AMQP Messaging Broker
(Implemented in C++)

AMQP Messaging Broker (Implemented in C++)

Table of Contents

INEFOTUCTION ...ttt e e et e ettt r e et et e e et et r e et e b e e e e Vi
1. Running the AMQP Messaging BroKeroooiiiiiiiiii e 1
1.1. Running @ QPid C BrOKEriieiiiiieeii et 1
1.1.1. Building the C++ Broker and Client Librariesccccooiveiiiiniiiiiinieineees 1
1.1.2. Running the CH+ BroKEriiiiiiiiieii e 1
1.1.3. Most common questions getting gpidd runNiNgcceuveieeieiiieeeiieeeeiieeeens 1
114, AULNENEICAITION ..ieieteeiii ettt e 2
1.1.5. Slightly more complex configurationoveveeiiieieiineiei e 3
1.1.6. Loading eXtra MOCUIEScccouuuiiiiiiiieiiii ettt 4

1.2. Chesat Sheet for configuring QUEUE OPLIONScccuvuuiiiiiiiieieii e 5
1.2.1. Configuring QUEUE OPLIONSeiiiiiieiiiii ettt e 5

1.3. Chesat Sheet for configuring Exchange Optionsccooviiiiiiiniiiiiiece e 7
1.3.1. Configuring EXchange OPLiONSccoeuuuiiiiriiieeiiiiie et 7

1.4, USiNg Broker FEAErationo.uuiiiiiiiieiiiii ettt e 9
142, INEFOUCTION ...ttt et e et eeeaa s 9
1.4.2. What IS Broker FEJeration?ooeeieuiiiiiiiiiiieeei e 9
1.4.3. The gpid-route ULHITYoooeeiiiiiii e 9
1.4.4. EXBMPIE SCENAMOS ...ciiiiiieiiiiiieee ettt ettt et e e e e eneas 15
1.4.5. AAVANCED TOPICS ..evvrneieiin ettt ettt e et e e et e e e ne e 16

TS ST P TR UPPPPTRUPPPPIN 17
L1500 SSL HOW 0 cevnieiiiiiii ettt ettt ettt e e ettt e e e e bt e e e e e een 17

G Y PP P TR TPPPPP 18
1.6.1. Understanding LV Q ...oeeiinieiiii ettt 18
1.6.2. LVQ SEMBNLICS. oevuiiiiiieiti e et e ettt e e e e et e e e et e e et e e et e e e e een s 19
1.6.3. LVQ_NO _BROWSE SEMANTICS. ...eeiivineeiiiiiieeieiieee et e et e e 19
1.6.4. LVQ Program EXaMPIEcoouuiiiiiiiieiiii ettt 20

1.7. Queue State REPIICAIIONcc.vuiiiiiiii e 24
1.7.1. Asynchronous Replication of QUeUE SEatecccevieeiiiiiiieiiiieece e, 24

1.8, SHAING @ CIUSIEN ..ottt 28
1.8.1. Running a Qpidd CIUSIEruiiiiiiiieiei e 28

L. AL o s 30
1.9.1. v2 ACL file format for BroKerscooouiioiiiiiioiiiee e 30
1.9.2. Design DOCUMENEALIONceuuneiiiiieeetii ettt ettt e e 33
1.9.3. V2 ACL USEN GUITEuiiiiiiieiiite ettt ettt e 34

1.10. AMQP COMPALIDIHTTY o.eeneeeeit e 35
1.10.1. AMQP Compatibility of Qpid rel€ases:coeeviiviiieiiiiie e 36
1.10.2. Interop table by AMQP SpeCifiCation VErSiONocoevviiieiiiiinieiiiiineeeenien. 37

1.11. Qpid Interoperability DOCUMENTALIONuiiiiiiieieii et 37
1.11.1. Qpid Interoperability DOCUMENtBLIONcccvuuiiiiiiieieii e 37

2. Managing the AMQP MeSsaging BroKErccoeuuiiiiiiiiie e 40
2.1. Managing the CH+ BroKEriiiiiiiece et 40
2.1.1. USING gPIG-CONTIG eevtieiiiiie ettt et e e e na e 40
2.1.2. USING QPIO-TOULE ...eittieeiitie ettt ettt e ettt e ettt e e e e e e e e aaa s 42
2.1.3. USING gPIG-TO0] ... 43
2.1.4. USING OPIiG-PriNEVENTSoieeiiieeeiiii ettt eeneas 47

2.2. Qpid Management FrameWO Koooeuuioiiii e 47
221 What IS QME e 47
2.2.2. Getting Started With QMFE ... 48
2.2.3. QMEF CONCEPLS ...unieiiieiii ettt 438
2.2.4. The QMEF ProtOCOliiiuuiiiieiiie e e e eees 52
2.2.5. How to Write a QMF CONSOIE ...ceuuiiiiiiiieee e 52

AMQP Messaging Broker
(Implemented in C++)

2.2.6. HOw to Write a QM AQENT ..vviiiiiii e e 52
2.3. QMF Python Console TULOMalccuuieiiieiiieiiie e e e e e e e e e e e 52
2.3.1. Prerequisite - Install Qpid MESSAgINGcccvniviiiiiiii e 53
2.3.2. Synchronous Console OPEratioNSc..cvveiieiiiieeiiieeiiire e e e e e e e aanes 53
2.3.3. Asynchronous Console OPEratioNSeeeeuieeiiiieeiieeriiieeeine e e e eeaaeeaenns 58
2.3.4. Discovering what Kinds of Objectsare Availablecccoveviiiiiiiciiincnnnnn, 62

List of Tables

1.1
1.2
13
1.4.
15
1.6
1.7.
18.
2.1,
2.2,
2.3.
24,

Transport Options fOr FEAEIEIONuuuiiiiiii e 14
ACL Support in QpPid BroKer VErSIONSoceeueiieiiiiie ettt 30
MEPPING ACL TFAPS ... eteettn ettt ettt ettt e e et ettt et e et et et e et a et e et aeeeena e eennas 33
Mapping Management ACHIONS t0 ACLcoiuiiiiiiii e 34
AMQP Version Support by Qpid REIEESEuiiiiiiieii e 36
AMQP Version SUpport - alternate fOrmMato.uuuiieeiiieiiii e 37
SASL MECANISIT SUPPOIT ... eeeeeiie ettt ettt et e ettt e e et e e e e et e e e et e e e eeaenaeeees 37
SASL CUSIOM MECHANISIMS ...ttt ettt ettt e e 38
XML Attributes for QMF Properties and StatiStiCScuvuuieieiiiieiiiiiieieii e 50
1O L DT = 3 o= PP 51
XML Schema Mapping for QME TYPESccouuiiiiiiiie e 51
QMF Python Console Class MEtNOOScoouuiiiiiiiiiic e 58

Introduction

Qpid provides two AM QP messaging brokers:
* Implemented in C++ - high performance, low latency, and RDMA support.
» Implemented in Java - Fully IMS compliant, runs on any Java platform.

Both AMQP messaging brokers support clientsin multiple languages, as long as the messaging client and
the messaging broker use the same version of AMQP. See AMQP Compatibility to see which messaging
clients work with each broker.

Thismanual contains information specific to the broker that isimplemented in C++.

Vi

Chapter 1. Running the AMQP
Messaging Broker

1.1. Running a Qpid C++ Broker
1.1.1. Building the C++ Broker and Client Libraries

Theroot directory for the C++ distribution is named gpidc-0.4. The README file in that directory gives
instructions for building the broker and client libraries. In most cases you will do the following:

[gpidc-0.4]$./configure
[gpidc-0.4]$ nmake

1.1.2. Running the C++ Broker

Once you have built the broker and client libraries, you can start the broker from the command line:

[gpidc-0.4]$ src/qpidd

Use the --daemon option to run the broker as a daemon process:

[qpidc-0.4]$ src/qpidd --daenon

Y ou can stop a running daemon with the --quit option:

[gpidc-0.4]% src/gpidd --quit

You can see all available options with the --help option

[gpidc-0.4]$ src/gpidd --help
1.1.3. Most common questions getting qpidd running

1.1.3.1. Error when starting broker: "no data directory"
The gpidd broker requires you to set a data directory or specify --no-data-dir (see help for more details).
Thedatadirectory isused for thejournal, so it isimportant when reliability counts. Make sure your process
has write permission to the data directory.

The default location is

/1ib/var/gpidd

An alternate location can be set with --data-dir

Running the AMQP
Messaging Broker

1.1.3.2. Error when starting broker: "that process is locked"

Note that when gpidd startsit createsalock fileisdatadirectory are being used. If you have aun-controlled
exit, please mail the trace from the core to the dev@qpid.apache.org mailing list. To clear the lock run

./qpidd -q

It should also be noted that multiple brokers can be run on the same host. To do so set aternate data
directories for each gpidd instance.

1.1.3.3. Using a configuration file

Each option that can be specified on the command line can also be specified in a configuration file. To
see available options, use --help on the command line:

./gqpidd --help

A configuration file uses name/value pairs, one on each line. To convert a command line option to a
configuration file entry:

a.) remove the '--' from the beginning of the option. b.) place a'=" between the option and the value (use
yes or true to enable options that take no value when specified on the command line). ¢.) place one option
per line.

For instance, the --daemon option takes no value, the --log-to-syslog option takes the values yes or no.
The following configuration file sets these two options:

daenon=yes
| og-to-sysl og=yes

1.1.3.4. Can | use any Language client with the C++ Broker?

Yes, al the clients work with the C++ broker; it is written in C+, but uses the AMQP wire protocol. Any
broker can be used with any client that uses the same AMQP version. When running the C+ broker, it is
highly recommended to run AMQP 0-10.

Note that IM S a so works with the C++ broker.

1.1.4. Authentication
1.1.4.1. Linux

The PLAIN authentication is done on a username+password, which is stored in the sasldb_path file.
Usernames and passwords can be added to the file using the command:

sasl passwd2 -f /var/li b/ gpidd/gpidd. sasl db -u <REALM> <USER>

The REALM isimportant and should be the same as the --auth-realm option to the broker. This lets the
broker properly find the user in the sasidb file.

Existing user accounts may be listed with:

Running the AMQP
Messaging Broker

sasl dbli stusers2 -f /var/lib/qpidd/ gpi dd. sasl db

NOTE: The sasldb file must be readable by the user running the gpidd daemon, and should be readable
only by that user.

1.1.4.2. Windows

1.1.5.

On Windows, the users are authenticated against the local machine. Y ou should add the appropriate users
using the standard Windows tools (Control Panel->User Accounts). To run many of the examples, you
will need to create a user "guest” with password "guest"”.

If you cannot or do not want to create new users, you can run without authentication by specifying the
no-auth option to the broker.

Slightly more complex configuration

The easiest way to get afull listing of the broker's options are to use the --help command, run it locally for
the latest set of options. These options can then be set in the conf file for convenience (see above)

./gpidd --help

Usage: qpi dd OPTI ONS

Opt i ons:
-h [--help] Di spl ays the hel p nessage
-v [--version] Di spl ays version information

--config FILE (/etc/qgpidd.conf) Reads configuration fromFILE

Modul e opti ons:
--nmodul e-dir DIR (/usr/lib/gpidd) Load all .so nmodules in this directory
- -1 oad- nodul e FILE Speci fies additional nodule(s) to be | oaded
--no-nodul e-di r Don't | oad nmodul es from nodul e directory

Br oker Opti ons:
--data-dir DIR (/var/lib/qpidd) Directory to contain persistent data generated

--no-data-dir Don't use a data directory. No persistent
configuration will be | oaded or stored

-p [--port] PORT (5672) Tells the broker to listen on PORT

--worker-threads N (3) Sets the broker thread pool size

- - max- connecti ons N (500) Sets the maxi mum al | owed connecti ons

--connecti on-backl og N (10) Sets the connection backlog Iimt for the

server socket
--stagi ng-threshold N (5000000) St ages nessages over N bytes to disk
-m[--ngnt-enable] yes|no (1) Enabl e Managenent
--ngnt - pub-interval SECONDS (10) Managenent Publish Interval

--ack N (0) Send session.ack/solicit-ack at |east every
N franes. O disables voluntary ack/solitict
-ack

Daenmon opti ons:
-d [--daenon] Run as a daenon.
-w][--wait] SECONDS (10) Sets the maxinmumwait time to initialize the
daenmon. |If the daenmon fails to initialize, prints
an error and returns 1

Running the AMQP

Messaging Broker
-c [--check] Prints the daenon's process ID to stdout and
returns O if the daenon is running, otherw se
returns 1
-q [--quit] Tells the daenmon to shut down

Loggi ng opti ons:

--log-output FILE (stderr) Send log output to FILE. FILE can be a file nane
or one of the special values:
stderr, stdout, syslog

-t [--trace] Enabl es all | ogging

--log-enabl e RULE (error+) Enables logging for selected | evels and conponent
s. RULE is in the form'LEVEL+: PATTERN
Level s are one of:
trace debug info notice warning error critica
For exanpl e:
'--10g-enabl e warni ng+ logs all warning, error
and critical messages.
'--10g-enabl e debug: fram ng' | ogs debug nmessages
fromthe fram ng nanespace. This option can be
used nultiple tines

--log-time yes|no (1) Include tinme in | og messages

--log-level yes|no (1) I nclude severity level in | og nmessages
--1og-source yes|no (0) I nclude source file:line in | og nessages
--log-thread yes|no (0) Include thread IDin | og nmessages
--log-function yes|no (0) I ncl ude function signature in | og nessages

1.1.6. Loading extra modules

By default the broker will load all the modules in the module directory, however it will NOT display
options for modules that are not loaded. So to see the options for extra modules loaded you need to load
the module and then add the help command like this:

./ gpidd --1oad-nodul e |ibbdbstore.so --help
Usage: qpi dd OPTI ONS

Opt i ons:
-h [--help] Di spl ays the hel p nessage
-v [--version] Di spl ays version information

--config FILE (/etc/qgpidd.conf) Reads configuration fromFILE

/[.... non nodule options would be here ... /

Store Options:

--store-directory DIR Store directory location for persistence (overrides
--data-dir)
--store-async yes|no (1) Use async persistence storage - if store supports

it, enables Al O O DI RECT.

--store-force yes|no (0) Force changing nodes of store, will delete al
existing data if node is changed. Be SURE you want
to do this!

--numjfiles N (8) Nunber of files in persistence journa

--jfile-size-pgs N (24) Size of each journal file in multiples of read
pages (1 read page = 64ki B)

Running the AMQP
Messaging Broker

1.2. Cheat Sheet for configuring Queue
Options

1.2.1. Configuring Queue Options

The C++ Broker M4 or later supports the following additional Queue constraints.
» Section 1.2.1, “ Configuring Queue Options”
e ¢ Section 1.2.1.1, “ Applying Queue Sizing Constraints”

e Section 1.2.1.2, “ Changing the Queue ordering Behaviors (FIFO/LVQ) ”

e Section 1.2.1.3, “ Setting additional behaviors”

e o Section1.2.1.3.1, “ Persist Last Node”

e Section 1.2.1.3.2, “ Queue event generation ”
* Section 1.2.1.4, " Other Clients”

1.2.1.1. Applying Queue Sizing Constraints

This allows to specify how to size a queue and what to do when the sizing constraints have been reached.
The queue size can be limited by the number messages (message depth) or byte depth on the queue.

