
1. CppTips . 5
1.1 BewareOfStringPromotion . 5
1.2 BewareStdStringLiterals . 5
1.3 NeverUseStaticLocalVariables . 6
1.4 NoUsingNamespaceInHeaders . 6
1.5 PrivateLocking . 7
1.6 ReturnStdStringByValue . 7
1.7 ScopedLocking . 7
1.8 SharedPtr . 7
1.9 ValgrindBadSuppressions . 8

2. Index . 8
2.1 0.6 Feature Matrix . 9

2.1.1 0.6 Feature Descriptions . 11
2.1.2 0.6 Interoperability Matrix . 16

2.2 AMQP0-9-DesignNotes . 17
2.3 AMQP (Advanced Message Queueing Protocol) . 17
2.4 AMQP Brokers . 18

2.4.1 AMQP Messaging Broker (implemented in C++) . 18
2.4.2 AMQP Messaging Broker (implemented in Java) . 18

2.5 AMQP Messaging Clients . 19
2.5.1 AMQP .NET Messaging Client . 19
2.5.2 AMQP C++ Messaging Client . 19

2.5.2.1 Client configuration . 19
2.5.3 AMQP Java JMS Messaging Client . 19
2.5.4 AMQP Python Messaging Client . 20
2.5.5 AMQP Ruby Messaging Client . 20

2.6 AMQP Test Suites for Apache Qpid . 20
2.7 C++ vs. Python API Discrepancies . 20
2.8 ClusteringHA . 24

2.8.1 AMQP breakdown for clustering . 25
2.8.2 Cluster Design Note . 27
2.8.3 Cluster Failover Modes . 29
2.8.4 ClusteringAndFederation . 31
2.8.5 Federation Design Note . 32
2.8.6 Java Federation Design Proposal . 33
2.8.7 Old Clustering Design Note . 34
2.8.8 Persistent Cluster Restart Design Note . 37
2.8.9 Reliability Requirements . 38

2.9 Declarative System Testing . 39
2.10 Developer Pages . 40

2.10.1 Java Coding Standards . 40
2.10.2 Cpp Client Java Interop Issues . 47
2.10.3 Java Broker Design . 47

2.10.3.1 Qpid Design - Framing . 48
2.10.3.2 Qpid Design - Management . 49
2.10.3.3 Qpid Design - Threading . 49
2.10.3.4 Qpid Design - Message Acknowledgement . 51
2.10.3.5 Java Broker Design - MessageStore . 52

2.10.3.5.1 BDBMessageStore (3rd Party) . 52
2.10.3.5.2 JDBCStore . 52
2.10.3.5.3 MemoryMessageStore . 52

2.10.3.6 Restructuring Java Broker and Client Design . 52
2.10.3.7 Message API Design . 55
2.10.3.8 Java Architecture Overview . 58
2.10.3.9 Producer flow control . 58

2.10.3.9.1 Java Broker - AMQP0-9 Tactical Producer Flow Control . 59
2.10.3.10 Java Broker Refactor (QPID-950) . 62
2.10.3.11 Java Broker Modularisation . 63
2.10.3.12 Java Broker Configuration Design . 63
2.10.3.13 Java Broker Design - Flow to Disk . 64

2.10.3.13.1 FtD Code Review Notes . 72
2.10.3.14 Java Broker Design - High Level Overview of Refactoring . 74
2.10.3.15 Java Broker Design - Message Representation . 77
2.10.3.16 Network IO Interface . 83

2.10.3.16.1 Network IO Interface discussion points . 85
2.10.3.16.2 New common network and protocol interfaces . 87
2.10.3.16.3 Port server to new interface . 93

2.10.3.17 Java Broker Design - Operational Logging . 102
2.10.3.17.1 Existing Logging Analysis . 105
2.10.3.17.2 Logging Format Design . 106
2.10.3.17.3 Status Update Design . 107

2.10.3.18 Qpid Design - Queue Implementation . 142
2.10.3.19 Qpid Design - Message Delivery . 147
2.10.3.20 Java authorization plugins . 153
2.10.3.21 0.6 Broker BasicFlow Synchronisation Design . 153
2.10.3.22 Slow Consumer Disconnect . 154
2.10.3.23 Topic Configuration Design . 157

2.10.4 Qpid Java Client refactoring . 158
2.10.5 Distributed Testing . 158
2.10.6 Low-Level API Diagram . 162

2.10.7 Weekly QPID Developer Meetings . 162
2.10.7.1 Qpid Java Meeting Minutes 04-04-2008 . 162
2.10.7.2 Qpid Java Meeting Minutes 11-04-2008 . 165
2.10.7.3 Qpid Java Meeting Minutes 28-03-2008 . 169
2.10.7.4 Qpid Java Meeting Minutes 2008 05 02 . 170
2.10.7.5 Qpid Java Meeting Minutes 2008-04-18 . 176
2.10.7.6 Qpid Java Meeting Minutes 2008-05-09 . 180
2.10.7.7 Qpid Java Meeting Minutes 2008-05-16 . 191
2.10.7.8 Qpid Java Meeting Minutes 2008-05-23 . 195
2.10.7.9 Qpid Java Meeting Minutes 2008-05-30 . 198
2.10.7.10 Qpid Java Meeting Minutes 2008-06-20 . 202
2.10.7.11 Qpid Java Meeting Minutes 2008-06-27 . 208
2.10.7.12 Qpid Java Meeting Minutes 2008-07-11 . 213
2.10.7.13 Qpid Java Meeting Minutes 2008-07-25 . 214
2.10.7.14 Qpid Java Meeting Minutes 2008-08-01 . 221
2.10.7.15 Qpid Java Meeting Minutes 2008-08-08 . 226
2.10.7.16 Qpid Java Meeting Minutes 2008-08-15 . 230
2.10.7.17 Qpid Java Meeting Minutes 2008-08-22 . 234

2.10.8 Documentation . 237
2.10.8.1 Build Creator . 237
2.10.8.2 Cheat Sheet for configuring Exchange Options . 242
2.10.8.3 Cheat Sheet for configuring Queue Options . 243

2.10.8.3.1 LVQ Example . 245
2.10.8.3.2 queue state replication . 248

2.10.8.4 Documentation2 . 250
2.10.8.5 DocumentationB . 253

2.10.8.5.1 .NET Client . 253
2.10.8.5.2 C++ Broker . 253
2.10.8.5.3 C++ Client . 254
2.10.8.5.4 Example guide . 254
2.10.8.5.5 Java Broker . 254
2.10.8.5.6 JMS Client . 256
2.10.8.5.7 Python Client . 256
2.10.8.5.8 Ruby Client . 256

2.10.8.6 Java Broker Analysis Tools . 256
2.10.8.7 LVQ . 259
2.10.8.8 QMan - Qpid Management bridge . 265

2.10.8.8.1 Get me up and running . 265
2.10.8.8.2 JMX Interface Specification . 269
2.10.8.8.3 QMan Components View . 277
2.10.8.8.4 QMan Messages Catalogue . 281
2.10.8.8.5 QMan System Overview . 281
2.10.8.8.6 QMan User Guide . 282
2.10.8.8.7 WS-DM Interface Specification . 291

2.10.8.9 Qpid ACLs . 333
2.10.8.10 Qpid Interoperability Documentation . 333
2.10.8.11 SSL . 334
2.10.8.12 Starting a cluster . 335
2.10.8.13 Use of Get() . 337
2.10.8.14 Using Broker Federation . 338

2.10.9 ACL . 345
2.10.9.1 FileACL Design . 349

2.10.10 Qpid Management Framework . 350
2.10.10.1 QMan . 354
2.10.10.2 QMF Map Message Protocol . 357
2.10.10.3 QMF Protocol . 362
2.10.10.4 QMF Python Console Tutorial . 373
2.10.10.5 QMFv2 Project Page . 380

2.10.10.5.1 QMFv2 APIs . 381
2.10.10.5.2 QMFv2 Architecture . 403

2.10.11 Broker job queue limits . 405
2.10.12 JMX Console Use Cases . 405
2.10.13 Current Architecture . 405
2.10.14 MessageProducer.send() behaviour . 409
2.10.15 Multiple Java Brokers - Use Cases . 409
2.10.16 Java Client Test Coverage . 410
2.10.17 ACL Design . 411

2.10.17.1 andrew acl proposal . 411
2.10.17.1.1 Method Considered Harmful . 413
2.10.17.1.2 Method Considered Harmful Redux . 414

2.10.18 AMQP Distributed Transaction Classes (C++) . 417
2.10.19 API Error Conditions . 417
2.10.20 Broker Management QMF Coverage . 418
2.10.21 Java Client Design . 427

2.10.21.1 0.6 Java Client Dispatcher Changes . 427
2.10.21.1.1 0.6 Java Client Dispatcher Changes - Details . 430

2.10.22 Qpid extensions to AMQP . 431
2.10.23 Qpid Java Broker - Guidance for 64Bit VM . 433

2.11 Download . 434
2.11.1 The AMQP Distributed Transaction Classes (Java) . 437

2.11.2 AMQP compatibility . 437
2.11.2.1 Queue Replay . 439

2.12 Getting Involved . 441
2.12.1 GSoC . 442
2.12.2 OSVC . 443
2.12.3 Qpid Project Etiquette Guide . 444

2.13 HermesJMS . 446
2.14 Informal M2.1 code review 2008-03-18 . 450
2.15 Navigation . 450

2.15.1 Acknowledgments . 450
2.15.2 FAQ . 451
2.15.3 License . 461
2.15.4 Project Status . 462

2.16 People . 463
2.16.1 MartinRitchie . 464
2.16.2 Robbie Gemmell . 464

2.17 Proposal for a new JMS Destination configuration . 466
2.17.1 Proposal for a new JMS Destination configuration2 . 468

2.18 Qpid .Net Documentation . 470
2.18.1 .NET User Guide . 470
2.18.2 Excel AddIn . 482
2.18.3 Qpid .Net How To . 483

2.18.3.1 Build .NET Client . 483
2.18.3.2 Releasing . 484
2.18.3.3 Run tests . 484
2.18.3.4 Setup .Net Client on Windows . 484

2.18.4 WCF . 485
2.19 Qpid 'C++' Documentation . 486

2.19.1 CppApiGuide . 487
2.19.2 CppBrokerStartPlugins . 487
2.19.3 CppEventChannelIo . 487
2.19.4 CppHandlerChains . 489
2.19.5 CppStyleGuide . 489
2.19.6 Persistent Message Store Module . 490
2.19.7 PythonBrokerTest . 491

2.20 Qpid Integrations . 491
2.21 Qpid Java Documentation . 491

2.21.1 3rd Party Libraries . 493
2.21.2 3rd Party Tools . 494

2.21.2.1 Mule . 494
2.21.3 AMQP Error Codes . 494
2.21.4 Example Classes . 495
2.21.5 Getting Started . 496

2.21.5.1 MgmtC++ . 497
2.21.5.2 RAJB . 504
2.21.5.3 RASC . 504

2.21.6 Getting Started Guide . 507
2.21.7 Java broker log monitoring . 509
2.21.8 Java Environment Variables . 512
2.21.9 JMS Compliance . 512
2.21.10 Management Design notes . 513

2.21.10.1 JMX Gateway . 524
2.21.10.2 qmf_architecture . 524

2.21.11 Management Tools . 526
2.21.11.1 JConsole . 526
2.21.11.2 MessageStore Tool . 526
2.21.11.3 Qpid JMX Management Console . 527

2.21.11.3.1 Configuring Management Users . 528
2.21.11.3.2 Configuring Qpid JMX Management Console . 528
2.21.11.3.3 Qpid JMX Management Console FAQ . 531
2.21.11.3.4 Qpid JMX Management Console User Guide . 531
2.21.11.3.5 Qpid Management Features . 542

2.21.12 Multiple AMQP Version Support . 543
2.21.12.1 AMQPVersion.1 . 546

2.21.13 Qpid Java FAQ . 549
2.21.14 Qpid Java How To . 557

2.21.14.1 Add New Users . 557
2.21.14.2 Configure ACLs . 559

2.21.14.2.1 Java XML ACLs . 559
2.21.14.3 Configure Broker and Client Heartbeating . 564
2.21.14.4 Configure Java Qpid to use a SSL connection. . 564
2.21.14.5 Configure Log4j CompositeRolling Appender . 565
2.21.14.6 Configure Operational Status Logging . 566
2.21.14.7 Configure the Broker via config.xml . 570

2.21.14.7.1 M2.1 - config.xml . 570
2.21.14.7.2 M2 - config.xml . 573

2.21.14.8 Configure the Virtual Hosts via virtualhosts.xml . 576
2.21.14.9 Debug using log4j . 578
2.21.14.10 Firewall Configuration . 578
2.21.14.11 How to Tune M3 Java Broker Performance . 580

2.21.14.12 How to Use JNDI . 581
2.21.14.12.1 Using Qpid with other JNDI Providers . 583

2.21.14.13 Interact with a JMX MBean . 584
2.21.14.14 Qpid Java Build How To . 585

2.21.14.14.1 Building . 588
2.21.14.15 Split configuration files . 604
2.21.14.16 Tune Broker and Client Memory Usage . 605
2.21.14.17 Use Last Value Queues (LVQ) . 606
2.21.14.18 Use Priority Queues . 607
2.21.14.19 Use Producer Flow Control . 608

2.21.15 Qpid Java Run Scripts . 610
2.21.16 Qpid Troubleshooting Guide . 611
2.21.17 Release Plans . 612
2.21.18 roadmap . 612

2.21.18.1 looking to pitch in . 613
2.21.19 Sustained Tests . 615
2.21.20 System Properties . 616
2.21.21 URL Formats . 618

2.21.21.1 0.10 Connection URL Format . 618
2.21.21.2 BindingURLFormat . 619
2.21.21.3 Connection URL Format . 620
2.21.21.4 Url Format Proposal . 621

2.21.21.4.1 Qpid Java Broker Management CLI . 624
2.22 Qpid Meetup at ApacheCon 2009 . 629
2.23 Qpid Release Page . 629

2.23.1 0.6 Release . 629
2.23.2 M1 Release . 632

2.23.2.1 M1 Release Check list . 632
2.23.3 M2 Release . 632
2.23.4 M4 Release Process Notes . 633
2.23.5 Qpid Release Notes . 633

2.23.5.1 Qpid Java M1 Release Notes . 633
2.23.6 QpidReleaseProcess . 634
2.23.7 RC Multi-Platform Testing . 637

2.24 Qpid Ruby Documentation . 637
2.25 Qpid Testing . 637

2.25.1 Interop Testing Specification . 637
2.25.2 Java Unit Tests with InVM Broker . 649
2.25.3 Performance, Reliability and Scaling . 650

2.25.3.1 Latency . 652
2.25.3.2 Reliability . 653
2.25.3.3 Throughput . 653

2.25.4 Qpid JMX Management Console Testing Guide . 653
2.25.4.1 Qpid Management Console Testing (Old UI) . 666

2.25.5 Testing Design - Java Broker CPU GC Monitoring . 671
2.26 Source Repository . 674

2.26.1 Mailing Lists . 674
2.27 Useful Links . 675

CppTips
Some advice on makefiles and build system

[SingleMakefile]

This is a collection of coding guidelines, some specific to Qpid, some just good practice in C++.

PrivateLocking
ScopedLocking
SharedPtr
BewareStdStringLiterals
NeverUseStaticLocalVariables
BewareOfStringPromotion
ReturnStdStringByValue
NoUsingNamespaceInHeaders
ValgrindBadSuppressions

BewareOfStringPromotion
std::string is a useful tool for simplifying memory management of strings and avoiding unnecessary copies by reference counting.
However there is one common gotcha where it unnecessary copies. Consider:causes

void f(std::string& s) { cout << s << endl };const

void g() {
 (i = 0; i < 1000; ++i) { f(); };for int "hello"
}

This actually allocates, copies and deletes 1000 heap buffers with the string "hello"! The problem here is that "hello" is an instance of not
. It is a char[5] that must be converted to a temporary using the appropriate constructor. However std::string std::string
 always wants to manage its own memory, so the constructor allocates a new buffer and copies the string. Once f() returnsstd::string

and we go round the loop again the temporary is deleted along with its buffer.

Here's a better solution:

void f(std::string& s) { cout << s << endl };const
namespace { std::string hello(); }const "hello"
void g() {
 (i = 0; i < 1000; ++i) { f(hello); };for int
}

This time we have a constant that is created once at start up and destroyed once at shut-down. The anonymous namespacestd::string
makes the constant private to this .cpp file so we wont have name clashes. (Its similar to using the static keyword on a global declaration in
C, but anonymous namespaces are the preferred way to do it in modern C++)

BewareStdStringLiterals
The short story: in C++ code using never use string literals except to initialize static-scoped constants.std::string std::string
(And by the way: NeverUseStaticLocalVariables

The long story: is all about avoiding copies. Reference counting and copy-on-write serve to maximise the sharing of a singlestd::string
heap-allocated char array while maintaining memory safety. When used consistently in a program it works rather nicely.

