgement before considering the message sent.

Themodeat - nost - once ensuresthat messages are not lost, but duplicates of amessage may occur. In
areceiver, this mode ensures that messages are not lost in event of abroker failure. In asender, thismeans
that messages are kept in a replay buffer after they have been sent, and removed from this buffer only
after the broker acknowledges receipt; if a broker failure occurs, messages in the replay buffer are resent
upon reconnection. The mode exact | y- once issimilar to at - nost - once, but eliminates duplicate

messages.
10.4. Cluster Failover

The messaging broker can be run in clustering mode, which provides high reliability at-least-once
messaging. If one broker in a cluster fails, clients can choose another broker in the cluster and continue
their work.

In C++, the Fai | over Updat es class keeps track of the brokersin a cluster, so a reconnect can select
another broker in the cluster to connect to:

Example 2.20. Cluster Failover in C++

#i ncl ude <gpi d/ messagi ng/ Fai | over Updat es. h>

Connecti on connecti on(broker);
connection. set Opti on("reconnect", true);
try {
connecti on. open();
std::auto_ptr<Fail over Updat es> updat es(new Fai | over Updat es(connecti on));

11. Security

Qpid provides authentication, rule-based authorization, encryption, and digital signing.

Authentication is done using Simple Authentication and Security Layer (SASL) to authenticate
client connections to the broker. SASL is a framework that supports a variety of authentication
methods. For secure applications, we suggest CRAM-MD5, DIGEST-MD5, or GSSAPI (Kerberos). The
ANONYMOUS method is not secure. The PLAIN method is secure only when used together with SSL.

26

Using the Qpid Messaging API

To enable Kerberosin aclient, set the sal s- mechani smconnection option to GSSAPI :

Connecti on connecti on(broker);
connection. set Opti on("sasl - mechani sn', " GSSAPI ") ;

try {
connecti on. open();

For Kerberos authentication, if the user running the program is already authenticated, e.g. using Kinit,
there is no need to supply auser name or password. If you are using another form of authentication, or are
not already authenticated with Kerberos, you can supply these as connection options:

connection. set Opti on("usernane”, "mck");
connection. set Opti on("password", "pa$$word");

Encryption and signing are done using SSL (they can also be done using SASL, but SSL provides stronger
encryption). To enable SSL, set the pr ot ocol connection optionto ssi :

connection. set Opti on("protocol™, "ssl");

Use the following environment variables to configure the SSL client:

Table2.7. SSL Client Environment Variablesfor C++ clients

SSL Client Optionsfor C++ clients

SSL_USE_EXPORT_POLICY Use NSS export policy

SSL_CERT_PASSWORD_FILE PATH File containing password to use for accessing
certificate database

SSL_CERT_DB PATH Path to directory containing certificate database

SSL_CERT_NAME NAME Name of the certificate to use. When SSL client
authentication is enabled, a certificate name should
normally be provided.

12. Transactions

In AMQP, transactions cover the semantics of enqueues and dequeues.

When sending messages, atransaction tracks enqueues without actually delivering the messages, acommit
places messages on their queues, and a rollback discards the enqueues.

When receiving messages, a transaction tracks dequeues without actually removing acknowledged
messages, a commit removes al acknowledged messages, and a rollback discards acknowledgements. A
rollback does not release the message, it must be explicitly released to return it to the queue.

27

Using the Qpid Messaging API

Example 2.21. Transactions

C++:

Connecti on connecti on(broker);
Sessi on session = connection. createTransacti onal Session();

if (smellsCk())
session.conmit();
el se
session. rol | back();

13. The AMQP 0-10 mapping

This section describes the AMQP 0-10 mapping for the Qpid Messaging API.

The interaction with the broker triggered by creating a sender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker to
determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transfered to the
default (or nameless) exchange. When sending to an exchange, the message is transfered to that exchange
and the routing key is set to the message subject if one is specified. A default subject may be specified
in the target address. The subject may also be set on each message individually to override the default if
required. In each case any specified subject is also added as a gpid.subject entry in the application-headers
field of the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client sends
a message-subscribe request for the queue in question. The accept-mode is determined by the reliability
option in the link properties; for unreliable links the accept-maode is none, for reliable links it is explicit.
The default for aqueueisreliable. The acquire-mode is determined by the value of the mode option. If the
mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired. The exclusive
and arguments fields in the message-subscribe command can be controlled using the x-subscribe map.