Once the Queue meets/ exceeds these constraints the follow policies can be applied

» REJECT - Reject the published message

* FLOW_TO DISK - Flow the messages to disk, to preserve memory

* RING - start overwriting messages in aring based on sizing. If head meetstail, advance head

* RING_STRICT - start overwriting messages in a ring based on sizing. If head meets tail, AND the
consumer has the tail message acquired it will reject

Examples:

Create a queue an auto delete queue that will support 100 000 bytes, and then REJECT

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons qo;
go. set Si zePol i cy(REJECT, 100000, 0) ;

sessi on. queueDecl are(ar g: : queue=queue, arg::autobDel ete=true, arg::arguments=qo

Create a queue that will support 1000 messages into a RING buffer

#i nclude "qpid/client/QeueOptions. h"

QueueOpti ons qo;

Running the AMQP
Messaging Broker

go. set Si zePol i cy(RI NG, 0, 1000) ;
sessi on. queueDecl are(ar g: : queue=queue, arg::argunent s=qo);
1.2.1.2. Changing the Queue ordering Behaviors (FIFO/LVQ)

The default ordering in a queue in Qpid is FIFO. However additional ordering semantics can be used
namely LVQ (Last Value Queue). Last Value Queue is define as follows.

If | publish symbols RHT, IBM, JAVA, MSFT, and then publish RHT before the consumer is able to
consume RHT, that message will be over written in the queue and the consumer will receive the last
published value for RHT.

Example:

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons qo;
go. set Orderi ng(LVQ ;

sessi on. queueDecl are(ar g: : queue=queue, arg::argunent s=qo);

st r| .ng key;
go. get LVQKey(key) ;

for each nessage, set the into application headers before transfer
nmessage. get Header s() . set Stri ng(key, "RHT") ;

Notes:

» Messagesthat are dequeued and the re-queued will have the following exceptions. a.) if anew message
has been queued with the same key, the re-queue from the consumer, will combine these two messages.
b.) If an update happens for a message of the same key, after the re-queue, it will not update the re-
queued message. Thisis done to protect a client from being able to adversely manipulate the queue.

» Acquire: When a message is acquired from the queue, no matter it's position, it will behave the same
as adequeue

e LVQ does not support durable messages. If the queue or messages are declared durable on an LVQ,
the durability will be ignored.

A fully worked Section 1.6.4, “ LVQ Program Example” can be found here
1.2.1.3. Setting additional behaviors
1.2.1.3.1. Persist Last Node

This option is used in conjunction with clustering. It allows for a queue configured with this option to
persist transient messages if the cluster fails down to the last node. If additional nodes in the cluster are
restored it will stop persisting transient messages.

Note

Running the AMQP
Messaging Broker

« if acluster is started with only one active node, this mode will not be triggered. It is only triggered the
first time the cluster fails down to 1 node.

» The queue MUST be configured durable

Example:

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons qo;
go. cl ear Per si st Last Node() ;

sessi on. queueDecl are(ar g: : queue=queue, arg::durabl e=true, arg::argunments=qo);
1.2.1.3.2. Queue event generation

This option is used to determine whether enqueue/dequeue events representing changes made to queue
state are generated. These events can then be processed by plugins such as that used for Section 1.7, “
Queue State Replication .

Example:

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons options;
options. enabl eQueueEvent s(1);
sessi on. queueDecl are(ar g: : queue="ny-queue", arg::argunents=options);

The boolean option indicates whether only enqueue events should be generated. The key set by thisis
'gpid.queue_event_generation' and the value is and integer value of 1 (to replicate only enqueue events)
or 2 (to replicate both enqueue and dequeue events).

1.2.1.4. Other Clients

Note that these options can be set from any client. QueueOptions just correctly formats the arguments
passed to the QueueDeclare() method.

1.3. Cheat Sheet for configuring Exchange
Options

1.3.1. Configuring Exchange Options

The C++ Broker M4 or later supportsthe following additional Exchange optionsin addition to the standard
AMGQP define options

» Exchange Level Message sequencing

* Initial Value Exchange

Note that these features can be used on any exchange type, that has been declared with the options set.
It also supports an additional option to the bind operation on a direct exchange

» Exclusive binding for key

Running the AMQP
Messaging Broker

1.3.1.1. Exchange Level Message sequencing

This feature can be used to place a sequence number into each message's headers, based on the order they
pass through an exchange. The sequencing starts at 0 and then wrapsin an AMQP int64 type.

Thefield name used is "qgpid.msg_sequence”

To use this feature an exchange needs to be declared specifying this option in the declare

Fi el dTabl e args;
args. setlnt("qgpid. msg_sequence", 1);

/1 now decl are the exchange
sessi on. exchangeDecl are(ar g: : exchange="di rect", arg::arguments=args);

Then each message passing through that exchange will be numbersin the application headers.

unit64_t segNo;
/lafter nessage transfer
segNo = nessage. get Header s() . get Asl nt 64(" gpi d. nsg_sequence") ;

1.3.1.2. Initial Value Exchange

This feature caches alast message sent to an exchange. When a new binding is created onto the exchange
it will then attempt to route this cached messaged to the queue, based on the binding. Thisallowsfor topics
or the creation of configurations where a new consumer can receive the last message sent to the broker,
with matching routing.

To use this feature an exchange needs to be declared specifying this option in the declare

Fi el dTabl e args;
args.setlnt("gpid.ive", 1);

/1 now decl are the exchange
sessi on. exchangeDecl are(ar g: : exchange="di rect", arg::arguments=args);

now use the exchange in the same way you would use any other exchange.

1.3.1.3. Exclusive binding for key

Direct exchanges in gpidd support a gpid.exclusive-binding option on the bind operation that causes the
binding specified to bethe only onefor the given key. |.e. if thereisaready abinding at this exchange with
thiskey it will be atomically updated to bind the new queue. This means that the binding can be changed
concurrently with an incoming stream of messages and each message will be routed to exactly one queue.

Fi el dTabl e args;
args. setlnt("qgpid. exclusive-binding", 1);

Running the AMQP

Messaging Broker
//the following will cause the only binding fromanyg.direct with 'ny-key'
//to be the one to 'ny-queue'; if there were any previous bindings for that
//key they will be renopved. This is atomic w.r.t nmessage routing through the

/ I exchange.
sessi on. exchangeBi nd(ar g: : exchange="ang. di rect", arg::queue="ny-queue",
ar g: : bi ndi ngKey="ny-key", arg::argunents=args);

1.4. Using Broker Federation
1.4.1. Introduction

Please note: Whereas broker federation was introduced in the M3 milestone rel ease, the discussion in this
document is based on the richer capabilities of federation in the M4 release.

1.4.2. What Is Broker Federation?

The Qpid C++ messaging broker supports broker federation, a mechanism by which large messaging
networks can be built using multiple brokers. Some scenarios in which federation is useful:

» Connecting disparate locations across a wide area network. In this case full connectivity across the
enterprise can be achieved while keeping local message traffic isolated to a single location.

» Departmental brokersthat have a policy which controls the flow of inter-departmental message traffic.

 Scaling of capacity for expensive broker operations. High-function exchanges like the XML exchange
can be replicated to scale performance.

» Co-Resident brokers Some applications benefit from having a broker co-resident with the client. This
is particularly true if the client produces data that must be delivered reliably but connectivity to the
consumer(s) is non-reliable. In this case, a co-resident broker provides queueing and durablilty not
available in the client alone.

 Bridging digoint IP networks. Message brokers can be configured to allow message connectivity
between networks where there is no IP connectivity. For example, an isolated, private IP network can
have messaging connectivity to brokers in other outside | P networks.

1.4.3. The gpid-route Utility

The gpid-route command line utility is provided with the Qpid broker. This utility is used to configure
federated networks of brokers and to view the status and topology of networks.

gpid-route accesses the managed brokers remotely. It does not need to be invoked from the same host on
which the broker is running. If network connectivity permits, an entire enterprise can be configured from
asinglelocation.

In the following sections, federation concepts will be introduced and illustrated using gpid-route.

1.4.3.1. Links and Routes

Federation occurswhen alink is established between two brokers and one or moreroutes are created within
that link. A link is a transport level connection (tcp, rdma, sdl, etc.) initiated by one broker and accepted
by another. The initiating broker assumes the role of client with regard to the connection. The accepting
broker annotates the connection as being for federation but otherwisetreatsit asanormal client connection.

Running the AMQP
Messaging Broker

A route is associated with an AMQP session established over the link connection. There may be multiple
routes sharing the samelink. A route controlsthe flow of messages acrossthelink between brokers. Routes
always consist of a session and a subscription for consuming messages. Depending on the configuration,
aroute may have a private queue on the source broker with a binding to an exchange on that broker.

Routes are unidirectional. A single route provides for the flow of messagesin one direction across alink.
If bidirectional connectivity is required (and it aimost always is), then a pair of routes must be created,
one for each direction of message flow.

The gpid-route utility allows the administrator to configure and manage links and routes separately.
However, when aroute is created and a link does not already exist, gpid-route will automatically create
the link. It is typically not necessary to create a link by itself. It is, however, useful to get alist of links
and their connection status from a broker:

$ qpid-route link list |ocal host: 10001

Host Por t Transport Durable State Last Error

| ocal host 10002 tcp N Qper at i onal

| ocal host 10003 tcp N Qper at i onal

| ocal host 10009 tcp N Waiting Connection refused

The example above shows alink list query to the broker at "localhost:10001". In the example, this broker
has three links to other brokers. Two are operational and the third is waiting to connect because there is
not currently a broker listening at that address.

1.4.3.1.1. The Life Cycle of a Link

When alink is created on a broker, that broker attempts to establish a transport-level connection to the
peer broker. If it fails to connect, it retries the connection at an increasing timeinterval. If the connection
fails due to authentication failure, it will not continue to retry as administrative intervention is needed to
fix the problem.

If an operational link is disconnected, the initiating broker will attempt to re-establish the connection with
the same interval back-off.

The shortest retry-interval is 2 seconds and the longest is 64 seconds. Once enough consecutive retries
have occurred that the interval has grown to 64 seconds, the interval will then stay at 64 seconds.

1.4.3.1.2. Durable Links and Routes

If, when alink or aroute is created using gpid-route, the --durable option is used, it shall be durable. This
means that its life cycle shall span restarts of the broker. If the broker is shut down, when it is restarted,
the link will be restored and will begin establishing connectivity.

A non-durable route can be created for a durable link but a durable route cannot be created for a non-
durablelink.

$ qpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed.topic
$ qpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed.topic2 --durable
Failed: Can't create a durable route on a non-durable |ink

In the above example, atransient (non-durable) dynamic route was created between local host; 10003 and
localhost:10004. Becausetherewasno link in place, anew transient link was created. The second command
is attempting to create a durable route over the same link and isrejected asillegal.

10

Running the AMQP
Messaging Broker

1.4.3.2. Dynamic Routing

Dynamic routing providesthe simplest configuration for anetwork of brokers. When configuring dynamic
routing, the administrator need only expressthelogical topology of the network (i.e. which pairs of brokers
are connected by a unidirectional route). Queue configuration and bindings are handled automatically by
the brokersin the network.

Dynamic routing uses the Distributed Exchange concept. From the client's point of view, al of the brokers
in the network collectively offer asinglelogica exchange that behaves the same asasingle exchangein a
single broker. Each client connectsto its local broker and can bind its queues to the distributed exchange
and publish messages to the exchange.

When a consuming client binds a queue to the distributed exchange, information about that binding is
propagated to the other brokers in the network to ensure that any messages matching the binding will be
forwarded to the client's local broker. Messages published to the distributed exchange are forwarded to
other brokers only if there are remote consumers to receive the messages. The dynamic binding protocol
ensures that messages are routed only to brokers with eligible consumers. This includes topologies where
messages must make multiple hops to reach the consumer.

When creating a dynamic routing network, The type and name of the exchange must be the same on each
broker. It isstrongly recommended that dynamic routes NOT be created using the standard exchanges (that
isunless al messaging isintended to be federated).

A simple, two-broker network can be configured by creating an exchange on each broker then a pair of
dynamic routes (one for each direction of message flow):

Create exchanges.

$ gpid-config -a | ocal host: 10003 add exchange topic fed.topic
$ qpid-config -a | ocal host: 10004 add exchange topic fed.topic

Create dynamic routes:

$ gpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed. topic
$ gpid-route dynam c add | ocal host: 10004 | ocal host: 10003 fed. topic

Information about existing routes can be gotten by querying each broker individualy:

$ gpid-route route list |ocal host: 10003
| ocal host: 10003 | ocal host: 10004 fed. topic <dynanic>
$ gpid-route route Iist |ocal host: 10004
| ocal host: 10004 | ocal host: 10003 fed. topic <dynanic>

A nicer way to view the topology isto use gpid-route route map. The argument to thiscommandisasingle
broker that serves as an entry point. gpid-route will attempt to recursively find al of the brokersinvolved
in federation relationships with the starting broker and map all of the routes it finds.

$ gpid-route route map | ocal host: 10003

Fi ndi ng Li nked Brokers:
| ocal host: 10003... &
| ocal host: 10004... &

11

Running the AMQP
Messaging Broker

Dynam ¢ Rout es:

Exchange fed.topic:
| ocal host: 10004 <=> | ocal host: 10003

Stati ¢ Routes:
none found

More extensive and realistic examples are supplied later in this document.

1.4.3.3. Static Routing

Dynamic routing provides simple, efficient, and automatic handling of the bindings that control routing
as long as the configuration keeps within a set of constraints (i.e. exchanges of the same type and name,
bidirectional traffic flow, etc.). However, there are scenarios where it is useful for the administrator to
have a bit more control over the details. In these cases, static routing is appropriate.

1.4.3.3.1. Exchange Routes

An exchange route is like a dynamic route except that the exchange binding is statically set at creation
time instead of dynamically tracking changes in the network.

When an exchange route is created, a private queue (auto-delete, exclusive) is declared on the source
broker. The queue is bound to the indicated exchange with the indicated key and the destination broker
subscribes to the queue with a destination of the indicated exchange. Since only one exchange name is
supplied, this means that exchange routes require that the source and destination exchanges have the same
name.

Static exchange routes are added and deleted using gpid-route route add and gpid-route route del
respectively. The following example creates a static exchange route with a binding key of "global .#" on
the default topic exchange:

$ gpid-route route add | ocal host: 10001 | ocal host: 10002 any. topic gl obal . #

The route can be viewed by querying the originating broker (the destination in this case, see discussion
of push and pull routes for more on this):

$ gpid-route route list |ocal host: 10001
| ocal host: 10001 | ocal host: 10002 ang.topic gl obal . #

Alternatively, the route map feature can be used to view the topology:

$ gpid-route route map | ocal host: 10001
Fi ndi ng Li nked Brokers:

| ocal host:10001... Ck

| ocal host:10002... Ck

Dynam ¢ Rout es:
none found

Stati ¢ Routes:

12

Running the AMQP
Messaging Broker

| ocal host: 10001(ex=ang. topi ¢c) <= | ocal host: 10002(ex=ang. topi c) key=gl obal . #

This example causes messages delivered to the amg.topic exchange on broker localhost: 10002 that have
akey that matches global .# (i.e. starts with the string "global.") to be delivered to the amg.topic exchange
on broker localhost: 10001. This delivery will occur regardless of whether there are any consumers on
localhost: 10001 that will receive the messages.

Note that thisis a uni-directional route. No messages will be forwarded in the opposite direction unless
another static routeis created in the other direction.

The following diagram illustrates the result, in terms of AMQP objects, of the example static exchange
route. In this diagram, the exchanges, both named "amq.topic" exist prior to the creation of the route.
The creation of the route causes the private queue, the binding, and the subscription of the queue to the
destination to be created.

___ + o e e e e e e e e e e - =
| ocal host: 10002 | | local host: 10001
| |
S + | | S
| | | | |
| | global . # --------------- + |
| amg.topic |----------- > private queue |--------------- > ang.topic
| | e v | |
| | | | |
S + | | S
| |
| |
___ + o e e e e e e e e e e - =

1.4.3.3.2. Queue Routes

A queue route causes the destination broker to create a subscription to a pre-existing, possibly shared,
gueue on the source broker. There's no requirement that the queue be bound to any particular exchange.
Queue routes can be used to connect exchanges of different names and/or types. They can also be used to
distribute or balance traffic across multiple destination brokers.

