
Programming in Apache Qpid

Cross-Platform AMQP Messaging
in Java JMS, .NET, C++, and Python

Programming in Apache Qpid: Cross-Platform AMQP Messaging in
Java JMS, .NET, C++, and Python

iii

Table of Contents
1. Introduction .. 1
2. Using the Qpid Messaging API .. 2

2.1. A Simple Messaging Program in C++ .. 2
2.2. A Simple Messaging Program in Python ... 3
2.3. A Simple Messaging Program in .NET C# ... 4
2.4. Addresses .. 6

2.4.1. Address Strings .. 7
2.4.2. Subjects .. 8
2.4.3. Address String Options .. 10
2.4.4. Address String Grammar .. 16

2.5. Sender Capacity and Replay .. 18
2.6. Receiver Capacity (Prefetch) ... 18
2.7. Acknowledging Received Messages .. 18
2.8. Receiving Messages from Multiple Sources ... 18
2.9. Transactions ... 19
2.10. Connection Options ... 20
2.11. Maps and Lists in Message Content .. 22

2.11.1. Qpid Maps and Lists in Python .. 23
2.11.2. Qpid Maps and Lists in C++ ... 24
2.11.3. Qpid Maps and Lists in .NET .. 26

2.12. The Request / Response Pattern .. 28
2.13. Performance Tips .. 29
2.14. Cluster Failover ... 30
2.15. Logging ... 31

2.15.1. Logging in C++ .. 31
2.15.2. Logging in Python .. 31

2.16. The AMQP 0-10 mapping ... 31
2.16.1. 0-10 Message Property Keys ... 33

2.17. Using Message Groups ... 34
2.17.1. Creating Message Group Queues ... 34
2.17.2. Sending Grouped Messages ... 35
2.17.3. Receiving Grouped Messages .. 36

3. Using the Qpid JMS client .. 37
3.1. A Simple Messaging Program in Java JMS .. 37
3.2. Apache Qpid JNDI Properties for AMQP Messaging ... 39

3.2.1. JNDI Properties for Apache Qpid .. 40
3.2.2. Connection URLs ... 40

3.3. Java JMS Message Properties .. 44
3.4. JMS MapMessage Types .. 44
3.5. JMS Client Logging .. 46
3.6. Configuring the JMS Client .. 46

3.6.1. Qpid JVM Arguments ... 48
4. Using the Qpid WCF client ... 57

4.1. XML and Binary Bindings .. 57
4.2. Endpoints ... 60
4.3. Message Headers .. 61
4.4. Security ... 61
4.5. Transactions ... 62

5. The .NET Binding for the C++ Messaging Client .. 63
5.1. .NET Binding for the C++ Messaging Client Component Architecture 63
5.2. .NET Binding for the C++ Messaging Client Examples .. 64
5.3. .NET Binding Class Mapping to Underlying C++ Messaging API 65

5.3.1. .NET Binding for the C++ Messaging API Class: Address 66
5.3.2. .NET Binding for the C++ Messaging API Class: Connection 67
5.3.3. .NET Binding for the C++ Messaging API Class: Duration 68

Programming in Apache Qpid

iv

5.3.4. .NET Binding for the C++ Messaging API Class: FailoverUpdates 69
5.3.5. .NET Binding for the C++ Messaging API Class: Message 70
5.3.6. .NET Binding for the C++ Messaging API Class: Receiver 71
5.3.7. .NET Binding for the C++ Messaging API Class: Sender 72
5.3.8. .NET Binding for the C++ Messaging API Class: Session 73
5.3.9. .NET Binding Class: SessionReceiver ... 74

v

List of Tables
2.1. Address String Options .. 14
2.2. Node Properties .. 15
2.3. Link Properties ... 16
2.4. Connection Options ... 22
2.5. Map and List Representation in Supported Languages .. 23
2.6. Python Datatypes in Maps .. 24
2.7. C++ Datatypes in Maps .. 26
2.8. Datatype Mapping between C++ and .NET binding ... 28
2.9. Mapping to AMQP 0-10 Message Properties .. 33
3.1. JNDI Properties supported by Apache Qpid ... 40
3.2. Connection URL Properties .. 41
3.3. Broker List Options ... 43
3.4. Java JMS Mapping to AMQP 0-10 Message Properties .. 44
3.5. Java Datatypes in Maps .. 46
3.6. Config Options For Connection Behaviour ... 48
3.7. Config Options For Session Behaviour .. 49
3.8. Config Options For Consumer Behaviour .. 50
3.9. Config Options For Producer Behaviour .. 51
3.10. Config Options For Threading ... 51
3.11. Config Options For I/O .. 52
3.12. Config Options For Security .. 53
3.13. Config Options For Security - Standard JVM properties needed when using GSSAPI as
the SASL mechanism. .. 54
3.14. Config Options For Security - Using SSL for securing connections or using
EXTERNAL as the SASL mechanism. .. 55
3.15. Config Options For Security - Standard JVM properties needed when Using SSL for
securing connections or using EXTERNAL as the SASL mechanism. 56
4.1. WCF Binding Parameters ... 60
5.1. .NET Binding for the C++ Messaging Client Component Architecture 64
5.2. Example : Client - Server ... 64
5.3. Example : Map Sender – Map Receiver ... 64
5.4. Example : Spout - Drain ... 65
5.5. Example : Map Callback Sender – Map Callback Receiver .. 65
5.6. Example - Declare Queues .. 65
5.7. Example: Direct Sender - Direct Receiver .. 65
5.8. Example: Hello World ... 65
5.9. .NET Binding for the C++ Messaging API Class: Address .. 66
5.10. .NET Binding for the C++ Messaging API Class: Connection 67
5.11. .NET Binding for the C++ Messaging API Class: Duration .. 68
5.12. .NET Binding for the C++ Messaging API Class: FailoverUpdates 69
5.13. .NET Binding for the C++ Messaging API Class: Message .. 70
5.14. .NET Binding for the C++ Messaging API Class: Receiver .. 71
5.15. .NET Binding for the C++ Messaging API Class: Sender .. 72
5.16. .NET Binding for the C++ Messaging API Class: Session ... 73

vi

List of Examples
2.1. "Hello world!" in C++ ... 3
2.2. "Hello world!" in Python ... 4
2.3. "Hello world!" in .NET C# ... 5
2.4. Queues .. 6
2.5. Topics ... 7
2.6. Using subjects .. 8
2.7. Subjects with multi-word keys .. 9
2.8. Assertions on Nodes .. 11
2.9. Creating a Queue Automatically .. 11
2.10. Browsing a Queue ... 12
2.11. Using the XML Exchange ... 13
2.12. Receiving Messages from Multiple Sources .. 19
2.13. Transactions ... 20
2.14. Specifying Connection Options in C++, Python, and .NET .. 21
2.15. Sending Qpid Maps and Lists in Python .. 23
2.16. Sending Qpid Maps and Lists in C++ .. 25
2.17. Sending Qpid Maps and Lists in .NET C# .. 26
2.18. Request / Response Applications in C++ .. 29
2.19. Tracking cluster membership ... 30
2.20. Accessing the AMQP 0-10 Message Timestamp in Python .. 34
2.21. Accessing the AMQP 0-10 Message Timestamp in C++ ... 34
2.22. Message Group Queue Creation - Python ... 34
2.23. Message Group Queue Creation - C++ .. 35
2.24. Message Group Queue Creation - Java .. 35
2.25. Sending Grouped Messages - Python .. 35
2.26. Sending Grouped Messages - C++ .. 36
2.27. Sending Grouped Messages - Java .. 36
3.1. "Hello world!" in Java ... 38
3.2. JNDI Properties File for "Hello world!" example .. 39
3.3. JNDI Properties File .. 39
3.4. Broker Lists ... 42
3.5. Sending a Java JMS MapMessage .. 45
3.6. log4j Logging Properties .. 46
4.1. Traditional service model "Hello world!" example ... 57
4.2. Binary "Hello world!" example using the channel model .. 58

1

Chapter 1. Introduction
Apache Qpid is a reliable, asynchronous messaging system that supports the AMQP messaging
protocol in several common programming languages. Qpid is supported on most common platforms.

• On the Java platform, Qpid uses the established Java JMS API [http://java.sun.com/products/jms/].

• For Python, C++, and .NET, Qpid defines its own messaging API, the Qpid Messaging API, which
is conceptually similar in each.

On the .NET platform, Qpid also provides a WCF binding.

• Ruby will also use the Qpid Messaging API, which will soon be implemented. (Ruby currently uses
an API that is closely tied to the AMQP version).

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

2

Chapter 2. Using the Qpid Messaging
API

The Qpid Messaging API is quite simple, consisting of only a handful of core classes.

• A message consists of a standard set of fields (e.g. subject, reply-to), an application-defined
set of properties, and message content (the main body of the message).

• A connection represents a network connection to a remote endpoint.

• A session provides a sequentially ordered context for sending and receiving messages. A session
is obtained from a connection.

• A sender sends messages to a target using the sender.send method. A sender is obtained from
a session for a given target address.

• A receiver receives messages from a source using the receiver.fetch method. A receiver is
obtained from a session for a given source address.

The following sections show how to use these classes in a simple messaging program.

2.1. A Simple Messaging Program in C++
The following C++ program shows how to create a connection, create a session, send messages using
a sender, and receive messages using a receiver.

Using the Qpid Messaging API

3

Example 2.1. "Hello world!" in C++

 #include <qpid/messaging/Connection.h>
 #include <qpid/messaging/Message.h>
 #include <qpid/messaging/Receiver.h>
 #include <qpid/messaging/Sender.h>
 #include <qpid/messaging/Session.h>

 #include <iostream>

 using namespace qpid::messaging;

 int main(int argc, char** argv) {
 std::string broker = argc > 1 ? argv[1] : "localhost:5672";
 std::string address = argc > 2 ? argv[2] : "amq.topic";
 std::string connectionOptions = argc > 3 ? argv[3] : "";

 Connection connection(broker, connectionOptions);
 try {
 connection.open(); 1

 Session session = connection.createSession(); 2

 Receiver receiver = session.createReceiver(address); 3

 Sender sender = session.createSender(address); 4

 sender.send(Message("Hello world!"));

 Message message = receiver.fetch(Duration::SECOND * 1); 5

 std::cout << message.getContent() << std::endl;
 session.acknowledge(); 6

 connection.close(); 7

 return 0;
 } catch(const std::exception& error) {
 std::cerr << error.what() << std::endl;
 connection.close();
 return 1;
 }
 }

1 Establishes the connection with the messaging broker.
2 Creates a session object on which messages will be sent and received.
3 Creates a receiver that receives messages from the given address.
4 Creates a sender that sends to the given address.
5 Receives the next message. The duration is optional, if omitted, will wait indefinitely for the

next message.
6 Acknowledges receipt of all fetched messages on the session. This informs the broker that the

messages were transferred and processed by the client successfully.
7 Closes the connection, all sessions managed by the connection, and all senders and receivers

managed by each session.

2.2. A Simple Messaging Program in Python
The following Python program shows how to create a connection, create a session, send messages
using a sender, and receive messages using a receiver.

Using the Qpid Messaging API

4

Example 2.2. "Hello world!" in Python

 import sys
 from qpid.messaging import *

 broker = "localhost:5672" if len(sys.argv)<2 else sys.argv[1]
 address = "amq.topic" if len(sys.argv)<3 else sys.argv[2]

 connection = Connection(broker)

 try:
 connection.open() 1

 session = connection.session() 2

 sender = session.sender(address) 3

 receiver = session.receiver(address) 4

 sender.send(Message("Hello world!"));

 message = receiver.fetch(timeout=1) 5

 print message.content
 session.acknowledge() 6

 except MessagingError,m:
 print m
 finally:
 connection.close() 7

1 Establishes the connection with the messaging broker.
2 Creates a session object on which messages will be sent and received.
4 Creates a receiver that receives messages from the given address.
3 Creates a sender that sends to the given address.
5 Receives the next message. The duration is optional, if omitted, will wait indefinitely for the

next message.
6 Acknowledges receipt of all fetched messages on the session. This informs the broker that the

messages were transfered and processed by the client successfully.
7 Closes the connection, all sessions managed by the connection, and all senders and receivers

managed by each session.

2.3. A Simple Messaging Program in .NET C#
The following .NET C# 1 program shows how to create a connection, create a session, send messages
using a sender, and receive messages using a receiver.

1 The .NET binding for the Qpid C++ Messaging API applies to all .NET Framework managed code languages. C# was chosen for illustration
purposes only.

Using the Qpid Messaging API

5

Example 2.3. "Hello world!" in .NET C#

 using System;
 using Org.Apache.Qpid.Messaging; 1

 namespace Org.Apache.Qpid.Messaging {
 class Program {
 static void Main(string[] args) {
 String broker = args.Length > 0 ? args[0] : "localhost:5672";
 String address = args.Length > 1 ? args[1] : "amq.topic";

 Connection connection = null;
 try {
 connection = new Connection(broker);
 connection.Open(); 2

 Session session = connection.CreateSession(); 3

 Receiver receiver = session.CreateReceiver(address); 4

 Sender sender = session.CreateSender(address); 5

 sender.Send(new Message("Hello world!"));

 Message message = new Message();
 message = receiver.Fetch(DurationConstants.SECOND * 1); 6

 Console.WriteLine("{0}", message.GetContent());
 session.Acknowledge(); 7

 connection.Close(); 8

 } catch (Exception e) {
 Console.WriteLine("Exception {0}.", e);
 if (null != connection)
 connection.Close();
 }
 }
 }
 }

1 Permits use of Org.Apache.Qpid.Messaging types and methods without explicit namespace
qualification. Any .NET project must have a project reference to the assembly file
Org.Apache.Qpid.Messaging.dll in order to obtain the definitions of the .NET
Binding for Qpid Messaging namespace.

2 Establishes the connection with the messaging broker.
3 Creates a session object on which messages will be sent and received.
4 Creates a receiver that receives messages from the given address.
5 Creates a sender that sends to the given address.
6 Receives the next message. The duration is optional, if omitted, will wait indefinitely for the

next message.
7 Acknowledges receipt of all fetched messages on the session. This informs the broker that the

messages were transfered and processed by the client successfully.
8 Closes the connection, all sessions managed by the connection, and all senders and receivers

managed by each session.

Using the Qpid Messaging API

6

2.4. Addresses
An address is the name of a message target or message source. 2 The methods that create senders and
receivers require an address. The details of sending to a particular target or receiving from a particular
source are then handled by the sender or receiver. A different target or source can be used simply by
using a different address.

An address resolves to a node. The Qpid Messaging API recognises two kinds of nodes, queues and
topics 3. A queue stores each message until it has been received and acknowledged, and only one
receiver can receive a given message 4. A topic immediately delivers a message to all eligible receivers;
if there are no eligible receivers, it discards the message. In the AMQP 0-10 implementation of the
API, 5 queues map to AMQP queues, and topics map to AMQP exchanges. 6

In the rest of this tutorial, we present many examples using two programs that take an address as a
command line parameter. spout sends messages to the target address, drain receives messages from
the source address. The source code is available in C++, Python, and .NET C# and can be found in
the examples directory for each language. These programs can use any address string as a source
or a destination, and have many command line options to configure behavior—use the -h option for
documentation on these options. 7 The examples in this tutorial also use the qpid-config utility to
configure AMQP 0-10 queues and exchanges on a Qpid broker.