When receiving from an exchange, the client creates a subscription queue and binds that to the exchange.
The subscription queue's arguments can be specified using the x-declare map within the link properties.
The reliability option determines most of the other parameters. If the reliability is set to unreliable then
an auto-deleted, exclusive queue is used meaning that if the client or connection fails messages may be
lost. For exactly-once the queue is not set to be auto-deleted. The durability of the subscription queue is
determined by the durable option in the link properties. The binding process depends on the type of the
exchange the source address resolves to.

* For atopicexchange, if no subject is specified and no x-bindings are defined for thelink, the subscription
gueue is bound using a wildcard matching any routing key (thus satisfying the expectation that any
message sent to that address will be received from it). If a subject is specified in the source address
however, it isused for the binding key (this meansthat the subject in the source address may be abinding
pattern including wildcards).

« For afanout exchangethebinding key isirrelevant to matching. A receiver created from asource address
that resolves to afanout exchange receives all messages sent to that exchange regardless of any subject
the source address may contain. An x-bindings element in the link properties should be used if thereis
any need to set the arguments to the bind.

28

Using the Qpid Messaging API

If

For adirect exchange, the subject is used as the binding key. If no subject is specified an empty string
isused as the binding key.

For aheadersexchange, if no subject is specified the binding arguments simply contain an x-match entry
and no other entries, causing all messagesto match. If asubject is specified then the binding arguments
contain an x-match entry set to all and an entry for gpid.subject whose value is the subject in the source
address (this means the subject in the source address must match the message subject exactly). For more
control the x-bindings element in the link properties must be used.

For the XML exchange,6 if asubject is specified it is used as the binding key and an XQuery is defined
that matches any message with that value for gpid.subject. Again this means that only messages whose
subject exactly match that specified in the source address are received. If no subject is specified then
the empty string is used as the binding key with an xquery that will match any message (this means that
only messageswith an empty string asthe routing key will be received). For more control the x-bindings
element in the link properties must be used. A source address that resolves to the XML exchange must
contain either a subject or an x-bindings element in the link properties as there is no way at present to
receive any message regardless of routing key.

an x-bindings list is present in the link options a binding is created for each element within that list.

Each element is a nested map that may contain values named queue, exchange, key or arguments. If the
gueue value is absent the queue name the address resolves to is implied. If the exchange value is absent
the exchange name the address resolves to isimplied.

The following table shows how Qpid Messaging APl message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table nsg refers to the Message class defined in the
Qpid Messaging API, np refersto an AMQP 0-10 nessage- pr oper ti es struct, and dp refersto an
AMQPO0-10del i very- properti es struct.

Table 2.8. Mapping to AMQP 0-10 M essage Properties

Python API C++ API AM QP 0-10 Property?®

msg.id msg.{ get,set} Messagel d() mp.message id

msg.subject msg.{ get,set} Subject() mp.application_headerg[" gpid.subject’

msg.user_id msg.{ get,set} Userld() mp.user_id

msg.reply_to msg.{ get,set} ReplyTo() mp.repl y_tob

msg.correlation _id msg.{ get,set} Correlationld() mp.correlation_id

msg.durable msg.{ get,set} Durable() dp.delivery_mode ==
delivery_mode.persistent®

msg.priority msg.{ get,set} Priority() dp.priority

msg.ttl msg.{ get,set} Ttl() dp.ttl

msg.redelivered msg.{ get,set} Redelivered() dp.redelivered

msg.properties msg.{ get,set} Properties() mp.application_headers

msg.content_type msg.{ get,set} Content Type() mp.content_type

8 n these entries, np refers to an AMQP message property, and dp refersto an AMQP delivery property.
®The reply_to is converted from the protocol representation into an address.
°Note that msg.durable is a boolean, not an enum.

29

—

Chapter 3. Using the Qpid JMS client
1. A Simple Messaging Program in Java JMS

The following program shows how to use address strings and JNDI for Qpid programs that use Java JMS.

The Qpid JIMS client uses Qpid Messaging APl Section 4, “Addresses’ to identify sources and targets.
This program uses a JINDI properties file that defines a connection factory for the broker we are using,
and the address of the topic exchange node that we bind the sender and receiver to. (The syntax of a
ConnectionURL isgiven in Section 2, “ Apache Qpid JNDI Properties for AMQP Messaging”.)

