AMQP Messaging Broker
(Implemented in C++)

AMQP Messaging Broker (Implemented in C++)

Table of Contents

Fg11geTo (¥ oi (oo E PSP OP PP PPPRTR Vii
1. Running the AMQP MeSsaging BroKEroiiiiiiiiiiiiii e 1
1.1. Running & QPid C BrOKESuuiiiiiiieieii ettt e eeeens 1
1.1.1. Building the C++ Broker and Client Libraries............ccooovviiiiiiiiiiiees 1
1.1.2. RUNNING the C4 BIOKENcooiiiiiiiiiie e 1
1.1.3. Most common questions getting gpidd rUNNINGcccuueieieiinneiei e 1
124, AULNENEICAITON ..uieiiiiee et e e e e e e eees 2
1.1.5. Slightly more complex configurationoveieeuiieieiieee e 3
1.1.6. L0oading eXtra MOCUIESociieiiieiiiii et ettt e et e e 4
1.1.7. Timestamping ReCaiVed MESSAgESuuieiiiiiieiiiii e 5

1.2. Cheat Sheet for configuring QUEUE OPLIONScccuuuriiiiiiiieeieiie e 6
1.2.1. Configuring QUEUE OPLIONSuueiiiiiieeeiiie ettt et e r e e e eeenes 6

1.3. Chesat Sheet for configuring Exchange OptionScoevviiiiiiiiiieiiiieee e 8
1.3.1. Configuring EXChange OPLiONSoviieuuuiiiiiiie et 8

1.4, BroKer FEOBIAHIONccoevuieiiiiie ettt e et e e e e e e 10
1.4.1. MESSAOE ROULESceuiiiiiieiiiee ittt ettt et e e e ees 11
1.4.2. Federation TOPOIOGIESuueieiiiiieiieii ettt eeees 12
1.4.3. Federation among High Availability Message CIUSIErScoovviiieiiiiinneeiiiinnen, 12
1.4.4. The gpid-route ULHITYieiiiiiieiii e 12

LD, SEOUMTY .ttt ettt ettt et e e ettt ettt e e e et e ana s 18
1.5.2. USer AULNENEICAIION ...t 18
1.5.2. AULNOMTZAITON .evieiiii e ettt e et e e e e e e 21
1.5.3. ENCIyption USING SSL ...ceviiiiiiiiiiieeiiii ettt et e e e e 25

1.6. LVQ - Last VAUE QUEUE ...ttt e e e et e e e anns 28
1.6.1. Understanding LV Qoiiiieiiii et 28
1.6.2. Creating aLast Value QUEUEooiiiiiniieiiiie e 29
1.6.3. LVQ EXAMPIE .eeiiiii ettt 29
1.6.4. Deprecated LVQ MOOESuniiiiiiieeiiii ettt 30

1.7. Queue State REPIICAIIONccouuniiiiii et 30
1.7.1. Asynchronous Replication of QUeUE SEatecceuuvieiiiiiiieiiiiieeeei e 30

1.8. Active-active Messaging ClUSLEN'Sooiiiiiiieiiii e 34
1.8.1. Starting a BrokKer in @ CIUSLESiiiiiiiecii e 34
1.8.2. gPIO-CIUSIEN ...eeieiii ettt e 37
1.8.3. FalOVEr iN CHENESciiiiiieeiii et et 38
1.8.4. Error handling in CIUSLErSuiiiiiii et 39
1.8.5. Persistence in High Availability Message CIUSIErSoviiiiiiieiiiiiiiccciiees 40

1.9. Producer FIOW CONTIOlcoouuiiiiiii et 41
LL0.0. OVEIVIEIW ..ttt ettt e et e ettt e e et et r e e e e et reaeenbaaeeees 41
1.9.2. USEr INEEITACE ..t 43

1.10. AMQP COMPALTDIHTTY ..evvveeeieeii e 44
1.10.1. AMQP Compatibility of Qpid rel€ases:ooeeiiviiiieiiiiiee e 45
1.10.2. Interop table by AMQP SpeCifiCation VEIrSIONoveeviviieiiiiiiieeiiiieeeeeiieen 46

1.11. Qpid Interoperability DOCUMENTALIONuuuiiiiiiiieieii e 46
L SA S it e et e e e e e 46

1.12. USING MESSAPE GIOUPS ... eeevenetertineeeeii et et e e e et s et eeb e e e et e et e b e e e et e e e eba s 48
122,01, OVEIVIBIW ..ottt e et e ettt e et e e e e 48
1.12.2. GroupPiNg MESSBOESeeertieeteiti e ettt e et ettt e et e et e e et e e e 48
1.12.3. The ROl Of the BrOKEroiiiiiiie e 48
1.12.4. Well Behaved CONSUMELSccovutieiiiiiieeieiie e e ettt e et e e 49
1.12.5. BroKer ConfigUuralionueeeeuuneieeiieeeeii e et e e et e e e e eae e eeneens 49

1.13. Active-passive Messaging ClUSIErS (PreVIEW)uiiiiiiiiiiiiiiieeeei e 51

AMQP Messaging Broker
(Implemented in C++)

L1131, OVEIVIEIW ittt e e et e e e et e e e et e e e eaen s 51
1.13.2. Configuring the BroKEN'Sccuuiiiiiiii e 52
1.13.3. Creating replicated queues and eXChangeSvevvieiiiieiiii i e 53
L.13.4, ClIENt Fall-OVEN ...ciiiiiiieii et e e 53
1.13.5. BroKEr fall-OVEN ..ooivviiieiiiie e 54
1.13.6. Broker AdmINIStrationcoceueioiiiiiieriiie et e e e e 54

1.14. Queue Replication with the HA moduleccoviiiiiiiiii e, 55
2. Managing the AMQP MeSSaging BroKEriciuiiiiiiiiiiii e e e 56
2.1. Managing the CH+ BrOKEYc.uiiiiiiiiii e e e e e e e e e e e e e aanas 56
2.1.1. USING gPIO-CONTIQG «.evvneiiiieiii e e e e e e e e e e e e e et e e e e e e eeen 56
2.1.2. USING GPIO-TOULE ...ietnceiieeii e e e e e e e e e e e e e e e an e e et e e eaneeees 58
225 G T = 7 o T o Ko oo | 59
2.1.4. USING QPIC-PriNtEVENLSuuiiiieiiiee e ee e e e e e e e e e e e e e et e e e e e aanaees 63
2.1.5. USING gPIO-Na..coeecec e 63

2.2. Qpid Management FrameWOTKoeiiiiiiiii e e e e e e e e e eaaees 63
221 What IS QME .ei e e e et e e e et e e e aa e eees 64
2.2.2. Getting Started With QMFEoiiiiii e 64
2.2.3. QME CONCEPLS ..viititiiieieieie ettt et et e e e e e et en 64
2.2.4. The QMEF ProtOCOlcccuuiiiiiieiiiei e e e e e et e e e e eaaees 69
2.2.5. How to Write a QMF CONSOIEccuuiiiiiiiiice e 69
2.2.6. HOW tO Write a QM AQENE ...ovvniiii e e e 69

2.3. QMF Python Console TULOM@lccvuiiiiieiiii e e e e 69
2.3.1. Prerequisite - Install Qpid MESSAgINGccvvuiiiiiiiiii e e 69
2.3.2. Synchronous Console OPErationsSccuuiiiieeiiieeiiiieeiie e e e e e e e eaaeen 70
2.3.3. Asynchronous Console OPEratioNSccuuveiuieiiiieeiieeeiiie e e e e e eaneeeenns 74
2.3.4. Discovering what Kinds of Objects are Available..............ccoooeiiiiiiiinnn 78

List of Tables

1.1. QMF Management - Broker Methods for Managing the Timestamp Configuration.................... 5
1.2, gPId-TOULE OPLIONSeieeii ettt ettt ettt ettt ettt e e e et et e et e e e nna e e enaans 13
1.3. State values in $ qpid-route list CONNECLIONSuvuuiiiieiiiiiiiii e e 18
1.4, ACL RUIES: PEMMISSION ...ieiitieeeiiti ettt e ettt e e et e e et e e e et et e e e e et e e e e st neeeestnaeeeenbanaaees 23
1.5, ACL RUIESIBCHION ..cvtuieiiiii ettt ettt ettt e et e e a e e eenens 23
1.6. ACL RUIESIODJECE ...ttt ettt e e e e e e a b e e 23
1.7. ACL RUIESIPIOPEITY ..eeetieeeetii ettt ettt ettt ettt e e e et e e et e e e e e e e ae e 24
1.8. SSL Client Environment Variables for C++ ClientS........cociviiiiiiiiii e 27
1.9. Options for High Availability Messaging CIUSLEScooiiiiiiiiiiiiiieie e 36
1.10. Queue Declare Method Flow Control ArQUMENEScceuuneiieriieeiiie e 44
1.11. Flow Control Statistics available in Queue's QMF ClaSSocvvuiiiiiiiiiiieiiiiei e 44
1.12. AMQP Version Support by Qpid REIEASEcoovuiiiiiiii e 45
1.13. AMQP Version Support - alternate fOrmatlooveeueieiieiiieieii e e 46
1.14. SASL MEChANISIM SUPPONT ... eeeetie ettt ettt e e ettt e et e e et e e e e et e e e e et e e e eabenaaeens 46
1.15. SASL CUStOM MECHANISITISuieiiiii ettt ettt ettt et e e e e e enaans 47
1.16. gpid-config options for creating MesSage grouP QUEUESueerrruneeeriieeeeniieeeenniaeeennnns 50
1.17. Queue Declare/Address Syntax Message Group Configuration Argumentsc.oeeeevvneeeens 50
1.18. Options for High Availability Messaging CIUSLESociiiiiiiiiiiiieiie e 52
2.1. XML Attributes for QMF Properties and StatiStiCSccevvvueiiiiiieeiiiii e 66
2.2. QME DABLYPES ... eteeeeetiti e e et ettt e e et e et e e e e ettt et e e et e be b e e e e e e e ta b e e 67
2.3. XML Schema Mapping for QME TYPESciiiiiieiiii ettt 68
2.4. QMF Python Console Class MEtNOOScoovuiiiiiiiiiee e 75

List of Examples

1.1. Enabling Message Timestamping via QMF - PythOncooviiiiiiiiiiiiic e 5
1.2. Creating a message group queue Via gpid-COoNfigoeeeuuuieiiiiiiieiiii e 50
1.3. Creating a message group queue using address syntaX (CH+) .oo..vveeieeeiiiiiiieeieee e 50
1.4. Overriding the default message group identifier for the brokercoooiviiiiiiinnnn, 51

Vi

Introduction

Qpid provides two AM QP messaging brokers:
* Implemented in C++ - high performance, low latency, and RDMA support.
» Implemented in Java - Fully IMS compliant, runs on any Java platform.

Both AMQP messaging brokers support clientsin multiple languages, as long as the messaging client and
the messaging broker use the same version of AMQP. See AMQP Compatibility to see which messaging
clients work with each broker.

Thismanual contains information specific to the broker that isimplemented in C++.

Vii

Chapter 1. Running the AMQP
Messaging Broker

1.1. Running a Qpid C++ Broker
1.1.1. Building the C++ Broker and Client Libraries

Theroot directory for the C++ distribution is named gpidc-0.4. The README file in that directory gives
instructions for building the broker and client libraries. In most cases you will do the following:

[gpidc-0.4]$./configure
[gpidc-0.4]$ nmake

1.1.2. Running the C++ Broker

Once you have built the broker and client libraries, you can start the broker from the command line:

[gpidc-0.4]$ src/qpidd

Use the --daemon option to run the broker as a daemon process:

[qpidc-0.4]$ src/qpidd --daenon

Y ou can stop a running daemon with the --quit option:

[gpidc-0.4]% src/gpidd --quit

You can see all available options with the --help option

[gpidc-0.4]$ src/gpidd --help
1.1.3. Most common questions getting qpidd running

1.1.3.1. Error when starting broker: "no data directory"
The gpidd broker requires you to set a data directory or specify --no-data-dir (see help for more details).
Thedatadirectory isused for thejournal, so it isimportant when reliability counts. Make sure your process
has write permission to the data directory.

The default location is

/1ib/var/gpidd

An alternate location can be set with --data-dir

Running the AMQP
Messaging Broker

1.1.3.2. Error when starting broker: "that process is locked"

Notethat when gpidd startsit createsalock fileisdatadirectory are being used. If you have aun-controlled
exit, please mail the trace from the core to the dev@qpid.apache.org mailing list. To clear the lock run

./qpidd -qg

It should also be noted that multiple brokers can be run on the same host. To do so set aternate data
directories for each gpidd instance.

1.1.3.3. Using a configuration file
Each option that can be specified on the command line can also be specified in a configuration file. To
see available options, use --help on the command line:
./gpidd --help

A configuration file uses name/value pairs, one on each line. To convert a command line option to a
configuration file entry:

a.) remove the '--' from the beginning of the option. b.) place a'=" between the option and the value (use
yes or true to enable options that take no value when specified on the command line). c.) place one option
per line.

For instance, the --daemon option takes no value, the --log-to-syslog option takes the values yes or no.
The following configuration file sets these two options:

daenon=yes
| og-to-sysl og=yes
1.1.3.4. Can | use any Language client with the C++ Broker?
Yes, al the clients work with the C++ broker; it is written in C+, but uses the AMQP wire protocol. Any
broker can be used with any client that uses the same AMQP version. When running the C+ broker, it is

highly recommended to run AMQP 0-10.

Note that IM S aso works with the C++ broker.

1.1.4. Authentication
1.1.4.1. LinuxX

The PLAIN authentication is done on a username+password, which is stored in the sasldb_path file.
Usernames and passwords can be added to the file using the command:
sasl passwd2 -f /var/lib/qpidd/gpidd.sasldb -u <REALM> <USER>

The REALM isimportant and should be the same as the --auth-realm option to the broker. This lets the
broker properly find the user in the sasldb file.

Running the AMQP
Messaging Broker

Existing user accounts may be listed with:

sasl dbl i stusers2 -f /var/lib/qpidd/ gpidd. sasl db

NOTE: The sasdb file must be readable by the user running the gpidd daemon, and should be readable
only by that user.

1.1.4.2. Windows

1.1.5.

On Windows, the users are authenticated against the local machine. Y ou should add the appropriate users
using the standard Windows tools (Control Panel->User Accounts). To run many of the examples, you
will need to create a user "guest” with password "guest".

If you cannot or do not want to create new users, you can run without authentication by specifying the
no-auth option to the broker.

Slightly more complex configuration

The easiest way to get afull listing of the broker's options are to use the --help command, run it locally for
the latest set of options. These options can then be set in the conf file for convenience (see above)

./gpidd --help

Usage: qpi dd OPTI ONS

Opt i ons:
-h [--help] Di spl ays the hel p nessage
-v [--version] Di spl ays version information

--config FILE (/etc/qgpidd.conf) Reads configuration fromFILE

Modul e opti ons:
--nmodul e-dir DIR (/usr/lib/qgpidd) Load all .so nmodules in this directory
- -1 oad- nodul e FILE Speci fies additional nodul e(s) to be | oaded
--no-nodul e-di r Don't | oad nmodul es from nodul e directory

Br oker Opti ons:
--data-dir DIR (/var/lib/qpidd) Directory to contain persistent data generated

--no-data-dir Don't use a data directory. No persistent
configuration will be | oaded or stored

-p [--port] PORT (5672) Tells the broker to listen on PORT

--worker-threads N (3) Sets the broker thread pool size

- - max- connections N (500) Sets the maxi mum al | owed connecti ons

--connecti on-backl og N (10) Sets the connection backlog Iimt for the

server socket
--stagi ng-threshold N (5000000) St ages nessages over N bytes to disk
-m[--ngnt-enable] yes|no (1) Enabl e Managenent
--ngnt - pub-interval SECONDS (10) Managenent Publish Interva

--ack N (0) Send session. ack/solicit-ack at |east every
N franes. O disables voluntary ack/solitict
-ack

Daenmon opti ons:

Running the AMQP
Messaging Broker

-d [--daenon] Run as a daenon.

-w][--wait] SECONDS (10) Sets the maxinmumwait time to initialize the
daermon. |If the daenmon fails to initialize, prints
an error and returns 1

-c [--check] Prints the daenon's process ID to stdout and
returns O if the daenmon is running, otherw se
returns 1

-q [--quit] Tells the daenmon to shut down

Loggi ng opti ons:

--log-output FILE (stderr) Send log output to FILE. FILE can be a file nane
or one of the special values:
stderr, stdout, syslog

-t [--trace] Enabl es all | ogging

--log-enabl e RULE (error+) Enables logging for selected | evel s and conponent
s. RULE is in the form'LEVEL+: PATTERN
Level s are one of:
trace debug info notice warning error critica
For exanpl e:
'--10g-enabl e warni ng+ logs all warning, error
and critical messages.
'--10g-enabl e debug: fram ng' | ogs debug nmessages
fromthe fram ng nanespace. This option can be
used nultiple tines

--log-time yes|no (1) Include tinme in | og messages

--log-level yes|no (1) I nclude severity level in | og nmessages
--1og-source yes|no (0) I nclude source file:line in | og nessages
--log-thread yes|no (0) Include thread IDin | og messages
--log-function yes|no (0) I ncl ude function signature in | og nessages

1.1.6. Loading extra modules

By default the broker will load all the modules in the module directory, however it will NOT display
options for modules that are not loaded. So to see the options for extra modules loaded you need to load
the module and then add the help command like this:

./ gpidd --1oad-nodul e |ibbdbstore.so --help
Usage: qpi dd OPTI ONS

Opt i ons:
-h [--help] Di spl ays the hel p nessage
-v [--version] Di spl ays version information

--config FILE (/etc/qgpidd.conf) Reads configuration fromFILE

/[.... non nodule options would be here ... /

Store Options:

--store-directory DIR Store directory location for persistence (overrides
--data-dir)
--store-async yes|no (1) Use async persistence storage - if store supports

it, enables Al O O DI RECT.
--store-force yes|no (0) Force changing nodes of store, will delete al
existing data if node is changed. Be SURE you want

Running the AMQP
Messaging Broker

to do this!
--numjfiles N (8) Nunber of files in persistence journal
--jfile-size-pgs N (24) Si ze of each journal file in multiples of read
pages (1 read page = 64ki B)

1.1.7. Timestamping Received Messages

The AMQP 0-10 specification defines a timestamp message delivery property. The timestamp delivery
property is a datetime value that is written to each message that arrives at the broker. See the description
of "message.delivery-properties’ in the "Command Classes" section of the AMQP 0-10 specification for
more detail.

See the Programming in Apache Qpid documentation for information regarding how clients may access
the timestamp value in received messages.

By default, thistimestamping featureisdisabled. To enabletimestamping, usethe enabl e-timestamp broker
configuration option. Setting the enable-timestamp option to 'yes will enable message timestamping:

./ gpidd --enable-tinmestanp yes

M essage timestamping can al so be enabled (and disabled) without restarting the broker. The QMF Broker
management object defines two methods for accessing the timestamp configuration:

Table 1.1. QMF Management - Broker Methods for Managing the Timestamp
Configuration

M ethod Description

getTimestampConfig Get the message timestamping configuration.
Returns Trueif recelved messages are timestamped.

setTimestampConfig Set the message timestamping configuration. Set
True to enable timestamping received messages,
False to disable timestamping.

Example 1.1. Enabling M essage Timestamping via QMF - Python

The following code fragment uses these QM F method calls to enable message timestamping.

get the state of the tinmestanp configuration

broker = self.qgnf.get Qbjects(_class="broker")[0]

rc = broker. getTi mestanpConfig()

sel f.assert Equal (rc. status, 0)

sel f.assertEqual (rc.text, "OK")

print("The tinmestanp setting is %" %str(rc.receive))

try to enable it

rc = broker.setTi mestanpConfig(True)
sel f.assert Equal (rc. status, 0)

sel f.assertEqual (rc.text, "OK")

Running the AMQP
Messaging Broker

1.2. Cheat Sheet for configuring Queue
Options

1.2.1. Configuring Queue Options

The C++ Broker M4 or later supports the following additional Queue constraints.
» Section 1.2.1, “ Configuring Queue Options”
e ¢ Section 1.2.1.1, “ Applying Queue Sizing Constraints”

e Section 1.2.1.2, “ Changing the Queue ordering Behaviors (FIFO/LVQ) "

e Section 1.2.1.3, * Setting additional behaviors”

e o Section1.2.1.3.1, * Persist Last Node”

e Section 1.2.1.3.2, “ Queue event generation”

* Section 1.2.1.4, " Other Clients”
The 0.10 C++ Broker supports the following additional Queue configuration options:
» Section 1.9, * Producer Flow Control ”

1.2.1.1. Applying Queue Sizing Constraints

This allows to specify how to size a queue and what to do when the sizing constraints have been reached.
The queue size can be limited by the number messages (message depth) or byte depth on the queue.