Queue routes are created and del eted using the gpid-route queue add and gpid-route queue del commands
respectively. The following example creates a static queue route to a public queue called "public" that
feeds the amg.fanout exchange on the destination:

Create a queue on the source broker:

$ gpid-config -a | ocal host: 10002 add queue public

Create a queue route to the new queue

$ qpi d-route queue add | ocal host: 10001 | ocal host: 10002 ang. f anout public
1.4.3.3.3. Pull vs. Push Routes

When gpid-route creates or deletes a route, it establishes a connection to one of the brokers involved in
the route and configures that broker. The configured broker then takes it upon itself to contact the other
broker and exchange whatever information is needed to complete the setup of the route.

13

Running the AMQP
Messaging Broker

Thenotion of pushvs. pull isconcerned with whether the configured broker isthe source or the destination.
The normal case is the pull route, where gpid-route configures the destination to pull messages from the
source. A push route occurs when gpid-route configures the source to push messages to the destination.

Dynamic routes are always pull routes. Static routes are normally pull routes but may beinverted by using
the src-local option when creating (or deleting) a route. If src-local is specified, gpid-route will make its
connection to the source broker rather than the destination and configure the route to push rather than pull.

Push routes are useful in applications where brokers are co-resident with data sources and are configured
to send datato a central broker. Rather than configure the central broker for each source, the sources can
be configured to send to the destination.

1.4.3.4. gpid-route Summary and Options

$ gpid-route

Usage:

gpi d-route
gpi d-route

gpi d-route
gpi d-route
gpi d-route
gpi d-route
gpi d-route
gpi d-route
gpi d-route

gpi d-route
gpi d-route
gpi d-route

Opt i ons:

--tinmeout seconds (10)

-V[
-q
-d[
-e[
-S[

--ack N

-t <transport> |

dest - br oker

ex:

| ocal host,

[OPTI ONS]
[OPTI ONS]

[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]
[OPTI ONS]

[OPTI ONS]
[OPTI ONS]
[OPTI ONS]

--verbose]
--quiet]
--durabl e]

--del -enpty-1link]
--src-local]

and src- broker

dynam c add <dest - broker > <src- broke
dynam c del <dest-broker> <src-broke
route add <dest - br oker > <src- br oke
route del <dest - br oker > <src- br oke
gueue add <dest - br oker > <src- br oke
queue del <dest - br oker > <src- br oke
route list [<dest-broker>]

route flush [<dest-broker>]

route map [<br oker >]

link add <dest-broker> <src-broker>
link del <dest-broker> <src-broker>
link I'ist [<dest-broker>]

Maxi mumtime to wait for

br oker conn

Ver bose out put

Qui et
Added

Delete link after deleting |ast
Make connection to source broker

out put, don't
configuration shall be durable

r out
(pu

r>
r>

<exchange>
<exchange>

r>
r>
r>
r>

<exchange>
<exchange>
<exchange>
<exchange>

ection

print duplicate warnings

e on the link
sh route)

<ro
<ro
<qu
<qu

Acknowl edge transfers over the bridge in batches of N

are in the form

--transport <transport>]
Specify transport to use for

| i nks,

[user nane/ passwor d

defaults to tcp

@ hostnane |

10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

There are several transport options available for the federation link:

Table 1.1. Transport Optionsfor Federation

Transport

Description

tcp

(default) A cleartext TCP connection

sd

A secure TLS/SSL over TCP connection

rdma

A Connection using the RDMA interface (typically

for an Infiniband network)

14

i p-

Running the AMQP
Messaging Broker

Thetag and exclude-list arguments are not needed. They have been | eft in place for backward compatibility
and for advanced userswho might have very unusual requirements. If you're not sureif you need them, you
don't. Leave them alone. If you must know, please refer to "Message Loop Prevention™” in the advanced
topics section below. The prevention of message looping is now automatic and requires no user action.

If the link between the two sites has network latency, this can be compensated for by increasing the ack
frequency with --ack N to achieve better batching across the link between the two sites.

1.4.3.5. Caveats, Limitations, and Things to Avoid

1.4.3.5.1. Redundant Paths
The current implementation of federation in the M4 broker imposes constraints on redundancy in the
topology. If there are parallel paths from a producer to a consumer, multiple copies of messages may be
received.

A future release of Qpid will solve this problem by allowing redundant paths with cost metrics. This will
allow the deployment of networks that are tolerant of connection or broker loss.

1.4.3.5.2. Lack of Flow Control

M4 broker federation uses unlimited flow control on the federation sessions. Flow control back-pressure
will not be applied on inter-broker subscriptions.

1.4.3.5.3. Lack of Cluster Failover Support

The client functionality embedded in the broker for inter-broker links does not currently support cluster
fail-over. Thiswill be added in a subsequent release.

1.4.4. Example Scenarios

1.4.4.1. Using QPID to bridge disjoint IP networks
1.4.4.1.1. Multi-tiered topology

R +
| 5 |
R +
/ \
R + R +
|2 | | 6 |
R + R +
A |\
R + Ao + Ao + Ao + Ao +
Il [31 | 41 | 71 1 8|
R + Ao + Ao + Ao + Ao +

This topology can be configured using the following script.

##

Define URLs for the brokers
##

br oker 1=| ocal host : 10001

15

Running the AMQP
Messaging Broker

br oker 2=I ocal host :
br oker 3=l ocal host:
br oker 4=| ocal host :
br oker 5=I ocal host:
br oker 6=I ocal host:
br oker 7=l ocal host :
br oker 8=l ocal host :

##

10002
10003
10004
10005
10006
10007
10008

Create Topi c Exchanges

#

gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config
gpi d-config

-a
-a
-a
-a
-a
-a
-a
-a

$br oker 1
$br oker 2
$br oker 3
$br oker 4
$br oker 5
$br oker 6
$br oker 7
$br oker 8

add
add
add
add
add
add
add
add

exchange
exchange
exchange
exchange
exchange
exchange
exchange
exchange

t opi
t opi
t opi
t opi
t opi
t opi
t opi
t opi

f ed

f ed

f ed

OO0 0000O0O0

. t opi
fed.
fed.

t opi
t opi

. t opi
fed.
fed.

t opi
t opi

. t opi
f ed.

t opi

#
Create Topic Routes
#
gpi d-route dynan c add
gpi d-route dynan c add

$br oker 1
$br oker 2

add
add

$br oker 3
$br oker 2

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 4
$br oker 2

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 2
$br oker5

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker5
$br oker 6

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 6
$br oker 7

gpi d-route
gpi d-route

dynam c
dynam c

add
add

$br oker 6
$br oker 8

gpi d-route
gpi d-route

dynam c
dynam c

1.4.4.1.2. Load-sharing across brokers

1.4.5. Advanced Topics

1.4.5.1. Federation Queue Naming

1.4.5.2. Message Loop Prevention

$br oker 2
$br oker 1

$br oker 2
$br oker 3

$br oker 2
$br oker 4

$br oker5
$br oker 2

$br oker 6
$br oker 5

$br oker 7
$br oker 6

$br oker 8
$br oker 6

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

fed.topic
fed.topic

OO0 00000O0

16

Running the AMQP
Messaging Broker

1.5. SSL

1.5.1. SSL How to
1.5.1.1. C++ broker (M4 and up)

» You need to get a certificate signed by a CA, trusted by your client.

« If you require client authentication, the clients certificate needs to be signed by a CA trusted by the
broker.

* Setting up the certificates for testing.
 For testing purposes you could use the ??? to setup your certificates.
* Insummary you need to create aroot CA and import it to the brokers certificate data base.

« Create a certificate for the broker, sign it using the root CA and then import it into the brokers
certificate data base.

* Load theacl module using --load-module or if loading more than one module, copy sdl.so to the location
pointed by --module-dir

Ex if running fromsource. ./qgpidd --load-nmodule /Iibs/ssl.so
» Specify the password file (a plain text file with the password), certificate database and the brokers
certificate name using the following options
Ex ./gpidd ... --ssl-cert-password-file ~/pfile --ssl-cert-db ~/server_db/ --ssl-

« If you require client authentication you need to add --sdl-require-client-authentication as a command
line argument.

 Please note that the default port for SSL connectionsis 5671, unless specified by --sd-port

Here is an example of a broker instance that requires SSL client side authenticaiton

./qpidd ./qpidd --load-nmodule /1libs/ssl.so --ssl-cert-password-file ~/pfile --ssl-

1.5.1.2. Java Client (M4 and up)

e Thisguideisfor connecting with the Qpid c++ broker.

* Setting up the certificates for testing. In summary,
¢ You need to import the trusted CA in your trust store and keystore
* Generate keysfor the certificate in your key store
« Create a certificate request using the generated keys

 Create a certficate using the request, signed by the trusted CA.

17

Running the AMQP
Messaging Broker

 Import the signed certificate into your keystore.
 Passthefollowing VM argumentsto your client.
- D avax. net. ssl . keySt or e=/ home/ bob/ ssl _t est/ keystore.jks
- D avax. net . ssl . keySt or ePasswor d=passwor d

- D avax. net. ssl . trust Store=/ hone/ bob/ssl _test/certstore.jks
- Dy avax. net. ssl . trust St or ePasswor d=passwor d

1.5.1.3. .Net Client (M4 and up)

« If the Qpid broker requires client authentication then you need to get acertificate signed by aCA, trusted
by your client.

Use the connectSSL instead of the standard connect method of the client interface.

connectSSL signatureis as follows:

public void connectSSL(String host, int port, String virtual Host, String usernane,
Where

* host: Host name on which a Qpid broker is deployed

* port: Qpid broker port

* virtualHost: Qpid virtual host name

» username: User Name

* password: Password

+ serverName: Name of the SSL server

* certPath: Path to the X509 certificate to be used when the broker requires client authentication

* rgjectUntrusted: If true connection will not be established if the broker is not trusted (the server
certificate must be added in your truststore)

1.5.1.4. Python & Ruby Client (M4 and up)

Simply use amgps:// in the URL string as defined above

1.6. LVQ
1.6.1. Understanding LVQ

Last Vaue Queues are useful youUser Documentation are only interested in the latest value entered into
aqueue. LVQ semantics are typically used for things like stock symbol updates when all you care about
isthe latest value for example.

Qpid C++ M4 or later supports two types of LVQ semantics:

18

Running the AMQP
Messaging Broker

1.6.2.

1.6.3.

. LVQ

« LVQ NO_BROWSE

LVQ semantics:

LVQ uses aheader for akey, if the key matches it replaces the message in-place in the queue except a.) if
the message with the matching key has been acquired b.) if the message with the matching key has been
browsed In these two cases the message is placed into the queuein FIFO, if another message with the same
key isreceived it will the ‘un-accessed' message with the same key will be replaced

These two exceptions protect the consumer from missing the last update where a consumer or browser
accesses a message and an update comes with the same key.

An example

[l ocal host tests]$./lvqtest --npde create_|vqg
[l ocal host tests]$./lvqtest --npde wite
Sendi ng Data: keyl=keyl. Ox7fffdf3f3180

Sendi ng Dat a: key2=key2. 0Ox7f ffdf 3f 3180

Sendi ng Dat a: key3=key3. Ox7f ffdf 3f 3180

Sendi ng Data: keyl=keyl. Ox7fffdf3f3180

Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --npde browse

Recei vi ng Dat a: keyl.
Recei vi ng Dat a: key2.
Recei vi ng Dat a: key3.

Ox7f f fdf 3f 3180
Ox7f f fdf 3f 3180
Ox7f f fdf 3f 3180

Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqtest --npde wite
Sendi ng Data: keyl=keyl. Ox7fffedc7fall
Sendi ng Dat a: key2=key2. 0x7fffedc7fall
Sendi ng Dat a: key3=key3. 0x7fffedc7fall
Sendi ng Data: keyl=keyl. Ox7fffedc7fall
Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --npde browse
Recei vi ng Dat a: keyl. Ox7fffedc7fall
Recei vi ng Dat a: key2. Ox7f f f edc7f al0
Recei vi ng Dat a: key3. Ox7f f f edc7f al0
Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqgtest --npde consume
Recei vi ng Dat a: keyl. Ox7f f f df 3f 3180
Recei vi ng Dat a: key2. Ox7f f f df 3f 3180
Recei vi ng Dat a: key3. Ox7f f f df 3f 3180
Recei vi ng Dat a: | ast

Recei vi ng Dat a: keyl. Ox7f ffedc7fal0
Recei vi ng Dat a: key2. Ox7f f f edc7f al0
Recei vi ng Dat a: key3. Ox7f f f edc7f al0
Recei vi ng Dat a: | ast

LVQ_NO_ BROWSE semantics:

LVQ uses a header for akey, if the key matches it replaces the message in-place in the queue except a.)
if the message with the matching key has been acquired In these two cases the message is placed into the

19

Running the AMQP
Messaging Broker

gueue in FIFO, if another message with the same key is received it will the 'un-accessed' message with
the same key will be replaced

Note, in this case browsed messaged are not invalidated, so updates can be missed.

An example

[l ocal host tests]$./lvqtest --node create_|l vg_no_browse
[l ocal host tests]$./lvqgtest --npde wite
Sendi ng Dat a: keyl=keyl.Ox7fffce5fb390
Sendi ng Dat a: key2=key2. 0x7fffce5f b390
Sendi ng Dat a: key3=key3. 0x7fffce5f b390
Sendi ng Dat a: keyl=keyl.Ox7fffce5fb390
Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --npde wite
Sendi ng Dat a: keyl=keyl.Ox7fff346ae440
Sendi ng Dat a: key2=key2. 0x7fff 346ae440
Sendi ng Dat a: key3=key3. 0x7fff 346ae440
Sendi ng Dat a: keyl=keyl.Ox7fff346ae440
Sendi ng Data: | ast =l ast

[l ocal host tests]$./lvqgtest --node browse
Recei vi ng Dat a: keyl. Ox7f f f 346ae440
Recei vi ng Dat a: key2. Ox7f f f 346ae440
Recei vi ng Dat a: key3. Ox7f f f 346ae440
Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqgtest --node browse
Recei vi ng Dat a: keyl. Ox7f f f 346ae440
Recei vi ng Dat a: key2. Ox7f f f 346ae440
Recei vi ng Dat a: key3. Ox7f f f 346ae440
Recei vi ng Dat a: | ast

[l ocal host tests]$./lvqgtest --npde wite
Sendi ng Dat a: keyl=keyl.Ox7fff606583e0
Sendi ng Dat a: key2=key2. 0x7fff606583e0
Sendi ng Dat a: key3=key3. 0x7fff606583e0
Sendi ng Dat a: keyl=keyl.Ox7fff606583e0
Sendi ng Data: | ast=l ast

[l ocal host tests]$./lvqtest --npde consune
Recei vi ng Dat a: keyl. Ox7f f f 606583e0
Recei vi ng Dat a: key2. Ox7f f f 606583e0
Recei vi ng Dat a: key3. Ox7f f f 606583e0
Recei vi ng Dat a: | ast

[l ocal host tests]$

1.6.4. LVQ Program Example

Li censed to the Apache Software Foundation (ASF) under one
or nore contributor |icense agreenents. See the NOTICE file
distributed with this work for additional information

b B

20

Running the AMQP
Messaging Broker

regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the

"License"); you may not use this file except in conpliance
with the License. You may obtain a copy of the License at

http: //ww. apache. org/ | i censes/ LI CENSE- 2. 0

software distributed under the License is distributed on an
"AS | S" BASI S, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing perm ssions and limtations

*
*
*
*
*
*
*
* Unless required by applicable |law or agreed to in witing,
*
*
*
*
* under the License.