Example 2.4. Queues

Create a queue with qpid-config, send a message using spout, and read it using drain:

 $ qpid-config add queue hello-world
 $./spout hello-world
 $./drain hello-world

 Message(properties={spout-id:c877e622-d57b-4df2-bf3e-6014c68da0ea:0}, content='')

The queue stored the message sent by spout and delivered it to drain when requested.

Once the message has been delivered and and acknowledged by drain, it is no longer available on the
queue. If we run drain one more time, no messages will be retrieved.

 $./drain hello-world
 $

2In the programs we have just seen, we used amq.topic as the default address if none is passed in. This is the name of a standard exchange
that always exists on an AMQP 0-10 messaging broker.
3The terms queue and topic here were chosen to align with their meaning in JMS. These two addressing 'patterns', queue and topic, are
sometimes refered as point-to-point and publish-subscribe. AMQP 0-10 has an exchange type called a topic exchange. When the term topic
occurs alone, it refers to a Messaging API topic, not the topic exchange.
4There are exceptions to this rule; for instance, a receiver can use browse mode, which leaves messages on the queue for other receivers
to read.
5The AMQP 0-10 implementation is the only one that currently exists.
6In AMQP 0-10, messages are sent to exchanges, and read from queues. The Messaging API also allows a sender to send messages to a queue;
internally, Qpid implements this by sending the message to the default exchange, with the name of the queue as the routing key. The Messaging
API also allows a receiver to receive messages from a topic; internally, Qpid implements this by setting up a private subscription queue for
the receiver and binding the subscription queue to the exchange that corresponds to the topic.
7Currently, the C++, Python, and .NET C# implementations of drain and spout have slightly different options. This tutorial uses the C++
implementation. The options will be reconciled in the near future.

Using the Qpid Messaging API

7

Example 2.5. Topics

This example is similar to the previous example, but it uses a topic instead of a queue.

First, use qpid-config to remove the queue and create an exchange with the same name:

 $ qpid-config del queue hello-world
 $ qpid-config add exchange topic hello-world

Now run drain and spout the same way we did in the previous example:

 $./spout hello-world
 $./drain hello-world
 $

Topics deliver messages immediately to any interested receiver, and do not store messages. Because
there were no receivers at the time spout sent the message, it was simply discarded. When we ran
drain, there were no messages to receive.

Now let's run drain first, using the -t option to specify a timeout in seconds. While drain is waiting
for messages, run spout in another window.

First Window:

 $./drain -t 30 hello-word

Second Window:

 $./spout hello-word

Once spout has sent a message, return to the first window to see the output from drain:

 Message(properties={spout-id:7da2d27d-93e6-4803-8a61-536d87b8d93f:0}, content='')

You can run drain in several separate windows; each creates a subscription for the exchange, and
each receives all messages sent to the exchange.

2.4.1. Address Strings
So far, our examples have used address strings that contain only the name of a node. An address string
can also contain a subject and options.

The syntax for an address string is:

 address_string ::= <address> [/ <subject>] [; <options>]
 options ::= { <key> : <value>, ... }

Addresses, subjects, and keys are strings. Values can be numbers, strings (with optional single or
double quotes), maps, or lists. A complete BNF for address strings appears in Section 2.4.4, “Address
String Grammar”.

Using the Qpid Messaging API

8

So far, the address strings in this tutorial have only used simple names. The following sections show
how to use subjects and options.

2.4.2. Subjects
Every message has a property called subject, which is analogous to the subject on an email message.
If no subject is specified, the message's subject is null. For convenience, address strings also allow
a subject. If a sender's address contains a subject, it is used as the default subject for the messages
it sends. If a receiver's address contains a subject, it is used to select only messages that match the
subject—the matching algorithm depends on the message source.

In AMQP 0-10, each exchange type has its own matching algorithm. This is discussed in Section 2.16,
“The AMQP 0-10 mapping”.

Note

Currently, a receiver bound to a queue ignores subjects, receiving messages from the queue
without filtering. Support for subject filtering on queues will be implemented soon.

Example 2.6. Using subjects

In this example we show how subjects affect message flow.

First, let's use qpid-config to create a topic exchange.

 $ qpid-config add exchange topic news-service

Now we use drain to receive messages from news-service that match the subject sports.

First Window:

 $./drain -t 30 news-service/sports

In a second window, let's send messages to news-service using two different subjects:

Second Window:

 $./spout news-service/sports
 $./spout news-service/news

Now look at the first window, the message with the subject sports has been received, but not the
message with the subject news:

 Message(properties={qpid.subject:sports, spout-id:9441674e-a157-4780-a78e-f7ccea998291:0}, content='')

If you run drain in multiple windows using the same subject, all instances of drain receive the
messages for that subject.

The AMQP exchange type we are using here, amq.topic, can also do more sophisticated matching.
A sender's subject can contain multiple words separated by a “.” delimiter. For instance, in a news
application, the sender might use subjects like usa.news, usa.weather, europe.news, or
europe.weather. The receiver's subject can include wildcard characters— “#” matches one or
more words in the message's subject, “*” matches a single word. For instance, if the subject in the

Using the Qpid Messaging API

9

source address is *.news, it matches messages with the subject europe.news or usa.news; if it
is europe.#, it matches messages with subjects like europe.news or europe.pseudo.news.

Example 2.7. Subjects with multi-word keys

This example uses drain and spout to demonstrate the use of subjects with two-word keys.

Let's use drain with the subject *.news to listen for messages in which the second word of the key
is news.

First Window:

 $./drain -t 30 news-service/*.news

Now let's send messages using several different two-word keys:

Second Window:

 $./spout news-service/usa.news
 $./spout news-service/usa.sports
 $./spout news-service/europe.sports
 $./spout news-service/europe.news

In the first window, the messages with news in the second word of the key have been received:

 Message(properties={qpid.subject:usa.news, spout-id:73fc8058-5af6-407c-9166-b49a9076097a:0}, content='')
 Message(properties={qpid.subject:europe.news, spout-id:f72815aa-7be4-4944-99fd-c64c9747a876:0}, content='')

Next, let's use drain with the subject #.news to match any sequence of words that ends with news.

First Window:

 $./drain -t 30 news-service/#.news

In the second window, let's send messages using a variety of different multi-word keys:

Second Window:

 $./spout news-service/news
 $./spout news-service/sports
 $./spout news-service/usa.news
 $./spout news-service/usa.sports
 $./spout news-service/usa.faux.news
 $./spout news-service/usa.faux.sports

In the first window, messages with news in the last word of the key have been received:

 Message(properties={qpid.subject:news, spout-id:cbd42b0f-c87b-4088-8206-26d7627c9640:0}, content='')
 Message(properties={qpid.subject:usa.news, spout-id:234a78d7-daeb-4826-90e1-1c6540781eac:0}, content='')
 Message(properties={qpid.subject:usa.faux.news, spout-id:6029430a-cfcb-4700-8e9b-cbe4a81fca5f:0}, content='')

Using the Qpid Messaging API

10

2.4.3. Address String Options

The options in an address string can contain additional information for the senders or receivers created
for it, including:

• Policies for assertions about the node to which an address refers.

For instance, in the address string my-queue; {assert: always, node:{ type:
queue }}, the node named my-queue must be a queue; if not, the address does not resolve to
a node, and an exception is raised.

• Policies for automatically creating or deleting the node to which an address refers.

For instance, in the address string xoxox ; {create: always}, the queue xoxox is created,
if it does not exist, before the address is resolved.

• Extension points that can be used for sender/receiver configuration.

For instance, if the address for a receiver is my-queue; {mode: browse}, the receiver works
in browse mode, leaving messages on the queue so other receivers can receive them.

• Extension points providing more direct control over the underlying protocol.

For instance, the x-bindings property allows greater control over the AMQP 0-10 binding
process when an address is resolved.

Let's use some examples to show how these different kinds of address string options affect the behavior
of senders and receives.

2.4.3.1. assert

In this section, we use the assert option to ensure that the address resolves to a node of the required
type.

Using the Qpid Messaging API

11

Example 2.8. Assertions on Nodes

Let's use qpid-config to create a queue and a topic.

 $ qpid-config add queue my-queue
 $ qpid-config add exchange topic my-topic

We can now use the address specified to drain to assert that it is of a particular type:

 $./drain 'my-queue; {assert: always, node:{ type: queue }}'
 $./drain 'my-queue; {assert: always, node:{ type: topic }}'
 2010-04-20 17:30:46 warning Exception received from broker: not-found: not-found: Exchange not found: my-queue (../../src/qpid/broker/ExchangeRegistry.cpp:92) [caused by 2 \x07:\x01]
 Exchange my-queue does not exist

The first attempt passed without error as my-queue is indeed a queue. The second attempt however
failed; my-queue is not a topic.

We can do the same thing for my-topic:

 $./drain 'my-topic; {assert: always, node:{ type: topic }}'
 $./drain 'my-topic; {assert: always, node:{ type: queue }}'
 2010-04-20 17:31:01 warning Exception received from broker: not-found: not-found: Queue not found: my-topic (../../src/qpid/broker/SessionAdapter.cpp:754) [caused by 1 \x08:\x01]
 Queue my-topic does not exist

Now let's use the create option to create the queue xoxox if it does not already exist:

2.4.3.2. create

In previous examples, we created the queue before listening for messages on it. Using create:
always, the queue is automatically created if it does not exist.

Example 2.9. Creating a Queue Automatically

First Window:

$./drain -t 30 "xoxox ; {create: always}"

Now we can send messages to this queue:

Second Window:

$./spout "xoxox ; {create: always}"

Returning to the first window, we see that drain has received this message:

Message(properties={spout-id:1a1a3842-1a8b-4f88-8940-b4096e615a7d:0}, content='')

The details of the node thus created can be controlled by further options within the node. See Table 2.2,
“Node Properties” for details.

2.4.3.3. browse

Some options specify message transfer semantics; for instance, they may state whether messages
should be consumed or read in browsing mode, or specify reliability characteristics. The following
example uses the browse option to receive messages without removing them from a queue.

Using the Qpid Messaging API

12

Example 2.10. Browsing a Queue

Let's use the browse mode to receive messages without removing them from the queue. First we send
three messages to the queue:

 $./spout my-queue --content one
 $./spout my-queue --content two
 $./spout my-queue --content three

Now we use drain to get those messages, using the browse option:

 $./drain 'my-queue; {mode: browse}'
 Message(properties={spout-id:fbb93f30-0e82-4b6d-8c1d-be60eb132530:0}, content='one')
 Message(properties={spout-id:ab9e7c31-19b0-4455-8976-34abe83edc5f:0}, content='two')
 Message(properties={spout-id:ea75d64d-ea37-47f9-96a9-d38e01c97925:0}, content='three')

We can confirm the messages are still on the queue by repeating the drain:

 $./drain 'my-queue; {mode: browse}'
 Message(properties={spout-id:fbb93f30-0e82-4b6d-8c1d-be60eb132530:0}, content='one')
 Message(properties={spout-id:ab9e7c31-19b0-4455-8976-34abe83edc5f:0}, content='two')
 Message(properties={spout-id:ea75d64d-ea37-47f9-96a9-d38e01c97925:0}, content='three')

2.4.3.4. x-bindings

Greater control over the AMQP 0-10 binding process can be achieved by including an x-bindings
option in an address string. For instance, the XML Exchange is an AMQP 0-10 custom exchange
provided by the Apache Qpid C++ broker. It allows messages to be filtered using XQuery; queries can
address either message properties or XML content in the body of the message. The xquery is specified
in the arguments field of the AMQP 0-10 command. When using the messaging API an xquery can
be specified in and address that resolves to an XML exchange by using the x-bindings property.

An instance of the XML Exchange must be added before it can be used:

 $ qpid-config add exchange xml xml

When using the XML Exchange, a receiver provides an XQuery as an x-binding argument. If the query
contains a context item (a path starting with “.”), then it is applied to the content of the message, which
must be well-formed XML. For instance, ./weather is a valid XQuery, which matches any message
in which the root element is named weather. Here is an address string that contains this query:

 xml; {
 link: {
 x-bindings: [{exchange:xml, key:weather, arguments:{xquery:"./weather"} }]
 }
 }

When using longer queries with drain, it is often useful to place the query in a file, and use cat in the
command line. We do this in the following example.

Using the Qpid Messaging API

13

Example 2.11. Using the XML Exchange

This example uses an x-binding that contains queries, which filter based on the content of XML
messages. Here is an XQuery that we will use in this example:

 let $w := ./weather
 return $w/station = 'Raleigh-Durham International Airport (KRDU)'
 and $w/temperature_f > 50
 and $w/temperature_f - $w/dewpoint > 5
 and $w/wind_speed_mph > 7
 and $w/wind_speed_mph < 20

We can specify this query in an x-binding to listen to messages that meet the criteria specified by
the query:

First Window:

 $./drain -f "xml; {link:{x-bindings:[{key:'weather',
 arguments:{xquery:\"$(cat rdu.xquery)\"}}]}}"

In another window, let's create an XML message that meets the criteria in the query, and place it in
the file rdu.xml:

 <weather>
 <station>Raleigh-Durham International Airport (KRDU)</station>
 <wind_speed_mph>16</wind_speed_mph>
 <temperature_f>70</temperature_f>
 <dewpoint>35</dewpoint>
 </weather>

Now let's use spout to send this message to the XML exchange:

Second Window:

 spout --content "$(cat rdu.xml)" xml/weather

Returning to the first window, we see that the message has been received:

$./drain -f "xml; {link:{x-bindings:[{exchange:'xml', key:'weather', arguments:{xquery:\"$(cat rdu.xquery)\"}}]}}"
 Message(properties={qpid.subject:weather, spout-id:31c431de-593f-4bec-a3dd-29717bd945d3:0},
 content='<weather>
 <station>Raleigh-Durham International Airport (KRDU)</station>
 <wind_speed_mph>16</wind_speed_mph>
 <temperature_f>40</temperature_f>
 <dewpoint>35</dewpoint>
 </weather>')

Using the Qpid Messaging API

14

2.4.3.5. Address String Options - Reference

Table 2.1. Address String Options

option value semantics

assert one of: always, never, sender or
receiver

Asserts that the properties specified
in the node option match whatever
the address resolves to. If they do
not, resolution fails and an exception
is raised.

create one of: always, never, sender or
receiver

Creates the node to which an address
refers if it does not exist. No error
is raised if the node does exist. The
details of the node may be specified
in the node option.

delete one of: always, never, sender or
receiver

Delete the node when the sender or
receiver is closed.

node A nested map containing the
entries shown in Table 2.2, “Node
Properties”.

Specifies properties of the node to
which the address refers. These are
used in conjunction with the assert or
create options.

link A nested map containing the
entries shown in Table 2.3, “Link
Properties”.

Used to control the establishment
of a conceptual link from the client
application to or from the target/
source address.

mode one of: browse, consume This option is only of relevance
for source addresses that resolve
to a queue. If browse is specified
the messages delivered to the
receiver are left on the queue rather
than being removed. If consume
is specified the normal behaviour
applies; messages are removed
from the queue once the client
acknowledges their receipt.

Using the Qpid Messaging API

15

Table 2.2. Node Properties

property value semantics

type topic, queue Indicates the type of the node.

durable True, False Indicates whether the node survives
a loss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values
correspond to the valid fields on
an AMQP 0-10 queue-declare or
exchange-declare command.