Once the Queue meets/ exceeds these constraints the follow policies can be applied

» REJECT - Reject the published message

* FLOW_TO DISK - Flow the messages to disk, to preserve memory

* RING - start overwriting messages in aring based on sizing. If head meetstail, advance head

* RING_STRICT - start overwriting messages in a ring based on sizing. If head meets tail, AND the
consumer has the tail message acquired it will reject

Examples:

Create a queue an auto delete queue that will support 100 000 bytes, and then REJECT

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons qo;
go. set Si zePol i cy(REJECT, 100000, 0) ;

sessi on. queueDecl are(ar g: : queue=queue, arg::autobDel ete=true, arg::arguments=qo

Create a queue that will support 1000 messages into a RING buffer

#i nclude "qpid/client/QeueQOptions. h"

Running the AMQP
Messaging Broker

QueueOpti ons qo;
go. set Si zePol i cy(RI NG, 0, 1000) ;

sessi on. queueDecl are(ar g: : queue=queue, arg::argunent s=qo);

1.2.1.2. Changing the Queue ordering Behaviors (FIFO/LVQ)

The default ordering in a queue in Qpid is FIFO. However additional ordering semantics can be used
namely LVQ (Last Value Queue). Last Value Queue is define as follows.

If | publish symbols RHT, IBM, JAVA, MSFT, and then publish RHT before the consumer is able to
consume RHT, that message will be over written in the queue and the consumer will receive the last
published value for RHT.

Example:

#i nclude "qpid/client/QeueOptions. h"

QueueOpti ons qo;
go. set Ordering(LVQ ;

sessi on. queueDecl are(ar g: : queue=queue, arg::ar gunent s=qo);

string key;
go. get LVQKey(key);

for each nessage, set the into application headers before transfer
nessage. get Header s() . set Stri ng(key, "RHT") ;

Notes:

Messages that are dequeued and the re-queued will have the following exceptions. a.) if anew message
has been queued with the same key, the re-queue from the consumer, will combine these two messages.
b.) If an update happens for a message of the same key, after the re-queue, it will not update the re-
queued message. Thisis done to protect a client from being able to adversely manipulate the queue.

Acquire: When a message is acquired from the queue, no matter it's position, it will behave the same
as adegueue

LVQ does not support durable messages. If the queue or messages are declared durable on an LVQ,
the durability will be ignored.

A fully worked ??? can be found here

1.2.1.3. Setting additional behaviors
1.2.1.3.1. Persist Last Node

This option is used in conjunction with clustering. It allows for a queue configured with this option to
persist transient messages if the cluster fails down to the last node. If additional nodes in the cluster are
restored it will stop persisting transient messages.

Running the AMQP
Messaging Broker

Note

« if acluster is started with only one active node, this mode will not be triggered. It is only triggered the
first time the cluster fails down to 1 node.

* The queue MUST be configured durable

Example:

#i nclude "qgpid/client/QueueOptions. h"

QueueOpti ons qo;
go. cl ear Per si st Last Node() ;

sessi on. queueDecl are(ar g: : queue=queue, arg::durable=true, arg::argunments=qo);
1.2.1.3.2. Queue event generation
This option is used to determine whether enqueue/dequeue events representing changes made to queue
state are generated. These events can then be processed by plugins such as that used for Section 1.7, “
Queue State Replication .

Example:

#i nclude "qpid/client/QueueOptions. h"

QueueOpti ons options;

options. enabl eQueueEvent s(1);

sessi on. queueDecl are(arg: : queue="ny-queue", arg::argunents=options);
The boolean option indicates whether only enqueue events should be generated. The key set by thisis

‘gpid.queue_event_generation' and the value is and integer value of 1 (to replicate only enqueue events)
or 2 (to replicate both enqueue and dequeue events).

1.2.1.4. Other Clients

Note that these options can be set from any client. QueueOptions just correctly formats the arguments
passed to the QueueDeclare() method.

1.3. Cheat Sheet for configuring Exchange
Options

1.3.1. Configuring Exchange Options

The C++ Broker M4 or later supportsthe following additional Exchange optionsin addition to the standard
AMOQP define options

» Exchange Level Message sequencing

« Initial Value Exchange

Running the AMQP
Messaging Broker

Note that these features can be used on any exchange type, that has been declared with the options set.
It also supports an additional option to the bind operation on a direct exchange

» Exclusive binding for key

1.3.1.1. Exchange Level Message sequencing

This feature can be used to place a sequence number into each message's headers, based on the order they
pass through an exchange. The sequencing starts at 0 and then wraps in an AMQP int64 type.

The field name used is "qgpid.msg_sequence”

To use this feature an exchange needs to be declared specifying this option in the declare

Fi el dTabl e args;
args.setlnt("gpid. msg_sequence", 1);

/1 now decl are the exchange
sessi on. exchangeDecl are(ar g: : exchange="di rect", arg::arguments=args);

Then each message passing through that exchange will be numbersin the application headers.
unit64_t segNo;

/lafter nessage transfer
segNo = nessage. get Header s() . get Asl nt 64(" gpi d. nsg_sequence");

1.3.1.2. Initial Value Exchange

This feature caches alast message sent to an exchange. When a new binding is created onto the exchange
it will then attempt to route this cached messaged to the queue, based on the binding. Thisallowsfor topics
or the creation of configurations where a new consumer can receive the last message sent to the broker,
with matching routing.

To use this feature an exchange needs to be declared specifying this option in the declare

Fi el dTabl e args;
args.setlnt("gpid.ive", 1);

/1 now decl are the exchange
sessi on. exchangeDecl are(ar g: : exchange="di rect", arg::arguments=args);

now use the exchange in the same way you would use any other exchange.

1.3.1.3. Exclusive binding for key

Direct exchanges in gpidd support a gpid.exclusive-binding option on the bind operation that causes the
binding specified to bethe only onefor the givenkey. |.e. if thereisalready abinding at this exchange with

Running the AMQP
Messaging Broker

thiskey it will be atomically updated to bind the new queue. This means that the binding can be changed
concurrently with an incoming stream of messages and each message will be routed to exactly one queue.

Fi el dTabl e args;
args. setlnt("qgpid. exclusive-binding",1);

//the following will cause the only binding fromanyg.direct with 'ny-key'
//to be the one to 'my-queue'; if there were any previous bindings for that
/1key they will be renpved. This is atomic w.r.t nmessage routing through the
/ I exchange.
sessi on. exchangeBi nd(ar g: : exchange="ang. di rect", arg::queue="ny-queue",

ar g: : bi ndi ngkey="ny-key", arg::argunents=args);

1.4. Broker Federation

Broker Federation allows messaging networks to be defined by creating message routes, in which
messages in one broker (the source broker) are automatically routed to another broker (the destination
broker). These routes may be defined between exchanges in the two brokers (the source exchange and
the destination exchange), or from a queue in the source broker (the source queue) to an exchange in
the destination broker. Message routes are unidirectional; when bidirectional flow is needed, one route
is created in each direction. Routes can be durable or transient. A durable route survives broker restarts,
restoring aroute as soon as both the source broker and the destination are available. If the connection to a
destination islost, messages associated with a durable route continue to accumulate on the source, so they
can be retrieved when the connection is reestablished.

Broker Federation can be used to build large messaging networks, with many brokers, oneroute at atime.
If network connectivity permits, an entire distributed messaging network can be configured from asingle
location. Therulesused for routing can be changed dynamically as servers change, responsibilities change,
at different times of day, or to reflect other changing conditions.

Broker Federation is useful in a wide variety of scenarios. Some of these have to do with functional
organization; for instance, brokers may be organized by geography, service type, or priority. Here are
some use cases for federation:

» Geography: Customer requests may be routed to a processing location close to the customer.

» Service Type: High value customers may be routed to more responsive servers.

 Load balancing: Routing among brokers may be changed dynamically to account for changesin actual
or anticipated load.

» High Availability: Routing may be changed to anew broker if an existing broker becomes unavailable.
* WAN Connectivity: Federated routes may connect disparate |ocations across awide areanetwork, while
clients connect to brokers on their own local area network. Each broker can provide persistent queues

that can hold messages even if there are gapsin WAN connectivity.

 Functional Organization: Theflow of messages among software subsystems can be configured to mirror
the logical structure of a distributed application.

10

Running the AMQP
Messaging Broker

1.4.1.

» Replicated Exchanges: High-function exchanges like the XML exchange can be replicated to scale
performance.

* Interdepartmental Workflow: The flow of messages among brokers can be configured to mirror
interdepartmental workflow at an organization.

Message Routes

Broker Federation is done by creating message routes. The destination for aroute is always an exchange
on the destination broker. By default, a message route is created by configuring the destination broker,
which then contacts the source broker to subscribe to the source queue. Thisiscalled apull route. It isalso
possible to create aroute by configuring the source broker, which then contacts the destination broker in
order to send messages. Thisis called a push route, and is particularly useful when the destination broker
may not be available at the time the messaging route is configured, or when alarge number of routes are
created with the same destination exchange.

The source for aroute can be either an exchange or a queue on the source broker. If aroute is between
two exchanges, the routing criteria can be given explicitly, or the bindings of the destination exchange can
be used to determine the routing criteria. To support this functionality, there are three kinds of message
routes. queue routes, exchange routes, and dynamic exchange routes.

1.4.1.1. Queue Routes

Queue Routes route al messages from a source queue to a destination exchange. If message
acknowledgement is enabled, messages are removed from the queue when they have been received by the
destination exchange; if message acknowledgement is off, messages are removed from the queue when
sent.

1.4.1.2. Exchange Routes

Exchange routes route messages from a source exchange to a destination exchange, using a binding key
(which is optional for afanout exchange).

Internally, creating an exchange route creates a private queue (auto-del ete, exclusive) on the source broker
to hold messages that are to be routed to the destination broker, binds this private queue to the source
broker exchange, and subscribes the destination broker to the queue.

1.4.1.3. Dynamic Exchange Routes

Dynamic exchange routes allow a client to create bindings to an exchange on one broker, and receive
messages that satisfy the conditions of these bindings not only from the exchange to which the client
created the binding, but also from other exchangesthat are connected to it using dynamic exchange routes.
If the client modifies the bindings for a given exchange, they are also modified for dynamic exchange
routes associated with that exchange.

Dynamic exchange routes apply al the bindings of a destination exchange to a source exchange, so that
any message that would match one of these bindings is routed to the destination exchange. If bindings are
added or removed from the destination exchange, these changes are reflected in the dynamic exchange
route -- when the destination broker creates a binding with a given binding key, this is reflected in the
route, and when the destination broker drops a binding with a binding key, the route no longer incurs
the overhead of transferring messages that match the binding key among brokers. If two exchanges have
dynamic exchange routes to each other, then all bindings in each exchange are reflected in the dynamic
exchange route of the other. In adynamic exchange route, the source and destination exchanges must have

11

Running the AMQP
Messaging Broker

the same exchange type, and they must have the same name; for instance, if the source exchangeisadirect
exchange, the destination exchange must also be a direct exchange, and the names must match.

Internally, dynamic exchange routes are implemented in the same way as exchange routes, except that
the bindings used to implement dynamic exchange routes are modified if the bindings in the destination
exchange change.

A dynamic exchange route is always a pull route. It can never be a push route.

1.4.2. Federation Topologies

A federated network is generally atree, star, or line, using bidirectional links (implemented as a pair of
unidirectional links) between any two brokers. A ring topology isalso possible, if only unidirectional links
are used.

Every message transfer takes time. For better performance, you should minimize the number of brokers
between the message origin and final destination. In most cases, tree or star topologies do this best.

For any pair of nodes A,B in a federated network, there should be only one path from A to B. If there
is more than one path, message loops can cause duplicate message transmission and flood the federated
network. The topologies discussed above do not have message loops. A ring topology with bidirectional
links is one example of atopology that does cause this problem, because a given broker can receive the
same message from two different brokers. Mesh topologies can a so cause this problem.

1.4.3. Federation among High Availability Message
Clusters

Federation is generally used together with High Availability Message Clusters, using clusters to provide
high availability on each LAN, and federation to route messages among the clusters. Because message
state is replicated within a cluster, it makes little sense to define message routes between brokers in the
same cluster.

To create a message route between two clusters, simply create a route between any one broker in the first
cluster and any one broker in the second cluster. Each broker in a given cluster can use message routes
defined for another broker in the same cluster. If the broker for which a message route is defined should
fail, another broker in the same cluster can restore the message route.

1.4.4. The gpid-route Utility

gpid-route is a command line utility used to configure federated networks of brokers and to view the
status and topology of networks. It can be used to configure routes among any brokers that qpid-route
can connect to.

The syntax of gpid-routeisasfollows:

gpi d-route [OPTIONS] dynami c add <dest - broker> <src-broker> <exchange>
gpi d-route [OPTIONS] dynami c del <dest-broker> <src-broker> <exchange>

gpid-route [OPTIONS] route add <dest-broker> <src-broker> <exchange> <routing-key>
gpid-route [OPTIONS] route del <dest-broker> <src-broker> <exchange> <routing-key>

gpi d-route [OPTI ONS] queue add <dest-broker> <src-broker> <dest-exchange> <src-qu

12

Running the AMQP
Messaging Broker

gpi d-route [OPTI ONS] queue del <dest-broker> <src-broker> <dest-exchange>

gpid-route [OPTIONS] list [<broker>]
gpi d-route [OPTIONS] flush [<broker>]
gpi d-route [OPTI ONS] map [<br oker >]

gpid-route [OPTIONS] |ist connections [<broker>]

The syntax for broker, dest-broker, and src-broker is asfollows:

[user nane/ password@ host nane |

Thefollowing are all valid examples of the above syntax: localhost, 10.1.1.7:10000, br oker-host: 10000,

guest/guest @localhost.

These are the options for gpid-route:

Table 1.2. gpid-route options

i p-address [:<port>]

-v Verbose output.

-q Quiet output, will not print duplicate warnings.

-d Make the route durable.

--timeout N Maximum time to wait when gpid-route connects
to a broker, in seconds. Default is 10 seconds.

--ack N Acknowledge transfers of routed messagesin

batches of N. Default is 0 (no acknowledgements).
Setting to 1 or greater enables acknowledgements;

when using acknowledgements, values of

N greater than 1 can significnantly improve
performance, especialy if thereis significant
network latency between the two brokers.

-s[--src-local |

Configure the route in the source broker (create a
push route).

-t <transport> [--transport <transport>]

Transport protocol to be used for the route.
* tcp (default)
e sd

e rdma

1.4.4.1. Creating and Deleting Queue Routes

The syntax for creating and deleting queue routesis as follows:

<src-qu

gpi d-route [OPTI ONS] queue add <dest-broker> <src-broker> <dest-exchange> <src-que
gpi d-route [OPTI ONS] queue del <dest-broker> <src-broker> <dest-exchange> <src-que

For instance, the following creates a queue route that routes all messages from the queue named public on
the source broker localhost: 10002 to the amg.fanout exchange on the destination broker localhost: 10001:

13

Running the AMQP
Messaging Broker

$ gpi d-route queue add | ocal host: 10001 | ocal host: 10002 ang. f anout public

If the -d option is specified, this queue route is persistent, and will be restored if one or both of the brokers

is restarted:

$ gpid-route -d queue add | ocal host: 10001 | ocal host: 10002 ang. fanout public
The del command takes the same arguments as the add command. The following command del etes the

gueue route described above:

$ qpi d-route queue del |ocal host: 10001 | ocal host: 10002 ang. f anout public

1.4.4.2. Creating and Deleting Exchange Routes
The syntax for creating and deleting exchange routesis as follows:
gpi d-route [OPTIONS] route add <dest-broker> <src-broker> <exchange> <routing-key>
gpi d-route [OPTIONS] route del <dest-broker> <src-broker> <exchange> <routing-key>
gpi d-route [OPTIONS] flush [<broker>]
For instance, the following creates an exchange route that routes messages that match the binding key
global .# from the amq.topic exchange on the source broker localhost: 10002 to the amq.topic exchange
on the destination broker localhost: 10001:
$ gpid-route route add | ocal host: 10001 | ocal host: 10002 any. topic gl obal . #
In many applications, messages published to the destination exchange should also be routed to the source
exchange. This is accomplished by creating a second exchange route, reversing the roles of the two
exchanges:
$ gpid-route route add | ocal host: 10002 | ocal host: 10001 ang.topic gl obal . #
If the -d option is specified, the exchange route is persistent, and will be restored if one or both of the
brokersis restarted:
$ gpid-route -d route add | ocal host: 10001 | ocal host: 10002 ang. f anout public
The del command takes the same arguments as the add command. The following command del etes the

first exchange route described above:

$ gpid-route route del |ocal host: 10001 | ocal host: 10002 any.topic gl obal . #

1.4.4.3. Deleting all routes for a broker

Use the flush command to delete all routes for a given broker:

14

Running the AMQP
Messaging Broker

gpid-route [OPTIONS] flush [<broker>]

For instance, the following command deletes all routes for the broker localhost: 10001

$ gpid-route flush | ocal host: 10001

1.4.4.4. Creating and Deleting Dynamic Exchange Routes

The syntax for creating and deleting dynamic exchange routes is as follows:

gpi d-route [OPTI ONS] dynanmi ¢ add <dest-broker> <src-broker> <exchange>
gpi d-route [OPTIONS] dynanmi c del <dest-broker> <src-broker> <exchange>

In the following examples, we will route messages from a topic exchange. We will create a new topic
exchange and federate it so that we are not affected by other al clients that use the built-in amq.topic
exchange. The following commands create a new topic exchange on each of two brokers:

$ gpid-config -a | ocal host: 10003 add exchange topic fed.topic
$ gpid-config -a | ocal host: 10004 add exchange topic fed.topic

Now let's create adynamic exchange route that routes messages from the fed.topic exchange on the source
broker localhost: 10004 to the fed.topic exchange on the destination broker localhost: 10003 if they match
any binding on the destination broker's fed.topic exchange:

$ gpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed. topic

Internally, this creates a private autodelete queue on the source broker, and binds that queue to the
fed.topic exchange on the source broker, using each binding associated with the fed.topic exchange on
the destination broker.

In many applications, messages published to the destination exchange should also be routed to the source
exchange. Thisis accomplished by creating a second dynamic exchange route, reversing the roles of the
two exchanges:

$ gpid-route dynam c add | ocal host: 10004 | ocal host: 10003 fed. topic
If the -d option is specified, the exchange route is persistent, and will be restored if one or both of the
brokersis restarted:

$ gpid-route -d dynami c add | ocal host: 10004 | ocal host: 10003 fed. topic

When an exchange route is durable, the private queue used to store messages for the route on the source
exchange is also durable. If the connection between the brokers is lost, messages for the destination
exchange continue to accumulate until it can be restored.

The del command takes the same arguments as the add command. The following command del etes the
first exchange route described above:

$ gpid-route dynam c del |ocal host: 10004 | ocal host: 10003 fed. topic

15

Running the AMQP
Messaging Broker

Internally, this deletes the bindings on the source exchange for the the private queues associated with the
message route.

1.4.4.5. Viewing Routes

Theroutelist command shows the routes associated with an individual broker. For instance, suppose we
have created the following two routes:

$ gpid-route dynam c add | ocal host: 10003 | ocal host: 10004 fed. topic
$ gpid-route dynam c add | ocal host: 10004 | ocal host: 10003 fed. topic

We can now useroute list to show all routes for the broker localhost: 10003:

$ gpid-route route list |ocal host: 10003
| ocal host: 10003 | ocal host: 10004 fed. topic <dynanic>

Note that this shows only one of the two routes we created, the route for which localhost: 10003 is a
destination. If we want to see the route for which localhost: 10004 is a destination, we need to do another
route list:

$ gpid-route route list |ocal host: 10004
| ocal host: 10004 | ocal host: 10003 fed. topic <dynanic>

The route map command shows all routes associated with a broker, and recursively displays all routes
for brokersinvolved in federation rel ationships with the given broker. For instance, here is the output for
the two brokers configured above:

$ gpid-route route map | ocal host: 10003

Fi ndi ng Li nked Brokers:
| ocal host: 10003... &k
| ocal host: 10004... &k

Dynami ¢ Rout es:

Exchange fed. topic:
| ocal host: 10004 <=> | ocal host: 10003

Stati ¢ Routes:
none found

Note that the two dynamic exchange links are displayed as though they were one bidirectional link. The
routemap command isparticularly helpful for larger, more complex networks. L et's configure asomewhat
more complex network with 16 dynamic exchange routes:

gpi d-route dynanm c add | ocal host: 10001 | ocal host: 10002 fed. topic
gpi d-route dynanm c add | ocal host: 10002 | ocal host: 10001 fed. topic

gpi d-route dynanm c add | ocal host: 10003 | ocal host: 10002 fed. topic
gpi d-route dynanm c add | ocal host: 10002 | ocal host: 10003 fed. topic

16

Running the AMQP
Messaging Broker

gpi d-route dynanm c add | ocal host: 10004 | ocal host: 10002 fed. topic
gpi d-route dynam c add | ocal host: 10002 | ocal host: 10004 fed. topic

gpi d-route dynanm c add | ocal host: 10002 | ocal host: 10005 fed. topic
gpi d-route dynanm c add | ocal host: 10005 | ocal host: 10002 fed. topic

gpi d-route dynanm c add | ocal host: 10005 | ocal host: 10006 fed. topic
gpi d-route dynanm c add | ocal host: 10006 | ocal host: 10005 fed. topic

gpi d-route dynam c add | ocal host: 10006 | ocal host: 10007 fed. topic
gpi d-route dynam c add | ocal host: 10007 | ocal host: 10006 fed. topic

gpi d-route dynanm c add | ocal host: 10006 | ocal host: 10008 fed. topic
gpi d-route dynam c add | ocal host: 10008 | ocal host: 10006 fed. topic

Now we can use route map starting with any one broker, and see the entire network:

$./qpid-route route map | ocal host: 10001

Fi ndi ng Li nked Brokers:
| ocal host: 10001. .
| ocal host: 10002. .
| ocal host: 10003. .
| ocal host: 10004. .
| ocal host: 10005. .
| ocal host: 10006. .
| ocal host: 10007. .
| ocal host: 10008. .