*

*

#i ncl ude <qpi d/client/AsyncSessi on. h>

#i ncl ude <qpi d/client/Connection. h>

#i ncl ude <qpi d/client/Subscripti onManager. h>
#i ncl ude <qpi d/client/Session. h>

#i ncl ude <qpid/client/Message. h>

#i ncl ude <qpi d/client/MessagelLi st ener. h>

#i ncl ude <qpi d/client/QueueOptions. h>

#i ncl ude <i ostreant

usi ng nanmespace gpid::client;
usi ng nanmespace qpid::fram ng
usi ng namespace gpi d: : sys;
usi ng namespace gpi d;

usi ng namespace std;

enum Mode { CREATE LVQ CREATE_LVQ NO BROWSE, WRI TE, BROASE, CONSUME}
const char* nodeNames[] = { "create_|Ivqg","create_|vg_no_browse","wite", "browse","

/] istream ostream ops so Options can read/display Mde
i stream& operator>>(istrean& i n, Mdde& node) ({
string s;
in >>s;
int i = find(nodeNanmes, nodeNanmes+5, s) - nodeNanes;
if (i >=5) throw Exception("lnvalid node: "+s);
node = Mode(i);
return in;

}

ost ream& oper at or <<(ostream& out, Mdde node) {
return out << nodeNanes[node];

}

struct Args : public gpid::Options,
public qpid::client::ConnectionSettings
{

21

Running the AMQP

Messaging Broker
bool hel p;
Mode node
Args() : gpid::Options("Sinple latency test optins"), help(false),
{
usi ng nanmespace gpi d;
addOpti ons()
("hel p", optValue(help), "Print this usage statement")
(" broker, b", optVal ue(host, "HOST"), "Broker host to connect to")
("port,p", optValue(port, "PORT"), "Broker port to connect to")
("username", optVal ue(usernane, "USER'), "user nane for broker log in
("password", optVal ue(password, "PASSWORD'), "password for broker |og
(" nmechani sni', opt Val ue(nechani sm "MECH'), "SASL nechanismto use when
("tcp-nodel ay", optVal ue(tcpNoDel ay), "Turn on tcp-nodel ay")
("node", optValue(node, "'see below "), "Action node."
"\'ncreate_|vqg: create a new queue of type lvg.\n"
"\'ncreate_|vg_no_browse: create a new queue of type Ivg with no lvg o
"\nwite: wite a bunch of data & keys.\n"
"\ nbrowse: browse the queue.\n"
"\'nconsune: consune fromthe queue.\n");
}
b
cl ass Listener : public Messageli stener
{ .
private:
Sessi on session
Subscri pti onManager subscriptions;
std::string queue;
Message request;
QueueOpt i ons args;
publi c:
Li st ener (Sessi on& sessi on);
voi d setup(bool browse);
void send(std::string kv);
voi d recei ved(Message& nessage) ;
voi d browse();
voi d consumne();
b

Li st ener: : Li st ener (Sessi on& s)
session(s), subscriptions(s),
gqueue("LVQester")

{}
voi d Listener::setup(bool browse)
{ /1 set queue node
args. set O deri ng(browse?LVQ NO BRONSE: LVQ) ;
sessi on. queueDecl are(ar g: : queue=queue, arg::excl usi ve=fal se,
}

node(BROABE

arg: : aut oDel et e=f

22

Running the AMQP

Messaging Broker
voi d Listener::browse()
{
subscri ptions. subscri be(*this, queue, SubscriptionSettings(Fl owContr ol
subscriptions.run();
}
voi d Listener::consume()
{
subscri ptions. subscri be(*this, queue, SubscriptionSettings(Fl owContr ol
subscriptions.run();
}
voi d Listener::send(std::string kv)
{
request. get DeliveryProperties().setRoutingKey(queue);
std::string key;
ar gs. get LVQKey(key) ;
request. get Headers().set String(key, kv);
std::ostringstream data
data << kv;
if (kv I'="last") data << "." << hex << this;
request. setData(data.str());
cout << "Sending Data: " << kv << "=" << data.str() << std::endl
async(sessi on). nessageTransfer (arg::content=request);
}
voi d Listener::received(Mssage& response)
{

cout << "Receiving Data:" << response.getData() << std::endl
/* if (response.getData() == "last"){
subscri ptions. cancel (queue);

}
*/
}
int main(int argc, char** argv)
{
Args opts;

opts. parse(argc, argv);

if (opts.help) {
std::cout << opts << std::endl
return O;

}

Connection connection
try {
connecti on. open(opts);
Sessi on session = connection. newSessi on();

23

ounlim

ounlim

Running the AMQP
Messaging Broker

Li stener listener(session);

switch (opts. node)

{

case CONSUME:
listener.consume();
br eak;

case BROWBE:
| istener. browse();
br eak;

case CREATE LVQ
listener.setup(false);
br eak;

case CREATE_LVQ NO BROWSE:
listener.setup(true);
br eak;

case WRI TE:
istener.send("keyl");
istener.send("key2");
listener.send("key3");
istener.send("keyl");
listener.send("last");
br eak;

}

connection. cl ose();

return O;

} catch(const std::exception& error) {
std::cout << error.what() << std::endl;

}

return 1;

1.7. Queue State Replication

1.7.1. Asynchronous Replication of Queue State

1.7.1.1. Overview

Thereis support in gpidd for selective asynchronous replication of queue state. Thisis achieved by:
(a) enabling event generation for the queues in question

(b) loading a plugin on the 'source’ broker to encode those events as messages on areplication queue (this
pluginis called replicating_listener.so)

(c) loading a custom exchange plugin on the 'backup' broker (thispluginiscalled replication_exchange.so)
(d) creating an instance of the replication exchange type on the backup broker

(e) establishing a federation bridge between the replication queue on the source broker and the replication
exchange on the backup broker

24

Running the AMQP
Messaging Broker

The bridge established between the source and backup brokers for replication (step (€) above) should have
acknowledgements turned on (this may be done through the --ack N option to gpid-route). This ensures
that replication events are not lost if the bridge fails.

Thereplication protocol will also eliminate duplicates to ensure reliably replicated state. Note though that
only one bridge per replication exchange is supported. If clients try to publish to the replication exchange
or if more than a the single required bridge from the replication queue on the source broker is created,
replication will be corrupted. (Access control may be used to restrict access and help prevent this).

Thereplicating event listener plugin (step (b) above) has the following options:

Queue Replication Options:
--replication-queue QUEUE Queue on which events for
ot her queues are recorded
--replication-listener-nane NAMVE (replicator) name by which to register the
replicating event |istener

--create-replication-queue if set, the replication wll
be created if it does not
exi st

The name of the queue is required. It can either point to a durable queue whose definition has been
previously recorded, or the --create-replication-queue option can be specified in which case the queue will
be created a simple non-durable queue if it does not already exist.

1.7.1.2. Use with Clustering

The source and/or backup brokers may also be clustered brokers. In this case the federated bridge will be
re-established between replicas should either of the originally connected nodes fail. There are however
the following limitations at present:

» Thebackup site does not process membership updates after it establishesthefirst connection. In order for
newly added members on a source cluster to be eligible asfailover targets, the bridge must be recreated
after those members have been added to the source cluster.

» New membersadded to abackup cluster will not receiveinformation about currently established bridges.
Therefore in order to allow the bridge to be re-established from these members in the event of failure
of older nodes, the bridge must be recreated after the new members have joined.

e Only asingle URL can be passed to create the initial link from backup site to the primary site. this
means that at the time of creating the initial connection theinitial node in the primary site to which the
connection is made needs to be running. Once connected the backup site will receive a membership
update of al the nodesin the primary site, and if theinitial connection nodein the primary fails, the link
will be re-established on the next node that was started (time) on the primary site.

Due to the acknowledged transfer of events over the bridge (see note above) manual recreation of the

bridge and automatic re-establishment of te bridge after connection failure (including failover where either
or both ends are clustered brokers) will not result in event loss.

1.7.1.3. Operations on Backup Queues

When replicating the state of a queue to a backup broker it is important to recognise that any other
operations performed directly on the backup queue may break the replication.

25

Running the AMQP
Messaging Broker

If the backup queueisto bean active (i.e. accessed by clientswhilereplication ison) only enqueues should
be selected for replication. In this mode, any message enqueued on the source brokers copy of the queue
will also be enqueued on the backup brokers copy. However not attempt will be made to remove messages
from the backup queue in response to removal of messages from the source queue.

1.7.1.4. Selecting Queues for Replication

Queues are selected for replication by specifying the types of events they should generate (it is from these
events that the replicating plugin constructs messages which are then pulled and processed by the backup
site). Thisis done through options passed to the initial queue-declare command that creates the queue and
may be done either through gpid-config or similar tools, or by the application.

With gpid-config, the --generate-queue-events optionsiis used:

- - gener at e- queue-events N
If set to 1, every enqueue will generate an event that ca
registered listeners (e.g. for replication). If set to 2,
generated for enqueues and dequeues

From an application, the arguments field of the queue-declare AMQP command is used to convey this
information. An entry should be added to the map with key 'gpid.queue_event_generation’ and an integer
value of 1 (to replicate only enqueue events) or 2 (to replicate both enqueue and dequeue events).

Applications written using the c++ client API may fine the gpid::client::QueueOptions class convenient.
This has a enableQueueEvents() method on it that can be used to set the option (the instance of
QueueOptions is then passed as the value of the arguments field in the queue-declare command. The
boolean option to that method should be set to true if only enequeue events should be replicated; by default
it is false meaning that both enqueues and dequeues will be replicated. E.g.

QueueOpti ons options;
options. enabl eQueueEvent s(fal se);
sessi on. queueDecl are(arg: : queue="nmny-queue", arg::argunents=options);

1.7.1.5. Example

L ets assume we will run the primary broker on host1 and the backup on host2, have installed gpidd on
both and have the replicating_listener and replication_exchange plugins in gpidd's module directory(* 1).

On host1 we start the source broker and specifcy that a queue called ‘replication’ should be used for storing
the events until consumed by the backup. We also request that this queue be created (as transient) if not
already specified:

gpidd --replication-queue replication-queue --create-replication-queue true --
On host2 we start up the backup broker ensuring that the replication exchange module is loaded:

gpi dd

26

Running the AMQP
Messaging Broker

We can then create the instance of that replication exchange that we will use to process the events:

gpi d-config -a host2 add exchange replication replication-exchange

If this fails with the message "Exchange type not implemented: replication”, it means the replication
exchange module was not loaded. Check that the module is installed on your system and if necessary
provide the full path to the library.
We then connect the replication queue on the source broker with the replication exchange on the backup
broker using the gpid-route command:
gpi d-route --ack 50 queue add host2 hostl replication-exchange rep
The example above configures the bridge to acknowledge messages in batches of 50.
Now create two queues (on both source and backup brokers), one replicating both enqueues and degqueues
(queue-a) and the other replicating only dequeues (queue-b):
gpi d-config -a hostl add queue queue-a --generate-queue-events 2
gpi d-config -a hostl add queue queue-b --generate-queue-events 1
gpi d-config -a host2 add queue queue-a
gpi d-config -a host2 add queue queue-b
We are now ready to use the queues and see the replication.
Any message enqueued on queue-a will be replicated to the backup broker. When the message is
acknowledged by a client connected to host1 (and thus dequeued), that message will be removed from the
copy of the queue on host2. The state of queue-a on host2 will thus mirror that of the equivalent queue on
host1, albeit with asmall lag. (Note however that we must not have clients connected to host2 publish to-
or consume from- queue-a or the state will fail to replicate correctly due to conflicts).
Any message enqueued on queue-b on host1 will also be enqueued on the equivalent queue on host2.
However the acknowledgement and consequent dequeuing of messages from queue-b on host1 will have
no effect on the state of queue-b on host2.
(*1) If not the paths in the above may need to be modified. E.g. if using modules built from a gpid svn
checkout, the following would be added to the command line used to start qpidd on host1.:
--load-nodul e <path-to-qpid-dir>/src/.libs/replicating_listener.so

and the following for the equivalent command line on host2:

--l oad-nodul e <path-to-qgpid-dir>/src/.libs/replication_exchange. so

27

l'ication-que

Running the AMQP
Messaging Broker

1.8. Starting a cluster
1.8.1. Running a Qpidd cluster

There are several pre-requisites to running agpidd cluster:

1.8.1.1. Install and configure openais/corosync

Qpid clustering usesamulticast protocol provided by the corosync (formerly called openais) library. Install
whichever is available on your OS. E.g. in fedoralO: yuminstall corosync.

The configuration file is /etc/ais/openais.conf on openais, /etc/corosync.conf on early corosync versions
and /etc/corosync/corosync.conf on recent corosync versions. Y ou will need to edit the default file created
when you installed

Here is an example, with places marked that you will change. (Below, | will describe how to change the
file.)

Pl ease read the openais.conf.5 manual page

totem {

version: 2

secaut h: off

threads: 0

interface {
ri ngnunber: 0
You must change this address
bi ndnet addr: 20.0.100.0
ncast addr: 226.94. 32. 36
ncast port: 5405

}
}
| oggi ng {
debug: off
ti mestanp: on
to file: yes
logfile: /tnp/aisexec.!|og
}
anf {
node: di sabl ed
}

You must sent the bindnetaddr entry in the configuration file to the network address of your network
interface. This must be areal network interface, not the loopback address 127.0.0.1

Y ou can find your network interface by running ifconfig. Thiswill list the address and the mask, e.g.

i net addr:20.0.20.32 Bcast:20.0.20.255 WMask: 255.255.255.0

The bindnetaddr isthe logical AND of the inet addr and mask values, in the example above 20.0.20.0

28

Running the AMQP
Messaging Broker

1.8.1.2. Open your firewall

In the above examplefile, | use mcastport 5405. Thisimpliesthat your firewall must allow UDP protocol
over port 5405, or that you disable the firewall

1.8.1.3. Use the proper identity.
The gpidd process must be started with the correct identity in order to use the corosync/openais library.

For openais and early corosync versionstheinstallation of openAl S/corosync on your system will create a
new group called "ais". The user that startsthe qpidd processes of the cluster must have"ais' asitseffective
group id. You can create a user specifically for this purpose with ais as the primary group, or a user that
has ais as a secondary group can use "newgrp" to set the primary group to ais when running gpidd.

For recent corosync versions you no longer need to set your group to "ais" but you do need to create a
file in /etc/corosync/uidgid.d/ to allow access for whatever user/group ID you want to use. For example
create /etc/corosync/uidgid.d/gpid th the contents:

uidgid {
uid: gpid
gid: gpid
}

1.8.1.4. Starting a Cluster

To beamember of acluster you must pass the --cluster-name argument to gpidd. Thisisthe only required
option to join a cluster, other options can be set as for anormal gpidd.

For exampleto start acluster of 3 brokers on the current host Here is an example of starting a cluster of 3
members, all on the current host but with different ports and different log files:

gpi dd - p5672 --cluster-nane=MY_CLUSTER - -1 og-out put=cluster0.log -d --no-data-dir
gpi dd -p5673 --cluster-nane=MY_CLUSTER - -1 og-out put=cluster0.log -d --no-data-dir
gpi dd - p5674 --cluster-nane=MY_CLUSTER - -1| og-out put=cluster0.log -d --no-data-dir

In a deployed system, cluster members will normally be on different hosts but for development its useful
to be able to create a cluster on a single host.

1.8.1.5. SELinux conflicts

Developers will often start openais/corosync as a service like this:

service openais start

But will then will start a cluster-broker without using the service script like this:
/usr/shin/gpidd --cluster-name my_cluster ...

If SELinux is in enforcing mode this may cause gpidd to hang due because of the different SELinux
contexts. There are 3 waysto resolve this:

* run both gpidd and openais/corosync as services.