These values are used to fine tune
the creation or assertion process.
Note however that they are protocol
specific.

x-bindings A nested list in which each binding
is represented by a map. The entries
of the map for a binding contain the
fields that describe an AMQP 0-10
binding. Here is the format for x-
bindings:

 [
 {
 exchange: <exchange>,
 queue: <queue>,
 key: <key>,
 arguments: {
 <key_1>: <value_1>,
 ...,
 <key_n>: <value_n> }
 },
 ...
]

In conjunction with the create
option, each of these bindings
is established as the address is
resolved. In conjunction with the
assert option, the existence of each
of these bindings is verified during
resolution. Again, these are protocol
specific.

Using the Qpid Messaging API

16

Table 2.3. Link Properties

option value semantics

reliability one of: unreliable, at-least-once, at-
most-once, exactly-once

Reliability indicates the level of
reliability that the sender or
receiver. unreliable and at-
most-once are currently treated
as synonyms, and allow messages
to be lost if a broker crashes or
the connection to a broker is lost.
at-least-once guarantees that a
message is not lost, but duplicates
may be received. exactly-once
guarantees that a message is not
lost, and is delivered precisely once.
Currently only unreliable and
at-least-once are supported. a

durable True, False Indicates whether the link survives
a loss of volatile storage e.g. if the
broker is restarted.

x-declare A nested map whose values
correspond to the valid fields
of an AMQP 0-10 queue-declare
command.

These values can be used to
customise the subscription queue
in the case of receiving from an
exchange. Note however that they
are protocol specific.

x-subscribe A nested map whose values
correspond to the valid fields of
an AMQP 0-10 message-subscribe
command.

These values can be used to
customise the subscription.

x-bindings A nested list each of whose
entries is a map that may contain
fields (queue, exchange, key and
arguments) describing an AMQP
0-10 binding.

These bindings are established
during resolution independent of the
create option. They are considered
logically part of the linking process
rather than of node creation.

aIf at-most-once is requested, unreliable will be used and for durable messages on durable queues there is the possibility that messages will be
redelivered; if exactly-once is requested, at-most-once will be used and the application needs to be able to deal with duplicates.

2.4.4. Address String Grammar
This section provides a formal grammar for address strings.

Tokens. The following regular expressions define the tokens used to parse address strings:

 LBRACE: \\{
 RBRACE: \\}
 LBRACK: \\[
 RBRACK: \\]
 COLON: :
 SEMI: ;
 SLASH: /
 COMMA: ,
 NUMBER: [+-]?[0-9]*\\.?[0-9]+
 ID: [a-zA-Z_](?:[a-zA-Z0-9_-]*[a-zA-Z0-9_])?
 STRING: "(?:[^\\\\"]|\\\\.)*"|\'(?:[^\\\\\']|\\\\.)*\'
 ESC: \\\\[^ux]|\\\\x[0-9a-fA-F][0-9a-fA-F]|\\\\u[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F]
 SYM: [.#*%@$^!+-]

Using the Qpid Messaging API

17

 WSPACE: [\\n\\r\\t]+

Grammar. The formal grammar for addresses is given below:

 address := name [SLASH subject] [";" options]
 name := (part | quoted)+
 subject := (part | quoted | SLASH)*
 quoted := STRING / ESC
 part := LBRACE / RBRACE / COLON / COMMA / NUMBER / ID / SYM
 options := map
 map := "{" (keyval ("," keyval)*)? "}"
 keyval "= ID ":" value
 value := NUMBER / STRING / ID / map / list
 list := "[" (value ("," value)*)? "]"

Address String Options. The address string options map supports the following parameters:

 <name> [/ <subject>] ; {
 create: always | sender | receiver | never,
 delete: always | sender | receiver | never,
 assert: always | sender | receiver | never,
 mode: browse | consume,
 node: {
 type: queue | topic,
 durable: True | False,
 x-declare: { ... <declare-overrides> ... },
 x-bindings: [<binding_1>, ... <binding_n>]
 },
 link: {
 name: <link-name>,
 durable: True | False,
 reliability: unreliable | at-most-once | at-least-once | exactly-once,
 x-declare: { ... <declare-overrides> ... },
 x-bindings: [<binding_1>, ... <binding_n>],
 x-subscribe: { ... <subscribe-overrides> ... }
 }
 }

Create, Delete, and Assert Policies

The create, delete, and assert policies specify who should perfom the associated action:

• always: the action is performed by any messaging client

• sender: the action is only performed by a sender

• receiver: the action is only performed by a receiver

• never: the action is never performed (this is the default)

Node-Type

The node-type is one of:

• topic: in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be
used to specify other exchange types

Using the Qpid Messaging API

18

• queue: this is the default node-type

2.5. Sender Capacity and Replay
The send method of a sender has an optional second parameter that controls whether the send call is
synchronous or not. A synchronous send call will block until the broker has confirmed receipt of the
message. An asynchronous send call will return before the broker confirms receipt of the message,
allowing for example further send calls to be made without waiting for a roundtrip to the broker for
each message. This is desirable where increased throughput is important.

The sender maintains a list of sent messages whose receipt has yet to be confirmed by the broker. The
maximum number of such messages that it will hold is defined by the capacity of the sender, which
can be set by the application. If an application tries to send with a sender whose capacity is already
fully used up, the send call will block waiting for capacity regardless of the value of the sync flag.

The sender can be queried for the available space (i.e. the unused capacity), and for the current count
of unsettled messages (i.e. those held in the replay list pending confirmation by the server). When the
unsettled count is zero, all messages on that sender have been successfully sent.

If the connection fails and is transparently reconnected (see Section 2.10, “Connection Options” for
details on how to control this feature), the unsettled messages for each sender over that connection
will be re-transmitted. This provides a transparent level of reliability. This feature can be controlled
through the link's reliability as defined in the address (see Table 2.3, “Link Properties”). At present
only at-least-once guarantees are offered.

2.6. Receiver Capacity (Prefetch)
By default, a receiver requests the next message from the server in response to each fetch call, resulting
in messages being sent to the receiver one at a time. As in the case of sending, it is often desirable
to avoid this roundtrip for each message. This can be achieved by allowing the receiver to prefetch
messages in anticipation of fetch calls being made. The receiver needs to be able to store these
prefetched messages, the number it can hold is controlled by the receivers capacity.

2.7. Acknowledging Received Messages
Applications that receive messages should acknowledge their receipt by calling the session's
acknowledge method. As in the case of sending messages, acknowledged transfer of messages to
receivers provides at-least-once reliability, which means that the loss of the connection or a client
crash does not result in lost messages; durable messages are not lost even if the broker is restarted.
Some cases may not require this however and the reliability can be controlled through a link property
in the address options (see Table 2.3, “Link Properties”).

The acknowledge call acknowledges all messages received on the session (i.e. all message that have
been returned from a fetch call on a receiver created on that session).

The acknowledge call also support an optional parameter controlling whether the call is synchronous
or not. A synchronous acknowledge will block until the server has confirmed that it has received
the acknowledgement. In the asynchronous case, when the call returns there is not yet any guarantee
that the server has received and processed the acknowledgement. The session may be queried for
the number of unsettled acknowledgements; when that count is zero all acknowledgements made for
received messages have been successful.

2.8. Receiving Messages from Multiple
Sources

A receiver can only read from one source, but many programs need to be able to read messages from
many sources. In the Qpid Messaging API, a program can ask a session for the “next receiver”; that

Using the Qpid Messaging API

19

is, the receiver that is responsible for the next available message. The following examples show how
this is done in C++, Python, and .NET C#.

Note that to use this pattern you must enable prefetching for each receiver of interest so that the broker
will send messages before a fetch call is made. See Section 2.6, “Receiver Capacity (Prefetch)” for
more on this.

Example 2.12. Receiving Messages from Multiple Sources

C++:

 Receiver receiver1 = session.createReceiver(address1);
 receiver1.setCapacity(10);
 Receiver receiver2 = session.createReceiver(address2);
 receiver2.setCapacity(10);

 Message message = session.nextReceiver().fetch();
 std::cout << message.getContent() << std::endl;
 session.acknowledge(); // acknowledge message receipt

Python:

 receiver1 = session.receiver(address1)
 receiver1.capacity = 10
 receiver2 = session.receiver(address)
 receiver2.capacity = 10
 message = session.next_receiver().fetch()
 print message.content
 session.acknowledge()

.NET C#:

 Receiver receiver1 = session.CreateReceiver(address1);
 receiver1.Capacity = 10;
 Receiver receiver2 = session.CreateReceiver(address2);
 receiver2.Capacity = 10;

 Message message = new Message();
 message = session.NextReceiver().Fetch();
 Console.WriteLine("{0}", message.GetContent());
 session.Acknowledge();

2.9. Transactions
Sometimes it is useful to be able to group messages transfers - sent and/or received - on a session
into atomic grouping. This can be done be creating the session as transactional. On a transactional
session sent messages only become available at the target address on commit. Likewise any received
and acknowledged messages are only discarded at their source on commit 8 .

8Note that this currently is only true for messages received using a reliable mode e.g. at-least-once. Messages sent by a broker to a receiver
in unreliable receiver will be discarded immediately regardless of transctionality.

Using the Qpid Messaging API

20

Example 2.13. Transactions

C++:

 Connection connection(broker);
 Session session = connection.createTransactionalSession();
 ...
 if (smellsOk())
 session.commit();
 else
 session.rollback();

.NET C#:

 Connection connection = new Connection(broker);
 Session session = connection.CreateTransactionalSession();
 ...
 if (smellsOk())
 session.Commit();
 else
 session.Rollback();

2.10. Connection Options
Aspects of the connections behaviour can be controlled through specifying connection options. For
example, connections can be configured to automatically reconnect if the connection to a broker is lost.

Using the Qpid Messaging API

21

Example 2.14. Specifying Connection Options in C++, Python, and .NET

In C++, these options can be set using Connection::setOption() or by passing in a set of
options to the constructor. The options can be passed in as a map or in string form:

 Connection connection("localhost:5672", "{reconnect: true}");
 try {
 connection.open();
 !!! SNIP !!!

or

 Connection connection("localhost:5672");
 connection.setOption("reconnect", true);
 try {
 connection.open();
 !!! SNIP !!!

In Python, these options can be set as attributes of the connection or using named arguments in the
Connection constructor:

 connection = Connection("localhost:5672", reconnect=True)
 try:
 connection.open()
 !!! SNIP !!!

or

 connection = Connection("localhost:5672")
 connection.reconnect = True
 try:
 connection.open()
 !!! SNIP !!!

In .NET, these options can be set using Connection.SetOption() or by passing in a set of
options to the constructor. The options can be passed in as a map or in string form:

 Connection connection= new Connection("localhost:5672", "{reconnect: true}");
 try {
 connection.Open();
 !!! SNIP !!!

or

 Connection connection = new Connection("localhost:5672");
 connection.SetOption("reconnect", true);
 try {
 connection.Open();
 !!! SNIP !!!

See the reference documentation for details in each language.

Using the Qpid Messaging API

22

The following table lists the supported connection options.

Table 2.4. Connection Options

option name value type semantics

username string The username to use when
authenticating to the broker.

password string The password to use when
authenticating to the broker.

sasl_mechanisms string The specific SASL mechanisms to
use with the python client when
authenticating to the broker. The
value is a space separated list.

reconnect boolean Transparently reconnect if the
connection is lost.

reconnect_timeout integer Total number of seconds to continue
reconnection attempts before giving
up and raising an exception.

reconnect_limit integer Maximum number of reconnection
attempts before giving up and raising
an exception.

reconnect_interval_min integer representing time in seconds Minimum number of seconds
between reconnection attempts. The
first reconnection attempt is made
immediately; if that fails, the first
reconnection delay is set to the value
of reconnect_interval_min;
if that attempt fails, the reconnect
interval increases exponentially until
a reconnection attempt succeeds or
reconnect_interval_max is
reached.

reconnect_interval_max integer representing time in seconds Maximum reconnect interval.

reconnect_interval integer representing time in seconds Sets both
reconnection_interval_min
and
reconnection_interval_max
to the same value.

heartbeat integer representing time in seconds Requests that heartbeats be sent
every N seconds. If two successive
heartbeats are missed the connection
is considered to be lost.

protocol string Sets the underlying protocol used.
The default option is 'tcp'. To enable
ssl, set to 'ssl'. The C++ client
additionally supports 'rdma'.

tcp-nodelay boolean Set tcp no-delay, i.e. disable Nagle
algorithm. [C++ only]

2.11. Maps and Lists in Message Content
Many messaging applications need to exchange data across languages and platforms, using the native
datatypes of each programming language.

Using the Qpid Messaging API

23

The Qpid Messaging API supports map and list in message content. 9 10 Specific language support
for map and list objects are shown in the following table.

Table 2.5. Map and List Representation in Supported Languages

Language map list

Python dict list

C++ Variant::Map Variant::List

Java MapMessage

.NET Dictionary<string,
object>

Collection<object>

In all languages, messages are encoded using AMQP's portable datatypes.

Tip

Because of the differences in type systems among languages, the simplest way to provide
portable messages is to rely on maps, lists, strings, 64 bit signed integers, and doubles for
messages that need to be exchanged across languages and platforms.

2.11.1. Qpid Maps and Lists in Python

In Python, Qpid supports the dict and list types directly in message content. The following code
shows how to send these structures in a message:

Example 2.15. Sending Qpid Maps and Lists in Python

 from qpid.messaging import *
 # !!! SNIP !!!

 content = {'Id' : 987654321, 'name' : 'Widget', 'percent' : 0.99}
 content['colours'] = ['red', 'green', 'white']
 content['dimensions'] = {'length' : 10.2, 'width' : 5.1,'depth' : 2.0};
 content['parts'] = [[1,2,5], [8,2,5]]
 content['specs'] = {'colors' : content['colours'],
 'dimensions' : content['dimensions'],
 'parts' : content['parts'] }
 message = Message(content=content)
 sender.send(message)

The following table shows the datatypes that can be sent in a Python map message, and the
corresponding datatypes that will be received by clients in Java or C++.

9Unlike JMS, there is not a specific message type for map messages.
10 Note that the Qpid JMS client supports MapMessages whose values can be nested maps or lists. This is not standard JMS behaviour.

Using the Qpid Messaging API

24

Table 2.6. Python Datatypes in Maps

Python Datatype # C++ # Java

bool bool boolean

int int64 long

long int64 long

float double double

unicode string java.lang.String

uuid qpid::types::Uuid java.util.UUID

dict Variant::Map java.util.Map

list Variant::List java.util.List

2.11.2. Qpid Maps and Lists in C++

In C++, Qpid defines the the Variant::Map and Variant::List types, which can be encoded
into message content. The following code shows how to send these structures in a message:

Using the Qpid Messaging API

25

Example 2.16. Sending Qpid Maps and Lists in C++

 using namespace qpid::types;

 // !!! SNIP !!!