However, when mixed with classic C-style string literals can actually needless heap-allocated copies. Consider thesestd::string cause
innocent looking constructs:

void f(std::string& s);const
void g(std::string& s =);const "hello"
std::string h() { ; }return "foo"

void copy_surprise {
 std::string x = ; "x" // 1
f(); "y" // 2
g(); // 3
x = h(); //4

 (x !=) { ... } while "end" // 4
}

Lines 1-4 all cause creation and destruction of an implicit temporary to hold the literal value. Line 5 does this for everystd::string
execution of the while loop. That's a new/memcpy/delete each time. The heap is a heavily used resource, in tight inner loops in
multi-threaded code this can be a contention bottleneck that cripples scalability.severe

Use static class constants or file-private constants instead. You can make global declarations file-private by using a namelessstd::string
namespace (this is preferred over the use of the keyword.)static

namespace {
 std::string end();const "end"
}
void f() { std::string x; (x != end) {...} }while

And once again NeverUseStaticLocalVariables

NeverUseStaticLocalVariables
Never do this:

void f() {
 x = 10;static int
}

Static on a local variable means the compiler is supposed initialize it the first time the function is entered, but it holds its value on subsequent
calls. It's sometimes used for local counters, or in the "Myers Singleton" approach to singletons.

The problem is that the C++ standard does not require compilers to make this initialization thread safe, and almost none do. So in a multi
threaded program if there are concurrent first calls to f there will be a disaster. Using this for singletons is particularly prone to multi-threaded
collisions.

So use the less elegant but safer options: make the variable a class member for member functions or a file-private global for non-member
functions.

NoUsingNamespaceInHeaders
Don't use the{{using namespace ...}} or constructs in a header file. It might save you some typing but it also forces theusing ...
namespaces you use onto every file that directly or indirectly includes your headers. That could create name clashes with names in.cpp
some other namespace that the author of the file wants to use. Use fully qualified names, painful as it might be..cpp

There is one exception. It's sometimes handy to "import" names from one namespace to another. For example suppose some C++ compiler
doesn't provide the template, which is used in qpid. does provide a compatible but it's instd::tr1::auto_ptr Boost boost::auto_ptr
the boost namespace and qpid expects it in . No problem, we create our own tr1/memory header file:std::tr1

#include <boost/memory>
namespace std {
 namespace tr1 {
 using boost::auto_ptr;
 }
}

This makes the boost template available in the standard namespace. (Actually you don't need to do this yourself, boost provides a set of
adapter headers for all the tr1 stuff.)

http://www.boost.org

PrivateLocking
The only way to write thread safe code without losing your mind is to keep your synchronisation simple and small. You cannot test for thread
safety. Really you can't. If synchronization is complicated or spread out it's pretty much impossible to know by inspection whether it's correct.

A key technique is to encapsulate synchronization thread-safe classes. Every public member function should protect frominside itself
concurrent access by using private locks or other synchronization objects. You can verify the synchronization of just that class in isolation. It's
much easier to build complicated thread-safe code from simple pieces that you know to be individually thread-safe.

It's very dangerous to provide public access to locks because now to establish thread safety for a class you have to inspect every potential
 of that class. Not to mention every change to or addition of code using the class. Did I mention losing your mind?use

ReturnStdStringByValue
Don't do this:

std::string& f();
 std::string& g(); const // Not much better

Instead do this:

std::string f();
std::string g();

std::string is designed expressly to allow you to treat strings as simple pass-by-value types, like int. It's efficient to return by value rather
than reference and it avoids core dumps if the real string hidden away in f gets deleted before the reference. In particular it allows f() to
compute once-off values and forget about them, e.g.:

std::string hello(std::string& name) { + name; }const return "hello "

With the "&" style return this would be an immediate disaster as the returned reference is invalid before the caller even gets it! NB. The last
example contains another error! See .BewareOfStringPromotion

ScopedLocking
Always use scoped lockers to lock mutexes and the like. Don't do this:

lock.acquire();
 do_stuff(); // DANGER: lock never released if exception thrown here.
 lock.release();

Instead use a "scoped locker". This is simply a class that does the "acquire" in its constructor and the "release" in its destructor:

Locker locker(lock);
 do_stuff();

Not only does this save a bit of typing, it guarantees that the lock will be released even if an exception is thrown, because C++ guarantees to
call destructors of all local variables on exit from a scope. This also protects you forgetting to release the lock at every exit point from a
function with multiple exit points - the compiler takes care of it for you. This technique applies more generally to any situation where you have
to acquire and release resources. is a similar tool for memory management.std::auto_ptr

SharedPtr
std::tr1::shared_ptr is an almost-standard smart pointer template that
provides unintrusive reference-counting semantics for any class. It
almost makes memory management too easy for a C++ programmer.

It's available in g++ and some other compilers by default. There are
several open source implementations if we ever port to a compiler that
doesn't have it.

The golde rule: if class Foo has shared ownership then never ever
write . Anywhere. Ever. Use shared_ptr in all functionFoo*
signatures and variables, use std::tr1::dynamic_pointer_cast and
friends for casting.

Qpid will use it for all classes with shared ownership semantics,
enforced by private constructors and static factory functions. We'll
also adopt the convention to typedef shared_ptr within the class for
convenience. E.g.

class Foo {
 Foo() { ... }

 :public
 typedef std::tr1::shared_ptr<Foo> shared_ptr;
 shared_ptr create() { Foo() }static return new
 // .. a create each constructor.for
}

Foo::shared_ptr p = Foo::create(); // etc...

There's a good article at .http://www.boost.org/libs/smart_ptr/sp_techniques.html

ValgrindBadSuppressions
(Observed with valgrind 3.2.1, fixed in 3.2.3)
Valgrind 3.2.1 sometimes produces supressions that don't work, like this:

{
 <insert a suppression name here>
 Memcheck:Free
 fun:_vgrZU_libcZdsoZa_free
 fun:main
}

The identifying characteristic is that they begin with fun:_vg<something>

http://article.gmane.org/gmane.comp.debugging.valgrind/5939 explains what these symbols are.

The workaround is to replace fun: <something> with fun:<something>, where somethingvg*_lib*
should be a valid C or C++ mangled symbol.

The following test program demonstrates the problem

#include <stdlib.h>
 main(argc, **argv) {int int char

 *p = malloc(10);char
 free(p);
 free(p);
}

Index

Apache Qpid: Open Source AMQP Messaging
Enterprise Messaging systems let programs communicate by exchanging messages, much as people communicate by exchanging email.
Unlike email, enterprise messaging systems provide guaranteed delivery, speed, security, and freedom from spam. Until recently, there was
no open standard for Enterprise Messaging systems, so programmers either wrote their own, or used expensive proprietary systems.

AMQP is the first open standard for Enterprise Messaging. It is designed to support messaging for justAdvanced Message Queuing Protocol
about any distributed or business application. Routing can be configured flexibly, easily supporting common messaging paradigms like
point-to-point, fanout, publish-subscribe, and request-response.

http://www.boost.org/libs/smart_ptr/sp_techniques.html
http://article.gmane.org/gmane.comp.debugging.valgrind/5939
http://www.amqp.org

Apache Qpid implements the latest AMQP specification, providing transaction management, queuing, distribution, security, management,
clustering, federation and heterogeneous multi-platform support and a lot more. And Apache Qpid is extremely fast. Apache Qpid aims to be

.100% AMQP Compliant

AMQP Messaging Brokers
Qpid provides two AMQP messaging brokers:

Implemented in C++ - high performance, low latency, and RDMA support.
Implemented in Java - Fully JMS compliant, runs on any Java platform

Both AMQP messaging brokers support clients in multiple languages, as long as the messaging client and the messaging broker use the
same version of AMQP. See to see which messaging clients work with each broker.Download

AMQP Client APIs: C++, Java, JMS, Ruby, Python, and C#
Qpid provides AMQP Client APIs for the following languages:

C++
Java, fully conformant with JMS 1.1
C# .NET, 0-10 using WCF
Ruby
Python

Operating Systems and Platforms:
The Qpid C++ broker runs on the following operating systems:

Linux systems
Windows
Solaris (coming soon)

The Qpid Java broker runs on:

Any Java platform

Qpid clients can be run on the following operating systems and platforms:

Java:
any platform, production proven on Windows, Linux, Solaris

C++:
Linux
Windows
Solaris (coming soon)

C#
.NET

Getting Started

Download Qpid here: download page
Follow these instructions to get started fast: Getting Started
The Qpid Management Framework: QMF
Read the Documentation: Documentation
If you need help, mail the lists

Getting Help
If you have a question about any aspect of Qpid or need help getting up and running please send an email to .one of our mailing lists

Getting Involved
We welcome contributions to Qpid. on one of our lists if you want to contribute to the project, have questions on using it or just wantMail us
to get our thoughts on a topic...

Roadmap
For details on releases, a summary of what is in each release can be found here roadmap

0.6 Feature Matrix
1. Related Pages
2. Table Key
3. Broker Features
4. Client Features

Incomplete
This table is a work-in-progress and should considered neither complete nor correct at this point.

Join In
I have started a thread about this table on the dev mailing list - "0.6 Feature Matrix". Let us know what you think!

Interoperability Not Implied
This table does not imply interoperability across broker implementations. For instance, if the Java and C++ brokers both
support clustering, the ability to use clustering from a Java client to a C++ broker is not implied here. Interoperability is
covered in a separate page.0.6 Interoperability Matrix

1. Related Pages
0.6 Feature Descriptions
0.6 Interoperability Matrix

2. Table Key
Y : Supported

 : Not SupportedN
 : PlannedP

 : Planned for release X.YPX.Y
 : Unknown: may/should work, but not tested?

 : Not applicable-

3. Broker Features

C++ Java

Linux Windows *

Protocols

AMQP 0-8 N N Y

AMQP 0-9 N N Y

AMQP 0-9-1 N N Y

AMQP 0-10 Y Y Y

AMQP 1-0 P P P

Producer Flow Control Y Y Y4

Transactions Y Y Y

Distributed Transactions Y Y3

SSL Y P

RDMA Y N N

Broker Features

Access Control List (ACL) Y P Y

Clustering Y N N

Federation Y Y P

Management Exchange Y Y Y2

QMF Agent Y Y Y2

JMX Management Console N N Y

QMan N N Y

Selectors N N Y

Replication Y Y

Watchdog Y

XML Exchange Y

Last Value Queue Y Y P

Priority Queue P P Y

SASL Security Y Y Y

BDB Store Module N N Y

SQL Database Store Module N Y Y

Async Store Module Y N N

Durable Exchanges Y1 Y1 Y1

Durable Queues Y1 Y1 Y1

Durable Bindings Y1 Y1 Y1

Queue Sizing Policies Y

Flow-to-disk Y1 N

External Tools

qpid-config Y Y

qpid-tool Y Y

qpid-cluster Y N

qpid-route Y Y

qpid-stat Y Y

Notes
1. When a store module is loaded
2. via Qman
3. Not persistent at this time on SQL Database store
4. On 0-8, 0-9 and 0-9-1 only at this time

4. Client Features

C++ JMS Java Python Ruby WCF

Linux Windows * * * * Windows

Protocols

AMQP 0-8 N N Y ? ? N

AMQP 0-9 N N Y ? ? N

AMQP 0-10 Y Y Y Y Y Y

AMQP 1-0 P P P P P P

Client Features

New Messaging API Y Y Y P

New QMF API

Priority Delivery

0.6 Feature Descriptions

1. Related Pages
2. Protocol Features

2.1. AMQP
2.2. Producer Flow Control
2.3. Transactions
2.4. Distributed Transactions
2.5. SSL
2.6. RDMA

3. Broker Features
3.1. Access Control Lists (ACL)
3.2. Clustering
3.3. Federation
3.4. QMF Management Exchange
3.5. QMF Agent
3.6. JMX Management Console
3.7. QMan
3.8. Selectors
3.9. Replication
3.10. Watchdog
3.11. XML Exchange
3.12. Last Value Queue (LVQ)
3.13. Priority Queue
3.14. SASL Security
3.15. BDB Store Module

3.16. SQL Database Store Module
3.17. Async Store Module
3.18. Durable Exchanges
3.19. Durable Queues
3.20. Durable Bindings
3.21. Queue Sizing Policies
3.22. Flow-to-disk

4. Client Features
4.1. New Messaging API
4.2. New QMF API
4.3. Priority Delivery

5. External Tools
5.1. qpid-config
5.2. qpid-tool
5.3. qpid-cluster
5.4. qpid-route
5.5. qpid-stat

Incomplete
This page is a work-in-progress and should considered neither complete nor correct at this point.

Join In
I have started a thread about this table on the dev mailing list - "0.6 Feature Matrix". Let us know what you think!

1. Related Pages

0.6 Feature Matrix
0.6 Interoperability Matrix

2. Protocol Features

2.1. AMQP

Advanced Message Queuing Protocol (AMQP) is an Open Messaging Middleware standard upon which Qpid's wire protocol is based. The
standard is maintained by the . Currently the following versions of the protocol exist:AMQP Working Group

0-8, released June 2006. This is the first working version of AMQP.
0-9, released December 2006. This version improves reliability aspects of the protocol.
0-9-1, released November 2008 (after 0-10).
0-10, released February 2008.
1-0, , is slated to be the first stable release of AMQP. Version 1-0 is currently in .not yet released final draft (PR2)

2.2. Producer Flow Control

The broker will throttle (reduce) the rate at which clients can publish messages if the broker starts to run low on resources or if queue size
policies dictate.

For a detailed discussion, see the following pages:

Producer flow control
Java Broker - AMQP0-9 Tactical Producer Flow Control
QPID-942.

2.3. Transactions

Local one-phase commit (1PC) transactions ensure atomicity over a number of otherwise disconnected actions on the broker (such as
publishing or consuming a number of messages in a group). For local transactions, the broker creates an internal transaction ID and uses it
to track the state of the transaction. The client must either commit or abort the transaction to close it.

2.4. Distributed Transactions

Distributed two-phase commit (2PC) transactions ensure atomicity over a number of otherwise disconnected actions on a distributed system
(which involve two or more brokers and/or clients). This operation is usually coordinated by an external transaction monitor which creates
transaction IDs and controls the state of the transaction.

For a detailed discussion, see the following resources:
The AMQP Distributed Transaction Classes (Java)

2.5. SSL

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.amqp.org
http://www.amqp.org/confluence/download/attachments/2523279/amqp_1-0_PR2.pdf
http://issues.apache.org/jira/browse/QPID-942

SSL allows IP communications between the broker(s) and client(s) to be encrypted.

For a detailed discussion, see the following resources:
SSL
Configure Java Qpid to use a SSL connection.
JMX SSL Configuration
FAQ

2.6. RDMA

Remote Direct Memory Access (RDMA) permits high-throughput, low-latency communications between broker(s) and client(s). Among its
features is zero-copy networking in which the network hardware copies networked data directly to the application memory space without the
use of operating system buffers. RDMA implementations include Infiniband and iWarp (which uses RDMA over TCP).

3. Broker Features

3.1. Access Control Lists (ACL)

Security mechanism by which users may be granted permissions to perform the various operations on a broker from a client.

For a detailed discussion, see the following resources:
Qpid Design - Access Control Lists
Qpid ACLs

 (v2 ACL format specification, used on both Java and C++ brokers)ACL
 (: v1 XML-based ACL format specification used on M4 release Java broker)Java XML ACLs deprecated

3.2. Clustering

Module which allows several brokers to form an active-active or high availability (HA) cluster, primarily for reliability.

For a detailed discussion, see the following resources:
Starting a cluster
Persistent Cluster Restart Design Note
Old Clustering Design Note

3.3. Federation

Mechanism by which brokers can be connected primarily for the purpose of sharing load and providing broker-broker connectivity.

For a detailed discussion, see the following resources:
Using Broker Federation
Federation Design Note

3.4. QMF Management Exchange

QMF is a general-purpose management bus built using Qpid. Qpid itself may be managed using this facility. The Management Exchange is
the component loaded by the broker to enable management functionality on a broker.

For a detailed discussion, see the following resources:
Qpid Management Framework
Qpid Management Features

3.5. QMF Agent

The QMF agent is the component which is embedded into the managed entities, and provides QMF awareness to that entity.

For a detailed discussion, see the following resource:
Qpid Management Framework

3.6. JMX Management Console

The Qpid JMX Management Console is a standalone Eclipse RCP application that communicates with the broker using JMX.

For a detailed discussion, see the following resources:
Qpid JMX Management Console
JConsole
Qpid JMX Management Console User Guide
Qpid JMX Management Console Testing Guide

3.7. QMan

http://cwiki.apache.org/confluence/display/qpid/Qpid+JMX+Management+Console+User+Guide#QpidJMXManagementConsoleUserGuide-Toc238842237
http://cwiki.apache.org/confluence/display/qpid/Qpid+Java+FAQ#QpidJavaFAQ-%22unabletocertifytheprovidedSSLcertificateusingthecurrentSSLtruststore%22whenconnectingtheManagementConsoletothebroker.