* run both gpidd and openais/corosync as user processes.

29

Running the AMQP
Messaging Broker

e make selinux permissive:

To check what mode selinux is running:

getenforce

To change the mode:

setenforce perm ssive

Note that in a deployed system both openais/corosync and gpidd should be started as services, in which
case there is no problem with SELinux running in enforcing mode.

1.8.1.6. Troubleshooting checklist.

1.9.
1.9.1.

If you have trouble starting your cluster, make sure that:

1. You have edited the correct openais/corosync configuration file and set bindnetaddr correctly 1. Y our
firewall allows UDP on the openais/corosync mcastport 2. Your effective group is "ais' (openais/old
corosync) or you have created an appropriate ID file (new corosync) 3. Your firewall allows TCP on the
ports used by gpidd. 4. If you're starting openais as a service but running gpidd directly, ensure selinux
isin permissive mode

ACL

v2 ACL file format for brokers

This new ACL implementation has been designed for implementation and interoperability on al Qpid
brokers. It is currently supported in the following brokers:

Table1.2. ACL Support in Qpid Broker Versions

Broker Version

C++ M4 onward
Java M5 anticipated
Contents

* Section1.9.1, “ v2 ACL fileformat for brokers”
e ¢ Section 1.9.1.1, “ Specification”
e Section 1.9.1.2, “ Validation”
e Section 1.9.1.3, “ Examplefile: ”
» Section 1.9.2, “ Design Documentation ”
e ¢ Section 1.9.2.1, “ Mapping of ACL trapsto action and type”

* Section 1.9.3,“ v2 ACL User Guide”

30

Running the AMQP
Messaging Broker

e ¢ Section 1.9.3.1, “ Writing Good/Fast ACL ”
e Section 1.9.3.2, “ Getting ACL toLog”

e Section 1.9.3.3, “ User Id / domains running with C++ broker ”

1.9.1.1. Specification
Notes on file formats
* A line starting with the character '# will be considered a comment, and are ignored.

» Since the '# char (and others that are commonly used for comments) are commonly found in routing
keys and other AMQP literals, it is simpler (for now) to hold off on allowing trailing comments (ie
comments in which everything following a'# is considered a comment). This could be reviewed later
once therest of the format is finalized.

Empty lines (
ignored.

) and lines that contain only whitespace (any combination of "', \f', \n', \r', \', V') are

All tokens are case sensitive. "namel” !="Namel" and "create" |= "CREATE".

» Group lists may be extended to the following line by terminating the linewith the'\' character. However,
thismay only occur after the group hame or any of the namesfollowing the group name. Empty extension
lines (iejust a'\' character) are not permitted.

Exanpl es of extending group lists using a trailing '"\' character
group groupl namel nanme2 \

nanme3 name4 \

name5

group group2 \
groupl \
nane6

The following are illegal:

'\' nust be after group nane
group \
group3 nanme?7 namnme8

No enpty extension |lines
group group4 name9 \
\
nanel0

» Additional whitespace (ie more than one whitespace char) between and after tokensisignored. However
group and acl definitionsmust start with "group™ or "acl" respectively and with no preceding whitespace.

» All acl rules are limited to asingle line.

* Rules are interpreted from the top of the file down until the name match is obtained; at which point
processing stops.

31

Running the AMQP
Messaging Broker

e Thekeyword "all" is reserved, and matches all individuals, groups and actions. It may be used in place
of agroup or individual name and/or an action - eg "acl allow all all", "acl deny al al" or "acl deny
userlall”.

* Thelast line of the file (whether present or not) will be assumed to be "acl deny all all”. If present in
the file, any lines below this one are ignored.

» Names and group names may contain only a-z, A-Z, 0-9, -, ".

* Rules must be preceded by any group definitions they may use; any name not previously defined as a
group will be assumed to be that of an individual.

e ACL rules must have the following tokens in order on asingle line:
e Thestring literal "acl";
e The permission;
» The name of asingle group or individual or the keyword "all";
* The name of an action or the keyword "all";
¢ Optionally, asingle object name or the keyword "all”;
« If the object is present, then optionally one or more property name-value pair(s) (in the form

property=value).

user = usernane[@omai n[/real n]
user-list = userl user2 user3 ...
group- name-1list = groupl group2 group3 ...

group <group-nanme> = [user-list] [group-nane-list]
perm ssion = [all ow al | ow | og| deny| deny- | og]
action = [consune| publish|create|access]| bi nd| unbi nd| del et e| pur ge| updat e]

obj ect = [virtual host| queue| exchange]| broker || i nk| rout e| met hod]
property = [nane| durabl e| owner|routingkey| passi ve| aut odel et e|] excl usi ve|type|altern

acl perm ssion {<group-nane>| <user-nanme>|"all"} {action|"all"} [object]|"all™] [pro

1.9.1.2. Validation

Thenew ACL fileformat needsto perform validation on the acl rules. The validation should be performed
depending on the set value:

strict-acl-validation=none The default setting should be 'warn'

On validation of this acl the following checks would be expected:

acl allow client publish routingkey=exanpl eQueue exchange=any. di r ect

1. Thelf the user 'client' cannot be found, if the authentication mechanism cannot be queried then a'user’
value should be added to the file.

32

Running the AMQP
Messaging Broker

2. Thereisan exchange called ‘amq.direct'
3. Thereisaqueue bound to 'exampleQueue’ on 'amg.direct’
Each of these checks that fail will result in alog statement being generated.

In the case of afatal logging the full file will be validated before the broker shuts down.

1.9.1.3. Example file:

Sone groups

group admin ted@PI D nmarti n@yPl D

group user-consurme marti n@PI D ted@Pl D
group group2 ki m@yrl D user-consunme rob@Pl D
group publisher group2 \

t om@Pl D andr ew@Pl D debbi e@PI D

Sone rul es

acl allow carlt@PlI D create exchange nane=carl . *

acl deny rob@XPI D create queue

acl allow guest @PI D bi nd exchange name=ang.topi c routingkey=stocks.ibm#
acl allow user-consune create queue nane=tnp.*

acl allow publisher publish all durabl e=fal se

acl allow publisher create queue nane=Request Queue
acl allow consuner consunme queue durabl e=true

acl allow fred@PID create all

acl allow bob@X¥PI D all queue

acl allow adnin all

acl deny ki m@aPl D all

acl allow all consume queue owner=self

acl allow all bind exchange owner =sel f

Last (default) rule
acl deny all all

1.9.2. Design Documentation

1.9.2.1. Mapping of ACL traps to action and type

The C++ broker maps the ACL traps in the follow way for AMQP 0-10: The Java broker currently only
performs ACLs on the AMQP connection not on management functions:

Table 1.3. Mapping ACL Traps

Object Action Properties Trap C++ Trap Java

Exchange Create name type aternate| ExchangeHandl erl mjitxcleahgreDeclareHandl er
passive durable

Exchange Delete name ExchangeHandlerl mjatxclabeigeDel eteHandler

Exchange Access name ExchangeHandlerlmpl::query

33

owner =s

Running the AMQP

Messaging Broker
Object Action Properties Trap C++ Trap Java
Exchange Bind name routingkey | ExchangeHandlerl m@ubumBindHandl er
gueuename owner
Exchange Unbind nameroutingkey | ExchangeHandlerl mjiixclmoageUnbindHandler
Exchange Access name queuename|ExchangeHandlerlmpl::bound
routingkey
Exchange Publish name routingKey | SemanticState::routeBasi cPublishM ethodHandl er
Queue Access name QueueHandlerlmpl:jquery
Queue Create name alternate| QueueHandl erl mpl : j@@akareD eclareHandler
passive durable
exclusive
autodelete
Queue Purge name QueueHandlerlmpl:] @ugaePurgeHandl er
Queue Purge name Management::Queue::purge
Queue Delete name QueueHandlerlmpl:dgietgeDel eteHandl e
Queue Consume name (possibly add | MessageHandlerlmpBasiooitmimeM ethodHandler
in future?) BasicGetMethodHandler
<Object> Update ManagementProperty::set
<Object> Access M anagementProperty::read
Link Create M anagement::connect
Route Create Management:: -
createFederationRoute-
Route Delete Management:: -
del eteFederationRoute-
Virtualhost Access name TBD ConnectionOpenM ethodHandler

Management actions that are not explicitly given a name property it will default the name property to
management method name, if the action is'W' Action will be 'Update, if 'R' Action will be 'Access.

for example, if the mgnt method ‘joinCluster' was not mapped in schema it will be mapped in ACL file

asfollows

Table 1.4. Mapping M anagement Actionsto ACL

Object

Action

Property

Broker

Update

name=joinCluster

1.9.3. v2 ACL User Guide
1.9.3.1. Writing Good/Fast ACL

The file gets read top down and rule get passed based on the first match. In the following example the
first ruleisadead rule. |.e. the second rule is wider than the first rule. DON'T do this, it will force extra
analysis, worst case if the parser does not kill the dead rule you might get afalse deny.

al | ow peter @PI D create queue name=tnp <--

dead rul e!!

Running the AMQP
Messaging Broker

al |l ow peter @PI D create queue
deny all all

By default files end with

deny all all

the mode of the ACL engine can be swapped to be allow based by putting thefollowing at the end of thefile

allow all all

Note that 'allow' based file will be a LOT faster for message transfer. This is because the AMQP
specification does not allow for creating subscribes on publish, so the ACL is executed on every message
transfer. Also, ACL'srules using less properties on publish will in general be faster.

1.9.3.2. Getting ACL to Log

In order to get log messages from ACL actions use allow-log and deny-log for example

allowlog john@PID all all
deny-1og guest@PID all all

1.9.3.3. User Id / domains running with C++ broker

The user-id used for ACL is taken from the connection user-id. Thus in order to use ACL the broker
authentication has to be setup. i.e. (if --auth no is used in combination with ACL the broker will deny
everything)

Theuser idinthe ACL fileis of the form <user-id>@<domain> The Domain is configured viathe SASL
configuration for the broker, and the domain/realm for gpidd is set using --realm and default to 'QPID'.

To load the ACL module use, load the acl module cmd line or viathe config file

./Isrc/gpidd --1oad-nodule src/.libs/acl.so

The ACL plugin provides the following option '--acl-file'. If do ACL file is supplied the broker will not
enforce ACL. If an ACL file name is supplied, and the file does not exist or is invalid the broker will

not start.
ACL Options:
--acl-file FILE The policy file to load from |oaded fromdata dir

1.10. AMQP compatibility

Qpid provides the most complete and compatible implementation of AMQP. And is the most aggressive
in implementing the latest version of the specification.

There are two brokers:

e C++ with support for AMQP 0-10

35

Running the AMQP
Messaging Broker

 Javawith support for AMQP 0-8 and 0-9 (0-10 planned)

There are client librariesfor C++, Java (JMS), .Net (written in C#), python and ruby.

* All clients support 0-10 and interoperate with the C++ broker.

» The JMS client supports 0-8, 0-9 and 0-10 and interoperates with both brokers.

» The python and ruby clients will also support al versions, but the API is dynamically driven by the
specification used and so differs between versions. To work with the Java broker you must use 0-8 or

0-9, to work with the C++ broker you must use 0-10.

» There aretwo separate C# clients, one for 0-8 that interoperates with the Java broker, one for 0-10 that
inteoperates with the C++ broker.

QMF Management is supported in Ruby, Python, C++, and via QMan for Java IMX & WS-DM.

1.10.1. AMQP Compatibility of Qpid releases:

Qpid implements the AMQP Specification, and as the specification has progressed Qpid is keeping up
with the updates. This means that different Qpid versions support different versions of AMQP. Here is
asimple guide on what use.

Here is a matrix that describes the different versions supported by each release. The status symbols are
interpreted as follows:

Y supported
N unsupported
IP inprogress

P planned

Table1.5. AMQP Version Support by Qpid Release

Component Spec
M2.1 M3 M4 05
javaclient 0-10 Y Y Y
0-9 Y Y Y Y
0-8 Y Y Y Y
javabroker 0-10 P
0-9 Y Y Y Y
0-8 Y Y Y Y
ct+ client/|0-10 Y Y Y
broker
0-9 Y
python client |0-10 Y Y Y
0-9 Y Y Y Y
0-8 Y Y Y Y

36

Running the AMQP

Messaging Broker
ruby client 0-10 Y Y
0-8 Y Y Y Y
C# client 0-10 Y Y
0-8 Y Y Y Y

1.10.2. Interop table by AMQP specification version

Above table represented in another format.

Table1.6. AMQP Version Support - alternate format

release 0-8 0-9 0-10
javaclient M3 M40.5 Y Y Y
javaclient M2.1 Y Y N
java broker M3 M40.5 Y Y N
javabroker trunk Y Y P
javabroker M2.1 Y Y N
c++ client/broker |M3M40.5 N N Y
c++ client/broker |M2.1 N Y N
python client M3 M40.5 Y Y Y
python client M2.1 Y Y N
ruby client M3 M40.5 Y Y N
ruby client trunk Y Y P
C# client M3 M40.5 Y N N
CH client trunk Y N Y

1.11. Qpid Interoperability Documentation
1.11.1. Qpid Interoperability Documentation

This page documents the various interoperabl e features of the Qpid clients.

1.11.1.1. SASL

1.11.1.1.1. Standard Mechanisms
http://en.wikipedia.org/wiki/Simple_Authentication_and_Security L ayer#SASL_mechanisms

Thistablelist the various SASL mechanismsthat each component supports. Theversion listed showswhen
this functionality was added to the product.

Table 1.7. SASL Mechanism Support

Component |ANONYMOUSRAM-MD5 | DIGEST- EXTERNAL |GSSAPI/ PLAIN
MD5 Kerberos

37

http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer#SASL_mechanisms

Running the AMQP

Messaging Broker
C++ Broker |M3]Sttidhl, |M31Settichl, M3]Sttidhl, (M1
“ Standard | “ Standard “ Standard
Mechanisms | Mechanisms Mechanisms
" [38]] [38pettidnl. 1.1, [38petticnl. 1.1,
“ Standard “ Standard
Mechanisms Mechanisms
" [38]] " [38]]
C++ Client |M31Sttidhl, M1
Standard
Mechanisms
" [38]]
Java Broker M1 M1
Java Client M1 M1
.Net Client |M2 M2 M2 M2 M2
Python Client ?
Ruby Client ?

1: Support for these will bein M3 (currently available on trunk).

2: C++ Broker uses Cyrus SASL [http://freshmeat.net/projects/cyrussasl/] which supports CRAM-MD5
and GSSAPI but these have not been tested yet

1.11.1.1.2. Custom Mechanisms

There have been some custom mechanisms added to our implementations.

Table 1.8. SASL Custom Mechanisms

Component AMQPLAIN CRAM-MD5-HASHED
C++ Broker

C++ Client

Java Broker M1 M2

Java Client M1 M2

.Net Client

Python Client M2

Ruby Client M2

1.11.1.1.2.1. AMQPLAIN

1.11.1.1.2.2. CRAM-MD5-HASHED

The Java SASL implementations require that you have the password of the user to validate the incoming
request. This then means that the user's password must be stored on disk. For this to be secure either the
broker must encrypt the password file or the need for the password being stored must be removed.

The CRAM-MD5-HASHED SASL plugin removes the need for the plain text password to be stored on
disk. The mechanism defers all functionality to the build in CRAM-MD5 module the only change is on
the client side where it generates the hash of the password and uses that value asthe password. This means
that the JavaBroker only need store the password hash on thefile system. While aoneway hashisnot very

38

http://freshmeat.net/projects/cyrussasl/
http://freshmeat.net/projects/cyrussasl/

Running the AMQP
Messaging Broker

secure compared to other forms of encryption in environments where the having the password in plain
text is unacceptable thiswill provide and additional layer to protect the password. In particular this offers
some protection where the same password may be shared amongst many systems. It offers no real extra
protection against attacks on the broker (the secret is now the hash rather than the password).