 Message message;
 Variant::Map content;
 content["id"] = 987654321;
 content["name"] = "Widget";
 content["percent"] = 0.99;
 Variant::List colours;
 colours.push_back(Variant("red"));
 colours.push_back(Variant("green"));
 colours.push_back(Variant("white"));
 content["colours"] = colours;

 Variant::Map dimensions;
 dimensions["length"] = 10.2;
 dimensions["width"] = 5.1;
 dimensions["depth"] = 2.0;
 content["dimensions"]= dimensions;

 Variant::List part1;
 part1.push_back(Variant(1));
 part1.push_back(Variant(2));
 part1.push_back(Variant(5));

 Variant::List part2;
 part2.push_back(Variant(8));
 part2.push_back(Variant(2));
 part2.push_back(Variant(5));

 Variant::List parts;
 parts.push_back(part1);
 parts.push_back(part2);
 content["parts"]= parts;

 Variant::Map specs;
 specs["colours"] = colours;
 specs["dimensions"] = dimensions;
 specs["parts"] = parts;
 content["specs"] = specs;

 encode(content, message);
 sender.send(message, true);

The following table shows the datatypes that can be sent in a C++ map message, and the corresponding
datatypes that will be received by clients in Java and Python.

Using the Qpid Messaging API

26

Table 2.7. C++ Datatypes in Maps

C++ Datatype # Python # Java

bool bool boolean

uint16 int | long short

uint32 int | long int

uint64 int | long long

int16 int | long short

int32 int | long int

int64 int | long long

float float float

double float double

string unicode java.lang.String

qpid::types::Uuid uuid java.util.UUID

Variant::Map dict java.util.Map

Variant::List list java.util.List

2.11.3. Qpid Maps and Lists in .NET

The .NET binding for the Qpid Messaging API binds .NET managed data types to C++ Variant
data types. The following code shows how to send Map and List structures in a message:

Example 2.17. Sending Qpid Maps and Lists in .NET C#

 using System;
 using Org.Apache.Qpid.Messaging;

 // !!! SNIP !!!

 Dictionary<string, object> content = new Dictionary<string, object>();
 Dictionary<string, object> subMap = new Dictionary<string, object>();
 Collection<object> colors = new Collection<object>();

 // add simple types
 content["id"] = 987654321;
 content["name"] = "Widget";
 content["percent"] = 0.99;

 // add nested amqp/map
 subMap["name"] = "Smith";
 subMap["number"] = 354;
 content["nestedMap"] = subMap;

 // add an amqp/list
 colors.Add("red");
 colors.Add("green");
 colors.Add("white");
 content["colorsList"] = colors;

 // add one of each supported amqp data type
 bool mybool = true;

Using the Qpid Messaging API

27

 content["mybool"] = mybool;

 byte mybyte = 4;
 content["mybyte"] = mybyte;

 UInt16 myUInt16 = 5;
 content["myUInt16"] = myUInt16;

 UInt32 myUInt32 = 6;
 content["myUInt32"] = myUInt32;

 UInt64 myUInt64 = 7;
 content["myUInt64"] = myUInt64;

 char mychar = 'h';
 content["mychar"] = mychar;

 Int16 myInt16 = 9;
 content["myInt16"] = myInt16;

 Int32 myInt32 = 10;
 content["myInt32"] = myInt32;

 Int64 myInt64 = 11;
 content["myInt64"] = myInt64;

 Single mySingle = (Single)12.12;
 content["mySingle"] = mySingle;

 Double myDouble = 13.13;
 content["myDouble"] = myDouble;

 Guid myGuid = new Guid("000102030405060708090a0b0c0d0e0f");
 content["myGuid"] = myGuid;

 Message message = new Message(content);
 Send(message, true);

The following table shows the mapping between datatypes in .NET and C++.

Using the Qpid Messaging API

28

Table 2.8. Datatype Mapping between C++ and .NET binding

C++ Datatype # .NET binding

void nullptr

bool bool

uint8 byte

uint16 UInt16

uint32 UInt32

uint64 UInt64

uint8 char

int16 Int16

int32 Int32

int64 Int64

float Single

double Double

string string a

qpid::types::Uuid Guid

Variant::Map Dictionary<string, object> a

Variant::List Collection<object> a

aStrings are currently interpreted only with UTF-8 encoding.

2.12. The Request / Response Pattern
Request / Response applications use the reply-to property, described in Table 2.9, “Mapping to AMQP
0-10 Message Properties”, to allow a server to respond to the client that sent a message. A server sets
up a service queue, with a name known to clients. A client creates a private queue for the server's
response, creates a message for a request, sets the request's reply-to property to the address of the
client's response queue, and sends the request to the service queue. The server sends the response to
the address specified in the request's reply-to property.

Using the Qpid Messaging API

29

Example 2.18. Request / Response Applications in C++

This example shows the C++ code for a client and server that use the request / response pattern.

The server creates a service queue and waits for a message to arrive. If it receives a message, it sends
a message back to the sender.

Receiver receiver = session.createReceiver("service_queue; {create: always}");

 Message request = receiver.fetch();
 const Address& address = request.getReplyTo(); // Get "reply-to" from request ...
 if (address) {
 Sender sender = session.createSender(address); // ... send response to "reply-to"
 Message response("pong!");
 sender.send(response);
 session.acknowledge();
 }

The client creates a sender for the service queue, and also creates a response queue that is deleted
when the client closes the receiver for the response queue. In the C++ client, if the address starts with
the character #, it is given a unique name.

 Sender sender = session.createSender("service_queue");

 Address responseQueue("#response-queue; {create:always, delete:always}");
 Receiver receiver = session.createReceiver(responseQueue);

 Message request;
 request.setReplyTo(responseQueue);
 request.setContent("ping");
 sender.send(request);
 Message response = receiver.fetch();
 std::cout << request.getContent() << " -> " << response.getContent() << std::endl;

The client sends the string ping to the server. The server sends the response pong back to the same
client, using the replyTo property.

2.13. Performance Tips
• Consider prefetching messages for receivers (see Section 2.6, “Receiver Capacity (Prefetch)”). This

helps eliminate roundtrips and increases throughput. Prefetch is disabled by default, and enabling
it is the most effective means of improving throughput of received messages.

• Send messages asynchronously. Again, this helps eliminate roundtrips and increases throughput.
The C++ and .NET clients send asynchronously by default, however the python client defaults to
synchronous sends.

• Acknowledge messages in batches (see Section 2.7, “Acknowledging Received Messages”).
Rather than acknowledging each message individually, consider issuing acknowledgements after n
messages and/or after a particular duration has elapsed.

• Tune the sender capacity (see Section 2.5, “Sender Capacity and Replay”). If the capacity is too
low the sender may block waiting for the broker to confirm receipt of messages, before it can free
up more capacity.

Using the Qpid Messaging API

30

• If you are setting a reply-to address on messages being sent by the c++ client, make sure the address
type is set to either queue or topic as appropriate. This avoids the client having to determine which
type of node is being refered to, which is required when hanling reply-to in AMQP 0-10.

• For latency sensitive applications, setting tcp-nodelay on qpidd and on client connections can help
reduce the latency.

2.14. Cluster Failover
The messaging broker can be run in clustering mode, which provides high reliability through
replicating state between brokers in the cluster. If one broker in a cluster fails, clients can choose
another broker in the cluster and continue their work. Each broker in the cluster also advertises the
addresses of all known brokers 11 . A client can use this information to dynamically keep the list of
reconnection urls up to date.

In C++, the FailoverUpdates class provides this functionality:

Example 2.19. Tracking cluster membership

In C++:

 #include <qpid/messaging/FailoverUpdates.h>
 ...
 Connection connection("localhost:5672");
 connection.setOption("reconnect", true);
 try {
 connection.open();
 std::auto_ptr<FailoverUpdates> updates(new FailoverUpdates(connection));

In python:

 import qpid.messaging.util
 ...
 connection = Connection("localhost:5672")
 connection.reconnect = True
 try:
 connection.open()
 auto_fetch_reconnect_urls(connection)

In .NET C#:

 using Org.Apache.Qpid.Messaging;
 ...
 connection = new Connection("localhost:5672");
 connection.SetOption("reconnect", true);
 try {
 connection.Open();
 FailoverUpdates failover = new FailoverUpdates(connection);

11This is done via the amq.failover exchange in AMQP 0-10

Using the Qpid Messaging API

31

2.15. Logging
To simplify debugging, Qpid provides a logging facility that prints out messaging events.

2.15.1. Logging in C++
The Qpidd broker and C++ clients can both use environment variables to enable logging. Linux and
Windows systems use the same named environment variables and values.

Use QPID_LOG_ENABLE to set the level of logging you are interested in (trace, debug, info, notice,
warning, error, or critical):

 export QPID_LOG_ENABLE="warning+"

The Qpidd broker and C++ clients use QPID_LOG_OUTPUT to determine where logging output
should be sent. This is either a file name or the special values stderr, stdout, or syslog:

 export QPID_LOG_TO_FILE="/tmp/myclient.out"

From a Windows command prompt, use the following command format to set the environment
variables:

 set QPID_LOG_ENABLE=warning+
 set QPID_LOG_TO_FILE=D:\tmp\myclient.out

2.15.2. Logging in Python
The Python client library supports logging using the standard Python logging module. The easiest way
to do logging is to use the basicConfig(), which reports all warnings and errors:

from logging import basicConfig
 basicConfig()

Qpidd also provides a convenience method that makes it easy to specify the level of logging desired.
For instance, the following code enables logging at the DEBUG level:

from qpid.log import enable, DEBUG
 enable("qpid.messaging.io", DEBUG)

For more information on Python logging, see http://docs.python.org/lib/node425.html. For more
information on Qpid logging, use $ pydoc qpid.log.

2.16. The AMQP 0-10 mapping
This section describes the AMQP 0-10 mapping for the Qpid Messaging API.

The interaction with the broker triggered by creating a sender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker
to determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transfered to
the default (or nameless) exchange. When sending to an exchange, the message is transfered to that

http://docs.python.org/lib/node425.html

Using the Qpid Messaging API

32

exchange and the routing key is set to the message subject if one is specified. A default subject may be
specified in the target address. The subject may also be set on each message individually to override
the default if required. In each case any specified subject is also added as a qpid.subject entry in the
application-headers field of the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client sends a
message-subscribe request for the queue in question. The accept-mode is determined by the reliability
option in the link properties; for unreliable links the accept-mode is none, for reliable links it is explicit.
The default for a queue is reliable. The acquire-mode is determined by the value of the mode option.
If the mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired.
The exclusive and arguments fields in the message-subscribe command can be controlled using the
x-subscribe map.

When receiving from an exchange, the client creates a subscription queue and binds that to the
exchange. The subscription queue's arguments can be specified using the x-declare map within the
link properties. The reliability option determines most of the other parameters. If the reliability is set
to unreliable then an auto-deleted, exclusive queue is used meaning that if the client or connection
fails messages may be lost. For exactly-once the queue is not set to be auto-deleted. The durability of
the subscription queue is determined by the durable option in the link properties. The binding process
depends on the type of the exchange the source address resolves to.

• For a topic exchange, if no subject is specified and no x-bindings are defined for the link, the
subscription queue is bound using a wildcard matching any routing key (thus satisfying the
expectation that any message sent to that address will be received from it). If a subject is specified in
the source address however, it is used for the binding key (this means that the subject in the source
address may be a binding pattern including wildcards).

• For a fanout exchange the binding key is irrelevant to matching. A receiver created from a source
address that resolves to a fanout exchange receives all messages sent to that exchange regardless of
any subject the source address may contain. An x-bindings element in the link properties should be
used if there is any need to set the arguments to the bind.

• For a direct exchange, the subject is used as the binding key. If no subject is specified an empty
string is used as the binding key.

• For a headers exchange, if no subject is specified the binding arguments simply contain an x-match
entry and no other entries, causing all messages to match. If a subject is specified then the binding
arguments contain an x-match entry set to all and an entry for qpid.subject whose value is the subject
in the source address (this means the subject in the source address must match the message subject
exactly). For more control the x-bindings element in the link properties must be used.

• For the XML exchange,12 if a subject is specified it is used as the binding key and an XQuery
is defined that matches any message with that value for qpid.subject. Again this means that only
messages whose subject exactly match that specified in the source address are received. If no subject
is specified then the empty string is used as the binding key with an xquery that will match any
message (this means that only messages with an empty string as the routing key will be received).
For more control the x-bindings element in the link properties must be used. A source address that
resolves to the XML exchange must contain either a subject or an x-bindings element in the link
properties as there is no way at present to receive any message regardless of routing key.

If an x-bindings list is present in the link options a binding is created for each element within that list.
Each element is a nested map that may contain values named queue, exchange, key or arguments. If
the queue value is absent the queue name the address resolves to is implied. If the exchange value is
absent the exchange name the address resolves to is implied.

The following table shows how Qpid Messaging API message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table msg refers to the Message class defined in the
Qpid Messaging API, mp refers to an AMQP 0-10 message-properties struct, and dp refers to
an AMQP 0-10 delivery-properties struct.

Using the Qpid Messaging API

33

Table 2.9. Mapping to AMQP 0-10 Message Properties

Python API C++ API a AMQP 0-10 Propertyb

msg.id msg.{get,set}MessageId() mp.message_id

msg.subject msg.{get,set}Subject() mp.application_headers["qpid.subject"]

msg.user_id msg.{get,set}UserId() mp.user_id

msg.reply_to msg.{get,set}ReplyTo() mp.reply_toc

msg.correlation_id msg.{get,set}CorrelationId() mp.correlation_id

msg.durable msg.{get,set}Durable() dp.delivery_mode ==
delivery_mode.persistentd

msg.priority msg.{get,set}Priority() dp.priority

msg.ttl msg.{get,set}Ttl() dp.ttl

msg.redelivered msg.{get,set}Redelivered() dp.redelivered

msg.properties msg.getProperties()/
msg.setProperty()

mp.application_headers

msg.content_type msg.{get,set}ContentType() mp.content_type
a The .NET Binding for C++ Messaging provides all the message and delivery properties described in the C++ API. See Table 5.13, “.NET
Binding for the C++ Messaging API Class: Message” .
bIn these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.
cThe reply_to is converted from the protocol representation into an address.
dNote that msg.durable is a boolean, not an enum.

2.16.1. 0-10 Message Property Keys

The QPID Messaging API also recognises special message property keys and automatically provides
a mapping to their corresponding AMQP 0-10 definitions.

• When sending a message, if the properties contain an entry for x-amqp-0-10.app-id, its value
will be used to set the message-properties.app-id property in the outgoing message.
Likewise, if an incoming message has message-properties.app-id set, its value can be
accessed via the x-amqp-0-10.app-id message property key.

• When sending a message, if the properties contain an entry for x-amqp-0-10.content-
encoding, its value will be used to set the message-properties.content-
encoding property in the outgoing message. Likewise, if an incoming message has
message-properties.content-encoding set, its value can be accessed via the x-
amqp-0-10.content-encoding message property key.

• The routing key (delivery-properties.routing-key) in an incoming messages can be
accessed via the x-amqp-0-10.routing-key message property.

• If the timestamp delivery property is set in an incoming message (delivery-
properties.timestamp), the timestamp value will be made available via the x-
amqp-0-10.timestamp message property. 13

Using the Qpid Messaging API

34

Example 2.20. Accessing the AMQP 0-10 Message Timestamp in Python

The following code fragment checks for and extracts the message timestamp from a received message.

 try:
 msg = receiver.fetch(timeout=1)
 if "x-amqp-0-10.timestamp" in msg.properties:
 print("Timestamp=%s" % str(msg.properties["x-amqp-0-10.timestamp"]))
 except Empty:
 pass

Example 2.21. Accessing the AMQP 0-10 Message Timestamp in C++

The same example, except in C++.

 messaging::Message msg;
 if (receiver.fetch(msg, messaging::Duration::SECOND*1)) {
 if (msg.getProperties().find("x-amqp-0-10.timestamp") != msg.getProperties().end()) {
 std::cout << "Timestamp=" << msg.getProperties()["x-amqp-0-10.timestamp"].asString() << std::endl;
 }
 }

2.17. Using Message Groups
This section describes how messaging applications can use the Message Group feature provided by
the C++ Broker.