QMan is a management bridge for Qpid. It exposes the broker's QMF management interfaces using Java Management Extensions (JMX)
and / or OASIS Web Services Distributed Management (WSDM).

For a detailed discussion, see the following resource:
QMan - Qpid Management bridge

3.8. Selectors

The ability to filter the messages browsed or consumed from a queue. The filter is limited to message header properties.

3.9. Replication

Asynchronous replication of queue state through the use of events on a secondary broker.

For a detailed discussion, see the following resource:
queue state replication

3.10. Watchdog

The watchdog plug-in will kill the qpidd broker process if it becomes stuck for longer than a configured interval.

3.11. XML Exchange

A plug-in exchange which can open messages and run xquery against it's XML content in order to determine routing to the appropriate
queue.

3.12. Last Value Queue (LVQ)

A queue in which the content is maintained as key-value pairs. Publishing to a LVQ updates the value against its key; consuming a message
for a particular key allows the last value to be read. The key/value pair may or may not be consumed, depending on options.

For a detailed discussion, see the following resources:
LVQ
LVQ Example

3.13. Priority Queue

Queues in which the delivery order is determined primarily by the priority of the message, and secondarily by the order of arrival.

For a detailed discussion, see the following resources:
Use Priority Queues

 - see section on Priority QueuesQpid Design - Queue Implementation

3.14. SASL Security

Simple Authentication and Security Layer - an industry standard framework for authentication, and implemented in Qpid.

For a detailed discussion, see the following resources:
Qpid Design - Authentication

 - Authentication mechanism interoperabilityQpid Interoperability Documentation

3.15. BDB Store Module

An implementation of a persistence store using Oracle Berkeley Database (BDB) which provides persistence to exchanges and queues and
their configurations, and to the messages on these queues. Exchanges, queues and messages must be set to be persistent before they will
be persisted. In addition, only persistent queues may store persistent messages.

For a detailed discussion, see the following resource:
MessageStore Tool

3.16. SQL Database Store Module

An implementation of a persistence store using a QSL database which provides persistence to exchanges and queues and their
configurations, and to the messages on these queues. Exchanges, queues and messages must be set to be persistent before they will be
persisted. In addition, only persistent queues may store persistent messages.

3.17. Async Store Module

A Linux-only implementation of a persistence store using a combination of BDB (for exchange and queue configuration) and a custom-written

asynchronous store (for message content and transactions). This store is capable of writing messages to disk at high rates through the use of
DMA. Exchanges, queues and messages must be set to be persistent before they will be persisted. In addition, only persistent queues may
store persistent messages.

3.18. Durable Exchanges

Exchanges and their configuration are persisted so that they do not need to be recreated on recovery or on startup of a previously running
broker where they were present. The exchange must be set to be persistent and there must be a store module loaded for this persistence to
be active.

3.19. Durable Queues

Queues and their configuration are persisted so that they do not need to be recreated on recovery or on startup of a previously running
broker where they were present. The queue must be set to be persistent and there must be a store module loaded for this persistence to be
active. Note also that only persistent queues can store persistent messages and recover them at recovery/startup.

3.20. Durable Bindings

Bindings and their configuration are persisted so that they do not need to be recreated on recovery or on startup of a previously running
broker where they were present. The exchange and the queue being bound must be set to be persistent and there must be a store module
loaded for this persistence to be active.

3.21. Queue Sizing Policies

The content of queues may be limited by number and/or cumulative message size. When these limits are exceeded, the queue may manage
the situation by (among others) refusing to accept new messages, throttling message production, or flowing the messages to disk (see

 below).Flow-to-disk

3.22. Flow-to-disk

Flow-to-disk is one of the mechanisms for handling queue size policy violations. This mechanism allows all messages which exceed a queue
size policy to be written to disk (whether persistent or not), and the message content is released from memory. To consume the message,
however, the message must first be read from the store to restore its content to the queue.

For a detailed discussion, see the following resources:
Java Broker Design - Flow to Disk
FtD Code Review Notes

4. Client Features

4.1. New Messaging API

A new consistent set of client messaging APIs which do not require an in-depth knowledge of AMQP, but focus instead on generic
messaging tasks such as sending and receiving messages.

4.2. New QMF API

Built on top of the , this new QMF API simplifies the use of QMF, and uses a work-queue based event model.New Messaging API

For a detailed discussion, see the following resource:
QMFv2 API Proposal

4.3. Priority Delivery

A client can change the priority model and/or level used by the broker to deliver messages (see above).3.12. Priority Queue

5. External Tools

5.1. qpid-config

A command-line tool to create, delete and configure queues, exchanges and bindings on a broker.

For a detailed discussion, see the following resource:
Management Tools Overview

5.2. qpid-tool

A telnet type tool to access QMF data, view QMF management schemas, issue commands and QMF resources.

For a detailed discussion, see the following resource:
Management Tools Overview

5.3. qpid-cluster

For a detailed discussion, see the following resource:
Management Tools Overview

5.4. qpid-route

A command-line tool to configure broker federation routes. This tool is used to establish a broker federation.

For a detailed discussion, see the following resource:
Management Tools Overview

5.5. qpid-stat

A command-line tool which shows information on brokers, connections, exchanges and queues.

For a detailed discussion, see the following resource:
Management Tools Overview

0.6 Interoperability Matrix

1. Related Pages
2. AMQP Interoperability
3. Feature Interoperability

Incomplete
This table is a work-in-progress and should considered neither complete nor correct at this point.

Join In
I have started a thread about this table on the dev mailing list - "0.6 Feature Matrix". Let us know what you think!

1. Related Pages

0.6 Feature Matrix
0.6 Feature Descriptions

2. AMQP Interoperability

Brokers
C++ Java
Linux Windows *

Clients

C++
Linux 0-10 0-10 0-10

Windows 0-10 0-10 0-10

JMS * 0-10 0-10

0-8
0-9
0-9-1
0-10

Python * 0-10 0-10

0-8
0-9
0-9-1
0-10

Ruby * 0-10 0-10

0-8
0-9
0-9-1
0-10

WCF Windows 0-10 0-10 0-10

3. Feature Interoperability

Feature Interoperability
We need a matrix which addresses feature interoperability across implementations. For instance, if the Java broker has
clustering, will the JMS client support cluster failover on a C++ broker? (and visa versa). What about Python and Ruby?

AMQP0-9-DesignNotes

Design notes for AMQP 0-9 implemenation

Reserved field in Request frame must be set to 0.
Request and Response constants were added to amqp.0-9.xml
Request ID and Response ID must start at 1 for new channels. 0 is reserved for future use, and should not be used in normal
interactions between client and server.
Response Mark must start at 0 for new channels.
Content class encoding: For inline messages (first byte = 0), a null or empty byte array may be used.
Content class encoding: For refs, (first byte = 1), an error or exception must be thrown if the byte array is either null or empty. It
makes no sense to send a null ref.
Content class decoding: For inline messages (first byte = 0), is is not possible to discriminate between the null array or empty array
case above that encoded it. Decode as an empty byte array, not a null. (open for discussion)
Content class: It may be possible to set a value for either/or null and empty values in the future - if a use-case can be made for it
Possible batch-handling modes should be decided upon.
TODO: Devise a mechanism to allow one-way requests, where no acknowledgements are sent.

AMQP 0-9 Specification Issues

Errara will be made by adding to an amqp-errata.0-9.xml file rather than by making edits directly to the specification file. These are
the advantages:

The differences between the current specification and the spec as we use it are readily apparent.
Different implementations share the same specification file. Thus errors that may arise as a result of a change required for
one implementation (e.g. Java) on others (e.g. C++) are controled/eliminated.

Two constants are missing and need to be inserted as an erratum:

<constant name = "frame-request" value = "9" />
 <constant name = "frame-response" value = "10" />

The Basic field (a) was omitted from . However, after some discussion it wasBasic.type shortstr Message.transfer
resolved that since thid field serves JMS messaging only, that it should be handled as a custom property rather than creating an
XML erratum to insert it. The property name is " ".JMSXType
The Basic field (a) was originally omitted form because its functionality would haveBasic.mandatory bit Message.transfer
been handled by the availability of dead-letter queues. However, they did not make it into the AMQP 0-9 speicification. Thus,

 has been temporarily added as the last field in until dead-letter queues become a realityBasic.mandatory Message.transfer
in the specification.

AMQP (Advanced Message Queueing Protocol)

What is AMQP?
AMQP is an open standard designed to support reliable, high-performance messaging over theAdvanced Message Queuing Protocol
Internet. AMQP can be used for any distributed or business application, and supports common messaging paradigms like point-to-point,
fanout, publish-subscribe, and request-response.

Apache Qpid implements AMQP, including transaction management, queuing, clustering, federation, security, management and
multi-platform support.

Apache Qpid implements the latest AMQP specification, providing transaction management, queuing, distribution, security, management,
clustering, federation and heterogeneous multi-platform support and a lot more.

Apache Qpid is highly optimized, and .aims to be 100% AMQP Compliant

Download the AMQP Specifications

AMQP version 0-10

AMQP 0-10 Specification (PDF)
AMQP 0-10 Protocol Definition XML
AMQP 0-10 Protocol Definition DTD

AMQP version 0-9-1

AMQP 0-9-1 Specification (PDF)
AMQP 0-9-1 Protocol Documentation (PDF)
AMQP 0-9-1 Protocol Definitions (XML)

http://www.amqp.org
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.dfd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9-1.dtd?version=1

AMQP version 0-9

AMQP 0-9 Specification (PDF)
AMQP 0-9 Protocol Documentation (PDF)
AMQP 0-9 Protocol Definitions (XML)

AMQP version 0-8

AMQP 0-8 Specification (PDF)
AMQP 0-8 Protocol Documentation (PDF)
AMQP 0-8 Protocol Definitions (XML)

AMQP Brokers
AMQP Messaging Broker (implemented in C++)
AMQP Messaging Broker (implemented in Java)

AMQP Messaging Broker (implemented in C++)

Running the AMQP Messaging Broker

Running an AMQP 0-10 C++ broker
Configuring Queue Options
Configuring Exchange Options
Using Broker Federation
How to use SSL
Understanding Last Value Queues (LVQ)
Queue State Replication
Getting Started
Starting a cluster
Understanding Access Control Lists

Management

Managing the C++ Broker
QMan - Qpid Management bridge
Qpid Management Framework
Qpid Management Framework (QMF) Protocol
Manage anything with Qpid - QMF Python Console Tutorial

AMQP Messaging Broker (implemented in Java)

General User Guides

Feature Guide
FAQ
Getting Started Guide
Broker Environment Variables
Troubleshooting Guide

How Tos

Add New Users
Configure ACLs
Configure Java Qpid to use a SSL connection.
Configure Log4j CompositeRolling Appender
Configure the Broker via config.xml
Configure the Virtual Hosts via virtualhosts.xml
Debug using log4j
How to Tune M3 Java Broker Performance
Qpid Java Build How To
Use Priority Queues

Management Tools

Qpid JMX Management Console
MessageStore Tool
Qpid Java Broker Management CLI
Management Design notes

https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.xml?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-9.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.pdf?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.dtd?version=1
https://jira.amqp.org/confluence/download/attachments/720900/amqp0-8.xml?version=1

AMQP Messaging Clients
AMQP Java JMS Messaging Client
AMQP C++ Messaging Client
AMQP .NET Messaging Client
AMQP Python Messaging Client
AMQP Ruby Messaging Client

AMQP .NET Messaging Client
Currently the .NET code base provides two client libraries that are compatible respectively with AMQP 0.8 and 0.10. The 0.8 client is located
in qpid\dotnet and the 0.10 client in: qpid\dotnet\client-010

You will need an AMQP broker to fully use those client libraries. Use M4 or later C++ broker for AMQP 0.10 or Java broker for AMQP 0.8/0.9.

User Guides

.NET client user guide

.NET client Excel plug-in
The WCF interface for the .NET client

Examples

.NET AMQP Messaging Client Examples

Developer Guidelines

Qpid Developer Documentation
[Coding Standards]
How Tos

Build .NET Client
Releasing
Run tests
Setup .Net Client on Windows

AMQP C++ Messaging Client

User Guides

C++ Client API (AMQP 0-10)
Client configuration

Examples

Examples
Running the C++ Examples

Client configuration
There are several environment variables that affect the Qpid library in qpid client programs.
They are similar to configuration options for the qpidd broker.

Loadable Modules

By default a qpid client loads modules from a default directory, the exact location depends on your system.
 will show you the default directory for broker modules. If the broker directory is , then the client directory is qpidd --help <path>/daemon

.<path>/client

The following environment variables modify how modules are loaded:

QPID_MODULE_DIR: Load modules in this directory instead of the default directory.
QPID_LOAD_MODULE: Load this additional module.
QPID_NO_MODULE: Don't load modules from the default directory.

Logging

The client recognizes the same logging options as the broker as environment variables. will show you the logging optionsqpidd --help
available.

http://svn.apache.org/viewvc/qpid/trunk/qpid/dotnet/client-010/examples/
http://qpid.apache.org/docs/api/cpp/html/index.html
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/README

AMQP Java JMS Messaging Client
The Java Client supported by Qpid implements the JMS 1.1 specification.

General User Guides

[AMQP Java JMS Client Feature Guide]
FAQ
Java JMS 1.1 Specification
System Properties
Connection URL Format - The format used to describe a connection.
BindingURLFormat - The format used for creating bindings within and to a broker.
[How to Use JNDI to configure the AMQP Java JMS Client]
[Using the AMQP Java JMS Client with RT Java]
[AMQP Java JMS Client Tuning Guide]

AMQP Java JMS Examples

AMQP Java JMS Examples
Script for Running the Examples
README for the above script

AMQP Python Messaging Client

User Guides

Python Client API Guide

Examples

AMQP Python Client Examples
Running the AMQP Python Client Examples

Test Framework

Python Test Framework

AMQP Ruby Messaging Client
The Ruby Messaging Client currently has little documentation and few examples.

Examples

*AMQP Ruby Messaging Client Examples

AMQP Test Suites for Apache Qpid

C++ vs. Python API Discrepancies
This page compares C++ and Python code samples from our examples, looking for arbitrary discrepancies in the API. I suggest that we add
proposals to fix these discrepancies inline for each example.

Opening and closing connections and sessions

C++

http://java.sun.com/products/jms/docs.html
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/runSample.sh
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/README.txt
http://qpid.apache.org/docs/api/python/html/index.html
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/README
https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples

Connection connection;
try {
 connection.open(host, port);
 Session session = connection.newSession();
 ...
 connection.close();
 return 0;
} catch(const std::exception& error) {
 std::cout << error.what() << std::endl;
}
return 1;

Python

host="127.0.0.1"
port=5672
user="guest"
password="guest"

socket = connect(host, port)
connection = Connection (sock=socket, username=user, password=password)
connection.start()
session = connection.session(str(uuid4()))
...
session.close(timeout=10)

Discrepancies

Python uses a socket object, not needed in the C++ API. I suggest that Python follow C++ here.
Python requires the user to provide a UUID instead of creating one for him. I suggest that Python provide the UUID automagically,
as does C++.
Our Python examples end by closing the session, our C++ examples end by closing the connection. If both APIs allow both
approaches, we should fix the examples; if not, we should make the APIs consistent.

Subscribing to a Queue

C++

LocalQueue local_queue;
SubscriptionManager subscriptions(session);
subscriptions.subscribe(local_queue, string("message_queue"));
subscriptions.run();

Python

local_queue_name = "local_queue"
queue = session.incoming(local_queue_name)
session.message_subscribe(queue="message_queue", destination=local_queue_name)
queue.start()

Discrepancies

C++ local queues are created as standalone objects, then subscribed. Python retrieves a local queue from the server using the
session.incoming() method.
Python starts delivery using the local queue's start() method. C++ begins delivery using the SubscriptionManger.run() or
Session.run() method.
Naming: Python calls the method "message_subscribe", which corresponds to the AMQP name, but it's odd naming: it does not
subscribe to a message, nor does it subscribe a message to anything else.

Setting Delivery Properties, Message Properties

C++

message.getDeliveryProperties().setRoutingKey("routing_key");

Python

delivery_props = session.delivery_properties(routing_key="routing_key")

Discrepancies

Python requires the programmer to create the delivery property object for a new message using a session object. That seems
strange - it would be better to create it using the message, since it pertains to a message's delivery properties.
This same discrepancy affects message properties

SubscriptionManager

Discrepancies

Python does not have a SubscriptionManager. This would be very useful once Python supports async mode.