Example 3.1. INDI PropertiesFilefor "Helloworld!" example

java. nam ng.factory.initial
= org. apache. gpi d.jndi.PropertiesFilelnitial ContextFactory

connectionfactory.[]jndi nanme] = [Connecti onURL]
connecti onfact ory. gpi dConnect i onfactory
= anqgp: // guest: guest @l i entid/test?brokerlist="tcp://local host:5672
destination.[jndinane] = [address_string]
destination. t opi cExchange = anmg.topic

Inthe JavaJM S code, we use create aJNDI context, use the context to find a connection factory and create
and start a connection, create a session, and create a destination that corresponds to the topic exchange.
Then we create a sender and areceiver, send a message with the sender, and receive it with the receiver.
This code should be straightforward for anyone familiar with Java IMS.

30

Using the Qpid IMS client

Example 3.2. "Heloworld!" in Java

package org. apache. gpi d. exanpl e. j meexanpl e. hel | o;

i mport javax.jms.*;

i mport javax.nam ng. Cont ext;
i mport javax.nam ng.Initial Context;
i mport java.util.Properties;

public class Hello {

}

public Hello() {

}

public static void main(String[] args) {
Hel | o producer = new Hell o();
producer.runTest ();

}

private void runTest() {
try {

}

}

Properties properties =

new Properties();
properties.|l oad(this.getC ass().getResourceAsStream "hello. properties"));
Context context = new Initial Context(properties); 2]

Connecti onFact ory connecti onFactory
= (ConnectionFactory) context.|ookup("qpi dConnectionfactory”); H
connecti onFactory. createConnection(); H

Connecti on connection =
connection.start(); H

Sessi on sessi on=connecti on. creat eSessi on(fal se, Sessi on. AUTO_ACKNOWNLEDGE) ; B
nati on) context.| ookup("topi cExchange");

Destinati on destination

(Dest

MessagePr oducer messagePr oducer
MessageConsuner messageConsuner

sessi on. creat eProducer (destination);
sessi on. creat eConsuner (destination);

Text Message nmessage = session. createText Message("Hello world!");
nmessagePr oducer . send(nessage) ;

nmessage = (Text Message) nessageConsuner.receive(); 10}
System out . printl n(message. get Text ());

connection.close();
cont ext. cl ose(); 12]

catch (Exception exp) {

}

exp. print StackTrace();

31

Using the Qpid IMS client

E LoadstheJNDI propertiesfile, which specifies connection properties, queues, topics, and addressing
options. See Section 2, “Apache Qpid JNDI Properties for AMQP Messaging” for details.

E Createsthe INDI initial context.

E CreatesaJMS connection factory for Qpid.

E Creates aJMS connection.

E Activatesthe connection.

E Creates a session. This session is not transactional (transactions='false'), and messages are
automatically acknowledged.

I Createsadestination for the topic exchange, so senders and receivers can useit.

E Createsaproducer that sends messages to the topic exchange.

E Createsaconsumer that reads messages from the topic exchange.

& Readsthe next available message.

Closesthe connection, all sessions managed by the connection, and all sendersand receivers managed
by each session.

% Closesthe JNDI context.

2. Apache Qpid JNDI Properties for AMQP
Messaging

Apache Qpid defines INDI propertiesthat can be used to specify JIM S Connections and Destinations. Here
isatypical INDI propertiesfile:

Example 3.3. INDI PropertiesFile
java.nanming.factory.initial
= org. apache. gpi d. jndi.PropertiesFilelnitial ContextFactory
connectionfactory.[]jndi nanme] = [Connecti onURL]
connecti onfactory. gpi dConnecti onfactory
= amqgp: // guest: guest @l i entid/test?brokerlist="tcp://local host:5672
destination.[jndinane] = [address_string]

desti nati on.topi cExchange = ang.topic

The following sections describe the INDI properties that Qpid uses.

2.1. INDI Properties for Apache Qpid

Apache Qpid supports the properties shown in the following table:

Table 3.1. INDI Properties supported by Apache Qpid

Property Purpose

connectionfactory.<jndiname> The Connection URL that the connection factory
uses to perform connections.

gueue.<jndiname> A JMS queue, which is implemented as an
amg.direct exchange in Apache Qpid.

topic.<jndiname> A IMStopic, which isimplemented as an amg.topic
exchange in Apache Qpid.