Note
The content of this section assumes the reader is familiar with the Message Group feature as
described in the AMQP Messaging Broker (C++) user's guide. Please read the section Using
Message Groups in the user's guide before using the examples given in this section.

2.17.1. Creating Message Group Queues

The following examples show how to create a message group queue that enforces ordered group
consumption across multiple consumers.

Example 2.22. Message Group Queue Creation - Python

sender = connection.session().sender("msg-group-q;" +
 " {create:always, delete:receiver," +
 " node: {x-declare: {arguments:" +
 " {'qpid.group_header_key':'THE-GROUP'," +
 " 'qpid.shared_msg_group':1}}}}")

Using the Qpid Messaging API

35

Example 2.23. Message Group Queue Creation - C++

std::string addr("msg-group-q; "
 " {create:always, delete:receiver,"
 " node: {x-declare: {arguments:"
 " {qpid.group_header_key:'THE-GROUP',"
 " qpid.shared_msg_group:1}}}}");
Sender sender = session.createSender(addr);

Example 2.24. Message Group Queue Creation - Java

Session s = c.createSession(false, Session.CLIENT_ACKNOWLEDGE);
String addr = "msg-group-q; {create:always, delete:receiver," +
 " node: {x-declare: {arguments:" +
 " {'qpid.group_header_key':'THE-GROUP'," +
 " 'qpid.shared_msg_group':1}}}}";
Destination d = (Destination) new AMQAnyDestination(addr);
MessageProducer sender = s.createProducer(d);

The example code uses the x-declare map to specify the message group configuration that should be
used for the queue. See the AMQP Messaging Broker (C++) user's guide for a detailed description of
these arguments. Note that the qpid.group_header_key's value MUST be a string type.

2.17.2. Sending Grouped Messages

When sending grouped messages, the client must add a message property containing the group
identifier to the outgoing message. The group identifier must be a string type. The key used for the
property must exactly match the value passed in the 'qpid.group_header_key' configuration argument.

Example 2.25. Sending Grouped Messages - Python

group = "A"
m = Message(content="some data", properties={"THE-GROUP": group})
sender.send(m)

group = "B"
m = Message(content="some other group's data", properties={"THE-GROUP": group})
sender.send(m)

group = "A"
m = Message(content="more data for group 'A'", properties={"THE-GROUP": group})
sender.send(m)

Using the Qpid Messaging API

36

Example 2.26. Sending Grouped Messages - C++

const std::string groupKey("THE-GROUP");
{
 Message msg("some data");
 msg.getProperties()[groupKey] = std::string("A");
 sender.send(msg);
}
{
 Message msg("some other group's data");
 msg.getProperties()[groupKey] = std::string("B");
 sender.send(msg);
}
{
 Message msg("more data for group 'A'");
 msg.getProperties()[groupKey] = std::string("A");
 sender.send(msg);
}

Example 2.27. Sending Grouped Messages - Java

String groupKey = "THE-GROUP";

TextMessage tmsg1 = s.createTextMessage("some data");
tmsg1.setStringProperty(groupKey, "A");
sender.send(tmsg1);

TextMessage tmsg2 = s.createTextMessage("some other group's data");
tmsg2.setStringProperty(groupKey, "B");
sender.send(tmsg2);

TextMessage tmsg3 = s.createTextMessage("more data for group 'A'");
tmsg3.setStringProperty(groupKey, "A");
sender.send(tmsg3);

The examples above send two groups worth of messages to the queue created in the previous example.
Two messages belong to group "A", and one belongs to group "B". Note that it is not necessary to
complete sending one group's messages before starting another. Also note that there is no need to
indicate to the broker when a new group is created or an existing group retired - the broker tracks
group state automatically.

2.17.3. Receiving Grouped Messages
Since the broker enforces group policy when delivering messages, no special actions are necessary
for receiving grouped messages from the broker. However, applications must adhere to the rules for
message group consumption as described in the AMQP Messaging Broker (C++) user's guide. Refer
to the section Well Behaved Consumers for details.

37

Chapter 3. Using the Qpid JMS client

3.1. A Simple Messaging Program in Java
JMS

The following program shows how to send and receive a message using the Qpid JMS client. JMS
programs typically use JNDI to obtain connection factory and destination objects which the application
needs. In this way the configuration is kept separate from the application code itself.

In this example, we create a JNDI context using a properties file, use the context to lookup a connection
factory, create and start a connection, create a session, and lookup a destination from the JNDI context.
Then we create a producer and a consumer, send a message with the producer and receive it with the
consumer. This code should be straightforward for anyone familiar with Java JMS.

Using the Qpid JMS client

38

Example 3.1. "Hello world!" in Java

 package org.apache.qpid.example.jmsexample.hello;

 import javax.jms.*;
 import javax.naming.Context;
 import javax.naming.InitialContext;
 import java.util.Properties;

 public class Hello {

 public Hello() {
 }

 public static void main(String[] args) {
 Hello producer = new Hello();
 producer.runTest();
 }

 private void runTest() {
 try {
 Properties properties = new Properties();
 properties.load(this.getClass().getResourceAsStream("hello.properties")); 1

 Context context = new InitialContext(properties); 2

 ConnectionFactory connectionFactory
 = (ConnectionFactory) context.lookup("qpidConnectionfactory"); 3

 Connection connection = connectionFactory.createConnection(); 4

 connection.start(); 5

 Session session=connection.createSession(false,Session.AUTO_ACKNOWLEDGE); 6

 Destination destination = (Destination) context.lookup("topicExchange"); 7

 MessageProducer messageProducer = session.createProducer(destination); 8

 MessageConsumer messageConsumer = session.createConsumer(destination); 9

 TextMessage message = session.createTextMessage("Hello world!");
 messageProducer.send(message);

 message = (TextMessage)messageConsumer.receive(); 10

 System.out.println(message.getText());

 connection.close(); 11

 context.close(); 12

 }
 catch (Exception exp) {
 exp.printStackTrace();
 }
 }
 }

1 Loads the JNDI properties file, which specifies connection properties, queues, topics, and
addressing options. See Section 3.2, “Apache Qpid JNDI Properties for AMQP Messaging” for
details.

2 Creates the JNDI initial context.
3 Creates a JMS connection factory for Qpid.

Using the Qpid JMS client

39

4 Creates a JMS connection.
5 Activates the connection.
6 Creates a session. This session is not transactional (transactions='false'), and messages are

automatically acknowledged.
7 Creates a destination for the topic exchange, so senders and receivers can use it.
8 Creates a producer that sends messages to the topic exchange.
9 Creates a consumer that reads messages from the topic exchange.
10 Reads the next available message.
11 Closes the connection, all sessions managed by the connection, and all senders and receivers

managed by each session.
12 Closes the JNDI context.

The contents of the hello.properties file are shown below.

Example 3.2. JNDI Properties File for "Hello world!" example

 java.naming.factory.initial
 = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

 # connectionfactory.[jndiname] = [ConnectionURL]
 connectionfactory.qpidConnectionfactory
 = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672' 1

 # destination.[jndiname] = [address_string]
 destination.topicExchange = amq.topic 2

1 Defines a connection factory from which connections can be created. The syntax of a
ConnectionURL is given in Section 3.2, “Apache Qpid JNDI Properties for AMQP Messaging”.

2 Defines a destination for which MessageProducers and/or MessageConsumers can be created
to send and receive messages. The value for the destination in the properties file is an address
string as described in Section 2.4, “Addresses”. In the JMS implementation MessageProducers
are analogous to senders in the Qpid Message API, and MessageConsumers are analogous to
receivers.

3.2. Apache Qpid JNDI Properties for AMQP
Messaging

Apache Qpid defines JNDI properties that can be used to specify JMS Connections and Destinations.
Here is a typical JNDI properties file:

Example 3.3. JNDI Properties File

 java.naming.factory.initial
 = org.apache.qpid.jndi.PropertiesFileInitialContextFactory

 # connectionfactory.[jndiname] = [ConnectionURL]
 connectionfactory.qpidConnectionfactory
 = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672'
 # destination.[jndiname] = [address_string]
 destination.topicExchange = amq.topic

The following sections describe the JNDI properties that Qpid uses.

Using the Qpid JMS client

40

3.2.1. JNDI Properties for Apache Qpid

Apache Qpid supports the properties shown in the following table:

Table 3.1. JNDI Properties supported by Apache Qpid

Property Purpose

connectionfactory.<jndiname> The Connection URL that the connection factory
uses to perform connections.

queue.<jndiname> A JMS queue, which is implemented as an
amq.direct exchange in Apache Qpid.

topic.<jndiname> A JMS topic, which is implemented as an
amq.topic exchange in Apache Qpid.

destination.<jndiname> Can be used for defining all amq destinations,
queues, topics and header matching, using an
address string. a

aBinding URLs, which were used in earlier versions of the Qpid Java JMS client, can still be used instead of address strings.

3.2.2. Connection URLs

In JNDI properties, a Connection URL specifies properties for a connection. The format for a
Connection URL is:

amqp://[<user>:<pass>@][<clientid>]<virtualhost>[?<option>='<value>'[&<option>='<value>']]

For instance, the following Connection URL specifies a user name, a password, a client ID, a virtual
host ("test"), a broker list with a single broker, and a TCP host with the host name “localhost” using
port 5672:

amqp://username:password@clientid/test?brokerlist='tcp://localhost:5672'

Apache Qpid supports the following properties in Connection URLs:

Using the Qpid JMS client

41

Table 3.2. Connection URL Properties

Option Type Description

brokerlist see below List of one or more broker addresses.

maxprefetch integer The maximum number of pre-
fetched messages per consumer. If
not specified, default value of 500 is
used.

Note: You can also set the default
per-consumer prefetch value on a
client-wide basis by configuring the
client using Java system properties.

sync_publish {'persistent' | 'all'} A sync command is sent after every
persistent message to guarantee that
it has been received; if the value
is 'persistent', this is done only for
persistent messages.

sync_ack Boolean A sync command is sent after every
acknowledgement to guarantee that
it has been received.

use_legacy_map_msg_format Boolean If you are using JMS Map messages
and deploying a new client with any
JMS client older than 0.8 release,
you must set this to true to ensure the
older clients can understand the map
message encoding.

failover {'singlebroker' | 'roundrobin' |
'failover_exchange' | 'nofailover' |
'<class>'}

This option controls failover
behaviour. The method
singlebroker uses only the first
broker in the list, roundrobin will
try each broker given in the broker
list until a connection is established,
failover_exchange connects
to the initial broker given in
the broker URL and will receive
membership updates via the failover
exchange. nofailover disables
all retry and failover logic. Any other
value is interpreted as a classname
which must implement the
org.apache.qpid.jms.failover.FailoverMethod
interface.

The broker list options retries
and connectdelay (described
below) determine the number of
times a connection to a broker will be
retried and the the length of time to
wait between successive connection
attempts before moving on to the
next broker in the list. The failover
option cyclecount controls the
number of times to loop through
the list of available brokers before
finally giving up.

Defaults to roundrobin if the
brokerlist contains multiple brokers,
or singlebroker otherwise.

Using the Qpid JMS client

42

Broker lists are specified using a URL in this format:

brokerlist=<transport>://<host>[:<port>](?<param>='<value>')(&<param>='<value>')*

For instance, this is a typical broker list:

brokerlist='tcp://localhost:5672'

A broker list can contain more than one broker address; if so, the connection is made to the first broker
in the list that is available. In general, it is better to use the failover exchange when using multiple
brokers, since it allows applications to fail over if a broker goes down.

Example 3.4. Broker Lists

A broker list can specify properties to be used when connecting to the broker, such as security options.
This broker list specifies options for a Kerberos connection using GSSAPI:

 amqp://guest:guest@test/test?sync_ack='true'
 &brokerlist='tcp://ip1:5672?sasl_mechs='GSSAPI''

This broker list specifies SSL options:

 amqp://guest:guest@test/test?sync_ack='true'
 &brokerlist='tcp://ip1:5672?ssl='true'&ssl_cert_alias='cert1''

This broker list specifies two brokers using the connectdelay and retries broker options. It also
illustrates the failover connection URL property.

 amqp://guest:guest@/test?failover='roundrobin?cyclecount='2''
 &brokerlist='tcp://ip1:5672?retries='5'&connectdelay='2000';tcp://ip2:5672?retries='5'&connectdelay='2000''

The following broker list options are supported.

Using the Qpid JMS client

43

Table 3.3. Broker List Options

Option Type Description

heartbeat integer frequency of heartbeat messages (in
seconds)

sasl_mechs -- For secure applications, we suggest
CRAM-MD5, DIGEST-MD5, or
GSSAPI. The ANONYMOUS
method is not secure. The PLAIN
method is secure only when
used together with SSL. For
Kerberos, sasl_mechs must be set
to GSSAPI, sasl_protocol must be
set to the principal for the qpidd
broker, e.g. qpidd/, and sasl_server
must be set to the host for
the SASL server, e.g. sasl.com.
SASL External is supported
using SSL certification, e.g.
ssl='true'&sasl_mechs='EXTERNAL'

sasl_encryption Boolean If sasl_encryption='true',
the JMS client attempts to negotiate
a security layer with the broker using
GSSAPI to encrypt the connection.
Note that for this to happen, GSSAPI
must be selected as the sasl_mech.

sasl_protocol -- Used only for Kerberos.
sasl_protocol must be set to
the principal for the qpidd broker,
e.g. qpidd/

sasl_server -- For Kerberos, sasl_mechs must be
set to GSSAPI, sasl_server must be
set to the host for the SASL server,
e.g. sasl.com.

trust_store -- path to trust store

trust_store_password Trust store password

key_store path to key store

key_store_password -- key store password

ssl Boolean If ssl='true', the JMS client will
encrypt the connection using SSL.

ssl_verify_hostname Boolean When using SSL you can enable
hostname verification by using
ssl_verify_hostname='true'
in the broker URL.

ssl_cert_alias If multiple certificates are present in
the keystore, the alias will be used to
extract the correct certificate.

retries integer The number of times to retry
connection to each broker in the
broker list. Defaults to 1.

connectdelay integer Length of time to wait before
attempting to reconnect (in
milliseconds). Defaults to 0.

connecttimeout integer Length of time to wait for
the connection to succeed (in
milliseconds). Defaults to 30000.

tcp_nodelay Boolean If tcp_nodelay='true', TCP
packet batching is disabled. Defaults
to true since Qpid 0.14.

Using the Qpid JMS client

44

3.3. Java JMS Message Properties
The following table shows how Qpid Messaging API message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table msg refers to the Message class defined in the
Qpid Messaging API, mp refers to an AMQP 0-10 message-properties struct, and dp refers to
an AMQP 0-10 delivery-properties struct.