Message Listeners

C++

// A message listener:

class Listener : public MessageListener{
 private:
 SubscriptionManager& subscriptions;
 public:
 Listener(SubscriptionManager& subscriptions);
 virtual void received(Message& message);
};

void Listener::received(Message& message) {
 std::cout << "Message: " << message.getData() << std::endl;
 if (endCondition(message)) {
 subscriptions.cancel(message.getDestination());
 }
}

// Using a message listener with a subscription manager:

SubscriptionManager subscriptions(session);

Listener listener(subscriptions);
subscriptions.subscribe(listener, "message_queue");
subscriptions.run();

Python

#----- Message Receive Handler -----------------------------
class Receiver:
 def __init__ (self):
 self.finalReceived = False

 def isFinal (self):
 return self.finalReceived

 def Handler (self, message):
 content = message.body
 session.message_accept(RangedSet(message.id))
 print content
 if content == "That's all, folks!":
 self.finalReceived = True

Call message_subscribe() to tell the broker to deliver messages
from the AMQP queue to this local client queue. The broker will
start delivering messages as soon as message_subscribe() is called.

session.message_subscribe(queue="message_queue", destination=local_queue_name)
queue.start()

Register a message listener with the queue

receiver = Receiver()
queue.listen (receiver.Handler)

while not receiver.isFinal() :
 sleep (1)

Discrepancies

In Python, a message handler is registered with a local queue, and the local queue is subscribed to the remote queue. In C+, a
+ approach here.message listener is subscribed to using a Session or a Subscription Manager. I prefer the C

Synchronous / Asynchronous Modes

Discrepancies

C++ supports both synchronous and asynchronous modes. Python supports only synchronous mode. Python should support both.

Getting and Setting Message Contents

C++

// getData()

std::cout << "Response: " << message.getData() << std::endl;

// setData()

message.setData("That's all, folks!");

// appendData()

message.appendData(" ... let's add a bit more ...");

Python

message = queue.get(timeout=10)
content = message.body

Discrepancies

C++ calls this "message data" and accesses it via methods, Python calls it the message body and provides direct access. They are
completely different

Other issues

Both languages should support streaming data into and out of messages
The C++ interface has consistently confused people who work with binary data

Getting and Setting Application Headers

C++

message.getHeaders().getString("control");

message.getHeaders().setString("control","continue");

Python

message_properties = message.get("message_properties")
message_properties.application_headers["control"] = "continue"

Discrepancies

Different data model. C++ has a message, which has headers. Python has a message, which has message properties, including
application headers.

Python supports via a dictionary, which is very nice. Can I do this in C++?

ClusteringHA

Definitions
There are two very different reasons to cluster:

Reliability/Fault Tolarance
Cluster members replicate state.
If one member fails, clients can fail-over to another.

Scalabilty/throughput/load balancing:
Distribute large work load across multiple brokers for higher throughput.

Its important not to confuse the two goals. Note that a reliable cluster will be LESS scalable and performant than even a single broker -
replication is extra work on top of normal processing. There is also:

Federation (a set of distributed exchanges and queues, seperately managed and wired together)

It's not clear where to draw the line between federation and clustering for scalability.

Reliability clustering is orthogonal to scalability clustering/federation, which means they can be combined.
Just replace the individual brokers in your federation or scalability cluster with reliable broker clusters
and you have a reliable and scalable system.

Requirements/Use Cases

Reliability Requirements
ClusteringAndFederation

Design notes

Cluster Design Note - Cluster for reliability. A reliable broker cluster can participate as a single broker in federation or throughput
clusters.
Persistent Cluster Restart Design Note - re-starting a cluster with persistent members.

Cluster Failover Modes - how a cluster and its clients deal with failures.
AMQP breakdown for clustering - Analysis of AMQP 0-10 commands and their effect on replicated state in a cluster.
Federation Design Note - Discussion of what has been done to date in C++
Java Federation Design Proposal - Discussion of what could be implemented in the Java Broker.

Related reading

AMQP specification, chapter 3 "Sessions" and session class documentation in chapter 9.
http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1
openais.org docs on Closed Process Group (CPG), cpg man pages in openais install.

AMQP breakdown for clustering
 AmqpBreakdown

AmqpBreakdown

Breakdown of AMQP 0-10 commands and controls for clustering.

Definitions

Replica: broker member of the cluster.

Connected replica: replica directly connected to the client.

Connected session: Attahced session on the connected replica.

Shadow session: Backup of active session state on non-connected replica.

Detached session: Session not attached to any replica, awaiting timeout.

Replicate: Multicast to cluster, defer completing some action till cluster responds.

Inferred: Change on the connected replica that can be inferred by other replicas because it is a deterministic response to some replicated
change (e.g. responding to a query command)

Types of state.

shared state
wiring.
queue contents.

session state.
command ids.
subscriptions.

Cluster qualities of service:

shared state only: replicate shared state but does not support failover.
failover: Replicate shared state and sessions state, supports failover.

We examine the impact on cluster state of each AMQP control & command, and the implications for what needs replication.

Connection controls

None of the connection controls MUST be replicated, they do not affect state.

Connection creation/destruction MAY be replicated if using shadow connections to organize sessions.

Session controls

Performance note: Session controls other than completed are not sent on a per-message basis so are not critical path.

Failover requires that all replicas know:

state of command IDs to correlate completions.
outgoing commands in doubt for replay.

This means:

all outgoing commands must be inferred or replicated
all incoming commands are replicated OR additional command-id info is replicated.

Recieve

attach,detach: MUST replicate. Replicas must know all sessions & attachment.

http://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1

request-timeout: MUST replicate - replicas should respect timeout. See other events below.

command-point, gap, expected: MUST replicate for consistent command numbering.

confirmed: Can be ignored as per spec.

flush: No need to replicate, only attached replica need respond.

known-completed: MUST replicate so replicas can avoid wrap-around. on their unknown-complete set.

completed: Replicas need client completions to bound their replay list. They do not need immediate replication since completions will be
re-sent as part of failover. They MUST known of completions before sending a known-complete to client since the client will no longer notify
completion of known-complete commands.

So we can do one of

repliacate all completions (performance risk)
replicate when sending known-complete (risk memory growth in replay lists)
combination: replicate sending known-completed and replicate completions when replay list is large.

Send

attached, detached, timeout, command-point, expected,confirmed, flush: No effect on replicated state.

known-completed: See receive completed above.

gap: Not used.

completed: Only need replication for , i.e. commands that change persistent shared state.persistent commands

Persistent commands and the async store.

Persistent commands guarantee that once completed their effects are stored persistently and will survive total broker shutdown.

For the strongest guarantee it must be persisted on all persistent replicas in the cluster:

Connected broker receives command, replicates and initiate async store.
All persistent replicas initiate async store.
On async completion, replicas mcast an async store confirmation.
The connected broker waits for all store confirmations before sending completion.

A more performant implementation with a weaker guarantee would send completed when the local async store completes with no async
notifications from the cluster. The risk: client receives completed, local disk is destroyed, rest of cluster shuts down before storing, message
is lost. Need to determine if that's an acceptable risk in general, or perhaps offer configurable choice.

Detached session timeouts.

Having each replica indepenedently destroy timed-out sessions creates a race: a client could resume a session on ne replica concurrently
with the timeout expiring and session state being destroyed on other replicas.

To avoid this we choose an arbitrary cluster member to mcast "session timeout" events when sessions time out. This woudl be the primary in
active/passive mode or an arbitrarily chosen member (e.g. the oldest member) in active-active mode.

Execution commands

Receive

sync: No need to replicate, no effect on replicated state. : MUST replicate, causes destruction of session state. : MUSTexception transfer
replicate before sending completed.

Send

sync,result, exception: inferred.

Message commands

Receive

Definition: an incoming message transfer is when:finished

accept=none: completed sent for incoming transfer.
accept=explicit: received accept for the message and sent completed for the accept.

Before a message is finished it can be re-queued in the event of a client disconnect.

transfer: MUST replicate, update queue content.

acquire, release, accept, reject: See dequeue management below.

resume: Not implemented.

subscribe, cancel, set-flow-mode, flow, flush, stop: MUST replicate subscription state for replay.

Send

transfer: MUST replicate for shared state & replay. Need not replicate content if it can be inferred. See "Persistent commands and the async
store" above and "Dequeue management" note below.

acquire, release, accept, reject: See dequeue management below.

stop:

Dequeue management.

Enqueue is straightforward: incoming transfers are replicated.

Dequeue provides more options:

active/passive mode: active replica is "owner" and controls order of enqueue dequeue. Information about dequeues can be
delayed/compressed/batched.
active/active mode, no queue owners: all dequeue information must be replicated.
active/active mode with queue owners: queues have an owner like active/passive but ownership can be transferred.

Active-active no owners: Replicate all incoming message commands. Replicate dequeue descisions that cannot be inferred. In our current
IO-driven model this means all dequeues.

Active/passive: Active broker does dequeues. Can avoid/defer replication till of incoming acquire, release, accept, reject and outgoing
transfer till messages are - i.e. till sending completion for accept or for transfer in implicit-accept mode. At this point it may befinished
possible to batch the events.

Note that events must still be sent even if batched: all replicas need to know which messages were removed from which queues, and the
order to replay them in the event of fail-over.

Tx commands

select, commit, rollback: MUST replicate. All replicas must commit/rollback consistently.

Dtx commands

select,start,end,commit,forget,get-timeout,prepare,recover,rollback,set-timeout: MUST replicate so all replicas know which commands
are within transactions.

All replicas must join the DTX so all will commit/fail under control of DTX manager.

Exchange commands

declare,delete,bind,unbind: MUST replicate, update wiring.

bound,query: MUST replicate replicas can respond in the event of failover.

Queue commands

declare,delete,purge: MUST replicate, update wiring/queue content. query: MUST replicate replicas can respond in the event of failover.

File & Stream commands not implemented.

Cluster Design Note

Reliable Broker Cluster
This document describes cluster design and implementation as of 19 June 2009.

Overview
A or just is a group of brokers collaborating to present the illusion of a single broker with multiple addresses.Reliable Broker Cluster cluster
The cluster is , that is to say each member broker maintains the full state of the clustered broker. If any member fails, clients canactive-active
fail-over to any other member.

New members can be added to a cluster while it is running. An established member volunteers to provide a state update to the new member.
Both updater and updatee queue up cluster activity during the update and process it when the update is complete.

The cluster uses the CPG (Closed Process Group) protocol to replicate state. CPG was part of Open AIS package, it is now part of the
corosync package. To avoid confusion with AMQP messages we will refer to CPG multicast messages as events.

CPG is a protocol. Members multicast events to the group and CPG ensures that each member receives all the events virtual synchrony in
. Since all members get an identical sequence of events, they can all update their state consistently. To achievethe same sequence

consistency, events must be processed in the order that CPG presents them. In particular members wait for their own events to be
re-delivered by CPG before acting on them.

Implementation Approach

The cluster implementation is highly decoupled from the broker. There's no cluster-specific code in the general broker, just a few hooks that
the cluster uses to modify broker behavior.

The basic idea is that the cluster treats the broker as a black box and assumes that provided it is fed identical input, it will produce identical
results. The cluster::Connection class intercepts data arriving for broker Connections. and sends that data as a CPG event. As data events
are delivered by CPG, they are fed to the original broker::Connection objects. Thus each member sees all the data arriving at all the
members in the same sequence, so we get the same set of declares, enqueues, dequeues etc. happening on each member.

This approach replicates broker state: sessions, connections, consumers, wiring etc. Each broker can have both direct connections and all
 connections. A shadow connection represents a connection on another broker in the cluster. Members use shadow connections toshadow

simulate the actions of other brokers, so that all members arrive at the same state. Output for shadow connections is just discarded, brokers
only send data to their directly-connected clients.

This approach assumes that the behavior of the broker is , that it is completely determined by the input data fed to the broker.determinisitc
There are a number of cases where this does not hold and the cluster has to take steps to ensure consistency:

Allocating messages: the stand-alone broker allocates messages based on the writability of client connections.
Client connection disconnects.
Timers: any action triggered by a timer may happen at an unpredictable point with respect to CPG events.

Allocating messages

The cluster allocates messages to consumers using CPG events rather than writability of client connections. A cluster connection that has
potentially got data to write sends a event to itself, allowing it to dequeue N messages. The messages are not actually dequeueddo-output
until the do-output event is re-delivered in sequence with other events. The value of N is dynamically estimated in an attempt to match it to
the rate of writing messages to directly connected clients. All the other members have a shadow connection which allows them to de-queue
the same set of messages as the directly connected member.

Client disconnects

When a client disconnects, the directly-connected broker sends a deliver-close event via CPG. It does not actually destroy the connection till
that message is re-delivered. This ensures that the direct connection and all the shadows are destroyed at the same point in the event
sequence.

 Actions initiated by a timer

The cluster needs to do some extra work at any points where the broker takes action based on a timer (e.g. message expiry, management,
producer flow control) See the source code for details of how each is handled.

Error Handling

There are two types of recoverable error

Predictable errors occur in the same way on all brokers as a predictable consequence of cluster events. For example binding a
queue to a non-existent exchange.
Unpredictable errors may not occur on all brokers. For example running out of journal space to store a message, or an IO error from
the journal.

Unpredictable errors must be handled in such a way that the cluster does not become inconsistent. In a situation where one broker
experiences an unpredictable error and the others do not, we want the broker in error to shut down and leave the cluster so its clients can fail
over to healthy brokers.

When an error occurs on a cluster member it sends an error-check event to the cluster and stalls processing. If it receives a matching
error-check from all other cluster members, it continues. If the error did not occur on some members, those members send an error-check
with "no error" status. In this case members that did experience an error shut themselves down as they can no longer consistently update
their state. The member that did not have the error continue, clients can fail over to them.

Transactions

Transactions are conversational state, allowing a session to collect changes for the shared state and then apply them all at once or not at all.

For TX transactions each broker creates an identical transaction, they all succeed or fail identically since they're all being fed identical input
(see Error Handling above for what happens if a broker doesn't reach the same conclusion.)

DTX transactions are not yet supported by the cluster.

Persistence and Asynchronous Journaling

Each cluster member has an independent store, each recording identical state.

A cluster can be configured so that if the cluster is reduced to a single member (the "last man standing") that member can have transient
data queues persisted.

Recovery: after a total cluster shutdown, the state of the new cluster is determined by the store of the broker started. The second andfirst
subsequent brokers will get their state from the cluster, not the store.

At time of writing there is a bug that requires the stores of all but the first broker to be deleted manually before starting the cluste

Limitations of current design

There are several limitations of the current design.

Concurrency: all CPG events are serialized into a single stream and handled by a single thread. This means clustered brokers have limited
ability to make use of multiple CPUs. Some of this work is pipelined, so there is some parallelism, but it is limited.

Maintainability: decoupling the cluster code from the broker and assuming the broker behaves deterministically makes it very easy for
developers working on the stand-alone broker to unintentionally break the cluster, for example by adding a feature that depends on timers.

Non-replicated state: The current design replicates all state. In some cases however, queues are intended only for directly connected
clients, for example management queues, the failover-exchange queues. It would be good to be able to define replicated and non-replicated
queues and exchanges in these cases.

Scalability: The current cluster design only addresses reliability. Adding more brokers to a cluster will not increase the cluster's throughput
since all brokers are doing all the work. A better approach would move move some of the work to be done only by the directly-connected
broker, and to allow messages to "bypass" the cluster when both producer and consumer are connected to the same member.

Cluster Failover Modes

Qpid cluster failure modes.
This section describes failure modes and techniques to deal with them, the following
section provides configuration details for the techniques mentioned here.

Broker process terminated

E.g. broker killed.

Clients: disconnected immediately, can fail over to another broker in
the cluster.

Multicast group: broker is automatically removed from the multicast group.

The broker needs to be manually restarted.

Broker host crash

E.g. power failure, hardware failure.

Clients: may not detect loss of connection until a long TCP timeout is
reached. Use heartbeats to reduce the time to detect loss of connection.

Multicast group: broker is automatically removed from the multicast
group after the configurable totem token timeout value.

Broker freeze -e .g. kill -STOP

E.g. using kill -STOP.

Clients: disconnected after TCP timeout, use heartbeats to disconnect quicker.

Multicast group: Broker is not automatically can eventually hold up
all cluster trafic. Use the watchdog plugin to kill a broker that is
unresponsive for a configured period of time.

Broker needs to be manually restarted.

Client-broker network failure

Clients: disconnected after TCP timeout, use heartbeats to disconnect quicker.

Broker: clean up client resources (e.g. auto-delete queues) when
client disconnect is detected after TCP timeout. Use heartbeats to
disconnect quicker.

Broker-broker multicast network failure

A failure in the multicast network creates a "partition" creating two
or more sub-clusters that are unable to communicate. This creates

inconsistent state in the sub clusters that cannot be reconciled
correctly if they are re-connected, and will result in unpredictable
behaviour.

To deal with this situation, you need cman's quorum service. In the
event of split-brain only one of the sub clusters will have a
"quorum". Brokers in the other sub-clusters will automatically shut
down, allowing clients to fail over to a broker in the quorum.

Alternatively to avoid partitions entirely you can use the
openais/corosync Redundant Ring Protocol which uses two physically
separate networks for cluster communication. This enables the
multicast group to survive the loss of either of the networks (but not both.)