QLRIRKQYIQQARQ

Dynam ¢ Rout es:

Exchange fed.topic:

| ocal host: 10002 <=> | ocal host: 10001
| ocal host: 10003 <=> | ocal host: 10002
| ocal host: 10004 <=> | ocal host: 10002
| ocal host: 10005 <=> | ocal host: 10002
| ocal host: 10006 <=> | ocal host : 10005
| ocal host: 10007 <=> | ocal host: 10006
| ocal host: 10008 <=> | ocal host : 10006

Stati ¢ Routes:
none found

1.4.4.6. Resilient Connections

When abroker routeis created, or when adurable broker routeisrestored after broker restart, aconnection
is created between the source broker and the destination broker. The connections used between brokers are
called resilient connections; if the connection fails due to acommunication error, it attempts to reconnect.
Theretry interval beginsat 2 seconds and, as more attempts are made, grows to 64 seconds, and continues
to retry every 64 seconds thereafter. If the connection fails due to an authentication problem, it will not
continue to retry.

The command list connections can be used to show the resilient connections for a broker:

17

Running the AMQP
Messaging Broker

$ gpid-route list connections |ocal host: 10001

Host Por t Transport Durable State Last Error

| ocal host 10002 tcp N Oper at i onal

| ocal host 10003 tcp N Oper at i onal

| ocal host 10009 tcp N Waiting Connection refused

In the above output, Last Error containsthe string representation of the last connection error received for
the connection. State represents the state of the connection, and may be one of the following values:

Table 1.3. Statevaluesin $ qpid-routelist connections

Waiting Waiting before attempting to reconnect.

Connecting Attempting to establish the connection.

Operational The connection has been established and can be
used.

Failed The connection failed and will not retry (usually
because authentication failed).

Closed The connection has been closed and will soon be
deleted.

Passive If acluster isfederated to another cluster, only one

of the nodes has an actual connection to remote
node. Other nodes in the cluster have a passive
connection.

1.5. Security

This chapter describes how authentication, rule-based authorization, encryption, and digital signing can
be accomplished using Qpid. Authentication isthe process of verifying the identity of auser; in Qpid, this
is done using the SASL framework. Rule-based authorization is a mechanism for specifying the actions
that each user is allowed to perform; in Qpid, this is done using an Access Control List (ACL) that is
part of the Qpid broker. Encryption is used to ensure that data is not transferred in a plain-text format
that could be intercepted and read. Digital signatures provide proof that a given message was sent by a
known sender. Encryption and signing are done using SSL (they can also be done using SASL, but SSL
provides stronger encryption).

1.5.1. User Authentication

AMQP uses Simple Authentication and Security Layer (SASL) to authenticate client connections to the
broker. SASL is aframework that supports a variety of authentication methods. For secure applications,
we suggest CRAM-M D5, DIGEST-MD5, or GSSAPI. The ANONY M OUS method is not secure. The
PL AIN method is secure only when used together with SSL.

Both the Qpid broker and Qpid clients use the Cyrus SASL library [http://cyrusimap.web.cmu.edu/], a
full-featured authenti cation framework, which offers many configuration options. This section shows how
to configure users for authentication with SASL, which is sufficient when using SASL PLAIN. If you
arenot using SSL, you should configure SASL to use CRAM-M D5, DIGEST-M D5, or GSSAPI (which
provides Kerberos authentication). For information on configuring these and other optionsin SASL, see
the Cyrus SASL documentation.

18

http://cyrusimap.web.cmu.edu/
http://cyrusimap.web.cmu.edu/

Running the AMQP
Messaging Broker

I mportant

The SASL PL AIN method sends passwords in cleartext, and is vulnerable to man-in-the-middle
attacks unless SSL (Secure Socket Layer) is aso used (see Section 1.5.3, “Encryption using
SSL”).

If you are not using SSL, we recommend that you disable PL AIN authentication in the broker.

The Qpid broker uses the auth yes|no option to determine whether to use SASL authentication. Turn on
authentication by setting auth to yesin/ et ¢/ qpi dd. conf:

[etc/gpi dd. conf
#
Set auth to 'yes' or 'no'

aut h=yes

1.5.1.1. Configuring SASL

On Linux systems, the SASL configuration file is generally found in / et ¢/ sasl 2/ gpi dd. conf or
/fusr/lib/sasl 2/ gpi dd. conf.

The SASL database contains user names and passwords for SASL. In SASL, a user may be associated
with a realm. The Qpid broker authenticates users in the QPID realm by default, but it can be set to a
different realm using the realm option:

[etc/gpi dd. conf
#
Set the SASL real musing 'real n¥

aut h=yes
real m=QPI D

The SASL databaseisinstalledat/ var/ | i b/ qpi dd/ gpi dd. sasl db;initialy, it hasone user named
guest in the QPID realm, and the password for this user is guest.

Note

The user databaseisreadable only by the gpi dd user. When run as adaemon, Qpid always runs
asthe qpi dd user. If you start the broker from a user other than the qpi dd user, you will need
to either reconfigure SASL or turn authentication off.

I mportant

The SASL database stores user names and passwordsin plain text. If it iscompromised so are all
of the passwords that it stores. This is the reason that the qpi dd user is the only user that can
read the database. If you modify permissions, be careful not to expose the SASL database.

Add new users to the database by using the saslpasswd2 command, which specifies a realm and a user
ID. A user ID takestheform user - i d@domai n..

sasl passwd2 -f /var/lib/qpidd/gpidd.sasldb -u real m new user_nane

19

Running the AMQP
Messaging Broker

To list the usersin the SASL database, use sasldblistuser s2:

sasl dblistusers2 -f /var/lib/qpidd/gpidd.sasldb

If you are using PLAIN authentication, users who are in the database can now connect with their user
name and password. This is secure only if you are using SSL. If you are using a more secure form of
authentication, please consult your SASL documentation for information on configuring the options you
need.

1.5.1.2. Kerberos

Both the Qpid broker and Qpid users are 'principals of the Kerberos server, which means that they are
both clients of the Kerberos authentication services.

To use Kerberos, both the Qpid broker and each Qpid user must be authenticated on the Kerberos server:

1

Install the Kerberos workstation software and Cyrus SASL GSSAPI on each machine that runs a
gpidd broker or a gpidd messaging client:

$ sudo yuminstall cyrus-sasl-gssapi krb5-workstation
Make sure that the Qpid broker is registered in the Kerberos database.

Traditionally, a Kerberos principa is divided into three parts: the primary, the instance, and the
realm. A typical Kerberos V5 has the format pri mary/ i nst ance @EALM For a Qpid broker,
the primary is gpi dd, the instance is the fully qualified domain name, which you can obtain using
hostname --fqdn, and the REALM is the Kerberos domain realm. By default, this realm is QPI D,
but a different realm can be specified in gpid.conf, e.g.:

r eal nFEXAMPLE. COM

For instance, if the fully qualified domain name is dubl duck. exanpl e. com and
the Kerberos domain realm is EXAMPLE. COM then the principa name is qpi dd/
dubl duck. exanpl e. com@&XAMPLE. COM

The following script creates a principa for gpidd:

FDQ\=" host nane --fqgdn®
REALM=" EXAMPLE. COM'
kadnmin -r $REALM -qg "addprinc -randkey -clearpolicy qpidd/ $FQDN'

Now create aKerberos keytab file for the Qpid broker. The Qpid broker must have read accessto the
keytab file. The following script creates a keytab file and allows the broker read access:

QPI DD_GROUP="gpi dd"

kadm n -r $REALM -q "ktadd -k /etc/qgpidd. keytab gpi dd/ $FQDN@REALM
chnmod g+r /etc/gpidd. keyt ab

chgrp $QPI DD _GROUP /et c/ gpi dd. keyt ab

The default location for the keytab fileis/ et ¢/ kr b5. keyt ab. If adifferent keytab file is used,
the KRB5_KTNAME environment variable must contain the name of thefile, eg.:

export KRB5_KTNAME=/ et c/ qpi dd. keyt ab

20

Running the AMQP
Messaging Broker

If thisis correctly configured, you can now enable kerberos support on the Qpid broker by setting the
aut h andr eal moptionsin/ et ¢/ gpi dd. conf :

[etc/qpi dd. conf
aut h=yes
r eal mmEXAMPLE. COM

Restart the broker to activate these settings.

3. Make sure that each Qpid user is registered in the Kerberos database, and that Kerberos is correctly
configured on the client machine. The Qpid user is the account from which a Qpid messaging client
isrun. If itis correctly configured, the following command should succeed:

$ kinit user @REALM COM
Java M S clients require afew additional steps.
1. TheJavaJVvM must be run with the following arguments:

-Djavax.security.auth.useSubjectCredsOnly=false Forces the SASL GASSPI client to
obtain the kerberos credentialsexplicitly
instead of obtaining from the "subject"
that owns the current thread.

-Djava.security.auth.login.config=myjas.conf Specifies the jass configuration file.
Here is a sample JASS configuration
file

comsun.security.jgss.initiate {
com sun. security. aut h. nodul e. Kr b5Lc

H

-Dsun.security.krb5.debug=true Enables detailed debug info for
troubleshooting

2. Theclient's Connection URL must specify the following Kerberos-specific broker properties:
e sasl _nechs must be set to GSSAPI .
e sasl _protocol must be set to the principal for the gpidd broker, e.g. qpi dd/
e sasl _server must be set to the host for the SASL server, e.g. sasl . com
Here is a sample connection URL for a Kerberos connection:

angp://guest @l i enti d/ testpath?brokerlist="tcp://Iocal host:5672?sasl _nechs=" GS¢

1.5.2. Authorization

In Qpid, Authorization specifies which actions can be performed by each authenticated user using an
Access Control List (ACL). Usethe --acl-file command to load the access control list. The filename should
havea. acl extension:

21

Running the AMQP
Messaging Broker

$ gpidd --acl-file ./aclfilenane. acl

Each line in an ACL file grants or denies specific rights to a user. If the last linein an ACL fileisacl
deny all all,theACL usesdeny mode, and only those rights that are explicitly allowed are granted:

acl allowrajith@rPID all all
acl deny all all

On this server, r aj i t h@PI D can perform any action, but nobody else can. Deny mode is the defaullt,
so the previous example is equivalent to the following ACL file:
acl allowrajith@PIiD all all

In deny mode, denying rights to an action is redundant and has no effect.

acl allowrajith@PlD all all
acl deny jonathan@PID all all # This rule is redundant, and has no effect
acl deny all all

If thelast lineinan ACL fileisacl all ow all al |, ACL usesallow mode, and all rights are granted
except those that are explicitly denied. Thefollowing ACL file allows everyone elseto perform any action,
but deniesj onat han@P! D all permissions.

acl deny jonathan@PI D all all

acl allow all all

In allow mode, allowing rights to an action is redundant and has no effect.

acl allowrajith@PID all all # This rule is redundant, and has no effect

acl deny jonathan@PI D all all
acl allow all all

I mportant

ACL processing ends when one of the following linesis encountered:
acl allow all all

acl deny all all

Any lines that occur after one of these statements will be ignored:

acl allow all all

acl deny jonathan@PID all all # This line is ignored !!!

ACL syntax alows fine-grained access rights for specific actions:

22

Running the AMQP
Messaging Broker

acl allow carlt@PID create exchange name=carl . *
acl allow fred@PID create all

acl allow all consune queue

acl allow all bind exchange

acl deny all all

An ACL file can define user groups, and assign permissions to them:

group admin ted@PI D nmarti n@Pl D
acl allow adnin create all
acl deny all all

1.5.2.1. ACL Syntax

ACL rules must be on asingle line and follow this syntax:
acl pernission {<group-nane>| <user-name>|"all"} {action|"all"} [object]|"all"] [pro

ACL rules can aso include a single object name (or the keyword al |) and one or more property name
value pairsin the form property=value

The following tables show the possible values for permission, action, object, and property in an ACL
rulesfile.

Table 1.4. ACL Rules: permission

allow Allow the action
allow-log Allow the action and log the action in the event log
deny Deny the action
deny-log Deny the action and log the action in the event log

Table 1.5. ACL Rules;action

consume Applied when subscriptions are created

publish Applied on aper message basis on publish message
transfers, this rule consumes the most resources

create Applied when an object is created, such asbindings,
gueues, exchanges, links

access Applied when an object is read or accessed

bind Applied when objects are bound together

unbind Applied when objects are unbound

delete Applied when objects are del eted

purge Similar to delete but the action is performed on more
than one object

update Applied when an object is updated

Table 1.6. ACL Rules.object

queue

A queue

23

Running the AMQP

Messaging Broker
exchange An exchange
broker The broker
link A federation or inter-broker link
method Management or agent or broker method

Table1.7. ACL Rules:property

name String. Object name, such as a queue name or
exchange name.

durable Boolean. Indicates the object is durable

routingkey Sring. Specifiesrouting key

passive Boolean. Indicates the presence of apassi ve flag

autodelete Boolean. Indicates whether or not the object gets
deleted when the connection is closed

exclusive Boolean. Indicates the presence of an excl usi ve
flag

type String. Type of object, such astopic, fanout, or xml

alternate String. Name of the alternate exchange

queuename String. Name of the queue (used only when the
object is something other than queue

schemapackage String. QM F schema package name

schemaclass String. QMF schema class name

1.5.2.2. ACL Syntactic Conventions

In ACL files, the following syntactic conventions apply:

A line starting with the # character is considered acomment and is ignored.

Empty lines and lines that contain only whitespace are ignored

All tokensare case sensitive. nanel isnot thesameasNane1 and cr eat e isnot the same as CREATE
Group lists can be extended to the following line by terminating the line with the \ character
Additional whitespace - that is, where there is more than one whitespace character - between and after
tokensisignored. Group and ACL definitions must start with either group or acl and with no preceding
whitespace.

All ACL rulesarelimited to asingle line

Rules are interpreted from the top of the file down until the name match is obtained; at which point
processing stops.

The keyword al | matches al individuals, groups and actions

The last line of the file - whether present or not - will be assumed to be acl deny all all. If present in
thefile, al lines below it are ignored.

24

Running the AMQP
Messaging Broker

» Names and group names may containonly a- z, A- Z,0- 9, - and _

» Rules must be preceded by any group definitions they can use. Any name not defined as a group will
be assumed to be that of an individual.

1.5.2.3. Specifying ACL Permissions

Now that we have seen the ACL syntax, we will provide representative examples and guidelines for ACL
files.

Most ACL files begin by defining groups:

group admin ted@PI D nmarti n@Pl D

group user-consume marti n@PI D ted@Pl D
group group2 ki m@yPl D user-consunme rob@Pl D
group publisher group2 \

t om@P! D andr ew@P! D debbi e@XPI D

Rulesinan ACL file grant or deny specific permissions to users or groups:

acl allow carlt@PID create exchange nane=carl . *

acl allow rob@PI D create queue

acl allow guest @PI D bi nd exchange name=any. topi c routingkey=stocks.rht.#
acl allow user-consune create queue nane=tnp.*

acl allow publisher publish all durable=false

acl allow publisher create queue nane=Request Queue
acl allow consuner consunme queue durabl e=true

acl allow fred@yPI D create all

acl allow bob@XPI D all queue

acl allow adm n all

acl allow all consune queue

acl allow all bind exchange

acl deny all all

Inthe previous example, thelast ling, acl deny al | al |, deniesall authorizationsthat have not been
specifically granted. Thisisthedefault, but it isuseful to includeit explicitly onthelast linefor the sake of
clarity. If youwant to grant al rights by default, you can specify acl al |l ow al | al | inthelastline.

Do not alow guest to access and log QM F management methods that could cause security breaches:

group all Users guest @PI D

acl deny-log allUsers create |ink

acl deny-log all Users access nethod nane=connect
acl deny-log all Users access nethod nane=echo
acl allow all all

1.5.3. Encryption using SSL

Encryption and certificate management for qpidd is provided by Mozilla's Network Security Services
Library (NSS).

25

Running the AMQP
Messaging Broker

Enabling SSL for the Qpid broker

1. You will need a certificate that has been signed by a Certification Authority (CA). This certificate
will also need to be trusted by your client. If you require client authentication in addition to server
authentication, the client's certificate will also need to be signed by a CA and trusted by the broker.

In the broker, SSL is provided through the ssl.so module. Thismoduleisinstalled and loaded by default
in Qpid. To enablethe module, you need to specify thelocation of the database containing the certificate
and key to use. Thisis done using the ssl-cert-db option.

The certificate database is created and managed by the Mozilla Network Security Services
(NSS) certutil tool. Information on this utility can be found on the Mozilla website [http://
www.mozilla.org/projects/security/pki/nss/tool s/certutil.html], including tutorials on setting up and
testing SSL connections. The certificate database will generally be password protected. The safest way
to specify the passwordisto placeit in aprotected file, use the password file when creating the database,
and specify the password file with the ssl-cert-passwor d-file option when starting the broker.

The following script shows how to create a certificate database using certutil:

nkdi r ${CERT_DI R}

certutil -N-d ${CERT_ D R} -f ${CERT_PWFILE}

certutil -S -d ${CERT_D R} -n ${N CKNAME} -s "CN=${N CKNAME}" -t "CT,

When starting the broker, set sdl-cer t-passwor d-fileto thevalueof §{CERT_PW_FILE}, set sd-cert-
db to the value of ${CERT_DIR}, and set ssl-cert-nameto the value of $§{NICKNAME}.

2. Thefollowing SSL options can be used when starting the broker:

--sdl-use-export-policy Use NSS export policy

--sdl-cert-passwor d-file PATH Required. Plain-text file containing
password to use for accessing certificate
database.

--sdl-cert-db PATH Required. Path to directory containing

certificate database.

--s9l-cert-name NAVE Name of the certificate to use. Default is
| ocal host .| ocal domai n.

--sdl-port NUMBER Port on which to listen for SSL
connections. If no port is specified, port
5671 is used.

--sdl-requir e-client-authentication Require SSL client authentication (i.e.

verification of a client certificate) during
the SSL handshake. This occurs before
SASL authentication, and is independent
of SASL.

This option enables the EXTERNAL
SASL mechanism for SSL connections.
If the client chooses the EXTERNAL
mechanism, the client's identity is taken
from the validaed SSL certificate,

26

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

Running the AMQP
Messaging Broker

--s9l-sadl-no-dict

using the CNliteral>, and appending any
DCliteral>s to create the domain. For
instance, if the certificate contains the
properties CN=bob, DC=acne, DC=com
the client'sidentity isbob@cne. com

If the client chooses a different SASL
mechanism, the identity take from the
client certificate will be replaced by that
negotiated during the SASL handshake.

Do not accept SASL mechanisms that
can be compromised by dictionary attacks.
This prevents a weaker mechanism being
selected instead of EXTERNAL, which is
not vulnerable to dictionary attacks.

Alsorelevant isthe--requir e-encryption broker option. Thiswill cause gpidd to only accept encrypted

connections.

Enabling SSL in Clients

C++ clients:

1. In C++ clients, SSL is implemented in the sslconnector.so module.

Thismoduleisinstalled and loaded by default in Qpid.

The following options can be specified for C++ clients using
environment variables:

Table 1.8. SSL Client Environment Variables for C++
clients

SSL Client Optionsfor C++ clients
QPID_SSL_USE_EXPORT_PQIULYSS export policy

QPID_SSL CERT_PASSWORIFiH tdataining password to use
PATH for accessing certificate database

QPID_SSL._CERT_DB PATH |Path to directory containing
certificate database

QPID_SSL_CERT_NAME Name of the certificate to use.
NAME When SSL client authentication
is enabled, a certificate name
should normally be provided.

. When using SSL connections, clients must specify the location

of the certificate database, a directory that contains the client's
certificate and the public key of the Certificate Authority. This can
be done by setting the environment variable QPID_SSL._CERT_DB
to the full pathname of the directory. If a connection uses
SSL client authentication, the client's password is also needed
—the password should be placed in a protected file, and the
QPID_SSL_CERT_PASSWORD_FILE variable should be set to
the location of the file containing this password.

. To open an SSL enabled connection in the Qpid Messaging API, set

thepr ot ocol connection optionto ssl .