32

Using the Qpid IMS client

Property Purpose

destination.<jndiname> Can be used for defining all amg destinations,
queues, topics and header matching, using an
address string. 2

@inding URLS, which were used in earlier versions of the Qpid Java JMS client, can still be used instead of address strings.

2.2. Connection URLS

In INDI properties, a Connection URL specifies properties for a connection. The format for a Connection
URL is:

amgp: / /[<user >: <pass>@|[<cl i enti d>] <vi rt ual host >[?<opti on>=' <val ue>' [&opti on>="' <v

For instance, the following Connection URL specifies a user name, a password, aclient ID, avirtual host
("test"), abroker list with asingle broker, and a TCP host with the host name “localhost” using port 5672;

angp: // user nanme: password@l i enti d/test?brokerlist="tcp://|ocal host: 5672’

Apache Qpid supports the following propertiesin Connection URLSs:

Table 3.2. Connection URL Properties

Option Type Description

brokerlist see below The broker to use for this connection.
In the current release, precisely one
broker must be specified.

maxprefetch - The maximum number of pre-fetched
messages per destination.
sync_publish {'persistent’ | 'all'} A sync command is sent after every

persistent message to guarantee that
it has been received; if the value
is 'persistent’, this is done only for
persistent messages.

sync_ack Boolean A sync command is sent after every
acknowledgement to guarantee that it
has been received.

use legacy map_msg_format Boolean If you are using JIMS Map messages
and deploying a new client with any
JMS client older than 0.7 release, you
must set this to true to ensure the
older clients can understand the map
message encoding.

failover {'roundrobin' | failover_exchange’} |If roundrobin is selected it will try
each broker given in the broker list.
If faillover_exchange is selected it
connects to the initial broker given
in the broker URL and will receive
membership updates via the failover
exchange.

33

Using the Qpid IMS client

Broker lists are specified using a URL in this format:
brokerli st=<transport>://<host >[: <port>] (?<par anp=<val ue>) ?(&par anr=<val ue>) *
For instance, thisis atypical broker list:

brokerlist="tcp://|ocal host: 5672

A broker list can contain more than one broker address; if so, the connection is made to the first broker in
thelist that is available. In generdl, it is better to use the failover exchange when using multiple brokers,
sinceit allows applicationsto fail over if a broker goes down.

Example 3.4. Broker Lists

A broker list can specify properties to be used when connecting to the broker, such as security options.
This broker list specifies options for a Kerberos connection using GSSAPI:

angp: // guest : guest @est/test ?sync_ack='true'
&brokerlist="tcp://ipl:5672?sasl _nmechs='" GSSAPI'

This broker list specifies SSL options:

angp: // guest : guest @est/test?sync_ack='true'
&rokerlist="tcp://ipl:5672?ssl="true' &ssl _cert_alias="certl’

The following broker list options are supported.

Table 3.3. Broker List Options

Option Type Description

heartbeat integer frequency of heartbeat messages (in
seconds)

sasl_mechs -- For secure applications, we

suggest CRAM-MD5, DIGEST-
MDS5, or GSSAPI. The
ANONYMOUS method is not
secure. The PLAIN method
is secure only when used
together with SSL. For
Kerberos, sad _mechs must be
set to GSSAPI, sad protocol
must be set to the
principal for the gpidd
broker, eg. gpidd/, and
sas_server must be st to
the host for the SASL
server, eg. sad.com. SASL
External is supported using

Using the Qpid IMS client

Option Type

Description

SSL certification, eg.

ssl =" true' &asl _nmechs=" EXTERNAL'

sasl_encryption Boolean

If sasl_encryption='true',
the IMS client attempts to negotiate
a security layer with the broker using
GSSAPI to encrypt the connection.
Note that for this to happen, GSSAPI
must be selected as the sasl_mech.

sd Boolean

If ssl =" true',theJMSclient will
encrypt the connection using SSL.

tcp_nodelay Boolean

If tcp_nodel ay='true', TCP
packet batching is disabled.

sasl_protocol --

Used only for Kerberos.
sasl| _protocol must be set to the
principal for the gpidd broker, e.g.
gpi dd/

sasl_server --

For Kerberos, sasl_mechs must be set
to GSSAPI, sad_server must be set
to the host for the SASL server, e.g.
sasl.com

trust_store --

path to Keberos trust store

trust_store password

Kerberos trust store password

key store

path to Kerberos key store

key store password --

Kerberos key store password

ssl_verify_hostname Boolean

When using SSL you can enable
hosthame verification by using
"sd_verify _hostname=true" in the
broker URL.

sd_cert_alias

If multiple certificates are present in
the keystore, the alias will be used to
extract the correct certificate.