39

Chapter 2. Managing the AMQP
Messaging Broker

2.1.

2.1.1.

Managing the C++ Broker

There are quite afew ways to interact with the C++ broker. The command line tools include:
 gpid-route - used to configure federation (a set of federated brokers)
 gpid-config - used to configure queues, exchanges, bindings and list them etc

 qpid-tool - used to view management information/statistics and call any management actions on the
broker

* gpid-printevents - used to receive and print QMF events
Using gpid-config

This utility can be used to create queues exchanges and bindings, both durable and transient. Always check
for latest options by running --help command.

$ gpid-config --help
Usage: qgpid-config [OPTI ONS]
gpi d-config [OPTI ONS] exchanges [filter-string]
gpi d-confi g [OPTI ONS] queues [filter-string]
gpi d-config [OPTI ONS] add exchange <type> <name> [AddExchangeOpti ons]
gpi d-config [OPTI ONS] del exchange <nane>
gpi d-config [OPTI ONS] add queue <nane> [AddQueueOpti ons]
gpi d-config [OPTI ONS] del queue <nane>
gpi d-config [OPTI ONS] bi nd <exchange- nane> <queue- nane> [bi ndi ng- key]
gpi d-confi g [OPTI ONS] unbi nd <exchange-nane> <queue-nane> [bi ndi ng- key]

Opt i ons:
-b [--bindings] Show bi ndi ngs i n queue or exchange |
-a [--broker-addr] Address (local host) Address of qpidd broker

broker-addr is in the form [user nane/ passwor d@ hostname | i p-address
ex: local host, 10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

Add Queue Opti ons:
--durabl e Queue is durable
--cluster-durabl e Queue becones durable if there is only one functioning cl
--file-count N (8) Nunber of files in queue's persistence journa
--file-size N (24) File size in pages (64Ki b/ page)
--max- queue-size N Maxi numin-nmenory queue size as bytes
- - max- queue-count N Maxi num in-menory queue size as a nunber of messages
--limt-policy [none | reject | flowto-disk | ring | ring-strict]
Action taken when queue Iimt is reached:
none (default) - Use broker's default policy

rej ect - Rej ect enqueued messages
fl owto-disk - Page nessages to disk
ring - Repl ace ol dest unacquired nessage w

40

Managing the AMQP

--order

[fifo |

Messaging Broker
ring-strict - Repl ace ol dest nessage, reject if o
lvg | |vg-no-browse]
Set queue ordering policy:
fifo (default) - First in, first out
lvg - Last Val ue Queue ordering, allows qu
| vg- no- browse - Last Val ue Queue ordering, browsing

--gener at e- queue- events N

If set to 1, every enqueue will generate an event that ca
registered listeners (e.g. for replication). If set to 2,
generated for enqueues and dequeues

Add Exchange Opti ons:

--durabl e
- -sequence

--ive

Get the summary page

$ gpid-config
Tot al

Tot al

List the queues

Exchanges:

t opi c:
headers:
fanout :
direct:
Queues:
dur abl e:
non- dur abl e:

Exchange is durable

Exchange will insert a 'gpid.nsg_sequence' field in the nmessage h
with a value that increments for each nmessage forwarded.

Exchange wi Il behave as an 'initial-val ue-exchange', keeping a re
to the | ast nmessage forwarded and enqueui ng that nmessage to newy
queues.

NO~NNEFEPEFEPENO

$ qpi d-config queues

Queue Nane

pub_start
pub_done
sub_ready
sub_done
perftestO

repl y- dhcp- 100- 18- 254. bos. redhat . com 20713
t opi c- dhcp- 100- 18- 254. bos. redhat . com 20713

Attributes

--durabl e
aut o- de
aut o- de

excl
excl

List the exchanges with bindings

$./qpid-config -
"' (direct)
bi nd pub_start

Exchange

b exchanges

=> pub_start

bi nd pub_done => pub_done
bi nd sub_ready => sub_ready

41

Managing the AMQP
Messaging Broker

2.1.2.

bi nd
bi nd
bi nd
bi nd
Exchange
bi nd
bi nd
bi nd
Exchange
Exchange
Exchange
Exchange
bi nd

sub_done => sub_done

perftest0 => perftestO

ngnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15
repl - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15
"ang.direct' (direct)

repl - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15
repl - df 06¢c7a6- 4ce7-426a- 9f 66- da91a2a6a837
repl - c55915c2- 2f da- 43ee- 9410- blclcbb3e4ae
"ang.topic' (topic)

"anyg. fanout' (fanout)

"ang. mat ch' (headers)

' qpi d. managenent' (topic)

nmgnt . # => ngnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50

=>
=>

=>
=>
=>

Using gpid-route

ngnt - 3206f f 16- f b29- 4a30- 82ea
repl - 3206f f 16- f b29- 4a30- 82ea

repl - 3206f f 16- f b29- 4a30- 82ea

repl - df 06¢c7a6- 4ce7-426a- 9f 66
repl - c55915c2- 2f da- 43ee- 9410

dd7d15

This utility is to create federated networks of brokers, This allows you for forward messages between
brokersin anetwork. Messages can be routed statically (using "qpid-route route add") where the bindings
that control message forwarding are supplied in the route. Message routing can also be dynamic (using
"gpid-route dynamic add") where the messages are automatically forwarded to clients based on their
bindings to the local broker.

$ gpid-r
Usage:

Opt i ons:
-V[
-q [
-d [
_e[
'S[
_t <

dest-b
ex: |

oute
gpi d-route [OPTIONS] dynam ¢ add <dest - broker >
gpi d-route [OPTIONS] dynam ¢ del <dest-broker>
gpi d-route [OPTIONS] route add <dest - br oker >
gpi d-route [OPTIONS] route del <dest - br oker >
gpi d-route [OPTI ONS] queue add <dest - br oker >
gpi d-route [OPTI ONS] queue del <dest - br oker >
gpi d-route [OPTIONS] route list |[<dest-broker
gpi d-route [OPTIONS] route flush [<dest-broker
gpi d-route [OPTIONS] route map [<br oker >]
gpi d-route [OPTIONS] |ink add
gpi d-route [OPTIONS] link de
gpid-route [OPTIONS] link list [<dest-broker>]
--verbose] Ver bose out put
--quiet] Qui et output, don't print
--durable] Added configuration shal
--del -enpty-link] Delete link after deletin
--src-local] Make connection to source
transport> [--transport <transport>]

Specify transport to use for

r oker
ocal host,

and src-broker are in the form [userna
10.1.1.7:10000, broker-host: 10000, g

A few examples:

<src- broker>
<src- broker>

<exchange>
<exchange>

[ta

<src- broker>
<src- broker>
<src- broker>
<src- broker>
>]
>]

<ro
<ro
<qu
<qu

<exchange>
<exchange>
<exchange>
<exchange>

<dest - br oker > <sr c- br oker >
<dest - br oker > <sr c- br oker >

dupl i cat e war ni ngs

be durabl e
g last route on the link
br oker (push route)
links, defaults to tcp

nme/ password@ host nane |
uest/ guest @ ocal host

i p-

42

Managing the AMQP
Messaging Broker

gpi d-route dynanm c add host1l host2 fed.topic
gpi d-route dynanm c add host2 hostl fed.topic

gpid-route -v route add host1l host2 hubl.topic hub2.topic.stock. buy
gpid-route -v route add host1l host2 hubl.topic hub2.topic.stock. sel
gpid-route -v route add hostl1l host2 hubl.topic 'hub2.topic.stock.#
gpid-route -v route add hostl host2 hubl.topic 'hub2. #

gpid-route -v route add hostl1l host2 hubl.topic 'hub2.topic.#
gpid-route -v route add hostl host2 hubl.topic 'hub2. gl obal.#

The link map feature can be used to display the entire federated network configuration by supplying a
single broker as an entry point:

$ gpid-route route map | ocal host: 10001

Fi ndi ng Li nked Brokers:
| ocal host: 10001. .
| ocal host: 10002. .
| ocal host: 10003. .
| ocal host: 10004. .
| ocal host: 10005. .
| ocal host: 10006. .
| ocal host: 10007. .
| ocal host: 10008. .

QLRIQRAQQIAR

Dynam ¢ Rout es:

Exchange fed. topic:

| ocal host: 10002 <=> | ocal host: 10001
| ocal host: 10003 <=> | ocal host: 10002
| ocal host: 10004 <=> | ocal host: 10002
| ocal host: 10005 <=> | ocal host: 10002
| ocal host: 10006 <=> | ocal host: 10005
| ocal host: 10007 <=> | ocal host: 10006
| ocal host: 10008 <=> | ocal host: 10006

Exchange fed. direct:
| ocal host: 10002 => | ocal host: 10001
| ocal host: 10004 => | ocal host: 10003
| ocal host: 10003 => | ocal host: 10002
| ocal host: 10001 => | ocal host: 10004

Static Routes:

| ocal host: 10003(ex=any. di rect) <= | ocal host: 10005(ex=ang. di rect) key=rkey
| ocal host: 10003(ex=any. di rect) <= | ocal host: 10005(ex=anyg. di rect) key=rkey2

2.1.3. Using qpid-tool

This utility provided a telnet style interface to be able to view, list al stats and action all the methods.
Simplecapture below. Best tojust play with it and mail thelist if you have questions or want features added.

43

Managing the AMQP

Messaging Broker
gpi d:
gpi d: help
Management Tool for QPID
Conmands:
list - Print summary of existing objects by class
[ist <classNane> - Print list of objects of the specified class
[ist <classNane> all - Print contents of all objects of specified c
list <classNane> active - Print contents of all non-del eted objects of
list <list-of-IDs> - Print contents of one or nore objects (infer
list <classNanme> <list-of-1Ds> - Print contents of one or nore objects
list is space-separated, ranges may be specified (i.e. 1004-1010)
call <ID> <met hodNanme> <args> - |Invoke a nethod on an obj ect
schema - Print summary of object classes seen on the
schema <cl assNanme> - Print details of an object class
set tine-format short - Select short tinestanp format (default)
set tine-format | ong - Select long timestanp format
quit or ~D - Exit the program
gpid: list
Management Obj ect Types:
hj ect Type Active Deleted
gpi d. bi ndi ng 21 0
gpi d. br oker 1 0
gpi d.client 1 0
gpi d. exchange 6 0
gpi d. queue 13 0
gpi d. sessi on 4 0
gpi d. system 1 0
gpi d. vhost 1 0

gpid: list gpid.system
hj ects of type gpid.system
I D Creat ed Destroyed | ndex

1000 21:00:02 - host

gpid: list 1000

nj ect of type gpid.system (last sanple tine: 21:26:02)
Type El ement 1000

config osNane Li nux
config nodeNane | ocal host. | ocal domain
config release 2.6.24.4-64.fc8
config version #1 SMP Sat Mar 29 09:15:49 EDT 2008
config rmachine x86_64
gpi d: schema queue
Schema for class 'qgpid. queue'

El ement Type Uni t Access Not es Descri pt
vhost Ref reference ReadCreate index

nane short-string ReadCreate index

dur abl e bool ean ReadCr eat e

aut oDel et e bool ean ReadCr eat e

excl usi ve bool ean ReadCr eat e

argunent s field-table ReadOnl y Ar gunrent

Managing the AMQP

Messaging Broker
st or eRef ref erence ReadOnl y Ref er enc
nmsgTot al Enqueues ui nt 64 nmessage Total ne
nmsgTot al Dequeues ui nt 64 nmessage Total ne
msgTxnEnqueues ui nt 64 nmessage Tr ansact
msgTxnDequeues ui nt 64 nmessage Tr ansact
nmsgPer si st Enqueues ui nt 64 nmessage Persi ste
nmsgPer si st Dequeues ui nt 64 nmessage Persi ste
nmsgDept h ui nt 32 nmessage Current
nmsgDept hHi gh ui nt 32 nmessage Current
msgDept hLow ui nt 32 nmessage Current
byt eTot al Enqueues ui nt 64 oct et Total ne
byt eTot al Dequeues ui nt 64 oct et Total ne
byt eTxnEnqueues ui nt 64 oct et Transact
byt eTxnDequeues ui nt 64 oct et Transact
byt ePer si st Enqueues ui nt 64 oct et Persi ste
byt ePer si st Dequeues ui nt 64 oct et Persi ste
byt eDept h ui nt 32 oct et Current
byt eDept hHi gh ui nt 32 oct et Current
byt eDept hLow ui nt 32 oct et Current
enqueueTxnStarts ui nt 64 transacti on Total en
enqueueTxnConmi t s ui nt 64 transacti on Total en
enqueueTxnRej ect s ui nt 64 transacti on Total en
enqueueTxnCount ui nt 32 transacti on Current
enqueueTxnCount Hi gh ui nt 32 transacti on Current
enqueueTxnCount Low ui nt 32 transacti on Current
dequeueTxnStarts ui nt 64 transacti on Total de
dequeueTxnConmi t s ui nt 64 transacti on Total de
dequeueTxnRej ect s ui nt 64 transacti on Total de
dequeueTxnCount ui nt 32 transacti on Current
dequeueTxnCount Hi gh ui nt 32 transacti on Current
dequeueTxnCount Low ui nt 32 transacti on Current
consumers ui nt 32 consuner Current
consuner sHi gh ui nt 32 consurmer Current
consumner sLow ui nt 32 consuner Current
bi ndi ngs ui nt 32 bi ndi ng Current
bi ndi ngsHi gh ui nt 32 bi ndi ng Current
bi ndi ngsLow ui nt 32 bi ndi ng Current
unackedMessages ui nt 32 nmessage Messages
unackedMessagesHi gh ui nt 32 nmessage Messages
unackedMessagesLow ui nt 32 nmessage Messages
nmessagelat encySanmples delta-tine nanosecond Br oker |
nmessagelat encyM n delta-tinme nanosecond Br oker |
nmessagelat encyMax delta-tinme nanosecond Br oker
nmessagelat encyAverage delta-tine nanosecond Br oker

Met hod ' purge' Discard all messages on queue
gpi d: list queue
nj ects of type gpid. queue

I D Creat ed Destroyed | ndex

1012 21:08:13 - 1002. pub_start
1014 21:08:13 - 1002. pub_done
1016 21:08:13 - 1002. sub_r eady
1018 21:08:13 - 1002. sub_done
1020 21:08:13 - 1002. perftestO

45

Managing the AMQP

Messaging Broker

1038 21:09:08 - 1002. mgnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15

1040 21:09:08 - 1002. r epl - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15

1046 21:09:32 - 1002. mgnt - df 06c7a6- 4ce7- 426a- 9f 66- da91a2a6a837

1048 21:09:32 - 1002. repl - df 06c7a6- 4ce7- 426a- 9f 66- da91a2a6a837

1054 21:10:01 - 1002. mgnt - ¢55915c2- 2f da- 43ee- 9410- blclcbb3edae

1056 21:10:01 - 1002. repl - ¢55915c2- 2f da- 43ee- 9410- blclcbb3e4dae

1063 21:26:00 - 1002. mgnt - 8d621997- 6356- 48c3- acab- 76a37081d0f 3

1065 21:26:00 - 1002. repl - 8d621997- 6356- 48c3- acab- 76a37081d0f 3
gpid: list 1020
nj ect of type qgpid.queue: (last sanple time: 21:26:02)

Type El ement 1020

config vhost Ref 1002

config nane perftestO

config durable Fal se

config autoDelete Fal se

config exclusive Fal se

config argunents {"gpid. max_si ze': 0, 'qgpid.max_count': 0}

config storeRef NULL

i nst nmsgTot al Enqueues 500000 nessages

i nst nmsgTot al Dequeues 500000

i nst msgTxnEnqueues 0

i nst msgTxnDequeues 0

i nst nmsgPer si st Enqueues 0

i nst nmsgPer si st Dequeues 0

i nst nmsgDept h 0

i nst nmsgDept hHi gh 0

i nst msgDept hLow 0

i nst byt eTot al Enqueues 512000000 octets

i nst byt eTot al Dequeues 512000000

i nst byt eTxnEnqueues 0

i nst byt eTxnDequeues 0

i nst byt ePer si st Enqueues 0

i nst byt ePer si st Dequeues 0

i nst byt eDept h 0

i nst byt eDept hHi gh 0

i nst byt eDept hLow 0

i nst enqueueTxnStarts 0 transacti ons

i nst enqueueTxnConmi t s 0

i nst enqueueTxnRej ect s 0

i nst enqueueTxnCount 0

i nst enqueueTxnCount Hi gh 0

i nst enqueueTxnCount Low 0

i nst dequeueTxnStarts 0

i nst dequeueTxnConmi t s 0

i nst dequeueTxnRej ect s 0

i nst dequeueTxnCount 0

i nst dequeueTxnCount Hi gh 0

i nst dequeueTxnCount Low 0

i nst CONSUNer s 0 consuners

i nst consuner sHi gh 0

i nst consumner sLow 0

i nst bi ndi ngs 1 bi ndi ng

i nst bi ndi ngsHi gh 1

46

Managing the AMQP

2.1.4.