Brokers that shut down need to be manually restarted.

Broker-broker update network failure.

New brokers joining the cluster receive an initial state snapshot from
an established member of the cluster via TCP. A network failure at
this point will cause the joining broker to exit.

Broker must be manually restarted.

Note as of qpid 0.6 the update connections are made using the same URL
that clients uses to connect, its not possible to restrict
broker-broker update connections to a different network from client
connections.

Client crash

Broker: client resources such as auto-delete queues are reclaimed
immediately.

Client host crash

Broker: client resources such as auto-delete queues are reclaimed after the TCP time-out.
To have resources reclaimed more quickly use heartbeats.

Configuration

Separate client/multicast networks

For best performance use a separate network for clients and the
multicast group. If possible the multicast group network should be

openais.conf/corosync.conf

totem.token: timeout in milliseconds until host crash or network
disconnect is detected by the multicast group. Defaults to 1000ms.

Redundant ring protocol (RRP), uses two physically separate networks
for cluster communication. To use RRP, you must choose a replication
mode for your environment. RRP has 3 modes:
Modes

active: Active replication can offer slightly lower latency in faulty network environments, however it can reduce throughput.
passive: Passive replication can nearly double the speed from transmit to delivery, but also carries the potential for the protocol to become
bound to a single CPU.
none: Disables redundant ring.

To enable RRP make the following changes to corosync.conf (for RHEL6) or openais.conf (for RHEL5):

1. In the totem section, add rrp_mode=active or rrp_mode=passive
2. Add a second interface section with a different bindnetaddr for your second network.

qpidd configuration options

cluster-url: specify addresses that clients will use to connect. Can
be used to ensure clients connect on a different network from the
multicast network.

Note a future release will provide cluster-update-url to allow updates
to be restricted to a different network from client connections.

watchdog plugin

The watchdog plug-in will kill the qpidd broker process if it
becomes stuck for longer than a configured interval.

If the watchdog plugin is loaded and the --watchdog-interval=N
option is set then the broker starts a watchdog process and signals
it every N/2 seconds.

The watchdog process runs a very simple program that starts a timer
for N seconds, and resets the timer to N seconds whenever it is
signalled by the broker. If the timer ever reaches 0 the watchdog
kills the broker process (with kill -9) and exits.

This is useful in a cluster setting because in some instances
(e.g. while resolving an error) it's possible for a stuck process
to hang other cluster members that are waiting for it to send a
message. Using the watchdog, the stuck process is terminated and
removed from the cluster allowing other members to continue and
clients of the stuck process to fail over to other members.

cman configuration

Note: when using cman, do not start the openais/corosync service. It
will be started automatically by the cman service.

Only basic cman configuration (cluster.conf) is required. Other
cluster suite services (GFS, DLM, fencing etc.) do not need to be
configured.

Enabling heartbeats

In C++ clients, heartbeat is disabled by default. You can enable
heartbeat by specifying a heartbeat interval (in seconds) for the
connection:

ConnectionSettings settings;
settings.heartbeat = 1;
FailoverManager fmgr(settings);

In a JMS client, heartbeat is set using the idle_timeout property of
the connection URL. For instance, the following line from a JNDI
properties file sets the heartbeat time out to 3 seconds:

pconnectionfactory.qpidConnectionfactory = amqp://guest:guest@clientid/test?brokerlist='tcp://localhost:5672',idle_timeout=3

Heartbeats are enabled in both directions, the connection can be
closed at either end if the heartbeat interval is missed.

References
Cman configuration: See chapters 3 & 5 of
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.4/html/Cluster_Administration/index.html

ClusteringAndFederation

Clustering And Federation
Each diagram below depicts a distributed network of exchanges and queues. The following notation is used in all diagrams:

M: message
E: exchange
Q: queue

Multicast

M1...Mn
 +--------> Q
 |
 | M1...Mn
 M1...Mn ---> E----+--------> Q
 |
 | M1...Mn
 +--------> Q

Queue contents are duplicated across all queues. For this scenario PGM

http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.4/html/Cluster_Administration/index.html

would be ideal between E and Q, or even directly between E and
consumers.

Load Balancing

M1
 +--------> Q
 |
 | ...
 M1...Mn ---> E----+--------> Q
 |
 | Mn
 +--------> Q

No ordering is guaranteed accross different queues. A naive
implementation could just be an exchange doing round-robin routing or
any algorithm of choice. A more complicated exchange could have flow
control between each queue and the exchange.

Multiple Exchanges

M? ---> E1-----+ +-----> Q1
 | |
 | (n*m arrows) |
 M? ---> E2-----+--------------+-----> Q2
 | |
 | |
 M? ---> En-----+ +-----> Qm

Both the Load Balancing and Multicast scenarios can be extended by
adding multiple exchange nodes wired into the same (or an overlapping)
set of queues. One virtual mega exchange (with relaxed ordering
semantics) could be created by segmenting client connections between
exchanges. This could be done using a number of strategies, e.g.
round-robin dns, name mangling, redirects.

The topologies described above could in theory be use in a variety of
scenarios ranging from an an isolated high speed subnet with
identically configured nodes to a loosely coupled WAN with separately
administered nodes. In fact a single network could include exchanges
bound to local queues, remote queues available on an isolated high
speed subnet, and remote destinations (exchange or queue) available
over WAN/internet. In the last case the exchange may be requred to
queue messages routed to the remote destination if the WAN/internet
link is down.

In the terminology I've been using, a cluster is a set of machines
sharing the same software and configuration, and generally connected
via an isolated high speed subnet. A federation on the other hand
consists of distinctly configured machines individually wired
together. Both clustering and federation share a commoncould
protocol for message delivery. This could possibly even be used for
multicast if it were a simple stateless store-and-forward protocol.
(Note the "store" in "store-and-forward" can mean both store on disk
and store in memory.)

With this model the key distinction between a cluster and a federation
is that all the nodes in a cluster are managed as a single unit, e.g.
one place to start/stop/add/remove/etc. Because of this the nodes in a
cluster have to pass control messages to each other distinct from the
general message traffic. These control messages need to be isolated
from the general message traffic (e.g. on their own subnet). This
could be done using JGroups and OpenAIS for Java and C++ respectively.

This document doesn't directly address fault tolerance, but it is
assumed that any node/broker that contains state can be configured to
have a passive counterpart that supports two methodologies for
failover. Broker swapout based on virtual IP, or client reconnect to a
backup IP.

Federation Design Note

Design Note
The information below is quite stale. The outstanding issues listed have been resolved as of M3.

Information needed for this design note:

Mapping of federation features to source files
Full description of the dynamic binding protocol and its associated algorithms
A discussion of how changes to AMQP could improve the protocol (the main thing needed is an map in the unbindarguments
method)

Old Content
Formatted mail from Gordon...

Regarding federation, what we have now in the c++ broker is really inter-broker routing.

Links between brokers can be setup to transfer messages from one to another.

In the current terminology a 'link' is a connection between two brokers. Such a link is setup using the management system, by asking one
broker to establish a connection to another broker given the host and port.

Once a link is established, a 'bridge' can be created. A bridge is essentially a subscription for messages between two brokers,
requesting the transfer of messages from a source to a destination. The 'source' for a bridge can logically be either an
exchange or a queue; the destination is an exchange on the receiving broker.

The current implementation of bridges relies on the symmetry of the message.transfer command in the 0-10 AMQP specification. A bridge is
created by issuing a subscribe request to one broker using the exchange name to which the messages should be delivered as the
'destination' argument. So once the subscription is setup the bridge apperas to be a standard consumer to the source broker and messages
routed from that broker appear as standard publications at the source broker.

If the logical source of the bridge was an exchange rather than a queue, an exclusive queue is created for the bridge and bound with the
relevant binding details (currently only a binding key is supported, but thats easy to extend).

Bridges can be established to support different types of message flow. A common case is where you have two or more brokers over which
you want to offer a 'federated exchange'. I.e. you want messages published to that exchange on one broker to be routed through the
equivalent exchanges on all the brokers in the federation, allowing queues bund locally at those brokers to receive such messages. This
common case is supported by the qpid-route tool.

There are currently a few outstanding issues needing to be resolved.

One is preventing messages from looping in configurations where there are circularities in the defined routes (such as those
described for the 'federated exchange'). I plan to address that next week. The solution I have in mind is to have the exclusive queues
used form bridging from exchanges append an identifier to a custom property ('x-qpid-route' or whatever) in each message that
passes through them. It will then be possible to specify a list of exclusions when establishing a bridge and messages where the route
property contains any of the excluded identifiers will be silently dropped. I'm not entirely delighted with that approach, but it will have
to do in the short term I think.

Another is ensuring that links are re-established when lost (e.g. due to network failures or brokers being taken down) and that the
details of configured bridges survive restart. These will also be addressed quite soon I hope.

This is obviously just the beginning of full federation capabilities. There are many ways it can be made more sophisticated
and I for one would be interested in debating ideas, use cases and directions.

Java Federation Design Proposal

Message Federation Design Proposal

The following proposal is only to address two type of message federation. This is aimed to be implemented in
the Java broker before we fully upgrade it to support AMQP 0-10.

The two types of message feddration that we will consider. Topic Fanout and Remote Queues.

Topic Fanout

----------------+ +----------------------------
 Broker A | | Broker B +----> E(topic)
 | | |
 Topic(a) >---+ | | +-------------+
 Topic(b) >---+---------| Forwarding |
 Topic(c) >---+ | | | Java Client |
 | | +-------------+
----------------+ +----------------------------

Broker B has a process where it subscribes to various topics on Broker A forwarding the messages on to the

Specified Exchange on B.

New Dynamic Topic Exchange

An additional topic exchange type can could be added so that any request is added to the existing set of bind
subscriptions. This would remove the need to explicitly configure any forwarding and so ensure that any new clients
that joined would receive messages on the topic they requested.

Embedded Client

While the client could be a much simpler client than the existing Java Client. By utilising the existing java
client reduce the replication of functionality. If the performance overhead of using the full client is shown to
be to high then we can revisit this situation.

There are several features that the Forwarding Client should perform:

'Topic Reduction', 'weather.europe.scotland.*' and 'weather.europe.#' can be reduced to 'weather.europe.#'
Handle reconnection to Broker A.
Loop detection

Loop Detection

If a tag identifying the broker is added to the each message that is forwarded then the client can tell if a
message has already been forwarded and so silently drop the looped message. This detection could be made more
proactive by having the Client subscriptions use a selector to specifically exclude all messages with the
Broker B's ID.

Remote Queues

------------------------+ +---------------------
 Broker A | | Broker B
 +------------+ |
 RemoteQueue --> | Publishing |--------> E --rk--> Queue
 (No Consume) | Proxy | |
 +------------+ |
 | |
------------------------+ +---------------------

The Remote Queue case has a Publishing Proxy that will push all the messages that arrive on
the 'RemoteQueue' to the specified Exchange (E) and RoutingKey (rk).

The 'RemoteQueue' should potentially prevent any client subscriptions requests from directly consuming from the Queue on Broker A.
Attempts to consume from this queue could utilise the the redirect method to send the requesting client to Broker B.

Publishing Proxy

All messages should be sent via transaction to maintain the reliability of the transfer.
Just as with the Forwarding Client this proxy must be capable of reconnecting in the event of connection failure.

Old Clustering Design Note

Overview
The following is a proposal for the design of a clustering solution to increase the scalability of the Qpid AMQP broker by allowing multiple
broker processes to collaborate to provide services to application clients connected to any one of these processes. By spreading the
connections across different processes more clients can be supported.

Terms & Definitions

A cluster consists of any number of brokers in a fixed order. Each broker in the cluster has a unique name. All brokers in the cluster know the
set of brokers in their cluster and agree on the ordering of those brokers. The first broker in the cluster is the leader; all brokers agree on the
current leader. The mechanisms for achieving and maintaining this structure will be described below.

Each client is connected to one broker in the cluster, to whom it sends its requests in the same way it would were it connected to a broker
that was not part of a cluster. Clients that implement the AMQP specification should be able to work with a clustered broker unaltered.
However, when in a cluster, a broker will need to alter its response to certain client requests. An objective of the design is to minimise the
scope and complexity of this altered behaviour.

Brokers in a cluster all connect to each other. Though one socket between any two brokers would suffice, it is simpler to implement if we
assume that each broker will be a client of each other broker. Thus there will in fact be two connections between any two members, one in
each 'direction'. This way we can reuse as much of a non-clustered brokers behaviour as possible.

A broker will need to distinguish between sessions with an application client and sessions where the 'client' of the socket in a session is
actually another broker.

Outline of Approach for Clustering

Stated simply, the cluster will:

replicate exchanges by broadcasting the original Exchange.Declare and Exchange.Delete messages to all members of the cluster.

replicate queues by broadcasting the original Queue.Declare and Queue.Delete messages to all members of the cluster

replicate bindings by broadcasting Queue.Bind messages to all members of the cluster

relay messages from a copy of an exchange in one broker to the equivalent exchange in another broker where necessary to ensure
that consumers on any broker in the cluster receive messages that are published to any broker in the cluster

Private queues exist in real form in only one broker; the broker that receives the original declaration from a client. All the other brokers in the
cluster set up a proxy for this queue. This proxy can be bound to exchanges as a normal queue can, but whenever a message is routed to it,
that message is simply relayed on to the broker in which the real queue exists. However, though multiple queue proxies may exist with the
same target member, if these are bound such that all of them match a given message, only one copy of that message should be relayed to
the target member.

Copies of shared queues will exist at each broker in the cluster. These are bound to exchanges as usual and can have consumers registered
with them. In addition to consumers from the application clients, these shared queue copies track the number of consumer for that queue that
are held on other brokers. They use this information to fairly distribute messages between all consumers.

The clustering in general involves propagation of certain methods received by one broker in the cluster from a client to all the other cluster
members. Specifically those methods concerned with the setup of routing information are propagated allowing all members of the cluster to
play their part in the routing of messages from and to clients distributed across the cluster.

In particular the cluster will propagate all Exchange.Declare, Exchange.Delete, Queue.Declare, Queue.Delete and Queue.Bind messages. It
will also propagate Basic.Consume and Basic.Cancel messages that refer to shared queues.

The propagation can be carried out synchronously or asynchronously with respect to the original client request. In other words the broker that
receives one of these messages from a client will send an equivalent message to the other brokers and can then wait until it receives
responses from these brokers before it sends the confirmation message back to the client. Alternatively it could return a response to the
client immediately. A hybrid approach could also be used. In general the originating broker waits for n responses, where 0 < n < number of
members in the cluster. The value of n to be used will be set through policies to achieve the required latency v. consistency trade offs for a
particular situation.
Cluster Management

As mentioned above the cluster is defined to be an agreed set of member brokers in an agreed order. This helps reasoning about
consistency. The 'first' member of the group acts as the leader and issues authoritative statements on who is in or out of the cluster. All
brokers in the cluster store the last received membership announcement from which they can infer the current leader.

Ordering is maintained by requiring that new members join through the leader. A prospective new member can connect to any other member
in the cluster, but these other members should pass on the join request to the leader.

Once connected to a member of the group the new member issues a join request, to which the leader responds by sending a new
membership announcement to all members including the new member. It will also initiate the replay messages required to replicate cluster
state to the new member; the other cluster members also participate in this message replay. Once it has processed all the replayed
messages and is therefore up to date with respect to cluster state, the new member can start accepting client connections.

State is transferred through (a) Exchange.Declare methods for all exchanges, (b) Queue.Declare messages for all queues, (c) Queue.Bind
requests for all queue bindings in all exchanges and (d) Basic.Consume requests for all consumers of shared queues at each node. The
leader is responsible for replicating all exchanges, shared queues and their bindings. Other members are responsible for replicating private
queues hosted by them and the bindings for these queues as well as consumer counts for shared queues. The replay of messages from the
leader must be processed before those from other cluster members (as e.g. bindings for private queues require that the exchanges have
already been declared). The completion of the required replay of messages from a broker is signaled by a Cluster.Synch message.
Messages received after this are 'live' messages received through the receiving broker being treated as a normal member.

Failure of a broker may be detected by any other broker in the cluster in the course of trying to communicate with that broker. Failures are
handled by sending a suspect message to the leader of the cluster, who verifies the suspected broker is down and issues a new
announcement of membership, with the failed broker removed if the failure is verified. In addition to discovery of failure during normal
communication, each broker member is responsible for periodically pinging the 'previous' broker (i.e. the broker that occurs just before itself
in the ordered membership list). The leader will assume responsibility for pinging the last member to join the group.