27

Running the AMQP
Messaging Broker

Javaclients: 1. For both server and client authentication, import thetrusted CA to your
trust store and keystore and generate keysfor them. Create acertificate
reguest using the generated keys and then create a certificate using the
reguest. Y ou can then import the signed certificate into your keystore.
Pass the following arguments to the Java VM when starting your
client:

- D avax. net. ssl . keySt or e=/ home/ bob/ ssl _t est/ keystore.jks

- D avax. net. ssl . keySt or ePasswor d=passwor d

- D avax. net. ssl . trust St ore=/ hone/ bob/ ssl _test/certstore.]j ke
- Dy avax. net. ssl . trust St or ePasswor d=passwor d

2. For server side authentication only, import the trusted CA to your trust
store and pass the following arguments to the Java VM when starting
your client:

- D avax. net. ssl . trust St ore=/ hone/ bob/ ssl _test/certstore.]j k¢
- D avax. net. ssl . trust St or ePasswor d=passwor d

3. Javaclients must use the SSL option in the connection URL to enable
SSL encryption, e.g.

angp:// user nane: password@l i enti d/ test?brokerlist="tcp://1¢

4. 1f you need to debug problemsin an SSL connection, enable Java's SSL
debugging by passing theargument - Dj avax. net . debug=ssl to
the Java VM when starting your client.

1.6. LVQ - Last Value Queue
1.6.1. Understanding LVQ

A Last Value Queue is configured with the name of a message header that is used as a key. The queue
behaves as anormal FIFO queue with the exception that when a message is enqueued, any other message
in the queue with the same value in the key header is removed and discarded. Thus, for any given key
value, the queue holds only the most recent message.

The following example illustrates the operation of a Last Vaue Queue. The example shows an empty
gueue with no consumers and a sequence of produced messages. The numbers represent the key for each

message.
<enpty queue>
1 =>
1
2 =>
12
3 =
123
4 =>
12314
2 =>

28

Running the AMQP
Messaging Broker

1342
1=
3421

Note that the first four messages are enqueued normally in FIFO order. The fifth message has key '2' and
is aso enqueued on the tail of the queue. However the message aready in the queue with the same key
is discarded.

Note

If the set of keys used in the messagesin aLVQ is constrained, the number of messages in the
gueue shall not exceed the number of distinct keysin use.

1.6.1.1. Common Use-Cases

» LVQ with zero or one consuming subscriptions - In this case, if the consumer drops momentarily or is
slower than the producer(s), it will only receive current information relative to the message keys.

* LVQ with zero or more browsing subscriptions - A browsing consumer can subscribe to the LVQ and
get an immediate dump of all of the "current” messages and track updates thereafter. Any number of
independent browsers can subscribe to the same LV Q with the same effect. Since messages are never
consumed, they only disappear when replaced with a newer message with the same key or when their
TTL expires.

1.6.2. Creating a Last Value Queue

1.6.2.1. Using Addressing Syntax
A LVQ may be created using directives in the API's address syntax. The important argument is
"gpid.last_value_queue_key". Thefollowing Python example showshow aproducer of stock price updates

can create aLVQ to hold the latest stock prices for each ticker symbol. The message header used to hold
the ticker symbol is called "ticker".

conn = Connection(url)

conn. open()

sess = conn. session()

tx = sess.sender("prices;{create:always, node:{type: queue, x-declare: {argunent

1.6.2.2. Using gpid-config

The same LV Q as shown in the previous example can be created using the gpid-config utility:
$ gpid-config add queue prices --lvg-key ticker

1.6.3. LVQ Example
1.6.3.1. LVQ Sender

29

Running the AMQP
Messaging Broker

from gpi d. messagi ng i nport Connection, Message

def send(sender, key, nessage):
nmessage. properties["ticker"] = key
sender . send(message)

conn = Connection("l ocal host")

conn. open()

sess = conn. session()

tx = sess.sender("prices;{create:al ways, node: {type: queue, x-decl are: {argunments

msg = Message(" Content")
send(tx, "keyl", mnsQ);
send(tx, "key2", mnseQ);
send(tx, "key3", nsQ);
send(tx, "key4", mnsQ);
send(tx, "key2", mnseQ);
send(tx, "keyl", mnsQ);

conn. cl ose()

1.6.3.2. LVQ Browsing Receiver

from qpi d. nessagi ng i nport Connection, Message

conn = Connection("local host")

conn. open()

sess = conn. session()

rx = sess.receiver("prices;{node: browse}")

whil e True:
nmsg = rx.fetch()

sess. acknow edge()
print msg

1.6.4. Deprecated LVQ Modes

There are two legacy modes (still implemented as of Qpid 0.14) controlled by the gpid.last_value queue
and gpid.last_value queue no_browse argument values. These modes are deprecated and should not be
used.

1.7. Queue State Replication

1.7.1. Asynchronous Replication of Queue State
1.7.1.1. Overview

Thereis support in gpidd for selective asynchronous replication of queue state. Thisis achieved by:

(a) enabling event generation for the queues in question

30

Running the AMQP
Messaging Broker

(b) loading a plugin on the 'source’ broker to encode those events as messages on areplication queue (this
pluginis called replicating_listener.so)

(c) loading a custom exchange plugin on the 'backup' broker (thispluginiscalled replication_exchange.so)
(d) creating an instance of the replication exchange type on the backup broker

(e) establishing afederation bridge between the replication queue on the source broker and the replication
exchange on the backup broker

The bridge established between the source and backup brokers for replication (step (€) above) should have
acknowledgements turned on (this may be done through the --ack N option to gpid-route). This ensures
that replication events are not lost if the bridge fails.

Thereplication protocol will also eliminate duplicates to ensure reliably replicated state. Note though that
only one bridge per replication exchange is supported. If clients try to publish to the replication exchange
or if more than a the single required bridge from the replication queue on the source broker is created,
replication will be corrupted. (Access control may be used to restrict access and help prevent this).

Thereplicating event listener plugin (step (b) above) has the following options:

Queue Replication Options:
--replication-queue QUEUE Queue on which events for
ot her queues are recorded
--replication-listener-nane NAME (replicator) nanme by which to register the
replicating event |istener

--create-replication-queue if set, the replication wll
be created if it does not
exi st

The name of the queue is required. It can either point to a durable queue whose definition has been
previously recorded, or the --create-replication-queue option can be specified in which case the queue will
be created a simple non-durable queue if it does not already exist.

1.7.1.2. Use with Clustering

The source and/or backup brokers may also be clustered brokers. In this case the federated bridge will be
re-established between replicas should either of the originally connected nodes fail. There are however
the following limitations at present:

» Thebackup site does not process membership updates after it establishesthefirst connection. In order for
newly added members on asource cluster to be eligible asfailover targets, the bridge must be recreated
after those members have been added to the source cluster.

* New membersadded to abackup cluster will not receiveinformation about currently established bridges.
Therefore in order to allow the bridge to be re-established from these members in the event of failure
of older nodes, the bridge must be recreated after the new members have joined.

* Only asingle URL can be passed to create the initial link from backup site to the primary site. this
means that at the time of creating the initial connection theinitial node in the primary site to which the
connection is made needs to be running. Once connected the backup site will receive a membership
update of al the nodesin the primary site, and if theinitial connection nodein the primary fails, the link
will be re-established on the next node that was started (time) on the primary site.

31

Running the AMQP
Messaging Broker

Due to the acknowledged transfer of events over the bridge (see note above) manual recreation of the
bridge and automatic re-establishment of te bridge after connection failure (including failover where either
or both ends are clustered brokers) will not result in event loss.

1.7.1.3. Operations on Backup Queues

When replicating the state of a queue to a backup broker it is important to recognise that any other
operations performed directly on the backup queue may break the replication.

If the backup queueisto bean active (i.e. accessed by clientswhile replication ison) only enqueues should
be selected for replication. In this mode, any message enqueued on the source brokers copy of the queue
will aso be enqueued on the backup brokers copy. However not attempt will be made to remove messages
from the backup queue in response to removal of messages from the source queue.

1.7.1.4. Selecting Queues for Replication

Queues are selected for replication by specifying the types of eventsthey should generate (it is from these
events that the replicating plugin constructs messages which are then pulled and processed by the backup
site). Thisis done through options passed to the initial queue-declare command that creates the queue and
may be done either through gpid-config or similar tools, or by the application.

With gpid-config, the --generate-queue-events optionsis used:

- - gener at e- queue-events N
If set to 1, every enqueue will generate an event that ca
registered listeners (e.g. for replication). If set to 2,
generated for enqueues and dequeues

From an application, the arguments field of the queue-declare AMQP command is used to convey this
information. An entry should be added to the map with key 'gpid.queue_event_generation' and an integer
value of 1 (to replicate only engqueue events) or 2 (to replicate both enqueue and dequeue events).

Applications written using the c++ client API may fine the gpid::client:: QueueOptions class convenient.
This has a enableQueueEvents() method on it that can be used to set the option (the instance of
QueueOptions is then passed as the value of the arguments field in the queue-declare command. The
boolean option to that method should be set to true if only enequeue events should be replicated; by default
it isfalse meaning that both enqueues and dequeues will be replicated. E.g.

QueueOpti ons options;
options. enabl eQueueEvent s(fal se);
sessi on. queueDecl are(arg: : queue="mny-queue", arg::argunents=options);

1.7.1.5. Example

L ets assume we will run the primary broker on hostl and the backup on host2, have installed gpidd on
both and have the replicating_listener and replication_exchange plugins in gpidd's module directory(* 1).

On host1 we start the source broker and specifcy that aqueue called ‘replication’ should be used for storing
the events until consumed by the backup. We also request that this queue be created (as transient) if not
already specified:

32

Running the AMQP
Messaging Broker

gpidd --replication-queue replication-queue --create-replication-queue true --

On host2 we start up the backup broker ensuring that the replication exchange module is loaded:

gpi dd

We can then create the instance of that replication exchange that we will use to process the events:

gpi d-config -a host2 add exchange replication replication-exchange

If this fails with the message "Exchange type not implemented: replication”, it means the replication
exchange module was not loaded. Check that the module is installed on your system and if necessary
provide the full path to the library.

We then connect the replication queue on the source broker with the replication exchange on the backup
broker using the gpid-route command:

gpi d-route --ack 50 queue add host2 hostl replication-exchange replication-que
The example above configures the bridge to acknowledge messages in batches of 50.

Now create two queues (on both source and backup brokers), one replicating both enqueues and dequeues
(queue-a) and the other replicating only dequeues (queue-b):

gpi d-config -a hostl add queue queue-a --generate-queue-events 2
gpi d-config -a hostl add queue queue-b --generate-queue-events 1

gpi d-config -a host2 add queue queue-a
gpi d-config -a host2 add queue queue-b

We are now ready to use the queues and see the replication.

Any message enqueued on queue-a will be replicated to the backup broker. When the message is
acknowledged by a client connected to host1 (and thus dequeued), that message will be removed from the
copy of the queue on host2. The state of queue-a on host2 will thus mirror that of the equivalent queue on
host1, albeit with asmall lag. (Note however that we must not have clients connected to host2 publish to-
or consume from- queue-a or the state will fail to replicate correctly due to conflicts).

Any message enqueued on gqueue-b on host1 will also be enqueued on the equivalent queue on host2.
However the acknowledgement and consequent dequeuing of messages from queue-b on host1 will have
no effect on the state of queue-b on host2.

(*1) If not the paths in the above may need to be modified. E.g. if using modules built from a gpid svn
checkout, the following would be added to the command line used to start gpidd on host1:

--load-nodul e <path-to-qpid-dir>/src/.libs/replicating_listener.so

33

Running the AMQP
Messaging Broker

and the following for the equivalent command line on host2:

- -l oad- nodul e <path-to-qgpid-dir>/src/.libs/replication_exchange.so

1.8. Active-active Messaging Clusters

1.8.1.

Active-active Messaging Clusters provide fault tolerance by ensuring that every broker in a cluster has
the same queues, exchanges, messages, and bindings, and allowing a client to fail over to a new broker
and continue without any loss of messages if the current broker fails or becomes unavailable. Active-
active refers to the fact that al brokers in the cluster can actively serve clients. Because al brokers are
automatically kept in a consistent state, clients can connect to and use any broker in acluster. Any number
of messaging brokers can be run as one cluster, and brokers can be added to or removed from a cluster
whileitisin use.

High Availability Messaging Clusters are implemented using using the OpenAlS Cluster Framework
[http://www.openais.org/].

An OpenAlS daemon runs on every machine in the cluster, and these daemons communicate using
multicast on aparticular address. Every gpidd processin acluster joinsanamed group that isautomatically
synchronized using OpenAlS Closed Process Groups (CPG) — the gpidd processes multicast events to
the named group, and CPG ensures that each gpidd process receives all the events in the same sequence.
All members get an identical sequence of events, so they can all update their state consistently.

Two messaging brokers are in the same cluster if

1. They run on hostsin the same OpenAlScluster; that is, OpenAl Sisconfigured with the same mcastaddr,
mcastport and bindnetaddr, and

2. They use the same cluster name.

High Availability Clustering has a cost: in order to allow each broker in a cluster to continue the work
of any other broker, a cluster must replicate state for all brokers in the cluster. Because of this, the
brokersin a cluster should normally be on a LAN; there should be fast and reliable connections between
brokers. Even onaLAN, using multiple brokersin acluster is somewhat slower than using asingle broker
without clustering. This may be counter-intuitive for people who are used to clustering in the context of
High Performance Computing or High Throughput Computing, where clustering increases performance
or throughput.

High Availability Messaging Clusters should be used together with Red Hat Clustering Services (RHCS);
without RHCS, clusters are vulnerable to the "split-brain” condition, in which a network failure splits
the cluster into two sub-clusters that cannot communicate with each other. See the documentation on the
--cluster-cman option for details on running using RHCS with High Availability Messaging Clusters.
See the CMAN Wiki [http://sources.redhat.com/cluster/wiki] for more detail on CMAN and split-brain
conditions. Use the --cluster -cman option to enable RHCS when starting the broker.

Starting a Broker in a Cluster

Clustering is implemented using the cl ust er . so module, which is loaded by default when you start a
broker. To run brokers in a cluster, make sure they all use the same OpenAlS mcastaddr, mcastport, and
bindnetaddr. All brokers in a cluster must also have the same cluster name — specify the cluster name
ingpi dd. conf:

http://www.openais.org/
http://www.openais.org/
http://sources.redhat.com/cluster/wiki
http://sources.redhat.com/cluster/wiki

Running the AMQP
Messaging Broker

cluster-nanme="|ocal test_cluster"

On RHELG6, you must create thefile/ et ¢/ cor osync/ ui dgi d. d/ gpi dd to tell Corosync the name
of the user running the broker.By default, the user is gpidd:

uidgid {
uid: qgpidd
gi d: gpidd
}

On RHELD5, the primary group for the process running gpidd must be the ais group. If you are running
gpidd as a service, it is run as the qpidd user, which is already in the ais group. If you are running the
broker from the command line, you must ensure that the primary group for the user running gpidd is ais.
Y ou can set the primary group using newgr p:

$ newgrp ais

Y ou can then run the broker from the command line, specifying the cluster name as an option.

[jonat han@ ocal host]$ qpidd --cluster-nane="1ocal _test_cluster"

All brokers in a cluster must have identical configuration, with a few exceptions noted below. They
must load the same set of plug-ins, and have matching configuration files and command line arguments.
The should also have identical ACL files and SASL databases if these are used. If one broker uses
persistence, all must use persistence— amix of transient and persistent brokersisnot allowed. Differences
in configuration can cause brokersto exit the cluster. For instance, if different ACL settings alow aclient
to access a queue on broker A but not on broker B, then publishing to the queue will succeed on A and
fail on B, so B will exit the cluster to prevent inconsistency.

The following settings can differ for brokers on a given cluster:

* logging options

* cluster-url — if set, it will be different for each broker.

 port — brokers can listen on different ports.

The gpid log contains entries that record significant clustering events, e.g. when a broker becomes a

member of a cluster, the membership of a cluster is changed, or an old journal is moved out of the way.
For instance, the following message states that a broker has been added to a cluster as the first node:

2009-07-09 18:13:41 info 127.0.0. 1: 1410(READY) nenber update: 127.0.0.1:1410
2009-07-09 18:13:41 notice 127.0.0.1:1410(READY) first in cluster

Note

If you are using SELinux, the gpidd process and OpenAlS must have the same SELinux context,
or else SELinux must be set to permissive mode. If both gpidd and OpenAlS are run as services,

35

Running the AMQP
Messaging Broker

they have the same SELinux context. If both OpenAlS and gpidd are run as user processes, they
have the same SELinux context. If oneisrun as a service, and the other is run as a user process,
they have different SELinux contexts.

The following options are available for clustering:

Table 1.9. Optionsfor High Availability M essaging Cluster

Optionsfor High Availability Messaging Cluster

--cluster-name
NANVE

Name of the Messaging Cluster to join. A Messaging Cluster consists of al
brokers started with the same cluster-name and openais configuration.

--cluster-size N

Wait for at least N initial members before completing cluster initialization and
serving clients. Use this option in a persistent cluster so all brokersin a persistent
cluster can exchange the status of their persistent store and do consistency checks
before serving clients.

--cluster-url URL

An AMQP URL containing the local address that the broker advertizes to clients
for fail-over connections. Thisis different for each host. By default, al local
addresses for the broker are advertized. Y ou only need to set thisif

1. Your host has more than one active network interface, and
2. You want to restrict client fail-over to a specific interface or interfaces.
Each broker in the cluster is specified using the following form:

url = ["amgp:"][user ["/" password] "@] protocol addr
("," protocol addr)*
protocol addr = tcp_addr / rnda_addr / ssl _addr /
tcp_addr = ["tcp:"] host [":" port]
rdma_addr = "rdnma:" host [":" port]
ssl _addr = "ssl:" host [":" port]

In most cases, only one address is advertized, but more than one address can be
specified in if the machine running the broker has more than one network interface
card, and you want to alow clients to connect using multiple network interfaces.

Use acommadelimiter (*,") to separate brokersin the URL. Examples:

e amgp:tcp:192.168.1.103:5672 advertizes a single address to the broker for
falover.

e amqp:tcp:192.168.1.103:5672,tcp: 192.168.1.105: 5672 advertizes two
different addresses to the broker for failover, on two different network
interfaces.

--cluster-cman

CMAN protects against the "split-brain” condition, in which a network failure
splits the cluster into two sub-clusters that cannot communicate with each other.
When "split-brain” occurs, each of the sub-clusters can access shared resources
without knowledge of the other sub-cluster, resulting in corrupted cluster integrity.

To avoid "split-brain”, CMAN uses the notion of a"quorum". If more than half
the cluster nodes are active, the cluster has quorum and can act. If half (or fewer)
nodes are active, the cluster does not have quorum, and all cluster activity is
stopped. There are other ways to define the quorum for particular use cases (e.g.
acluster of only 2 members), see the CMAN Wiki [http://sources.redhat.com/
cluster/wiki] for more detail.

36

http://sources.redhat.com/cluster/wiki
http://sources.redhat.com/cluster/wiki
http://sources.redhat.com/cluster/wiki

Running the AMQP
Messaging Broker

Optionsfor High Availability Messaging Cluster
When enabled, the broker will wait until it belongs to a quorate cluster before
accepting client connections. It continually monitors the quorum status and shuts
down immediately if the node it runs on loses touch with the quorum.

--cluster-username | SASL username for connections between brokers.

--cluster-password | SASL password for connections between brokers.

--cluster- SASL authentication mechanism for connections between brokers
mechanism

If abroker is unable to establish a connection to another broker in the cluster, the log will contain SASL
errors, e.g:

2009- aug- 04 10:17: 37 info SASL: Authentication failed: SASL(-13): user not found:

You can set the SASL user name and password used to connect to other brokers using the cluster-
user nameand cluster -passwor d propertieswhen you start the broker. In most environment, it iseasiest to
create an account with the same user name and password on each broker in the cluster, and use these asthe
cluster-username and cluster-password. You can also set the SASL mode using cluster-mechanism.
Remember that any mechanism you enable for broker-to-broker communication can also be used by a
client, so do not enable cluster-mechanism=ANONY MOUS in a secure environment.

Once the cluster is running, run gpid-cluster to make sure that the brokers are running as one cluster. See
the following section for details.

If the cluster is correctly configured, queues and messages are replicated to al brokers in the cluster, so
an easy way to test the cluster isto run a program that routes messages to a queue on one broker, then to
adifferent broker in the same cluster and read the messages to make sure they have been replicated. The
drain and spout programs can be used for this test.