Table 3.4. Java JMS Mapping to AMQP 0-10 Message Properties

Java JMS Message Property AMQP 0-10 Propertya

JMSMessageID mp.message_id

qpid.subjectb mp.application_headers["qpid.subject"]

JMSXUserID mp.user_id

JMSReplyTo mp.reply_toc

JMSCorrelationID mp.correlation_id

JMSDeliveryMode dp.delivery_mode

JMSPriority dp.priority

JMSExpiration dp.ttld

JMSRedelivered dp.redelivered

JMS Properties mp.application_headers

JMSType mp.content_type
aIn these entries, mp refers to an AMQP message property, and dp refers to an AMQP delivery property.
bThis is a custom JMS property, set automatically by the Java JMS client implementation.
cThe reply_to is converted from the protocol representation into an address.
dJMSExpiration = dp.ttl + currentTime

3.4. JMS MapMessage Types
Qpid supports the Java JMS MapMessage interface, which provides support for maps in messages.
The following code shows how to send a MapMessage in Java JMS.

Using the Qpid JMS client

45

Example 3.5. Sending a Java JMS MapMessage

 import java.util.ArrayList;
 import java.util.HashMap;
 import java.util.List;
 import java.util.Map;

 import javax.jms.Connection;
 import javax.jms.Destination;
 import javax.jms.MapMessage;
 import javax.jms.MessageProducer;
 import javax.jms.Session;

 import java.util.Arrays;

 // !!! SNIP !!!

 MessageProducer producer = session.createProducer(queue);

 MapMessage m = session.createMapMessage();
 m.setIntProperty("Id", 987654321);
 m.setStringProperty("name", "Widget");
 m.setDoubleProperty("price", 0.99);

 List<String> colors = new ArrayList<String>();
 colors.add("red");
 colors.add("green");
 colors.add("white");
 m.setObject("colours", colors);

 Map<String,Double> dimensions = new HashMap<String,Double>();
 dimensions.put("length",10.2);
 dimensions.put("width",5.1);
 dimensions.put("depth",2.0);
 m.setObject("dimensions",dimensions);

 List<List<Integer>> parts = new ArrayList<List<Integer>>();
 parts.add(Arrays.asList(new Integer[] {1,2,5}));
 parts.add(Arrays.asList(new Integer[] {8,2,5}));
 m.setObject("parts", parts);

 Map<String,Object> specs = new HashMap<String,Object>();
 specs.put("colours", colors);
 specs.put("dimensions", dimensions);
 specs.put("parts", parts);
 m.setObject("specs",specs);

 producer.send(m);

The following table shows the datatypes that can be sent in a MapMessage, and the corresponding
datatypes that will be received by clients in Python or C++.

Using the Qpid JMS client

46

Table 3.5. Java Datatypes in Maps

Java Datatype # Python # C++

boolean bool bool

short int | long int16

int int | long int32

long int | long int64

float float float

double float double

java.lang.String unicode std::string

java.util.UUID uuid qpid::types::Uuid

java.util.Mapa dict Variant::Map

java.util.List list Variant::List
aIn Qpid, maps can nest. This goes beyond the functionality required by the JMS specification.

3.5. JMS Client Logging
The JMS Client logging is handled using the Simple Logging Facade for Java (SLF4J [http://
www.slf4j.org/]). As the name implies, slf4j is a facade that delegates to other logging systems like
log4j or JDK 1.4 logging. For more information on how to configure slf4j for specific logging systems,
please consult the slf4j documentation.

When using the log4j binding, please set the log level for org.apache.qpid explicitly. Otherwise log4j
will default to DEBUG which will degrade performance considerably due to excessive logging. The
recommended logging level for production is WARN.

The following example shows the logging properties used to configure client logging for slf4j using the
log4j binding. These properties can be placed in a log4j.properties file and placed in the CLASSPATH,
or they can be set explicitly using the -Dlog4j.configuration property.

Example 3.6. log4j Logging Properties

 log4j.logger.org.apache.qpid=WARN, console
 log4j.additivity.org.apache.qpid=false

 log4j.appender.console=org.apache.log4j.ConsoleAppender
 log4j.appender.console.Threshold=all
 log4j.appender.console.layout=org.apache.log4j.PatternLayout
 log4j.appender.console.layout.ConversionPattern=%t %d %p [%c{4}] %m%n

3.6. Configuring the JMS Client
The Qpid JMS Client allows several configuration options to customize it's behaviour at different
levels of granualarity.

• JVM level using JVM arguments : Configuration that affects all connections, sessions, consumers
and producers created within that JVM.

Ex. -Dmax_prefetch=1000 property specifies the message credits to use.

• Connection level using Connection/Broker properties : Affects the respective connection and
sessions, consumers and produces created by that connection.

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/

Using the Qpid JMS client

47

Ex. amqp://guest:guest@test/test?max_prefetch='1000'
&brokerlist='tcp://localhost:5672' property specifies the message credits to use.
This overrides any value specified via the JVM argument max_prefetch.

Please refer to the Section 3.2.2, “Connection URLs” section for a complete list of all properties
and how to use them.

• Destination level using Addressing options : Affects the producer(s) and consumer(s) created using
the respective destination.

Ex. my-queue; {create: always, link:{capacity: 10}}, where capacity
option specifies the message credits to use. This overrides any connection level configuration.

Please refer to the Section 2.4, “Addresses” section for a complete understanding of addressing and
it's various options.

Some of these config options are available at all three levels (Ex. max_prefetch), while others are
available only at JVM or connection level.

Using the Qpid JMS client

48

3.6.1. Qpid JVM Arguments

Table 3.6. Config Options For Connection Behaviour

Property Name Type Default Value Description

qpid.amqp.version string 0-10 Sets the AMQP version
to be used -
currently supports one
of {0-8,0-9,0-91,0-10}.

The client will
begin negotiation at
the specified version
and only negotiate
downwards if the
Broker does not support
the specified version.

qpid.heartbeat int 120 (secs) The heartbeat interval
in seconds. Two
consective misssed
heartbeats will result in
the connection timing
out.

This can also be set
per connection using
the Connection URL
options.

ignore_setclientID boolean false If a client ID is specified
in the connection URL
it's used or else an ID
is generated. If an ID is
specified after it's been
set Qpid will throw an
exception.

Setting this property to
'true' will disable that
check and allow you to
set a client ID of your
choice later on.

Using the Qpid JMS client

49

Table 3.7. Config Options For Session Behaviour

Property Name Type Default Value Description

qpid.session.command_limitint 65536 Limits the # of unacked
commands

qpid.session.byte_limit int 1048576 Limits the # of unacked
commands in terms of
bytes

qpid.use_legacy_map_messageboolean false If set will use the old
map message encoding.
By default the Map
messages are encoded
using the 0-10 map
encoding.

This can also be set
per connection using
the Connection URL
options.

qpid.jms.daemon.dispatcherboolean false Controls whether the
Session dispatcher
thread is a daemon
thread or not. If this
system property is set
to true then the Session
dispatcher threads will
be created as daemon
threads. This setting is
introduced in version
0.16.

Using the Qpid JMS client

50

Table 3.8. Config Options For Consumer Behaviour

Property Name Type Default Value Description

max_prefetch int 500 Maximum number of
pre-fetched messages
per consumer.

This can also
be defaulted for
consumers created on
a particular connection
using the Connection
URL options, or
per destination (see
the capacity option
under link properties in
addressing)

qpid.session.max_ack_delaylong 1000 (ms) Timer interval to
flush message acks
in buffer when
using AUTO_ACK and
DUPS_OK.

When using the above
ack modes, message
acks are batched and
sent if one of the
following conditions
are met (which ever
happens first).

• When the ack timer
fires.

• if
un_acked_msg_count
> max_prefetch/2.

The ack timer can be
disabled by setting it to
0.

sync_ack boolean false If set, each message
will be acknowledged
synchronously. When
using AUTO_ACK
mode, you need to
set this to "true", in
order to get the correct
behaviour as described
by the JMS spec.

This is set to false by
default for performance
reasons, therefore by
default AUTO_ACK
behaves similar to
DUPS_OK.

This can also be set
per connection using
the Connection URL
options.

Using the Qpid JMS client

51

Table 3.9. Config Options For Producer Behaviour

Property Name Type Default Value Description

sync_publish string "" (disabled) If one of {persistent|
all} is set then
persistent messages or
all messages will be sent
synchronously.

This can also be set
per connection using
the Connection URL
options.

Table 3.10. Config Options For Threading

Property Name Type Default Value Description

qpid.thread_factory string org.apache.qpid.thread.DefaultThreadFactorySpecifies the thread
factory to use.

If using a real time
JVM, you need to set
the above property to
org.apache.qpid.thread.RealtimeThreadFactory.

qpid.rt_thread_priority int 20 Specifies the priority
(1-99) for Real time
threads created by the
real time thread factory.

Using the Qpid JMS client

52

Table 3.11. Config Options For I/O

Property Name Type Default Value Description

qpid.transport string org.apache.qpid.transport.network.io.IoNetworkTransportThe transport
implementation to be
used.

A user could
specify an alternative
transport mechanism
that implements the
interface
org.apache.qpid.transport.network.OutgoingNetworkTransport.

qpid.sync_op_timeout long 60000 The length of time (in
milliseconds) to wait for
a synchronous operation
to complete.

For compatibility with
older clients, the
synonym
amqj.default_syncwrite_timeout
is supported.

qpid.tcp_nodelay boolean true Sets the
TCP_NODELAY
property of the
underlying socket. The
default was changed to
true as of Qpid 0.14.

This can also be set
per connection using
the Connection URL
options.

For compatibility with
older clients, the
synonym
amqj.tcp_nodelay
is supported.

qpid.send_buffer_size integer 65535 Sets the SO_SNDBUF
property of the
underlying socket.
Added in Qpid 0.16.

For compatibility with
older clients, the
synonym
amqj.sendBufferSize
is supported.

qpid.receive_buffer_size integer 65535 Sets the SO_RCVBUF
property of the
underlying socket.
Added in Qpid 0.16.

For compatibility with
older clients, the
synonym
amqj.receiveBufferSize
is supported.

qpid.failover_method_timeoutlong 60000 During failover, this
is the timeout for
each attempt to try
to re-establish the
connection. If a
reconnection attempt
exceeds the timeout, the
entire failover process is
aborted.

It is only applicable for
AMQP 0-8/0-9/0-9-1
clients.

Using the Qpid JMS client

53

Table 3.12. Config Options For Security

Property Name Type Default Value Description

qpid.sasl_mechs string PLAIN The SASL mechanism
to be used. More than
one could be specified
as a comma separated
list.

We currently support
the following
mechanisms {PLAIN |
GSSAPI |
EXTERNAL}.

This can also be set
per connection using
the Connection URL
options.

qpid.sasl_protocol string AMQP When using GSSAPI as
the SASL mechanism,
sasl_protocol
must be set to the
principal for the qpidd
broker, e.g. qpidd.

This can also be set
per connection using
the Connection URL
options.

qpid.sasl_server_name string localhost When using GSSAPI as
the SASL mechanism,
sasl_server must
be set to the host for
the SASL server, e.g.
example.com.

This can also be set
per connection using
the Connection URL
options.

Using the Qpid JMS client

54

Table 3.13. Config Options For Security - Standard JVM properties needed
when using GSSAPI as the SASL mechanism.a

Property Name Type Default Value Description

javax.security.auth.useSubjectCredsOnlyboolean true If set to 'false', forces the
SASL GASSPI client
to obtain the kerberos
credentials explicitly
instead of obtaining
from the "subject" that
owns the current thread.

java.security.auth.login.configstring Specifies the jass
configuration file.

Ex-
Djava.security.auth.login.config=myjas.conf

Here is the sample
myjas.conf JASS
configuration file:

 com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule required useTicketCache=true;
 };

aPlease refer to the Java security documentation for a complete understanding of the above properties.

Using the Qpid JMS client

55

Table 3.14. Config Options For Security - Using SSL for securing connections
or using EXTERNAL as the SASL mechanism.

Property Name Type Default Value Description

qpid.ssl_timeout long 60000 Timeout value used
by the Java SSL
engine when waiting on
operations.

qpid.ssl.KeyManagerFactory.algorithmstring - The key manager
factory algorithm name.
If not set, defaults to
the value returned from
the Java runtime call
KeyManagerFactory.getDefaultAlgorithm()

For compatibility with
older clients, the
synonym
qpid.ssl.keyStoreCertType
is supported.

qpid.ssl.TrustManagerFactory.algorithmstring - The trust manager
factory algorithm name.
If not set, defaults to
the value returned from
the Java runtime call
TrustManagerFactory.getDefaultAlgorithm()

For compatibility with
older clients, the
synonym
qpid.ssl.trustStoreCertType
is supported.

Using the Qpid JMS client

56

Table 3.15. Config Options For Security - Standard JVM properties needed
when Using SSL for securing connections or using EXTERNAL as the SASL
mechanism.a

Property Name Type Default Value Description

javax.net.ssl.keyStore string jvm default Specifies the key store
path.

This can also be set
per connection using
the Connection URL
options.

javax.net.ssl.keyStorePasswordstring jvm default Specifies the key store
password.

This can also be set
per connection using
the Connection URL
options.

javax.net.ssl.trustStore string jvm default Specifies the trust store
path.

This can also be set
per connection using
the Connection URL
options.

javax.net.ssl.trustStorePasswordstring jvm default Specifies the trust store
password.

This can also be set
per connection using
the Connection URL
options.

aQpid allows you to have per connection key and trust stores if required. If specified per connection, the JVM arguments are
ignored.

57

Chapter 4. Using the Qpid WCF client
4.1. XML and Binary Bindings

The Qpid WCF client provides two bindings, each with support for Windows .NET transactions.

The AmqpBinding is suitable for communication between two WCF applications. By default it
uses the WCF binary .NET XML encoder (BinaryMessageEncodingBindingElement) for efficient
message transmission, but it can also use the text and Message Transmission Optimization Mechanism
(MTOM) encoders. Here is a traditional service model sample program using the AmqpBinding. It
assumes that the queue "hello_service_node" has been created and configured on the AMQP broker.