The leader may itself fail. This may be detected by the next broker in the list, in which case that broker responds by assuming leadership and
sending an announcement of the new membership list with the old leader removed. It may also be detected by other brokers. As they cannot
send a suspect warning to the leader, they send it to the broker next to the leader.
Message Handling Changes and Protocol Extensions

To incorporate clustering while reusing the same communication channel for intra-cluster communications and extension to the protocol is
proposed. It is not necessary for clients to know about this extension so it has no impact on the compliance of the broker and can be treated
as a proprietary extension for Qpid. The extension consists of a new class of messages, Cluster, which has the following methods:

Cluster.Join

Sent by a new member to the leader of the cluster to initiate the joining process. On receiving a join the leader will try to establish its own
connection back to the new member. It will then send a membership announcement and various messages to ensure the new member has
the required state built up.

Cluster.Membership

Sent by the leader of the cluster whenever there is a change in the membership of the cluster either through a new broker joining or through
a broker leaving or failing. All brokers should store the membership information sent. If they are waiting for responses from a member that is
no longer part of the cluster they can handle the fact that that broker has failed. If it contains a member to whom they have not connected
they can connect (or reconnect).

Cluster.Leave

Sent to the leader by a broker that is leaving the cluster in an orderly fashion. The leader responds by sending a new membership
announcement.

Cluster.Suspect

Sent by brokers in the cluster to the leader of the cluster to inform the leader that they suspect another member has failed. The leader will
attempt to verify the falure and then issue a new Cluster.Membership message excluding the suspected broker if it has failed leaving it in if it
seems to be responding.

Cluster.Synch

Sent to complete a batch of message replayed to a new member to allow it to build up the correct state.

Cluster.Ping

Sent between brokers in a cluster to give or request a heart beat and to exchange information about loading. A ping has a flag that indicates
whether it expects a response or not. On receiving a ping a broker updates its local view of the load on that server and if required sends its
own ping in response.

In addition to this new class, the handling of the following is also altered. The handling of each message may depend on whether it is
received from an application client or from another broker.

Connection.Open

A broker needs to detect whether the open request is from an application client or another broker in the cluster. It will use the capabilities field
to do this; brokers acting as clients on other brokers require the 'cluster-peer' capability.

If a broker receives a Connection.Open from an application client (i.e. if the cluster-peer capability is not required) it may issue a
Connection.Redirect if it feels its loading is greater than the loading of other members in the cluster.

Exchange.Declare

On receiving this message a broker propagates it to all other brokers in the cluster, possibly waiting for responses before responding with an
Exchange.Declare-Ok.

Queue.Declare

On receiving this message a broker propagates it to all other brokers in the cluster, possibly waiting for responses before responding with a
Queue.Declare-Ok.

Queue.Bind

Again, this is replicated to all other brokers, possibly waiting for responses before sending back a Queue.Bind-Ok to the client.

Queue.Delete

On receiving this message a broker propagates it to all other brokers in the cluster, optionally waiting for responses before responding to the
client.

Basic.Consume

If the consume request is for a private queue, no alteration to the processing is required. However, if it is for a shared queue then the broker
must additionally replicate the message to all other brokers.

Basic.Cancel

If the cancel request is for a subscription to a private queue, no alteration to the processing is required. However, if it is for a shared queue
then the broker must additionally replicate the message to all other brokers.

Basic.Publish

The handling of Basic.Publish only differs from the non-clustered case where (a) it ends up in a shared queue or (b) it ends up in a 'proxy' for
a private queue that is hosted within another member of the cluster.

When the published message ends up in a shared queue, the broker must be aware of whether the message was published to it by another
broker or by an application client. Messages that come from other brokers are dispatched to the local brokers own application client
subscribers. Messages that come from application clients are either dispatched to the next application client or relayed to another broker. A
round-robin scheme applies here where each subscriber, whether a 'real' subscriber or a consumer in a relay link to another broker, gets its
'turn'.

In other words the allocation of a message to a consumer on a shared queue happens at the first broker to receive the publish request from

the application. All brokers signal their local consumer count by propagating the Basic.Consume (and Basic.Cancel) messages they receive
from clients so each broker has a local view of the cluster wide distribution of consumers which can be used to achieve a fair distribution of
messages received by that broker.

As each broker can receive messages from the application, strict round-robin delivery is not guaranteed, but in general a fair distribution will
result. Brokers should remember the next consumer to receive messages from the application and also the next consumer to receive
messages from the cluster.

A local broker's view of consumer distribution is updated asynchronously with respect to message publishing and dispatch. This means that
the view might be stale with regard to the remote consumer counts when the next consumer for a message is determined. It is therefore
possible that one broker directs a message to a broker that it thinks has a consumer, but when that message arrives at the remote broker the
consumer has disconnected. How this is handled should be controlled through different policies: pass it on to another broker, possibly with
the redelivered flag set (particularly if it goes back to the broker it came from), discard the message or hold on to it for a finite period of time
and deliver it to any application consumer that subscribes in that time.

The situation just described is essentially the same situation as in a non-clustered case where a consumer disconnects after a message has
been sent to it, but before it has processed that message. Where acknowledgements aren't used the message will be lost, where
acknowledgements or transactions are used the message should be redelivered, possible out of sequence. Of course in the clustered case
there is a wider window in which this scenario can arise.

Where the messages is delivered to a proxied private queue, that message is merely relayed on to the relevant broker. However, It is
important that where more than one proxied queue to the same target broker are bound to the same exchange, the message only be relayed
once. The broker handling the Basic.Publish must therefore track the relaying of the message to its peers.

Failure Analysis

As mentioned above, the primary objective of this phase of the clustering design is to enable the scaling of a system by adding extra broker
processes that cooperate to serve a larger number of clients than could be handle by one broker.

Though fault tolerance is not a specific objective yet, the cluster must allow for the failure of brokers without bringing the whole system to a
halt.

The current design (and implementation) only handles process failures entirely satisfactorily. Network failures* result in the exclusion of
brokers from the cluster and will behave reasonably only where the view of reachability is consistent across the cluster. Network partitions
between the cluster nodes will result in independent clusters being formed and there is currently no provision for merging these once the
partition heals.

failures here means anything that causes a tcp stream to fail; a relatively straightforward improvement would be to buffered
unacknowledged requests that have been broadcast allowing attempts to re-establish a tcp connection on failure and replaying the
messages (assuming idempotent messages)

The group abstraction described above does not provide virtual synchrony. When a broker fails while performing a broadcast to the group,
the result will not be uniform across the other members. Where synchronous propagation is used, the client will be ware of this state as it will
not have received the response from the broker and will reissue the request on failing over to another broker. (The current failover as
implemented in the Qpid client will actually recreate all state required by the client).

Persistent Cluster Restart Design Note

Persistent cluster, user perspective.
A persistent cluster is one where all members have a persistent store. A cluster must have all transient or all persistent members, mixed
clusters are not allowed.

cluster-size option

cluster-size N Wait for at least N initial members before completing cluster initialization and serving clients.

Use this option in a persistent cluster so all brokers in a persistent cluster can exchange the status of their persistent store and do
consistency checks before serving clients.

Clean and dirty shut-down.

Each store is an independent replica of the cluster's state. If a broker crashes while there are other brokers running, its store is marked "dirty"
because it will be out-of-date with regard to the rest of the cluster.

If the broker is re-started to re-join the a running cluster it will discard the dirty store and get an update from an active cluster member to
re-synchronize its state.

If the entire cluster is shut down by an administrator using the command, then all brokers will shut down at exactly theqpid-cluster -k
same point with the same state in their stores. In this case the stores are marked "clean".

If the cluster is reduced to a single broker, and that broker is shut down, its store is marked clean since it is the the only broker and therefore
has the authoritative store.

When the cluster is restarted, brokers with clean stores will recover from their store, brokers with dirty stores will get an update from a clean
broker.

1.
2.
3.
4.

Consistency checks

Two UUIDs are saved with each broker's store: cluster-id and shutdown-id. These are used during startup to detact a mistaken attempt to
use mis-matched stores.

The cluster-id identifies the persistent cluster. It remains the same if the cluster is shut down and restarted. It ensures no accidental mixing of
stores belonging to different clusters.

The shutdown-id identifies a particular clean shut-down event. It ensures that all clean stores were shut down at the same point.

If there is any mis-match in these IDs, all members of the cluster will log a message and exit.

Manual recovery

In the unlikely event that all brokers in a cluster crash so close together that its impossible to determine which was the last one to shut down,
all there stores will be dirty.
In this case manual intervention is required to identify which store to recover from.

TODO: describe manual intervention: two parts. First identify which is the best store to start from. Second mark the store as clean by writing
a UUID to the shudown ID in the data directory.

Design details
Persistent restart scenarios:

first run of persistent cluster, all members have empty stores.
persistent member crashes is re started - re-joins running cluster
automatic restart after orderly shutdown of persistent cluster
manual recovery after total cluster failure of persistent cluster

Other requirements:

cluster initialization: wait for N initial members before going active.
enforce consistency of broker options that need to be identical across cluster

Persistent cluster

Store statess on broker start-up:

empty: not used before.
clean: has state, was shut down by admin. Has intial and shutdown-ids
dirty: has state, not shut down by admin. Has cluster-id.

cluster-id is stored on the first run of a persistent cluster. Used to ensure members are part of the same cluster.

shutdown-id is stored at administrative shut-down of the cluster. Used to ensure clean stores are from the same shut-down event.

Initialization

Wait for N initial members
Verify options are consistent for all members or abort.
Verify valid store states or abort (see below)
Members with empty/dirty stores get update from clean member.

All empty is a valid store state: all members record the same cluster-id and go active.

If any are non empty then

at least one store must be clean
all clean stores must have same shutdown-id.
all clean and dirty stores must have same cluster-id.

All clean members restore from stores. All empty members set the cluster-id from the cluster. All dirty/empty members get an update from a
clean member.

Joining

If the new member has a non-empty store, the cluster-id must match the cluster. The new member gets an update from the cluster.

Manual Recovery

TDB: how to identify the best store?

Reliability Requirements

Reliability Requirements

Fail-over (session state)

A cluster member informs its clients of backup candidates for each session. It can update the list periodically.

After an unexpected disconnect the client can connect to one of the candidates and resume its session transparently. All session state is
preserved including:

Open references
Active consumers
Commands-in-flight
Open transactions (question: Is there any value in fail-over that aborts TX and/or DTX transactions?)

Sessions survivedo not

multiple failures that include the current node and all back-up nodes for that session.
shutdown/restart of the cluster.

Cluster Restart (durable resources)

The AMQP entities that survive a restart are those defined by AMQP to survive broker restart. AMQP defines exchanges and queuesdurable
and messages. Some further definitions:persistent

durable message: persistent messages on a durable queues.
durable enque: act of enqueuing a persistent message on a durable queue.
durable binding: binding between durable exchange and durable queue.

The following are preserved if the entire cluster shuts down/crashes and is re-started:

Durable wiring: durable exchanges, queues and bindings.
Durable messages
Prepared DTX transactions

The following do not survive a restart:

Session state
Non-durable wiring
TX transactions are aborted.
Unprepared DTX transactions are aborted.
Non-durable effects of prepared DTX transactions are lost.

Restarting DTX Transactions

On restart, prepared DTX transactions may commit or rollback. In either case the outcome is the transaction had comitted or rolled backas if
just the restart: All durable transaction effects survive the restart, all non-durable effects are lost.before

In particular

On messages enqueued in the transaction are , as if they had been enqueued before the restart and werecommit: non durable lost
lost in the restart.
On messages dequeued in the transaction are , as if they had been put back on the queue before restartrollback: non durable lost
and then lost in the restart.

Declarative System Testing
The Java and C++ have fairly extensive system tests (the Java has less extensive unit tests, I'm not sure about the C++ coverage). The .Net
has significanly less, but they tend to transliterations of the Java tests. There's also a bunch of interop tests which are reimplemented in each
of the languages, but has patchy coverage (Java and C++ implement most, the .Net implements less, I don't think Python implements any).
While attempting to automate running these, it was pointed out that the obvious model for the interop tests is that the coordinator sends a test
case to the clients describing what they should do rather than a "run test 1" message.

Proposal:
Implement a generic system for turning test definitions into test code.

Outline:
Given a document like this:
<test>
<create type="queue" name="queue" exhange="amq.direct" routing-key="queue">
<create type="consumer" name="consumer" destination="queue">
<create type="producer" name="producer" destination="queue">
<send number="10" exchange="amq.direct" routing-key="queue" size="1024" producer="producer">
<recieve number="10" consumer="consumer">
</test>

the test would send 10 messages through the broker and read them back.

This would allow for easy sharing of test cases throughout the clients and would mean that the interop test co-ordinator could send an xml
document to the clients to allow for easy extension of the interop tests without having clients lagging behind.

Problems:

Well, writing such a beast shouldn't be too difficult, although a couple of questions immediately raise their heads with regard to onMessage
vs receieve senders and threading that would need to be addressed. Also the test grammar would need to be defined and agreed quite
closely for this to really work.

The other question is whether the test runners should interpret the XML directly, which would allow for consistency of code between the test
suite and the interop testing, or if they should generate FooUnit test cases which would allow for easier debugging but a longer build cycle.

Comments and implementations gratefully received.

Developer Pages

Developer Pages

Java Coding Standards
Cpp Client Java Interop Issues
Java Broker Design
Qpid Java Client refactoring
Distributed Testing
Low-Level API Diagram
Weekly QPID Developer Meetings
Documentation
ACL
Qpid Management Framework
Broker job queue limits
JMX Console Use Cases
Current Architecture
MessageProducer.send() behaviour
Multiple Java Brokers - Use Cases
Java Client Test Coverage
ACL Design
AMQP Distributed Transaction Classes (C++)
API Error Conditions
Broker Management QMF Coverage
Java Client Design
Qpid extensions to AMQP
Qpid Java Broker - Guidance for 64Bit VM

Process Notes

Release Process

Testing

See Qpid Testing

Qpid JMX Management Console Testing Guide
Interop Testing Specification - Common test cases to ensure all clients and brokers interop.
Performance, Reliability and Scaling - Details of the test cases and telemetry available
Java Client Test Coverage

Design Notes

Management Design notes - The layered AMQP management protocol for mgmt tools (currently in the M3 C++ broker)
ClusteringHA - Federation, HA, and Clustering design notes
Queue Replay - Adding replay to queues.
The AMQP Distributed Transaction Classes (Java) - The+AMQP+Distributed+Transaction+Classes
AMQP Distributed Transaction Classes (C++) - Distributed Transaction handling in the C++ broker
ACL - design page
ACL Design - design page
QMF - The Qpid Management Framework

Java Coding Standards
This page documents the standard adopted for Java code in the Qpid project. All committers are expected to follow these standards;
checkstyle or similar is used to check compliance.

Executive Summary

The main things for layout purposes in the standard are:

Indent using four spaces. .No tabs
braces always go on new lines, e.g.

 (x == 5)if
{
 .out.println();System "Hello"
}

rather than

 (x == 5} {if
 .out.println();System "Hello"
}

Always add braces, e.g.

 (x == 5)if
{
 .out.println();System "Hello"
}

rather than

 (x == 5}if
 .out.println();System "Hello"

Fields prefixed with underscores, e.g. _messageCount
Spaces after keywords but no spaces either before or after parentheses in method calls, e.g.

 (x == 5)if

rather than

(x==5)if

but

foo.bar(4, 5)

rather than

foo.bar(4, 5)

Details

Introduction

This document describes two types of coding standard:

1. standards must be followed at all times.Mandatory
2. standards should in general be followed but in particular cases may be omitted where the programmer feels that there is aRecommended
good reason to do so.

Code that does not adhere to mandatory standards will not pass the automated checks (or a code review if the guideline is not stylistic).

Source files

1.
2.

3.

4.
5.
6.

1.

2.

3.

4.

1.
2.
3.

4.

5.

6.

7.

1.

1.
2.

This section defines the general rules associated with the contents of a Java source file and the order in which the each part should be
presented. No rules on programming style, naming conventions or indentation are given here.

Java source files must have a ".java" suffix (this will be enforced by the compiler) [mandatory].
The basename of a Java source file must be the same as the public class defined therein (this will be enforced by the compiler)
[mandatory].
Only one class should be defined per source file (except for inner classes and one-shot uses where the non-public class cannot
conceivably be used outside of its context) [mandatory].
Source files should not exceed 1500 lines [recommended].
No line in a source file should exceed 120 characters [mandatory].
The sections of a source file should be presented in the following order [mandatory]:

File information comment (see rule 7 below).
Package name (see rules 1 to 3 in the section 2.1 above and rule 8 below).
Imports (see rules 9 to 10 below).
Other class definitions.
Public class definition.

Do not use automatically expanded log or revision number provided by your source code management system unless it provides a
facility to avoid "false conflicts" when doing merges due simply to revision number changes (which happens, for example, with cvs
when branches are used). [mandatory]
Every class that is to be released must be a member of a package [mandatory].
Rationale: classes that are not explicitly put in a package are placed in the unnamed package by the compiler. Therefore as the
classes from many developers will be being placed in the same package the likelihood of a name clash is greatly increased.
All class imports from the same package should be grouped together. A single blank line should separate imports from different
packages [recommended].
Use javadoc tags and use HTML mark-up to enhance the readability of the output files [mandatory].