1.8.2. gpid-cluster

gpid-cluster is a command-line utility that allows you to view information on a cluster and its brokers,
disconnect a client connection, shut down a broker in a cluster, or shut down the entire cluster. You can
see the options using the --help option:

$./gpid-cluster --help

Usage: qpid-cluster [OPTIONS] [broker-addr]

broker-addr is in the form [user nane/ password@ hostnane | ip-address [:<po
ex: local host, 10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

Opt i ons:

-C[--all-connections] View client connections to all cluster menbers
-c [--connections] ID Viewclient connections to specified nmenmber

-d [--del -connection] HOST: PORT

Di sconnect a client connection

-s [--stop] ID Stop one nenber of the cluster by its ID
-k [--all-stop] Shut down t he whol e cluster

-f [--force] Suppress the 'are-you-sure? pronpt

-n [--numeric] Don't resol ve names

37

Running the AMQP
Messaging Broker

L et's connect to acluster and display basic information about the cluser and its brokers. When you connect
to the cluster using gpid-tool, you can use the host and port for any broker in the cluster. For instance, if
abroker in the cluster isrunning on | ocal host on port 6664, you can start gpid-tool like this:

$ gpid-cluster |ocal host: 6664
Here isthe output:

Cluster Nanme: |ocal test_cluster

Cluster Status: ACTIVE

Cluster Size: 3

Menmbers: |1 D=127.0.0.1: 13143 URL=angp:tcp: 192. 168. 1. 101: 6664, t cp: 192. 168. 122.
| D=127.0.0.1: 13167 URL=angp: tcp: 192. 168. 1. 101: 6665, t cp: 192. 168. 122. 1: 6665,
| D=127.0.0.1: 13192 URL=angp: tcp: 192. 168. 1. 101: 6666, t cp: 192. 168. 122. 1: 6666,

The ID for each broker in cluster is given on the | eft. For instance, the ID for thefirst broker in the cluster
is127.0.0.1:13143. The URL in the output is the broker's advertized address. Let's use the ID to shut the
broker down using the --stop command:

$./qpid-cluster |ocal host: 6664 --stop 127.0.0.1:13143

1.8.3. Failover in Clients

If aclient is connected to a broker, the connection fails if the broker crashes or is killed. If heartbeat is
enabled for the connection, a connection also failsif the broker hangs, the machine the broker is running
on fails, or the network connection to the broker is lost — the connection fails no later than twice the
heartbeat interval.

When aclient's connection to abroker fails, any sent messages that have been acknowledged to the sender
will have been replicated to al brokers in the cluster, any received messages that have not yet been
acknowledged by the receiving client requeued to all brokers, and the client API notifies the application
of the failure by throwing an exception.

Clients can be configured to automatically reconnect to another broker when it receives such an exception.
Any messages that have been sent by the client, but not yet acknowledged as delivered, are resent. Any
messages that have been read by the client, but not acknowledged, are delivered to the client.

TCPisslow to detect connection failures. A client can configure a connection to use a heartbeat to detect
connection failure, and can specify atime interval for the heartbeat. If heartbeats are in use, failures will
be detected no later than twice the heartbeat interval. The Java JM S client enables hearbeat by default. See
the sections on Failover in Java JM S Clients and Failover in C++ Clientsfor the code to enable heartbeat.

1.8.3.1. Failover in Java JMS Clients

InJavaJM Sclients, client failover ishandled automatically if it isenabled in the connection. Any messages
that have been sent by the client, but not yet acknowledged as delivered, are resent. Any messages that
have been read by the client, but not acknowledged, are sent to the client.

38

Running the AMQP
Messaging Broker

Y ou can configure a connection to use failover using the failover property:

connecti onfactory. gpi dConnecti onfactory = anqgp://guest:guest @l ientid/test ?broker

This property can take three values:

Failover M odes

failover_exchange If the connection fails, fail over to any other broker in the
cluster.
roundrobin If the connection fails, fail over to one of the brokers specified

inthe brokerlist.

singlebroker Failover is not supported; the connection is to a single broker
only.

In aConnection URL, heartbeat is set using theidle_timeout property, which isan integer corresponding
to the heartbeat period in seconds. For instance, the following line from a JINDI properties file sets the
heartbeat time out to 3 seconds:

connecti onfactory. gpi dConnecti onfactory = anqgp://guest:guest @l ientid/test ?broker

1.8.3.2. Failover and the Qpid Messaging API

The Qpid Messaging API aso supports automatic reconnection in the event a connection fails. . Senders
can a so be configured to replay any in-doubt messages (i .e. messages whicewere sent but not acknowleged
by the broker. See "Connection Options' and "Sender Capacity and Replay” in Programming in Apache
Qpid for details.

In C++ and python clients, heartbeats are disabled by default. You can enable them by specifying a
heartbeat interval (in seconds) for the connection viathe 'heartbeat’ option.

See "Cluster Failover" in Programming in Apache Qpid for details on how to keep the client aware of
cluster membership.

1.8.4. Error handling in Clusters

If abroker crashes or iskilled, or a broker machine failure, broker connection failure, or abroker hang is
detected, the other brokersin the cluster are notified that it is no longer a member of the cluster. If anew
broker is joined to the cluster, it synchronizes with an active broker to obtain the current cluster state; if
this synchronization fails, the new broker exit the cluster and aborts.

If a broker becomes extremely busy and stops responding, it stops accepting incoming work. All other
brokers continue processing, and the non-responsive node caches all AlS traffic. When it resumes, the
broker completes processes all cached AlS events, then accepts further incoming work.

Broker hangs are only detected if the watchdog plugin is loaded and the --watchdog-interval option is
set. The watchdog plug-in kills the gpidd broker processif it becomes stuck for longer than the watchdog
interval. In some cases, e.g. certain phases of error resolution, it is possible for a stuck process to hang
other cluster members that are waiting for it to send a message. Using the watchdog, the stuck process

39

Running the AMQP
Messaging Broker

isterminated and removed from the cluster, allowing other members to continue and clients of the stuck
process to fail over to other members.

Redundancy can also be achieved directly in the AIS network by specifying more than one network
interface in the AlIS configuration file. This causes Totem to use a redundant ring protocol, which makes
failure of asingle network transparent.

Redundancy can be achieved at the operating system level by using NIC bonding, which combinesmultiple
network portsinto asingle group, effectively aggregating the bandwidth of multipleinterfacesinto asingle
connection. This provides both network 1oad balancing and fault tolerance.

If any broker encounters an error, the brokers compare notes to see if they al received the same error.
If not, the broker removes itself from the cluster and shuts itself down to ensure that al brokers in the
cluster have consistent state. For instance, a broker may run out of disk space; if this happens, the broker
shuts itself down. Examining the broker's log can help determine the error and suggest ways to prevent
it from occuring in the future.

1.8.5. Persistence in High Availability Message Clusters

Persistence and clustering are two different ways to provide reliability. Most systems that use a cluster do
not enable persistence, but you can do so if you want to ensure that messages are not lost even if the last
broker in acluster fails. A cluster must have al transient or all persistent members, mixed clusters are not
allowed. Each broker in apersistent cluster hasit's own independent replicaof the cluster's stateit its store.

1.8.5.1. Clean and Dirty Stores

When a broker is an active member of a cluster, its store is marked "dirty" because it may be out of date
compared to other brokersinthecluster. If abroker leavesarunning cluster becauseit is stopped, it crashes
or the host crashes, its store continues to be marked "dirty".

If the cluster is reduced to a single broker, its store is marked "clean" since it is the only broker making
updates. If the cluster is shut down with the command qpi d- cl ust er - k then all the storesare marked
clean.

When a cluster is initially formed, brokers with clean stores read from their stores. Brokers with dirty
stores, or brokers that join after the cluster is running, discard their old stores and initialize a new store
with an update from one of the running brokers. The --truncate option can be used to force a broker to
discard all existing stores even if they are clean. (A dirty store is discarded regardless.)

Discarded stores are copied to a back up directory. The active store is in <data-dir>/rhm. Back-up stores

are in <data-dir>/_cluster.bak.<nnnn>/rhm, where <nnnn> is a 4 digit number. A higher number means
amore recent backup.

1.8.5.2. Starting a persistent cluster

When starting a persistent cluster broker, set the cluster-size option to the number of brokersin the cluster.
This allows the brokers to wait until the entire cluster is running so that they can synchronize their stored
state.

The cluster can start if:

« al members have empty stores, or

» at least one member has a clean store

40

Running the AMQP
Messaging Broker

All members of the new cluster will beinitialized with the state from a clean store.

1.8.5.3. Stopping a persistent cluster

To cleanly shut down a persistent cluster use the command gpid-cluster -k. This causes al brokers to
synchronize their state and mark their stores as " clean” so they can be used when the cluster restarts.

1.8.5.4. Starting a persistent cluster with no clean store

If the cluster has previously had a total failure and there are no clean stores then the brokers will fail to
start with the log message Cannot recover, no cl ean st ore. If thishappensyou can start the
cluster by marking one of the stores "clean" as follows:

1. Movethe latest store backup into place in the brokers data-directory. The backups end in a 4 digit
number, the latest backup is the highest number.

cd <data-dir>
mv rhm rhm bak
cp -a _cluster. bak. <nnnn>/rhm.

2. Mark the store as clean:
gpi d-cluster-store -c <data-dir>

Now you can start the cluster, all memberswill be initialized from the store you marked as clean.

1.8.5.5. Isolated failures in a persistent cluster

1.9.
1.9.1.

A broker in apersistent cluster may encounter errorsthat other brokersin the cluster do not; if this happens,
the broker shuts itself down to avoid making the cluster state inconsistent. For example a disk failure on
one node will result in that node shutting down. Running out of storage capacity can also cause a node to
shut down because because the brokers may not run out of storage at exactly the same point, even if they
have similar storage configuration. To avoid unnecessary broker shutdowns, make sure the queue policy
size of each durable queue is less than the capacity of the journal for the queue.

Producer Flow Control

Overview

As of release 0.10, the C++ broker supports the use of flow control to throttle back message producers
that are at risk of overflowing a destination queue.

Each queue in the C++ broker has two threshold values associated with it:

Flow Stop Threshold: this is the level of queue resource utilization above which flow control will be
enabled. Once this threshold is crossed, the queue is considered in danger of overflow.

Flow Resume Threshold - thisisthe level of queue resource utilization below which flow control will be
disabled. Once this threshold is crossed, the queue is no longer considered in danger of overflow.

In the above description, queue resource utilization may be defined asthe total count of messages currently
engueued, or the total sum of all message content in bytes.

41

Running the AMQP
Messaging Broker

The value for a queue's Flow Stop Threshold must be greater than or equal to the value of the queue's
Flow Resume Threshold.

1.9.1.1. Example

Let's consider aqueue with amaximum limit set on the total number of messages that may be enqueued to
that queue. Assume this maximum message limit is 1000 messages. Assume also that the user configuresa
Flow Stop Threshold of 900 messages, and a Flow Resume Threshold of 500 messages. Then thefollowing
holds:

The queue'sinitial flow control stateis"OFF".

While the total number of enqueued messages is less than or equal to 900, the queue's flow control state
remains "OFF".

When thetotal number of enqueued messagesis greater than 900, the queue's flow control state transitions
to "ON".

When the queue'sflow control stateis"ON", it remains"ON" until the total number of enqueued messages
islessthan 500. At that point, the queue's flow control state transitionsto "OFF".

A similar example using total enqueued content bytes as the threshold units are permitted.

Thresholds may be set using both total message counts and total byte counts. In this case, the following
rules apply:

1) Flow control is"ON" when either stop threshold value is crossed.

2) Flow control remains "ON" until both resume thresholds are satisfied.

1.9.1.2. Example

Let's consider a queue with amaximum size limit of 10K bytes, and 5000 messages. A user may assign a
Flow Stop Threshold based on atotal message count of 4000 messages. They may also assigne aFlow Stop
Threshold of 8K bytes. The queue's flow control state transitions to "ON" if either threshold is crossed:
(total-msgs greater-than 4000 OR total-bytes greater-than 8K).

Assume the user has assigned Flow Resume threshold's of 3000 messages and 6K bytes. Then the queue's
flow control will remain active until both thresholds are satified: (total-msg less-than 3000 AND total-
bytes |ess-than 6K).

The Broker enforces flow control by delaying the completion of the Message. Transfer command
that causes a message to be delivered to a queue with active flow control. The completion of the
Message. Transfer command is held off until flow control state transitionsto "OFF" for all queuesthat are
adestination for that command.

A message producing client is permitted to have a finite number of commands pending completion.
When the total number of these outstanding commands reaches the limit, the client must not issue further
commands until one or more of the outstanding commands have completed. This window of outstanding
commands is considered the sender's "capacity”. This allows any given producer to have a "capacity's’
worth of messages blocked due to flow control before the sender must stop sending further messages.

This capacity window must be considered when determining a suitable flow stop threshold for a given
gueue, as a producer may send its capacity worth of messages _after_ a queue has reached the flow stop
threshold. Therefore, a flow stop threshould should be set such that the queue can accomodate more
messages without overflowing.

42

Running the AMQP
Messaging Broker

For example, assume two clients, C1 and C2, are producing messages to one particular destination queue.
Assume client C1 has a configured capacity of 50 messages, and client C2's capacity is 15 messages. In
thisexample, assume C1 and C2 arethe only clients queuing messagesto agiven queue. If thisqueue hasa
Flow Stop Threshold of 100 messages, then, worst-case, the queue may receive up to 165 messages before
clients C1 and C2 are blocked from sending further messages. This is due to the fact that the queue will
enable flow control on receipt of its 101'st message - preventing the completion of the Message. Transfer
command that carried the 101'st message. However, C1 and C2 are allowed to have atotal of 65 (50 for
C1 and 15 for C2) messages pending completion of Message. Transfer before they will stop producing
messages. Thus, up to 65 messages may be enqueued beyond the flow stop threshold before the producers
will be blocked.

1.9.2. User Interface

By default, the C++ broker assigns a queue's flow stop and flow resume thresholds when the queue is
created. The C++ broker also alows the user to manually specify the flow control thresholds on a per
gueue basis.

However, queuesthat have been configured with a Limit Policy of type RING or RING-STRICT do NOT
have queue flow thresholds enabled by default. The nature of a RING queue defines its behavior when its
capacity isreach: replace the oldest message.

The flow control state of a queue can be determined by the "flowState" boolean in the queue's QMF
management object. The queue's management object also contains a counter that increments each time
flow control becomes active for the queue.

The broker applies a threshold ratio to compute a queue's default flow control configuration. These
thresholds are expressed as a percentage of a queue's maximum capacity. There is one vaue for
determining the stop threshold, and another for determining the resume threshold. The user may configure
these percentages using the following broker configuration options:

--default-flow stop-threshold ("Queue capacity |level at which flow control
--default-flowresume-threshold ("Queue capacity level at which flow contr

For example:
gpi dd --defaul t-fl ow stop-threshol d=90 --defaul t-fl ow resume-threshol d=75

Setsthe default flow stop threshold to 90% of a queue's maximum capacity and the flow resume threshold
to 75% of the maximum capacity. If aqueue is created with a default-queue-limit of 10000 bytes, then the
default flow stop threshold would be 90% of 10000 = 9000 bytes and the flow resume threshold would be
75% of 10000 = 7500. The same computation is performed should a queue be created with a maximum
size expressed as a message count instead of a byte count.

If not overridden by the user, the value of the default-flow-stop-threshold is 80% and the value of the
default-flow-resume-threshold is 70%.

The user may disable default queue flow control broker-wide by specifying the value O for both of these
configuration options. Note that flow control may still be applied manually on a per-queue basis in this
case.

The user may manually set the flow thresholds when creating a queue. The following options may be
provided when adding a queue using the qpid-config command line tool:

43

Running the AMQP
Messaging Broker

1.10.

--flow stop-size=N Sets the queue's flow stop threshold to N total

byt es.

--flowresume-size=N Sets the queue's flow resune threshold to N total by

--flow stop-count=N Sets the queue's flow stop threshold to N total

messag

--flowresume-count=N Sets the queue's flow resune threshold to N total ne

Flow thresholds may also be specified in the queue.declar e method, via the arguments parameter map.

The following keys can be provided in the arguments map for setting flow thresholds:

Table 1.10. Queue Declare Method Flow Control Arguments

Key

Value

gpid.flow_stop size

integer - queue's flow stop threshold value in bytes

gpid.flow_resume_size

integer - queue's flow resume threshold value in
bytes

gpid.flow_stop_count

integer - queue's flow stop threshold value as a
message count

gpid.flow_resume_count

integer - queue's flow resume threshold value as a
message count

The user may disable flow control on a per queue basis by setting the flow-stop-size and flow-stop-count

to zero for the queue.

The current state of flow control for agiven queue can be determined by the "flowStopped" statistic. This
statistic is available in the queue's QM F management object. The value of flowStopped is True when the
gueue's capacity has exceeded the flow stop threshold. The value of flowStopped is False when the queue

isno longer blocking due to flow control.

A queue will also track the number of times flow control has been activated. The "flowStoppedCount"

statistic is incremented each time the queue's capacity exceeds a flow stop threshold. This statistic can be

used to monitor the activity of flow control for any given queue over time.

Table 1.11. Flow Control Statistics availablein Queue'sQMF Class

Statistic Name Type Description

flowStopped Boolean If true, producers are blocked by
flow control.

flowStoppedCount count32 Number of timesflow control was
activated for this queue

AMQP compatibility

Qpid provides the most complete and compatible implementation of AMQP. And is the most aggressive

in implementing the latest version of the specification.

There are two brokers:

» C++ with support for AMQP 0-10

 Javawith support for AMQP 0-8 and 0-9 (0-10 planned)

44

Running the AMQP
Messaging Broker

There are client libraries for C++, Java (JMS), .Net (written in C#), python and ruby.
* All clients support 0-10 and interoperate with the C++ broker.
» The M S client supports 0-8, 0-9 and 0-10 and interoperates with both brokers.

» The python and ruby clients will also support all versions, but the API is dynamically driven by the
specification used and so differs between versions. To work with the Java broker you must use 0-8 or
0-9, to work with the C++ broker you must use 0-10.

» There are two separate C# clients, one for 0-8 that interoperates with the Java broker, one for 0-10 that
inteoperates with the C++ broker.

QMF Management is supported in Ruby, Python, C++, and via QMan for Java IMX & WS-DM.

1.10.1. AMQP Compatibility of Qpid releases:

Qpid implements the AMQP Specification, and as the specification has progressed Qpid is keeping up
with the updates. This means that different Qpid versions support different versions of AMQP. Here is
asimple guide on what use.

Here is a matrix that describes the different versions supported by each release. The status symbols are
interpreted as follows:

Y supported
N unsupported
IP inprogress

P planned

Table1.12. AMQP Version Support by Qpid Release

Component Spec
M2.1 M3 M4 05
javaclient 0-10 Y Y Y
0-9 Y Y Y Y
0-8 Y Y Y Y
java broker 0-10 P
0-9 Y Y Y Y
0-8 Y Y Y Y
ctH+ client/|0-10 Y Y Y
broker
0-9 Y
python client |0-10 Y Y Y
0-9 Y Y Y Y
0-8 Y Y Y Y
ruby client 0-10 Y Y
0-8 Y Y Y Y

45

Running the AMQP
Messaging Broker

CH client 0-10 Y Y

0-8 Y Y Y Y

1.10.2. Interop table by AMQP specification version

Above table represented in another format.

Table1.13. AMQP Version Support - alternate for mat

release 0-8 0-9 0-10
javaclient M3 M40.5 Y Y Y
javaclient M2.1 Y Y N
java broker M3 M40.5 Y Y N
javabroker trunk Y Y P
java broker M2.1 Y Y N
c++ client/broker |M3M40.5 N N Y
c++ client/broker |M2.1 N Y N
python client M3 M40.5 Y Y Y
python client M2.1 Y Y N
ruby client M3 M40.5 Y Y N
ruby client trunk Y Y P
C# client M3M40.5 Y N N
C# client trunk Y N Y

1.11. Qpid Interoperability Documentation

This page documents the various interoperable features of the Qpid clients.

1.11.1. SASL

1.11.1.1. Standard Mechanisms

http://en.wikipedia.org/wiki/Simple_Authentication _and Security Layer#SASL_mechanisms

Thistablelist the various SASL mechanismsthat each component supports. Theversion listed showswhen
this functionality was added to the product.

Table 1.14. SASL Mechanism Support

Component |ANONYMOUSRAM-MD5 |DIGEST- EXTERNAL |GSSAPI/ PLAIN
MD5 Kerberos
C++ Broker |M3[Sedtidhl, |M3[Sedtich], M3[Sedtidhl, M1
Standard|“ Standard Standard
Mechanisms |Mechanisms Mechanisms
" [47]] [41%ectidn. 1.1, [41%ectidn. 1.1,
“ Standard “ Standard

46

http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer#SASL_mechanisms

Running the AMQP

Messaging Broker
Mechanisms Mechanisms
" [47]] " [47]]
C++ Client |M3[Sedtidhl, M1
Standard
Mechanisms
" [47]]
Java Broker M1 M1
Java Client M1 M1
.Net Client |M2 M2 M2 M2 M2
Python Client ?
Ruby Client 2

1: Support for these will be in M3 (currently available on trunk).

2: C++ Broker uses Cyrus SASL [http://freshmeat.net/projects/cyrussasl/] which supports CRAM-MD5
and GSSAPI but these have not been tested yet

1.11.1.2. Custom Mechanisms

There have been some custom mechanisms added to our implementations.

Table 1.15. SASL Custom Mechanisms

Component AMQPLAIN CRAM-MD5-HASHED
C++ Broker

C++ Client

Java Broker M1 M2

Java Client M1 M2

.Net Client

Python Client M2

Ruby Client M2

1.11.1.2.1. AMQPLAIN

1.11.1.2.2. CRAM-MD5-HASHED

The Java SASL implementations require that you have the password of the user to validate the incoming
request. This then means that the user's password must be stored on disk. For this to be secure either the
broker must encrypt the password file or the need for the password being stored must be removed.