3. Java JMS Message Properties

The following table shows how Qpid Messaging APl message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table nsg refers to the Message class defined in the
Qpid Messaging API, np refersto an AMQP 0-10 nessage- pr operti es struct, and dp refersto an

AMQPO0-10del i very- properti es struct.

Table 3.4. Java JIM S M apping to AM QP 0-10 M essage Properties

Java JM S M essage Property AM QP 0-10 Property?

JMSMessagel D mp.message _id

gpid.subj ect® mp.application_headerd["gpid.subject”]
IMSXUserlD mp.user_id

IMSReplyTo mp.reply_to°

35

Using the Qpid IMS client

Java JM 'S M essage Property AM QP 0-10 Property?®
JMSCorrelationl D mp.correlation_id
IMSDeliveryMode dp.delivery_mode

JM SPriority dp.priority

JM SExpiration dp.ttld

JM SRedelivered dp.redelivered

JMS Properties mp.application_headers
JMSType mp.content_type

3 n these entries, np refers to an AMQP message property, and dp refersto an AMQP delivery property.
PThisisacustom IMS property, set automatically by the Java JMS client implementation.

“Thereply_to is converted from the protocol representation into an address.

dam SExpiration = dp.ttl + currentTime

4. IMS MapMessage Types

Qpid supports the Java IMS MapMes s age interface, which provides support for maps in messages. The
following code shows how to send aMapMessage in Java IMS.

36

Using the Qpid IMS client

Example 3.5. Sending a Java JM S M apM essage

i mport java.util.ArraylList;
i mport java.util.HashMap;

i mport java.util.List;

i mport java.util.Map;

i mport javax.jnms. Connection

i mport javax.jns.Destination

i mport javax.j nms. MapMessage;

i mport javax.j ms. MessageProducer
i mport javax.j ms. Session

i mport org.apache. gpi d. client. AMQAnyDest i nati on
i mport org. apache. gpi d. client. AMQXonnecti on

i mport edu. enory. mat hcs. backport.java.util.Arrays;
[/ 111 SNIP 11
MessagePr oducer producer = session.createProducer(queue);

MapMessage m = sessi on. cr eat eMapMessage() ;
m set I ntProperty("1d", 987654321);

m set Stri ngProperty("nane", "Wdget");

m set Doubl eProperty("price", 0.99);

List<String> colors = new ArrayList<String>();
colors. add("red");

col ors. add("green");

colors. add("white");

m set Qbj ect ("col ours”, colors);

Map<St ri ng, Doubl e> di mensi ons = new HashMap<Stri ng, Doubl e>();
di mensi ons. put ("1 engt h", 10. 2);

di mensi ons. put ("wi dth",5.1);

di mensi ons. put ("dept h", 2. 0);

m set Qbj ect (" di nensi ons”, di mensi ons) ;

Li st<Li st<Integer>> parts = new Arrayli st<Li st<lnteger>>();
parts.add(Arrays. asList(new Integer[] {1,2,5}));
parts.add(Arrays. asLi st(new Integer[] {8,2,5}));

m set Qbj ect ("parts", parts);

Map<Stri ng, bj ect > specs = new HashMap<Stri ng, Obj ect>();
specs. put ("col ours", colors);

specs. put ("di mensi ons”, di mensi ons);

specs. put ("parts", parts);

m set Obj ect ("specs", specs);

producer . send(m;

37

Using the Qpid IMS client

The following table shows the datatypes that can be sent in a MapMessage, and the corresponding
datatypes that will be received by clientsin Python or C++.

Table 3.5. Java Datatypesin Maps

Java Datatype # Python #C++
boolean bool bool

short int | long int16

int int [long int32

long int [long int64

float float float

double float double
javalang.String unicode std::string
javautil.UUID uuid gpid::types::Uuid
javautil. Map? dict Variant::Map
javautil.List list Variant::List

& n Qpid, maps can nest. This goes beyond the functionality required by the JM S specification.