2.2.

2.2.1.

Messaging Broker
i nst bi ndi ngsLow 1
i nst unackedMessages 0 nessages
i nst unackedMessagesHi gh 0
i nst unackedMessagesLow 0
i nst messagelat encySanmples 0
i nst nmessagelat encyM n 0
i nst nmessagelat encyMax 0
i nst messagelLat encyAverage O

gpi d:
Using gpid-printevents

This utility connects to one or more brokers and collects events, printing out aline per event.

$ gpid-printevents --help
Usage: qpid-printevents [options] [broker-addr]...

Collect and print events fromone or nore Qi d nessage brokers. |f no broker-
addr is supplied, gpid-printevents will connect to 'l ocal host:5672'. broker-
addr is of the form [usernane/password@ hostnanme | ip-address [:<port>] ex:

| ocal host, 10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

Options:

-h, --help show this help nmessage and exit

You get theidea... have fun!

Qpid Management Framework

* Section 2.2.1, “ What IsQMF”
o Section 2.2.2, “ Getting Started with QMF ”
e Section 2.2.3,“ QMF Concepts”
e ¢ Section 2.2.3.1, “ Console, Agent, and Broker ”
e Section2.2.3.2,“ Schema”
e Section 2.2.3.3,“ Class Keysand Class Versioning ”
» Section 2.2.4, “ The QMF Protocol ”
e Section 2.2.5, “ How to Write a QMF Console”
» Section 2.2.6, “ How to WriteaQMF Agent ”

Please visit the ??? for information about the future of QMF.

What Is QMF

QMF (Qpid Management Framework) is a general-purpose management bus built on Qpid Messaging. It
takes advantage of the scalability, security, and rich capabilities of Qpid to provide flexible and easy-to-
use manageability to alarge set of applications.

47

Managing the AMQP
Messaging Broker

2.2.2. Getting Started with QMF

QMF is used through two primary APIs. The console APl is used for console applications that wish to
access and mani pulate manageable components through QMF. The agent API is used for application that
wish to be managed through QMF.

Thefastest way to get started with QMF isto work through the"How To" tutorialsfor consoles and agents.
For a deeper understanding of what is happening in the tutorials, it is recommended that you look at the
Qmf Concepts section.

2.2.3. QMF Concepts

This section introduces important concepts underlying QMF.

2.2.3.1. Console, Agent, and Broker

The major architectural components of QMF are the Console, the Agent, and the Broker. Console
components are the "managing" components of QM F and agent components are the "managed" parts. The
broker isacentral (possibly distributed, clustered and fault-tolerant) component that manages name spaces
and caches schema information.

A console application may be a command-line utility, a three-tiered web-based GUI, a collection and
storage device, a specialized application that monitors and reacts to events and conditions, or anything
else somebody wishes to develop that uses QMF management data.

An agent application is any application that has been enhanced to allow itself to be managed via QMF.

o m e e e e oo + . + Fom e e e e o oo + o e e e e e oo
| CLI utility | | Vb app | | Audit storage | | Event correlation
o m e e e e oo + . + Fom e e e e o oo + o e e e e e oo
N N N N |
I I I I
% % % % %
e mmm e MR e memmmmmeeme e Ee e e E e e eEmEEm e mmmmmmm e mmmmmmm..m ... m.=m.. ... -----an
Qi d Messaging Bus (with QW Broker capability)
e mmm e MR e memmmmmeeme e Ee e e E e e eEmEEm e mmmmmmm e mmmmmmm..m ... m.=m.. ... -----an
N N N
I I I
% % %
o e o - + o e o - + o e o - +
| Manageabl e app | | Manageabl e app | | Manageabl e app |
o e o - + o e o - + o e o - +

In the above diagram, the Manageable apps are agents, the CLI utility, Web app, and Audit storage are
consoles, and Event corrélation is both a console and an agent because it can create events based on the
aggregation of what it sees.

2.2.3.2. Schema

A schema describes the structure of management data. Each agent provides a schema that describes its
management model including the object classes, methods, events, etc. that it provides. In the current QMF

48

Managing the AMQP
Messaging Broker

distribution, the agent's schema is codified in an XML document. In the near future, there will also be
ways to programatically create QMF schemata.

2.2.3.2.1. Package

Each agent that exports a schema identifies itself using a package name. The package provides a unique
namespace for the classes in the agent's schema that prevent collisions with identically named classes in
other agents' schemata.

Package names are in "reverse domain name" form with levels of hierarchy separated by periods. For
example, the Qpid messaging broker uses package "org.apache.qpid.broker" and the Access Control List
plugin for the broker uses package "org.apache.gpid.acl". In general, the package name should be the
reverse of the internet domain name assigned to the organization that owns the agent software followed
by identifiersto uniquely identify the agent.

The XML document for a package's schema uses an enclosing <schema> tag. For example:

<schema package="or g. apache. gpi d. br oker" >

</ schema>

2.2.3.2.2. Object Classes

Object classes define types for manageable objects. The agent may create and destroy objects which are
instances of object classesinthe schema. Anobject classisdefined inthe XML document using the <class>
tag. An object classis composed of properties, statistics, and methods.

<cl ass nanme="Exchange">

<property nane="vhost Ref" type="obj Il d" references="Vhost" access="RC
<property nanme="nanme" type="sstr" access="RC' index="y"/>
<property nanme="type" type="sstr" access="RO'/>
<property nane="dur abl e" type="bool " access="RC'/>
<property nane="argunents" type="map" access="RO' desc="Argunents supplied
<statistic name="producer Count" type="hil 032" desc="Current producers on exch
<statistic name="bi ndi ngCount" type="hilo032" desc="Current bindings"/>
<statistic name="nsgRecei ves" type="count 64" desc="Total messages received"/
<statistic name="nsgDr ops" type="count 64" desc="Total nessages dropped (n
<statistic name="nsgRout es" type="count 64" desc="Total routed nmessages"/>
<statistic name="byteReceives" type="count64" desc="Total bytes received"/>
<statistic name="byteDrops" type="count 64" desc="Total bytes dropped (no n
<statistic name="byteRout es" type="count 64" desc="Total routed bytes"/>

</ cl ass>

2.2.3.2.3. Properties and Statistics

<property> and <statistic> tags must be placed within <schema> and </schema> tags.

Properties, statistics, and methods are the building blocks of an object class. Properties and statistics are
both object attributes, though they aretreated differently. If an object attribute is defining, seldom or never
changes, or islargein size, it should be defined as a property. If an attribute israpidly changing or is used
to instrument the object (counters, etc.), it should be defined as a statistic.

49

Managing the AMQP
Messaging Broker

The XML syntax for <property> and <statistic> have the following X ML -attributes:

Table2.1. XML Attributesfor QMF Properties and Statistics

Attribute <property> <statistic> Meaning

name Y Y The name of the attribute

type Y Y The data type of the
attribute

unit Y Y Optional unit name - use
the singular (i.e. MByte)

desc Y Y Description to annotate
the attribute

references Y If the type is "objld",
names the referenced
class

access Y Access rights (RC, RW,
RO)

index Y "y" if this property is

used to uniquely identify
the object. There may
be more than one index
property in aclass

parentRef Y "y* if this property
references an object in
which this object isin a
child-parent relationship.
optional Y "y" if this property is
optional (i.e. may be
NUL L/not-present)

min Y Minimum vaue of a
numeric attribute

max Y Maximum value of a
numeric attribute

maxLen Y Maximum length of a
string attribute

2.2.3.2.4. Methods
<method> tags must be placed within <schema> and </schema> tags.

A method isaninvokablefunctionto be performed oninstances of the object class (i.e. aRemote Procedure
Call). A <method> tag has aname, an optional description, and encloses zero or more arguments. Method
arguments are defined by the <arg> tag and have a name, atype, a direction, and an optional description.
The argument direction can be "I", "O", or "IO" indicating input, output, and input/output respectively.
An example:

<nmet hod name="echo" desc="Request a response to test the path to the nanagenent
<arg nane="sequence" dir="10" type="uint32"/>
<arg nane="body" dir="10" type="Istr"/>

50

Managing the AMQP
Messaging Broker

</ met hod>

2.2.3.2.5. Event Classes

2.2.3.2.6. Data Types

Object attributes, method arguments, and event arguments have data types. The data types are based on
the rich data typing system provided by the AM QP messaging protocol. The following table describes the
data types available for QMF:

Table2.2. QMF Datatypes

QMF Type Description

REF QMF Object ID - Used to reference another QMF
object.

us 8-bit unsigned integer

ul6 16-bit unsigned integer

u32 32-bit unsigned integer

ue4 64-bit unsigned integer

S8 8-bit signed integer

S16 16-bit signed integer

S32 32-bit signed integer

S64 64-bit signed integer

BOOL Boolean - True or False

SSTR Short String - String of up to 255 bytes

LSTR Long String - String of up to 65535 bytes

ABSTIME Absolute time since the epoch in nanoseconds (64-
bits)

DELTATIME Delta time in nanoseconds (64-bits)

FLOAT Single precision floating point number

DOUBLE Double precision floating point number

uuIiD UUID - 128 hits

FTABLE Field-table - std::map in C++, dictionary in Python

In the XML schema definition, types go by different names and there are a number of specia cases. This
is because the XML schemais used in code-generation for the agent API. It provides options that control
what kind of accessors are generated for attributes of different types. The following table enumerates the
typesavailablein the XML format, which QMF types they map to, and other special handling that occurs.

Table2.3. XML Schema Mapping for QMF Types

XML Type QMF Type Accessor Style Specia Characteristics
objld REF Direct (get, set)
uint8,16,32,64 U8,16,32,64 Direct (get, set)
int8,16,32,64 S8,16,32,64 Direct (get, set)

51

Managing the AMQP

Messaging Broker

bool BOOL Direct (get, set)

sstr SSTR Direct (get, set)

Istr LSTR Direct (get, set)

absTime ABSTIME Direct (get, set)

deltaTime DELTATIME Direct (get, set)

float FLOAT Direct (get, set)

double DOUBLE Direct (get, set)

uuid UuID Direct (get, set)

map FTABLE Direct (get, set)

hilo8,16,32,64 U8,16,32,64 Counter (inc, dec) Generates value,
valueMin, valueM ax

count8,16,32,64 U8,16,32,64 Counter (inc, dec)

mma32,64 U32,64 Direct Generates valueMin,
valueMax,
valueAverage,
valueSamples

mmaTime DELTATIME Direct Generates valueMin,
valueMax,
valueAverage,
valueSamples

| mpor tant

When writing a schema using the XML format, types used in <property> or <arg> must be types

that have Direct accessor style. Any type may be used in <statistic> tags.

2.2.3.3. Class Keys and Class Versioning

2.2.4. The QMF Protocol

The QMF protocol defines the message formats and communication patterns used by the different QMF
components to communicate with one another.

2.2.5.

2.2.6.

2.3.

A description of the current version of the QMF protocol can be found at 72?2,

A proposal for an updated protocol based on map-messagesisin progress and can be found at ?7??2.

How to Write a QMF Console

Please see the ??? for information about using the console API with Python.

How to Write a QMF Agent

QMF Python Console Tutorial

e Section 2.3.1, “ Prerequisite - Install Qpid Messaging ”

52

Managing the AMQP
Messaging Broker

2.3.1.

2.3.2.

e Section 2.3.2, “ Synchronous Console Operations ”
e ¢ Section 2.3.2.1, “ Creating a QMF Console Session and Attaching to a Broker ”
e Section 2.3.2.2,“ Accessing Managed Objects”
e o Section 2.3.2.2.1, “ Viewing Properties and Statistics of an Object ”
e Section 2.3.2.2.2, “ Invoking Methods on an Object ”
» Section 2.3.3, “ Asynchronous Console Operations”
» « Section 2.3.3.1, “ Creating a Console Class to Receive Asynchronous Data”
e Section 2.3.3.2, “ Receiving Events”
e Section 2.3.3.3, “ Receiving Objects”
e Section 2.3.3.4, “ Asynchronous Method Calls and Method Timeouts ”

» Section 2.3.4, “ Discovering what Kinds of Objects are Available”

Prerequisite - Install Qpid Messaging

QMF uses AMQP Messaging (QPid) asits means of communication. To use QMF, Qpid messaging must
beinstalled somewhere in the network. Qpid can be downloaded as source from Apache, is packaged with
anumber of Linux distributions, and can be purchased from commercial vendorsthat use Qpid. Please see
http://qpid.apache.orgfor information as to where to get Qpid Messaging.

Qpid Messaging includes a message broker (gpidd) which typically runs as a daemon on a system. It al'so
includes client bindings in various programming languages. The Python-language client library includes
the QMF console libraries needed for this tutorial.

Please note that Qpid Messaging has two broker implementations. One is implemented in C++ and the
other in Java. At presstime, QMF is supported only by the C++ broker.

If the goal isto get the tutorial examples up and running as quickly as possible, al of the Qpid components
can be installed on a single system (even a laptop). For more realistic deployments, the broker can be
deployed on a server and the client/QMF librariesinstalled on other systems.

Synchronous Console Operations

The Python console API for QMF can be used in a synchronous style, an asynchronous style, or a
combination of both. Synchronous operations are conceptually simple and are well suited for user-
interactive tasks. All operations are performed in the context of a Python function call. If communication
over the message bus is reguired to complete an operation, the function call blocks and waits for the
expected result (or timeout failure) before returning control to the caler.

2.3.2.1. Creating a QMF Console Session and Attaching to a Broker

For the purposes of thistutorial, code examples will be shown asthey are entered in an interactive python
session.

$ pyt hon

53

http://qpid.apache.org

Managing the AMQP
Messaging Broker

Python 2.5.2 (r252:60911, Sep 30 2008, 15:41: 38)

[GCC 4.3.2 20080917 (Red Hat 4.3.2-4)] on linux2

Type "hel p", "copyright", "credits" or "license" for nore information.
>>>

We will begin by importing the required libraries. If the Python client is properly installed, these libraries
will be found normally by the Python interpreter.

>>> from qnf.consol e i nport Session

We must now create a Session object to manage this QM F consol e session.

>>> sess = Session()

If no arguments are supplied to the creation of Session, it defaults to synchronous-only operation. It also
defaults to user-management of connections. More on thisin a moment.