The CRAM-MD5-HASHED SASL plugin removes the need for the plain text password to be stored on
disk. The mechanism defers all functionality to the build in CRAM-MD5 module the only change is on
the client side where it generates the hash of the password and uses that val ue asthe password. This means
that the JavaBroker only need store the password hash on thefile system. While aoneway hashisnot very
secure compared to other forms of encryption in environments where the having the password in plain
text is unacceptable thiswill provide and additional layer to protect the password. In particular this offers
some protection where the same password may be shared amongst many systems. It offers no real extra
protection against attacks on the broker (the secret is now the hash rather than the password).

47

http://freshmeat.net/projects/cyrussasl/
http://freshmeat.net/projects/cyrussasl/

Running the AMQP
Messaging Broker

1.12. Using Message Groups
1.12.1. Overview

The broker allows messaging applications to classify a set of related messages as belonging to a group.
This allows amessage producer to indicate to the consumer that agroup of messages should be considered
asinglelogical operation with respect to the application.

The broker can use this group identification to enforce policies controlling how messages from a given
group can be distributed to consumers. For instance, the broker can be configured to guarantee all the
messages from a particular group are processed in order across multiple consumers.

For example, assume we have a shopping application that managesitemsin avirtual shopping cart. A user
may add an item to their shopping cart, then change their mind and remove it. If the application sends an
add message to the broker, immediately followed by aremove message, they will be queued in the proper
order - add, followed by remove.

However, if there are multiple consumers, it is possible that once a consumer acquires the add message,
a different consumer may acquire the remove message. This alows both messages to be processed in
parallel, which could result in a "race”" where the remove operation is incorrectly performed before the
add operation.

1.12.2. Grouping Messages

In order to group messages, the application would designate a particular message header as containing a
message's group identifier. The group identifier stored in that header field would be a string value set by
the message producer. Messages from the same group would have the same group identifier value. The
key that identifies the header must also be known to the message consumers. This allows the consumers
to determine a message's assigned group.

The header that is used to hold the group identifier, as well as the values used as group identifiers, are
totally under control of the application.

1.12.3. The Role of the Broker

The broker will apply the following processing on each grouped message:

» Enqueue areceived message on the destination queue.

 Determine the message's group by examining the message's group identifier header.
 Enforce consumption ordering among messages bel onging to the same group.

Consumption ordering means that the broker will not allow outstanding unacknowledged messages to
more than one consumer for a given group.

This means that only one consumer can be processing messages from a particular group at a given time.
When the consumer acknowledges all of its acquired messages, then the broker may pass the next pending
message from that group to a different consumer.

Specifically, for any given group the broker allows only thefirst N messagesin the group to be delivered to
aconsumer. Thevalue of N would be determined by the selected consumer's configured prefetch capacity.
The broker blocks access by any other consumer to any remaining undelivered messages in that group.
Once the receiving consumer has:

 acknowledged,

48

Running the AMQP
Messaging Broker

 released, or
 reected

all the delivered messages, the broker allows the next messages in the group to be delivered. The next
messages may be delivered to a different consumer.

Note well that distinct message groups would not block each other from delivery. For example, assume
a queue contains messages from two different message groups - say group "A" and group "B" - and they
are enqueued such that "A"'s messages are in front of "B". If the first message of group "A" isin the
process of being consumed by a client, then the remaining "A" messages are blocked, but the messages
of the "B" group are available for consumption by other consumers - even though it is "behind" group
"A" in the queue.

1.12.4. Well Behaved Consumers

The broker can only enforce policy when delivering messages. To guarantee that strict message ordering
is preserved, the consuming application must adhere to the following rules:

» completely process the datain areceived message before accepting that message
 acknowledge (or reject) messages in the same order as they are received
* avoid releasing messages (see below)

The term processed means that the consumer has finished updating all application state affected by
the message that has been received. See section 2.6.2. Transfer of Responsihility, of the AMQP-0.10
specification for more detail .

Be Advised

If a consumer does not adhere to the above rules, it may affect the ordering of grouped
messages even when the broker is enforcing consumption order. This can be done by selectively
acknowledging and releasing messages from the same group.

Assume a consumer has received two messages from group "A", "A-1" and "A-2", in that order.
If the consumer releases "A-1" then acknowledges "A-2", "A-1" will be put back onto the queue
and "A-2" will be removed from the queue. This allows another consumer to acquire and process
"A-1" after "A-2" has been processed.

Under some application-defined circumstances, this may be acceptable behavior. However, if
order must be preserved, the client should either release all currently held messages, or discard
the target message using reject.

1.12.5. Broker Configuration

In order for the broker to determine a message's group, the key for the header that contains the group
identifier must be provided to the broker via configuration. This is done on a per-queue basis, when the
gueue isfirst configured.

This means that message group classification is determined by the message's destination queue.

Specifically, the queue "holds' the header key that is used to find the message's group identifier. All
messages arriving at the queue are expected to use the same header key for holding the identifer. Once
the message is enqueued, the broker looks up the group identifier in the message's header, and classifies
the message by its group.

49

Running the AMQP
Messaging Broker

M essage group support can be enabled on aqueue using the gpid-config command linetool. Thefollowing
options should be provided when adding a new queue:

Table 1.16. gpid-config options for creating message group queues

Option Description

--group-header=header - namne Enable message group support for this queue.
Specify name of application header that holds the
group identifier.

--shared-groups Enforce ordered message group consumption across
multiple consumers.

M essage group support may also be specified in the queue.declar e method via the ar guments parameter
map, or using the messaging address syntax. The following keys must be provided in the arguments map
to enable message group support on a queue:

Table 1.17. Queue Declare/Address Syntax Message Group Configuration
Arguments

Key Value

gpid.group_header key string - key for message header that holds the group
identifier value

gpid.shared_msg_group 1 - enforce ordering across multiple consumers

It isimportant to note that thereisno need to providethe actual group identifer valuesthat will beused. The
broker learns this values as messages are recieved. Also, thereis no practical limit - aside from resource
limitations - to the number of different groups that the broker can track at run time.

Restrictions

Message grouping is not supported on LV Q or Priority queues.

Example 1.2. Creating a message group queue via qpid-config

This example uses the gpid-config tool to create a message group queue called "MyMsgQueue". The
message header that contains the group identifier will use the key "GROUP_KEY™".

gpi d-confi g add queue MyMsgQueue --group- header =" GROUP_KEY" - -shar ed- groups

Example 1.3. Creating a message group queue using address syntax (C++)

This example uses the messaging address syntax to create a message group gueue with the same
configuration as the previous example.

sender = session. createSender (" M/MsgQueue; "
" {create:always, delete:receiver,"”
node: {x-declare: {argunents:"
" {'qpid. group_header _key':' GROUP_KEY' , "
"qpi d. shared_msg_group' :1}}}1}1")

50

Running the AMQP
Messaging Broker

1.12.5.1. Default Group

Should amessage without agroup identifier arrive at aqueue configured for message grouping, the broker
assigns the message to the default group. Therefore, all such "unidentified" messages are considered by
the broker as part of the same group. The name of the default group is" gpid.no-group" . Thisdefault can
be overridden by suppling a different value to the broker configuration item " default-message-group™ :

Example 1.4. Overriding the default message group identifier for the broker

gpi dd --defaul t-nsg-group "EMPTY- GROUP"

1.13. Active-passive Messaging Clusters
(Preview)

1.13.1. Overview

This release provides a preview of a new module for High Availability (HA). The new module is
not yet complete or ready for production use, it being made available so that users can experiment
with the new approach and provide feedback early in the development process. Feedback should go to
user @qpid.apache.org [mailto:user @qpid.apache.org].

The old cluster module takes an active-active approach, i.e. al the brokersin a cluster are able to handle
client requests simultaneously. The new HA modul e takes an active-passive, hot-standby approach.

In an active-passive cluster, only one broker, known asthe primary, is active and serving clients at atime.
The other brokers are standing by as backups. Changes on the primary are immediately replicated to all
the backups so they are always up-to-date or "hot". If the primary fails, one of the backupsis promoted to
be the new primary. Clientsfail-over to the new primary automatically. If there are multiple backups, the
backups also fail-over to become backups of the new primary.

The new approach depends on an external cluster resource manager to detect failure of the primary and
choosethe new primary. Thefirst supported resource manager will bergmanager [https.//fedorahosted.org/
cluster/wiki/RGManager], but it will be possible to add integration with other resource managers in the
future. The preview version is not integrated with any resource manager, you can use the qpid-hatool to
simulate the actions of a resource manager or do your own integration.

1.13.1.1. Why the new approach?

The new active-passive approach has several advantages compared to the existing active-active cluster
module.

* It does not depend directly on openais or corosync. It does not use multicast which simplifies
deployment.

* Itis more portable: in environments that don't support corosync, it can be integrated with a resource
manager available in that environment.

» Replication to adisaster recovery site can be handled as simply another node in the cluster, it does not
require a separate replication mechanism.

« It can take advantage of features provided by the resource manager, for example virtual |P addresses.

51

mailto:user@qpid.apache.org
mailto:user@qpid.apache.org
https://fedorahosted.org/cluster/wiki/RGManager
https://fedorahosted.org/cluster/wiki/RGManager
https://fedorahosted.org/cluster/wiki/RGManager

Running the AMQP
Messaging Broker

1.13.1.2.

Improved performance and scalability due to better use of multiple CPU s

Limitations

There are a number of known limitations in the current preview implementation. These will be fixed in
the production versions.

1.13.2.

Transactional changes to queue state are not replicated atomicaly. If the primary crashes during a
transaction, it is possible that the backup could contain only part of the changes introduced by a
transaction.

During afail-over one backup is promoted to primary and any other backups switch to the new primary.
Messages sent to the new primary before all the backups have switched could belost if the new primary
itself fails before al the backups have switched.

When used with a persistent store: if the entire cluster fails, there are no tools to help identify the most
recent store.

Acknowledgments are confirmed to clients before the message has been dequeued from replicas or
indeed from the local storeif that is asynchronous.

A persistent broker must haveits store erased beforejoining an existing cluster. In the production version
a persistent broker will be able to load its store and avoid downloading messages that are in the store
from the primary.

Configuration changes (creating or deleting queues, exchanges and hindings) are replicated
asynchronously. Management tools used to make changes will consider the change completewheniitis
complete on the primary, it may not yet be replicated to all the backups.

Deletions made immediately after afailure (before all the backups are ready) may be lost on a backup.
Queues, exchange or bindings that were deleted on the primary could re-appear if that backup is
promoted to primary on a subsequent failure.

Better control is needed over which queues/exchanges are replicated and which are not.

There are some known issues affecting performance, both the throughput of replication and the time
taken for backups to fail-over. Performance will improve in the production version.

Federated links from the primary will be lost in fail over, they will not be re-connected on the new
primary. Federation links to the primary can fail over.

Only plain FIFO queues can be replicated. LV Q and ring queues are not yet supported.

Configuring the Brokers

The broker must load the ha module, it isloaded by default when you start a broker. The following broker
options are available for the HA module.

Table 1.18. Optionsfor High Availability Messaging Cluster

Optionsfor High Availability M essaging Cluster

--ha-cluster yes| |Setto"yes' to have the broker join acluster.
no

--ha-brokers URL |URL use by brokersto connect to each other. The URL lists the addresses of all

the brokersin the cluster 2in the following form:

52

Running the AMQP
Messaging Broker

Optionsfor High Availability Messaging Cluster

url = ["angp:"][user ["/" password] "@] addr (","

addr = tcp_addr / rnda_addr / ssl_addr /
tcp_addr = ["tcp:"] host [":" port]
rdnma_addr = "rdnma:" host [":" port]
ssl _addr = "ssl:" host [":" port]’

\ddr) *

--ha-public-
brokers URL

URL used by clients to connect to the brokers in the same format as --ha-brokers

above. Use this option if you want client traffic on a different network from

broker replication traffic. If this option is not set, clients will use the same URL as

brokers.

--ha-username
USER

--ha-password
PASS

--ha-mechanism
MECH

Brokers use USER, PASS, MECH to authenticate when connecting to each other.

2|f the resource manager supports virtual | P addresses then the URL can contain just the single virtual |P.

To configure a cluster you must set at least ha-cluster and ha-brokers

1.13.3. Creating replicated queues and exchanges

To create a replicated queue or exchange, pass the argument gpid.replicate when creating the queue or

exchange. It should have one of the following three values:

« all: Replicate the queue or exchange, messages and bindings.

» configuration: Replicate the existence of the queue or exchange and bindings but don't replicate

Messages.

» none: Don't replicate, thisis the default.

Bindings are automatically replicated if the queue and exchange being bound both have replication
argument of all or confguration, they are not replicated otherwise. Y ou can create replicated queues and

exchanges with the gpid-config management tool like this:

gpi d-confi g add queue nyqueue --replicate all

To create replicated queues and exchangs viathe client API, add a node entry to the address like this:

"nyqueue; {creat e: al ways, node: { x-decl are: {argunments: {'qpid.replicate' :all}}}}

1.13.4. Client Fail-over

Clients can only connect to the single primary broker. All other brokers in the cluster are backups, and

they automatically reject any attempt by a client to connect.

53

Running the AMQP
Messaging Broker

Clients are configured with the addreses of all of the brokers in the cluster. 1 When the client tries to
connect initially, it will try all of its addresses until it successfully connects to the primary. If the primary
fails, clientswill try to try to re-connect to all the known brokers until they find the new primary.

Suppose your cluster has 3 nodes: nodel, node2 and node3 all using the default AMQP port.

With the C++ client, you specify all the cluster addressesin asingle URL, for example:
gpi d: : messagi ng: : Connection c("nodel: node2: node3");

With the python client, you specify reconnect=True and a list of host: port addresses as
reconnect_urlswhen calling establish or open

connection = gpi d. messagi ng. Connecti on. est abl i sh("nodel", reconnect=True, "reconn

1.13.5. Broker fail-over

Broker fail-over is managed by a cluster resource manager. The initial preview version of HA is not
integrated with a resource manager, the production version will be integrated with rgmanager [https.//
fedorahosted.org/cluster/wiki/RGManager] and it may be integrated with other resource managersin the
future.

The resource manager is responsible for ensuring that there is exactly one broker is acting as primary at
all times. It selectstheinitial primary broker when the cluster is started, detects failure of the primary, and
chooses the backup to promote as the new primary.

Y ou can simulate the actions of a resource manager, or indeed do your own integration with a resource
manager using the gpid-ha tool. The command

gpi d-ha pronmote -b host: port

will promote the broker listening on host :port to be the primary. Y ou should only promote a broker
to primary when there is no other primary in the cluster. The brokers will not detect multiple primaries,
they rely on the resource manager to do that.

A clustered broker always starts initialy in discovery mode. It uses the addresses configured in the ha-
br oker s configuration option and tries to connect to each in turn until it finds to the primary. The resource
manager is responsible for choosing on of the backups to promote as the initial primary.

If the primary fails, all the backups are disconnected and return to discovery mode. The resource manager
chooses one to promote as the new primary. The other backups will eventually discover the new primary
and reconnect.

1.13.6. Broker Administration

Y ou can connect to a backup broker with the administrative tool qpid-ha. You can also connect with the
tools gpid-config, gpid-route and gpid-stat if you pass the flag --ha-admin on the command line. If

L1f the resource manager supports virtual | P addresses then the clients can be configured with asingle virtual |P address.

54

https://fedorahosted.org/cluster/wiki/RGManager
https://fedorahosted.org/cluster/wiki/RGManager
https://fedorahosted.org/cluster/wiki/RGManager

Running the AMQP
Messaging Broker

you do connect to a backup you should not modify any of the replicated queues, as this will disrupt the
replication and may result in message loss.

1.14. Queue Replication with the HA module

As well as support for an active-passive cluster, the ha module also alows you to replicate individual
gueues. Theoriginal queueisused as normal. Thereplica queueis updated automatically as messages are
added to or removed from the original queue.

To create areplicayou need the HA module to beloaded on both the orignal and replicabrokers. Note that
it is not safe to modify the replica queue other than via the automatic updates from the original. Adding or
removing messages on the replica queue will make replication inconsistent and may cause message |oss.
The HA module does not enforce restricted access to the replica queue (as it does in the case of a cluster)
soitisup to the application to ensure thereplcaisnot used until it has been disconnected from the original.

Suppose that myqueueis aqueue on nodel and we want to create areplicaof myqueue on node2 (where
both brokers are using the default AMQP port.) Thisis accomplished by the command:
gpi d-confi g --broker=node2 add queue --start-replica nodel nyqueue

If myqueue aready exists on the replica broker you can start replication from the original queue like this:

gpi d-ha replicate -b node2 nodel nyqueue

55

Chapter 2. Managing the AMQP
Messaging Broker

2.1. Managing the C++ Broker

There are quite afew ways to interact with the C++ broker. The command line tools include;

2.1.1.

gpid-route - used to configure federation (a set of federated brokers)

gpid-config - used to configure queues, exchanges, bindings and list them etc

gpid-tool - used to view management information/statistics and call any management actions on the

broker

gpid-printevents - used to receive and print QMF events

gpid-ha - used to interact with the High Availability module

Using gpid-config

This utility can be used to create queues exchanges and bindings, both durable and transient. Always check
for latest options by running --help command.

$ gpid-config --help
Usage: qgpid-config [OPTI ONS]

gpi d-config [OPTI ONS] exchanges [filter-string]

gpi d-confi g [OPTI ONS] queues [filter-string]

gpi d-config [OPTI ONS] add exchange <type> <nanme> [AddExchangeOpti ons]
gpi d-config [OPTI ONS] del exchange <nane>

gpi d-config [OPTI ONS] add queue <nane> [AddQueueOpti ons]

gpi d-config [OPTI ONS] del queue <nane>

gpi d-config [OPTI ONS] bi nd <exchange- nane> <queue- nane> [bi ndi ng- key]
gpi d-config [OPTI ONS] unbi nd <exchange-nane> <queue-nane> [bi ndi ng- key]

Opt i ons:

-b [--bindings]
-a [--broker-addr]

Show bi ndi ngs i n queue or exchange |
Address (Il ocal host) Address of qpidd broker

broker-addr is in the form [user nane/ passwor d@ hostname | i p-address

ex: |l ocal host,

Add Queue Opti ons:

--durable
--cluster-durable
--file-count N (8)
--file-size N (24)
- - max- queue-si ze N

- - max- queue-count N
--limt-policy [none

10. 1. 1. 7:10000, broker-host: 10000, guest/guest @ ocal host

Queue is durable
Queue becones durable if there is only one functioning cl
Nunber of files in queue's persistence journa
File size in pages (64Kib/page)
Maxi mum i n- menory queue size as bytes
Maxi mum i n- menory queue size as a nunber of nessages
| reject | flowto-disk | ring | ring-strict]
Action taken when queue Iimt is reached:
none (default) - Use broker's default policy
rej ect - Rej ect enqueued messages

56

Managing the AMQP

Messaging Broker
fl owto-disk - Page nessages to disk
ring - Repl ace ol dest unacqui red nessage wi
ring-strict - Repl ace ol dest nessage, reject if o
--order [fifo | lvg | |vg-no-browse]

Set queue ordering policy:
fifo (default) - First in, first out
lvg - Last Val ue Queue ordering, allows qu
| vg- no- browse - Last Val ue Queue ordering, browsing
- - gener at e- queue-events N
If set to 1, every enqueue will generate an event that ca
registered listeners (e.g. for replication). If set to 2,
generated for enqueues and dequeues

Add Exchange Opti ons:

--durabl e Exchange is durable

- -sequence Exchange will insert a 'gpid.nsg_sequence' field in the nmessage h
with a value that increments for each nmessage forwarded.

--ive Exchange wi Il behave as an 'initial-val ue-exchange', keeping a re
to the | ast nmessage forwarded and enqueui ng that nmessage to newy
queues.

Get the summary page

$ gpid-config
Tot al Exchanges:
t opi c:
headers:
fanout :
direct:
Total Queues:
dur abl e:
non- dur abl e:

NO~NNEFEPEFEPENO

List the queues

$ qpi d-config queues
Queue Narme Attributes

pub_start

pub_done

sub_ready

sub_done

perftestO --durabl e
repl y-dhcp- 100- 18- 254. bos. redhat . com 20713 aut o-del exc
t opi c- dhcp- 100- 18- 254. bos. redhat. com 20713 aut o-del exc

List the exchanges with bindings

$./qpid-config -b exchanges
Exchange '' (direct)
bi nd pub_start => pub_start

57

Managing the AMQP
Messaging Broker

bi nd pub_done => pub_done
bi nd sub_ready => sub_ready
bi nd sub_done => sub_done
bi nd perftest0 => perftestO
bi nd mgnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15 => ngnt - 3206f f 16- f b29- 4a30- 82ea
bi nd repl - 3206ff 16-f b29- 4a30- 82ea- e76f 50dd7d15 => repl - 3206f f 16-f b29- 4a30- 82ea
Exchange 'amg.direct' (direct)
bi nd repl - 3206ff 16-f b29- 4a30- 82ea- e76f 50dd7d15 => repl - 3206f f 16-f b29- 4a30- 82ea
bi nd repl -df 06c7a6-4ce7-426a- 9f 66- da91a2a6a837 => repl - df 06c7a6-4ce7-426a- 9f 66
bi nd repl -c55915c2- 2f da- 43ee- 9410- blclcbb3edae => repl -c55915c2- 2f da- 43ee- 9410
Exchange 'amg.topic' (topic)
Exchange 'amg. fanout' (fanout)
Exchange 'amg. match' (headers)
Exchange ' gpi d. managenent’' (topic)
bi nd nmgnt . # => ngnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15

2.1.2. Using qpid-route

This utility is to create federated networks of brokers, This allows you for forward messages between
brokersin anetwork. Messages can be routed statically (using "qpid-route route add") where the bindings
that control message forwarding are supplied in the route. Message routing can also be dynamic (using
"gpid-route dynamic add") where the messages are automatically forwarded to clients based on their
bindings to the local broker.