5. JMS Client Logging

The JMS Client logging is handled using SLFAJ [http://www.sIf4j.org/]. A user can place a dlf4j binding
of their choice in the classpath and configure the respective logging mechanism to suit their needs. Ex
bindings include log4j, jdk1.4 logging ..etc

Following is an example on how to configure the client logging with the log4j binding.
For more information on how to configure logdj, please consult the log4j documentation.

If using the log4j binding please ensure to set the log level for org.apache.gpid explicitly. Otherwise
log4j will default to DEBUG which will degrade performance considerably due to excessive logging.
Recommended logging level for productionis WARN.

Example 3.6. log4j Logging Properties

You could place the snippet below in a logdj.properties file and place it in the classpath or explicitly
specify it using the -Dlogdj.configuration property. The following configures the gpid client to log at the
WARN level

| og4j .1 ogger. org. apache. qpi d=WARN, consol e
| og4j . additivity.org.apache. qpi d=f al se

| 0og4j . appender. consol e=or g. apache. | og4j . Consol eAppender

| 0og4j . appender. consol e. Thr eshol d=al |

| og4j . appender. consol e. | ayout =or g. apache. | og4j . Patt er nLayout

| og4j . appender. consol e. | ayout. ConversionPattern=% % % [%{4}] %Hn

38

http://www.slf4j.org/
http://www.slf4j.org/

Chapter 4. Using the Qpid WCF client
1. XML and Binary Bindings

The Qpid WCEF client provides two bindings, each with support for Windows .NET transactions.

The AmgpBinding is suitable for communication between two WCF applications. By default it uses
the WCF binary .NET XML encoder (BinaryM essageEncodingBindingElement) for efficient message
transmission, but it can also use the text and Message Transmission Optimization Mechanism (MTOM)
encoders. Hereisatraditional service model sample program using the AmgpBinding. It assumes that the
gueue "hello_service_node" has been created and configured on the AMQP broker.

39

nanespace Apache. Qpi d. Docunent ati on. Hel | oSer vi ce
{

usi ng System

usi ng System Ser vi celsiagithe Qpid WCF client

usi ng System Servi ceMbdel . Channel s;
usi ng System Thr eadi ng;
Exanpbe Aphcheadidi onahsemate model " Helloworld!" example

[Servi ceContract]
public interface |IHelloService

{
[OperationContract (1 sOneVy = true, Action = "*")]
voi d SayHel I o(string greeting);
}
public class Hell oService : |HelloService
{
private static int greetingCount;
public static int G eetingCount
{
get { return greetingCount; }
ptatic void Main(string[] args)
{
pubfyc void SayHel | o(string greeting)
{ {
CoAsEPBi Wi ngLANEPBEBHNge=r BEWI ABEPBI ndi ggept i ng) ;
gr 8eTpByadung+8r oker Host = "l ocal host";
} angpBi ndi ng. Broker Port = 5672;
Servi ceHost serviceHost = new Servi ceHost (typeof (Hel | oService));
servi ceHost . AddSer vi ceEndpoi nt (t ypeof (1 Hel | oSer vi ce),
angpBi ndi ng, "angp: hel |l o_servi ce_node");
servi ceHost . Open();
/1 Send the service a test greeting
Ui angpdientUri=new Uri ("angp: ang. di rect ?routi ngkey=hel | o_servi ce_node")
Endpoi nt Addr ess cl i ent Endpoi nt = new Endpoi nt Address(angpClientUri);
Channel Fact ory<l Hel | oServi ce> channel Factory =
new Channel Fact or y<l Hel | oSer vi ce>(angpBi ndi ng, client Endpoi nt);
| Hel | oServi ce clientProxy = channel Fact ory. Creat eChannel ();
clientProxy. SayHel | o("G eetings fromWCF client");
/1 wait for service to process the greeting
whil e (Hell oService. Greeti ngCount == 0)
{
Thr ead. Sl eep(100);
}
channel Fact ory. Cl ose();
servi ceHost . Cl ose();
}
catch (Exception e)
{
Consol e. Wi telLi ne("Exception: {0}", e);
}
}
}