Java Elements

This section gives advice on coding the various elements of the Java programming language.

Class definitions

This section gives guidelines for class and interface definitions in Java. The term class in this section is used more broadly to mean class and
interface:

Class names should start with a capital letter with every subsequent word capitalised, for example: DataProcessor [mandatory].
The name of exception classes should end in the word exception, for example: UnknownMungeException [mandatory].
Class names should in general not be overloaded. For example, defining a class "com.foo.bar.String" should be avoided as there is
already a class "java.lang.String" [recommended].
Rationale: adhering to this rule reduces the likelihood of confusion and means that the use of fully qualified class names should not
be required.
The definition of the primary class (i.e. the class with the same name as the java file) should start in column 0 of the source file. Inner
class definitions should be indented 4 spaces more than their enclosing class [mandatory].
Declare a class as final only if specialisation will never be required and improved performance is essential. With modern JVMs there
in fact may be no performance advantage. Warning: use of final limits code reuse [mandatory].
For all but simplest classes the following methods should have useful definitions [recommended]:

 equals(obj)public boolean Object
 hashCode()public int
 toString()public String

The order of presentation of the sections in a class should be [mandatory]:

Variables
Methods

Variables

This section gives guidelines for class and instance variable definitions in Java. In this section if a rule uses the term variable rather
than instance variable or class variable, then the rule applies to both types of variable.

The order of presentation of variables in a class definition should be [recommended]:

private, protected, public: static final variables (aka constant class variables).
private, protected, public: static variables (aka class variables).
private, protected, public: final variables (aka constant instance variables).
private, protected, public: variables (aka instance variables).
It should be noted that as javadoc will automatically order variables in a consistent manner, rigid adherence to this rule is not
necessary.

Variable modifiers should be presented in the following order: static, final, transient, volatile [mandatory].
The names of static final variables should be upper case with subsequent words prefixed with an underscore [mandatory]. For
example:

2.

3.

4.

5.
6.

7.
8.
9.

10.
11.
12.

13.
14.

15.
16.

1.
2.
3.

4.

5.
6.

7.

 NOT_FOUND = -1;public static final int

When a subclass refers to a static final variable defined in a parent class, access should be qualified by specifying the defining class
name [mandatory]. For example: use ParentClass.MAX rather than MAX.
The names of variables (other that static final) should start with a lower case letter. Any words that are contained in the rest of the
variable name should be capitalised [mandatory]. For example:

 name;String
[] childrensNames;String

Class and instance variables must be prefixed with an underscore (_) [mandatory].
Variables must not be named using the so-called Hungarian notation [mandatory]. For example:

 nCount = 4; int // not allowed

Only one variable may be defined per line [mandatory].
Variable declarations should be indented 4 spaces more than their enclosing class [mandatory].
All variables should be preceded by a javadoc comment that specifies what the variable is for, where it is used and so forth. The
comment should be of the following form and be indented to the same level as the variable it refers to [mandatory]
Never declare instance variables as public unless the class is effectively a "struct" [mandatory].
Never give a variable the same name as a variable in a superclass [mandatory].
Ensure that all non-private class variables have sensible values even if no instances have been created (use static initialisers if
necessary, i.e. "static { ... }") [mandatory].
Rationale: prevents other objects accessing fields with undefined/unexpected values.

Methods

This section gives guidelines for class and instance method definitions in Java. In this section if a rule uses the term method rather
than instance method or class method, then the rule applies to both types of method.

Constructors and finalize methods should follow immediately after the variable declarations [mandatory].
Do not call non-final methods from constructors. This can lead to unexpected results when the class is subclassed. If you must call
non-final methods from constructors, document this in the constructor's javadoc [mandatory]. Note that private implies final.
Methods that are associated with the same area of functionality should be physically close to one another [recommended].
After grouping by functionality, methods should be presented in the following order [recommended]:

private, protected, public: static methods.
private, protected, public: instance methods.
It should be noted that as javadoc will automatically order methods in a consistent manner, rigid adherence to this rule is not
necessary.

Method modifiers should be presented in the following order: abstract, static, final., synchronized [mandatory]
When a synchronized method is overloaded, it should be explicitly synchronized in the subclass [recommended].
Method names should start with a lower case letter with all subsequent words being capitalised [mandatory]. For example:

 resize(newSize)protected int int
 void addContentsTo(Container destinationContainer)protected

Methods which get and set values should be named as follows [mandatory]:

Type getVariableName()
void setVariableName(Type newValue)

Exceptions should be used to report any failure to get or set a value. The "@param" description should detail any assumptions made
by the implementation, for example: "Specifying a null value will cause an error to be reported".

Method definitions should be indented 4 spaces more than their enclosing class [mandatory].
All methods should be preceded by a javadoc comment specifying what the method is for, detailing all arguments, returns and
possible exceptions. This comment should be of the following form and be indented to the same level as the method it refers to
[mandatory]:
The braces associated with a method should be on a line on their own and be indented to the same level as the method
[mandatory]. For example:

7.

8.

9.
10.

11.

12.

13.
14.
15.

16.
17.
18.
19.

20.
21.

22.

23.

24.
25.
26.

 void munge()public
{
 i;int
 // method definition omitted...
}

The body of a method should be indented 4 columns further that the opening and closing braces associated with it [mandatory]. See
the above rule for an example.
When declaring and calling methods there should be no white space before or after the parenthesis [mandatory].
In argument lists there should be no white space before a comma, and only a single space (or newline) after it [mandatory]. For
example:

 void munge(depth, name)public int String
{
 (depth > 0)if
 {
 munge(depth - 1, name);
 }
 // somethingdo
}

Wherever reasonable define a default constructor (i.e. one that takes no arguments) so that Class.newInstance() may be used
[recommended]. If an instance which was created by default construction could be used until further initialisation has been
performed, then all unserviceable requests should cause a runtime exception to be thrown.
The method public static void main() should not be used for test purposes. Instead a test/demo program should be supplied
separately. [mandatory].
Public access methods (i.e. methods that get and set attributes) should only be supplied when required [mandatory].
If an instance method has no natural return value, declare it as void rather than using the "return this;" convention [mandatory].
Ensure that non-private static methods behave sensibly if no instances of the defining class have been created [mandatory].

Expressions

This section defines the rules to be used for Java expressions:

Unary operators should not be separated from their operand by white space [mandatory].
Embedded ++ or – operators should only be used when it improves code clarity [recommended]. This is rare.
Extra parenthesis should be used in expressions to improve their clarity [recommended].
The logical expression operand of the "?:" (ternary) operator must be enclosed in parenthesis. If the other operands are also
expressions then they should also be enclosed in parenthesis [mandatory]. For example:

biggest = (a > b) ? a : b;
complex = (a + b > 100) ? (100 * c) : (10 * d);

Nested "?:" (ternary) operators can be confusing and should be avoided [mandatory].
Use of the binary "," operator (the comma operator) should be avoided [mandatory]. Putting all the work of a for loop on a single line
is not a sign of great wisdom and talent.
If an expression is too long for a line (i.e. extends beyond column 119) then it should be split after the lowest precedence operator
near the break [mandatory]. For example:

 ((state == NEED_TO_REPLY) ||if
 (state == REPLY_ACK_TIMEOUT))
{
 // (re)send the reply and enter state WAITING_FOR_REPLY_ACK
}

Furthermore if an expression requires to be split more than once, then the split should occur at the same logical level if possible.

All binary and ternary operators (exception for ".") should be separated from their operands by a space [mandatory].

Statements

Simple Statements

This section defines the general rules for simple Java statements:

There must only be one statement per line [mandatory].
In general local variables should be named in a similar manner to instance variables [recommended].

26.

27.
28.

29.

30.

31.

32.

33.

34.

More than one temporary variable may be declared on a single line provided no initialisers are used [mandatory]. For example:

 j, k = 10, l; int // Incorrect!
 j, l; int // Correct
 k = 10;int

A null body for a while, for, if, etc. should be documented so that it is clearly intentional [mandatory].
Keywords that are followed by a parenthesised expression (such as while, if, etc) should be separated from the open bracket by a
single space [mandatory]. For example:

 (a > b)if
{
 munge();
}

In method calls, there should be no spaces before or after the parentheses [mandatory]. For example:

munge (a, 10); // Incorrect!
munge(a, 10); // Correct.

Compound Statements

This section defines the general rules associated with compound statements in Java:

The body of a compound statement should be indented by 4 spaces more than the enclosing braces [mandatory]. See the following
rule for an example.
The braces associated with a compound statement should be on their own line and be indented to the same level as the surrounding
code [mandatory]. For example:

 ((length >= LEN_BOX) && (width >= WID_BOX))if
{
 i;int
 // Statements omitted...
}

If the opening and closing braces associated with a compound statement are further than 20 lines apart then the closing brace
should annotated as follows [mandatory]:

 (j = 0; j < SIZE; j++)for int
{
 lotsOfCode();
} // end for

All statements associated with an if or if-else statement should be made compound by the use of braces [mandatory]. For example:

 (a > b)if
{
 statement();
}
else
{
 statement1();
 statement2();
}

The case labels in a switch statement should be on their own line and indented by a further 4 spaces. The statements associated
with the label should be indented by 4 columns more than the label and not be enclosed in a compound statement. [mandatory]. For
example:

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

 (tState)switch
{
 NOT_RUNNING:case
 start();
 ;break

 RUNNING:case
 :default
 monitor();
 ;break
}

In switch statements - the statements associated with all cases should terminate with a statement which explicitly determines the
flow of control, for example break [recommended].
In switch statements - fall through should be avoided wherever possible, however if it is unavoidable it must be commented with "//
FALLTHROUGH" [mandatory].
In switch statements - a default case must be present and should always be the last case [mandatory].

General

This section gives general rules to be followed when programming in Java:

When comparing objects for equivalence use the method equals() and not the == operator. The only exceptions to this are static final
objects that are being used as constants and interned Strings [mandatory].
In general labelled break and continue statements should be avoided [recommended]. This is due to the complex flow of control,
especially when used with try/finally blocks.
Unless some aspect of an algorithm relies on it, then loops count forward [mandatory]. For example:

 (j = 0; j < size; j++)for int
{
 // Do something interesting
}

Use local variables in loops [recommended]. For example:

ArrayList clone = (ArrayList)listeners.clone();
 size = clone.size();final int

 (j = 0; j < size; j++)for int
{
 .out.println(clone.elementAt(j));System
}

Anonymous inner classes should define no instance variables and be limited to three single line methods. Inner classes that declare
instance variables or have more complex methods should be named [mandatory].
Use final local variables where possible to help avoid errors in code [recommended]. For example:

 void foo()public
{
 x = dataSource.getCount();final int
 // things with xdo
// ...
}

Exceptions

This section gives general guidance on the use of exceptions when programming in Java.

try/catch blocks should be laid out like any other compound statement [mandatory]. For example:

44.

45.

try
{
 str = someStrings[specifiedIndex];String
}

 (IndexOutOfBoundsException ex)catch
{
 // The user specified an incorrect index, better take
// some remedial action.
}

4. When an exception is caught but ignored then a comment should be supplied explaining the rationale [mandatory]. For example:

try
{
 propertySet.setProperty(, (10));"thingy" new Integer
}

 (UnknownPropertyException ignore)catch
{
 // This exception will never occur as definitely exists"thingy"
}

All exceptions that are likely to be thrown by a method should be documented, except if they are runtime exceptions (note: the
compiler will not enforce catch blocks for runtimes even if they are mentioned in the throws clause) [mandatory]. For example:

/* Comment snippet:
 * @exception IllegalValueException Thrown values is or if null
 * any of the integers it contains is .null
 */

 sum([] values) IllegalValueExceptionprivate Integer Integer throws

Cpp Client Java Interop Issues
Issues affecting C++ client/Java broker/Java client interop build 6th Feb:

Open Issues

http://issues.apache.org/jira/browse/QPID-243 Inconsistent use of paths in #includes – this does not affect interop, will do after 0-9
branch merge
http://issues.apache.org/jira/browse/QPID-350 Broker infinite loop on restart with immediate messages

Non-Apache JIRA - Problem with BDBStore queue recreation at startup - details:

Restarting our application, I sometimes get a "Protocol Error" exception and the following
message appearing in the broker log. This is even after restarting the broker when there
are absolutely no connections.
RECV: Frame[channel=1; ChannelClose: replyCode=405; replyText=Cannot declare queue, as
exclusive queue with same name declared on another connection [error code 405]; classId=50;
methodId=10]

I deleted the $QPID_WORK/<virtual-host>-store directory and I was able to restart.

Also, in the application code, the queue is created as shared (single param constructor) so
not sure why the broker thinks that it is exclusive?

Resolved Issues

http://issues.apache.org/jira/browse/QPID-353 Amend type of destination type from byte to int
http://issues.apache.org/jira/browse/QPID-349 Use the empty string as the default for virtual host name.

Java Broker Design

Qpid Design - Framing
Qpid Design - Management

http://issues.apache.org/jira/browse/QPID-243
http://issues.apache.org/jira/browse/QPID-350
http://issues.apache.org/jira/browse/QPID-353
http://issues.apache.org/jira/browse/QPID-349

Qpid Design - Threading
Qpid Design - Message Acknowledgement
Java Broker Design - MessageStore
Restructuring Java Broker and Client Design
Message API Design
Java Architecture Overview
Producer flow control
Java Broker Refactor (QPID-950)
Java Broker Modularisation
Java Broker Configuration Design
Java Broker Design - Flow to Disk
Java Broker Design - High Level Overview of Refactoring
Java Broker Design - Message Representation
Network IO Interface
Java Broker Design - Operational Logging
Qpid Design - Queue Implementation
Qpid Design - Message Delivery
Java authorization plugins
0.6 Broker BasicFlow Synchronisation Design
Slow Consumer Disconnect
Topic Configuration Design

Qpid Design - Framing

Frame Classes

The framing definition in the protocol specification maps quite nicely to an object-oriented representation. The class diagram is shown below:

The at the root of the hierarchy defines a method that subclasses implement in order to be able toAMQDataBlock writePayload
transform themselves into bytes. This is called by the encoder, documented below. The decoding (from bytes into objects) is slightly more
complex since it involves factories for the instantiation of the correct objects (again documented below).

An is the basic unit transmitted over the network, and contains a body which is the real payload. There are numerous methodAMQFrame
frames, which are subclasses of . The method body subclasses are all code generated from the protocol specification. TheAMQMethodBody
ContentHeaderBody can support different types of content properties or metadata (examples being file or stream in addition to which isbasic

standard JMS-style messaging).

ContentBody is a lightweight wrapper for message data.

Encoding

Encoding is a straightforward process. The class has only two method: and AMQDataBlock getSize()
. The encoder simply needs to ask the data block its size, allocate a buffer of that size, then askwritePayloadToBuffer(ByteBuffer)

the data block to write itself into the buffer.

Decoding

The classes involved in decoding are illustrated in this UML class diagram:

The has only two methods: in which it attempts to read enough information from the supplied bufferAMQDataBlockDecoder decodable()
to determine whether it has all the data and whether it appears to represent a known data block. If it needs more data, it return false. If the
frame appears to be invalid it throws an exception.

The decoder stores the factories for HeartbeatBody, ContentHeaderBody and ContentBody frame types in an array, indexed on type. The
AMQMethodBody factory is version specific and retrieved from the current session. The decoder constructs an , passing in theAMQFrame
factory the appropriate factory. The result of that call is either a fully populated frame or an exception being thrown if data is invalid or
inconsistent.

The is generated from the protocol XML. Each method is registered by protocol class and protocol methodMethodBodyDecoderRegistry
and when looked up by the an instance of the appropriate method body is returned. The generated code for theAMQMethodBodyFactory
methods handles the reading and writing of the bytes to and from ByteBuffers as well as calculation of the size of the populated method
bodies.

Qpid Design - Management
The broker makes several general JMX MBeans available for functionality such as User Management and Logging Management, as well as
MBeans to allow management of each individual Connection, Exchange, and Queue.These are accessible via a JMX ConnectorServer
started by the broker if its configuration calls for management to be enabled. This can then be used for management by a compatible JMX
client.

For further details on configuring and accessing the management functionality, see or .Qpid JMX Management Console JConsole

Qpid Design - Threading
The following diagram shows the threading model used in QPID:

Sessions

A session is the encapsulation of a client connection. A session has independent state associated with it.

Event Queues

The thread pool cannot simply be a generic pool that takes arbitrary work to process. Doing so would mean that no guarantees could be
made for message ordering.

Each session has a single read event queue and it is populated by the single socket IO processor associated with the session. (Several
sessions can be bound to a single IO processor; the standard select/poll mechanism is used to check for activity). Only one worker (event
processing) thread can be processing the event queue for a given session but the particular thread can change over time. If more events
come in while the queue is being processed, they are added to the queue being processed, and the worker thread only processes up to n
events for fairness.

Similarly, for write events there is a separate queue that behaves analogously to the read queue.