$ gpid-route
Usage: qgpid-route [OPTIONS] dynam c add <dest-broker> <src-broker> <exchange> [ta
gpi d-route [OPTI ONS] dynami c del <dest-broker> <src-broker> <exchange>

gpi d-route [OPTIONS] route add <dest - br oker > <src- br oker > <exchange> <ro

gpi d-route [OPTIONS] route del <dest - br oker > <src- br oker > <exchange> <ro
gpi d-route [OPTI ONS] queue add <dest - br oker > <src- broker> <exchange> <qu
gpi d-route [OPTI ONS] queue del <dest - br oker > <src- broker> <exchange> <qu

gpid-route [OPTIONS] route list [<dest-broker>]
gpid-route [OPTIONS] route flush [<dest-broker>]
gpi d-route [OPTIONS] route map [<br oker >]

gpid-route [OPTIONS] link add <dest-broker> <src-broker>
gpid-route [OPTIONS] link del <dest-broker> <src-broker>
gpid-route [OPTIONS] link list [<dest-broker>]

Opt i ons:
-v [--verbose] Ver bose out put
-q [--quiet] Qui et output, don't print duplicate warnings
-d [--durable] Added configuration shall be durable
-e [--del-enpty-link] Delete link after deleting |last route on the Iink
-s [--src-local] Make connection to source broker (push route)

-t <transport> [--transport <transport>]
Specify transport to use for links, defaults to tcp

dest - broker and src-broker are in the form [usernanme/password@ hostnane | ip-
ex: local host, 10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

A few examples:

58

Managing the AMQP
Messaging Broker

gpi d-route dynanm c add host1l host2 fed.topic
gpi d-route dynanm c add host2 hostl fed.topic

gpid-route -v route add host1l host2 hubl.topic hub2.topic.stock. buy
gpid-route -v route add host1l host2 hubl.topic hub2.topic.stock. sel
gpid-route -v route add hostl1l host2 hubl.topic 'hub2.topic.stock.#
gpid-route -v route add hostl host2 hubl.topic 'hub2. #

gpid-route -v route add hostl1l host2 hubl.topic 'hub2.topic.#
gpid-route -v route add hostl host2 hubl.topic 'hub2. gl obal.#

The link map feature can be used to display the entire federated network configuration by supplying a
single broker as an entry point:

$ gpid-route route map | ocal host: 10001

Fi ndi ng Li nked Brokers:
| ocal host: 10001. .
| ocal host: 10002. .
| ocal host: 10003. .
| ocal host: 10004. .
| ocal host: 10005. .
| ocal host: 10006. .
| ocal host: 10007. .
| ocal host: 10008. .

QLRIQJQYQQQ

Dynam ¢ Rout es:

Exchange fed.topic:

| ocal host: 10002 <=> | ocal host: 10001
| ocal host: 10003 <=> | ocal host: 10002
| ocal host: 10004 <=> | ocal host: 10002
| ocal host: 10005 <=> | ocal host: 10002
| ocal host: 10006 <=> | ocal host: 10005
| ocal host: 10007 <=> | ocal host: 10006
| ocal host: 10008 <=> | ocal host: 10006

Exchange fed. direct:
| ocal host: 10002 => | ocal host: 10001
| ocal host: 10004 => | ocal host: 10003
| ocal host: 10003 => | ocal host: 10002
| ocal host: 10001 => | ocal host: 10004

Stati ¢ Routes:

| ocal host: 10003(ex=ang. di rect) <= | ocal host: 10005(ex=any. di rect) key=rkey
| ocal host: 10003(ex=ang. di rect) <= | ocal host: 10005(ex=any. di rect) key=rkey2

2.1.3. Using gpid-tool

This utility provided atelnet style interface to be able to view, list al stats and action all the methods.
Simplecapturebelow. Best to just play withit and mail thelist if you have questionsor want features added.

59

Managing the AMQP

Messaging Broker
gpi d:
gpi d: help
Management Tool for QPID
Conmands:
list - Print summary of existing objects by class
[ist <classNane> - Print list of objects of the specified class
[ist <classNane> all - Print contents of all objects of specified c
list <classNane> active - Print contents of all non-del eted objects of
list <list-of-IDs> - Print contents of one or nore objects (infer
list <classNanme> <list-of-1Ds> - Print contents of one or nore objects
list is space-separated, ranges may be specified (i.e. 1004-1010)
call <ID> <met hodNanme> <args> - |Invoke a nethod on an obj ect
schema - Print summary of object classes seen on the
schema <cl assNanme> - Print details of an object class
set tine-format short - Select short tinestanp format (default)
set tine-format | ong - Select long timestanp format
quit or ~D - Exit the program
gpid: list
Management Obj ect Types:
hj ect Type Active Deleted
gpi d. bi ndi ng 21 0
gpi d. br oker 1 0
gpi d.client 1 0
gpi d. exchange 6 0
gpi d. queue 13 0
gpi d. sessi on 4 0
gpi d. system 1 0
gpi d. vhost 1 0

gpid: list gpid.system
hj ects of type gpid.system
I D Creat ed Destroyed | ndex

1000 21:00:02 - host

gpid: list 1000

nj ect of type gpid.system (last sanple tine: 21:26:02)
Type El ement 1000

config osNane Li nux
config nodeNane | ocal host. | ocal domain
config release 2.6.24.4-64.fc8
config version #1 SMP Sat Mar 29 09:15:49 EDT 2008
config rmachine x86_64
gpi d: schema queue
Schema for class 'qgpid. queue'

El ement Type Uni t Access Not es Descri pt
vhost Ref reference ReadCreate index

nane short-string ReadCreate index

dur abl e bool ean ReadCr eat e

aut oDel et e bool ean ReadCr eat e

excl usi ve bool ean ReadCr eat e

60

Managing the AMQP

Messaging Broker
argunent s field-table ReadOnl y Ar gunrent
st or eRef ref erence ReadOnl y Ref er enc
nmsgTot al Enqueues ui nt 64 nmessage Total ne
nmsgTot al Dequeues ui nt 64 nmessage Total ne
msgTxnEnqueues ui nt 64 nmessage Tr ansact
msgTxnDequeues ui nt 64 nmessage Tr ansact
nmsgPer si st Enqueues ui nt 64 nmessage Persi ste
nmsgPer si st Dequeues ui nt 64 nmessage Persi ste
nmsgDept h ui nt 32 nmessage Current
nmsgDept hHi gh ui nt 32 nmessage Current
msgDept hLow ui nt 32 nmessage Current
byt eTot al Enqueues ui nt 64 oct et Total ne
byt eTot al Dequeues ui nt 64 oct et Total ne
byt eTxnEnqueues ui nt 64 oct et Transact
byt eTxnDequeues ui nt 64 oct et Transact
byt ePer si st Enqueues ui nt 64 oct et Persi ste
byt ePer si st Dequeues ui nt 64 oct et Persi ste
byt eDept h ui nt 32 oct et Current
byt eDept hHi gh ui nt 32 oct et Current
byt eDept hLow ui nt 32 oct et Current
enqueueTxnStarts ui nt 64 transacti on Total en
enqueueTxnConmi t s ui nt 64 transacti on Total en
enqueueTxnRej ect s ui nt 64 transacti on Total en
enqueueTxnCount ui nt 32 transacti on Current
enqueueTxnCount Hi gh ui nt 32 transacti on Current
enqueueTxnCount Low ui nt 32 transacti on Current
dequeueTxnStarts ui nt 64 transacti on Total de
dequeueTxnConmi t s ui nt 64 transacti on Total de
dequeueTxnRej ect s ui nt 64 transacti on Total de
dequeueTxnCount ui nt 32 transacti on Current
dequeueTxnCount Hi gh ui nt 32 transacti on Current
dequeueTxnCount Low ui nt 32 transacti on Current
consumers ui nt 32 consuner Current
consuner sHi gh ui nt 32 consurmer Current
consumner sLow ui nt 32 consuner Current
bi ndi ngs ui nt 32 bi ndi ng Current
bi ndi ngsHi gh ui nt 32 bi ndi ng Current
bi ndi ngsLow ui nt 32 bi ndi ng Current
unackedMessages ui nt 32 nmessage Messages
unackedMessagesHi gh ui nt 32 nmessage Messages
unackedMessagesLow ui nt 32 nmessage Messages
nmessagelat encySanmples delta-tine nanosecond Br oker |
nmessagelat encyM n delta-tinme nanosecond Br oker |
nmessagelat encyMax delta-tinme nanosecond Br oker
nmessagelat encyAverage delta-tine nanosecond Br oker

Met hod ' purge' Discard all messages on queue
gpi d: list queue
nj ects of type gpid. queue

I D Creat ed Destroyed | ndex

1012 21:08:13 - 1002. pub_start
1014 21:08:13 - 1002. pub_done
1016 21:08:13 - 1002. sub_r eady
1018 21:08:13 - 1002. sub_done

61

Managing the AMQP

Messaging Broker

1020 21:08:13 - 1002. perftestO

1038 21:09:08 - 1002. mgnt - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15

1040 21:09:08 - 1002. r epl - 3206f f 16- f b29- 4a30- 82ea- e76f 50dd7d15

1046 21:09:32 - 1002. mgnt - df 06c7a6- 4ce7- 426a- 9f 66- da91a2a6a837

1048 21:09:32 - 1002. repl - df 06c7a6- 4ce7- 426a- 9f 66- da91a2a6a837

1054 21:10:01 - 1002. mgnt - ¢55915c2- 2f da- 43ee- 9410- blclcbb3edae

1056 21:10:01 - 1002. repl - ¢55915c2- 2f da- 43ee- 9410- blclcbb3e4ae

1063 21:26:00 - 1002. mgnt - 8d621997- 6356- 48c3- acab- 76a37081d0f 3

1065 21:26:00 - 1002. repl - 8d621997- 6356- 48c3- acab- 76a37081d0f 3
gpid: list 1020
nj ect of type qgpid.queue: (last sanple time: 21:26:02)

Type El ement 1020

config vhost Ref 1002

config nane perftestO

config durable Fal se

config autoDelete Fal se

config exclusive Fal se

config argunents {'gpid. max_si ze': 0, 'qgpid.max_count': 0}

config storeRef NULL

i nst nmsgTot al Enqueues 500000 nessages

i nst nmsgTot al Dequeues 500000

i nst msgTxnEnqueues 0

i nst msgTxnDequeues 0

i nst nmsgPer si st Enqueues 0

i nst nmsgPer si st Dequeues 0

i nst nmsgDept h 0

i nst nmsgDept hHi gh 0

i nst msgDept hLow 0

i nst byt eTot al Enqueues 512000000 octets

i nst byt eTot al Dequeues 512000000

i nst byt eTxnEnqueues 0

i nst byt eTxnDequeues 0

i nst byt ePer si st Enqueues 0

i nst byt ePer si st Dequeues 0

i nst byt eDept h 0

i nst byt eDept hHi gh 0

i nst byt eDept hLow 0

i nst enqueueTxnStarts 0 transacti ons

i nst enqueueTxnConmi t s 0

i nst enqueueTxnRej ect s 0

i nst enqueueTxnCount 0

i nst enqueueTxnCount Hi gh 0

i nst enqueueTxnCount Low 0

i nst dequeueTxnStarts 0

i nst dequeueTxnConmi t s 0

i nst dequeueTxnRej ect s 0

i nst dequeueTxnCount 0

i nst dequeueTxnCount Hi gh 0

i nst dequeueTxnCount Low 0

i nst CONSUNer s 0 consuners

i nst consuner sHi gh 0

i nst consumner sLow 0

i nst bi ndi ngs 1 bi ndi ng

62

Managing the AMQP

Messaging Broker
i nst bi ndi ngsHi gh 1
i nst bi ndi ngsLow 1
i nst unackedMessages 0 nessages
i nst unackedMessagesHi gh 0
i nst unackedMessagesLow 0
i nst messagelat encySanmples 0
i nst nmessagelat encyM n 0
i nst nmessagelat encyMax 0
i nst messagelLat encyAverage O

gpi d:
2.1.4. Using gpid-printevents

This utility connects to one or more brokers and collects events, printing out aline per event.

$ qpid-printevents --help
Usage: qpid-printevents [options] [broker-addr]...

Collect and print events fromone or nore Qi d nessage brokers. |f no broker-
addr is supplied, gpid-printevents will connect to 'l ocal host:5672'. broker-
addr is of the form [usernane/password@ hostnanme | ip-address [:<port>] ex:

| ocal host, 10.1.1.7:10000, broker-host: 10000, guest/guest @ ocal host

Opt i ons:
-h, --help show this help message and exit

You get theidea... have fun!

2.1.5. Using gpid-ha

Thisutility letsyou monitor and control the activity of the clustering behavior provided by the HA module.

gpi d-ha --help
usage: qpid-ha <conmand> [<ar gunent s>]

Commands ar e:

r eady Test if a backup broker is ready.

query Print HA configuration settings.

set Set HA configuration settings.

pronot e Pronote broker from backup to primary.

replicate Set up replication from <queue> on <renote-broker> to <queue> on th

For help with a conmand type: qpid-ha <conmmand> --hel p

2.2. Qpid Management Framework

* Section2.2.1,“ What ISQMF”

63

Managing the AMQP
Messaging Broker

e Section 2.2.2, “ Getting Started with QMF "
» Section 2.2.3,“ QMF Concepts”
e ¢ Section 2.2.3.1, “ Console, Agent, and Broker ”
e Section 2.2.3.2,“ Schema”
e Section 2.2.3.3, “ ClassKeysand Class Versioning ”

» Section 2.2.4,“ The QMF Protocol ”

Section 2.2.5, “ How to Write a QMF Console”
» Section 2.2.6, “ How to Writea QMF Agent ”

Please visit the ??? for information about the future of QMF.

2.2.1. What Is QMF

QMF (Qpid Management Framework) is a general-purpose management bus built on Qpid Messaging. It
takes advantage of the scalability, security, and rich capabilities of Qpid to provide flexible and easy-to-
use manageability to alarge set of applications.

2.2.2. Getting Started with QMF

QMF is used through two primary APIs. The console APl is used for console applications that wish to
access and mani pulate manageable components through QMF. The agent API is used for application that
wish to be managed through QMF.

Thefastest way to get started with QM F isto work through the"How To" tutorialsfor consoles and agents.
For a deeper understanding of what is happening in the tutorials, it is recommended that you look at the
Qmf Concepts section.

2.2.3. QMF Concepts

This section introduces important concepts underlying QMF.

2.2.3.1. Console, Agent, and Broker

The mgjor architectural components of QMF are the Console, the Agent, and the Broker. Console
components are the "managing" components of QM F and agent components are the "managed" parts. The
broker isacentral (possibly distributed, clustered and fault-tolerant) component that manages name spaces
and caches schemainformation.

A console application may be a command-line utility, a three-tiered web-based GUI, a collection and
storage device, a specialized application that monitors and reacts to events and conditions, or anything
el se somebody wishes to develop that uses QMF management data.

An agent application is any application that has been enhanced to allow itself to be managed via QMF.

Managing the AMQP

Messaging Broker
| | |
v v v v
e mmm e e mmmmm e mmmmmmm e mmmmmm e — = - - =
Qoi d Messaging Bus (with QW Broker capability)
e mmm e e mmmmm e mmmmmmm e mmmmmm e — = - - =
N N N
| | |
v v v
e + e + e
| Manageabl e app | | Manageabl e app | | Manageabl e app |
e + e + e

In the above diagram, the Manageable apps are agents, the CLI utility, Web app, and Audit storage are
consoles, and Event correlation is both a console and an agent because it can create events based on the
aggregation of what it sees.

2.2.3.2. Schema

A schema describes the structure of management data. Each agent provides a schema that describes its
management model including the object classes, methods, events, etc. that it provides. In the current QMF
distribution, the agent's schema is codified in an XML document. In the near future, there will also be
ways to programatically create QMF schemata.

2.2.3.2.1. Package

Each agent that exports a schema identifies itself using a package name. The package provides a unique
namespace for the classes in the agent's schema that prevent collisions with identically named classes in
other agents schemata.

Package names are in "reverse domain name" form with levels of hierarchy separated by periods. For
example, the Qpid messaging broker uses package "org.apache.qpid.broker" and the Access Control List
plugin for the broker uses package "org.apache.gpid.acl". In general, the package name should be the
reverse of the internet domain name assigned to the organization that owns the agent software followed
by identifiersto uniquely identify the agent.

The XML document for a package's schema uses an enclosing <schema> tag. For example:

<schema package="or g. apache. gpi d. br oker ">
</ schema>

2.2.3.2.2. Object Classes

Object classes define types for manageable objects. The agent may create and destroy objects which are
instances of object classesin the schema. An object classisdefined inthe XML document using the <class>
tag. An object classis composed of properties, statistics, and methods.

<cl ass nane="Exchange" >

<property nane="vhost Ref" type="obj 1 d" references="Vhost" access="RC'
<property nanme="nanme" type="sstr" access="RC' index="y"/>

<property nanme="type" type="sstr" access="RO'/>

<property nane="dur abl e" type="bool " access="RC'/>

<property nane="argunents" type="map" access="R0O' desc="Argunents supplied

65

Managing the AMQP
Messaging Broker

<stati
<stati
<stati
<stati
<stati
<stati
<stati
<stati

</ cl ass>

sti
sti
sti
sti
sti
sti
sti
sti

OO0 000000

nane="pr oducer Count" type="hil 032"

nane="bi ndi ngCount "

nane="nmsgRecei ves"
name="mnmsgDr ops"
name="nmsgRout es"

nane="byt eRecei ves"

nane=" byt eDr ops”
nane=" byt eRout es"

2.2.3.2.3. Properties and Statistics

type="hil 032"
t ype="count 64"
t ype="count 64"
t ype="count 64"
t ype="count 64"
t ype="count 64"
t ype="count 64"

desc="Curr ent
desc="Curr ent

desc="Tot al
desc="Tot al
desc="Tot al
desc="Tot al
desc="Tot al
desc="Tot al

<property> and <statistic> tags must be placed within <schema> and </schema> tags.

producers on exch
bi ndi ngs"/ >
nmessages received"/
messages dropped (n
rout ed nessages”/ >
bytes received"/>
byt es dropped (no n
routed bytes"/>

Properties, statistics, and methods are the building blocks of an object class. Properties and statistics are
both object attributes, though they aretreated differently. If an object attribute is defining, seldom or never
changes, or islargein size, it should be defined as a property. If an attribute israpidly changing or is used
to instrument the object (counters, etc.), it should be defined as a statistic.

The XML syntax for <property> and <statistic> have the following XM L-attributes:

Table2.1. XML Attributesfor QMF Properties and Statistics

Attribute

<property>

<statistic>

Meaning

name

Y

Y

The name of the attribute

type

Y

Y

The data type of the
attribute

unit

Y

Optional unit name - use
the singular (i.e. MByte)

desc

Description to annotate
the attribute

references

If the type is "objld",
names the referenced
class

access

Access rights (RC, RW,
RO)

index

"y" if this property is
used to uniquely identify
the object. There may
be more than one index
property in aclass

parentRef

"y if this property
references an object in
which this object isin a
child-parent relationship.

optional

y" if this property is
optional (i.e. may be
NUL L/not-present)

min

Minimum vaue of a
numeric attribute

66

Managing the AMQP

Messaging Broker
max Y Maximum value of a
numeric attribute
maxLen Y Maximum length of a
string attribute

2.2.3.2.4. Methods

<method> tags must be placed within <schema> and </schema> tags.

A method isaninvokablefunctionto be performed on instances of the object class (i.e. aRemote Procedure
Call). A <method> tag has aname, an optional description, and encloses zero or more arguments. Method
arguments are defined by the <arg> tag and have a name, atype, a direction, and an optional description.
The argument direction can be "I", "O", or "IO" indicating input, output, and input/output respectively.
An example:

<nmet hod name="echo" desc="Request a response to test the path to the nanagenent
<arg nane="sequence" dir="10" type="uint32"/>
<arg nane="body" dir="10" type="Istr"/>

</ met hod>

2.2.3.2.5. Event Classes

2.2.3.2.6. Data Types
Object attributes, method arguments, and event arguments have data types. The data types are based on

therich datatyping system provided by the AM QP messaging protocol. The following table describes the
data types available for QMF:

Table 2.2. QMF Datatypes

QMF Type Description

REF QMF Object ID - Used to reference another QMF
object.

us 8-bit unsigned integer

ul6 16-bit unsigned integer

u32 32-bit unsigned integer

ue4 64-bit unsigned integer

S8 8-bit signed integer

S16 16-bit signed integer

S32 32-bit signed integer

S64 64-bit signed integer

BOOL Boolean - True or False

SSTR Short String - String of up to 255 bytes

LSTR Long String - String of up to 65535 bytes

ABSTIME Absolute time since the epoch in nanoseconds (64-
bits)

67

Managing the AMQP

Messaging Broker
DELTATIME Deltatime in nanoseconds (64-bits)
FLOAT Single precision floating point number
DOUBLE Double precision floating point number
uuIiD UUID - 128 hits
FTABLE Field-table - std::map in C++, dictionary in Python

In the XML schema definition, types go by different names and there are a number of specia cases. This
is because the XML schemais used in code-generation for the agent API. It provides options that control
what kind of accessors are generated for attributes of different types. The following table enumerates the
types availablein the XML format, which QMF types they map to, and other special handling that occurs.