}

40

Using the Qpid WCF client

The second binding, AmgpBinaryBinding, is suitable for WCF applications that need to inter-operate
with non-WCEF clients or that wish to have direct access to the raw wire representation of the message
body. It relies on a custom encoder to read and write raw (binary) content which operates similarly to the
ByteStream encoder (introduced in .NET 4.0). The encoder presents an abstract XML infoset view of the
raw message content on input. On output, the encoder does the reverse and peels away the XML infoset
layer exposing the raw content to the wire representation of the message body. The application must do the
inverse of what the encoder doesto allow the XML infoset wrapper to cancel properly. Thisisdemonstrated
in the following sample code (using the channel programming model) which directly manipulates or
provides callbacks to the WCF message readers and writers when the content is consumed. In contrast to
the AmgpBinding sample where the simple greeting is encapsul ated in a compressed SOAP envelope, the
wire representation of the message contains the raw content and is identical and fully interoperable with
the Qpid C++ "Hello world!" example.

41

port = int.Parse(args[1]);
}

i f (args.Length Ysiaythe Qpid WCF client

1
target = args[2];

Example 4.2. Binary " Helloworld!" example using the channel model

}
}

if (args.Length > 3)
{

}

source = args[3];

AmgpBi nar yBi ndi ng bi ndi ng = new AngpBi nar yBi ndi ng() ;
bi ndi ng. Br oker Host br oker
bi ndi ng. Br oker Por t port;

| Channel Fact or y<I | nput Channel > recei ver Factory = bi ndi ng. Bui | dChannel Fact ory
recei ver Fact ory. Qpen();

I I nput Channel receiver = receiverFactory. Creat eChannel (new Endpoi nt Addr ess("
recei ver. Qpen();

| Channel Fact or y<I Qut put Channel > sender Fact ory = bi ndi ng. Bui | dChannel Fact ory<
sender Fact ory. Open();

| Qut put Channel sender = sender Factory. Creat eChannel (new Endpoi nt Addr ess(" anmg
sender . Qpen();

sender . Send(Message. Cr eat eMessage(MessageVer si on. None, "", new Hel | oWr | dBi n
Message nessage = receiver. Receive();

Xm Di cti onaryReader reader = nessage. Get Reader At BodyCont ent s();
whi | e (!reader. HasVal ue)

{
}

byte[] binaryContent = reader.ReadCont ent AsBase64();
string text = Encoding. UTF8. Get Stri ng(bi naryContent);

reader. Read() ;

Consol e. WitelLine(text);

sender Factory. Cl ose();
recei ver Factory. Cl ose();

public class Hell oWorl dBi naryBodyWiter : BodyWiter

{

public Hell owrl dBi naryBodyWiter() : base (true) {}

protected override void OnWiteBodyContents(Xm Dicti onaryWiter witer)

{

byte[] binaryContent = Encodi ng. UTF8. GetBytes("Hell o world!");

/1 wrap the content:
witer. WiteStart El ement ("Bi nary");
witer. WiteBase64(bi naryContent, 0, binaryContent.Length);

42

Using the Qpid WCF client

Bindings define Channel Factories and ChannelListeners associated with an AMQP Broker. WCF will
frequently automatically create and manage the life cycle of a these and the resulting IChannel objects
used in message transfer. The binding parameters that can be set are:

Table4.1. WCF Binding Parameters

Parameter Default Description

BrokerHost localhost The broker's server name. Currently
the WCF channel only supports
connections with a single broker.
Failover to multiple brokers will be
provided in the future.

BrokerPort 5672 The port the broker islistening on.

PrefetchLimit 0 The number of messages to prefetch
from the amgp broker before
the application actually consumes
them. Increasing this number can
dramatically increase the read
performance in some circumstances.

Shared false Indicates if separate channels to the
same broker can share an underlying
AMQP tcp connection (provided they
also share the same authentication
credentials).

TransferMode buffered Indicates whether the channe's
encoder usesthe WCF BufferManager
cache to temporarily store message
content during the encoding/decoding
phase. For small to medium sized
SOAP based messages, buffered
is usually the preferred choice.
For binary messages, streamed
TransferMode is the more efficient
mode.

2. Endpoints

In Qpid 0.6 the WCF Endpoints map to simple AMQP 0-10 exchanges (I OutputChannel) or AMQP 0-10
gueues (IInputChannel). The format for an 10utputChannel is

"angp: ang. direct” or "angp: nmy_exchange?r outi ngkey=nmy_routing key"

and for an lInputChannel is

"angp: ny_queue"

The routing key is in fact a default value associated with the particular channel. Outgoing messages can
always have their routing key uniquely set.