Example 4.1. Traditional service model "Hello world!" example

 namespace Apache.Qpid.Documentation.HelloService
 {
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Channels;
 using System.Threading;
 using Apache.Qpid.Channel;

 [ServiceContract]
 public interface IHelloService
 {
 [OperationContract(IsOneWay = true, Action = "*")]
 void SayHello(string greeting);
 }

 public class HelloService : IHelloService
 {
 private static int greetingCount;

 public static int GreetingCount
 {
 get { return greetingCount; }
 }

 public void SayHello(string greeting)
 {
 Console.WriteLine("Service received: " + greeting);
 greetingCount++;
 }

 static void Main(string[] args)
 {
 try
 {
 AmqpBinding amqpBinding = new AmqpBinding();
 amqpBinding.BrokerHost = "localhost";
 amqpBinding.BrokerPort = 5672;

 ServiceHost serviceHost = new ServiceHost(typeof(HelloService));
 serviceHost.AddServiceEndpoint(typeof(IHelloService),
 amqpBinding, "amqp:hello_service_node");

Using the Qpid WCF client

58

 serviceHost.Open();

 // Send the service a test greeting
 Uri amqpClientUri=new Uri("amqp:amq.direct?routingkey=hello_service_node");
 EndpointAddress clientEndpoint = new EndpointAddress(amqpClientUri);
 ChannelFactory<IHelloService> channelFactory =
 new ChannelFactory<IHelloService>(amqpBinding, clientEndpoint);
 IHelloService clientProxy = channelFactory.CreateChannel();

 clientProxy.SayHello("Greetings from WCF client");

 // wait for service to process the greeting
 while (HelloService.GreetingCount == 0)
 {
 Thread.Sleep(100);
 }
 channelFactory.Close();
 serviceHost.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: {0}", e);
 }
 }
 }
 }

The second binding, AmqpBinaryBinding, is suitable for WCF applications that need to inter-operate
with non-WCF clients or that wish to have direct access to the raw wire representation of the message
body. It relies on a custom encoder to read and write raw (binary) content which operates similarly to
the ByteStream encoder (introduced in .NET 4.0). The encoder presents an abstract XML infoset view
of the raw message content on input. On output, the encoder does the reverse and peels away the XML
infoset layer exposing the raw content to the wire representation of the message body. The application
must do the inverse of what the encoder does to allow the XML infoset wrapper to cancel properly.
This is demonstrated in the following sample code (using the channel programming model) which
directly manipulates or provides callbacks to the WCF message readers and writers when the content
is consumed. In contrast to the AmqpBinding sample where the simple greeting is encapsulated in a
compressed SOAP envelope, the wire representation of the message contains the raw content and is
identical and fully interoperable with the Qpid C++ "Hello world!" example.

Example 4.2. Binary "Hello world!" example using the channel model

 namespace Apache.Qpid.Samples.Channel.HelloWorld
 {
 using System;
 using System.ServiceModel;
 using System.ServiceModel.Channels;
 using System.ServiceModel.Description;
 using System.Text;
 using System.Xml;
 using Apache.Qpid.Channel;

 public class HelloWorld
 {
 static void Main(string[] args)
 {

Using the Qpid WCF client

59

 String broker = "localhost";
 int port = 5672;
 String target = "amq.topic";
 String source = "my_topic_node";

 if (args.Length > 0)
 {
 broker = args[0];
 }

 if (args.Length > 1)
 {
 port = int.Parse(args[1]);
 }

 if (args.Length > 2)
 {
 target = args[2];
 }

 if (args.Length > 3)
 {
 source = args[3];
 }

 AmqpBinaryBinding binding = new AmqpBinaryBinding();
 binding.BrokerHost = broker;
 binding.BrokerPort = port;

 IChannelFactory<IInputChannel> receiverFactory = binding.BuildChannelFactory<IInputChannel>();
 receiverFactory.Open();
 IInputChannel receiver = receiverFactory.CreateChannel(new EndpointAddress("amqp:" + source));
 receiver.Open();

 IChannelFactory<IOutputChannel> senderFactory = binding.BuildChannelFactory<IOutputChannel>();
 senderFactory.Open();
 IOutputChannel sender = senderFactory.CreateChannel(new EndpointAddress("amqp:" + target));
 sender.Open();

 sender.Send(Message.CreateMessage(MessageVersion.None, "", new HelloWorldBinaryBodyWriter()));

 Message message = receiver.Receive();
 XmlDictionaryReader reader = message.GetReaderAtBodyContents();
 while (!reader.HasValue)
 {
 reader.Read();
 }

 byte[] binaryContent = reader.ReadContentAsBase64();
 string text = Encoding.UTF8.GetString(binaryContent);

 Console.WriteLine(text);

 senderFactory.Close();
 receiverFactory.Close();
 }
 }

Using the Qpid WCF client

60

 public class HelloWorldBinaryBodyWriter : BodyWriter
 {
 public HelloWorldBinaryBodyWriter() : base (true) {}

 protected override void OnWriteBodyContents(XmlDictionaryWriter writer)
 {
 byte[] binaryContent = Encoding.UTF8.GetBytes("Hello world!");

 // wrap the content:
 writer.WriteStartElement("Binary");
 writer.WriteBase64(binaryContent, 0, binaryContent.Length);
 }
 }
 }

Bindings define ChannelFactories and ChannelListeners associated with an AMQP Broker. WCF will
frequently automatically create and manage the life cycle of a these and the resulting IChannel objects
used in message transfer. The binding parameters that can be set are:

Table 4.1. WCF Binding Parameters

Parameter Default Description

BrokerHost localhost The broker's server name. Currently
the WCF channel only supports
connections with a single broker.
Failover to multiple brokers will be
provided in the future.

BrokerPort 5672 The port the broker is listening on.

PrefetchLimit 0 The number of messages to prefetch
from the amqp broker before
the application actually consumes
them. Increasing this number can
dramatically increase the read
performance in some circumstances.

Shared false Indicates if separate channels to
the same broker can share an
underlying AMQP tcp connection
(provided they also share the same
authentication credentials).

TransferMode buffered Indicates whether the channel's
encoder uses the WCF
BufferManager cache to temporarily
store message content during the
encoding/decoding phase. For small
to medium sized SOAP based
messages, buffered is usually
the preferred choice. For binary
messages, streamed TransferMode is
the more efficient mode.

4.2. Endpoints
In Qpid 0.6 the WCF Endpoints map to simple AMQP 0-10 exchanges (IOutputChannel) or AMQP
0-10 queues (IInputChannel). The format for an IOutputChannel is

Using the Qpid WCF client

61

 "amqp:amq.direct" or "amqp:my_exchange?routingkey=my_routing_key"

and for an IInputChannel is

 "amqp:my_queue"

The routing key is in fact a default value associated with the particular channel. Outgoing messages
can always have their routing key uniquely set.

If the respective queue or exchange doesn't exist, an exception is thrown when opening the channel.
Queues and exchanges can be created and configured using qpid-config.

4.3. Message Headers
AMQP specific message headers can be set on or retrieved from the ServiceModel.Channels.Message
using the AmqpProperties type.

For example, on output:

AmqpProperties props = new AmqpProperties();
props.Durable = true;
props.PropertyMap.Add("my_custom_header", new AmqpString("a custom value"));
Message msg = Message.CreateMessage(args);
msg.Properties.Add("AmqpProperties", amqpProperties);
outputChannel.Send(msg);

On input the headers can be accessed from the Message or extracted from the operation context

public void SayHello(string greeting)
{
 AmqpProperties props = (AmqpProperties) OperationContext.
 Current.IncomingMessageProperties["AmqpProperties"];
 AmqpString extra = (AmqpString) props.PropertyMap["my_custom_header"];
 Console.WriteLine("Service received: {0} and {1}", greeting, extra);
}

4.4. Security
To engage TLS/SSL:

binding.Security.Mode = AmqpSecurityMode.Transport;
binding.Security.Transport.UseSSL = true;
binding.BrokerPort = 5671;

Currently the WCF client only provides SASL PLAIN (i.e. username and password) authentication.
To provide a username and password, you can set the DefaultAmqpCredential value in the binding.
This value can be overridden or set for a binding's channel factories and listeners, either by
setting the ClientCredentials as a binding parameter, or by using an AmqpCredential as a binding
parameter. The search order for credentials is the AmqpCredential binding parameter, followed by the
ClientCredentials (unless IgnoreEndpointClientCredentials has been set), and finally defaulting to the
DefaultAmqpCredential of the binding itself. Here is a sample using ClientCredentials:

ClientCredentials credentials = new ClientCredentials();

Using the Qpid WCF client

62

credentials.UserName.UserName = "guest";
credentials.UserName.Password = "guest";
bindingParameters = new BindingParameterCollection();
bindingParameters.Add(credentials);
readerFactory = binding.BuildChannelFactory<IInputChannel>(bindingParameters);

4.5. Transactions
The WCF channel provides a transaction resource manager module and a recovery module that
together provide distributed transaction support with one-phase optimization. Some configuration is
required on Windows machines to enable transaction support (see your installation notes or top level
ReadMe.txt file for instructions). Once properly configured, the Qpid WCF channel acts as any other
System.Transactions aware resource, capable of participating in explicit or implicit transactions.

Server code:

[OperationBehavior(TransactionScopeRequired = true,
 TransactionAutoComplete = true)]

public void SayHello(string greeting)
{
 // increment ExactlyOnceReceived counter on DB

 // Success: transaction auto completes:
}

Because this operation involves two transaction resources, the database and the AMQP message
broker, this operates as a full two phase commit transaction managed by the Distributed Transaction
Coordinator service. If the transaction proceeds without error, both ExactlyOnceReceived is
incremented in the database and the AMQP message is consumed from the broker. Otherwise,
ExactlyOnceReceived is unchanged and AMQP message is returned to its queue on the broker.

For the client code a few changes are made to the non-transacted example. For "exactly once"
semantics, we set the AMQP "Durable" message property and enclose the transacted activities in a
TransactionScope:

AmqpProperties myDefaults = new AmqpProperties();
myDefaults.Durable = true;
amqpBinding.DefaultMessageProperties = myDefaults;
ChannelFactory<IHelloService> channelFactory =
new ChannelFactory<IHelloService>(amqpBinding, clientEndpoint);
IHelloService clientProxy = channelFactory.CreateChannel();

using (TransactionScope ts = new TransactionScope())
{
 AmqpProperties amqpProperties = new AmqpProperties();
 clientProxy.SayHello("Greetings from WCF client");
 // increment ExactlyOnceSent counter on DB
 ts.Complete();
}

63

Chapter 5. The .NET Binding for the C
++ Messaging Client

The .NET Binding for the C++ Qpid Messaging Client is a library that gives any .NET program access
to Qpid C++ Messaging objects and methods.

5.1. .NET Binding for the C++ Messaging
Client Component Architecture

 +----------------------------+
 | Dotnet examples |
 | Managed C# |
 +------+---------------+-----+
 | |
 V |
 +---------------------------+ |
 | .NET Managed Callback | |
 | org.apache.qpid.messaging.| |
 | sessionreceiver.dll | |
 +----------------------+----+ |
 | |
managed V V
(.NET) +--------------------------------+
:::::::::::::::::::::::| .NET Binding Library |::::::::::::
unmanaged | org.apache.qpid.messaging.dll |
(Native Win32/64) +---------------+----------------+
 |
 |
 +----------------+ |
 | Native examples| |
 | Unmanaged C++ | |
 +--------+-------+ |
 | |
 V V
 +----------------------------------+
 | QPID Messaging C++ Libraries |
 | qpid*.dll qmf*.dll |
 +--------+--------------+----------+

This diagram illustrates the code and library components of the binding and the hierarchical
relationships between them.

The .NET Binding for the
C++ Messaging Client

64

Table 5.1. .NET Binding for the C++ Messaging Client Component Architecture

Component Name Component Function

QPID Messaging C++ Libraries The QPID Messaging C++ core run time system

Unmanaged C++ Example Source Programs Ordinary C++ programs that illustrate using qpid/
cpp Messaging directly in a native Windows
environment.

.NET Messaging Binding Library The .NET Messaging Binding library provides
interoprability between managed .NET programs
and the unmanaged, native Qpid Messaging C+
+ core run time system. .NET programs create
a Reference to this library thereby exposing all
of the native C++ Messaging functionality to
programs written in any .NET language.

.NET Messaging Managed Callback Library An extension of the .NET Messaging Binding
Library that provides message callbacks in a
managed .NET environment.

Managed C# .NET Example Source Programs Various C# example programs that illustrate
using .NET Binding for C++ Messaging in
the .NET environment.

5.2. .NET Binding for the C++ Messaging
Client Examples

This chapter describes the various sample programs that are available to illustrate common Qpid
Messaging usage.

Table 5.2. Example : Client - Server

Example Name Example Description

csharp.example.server Creates a Receiver and listens for messages.
Upon message reception the message content is
converted to upper case and forwarded to the
received message's ReplyTo address.

csharp.example.client Sends a series of messages to the Server and prints
the original message content and the received
message content.

Table 5.3. Example : Map Sender – Map Receiver

Example Name Example Description

csharp.map.receiver Creates a Receiver and listens for a map message.
Upon message reception the message is decoded
and displayed on the console.

csharp.map.sender Creates a map message and sends it to
map.receiver. The map message contains values
for every supported .NET Messaging Binding
data type.

The .NET Binding for the
C++ Messaging Client

65

Table 5.4. Example : Spout - Drain

Example Name Example Description

csharp.example.spout Spout is a more complex example of code that
generates a series of messages and sends them
to peer program Drain. Flexible command line
arguments allow the user to specify a variety of
message and program options.

csharp.example.drain Drain is a more complex example of code that
receives a series of messages and displays their
contents on the console.

Table 5.5. Example : Map Callback Sender – Map Callback Receiver

Example Name Example Description

csharp.map.callback.receiver Creates a Receiver and listens for a map
message. Upon message reception the message
is decoded and displayed on the console. This
example illustrates the use of the C# managed
code callback mechanism provided by .NET
Messaging Binding Managed Callback Library.

csharp.map.callback.sender Creates a map message and sends it to
map_receiver. The map message contains values
for every supported .NET Messaging Binding
data type.

Table 5.6. Example - Declare Queues

Example Name Example Description

csharp.example.declare_queues A program to illustrate creating objects on a
broker. This program creates a queue used by
spout and drain.

Table 5.7. Example: Direct Sender - Direct Receiver

Example Name Example Description

csharp.direct.receiver Creates a Receiver and listens for a messages.
Upon message reception the message is decoded
and displayed on the console.

csharp.direct.sender Creates a series of messages and sends them to
csharp.direct.receiver.

Table 5.8. Example: Hello World

Example Name Example Description

csharp.example.helloworld A program to send a message and to receive the
same message.

5.3. .NET Binding Class Mapping to
Underlying C++ Messaging API

This chapter describes the specific mappings between classes in the .NET Binding and the underlying
C++ Messaging API.