Table2.3. XML Schema Mapping for QMF Types

XML Type QMF Type Accessor Style Special Characteristics

objld REF Direct (get, set)

uint8,16,32,64 U8,16,32,64 Direct (get, set)

int8,16,32,64 S8,16,32,64 Direct (get, set)

bool BOOL Direct (get, set)

sstr SSTR Direct (get, set)

Istr LSTR Direct (get, set)

absTime ABSTIME Direct (get, set)

deltaTime DELTATIME Direct (get, set)

float FLOAT Direct (get, set)

double DOUBLE Direct (get, set)

uuid UuID Direct (get, set)

map FTABLE Direct (get, set)

hil08,16,32,64 U8,16,32,64 Counter (inc, dec) Generates value,
valueMin, valueMax

count8,16,32,64 U8,16,32,64 Counter (inc, dec)

mma32,64 u32,64 Direct Generates vaueMin,
valueMax,
valueAverage,
valueSamples

mmaTime DELTATIME Direct Generates valueMin,
valueMax,
valueAverage,
valueSamples

I mportant

When writing a schema using the XML format, types used in <property> or <arg> must be types
that have Direct accessor style. Any type may be used in <statistic> tags.

2.2.3.3. Class Keys and Class Versioning

68

Managing the AMQP
Messaging Broker

2.2.4.

2.2.5.

2.2.6.

2.3.

2.3.1.

The QMF Protocol

The QMF protocol defines the message formats and communication patterns used by the different QMF
components to communicate with one another.

A description of the current version of the QMF protocol can be found at 7??2.

A proposal for an updated protocol based on map-messagesisin progress and can be found at ?7??2.

How to Write a QMF Console

Please see the ??? for information about using the console API with Python.

How to Write a QMF Agent

QMF Python Console Tutorial

» Section 2.3.1, “ Prerequisite - Install Qpid Messaging ”

» Section 2.3.2, “ Synchronous Console Operations”

e ¢ Section 2.3.2.1, “ Creating a QMF Console Session and Attaching to a Broker ”
e Section 2.3.2.2, “ Accessing Managed Objects”
e o Section 2.3.2.2.1, “ Viewing Properties and Statistics of an Object ”

e Section 2.3.2.2.2, “ Invoking Methods on an Object ”

Section 2.3.3, “ Asynchronous Console Operations”

e ¢ Section 2.3.3.1, “ Creating a Console Class to Receive Asynchronous Data”
e Section 2.3.3.2, “ Receiving Events”

e Section 2.3.3.3, “ Receiving Objects”

e Section 2.3.3.4, “ Asynchronous Method Calls and Method Timeouts”

Section 2.3.4, “ Discovering what Kinds of Objects are Available”

Prerequisite - Install Qpid Messaging

QMF uses AMQP Messaging (QPid) asits means of communication. To use QMF, Qpid messaging must
be installed somewhere in the network. Qpid can be downloaded as source from Apache, is packaged with
anumber of Linux distributions, and can be purchased from commercial vendorsthat use Qpid. Please see
http://gpid.apache.orgfor information as to where to get Qpid Messaging.

Qpid Messaging includes a message broker (qpidd) which typically runs as a daemon on a system. It also
includes client bindings in various programming languages. The Python-language client library includes
the QMF console libraries needed for this tutorial.

Please note that Qpid Messaging has two broker implementations. One is implemented in C++ and the
other in Java. At presstime, QMF is supported only by the C++ broker.

69

http://qpid.apache.org

Managing the AMQP
Messaging Broker

2.3.2.

If the goal isto get the tutorial examples up and running as quickly as possible, al of the Qpid components
can be installed on a single system (even a laptop). For more realistic deployments, the broker can be
deployed on a server and the client/QMF libraries installed on other systems.

Synchronous Console Operations

The Python console API for QMF can be used in a synchronous style, an asynchronous style, or a
combination of both. Synchronous operations are conceptually simple and are well suited for user-
interactive tasks. All operations are performed in the context of a Python function call. If communication
over the message bus is required to complete an operation, the function call blocks and waits for the
expected result (or timeout failure) before returning control to the caller.

2.3.2.1. Creating a QMF Console Session and Attaching to a Broker

For the purposes of this tutorial, code examples will be shown asthey are entered in an interactive python
Session.

$ python

Python 2.5.2 (r252: 60911, Sep 30 2008, 15:41: 38)

[GCC 4.3.2 20080917 (Red Hat 4.3.2-4)] on linux2

Type "hel p", "copyright", "credits" or "license" for nore information.
>>>

We will begin by importing the required libraries. If the Python client is properly installed, these libraries
will be found normally by the Python interpreter.

>>> from gnf.consol e i nport Session

We must now create a Session object to manage this QM F consol e session.

>>> sess = Session()

If no arguments are supplied to the creation of Session, it defaults to synchronous-only operation. It also
defaults to user-management of connections. More on thisin a moment.

We will now establish a connection to the messaging broker. If the broker daemon is running on the local
host, smply use the following:

>>> proker = sess. addBroker ()

If the messaging broker is on aremote host, supply the URL to the broker in the addBroker function call.
Here's how to connect to alocal broker using the URL.

>>> broker = sess. addBroker("angp://I| ocal host")

The call to addBroker is synchronous and will return only after the connection has been successfully
established or hasfailed. If afailure occurs, addBroker will raise an exception that can be handled by the
console script.

>>> try:
br oker = sess. addBroker ("angp://1 ocal host: 1000")

70

Managing the AMQP
Messaging Broker

except:
print "Connection Fail ed"

Connection Fail ed
>>>

This operation fails because there is no Qpid Messaging broker listening on port 1000 (the default port
for gpidd is 5672).

If preferred, the QMF session can manage the connection for you. In this case, addBroker returns
immediately and the session attempts to establish the connection in the background. This will be covered
in detail in the section on asynchronous operations.

2.3.2.2. Accessing Managed Objects

The Python console API providesaccessto remotely managed objectsviaaproxy model. The API givesthe
client an object that servesasaproxy representing the"real" object being managed on the agent application.
Operations performed on the proxy result in the same operations on the real object.

The following examples assume prior knowledge of the kinds of objects that are actually available to be
managed. There is a section later in this tutorial that describes how to discover what is manageable on
the QMF bus.

Proxy objects are obtained by calling the Session.getObjects function.

Toillustrate, we'll get alist of objects representing queues in the message broker itself.

>>> queues = sess. get bj ects(_cl ass="queue", _package="org. apache. qpi d. br oker")

gueues is an array of proxy objects representing real queues on the message broker. A proxy object can
be printed to display a description of the object.

>>> for g in queues:
print g
or g. apache. gpi d. br oker: queue[0- 1537- 1- 0- 58] 0-0-1-0-1152921504606846979: repl y-1 oca

or g. apache. gpi d. br oker : queue[0- 1537-1- 0-61] 0-0-1-0-1152921504606846979:t opi c-| oca
>>>

2.3.2.2.1. Viewing Properties and Statistics of an Object

Let us now focus our attention on one of the queue objects.

>>> queue = queues|[0]

Theattributes of an object are partitioned into propertiesand statistics. Though the distinction is somewhat
arbitrary, properties tend to be fairly static and may also be large and statistics tend to change rapidly and
arerelatively small (counters, etc.).

There are two ways to view the properties of an object. An array of properties can be obtained using the
getProperties function:

>>> props = queue. get Properties()

71

Managing the AMQP
Messaging Broker

>>> for prop in props:
print prop

(vhost Ref, 0-0-1-0-1152921504606846979)
(name, u'reply-Ilocal host. | ocal domai n. 32004")
(dur abl e, Fal se)

(aut oDel ete, True)

(excl usive, True)

(argunents, {})

>>>

The getProperties function returns an array of tuples. Each tuple consists of the property descriptor and
the property value.

A more convenient way to access properties is by using the attribute of the proxy object directly:

>>> queue. aut oDel et e

True

>>> gueue. nanme

u' reply-1ocal host. | ocal domai n. 32004'
>>>

Statistics are accessed in the same way:

>>> stats = queue.getStatistics()
>>> for stat in stats:
print stat

(msgTot al Enqueues, 53)
(msgTot al Dequeues, 53)
(msgTxnEnqueues, 0)
(msgTxnDequeues, 0)
(msgPer si st Enqueues, 0)
(msgPer si st Dequeues, 0)
(rmsgDept h, 0)

(byt eDept h, 0)

(byt eTot al Enqueues, 19116)
(byt eTot al Dequeues, 19116)
(byt eTxnEnqueues, 0)

(byt eTxnDequeues, 0)

(byt ePer si st Enqueues, 0)
(byt ePer si st Dequeues, 0)
(consumer Count, 1)
(consumer Count H gh, 1)
(consumer Count Low, 1)

(bi ndi ngCount, 2)

(bi ndi ngCount Hi gh, 2)

(bi ndi ngCount Low, 2)
(unackedMessages, 0)
(unackedMessagesHi gh, 0)
(unackedMessagesLow, 0)
(messagelat encySanpl es, 0)
(rmessagelLat encyM n, 0)

72

Managing the AMQP
Messaging Broker

(messagelLat encyMax, 0)
(messagelat encyAver age, 0)
>>>

or aternatively:

>>> queue. byt eTot al Enqueues
19116
>>>

The proxy objects do not automatically track changes that occur on the real objects. For example, if the
real queue enqueues more bytes, viewing the byteTotal Enqueues statistic will show the same number asit
did the first time. To get updated data on a proxy object, use the update function call:

>>> queue. updat e()

>>> queue. byt eTot al Enqueues
19783

>>>

Be Advised

The update method was added after the M4 release of Qpid/Qmif. It may not be availablein your
distribution.

2.3.2.2.2. Invoking Methods on an Object

Up to this point, we have used the QM F Console API to find managed objects and view their attributes,
aread-only activity. The next topic to illustrate is how to invoke a method on a managed object. Methods
allow consoles to control the managed agents by either triggering a one-time action or by changing the
values of attributes in an object.

First, we'll cover some background information about methods. A QMF object class (of which a QMF
object isan instance), may have zero or more methods. To obtain alist of methods available for an object,
use the getMethods function.

>>> net hodLi st = queue. get Met hods()

getMethods returns an array of method descriptors (of type gmf.console.SchemaMethod). To get a
summary of amethod, you cansimply printit. The_repr_ function returnsastring that lookslikeafunction
prototype.

>>> print methodLi st
[purge(request)]
>>>

For the purposes of illustration, we'll use a more interesting method available on the broker object which
represents the connected Qpid message broker.

>>> br = sess.get Obj ects(_cl ass="broker", _package="org. apache. gpi d. broker")[0]
>>> mist = br.getMethods()
>>> for min mist:

print m

73

Managing the AMQP
Messaging Broker

echo(sequence, body)

connect (host, port, durable, authMechanism usernane, password, transport)
gueueMoveMessages(srcQueue, dest Queue, qty)

>>>

We have just learned that the broker object has three methods. echo, connect, and queueMoveMessages.
WEe'll use the echo method to "ping" the broker.

>>> result = br.echo(1, "Message Body")

>>> print result

X (0) - {'body': u' Message Body', 'sequence': 1}
>>> print result.status

0

>>> print result.text

(016

>>> print result.outArgs

{' body': u' Message Body', 'sequence': 1}

>>>

In the above example, we have invoked the echo method on the instance of the broker designated by the
proxy "br" with a sequence argument of 1 and a body argument of "Message Body". The result indicates
success and contains the output arguments (in this case copies of the input arguments).

To bemore precise... Calling echo on the proxy causesthe input argumentsto be marshalled and sent to the
remote agent where the method is executed. Once the method execution completes, the output arguments
are marshalled and sent back to the console to be stored in the method result.

You are probably wondering how you are supposed to know what types the arguments are and which
arguments are input, which are output, or which are both. Thiswill be addressed later in the "Discovering
what Kinds of Objects are Available" section.

2.3.3. Asynchronous Console Operations

QMF is built on top of a middleware messaging layer (Qpid Messaging). Because of this, QMF can use
some communication patterns that are difficult to implement using network transports like UDP, TCP,
or SSL. One of these patterns is called the Publication and Subscription pattern (pub-sub for short). In
the pub-sub pattern, data sources publish information without a particular destination in mind. Data sinks
(destinations) subscribe using a set of criteria that describes what kind of data they are interested in
receiving. Data published by a source may be received by zero, one, or many subscribers.

QMF uses the pub-sub pattern to distribute events, object creation and deletion, and changes to properties
and statistics. A console application using the QMF Console API can receive these asynchronous and
unsolicited eventsand updates. Thisisuseful for applicationsthat store and analyze eventsand/or statistics.
It isalso useful for applications that react to certain events or conditions.

Note that console applications may always use the synchronous mechanisms.

2.3.3.1. Creating a Console Class to Receive Asynchronous Data

Asynchronous API operation occurs when the console application supplies a Console object to the session
manager. The Console object (which overrides the gmf.console.Consol e class) handles all asynchronously
arriving data. The Console class has the following methods. Any number of these methods may be
overridden by the console application. Any method that is not overridden defaults to anull handler which
takes no action when invoked.

74

Managing the AMQP
Messaging Broker

Table 2.4. QMF Python Console Class M ethods

Method Arguments Invoked when...

brokerConnected broker a connection to a broker is
established

brokerDisconnected broker aconnection to a broker islost

newPackage name anew packageisseen onthe QMF
bus

newClass kind, classKey a new class (event or object) is
seen on the QMF bus

newAgent agent a new agent appears on the QMF
bus

delAgent agent an agent disconnects from the
QMF bus

objectProps broker, object the properties of an object are
published

objectStats broker, object the satistics of an object are
published

event broker, event an event is published

heartbeat agent, timestamp a heartbeat is published by an
agent

brokerlnfo broker information about a connected
broker is available to be queried

methodResponse broker, seq, response the result of an asynchronous
method call isreceived

Supplied with the API is a class called DebugConsole. This is a test Console instance that overrides all
of the methods such that arriving asynchronous data is printed to the screen. This can be used to see all
of the arriving asynchronous data.

2.3.3.2. Receiving Events

WEell start the example from the beginning to illustrate the reception and handling of events. In this
example, we will create a Console class that handles broker-connect, broker-disconnect, and event
messages. We will also allow the session manager to manage the broker connection for us.

Begin by importing the necessary classes:

>>> from qnf.consol e i nport Session,

Consol e

Now, create a subclass of Console that handles the three message types:

>>> cl ass Event Consol e(Consol e):

def broker Connect ed(sel f,
print "brokerConnected: ",
def broker D sconnected(self,

print "brokerD sconnected: ",

def event(self,

br oker, event):

br oker):
br oker

br oker):
br oker

75

Managing the AMQP
Messaging Broker

print "event:", event
>>>
Make an instance of the new class;

>>> nyConsol e = Event Consol e()

Create a Session class using the console instance. I n addition, we shall request that the session manager do
the connection management for us. Notice also that we are requesting that the session manager not receive
objects or heartbeats. Since this example is concerned only with events, we can optimize the use of the
messaging bus by telling the session manager not to subscribe for object updates or heartbeats.

>>> sess = Session(myConsol e, nmanageConnecti ons=True, rcvQbjects=Fal se, rcvHeartbe
>>> broker = sess. addBroker ()
>>>

Once the broker is added, we will begin to receive asynchronous events (assuming there is a functioning
broker available to connect to).

br oker Connect ed: Broker connected at: | ocal host: 5672
event: Thu Jan 29 19:53:19 2009 I NFO org.apache. qpi d. br oker: bi nd broker =l ocal host

2.3.3.3. Receiving Objects

To illustrate asynchronous handling of objects, a small console program is supplied. The entire program
is shown below for convenience. We will then go through it part-by-part to explain its design.

This console program receives object updates and displays a set of statistics as they change. It focuses
on broker queue objects.

I nport needed cl asses
from gnf.consol e i nport Session, Console
fromtime i mport sl eep

Declare a dictionary to nap object-ids to queue nanes
gueueMap = {}

Custom ze the Console class to receive object updates.
cl ass MyConsol e(Consol e):

Handl e property updates
def objectProps(self, broker, record):

Verify that we have received a queue object. Exit otherw se.
cl assKey = record. get d assKey()
i f classKey.getd assNanme() != "queue":

return

If this object has not been seen before, create a new mapping fromobjectID
oid = record. get Cbj ectld()

76

Managing the AMQP
Messaging Broker

if oid not in queueMap:
gueueMap[oi d] = record. nane

Handl e statistic updates
def objectStats(self, broker, record):

lgnore updates for objects that are not in the map
oid = record. get Cbj ectld()
if oid not in queueMap:

return

Print the queue nanme and sone statistics
print "%: enqueues=% dequeues=%l" % (queueMap[oid], record. nmsgTot al Enqueues,

if the delete-tine is non-zero, this object has been deleted. Renove it fro
if record.getTinestanps()[2] > O:
gueueMap. pop(oi d)

Create an instance of the QVF session manager. Set userBindings to True to allo
this programto choose which objects classes it is interested in.
sess = Sessi on(M/Consol e(), manageConnecti ons=True, rcvEvents=Fal se, userBi ndi ngs=

Regi ster to receive updates for broker:queue objects.
sess. bi ndCl ass("org. apache. gpi d. br oker™, "queue")
br oker = sess. addBroker ()

Suspend processing while the asynchronous operations proceed.
try:
whil e True:
sl eep(1)
except:
pass

Di sconnect the broker before exiting.
sess. del Broker (br oker)

Before going through the code in detail, it isimportant to understand the differences between synchronous
object access and asynchronous object access. When objects are obtained synchronously (using the
getObjectsfunction), theresulting proxy containsall of the object's attributes, both propertiesand statistics.
When object data is published asynchronously, the properties and statistics are sent separately and only
when the session first connects or when the content changes.

The script wishes to print the queue name with the updated statistics, but the queue name is only present
with the properties. For this reason, the program needs to keep some state to correlate property updates
with their corresponding statistic updates. This can be done using the Objectld that uniquely identifies
the object.

If this object has not been seen before, create a new mapping fromobject|D
oid = record. get Obj ectld()
if oid not in queueMap:

gueueMap[oi d] = record. nane

The above codefragment getsthe object ID from the proxy and checksto seeif itisinthemap (i.e. hasbeen
seen before). If it isnot inthe map, anew map entry isinserted mapping the object I D to the queue's name.

77

Managing the AMQP
Messaging Broker

if the delete-tine is non-zero, this object has been deleted. Renmove it fro
if record.getTinestanps()[2] > O:
gueueMap. pop(oi d)

This code fragment detects the deletion of a managed object. After reporting the statistics, it checks the
timestamps of the proxy. getTimestamps returns alist of timestamps in the order:

» Current - The timestamp of the sending of this update.
 Create - Thetime of the object's creation
» Delete - Thetime of the object's deletion (or zero if not del eted)

This code structure is useful for getting information about very-short-lived objects. It is possible that an
object will be created, used, and deleted within an update interval. In this case, the property update will
arrive first, followed by the statistic update. Both will indicate that the object has been deleted but a full
accounting of the object's existence and final state is reported.

Create an instance of the QVF session manager. Set userBindings to True to allo
this programto choose which objects classes it is interested in.
sess = Sessi on(M/Consol e(), manageConnecti ons=True, rcvEvents=Fal se, userBi ndi ngs=

Regi ster to receive updates for broker:queue objects.
sess. bi ndCl ass("org. apache. gpi d. br oker™, "queue")

The above code isillustrative of the way a console application can tune its use of the QMF bus. Note that
rcvEventsis set to False. This prevents the reception of events. Note aso the use of userBindings=True
and the call to sess.bindClass. If userBindingsis set to False (its default), the session will receive object
updatesfor al classesof object. Inthe case above, the applicationisonly interested in broker:queue objects
and reduces its bus bandwidth usage by requesting updates to only that class. bindClass may be called as
many times as desired to add classes to the list of subscribed classes.

2.3.3.4. Asynchronous Method Calls and Method Timeouts

Method calls can also be invoked asynchronously. This is useful if alarge number of calls needs to be
made in a short time because the console application will not need to wait for the complete round-trip
delay for each call.

Method calls are synchronous by default. They can be made asynchronous by adding the keyword-
argument _async=True to the method call.

In a synchronous method call, the return value is the method result. When a method is called
asynchronously, the return value is a sequence number that can be used to correlate the eventual result
to the request. This sequence number is passed as an argument to the methodResponse function in the
Console interface.

It isimportant to realize that the methodResponse function may be invoked before the asynchronous call
returns. Make sure your code is written to handle this possibility.

2.3.4. Discovering what Kinds of Objects are Available

78