If the respective queue or exchange doesn't exist, an exception isthrown when opening the channel. Queues
and exchanges can be created and configured using gpid-config.

43

Using the Qpid WCF client

3. Message Headers

AMQP specific message headers can be set on or retrieved from the ServiceModel.Channels.Message
using the AmgpProperties type.

For example, on output:

AngpProperties props = new AngpProperties();

props. Durabl e = true;

props. PropertyMap. Add(" ny_cust om header", new AngpString("a custom val ue"));
Message nsg = Message. Cr eat eMessage(args);

nsg. Properti es. Add(" AngpProperties", angpProperties);

out put Channel . Send(sg) ;

On input the headers can be accessed from the Message or extracted from the operation context

public void SayHel |l o(string greeting)
{
AngpProperties props = (AmgpProperties) QperationContext.
Current. | ncom ngMessageProperti es[" AngpProperties"];
AmgpString extra = (AngpString) props. PropertyMap["my_custom header"];
Consol e. WitelLine("Service received: {0} and {1}", greeting, extra);

}

4. Security

Toengage TLS/SSL:

bi ndi ng. Security. Mode = AmgpSecurityMde. Transport;
bi ndi ng. Security. Transport. UseSSL = true;
bi ndi ng. Broker Port = 5671;

Currently the WCF client only provides SASL PLAIN (i.e. username and password) authentication.
To provide a username and password, you can set the DefaultAmgpCredential value in the binding.
This value can be overridden or set for a bhinding's channel factories and listeners, either by
setting the ClientCredentials as a binding parameter, or by using an AmgpCredential as a binding
parameter. The search order for credentials is the AmgpCredential binding parameter, followed by the
ClientCredentials (unless IgnoreEndpointClientCredentials has been set), and finally defaulting to the
DefaultAmqgpCredential of the binding itself. Here is a sample using ClientCredentials:

ClientCredentials credentials
credenti al s. User Nanme. User Nane "guest";

credenti al s. User Nanme. Passwor d "guest";

bi ndi ngPar anet ers = new Bi ndi ngPar aret er Col | ecti on();

bi ndi ngPar anet ers. Add(credenti al s);

reader Fact ory = bi ndi ng. Bui | dChannel Fact or y<I | nput Channel >(bi ndi ngPar anet ers) ;

new Cl i ent Credential s();

Using the Qpid WCF client

5. Transactions

The WCF channel provides a transaction resource manager module and a recovery module that together
provide distributed transaction support with one-phase optimization. Some configuration is required on
Windows machines to enable transaction support (see your installation notes or top level ReadMe.txt file
for instructions). Once properly configured, the Qpid WCF channel acts as any other System.Transactions
aware resource, capable of participating in explicit or implicit transactions.

Server code:

[Oper ati onBehavi or (Transact i onScopeRequi red = true,
Transacti onAut oConpl ete = true)]

public void SayHel | o(string greeting)
{

/1 increnent ExactlyOnceReceived counter on DB

/1 Success: transaction auto conpletes:

}

Because this operation involves two transaction resources, the database and the AM QP message broker,
this operates as a full two phase commit transaction managed by the Distributed Transaction Coordinator
service. If the transaction proceeds without error, both ExactlyOnceReceived is incremented in the
database and the AMQP message is consumed from the broker. Otherwise, ExactlyOnceReceived is
unchanged and AM QP message is returned to its queue on the broker.

For the client code a few changes are made to the non-transacted example. For "exactly once" semantics,
we set the AMQP "Durabl€" message property and enclose the transacted activitiesin a TransactionScope:

AngpProperties nmyDefaults = new AngpProperties();

nyDef aul ts. Durabl e = true;

angpBi ndi ng. Def aul t MessageProperties = nyDefaul ts;

Channel Fact ory<l Hel | oServi ce> channel Factory =

new Channel Fact or y<l Hel | oSer vi ce>(angpBi ndi ng, client Endpoi nt);
| Hel | oServi ce clientProxy = channel Factory. Creat eChannel ();

using (Transacti onScope ts = new Transacti onScope())

{
AngpProperties angpProperties = new AngpProperties();
clientProxy. SayHel | o("G eetings fromWCF client");
/1 increnent ExactlyOnceSent counter on DB
ts. Conpl ete();
}

45