The .NET Binding for the
C++ Messaging Client

66

5.3.1. .NET Binding for the C++ Messaging API Class:
Address

Table 5.9. .NET Binding for the C++ Messaging API Class: Address

.NET Binding Class: Address

Language Syntax

C++ class Address

.NET public ref class Address

Constructor

C++ Address();

.NET public Address();

Constructor

C++ Address(const std::string& address);

.NET public Address(string address);

Constructor

C++ Address(const std::string& name, const std::string& subject, const
qpid::types::Variant::Map& options, const std::string& type = "");

.NET public Address(string name, string subject, Dictionary<string, object> options);

.NET public Address(string name, string subject, Dictionary<string, object> options, string
type);

Copy constructor

C++ Address(const Address& address);

.NET public Address(Address address);

Destructor

C++ ~Address();

.NET ~Address();

Finalizer

C++ n/a

.NET !Address();

Copy assignment operator

C++ Address& operator=(const Address&);

.NET public Address op_Assign(Address rhs);

Property: Name

C++ const std::string& getName() const;

C++ void setName(const std::string&);

.NET public string Name { get; set; }

Property: Subject

C++ const std::string& getSubject() const;

C++ void setSubject(const std::string&);

.NET public string Subject { get; set; }

Property: Options

C++ const qpid::types::Variant::Map& getOptions() const;

C++ qpid::types::Variant::Map& getOptions();

C++ void setOptions(const qpid::types::Variant::Map&);

.NET public Dictionary<string, object> Options { get; set; }

Property: Type

C++ std::string getType() const;

C++ void setType(const std::string&);

.NET public string Type { get; set; }

Miscellaneous

C++ std::string str() const;

.NET public string ToStr();

Miscellaneous

C++ operator bool() const;

.NET n/a

Miscellaneous

C++ bool operator !() const;

.NET n/a

The .NET Binding for the
C++ Messaging Client

67

5.3.2. .NET Binding for the C++ Messaging API Class:
Connection

Table 5.10. .NET Binding for the C++ Messaging API Class: Connection

.NET Binding Class: Connection

Language Syntax

C++ class Connection : public qpid::messaging::Handle<ConnectionImpl>

.NET public ref class Connection

Constructor

C++ Connection(ConnectionImpl* impl);

.NET n/a

Constructor

C++ Connection();

.NET n/a

Constructor

C++ Connection(const std::string& url, const qpid::types::Variant::Map& options =
qpid::types::Variant::Map());

.NET public Connection(string url);

.NET public Connection(string url, Dictionary<string, object> options);

Constructor

C++ Connection(const std::string& url, const std::string& options);

.NET public Connection(string url, string options);

Copy Constructor

C++ Connection(const Connection&);

.NET public Connection(Connection connection);

Destructor

C++ ~Connection();

.NET ~Connection();

Finalizer

C++ n/a

.NET !Connection();

Copy assignment operator

C++ Connection& operator=(const Connection&);

.NET public Connection op_Assign(Connection rhs);

Method: SetOption

C++ void setOption(const std::string& name, const qpid::types::Variant& value);

.NET public void SetOption(string name, object value);

Method: open

C++ void open();

.NET public void Open();

Property: isOpen

C++ bool isOpen();

.NET public bool IsOpen { get; }

Method: close

C++ void close();

.NET public void Close();

Method: createTransactionalSession

C++ Session createTransactionalSession(const std::string& name = std::string());

.NET public Session CreateTransactionalSession();

.NET public Session CreateTransactionalSession(string name);

Method: createSession

C++ Session createSession(const std::string& name = std::string());

.NET public Session CreateSession();

.NET public Session CreateSession(string name);

Method: getSession

C++ Session getSession(const std::string& name) const;

.NET public Session GetSession(string name);

Property: AuthenticatedUsername

C++ std::string getAuthenticatedUsername();

.NET public string GetAuthenticatedUsername();

The .NET Binding for the
C++ Messaging Client

68

5.3.3. .NET Binding for the C++ Messaging API Class:
Duration

Table 5.11. .NET Binding for the C++ Messaging API Class: Duration

.NET Binding Class: Duration

Language Syntax

C++ class Duration

.NET public ref class Duration

Constructor

C++ explicit Duration(uint64_t milliseconds);

.NET public Duration(ulong mS);

Copy constructor

C++ n/a

.NET public Duration(Duration rhs);

Destructor

C++ default

.NET default

Finalizer

C++ n/a

.NET default

Property: Milliseconds

C++ uint64_t getMilliseconds() const;

.NET public ulong Milliseconds { get; }

Operator: *

C++ Duration operator*(const Duration& duration, uint64_t multiplier);

.NET public static Duration operator *(Duration dur, ulong multiplier);

.NET public static Duration Multiply(Duration dur, ulong multiplier);

C++ Duration operator*(uint64_t multiplier, const Duration& duration);

.NET public static Duration operator *(ulong multiplier, Duration dur);

.NET public static Duration Multiply(ulong multiplier, Duration dur);

Constants

C++ static const Duration FOREVER;

C++ static const Duration IMMEDIATE;

C++ static const Duration SECOND;

C++ static const Duration MINUTE;

.NET public sealed class DurationConstants

.NET public static Duration FORVER;

.NET public static Duration IMMEDIATE;

.NET public static Duration MINUTE;

.NET public static Duration SECOND;

The .NET Binding for the
C++ Messaging Client

69

5.3.4. .NET Binding for the C++ Messaging API Class:
FailoverUpdates

Table 5.12. .NET Binding for the C++ Messaging API Class: FailoverUpdates

.NET Binding Class: FailoverUpdates

Language Syntax

C++ class FailoverUpdates

.NET public ref class FailoverUpdates

Constructor

C++ FailoverUpdates(Connection& connection);

.NET public FailoverUpdates(Connection connection);

Destructor

C++ ~FailoverUpdates();

.NET ~FailoverUpdates();

Finalizer

C++ n/a

.NET !FailoverUpdates();

The .NET Binding for the
C++ Messaging Client

70

5.3.5. .NET Binding for the C++ Messaging API Class:
Message

Table 5.13. .NET Binding for the C++ Messaging API Class: Message

.NET Binding Class: Message

Language Syntax

C++ class Message

.NET public ref class Message

Constructor

C++ Message(const std::string& bytes = std::string());

.NET Message();

.NET Message(System::String ^ theStr);

.NET Message(System::Object ^ theValue);

.NET Message(array<System::Byte> ^ bytes);

Constructor

C++ Message(const char*, size_t);

.NET public Message(byte[] bytes, int offset, int size);

Copy constructor

C++ Message(const Message&);

.NET public Message(Message message);

Copy assignment operator

C++ Message& operator=(const Message&);

.NET public Message op_Assign(Message rhs);

Destructor

C++ ~Message();

.NET ~Message();

Finalizer

C++ n/a

.NET !Message()

Property: ReplyTo

C++ void setReplyTo(const Address&);

C++ const Address& getReplyTo() const;

.NET public Address ReplyTo { get; set; }

Property: Subject

C++ void setSubject(const std::string&);

C++ const std::string& getSubject() const;

.NET public string Subject { get; set; }

Property: ContentType

C++ void setContentType(const std::string&);

C++ const std::string& getContentType() const;

.NET public string ContentType { get; set; }

Property: MessageId

C++ void setMessageId(const std::string&);

C++ const std::string& getMessageId() const;

.NET public string MessageId { get; set; }

Property: UserId

C++ void setUserId(const std::string&);

C++ const std::string& getUserId() const;

.NET public string UserId { get; set; }

Property: CorrelationId

C++ void setCorrelationId(const std::string&);

C++ const std::string& getCorrelationId() const;

.NET public string CorrelationId { get; set; }

Property: Priority

C++ void setPriority(uint8_t);

C++ uint8_t getPriority() const;

.NET public byte Priority { get; set; }

Property: Ttl

C++ void setTtl(Duration ttl);

C++ Duration getTtl() const;

.NET public Duration Ttl { get; set; }

Property: Durable

C++ void setDurable(bool durable);

C++ bool getDurable() const;

.NET public bool Durable { get; set; }

Property: Redelivered

C++ bool getRedelivered() const;

C++ void setRedelivered(bool);

.NET public bool Redelivered { get; set; }

Method: SetProperty

C++ void setProperty(const std::string&, const qpid::types::Variant&);

.NET public void SetProperty(string name, object value);

Property: Properties

C++ const qpid::types::Variant::Map& getProperties() const;

C++ qpid::types::Variant::Map& getProperties();

.NET public Dictionary<string, object> Properties { get; set; }

Method: SetContent

C++ void setContent(const std::string&);

C++ void setContent(const char* chars, size_t count);

.NET public void SetContent(byte[] bytes);

.NET public void SetContent(string content);

.NET public void SetContent(byte[] bytes, int offset, int size);

Method: GetContent

C++ std::string getContent() const;

.NET public string GetContent();

.NET public void GetContent(byte[] arr);

.NET public void GetContent(Collection<object> __p1);

.NET public void GetContent(Dictionary<string, object> dict);

Method: GetContentPtr

C++ const char* getContentPtr() const;

.NET n/a

Property: ContentSize

C++ size_t getContentSize() const;

.NET public ulong ContentSize { get; }

Struct: EncodingException

C++ struct EncodingException : qpid::types::Exception

.NET n/a

Method: decode

C++ void decode(const Message& message, qpid::types::Variant::Map& map, const
std::string& encoding = std::string());

C++ void decode(const Message& message, qpid::types::Variant::List& list, const
std::string& encoding = std::string());

.NET n/a

Method: encode

C++ void encode(const qpid::types::Variant::Map& map, Message& message, const
std::string& encoding = std::string());

C++ void encode(const qpid::types::Variant::List& list, Message& message, const
std::string& encoding = std::string());

.NET n/a

Method: AsString

C++ n/a

.NET public string AsString(object obj);

.NET public string ListAsString(Collection<object> list);

.NET public string MapAsString(Dictionary<string, object> dict);

The .NET Binding for the
C++ Messaging Client

71

5.3.6. .NET Binding for the C++ Messaging API Class:
Receiver

Table 5.14. .NET Binding for the C++ Messaging API Class: Receiver

.NET Binding Class: Receiver

Language Syntax

C++ class Receiver

.NET public ref class Receiver

Constructor

.NET Constructed object is returned by Session.CreateReceiver

Copy constructor

C++ Receiver(const Receiver&);

.NET public Receiver(Receiver receiver);

Destructor

C++ ~Receiver();

.NET ~Receiver();

Finalizer

C++ n/a

.NET !Receiver()

Copy assignment operator

C++ Receiver& operator=(const Receiver&);

.NET public Receiver op_Assign(Receiver rhs);

Method: Get

C++ bool get(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Get(Message mmsgp);

.NET public bool Get(Message mmsgp, Duration durationp);

Method: Get

C++ Message get(Duration timeout=Duration::FOREVER);

.NET public Message Get();

.NET public Message Get(Duration durationp);

Method: Fetch

C++ bool fetch(Message& message, Duration timeout=Duration::FOREVER);

.NET public bool Fetch(Message mmsgp);

.NET public bool Fetch(Message mmsgp, Duration duration);

Method: Fetch

C++ Message fetch(Duration timeout=Duration::FOREVER);

.NET public Message Fetch();

.NET public Message Fetch(Duration durationp);

Property: Capacity

C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available

C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsettled

C++ uint32_t getUnsettled();

.NET public uint Unsettled { get; }

Method: Close

C++ void close();

.NET public void Close();

Property: IsClosed

C++ bool isClosed() const;

.NET public bool IsClosed { get; }

Property: Name

C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session

C++ Session getSession() const;

.NET public Session Session { get; }

The .NET Binding for the
C++ Messaging Client

72

5.3.7. .NET Binding for the C++ Messaging API Class:
SenderTable 5.15. .NET Binding for the C++ Messaging API Class: Sender.NET Binding Class: Sender

Language Syntax

C++ class Sender

.NET public ref class Sender

Constructor

.NET Constructed object is returned by Session.CreateSender

Copy constructor

C++ Sender(const Sender&);

.NET public Sender(Sender sender);

Destructor

C++ ~Sender();

.NET ~Sender();

Finalizer

C++ n/a

.NET !Sender()

Copy assignment operator

C++ Sender& operator=(const Sender&);

.NET public Sender op_Assign(Sender rhs);

Method: Send

C++ void send(const Message& message, bool sync=false);

.NET public void Send(Message mmsgp);

.NET public void Send(Message mmsgp, bool sync);

Method: Close

C++ void close();

.NET public void Close();

Property: Capacity

C++ void setCapacity(uint32_t);

C++ uint32_t getCapacity();

.NET public uint Capacity { get; set; }

Property: Available

C++ uint32_t getAvailable();

.NET public uint Available { get; }

Property: Unsettled

C++ uint32_t getUnsettled();

.NET public uint Unsettled { get; }

Property: Name

C++ const std::string& getName() const;

.NET public string Name { get; }

Property: Session

C++ Session getSession() const;

.NET public Session Session { get; }

The .NET Binding for the
C++ Messaging Client

73

5.3.8. .NET Binding for the C++ Messaging API Class:
Session

Table 5.16. .NET Binding for the C++ Messaging API Class: Session

.NET Binding Class: Session

Language Syntax

C++ class Session

.NET public ref class Session

Constructor

.NET Constructed object is returned by Connection.CreateSession

Copy constructor

C++ Session(const Session&);

.NET public Session(Session session);

Destructor

C++ ~Session();

.NET ~Session();

Finalizer

C++ n/a

.NET !Session()

Copy assignment operator

C++ Session& operator=(const Session&);

.NET public Session op_Assign(Session rhs);

Method: Close

C++ void close();

.NET public void Close();

Method: Commit

C++ void commit();

.NET public void Commit();

Method: Rollback

C++ void rollback();

.NET public void Rollback();

Method: Acknowledge

C++ void acknowledge(bool sync=false);

C++ void acknowledge(Message&, bool sync=false);

.NET public void Acknowledge();

.NET public void Acknowledge(bool sync);

.NET public void Acknowledge(Message __p1);

.NET public void Acknowledge(Message __p1, bool __p2);

Method: Reject

C++ void reject(Message&);

.NET public void Reject(Message __p1);

Method: Release

C++ void release(Message&);

.NET public void Release(Message __p1);

Method: Sync

C++ void sync(bool block=true);

.NET public void Sync();

.NET public void Sync(bool block);

Property: Receivable

C++ uint32_t getReceivable();

.NET public uint Receivable { get; }

Property: UnsettledAcks

C++ uint32_t getUnsettledAcks();

.NET public uint UnsetledAcks { get; }

Method: NextReceiver

C++ bool nextReceiver(Receiver&, Duration timeout=Duration::FOREVER);

.NET public bool NextReceiver(Receiver rcvr);

.NET public bool NextReceiver(Receiver rcvr, Duration timeout);

Method: NextReceiver

C++ Receiver nextReceiver(Duration timeout=Duration::FOREVER);

.NET public Receiver NextReceiver();

.NET public Receiver NextReceiver(Duration timeout);

Method: CreateSender

C++ Sender createSender(const Address& address);

.NET public Sender CreateSender(Address address);

Method: CreateSender

C++ Sender createSender(const std::string& address);

.NET public Sender CreateSender(string address);

Method: CreateReceiver

C++ Receiver createReceiver(const Address& address);

.NET public Receiver CreateReceiver(Address address);

Method: CreateReceiver

C++ Receiver createReceiver(const std::string& address);

.NET public Receiver CreateReceiver(string address);

Method: GetSender

C++ Sender getSender(const std::string& name) const;

.NET public Sender GetSender(string name);

Method: GetReceiver

C++ Receiver getReceiver(const std::string& name) const;

.NET public Receiver GetReceiver(string name);

Property: Connection

C++ Connection getConnection() const;

.NET public Connection Connection { get; }

Property: HasError

C++ bool hasError();

.NET public bool HasError { get; }

Method: CheckError

C++ void checkError();

.NET public void CheckError();

The .NET Binding for the
C++ Messaging Client

74

5.3.9. .NET Binding Class: SessionReceiver
The SessionReceiver class provides a convenient callback mechanism for Messages received by all
Receivers on a given Session.

using Org.Apache.Qpid.Messaging;
using System;

namespace Org.Apache.Qpid.Messaging.SessionReceiver
{
 public interface ISessionReceiver
 {
 void SessionReceiver(Receiver receiver, Message message);
 }

 public class CallbackServer
 {
 public CallbackServer(Session session, ISessionReceiver callback);

 public void Close();
 }
}

To use this class a client program includes references to both Org.Apache.Qpid.Messaging
and Org.Apache.Qpid.Messaging.SessionReceiver. The calling program creates a function that
implements the ISessionReceiver interface. This function will be called whenever message is received
by the session. The callback process is started by creating a CallbackServer and will continue to run
until the client program calls the CallbackServer.Close function.

A complete operating example of using the SessionReceiver callback is contained in cpp/bindings/
qpid/dotnet/examples/csharp.map.callback.receiver.