We will now establish a connection to the messaging broker. If the broker daemon is running on the local
host, smply use the following:

>>> proker = sess. addBroker ()

If the messaging broker is on aremote host, supply the URL to the broker in the addBroker function call.
Here's how to connect to alocal broker using the URL.

>>> broker = sess. addBroker ("angp://| ocal host")

The call to addBroker is synchronous and will return only after the connection has been successfully
established or hasfailed. If afailure occurs, addBroker will raise an exception that can be handled by the
console script.

>>> try:
br oker = sess. addBroker ("angp://1 ocal host: 1000")
except :
print "Connection Failed"

Connection Fail ed
>>>

This operation fails because there is no Qpid Messaging broker listening on port 1000 (the default port
for gpidd is 5672).

If preferred, the QMF session can manage the connection for you. In this case, addBroker returns
immediately and the session attempts to establish the connection in the background. Thiswill be covered
in detail in the section on asynchronous operations.

2.3.2.2. Accessing Managed Objects

The Python console API provides accessto remotely managed objectsviaaproxy model. The API givesthe
client an object that servesasaproxy representing the"real" object being managed on the agent application.
Operations performed on the proxy result in the same operations on the real object.

Managing the AMQP
Messaging Broker

The following examples assume prior knowledge of the kinds of objects that are actually available to be
managed. There is a section later in this tutorial that describes how to discover what is manageable on
the QMF bus.

Proxy abjects are obtained by calling the Session.getObjects function.

Toillustrate, we'll get alist of objects representing queues in the message broker itself.

>>> queues = sess. get bj ects(_class="queue", _package="org. apache. qpi d. broker")

gueues is an array of proxy objects representing real queues on the message broker. A proxy object can
be printed to display a description of the object.

>>> for g in queues:
print g

or g. apache. gqpi d. br oker: queue[0- 1537- 1- 0- 58] 0-0-1-0-1152921504606846979: repl y-1 oca
or g. apache. gqpi d. br oker: queue[0- 1537- 1- 0- 61] 0-0-1-0-1152921504606846979: t opi c-1 oca
>>>

2.3.2.2.1. Viewing Properties and Statistics of an Object

Let us now focus our attention on one of the queue objects.

>>> queue = queues|[0]

Theattributes of an object are partitioned into properties and statistics. Though the distinction is somewhat
arbitrary, properties tend to be fairly static and may also be large and statistics tend to change rapidly and
arerelatively small (counters, etc.).

There are two ways to view the properties of an object. An array of properties can be obtained using the
getProperties function:

>>> props = queue. get Properties()
>>> for prop in props:
print prop

(vhost Ref, 0-0-1-0-1152921504606846979)
(name, u'reply-Ilocal host. | ocal donmai n. 32004")
(durabl e, Fal se)

(aut obDel ete, True)

(excl usive, True)

(argunents, {})

>>>

The getProperties function returns an array of tuples. Each tuple consists of the property descriptor and
the property value.

A more convenient way to access properties is by using the attribute of the proxy object directly:

>>> queue. aut oDel et e

55

Managing the AMQP
Messaging Broker

True

>>> gueue. nanme

u' reply-1ocal host. | ocal domai n. 32004’
>>>

Statistics are accessed in the same way:

>>> stats = queue.getStatistics()
>>> for stat in stats:
print stat

(msgTot al Enqueues, 53)
(msgTot al Dequeues, 53)
(msgTxnEnqueues, 0)
(msgTxnDequeues, 0)
(msgPer si st Enqueues, 0)
(msgPer si st Dequeues, 0)
(rmsgDept h, 0)

(byt eDept h, 0)

(byt eTot al Enqueues, 19116)
(byt eTot al Dequeues, 19116)
(byt eTxnEnqueues, 0)

(byt eTxnDequeues, 0)

(byt ePer si st Enqueues, 0)
(byt ePer si st Dequeues, 0)
(consuner Count, 1)
(consumer Count Hi gh, 1)
(consuner Count Low, 1)

(bi ndi ngCount, 2)

(bi ndi ngCount Hi gh, 2)

(bi ndi ngCount Low, 2)
(unackedMessages, 0)
(unackedMessagesHi gh, 0)
(unackedMessagesLow, 0)
(messagelat encySanmpl es, 0)
(rmessagelLat encyM n, 0)
(rmessagelat encyMax, 0)
(rmessagelat encyAver age, 0)
>>>

or aternatively:

>>> queue. byt eTot al Enqueues
19116
>>>

The proxy objects do not automatically track changes that occur on the real objects. For example, if the
real queue enqueues more bytes, viewing the byteTotal Enqueues statistic will show the same number asit
did the first time. To get updated data on a proxy object, use the update function call:

>>> queue. updat e()
>>> queue. byt eTot al Enqueues

56

Managing the AMQP

Messaging Broker
19783
>>>
Be Advised
The update method was added after the M4 release of Qpid/Qmif. It may not be available in your
distribution.

2.3.2.2.2. Invoking Methods on an Object

Up to this point, we have used the QM F Console API to find managed objects and view their attributes,
aread-only activity. The next topic to illustrate is how to invoke a method on a managed object. Methods
allow consoles to control the managed agents by either triggering a one-time action or by changing the
values of attributes in an object.

First, we'll cover some background information about methods. A QMF object class (of which a QMF
object isan instance), may have zero or more methods. To obtain alist of methods available for an object,
use the getMethods function.

>>> net hodLi st = queue. get Met hods()

getMethods returns an array of method descriptors (of type gmf.console.SchemaMethod). To get a
summary of amethod, you can simply printit. The_repr_ function returnsastring that lookslikeafunction
prototype.

>>> print nethodLi st
[purge(request)]
>>>

For the purposes of illustration, we'll use a more interesting method available on the broker object which
represents the connected Qpid message broker.

>>> br = sess.get Obj ects(_class="broker", _package="org. apache. gpi d. broker")[0]
>>> mist = br.getMethods()
>>> for min mist:

print m

echo(sequence, body)

connect (host, port, durable, authMechani sm usernanme, password, transport)
gueueMoveMessages(srcQueue, dest Queue, qty)

>>>

We have just learned that the broker object has three methods. echo, connect, and queueMoveMessages.
WEe'll use the echo method to "ping" the broker.

>>> result = br.echo(1, "Message Body")

>>> print result

XK (0) - {'body': u Message Body', 'sequence': 1}
>>> print result.status

0

>>> print result.text

(014

57

Managing the AMQP
Messaging Broker

2.3.3.

>>> print result.outArgs
{' body': u' Message Body', 'sequence': 1}
>>>

In the above example, we have invoked the echo method on the instance of the broker designated by the
proxy "br" with a sequence argument of 1 and a body argument of "Message Body". The result indicates
success and contains the output arguments (in this case copies of the input arguments).

Tobemore precise... Calling echo on the proxy causestheinput argumentsto be marshalled and sent to the
remote agent where the method is executed. Once the method execution completes, the output arguments
are marshalled and sent back to the console to be stored in the method result.

You are probably wondering how you are supposed to know what types the arguments are and which
arguments are input, which are output, or which are both. Thiswill be addressed later in the "Discovering
what Kinds of Objects are Available" section.

Asynchronous Console Operations

QMF is built on top of a middleware messaging layer (Qpid Messaging). Because of this, QMF can use
some communication patterns that are difficult to implement using network transports like UDP, TCP,
or SSL. One of these patterns is called the Publication and Subscription pattern (pub-sub for short). In
the pub-sub pattern, data sources publish information without a particular destination in mind. Data sinks
(destinations) subscribe using a set of criteria that describes what kind of data they are interested in
receiving. Data published by a source may be received by zero, one, or many subscribers.

QMF uses the pub-sub pattern to distribute events, object creation and deletion, and changes to properties
and statistics. A console application using the QMF Console API can receive these asynchronous and
unsolicited eventsand updates. Thisisuseful for applicationsthat store and analyze events and/or statistics.
It isalso useful for applications that react to certain events or conditions.

Note that console applications may always use the synchronous mechanisms.

2.3.3.1. Creating a Console Class to Receive Asynchronous Data

Asynchronous API operation occurs when the console application supplies a Console object to the session
manager. The Console object (which overrides the gmf.console.Consol e class) handles al asynchronously
arriving data. The Console class has the following methods. Any number of these methods may be
overridden by the console application. Any method that is not overridden defaults to anull handler which
takes no action when invoked.

Table 2.4. QMF Python Console Class M ethods

Method Arguments Invoked when...

brokerConnected broker a connection to a broker is
established

brokerDisconnected broker aconnection to a broker islost

newPackage name anew packageisseen onthe QMF
bus

newClass kind, classKey a new class (event or object) is
seen on the QMF bus

newAgent agent a new agent appears on the QMF
bus

58

Managing the AMQP

Messaging Broker

delAgent agent an agent disconnects from the
QMF bus

objectProps broker, object the properties of an object are
published

objectStats broker, object the datistics of an object are
published

event broker, event an event is published

heartbeat agent, timestamp a heartbeat is published by an
agent

brokerinfo broker information about a connected
broker is available to be queried

methodResponse broker, seq, response the result of an asynchronous
method call isreceived

Supplied with the API is a class called DebugConsole. This is a test Console instance that overrides all
of the methods such that arriving asynchronous data is printed to the screen. This can be used to see all
of the arriving asynchronous data.

2.3.3.2. Receiving Events

WEll start the example from the beginning to illustrate the reception and handling of events. In this
example, we will create a Console class that handles broker-connect, broker-disconnect, and event
messages. We will also allow the session manager to manage the broker connection for us.

Begin by importing the necessary classes:

>>> from gnf. consol e i nport Session, Console

Now, create a subclass of Console that handles the three message types:

>>> cl ass Event Consol e(Consol e):
def broker Connected(sel f, broker):
print "brokerConnected:", broker
def brokerDi sconnected(sel f, broker):
print "brokerDi sconnected:", broker
def event(self, broker, event):
print "event:", event

>>>
Make an instance of the new class:

>>> myConsol e = Event Consol e()

Create a Session class using the console instance. In addition, we shall request that the session manager do
the connection management for us. Notice also that we are requesting that the session manager not receive
objects or heartbeats. Since this example is concerned only with events, we can optimize the use of the
messaging bus by telling the session manager not to subscribe for object updates or heartbeats.

59

Managing the AMQP
Messaging Broker

>>> sess = Session(nmyConsol e, nmanageConnecti ons=True, rcvbjects=Fal se, rcvHeartbe
>>> broker = sess. addBroker ()
>>>

Once the broker is added, we will begin to receive asynchronous events (assuming there is a functioning
broker available to connect to).

br oker Connect ed: Broker connected at: | ocal host: 5672
event: Thu Jan 29 19:53:19 2009 | NFO org.apache. qpi d. broker: bi nd broker =l ocal host

2.3.3.3. Receiving Objects

To illustrate asynchronous handling of objects, a small console program is supplied. The entire program
is shown below for convenience. We will then go through it part-by-part to explain its design.

This console program receives object updates and displays a set of statistics as they change. It focuses
on broker queue objects.

I nport needed cl asses
from gnf.consol e inport Session, Console
fromtime i mport sl eep

Declare a dictionary to nmap object-ids to queue nanes
gueueMap = {}

Custom ze the Console class to receive object updates.
cl ass MyConsol e(Consol e):

Handl e property updates
def objectProps(self, broker, record):

Verify that we have received a queue object. Exit otherw se.
cl assKey = record. get d assKey()
i f classKey.getd assNanme() != "queue":

return

If this object has not been seen before, create a new mapping fromobjectID
oid = record. get Cbj ectld()
if oid not in queueMap:

gueueMap[oi d] = record. nane

Handl e statistic updates
def objectStats(self, broker, record):

lgnore updates for objects that are not in the map
oid = record. get Cbj ectld()
if oid not in queueMap:

return

Print the queue nanme and sone statistics
print "%: enqueues=% dequeues=%l" % (queueMap[oid], record. nmsgTot al Enqueues,

60

Managing the AMQP
Messaging Broker

if the delete-tine is non-zero, this object has been deleted. Renmove it fro
if record.getTinestanps()[2] > O:
gueueMap. pop(oi d)

Create an instance of the QVF session manager. Set userBindings to True to allo
this programto choose which objects classes it is interested in.
sess = Sessi on(M/Consol e(), manageConnecti ons=True, rcvEvents=Fal se, userBi ndi ngs=

Regi ster to receive updates for broker:queue objects.
sess. bi ndCl ass("org. apache. gpi d. br oker™, "queue")
br oker = sess. addBroker ()

Suspend processing while the asynchronous operations proceed.
try:
whil e True:
sl eep(1)
except:
pass

Di sconnect the broker before exiting.
sess. del Broker (br oker)

Before going through the code in detail, it isimportant to understand the differences between synchronous
object access and asynchronous object access. When objects are obtained synchronously (using the
getObjectsfunction), theresulting proxy containsall of the object's attributes, both propertiesand statistics.
When object data is published asynchronously, the properties and statistics are sent separately and only
when the session first connects or when the content changes.

The script wishes to print the queue name with the updated statistics, but the queue name is only present
with the properties. For this reason, the program needs to keep some state to correlate property updates
with their corresponding statistic updates. This can be done using the Objectld that uniquely identifies
the object.

If this object has not been seen before, create a new mapping from object|D
oid = record. get bj ectld()
if oid not in queueMap:

gueueMap[oi d] = record. nane

Theabove codefragment getsthe object ID from the proxy and checksto seeif itisinthemap (i.e. hasbeen
seen before). If it isnot inthe map, anew map entry isinserted mapping the object | D to the queue's name.

if the delete-tine is non-zero, this object has been deleted. Renove it fro
if record.getTinestanps()[2] > O:
gqueueMap. pop(oi d)

This code fragment detects the deletion of a managed object. After reporting the statistics, it checks the
timestamps of the proxy. getTimestamps returns alist of timestamps in the order:

* Current - The timestamp of the sending of this update.
» Create - Thetime of the object's creation

» Delete - Thetime of the object's deletion (or zero if not del eted)

61

Managing the AMQP
Messaging Broker

This code structure is useful for getting information about very-short-lived objects. It is possible that an
object will be created, used, and deleted within an update interval. In this case, the property update will
arrive first, followed by the statistic update. Both will indicate that the object has been deleted but a full
accounting of the object's existence and final state is reported.

Create an instance of the QVF session nmanager. Set userBindings to True to allo
this programto choose which objects classes it is interested in.
sess = Sessi on(My/Consol e(), manageConnections=True, rcvEvents=Fal se, userBi ndi ngs=

Regi ster to receive updates for broker:queue objects.
sess. bi ndC ass("org. apache. gpi d. br oker", "queue")

The above code isillustrative of the way a console application can tune its use of the QMF bus. Note that
rcvEventsis set to False. This prevents the reception of events. Note also the use of userBindings=True
and the call to sess.bindClass. If userBindings is set to False (its default), the session will receive object
updatesfor al classesof object. Inthe case above, the applicationisonly interested in broker:queue objects
and reduces its bus bandwidth usage by requesting updates to only that class. bindClass may be called as
many times as desired to add classes to the list of subscribed classes.

2.3.3.4. Asynchronous Method Calls and Method Timeouts

Method calls can aso be invoked asynchronously. This is useful if alarge number of calls needs to be
made in a short time because the console application will not need to wait for the complete round-trip
delay for each call.

Method calls are synchronous by default. They can be made asynchronous by adding the keyword-
argument _async=True to the method call.

In a synchronous method call, the return value is the method result. When a method is called
asynchronously, the return value is a sequence number that can be used to correlate the eventual result
to the request. This sequence number is passed as an argument to the methodResponse function in the
Console interface.

It isimportant to realize that the methodResponse function may be invoked before the asynchronous call
returns. Make sure your code is written to handle this possibility.

2.3.4. Discovering what Kinds of Objects are Available

62