One of the main benefits of this approach is that it allows enough parallelism while avoiding excessive context switching. The socket I/O
processor reads as much data as it can - it does very little apart from polls and reads (side note: this makes it very straightforward to move to
AIO if support is available). Message decoding (i.e. going from raw bytes to objects) and routing occurs in a worker thread but the entire

dispatch process - including encoding but excluding the socket I/O - occurs on a separate worker thread. This means that on a suitable SMP
box the following activities can all take place in parallel:

network reading and writing for a given session
data decoding and routing
response encoding

A further improvement would be to allow reading and writing in parallel by splitting that into separate IO processor threads, and this is being
investigated (along with AIO).

Message Delivery

Messages delivered to an AMQQueue are delivered directly if possible (i.e. a write request is written to the consumers session by the thread
processing the publish request). This reduces context switch or the overhead of adding and removing messages to a queue. However if there
are no consumers then the message needs to be queued. In this case delivery will be done by a 'message pump' thread and direct delivery
has to be stopped until the backlog of messages is processed in order to ensure that the ordering is not violated.

Qpid Design - Message Acknowledgement

Message Acknowledgements and Delivery Modes

When implementing the JMS client it became apparent that the JMS specification offered a considerable degree of latitude for interpreting
the precise semantics of acknowledgement modes and it also did not cover all acknowledgement modes that are of interest.

Here we describe the precise semantics of the JMS acknowledgement modes and the additional modes that the JMS client provides.

In this discussion, "the client" refers to the JMS client implementation and "the user" refers to code that is part of the client application (i.e.
code written by the end-user developer).

AUTO_ACKNOWLEDGE (JMS)

In this mode, the client acknowledges each message once it has been received by the user. In the case of an asynchronous message
consumer, this means that an acknowledgement is sent once the onMessage method of a message listener has completed without throwing
an exception of any sort. For a synchronous consumer, it means when the receive() method has returned the message to the user.

A single BasicAckBody is sent with the delivery tag of the message and the multiple flag set to false, acknowledging that message only.

CLIENT_ACKNOWLEDGE (JMS)

In this mode, the user acknowledges messages manually by calling the acknowledge() method on either the session or the message itself.
These both have the same effect.

The JMS does not say how many message a client is allowed to receive before acknowledging. However, it does talk in vague terms about
implementations making sure clients don't go too long without acknowledging to avoid resource exhaustion. Qpid uses the value forPrefetch
this - the consumer must ack it's messages before it reaches this limit if it wants to recieve any more.

Calling either Session.acknowledge or Message.acknowledge() acknowledges the receipt of all messages up to and including the current
one.

DUPS_OK_ACKNOWLEDGE (JMS)

This mode is identical to AUTO_ACKNOWLEDGE from an implementation perspective, however the user application must be prepared to
deal with duplicate messages.

PRE_ACKNOWLEDGE (non-JMS)

A mode not covered by the JMS specification is one where the client acknowledges a message before calling the onMessage() or receive()
methods. It sends a BasicAcknowledge for each message as the message is passed to onMessage or receive() retrives it. The semantics
are therefore exactly the same as AUTO_ACKNOWLEDGE for receive(), but differ for onMessage() in that the message is acknowledged
regardless of whether the method completes successfully or not.

The constant org.apache.qpid.jms.Session.PRE_ACKNOWLEDGE defines this mode.

NO_ACKNOWLEDGE (non-JMS)

Certain data may be time sensitive in the sense that redelivery is pointless - if the client cannot process it at the instant it is sent there is no
point in redelivering it.

In this case, acks are redundant. Since TCP means that the server can be sure the client received the message the only problem could be
client error.

Setting NO_ACKNOWLEDGE means that the client never sends a BasicAcknowledge and the broker removes the message from the queue
as soon as it is sent.

The constant org.apache.qpid.jms.Session.NO_ACKNOWLEDGE defines this mode.

Delivery Modes

For message production, similar considerations apply. JMS defines two delivery modes, PERSISTENT and NON_PERSISTENT which allow

the implementor considerable freedom of implementation.

Unfortunately the JMS specification addresses what are really two separate reliability concerns with a single delivery mode.

The default delivery mode can be set on a producer. This can be overridden on each message sent.

PERSISTENT (JMS)

Persistent is the straightforward option. Messages are sent with the persistent flag set to true which means that they will be committed to
stable storage.

NON_PERSISTENT (JMS)

Non persistent gives maximum performance with least guarantees. The persistent flag is set to false in each message which means that if
the broker suffers an error it is neither required nor expected to recover those messages.

Java Broker Design - MessageStore
The MessageStore interface allows us to abstract the method by which the message data is stored within the broker.

Currently available implementations

BDBMessageStore (3rd Party)
JDBCStore
MemoryMessageStore

BDBMessageStore (3rd Party)

BDBMessageStore

The BDBMessageStore module utilises the BerkelyDB to provide persistence. It is not part of the Apache Qpid distribution. However, it is
listed here to provide Apache Qpid users with a complete list of available Storage Mechanisms.

Licensing

This module is available under GPL.

Download

The current build is available here: http://rhm.et.redhat.com/download/

JDBCStore

JDBCStore

This is a MessageStore that uses a JDBC connection as a backing store for the broker.

MemoryMessageStore

MemoryMessageStore

This is the default MemoryStore it performs no persistence between broker restarts.

Restructuring Java Broker and Client Design

Proposed Architecture

The following diagram depicts the architecture for the client and broker.
The idea is to auto generate and share as much code as possible between the broker and the client.

http://rhm.et.redhat.com/download/

__
 JMS Client | Broker Logicfor
______________________|_______________________
 Qpid Client API |
 |
 Qpid Layer Client | Qpid Layer Broker
______________________|_______________________
 Invoker -- For out going
 Delegate -- For incomming

 Connection, Session, Channel

 Communication Layer
__

The communication layer will be common to both client and broker.
The Qpid Layer contains handlers that are both common to client and broker as well as Client and Server specific classes.
The 3rd Layer is where the message processing logic will be implemented.
For Client there will be a thin wrapper called Qpid API to mask around the Invoker and expose methods by class. The client will use
the Delegate to handle incomming events.

This can be used to implement JMS on top.
Or application logic directly on top of the Qpid API.

The Broker will build it's logic around the Invoker and Delegate.

Invoker and Delegate

Invoker and Delegate are generated classes that contains all the methods in the spec.
To call a method you use the Invoker and to handle a method you use the Delegate.

Multi Version Support

To tackle multi version support the following stratergy is used.
Struct interfaces are defined with a union of methods from different versions. And version specific struct factories will produce concrete
structs for each version. All these classes are auto generated from the spec.
Ex:

 Struct_Ainterface
 {
 getX(s); public String // AMQP 0-10

 getX(s, i); public String int // AMQP 0-11

 getY(); public // AMQP 0-10
 getZ(); public // AMQP 0-11

}

 Struct_A_v0_10 Struct_Aimplements
 {
 getX(s){.... } public String
 getY(){.... } public
 }

 Struct_A_v0_11 Struct_Aimplements
 {
 getX(s){.... } public String
 getX(s, i){.... } public String int
 getY(){.... } public
 getZ(){.... } public
 }

Client code can still use v0-10 methods with a v0-11 library and compile as the Interface and existing methods have not changed. Changes
are handled by adding the new or modified methods. Note this strategy is only envisaged for incremental changes. A major change in spec
would need substantial code changes.

Qpid Client API

Is a thin wrapper around the Invoker plus a few convinence methods.
For example lets look at the Session class.

Invoker
{
 // All the spec methods
}

CommonSession Invokerextends
{
 // convinience methods messagingfor
header(Header h);
 data([] src);byte
 endData();
 messageTransfer(destination,Message msg);String
}

ClientSession CommonSession Sessionextends implements
{
 // no implementation 90% of the methodsfor
// Acts as a Mask Session 'class' so only session specific methods are visible to the user.for
}

Communication Layer

Frame Dispatch Tree

The following diagram depicts how an AMQP frame gets handled.

Content Handler Flow

Method Handler Flow

Message API Design

Message API Design

This document describes the new message API for the restructured client.

Sending Messages
Receiving Messages
Message abstraction
Java Doc

Sending Messages

The Session class provides the following methods to send messages.

 Session{public interface
.........

//Option1 - small messagesfor
 void messageTransfer(destination, Message msg, confirmMode, acquireMode)public String short short
 IOException;throws

//Option2 - large messagesfor
 void messageStream(destination, Message msg, confirmMode, acquireMode)public String short short
 IOException;throws

//Option3 - can use it with any message size, recomended large messagesfor

 void messageTransfer(destination, confirmMode, acquireMode);public String short short
 void headers(Struct... headers);public
 void data([] data);public byte
 void data(ByteBuffer buf);public
 void data(str);public String
 void endData();public

.........

}

Sending small Messages

Option1 provides a convinience method to send small messages.
You could use the ByteBufferMessage to create small in memory messages (or your own implementation).
Underneath it maps onto methods defined under option3

Sending large Messages

You have two options for sending large messages, using either pull style or push style semantics

Using the Session class methods (Option3)

Option3 provides a more natural AMQP style set of methods
You can stream data using Option3 by pushing your data using one of the data methods defined in the session class.

Using Option2 (pull style)

The messageStream method will pull data from the message and stream using the methods defined in option3.
You could use FileMessage or StreamingMessage or your own Message implementation that backs a large data stream.

FileMessage takes in a FileInputStream and create a nio FileChannel. It then uses a MappedByteBuffer to map a region of the file
when the readData method is invoked. You could specify a chunksize in the constructor to control how much data is mapped each
time.

StreamingMessage takes in a SocketChannel and reads a chunk of data at a time until the SocketChannel is closed. This could be
useful when u need to transfer a data stream received from a legacy application or a hardware device. In such cases the
StreamingMessage provides a convinient abstraction to stream the data without any intermediate copying.

Receiving Messages

To receive messages you can subscribe using the following method

http://people.apache.org/~rajith/qpid_docs/client_api/

 Session{public interface
.........

 void messageSubscribe(queue, destination, confirmMode, public String String short short
acquireMode,
 MessagePartListener listener, Map< , ?> filter, Option...String
options);

}

The API provides support for receiving messages in parts as and when they arrive using the MessagePartListener.
This enables the user to start consuming the message while it is being streamed.

 MessagePartListener{public interface

 void messageTransfer(transferId);public long

 void messageHeaders(Struct... headers);public

 void data(ByteBuffer src);public

 void messageReceived();public

}

The messageTransfer method signals the start of a transfer and passes the transferId.
The Transfer Id is used for the following operations defined in the Session API.

to Acquire the message (if the message was transfered in no-acquire mode)
to release the message (if already acquired)
to Reject or Acknowledge the message

The data method will be called each time Frame arrives. The messageReceived method will signal the end of the message.

Consuming small messages

The API also provides a convinient way for consuming small messages through the MessageListener interface and the
MessagePartListenerAdapter.
The MessagePartListenerAdapter will build the message and will notify the user through MessageListener when the message is complete.

 MessageListener{public interface

 void onMessage(Message message); public

}

you can use it the following way.

.........

 MessageListener myMessageListener

 session.messageSubscribe(...., MessagePartListenerDapter(myMessageListener),...);new

Message abstraction

Message Interface provides an abstraction for creating messages from different data streams.
Please read the java doc for a complete description of each method.

 Message{public interface

 MessageProperties getMessageProperties();public
 DeliveryProperties getDeliveryProperties();public

 void appendData([] src) IOException;public byte throws
 void appendData(ByteBuffer src) IOException;public throws

 void readData([] target) IOException; public byte throws
 ByteBuffer readData() IOException;public throws

 void clearData();public
 getMessageTransferId();public long

}

Java Architecture Overview

Producer flow control
Producer flow control is necessary to stop clients from overwhelming a broker if messages are not being consumed fast enough, this is filed
in Jira as QPID-942.

Use cases

1. Consuming Client lags Publishing Client (P2P)

Desc
This scenario is where the client consuming cannot process the data published to its queue by another client as the same rate i.e.
consumption lags publication. This seems to be an almost de facto use case for P2P messaging in that by its nature (and possibly via the
client code) consuming messages involves more processing than publishing i.e. send() is a less complex action than receive() or
onMessage(). It can also happen when the consumer goes away.

Result
Message back up in the queues on the broker and are not being drained by the consumer. This may eventually lead to OOM as the VM
cannot garbage collect the message refs. This could happen slowly over a period of time, so the MINA buffers may be empty (or at least not
represent any significant amount of memory use).

2. Unconsumed messages remain in Queues (PubSub)

Desc
This is where data is being published to topics in the broker for which subscriptions exist, but no consuming client acks the messages.

Result
Messages back up in the broker and with durable subscriptions never go away. The broker OOMs are the queues are full. Again this
happens over time and the MINA buffers may not be impacted. Without TTL set (and set low enough) then the data backs up in the client's
sub queues.

3. Consuming Client cannot process large messages

Desc
This is where the consumer cannot process a large message sitting in its queue. This may be because it does not have enough memory or
disk available for the processing, for example. It may also arise if the message is corrupted in some way i.e. malformed XML etc. The
message doe not get ack'd and remains in the broker on a queue, currently surviving restart.

Result
The message(s) remain in the broker and can cause OOM, particularly when there's a burst of large messages together. An example of this
is the Qlib issue where they had a spate of large messages and client side OOM precluded them being processed. It can happen slowly, and
with persistent messages costs at least twice as much heap. Broker OOM follows eventually.

Plan

To implement this, the following changes are necessary:

Client
send() needs to become potentially blocking, if the producer has been flow controlled then send() should not either throw an exception (which
will be the default behaviour), or it will block until the producer has been unflowed (this will only occur of a system property has been set).

Broker
When a message has been enqueued, the broker should check if the producer is publishing to a queue which has violated it's policy, if so
then the producer will be flow controlled. When a consumer has had a message delivered, if the queue is no longer violating it's policy then
producers will be unflow controlled. This check will occur after enqueing so as not to slow down the broker.

Queues and exchanges will have policies attached to them (queues will inherit from their exchange if they do not have one), which will
specify the point at which producers should be flow controlled in terms of queue count or queue depth. These policies will be manageable
over JMX, so they can be applied or removed without having to restart the broker.

The management console will also gain a "stop all producers" button to enable throttling of arbitary queues, and a "start all producers" button
which will start all flowed producers.

Disadvantages of this approach

The producer will not be flowed until they publish to a queue which is violating it's policy, so if you have N producers each publishing to a
queue, you will get N messages on top of the one that pushes the queue into a delinquent state.

Java Broker - AMQP0-9 Tactical Producer Flow Control

Problem Statement

The Java Broker currently performs no throttling of producing clients. In combination with the way that the Java Broker holds every transient
message in memory until consumed, we can encounter scenarios where the Java broker runs out of heap space. For example, if a producer
P sends messages at a rate of 100msg/s to a queue Q, but the only consumer, C, of queue Q processes messages at a rate of 10msg/s,
then Q will grow at a rate of 90msg/s until such time as the broker runs out of heap space.

Tactically we may attempt to solve the problem of Queues becoming overfull, and thus causing out of memory exceptions, without attempting
to solve the totality of out of memory issues.

Analysis

AMQP0-8/0-9/0-9-1 provides no mechanism for throttling producers of messages based on credit (either for a given destination, or even at
the granualrity of a session). There are two mechanisms available to throttle a producing client - the use of TCP flow control, and the use of
the AMQP Channel.Flow command.

The use of TCP flow control throttles the producer to the rate at which the Broker can process the incomming messages, but does not
address the throttling of the producer to the consumption of messages by a third part consuming client.

The Channel.Flow command instructs the recipient to either cease (or resume) sending messages. The receiver of the command should
send Channel.Flow-ok once the flow command has been received.

In AMQP0-9-1 and earlier we cannot determine prior to a producer sending a message, which queues a producer wishes to send to. Thus
we are limitted in general to a reactive flow control - that is, when a producer attempts to send to an overful queue we can request that the

sender send no more messages, my issuing a Channel.Flow. Further, since many messages may already be "on-the-wire" by the time our
Channel.Flow is received, we cannot guarantee by how much the producer may "overfill" the queue before it ceases publishing.

Proposal

Allow each queue on the Java Broker to be configured with a "full" size. Implement flow control such that the publisher of a message which
is enqueued on a "full" queue is immediately sent a Channel.Flow command to cease publication. Monitor queue sizes such that when an
"overfull" Queue has available space, then sessions which are blocked waiting for this event are free to send messages again.

Ensure that the Java Client respects the Channel.Flow command, and causes all attempts to send Messages to block, until the session is
unflowed.

Design

Broker Changes

Add the following configurable properties to Queues:

capacity: size in bytes at which the queue is thought to be full (and thus publishes which send messages which take the total queue size
above this mark will be blocked). Default 0 (no maximum)

: the queue size at which producers are unflowed (defaulted to)flowResumeCapacity capacity

Like other such values these may be set on individual queues in the config, or on a per-virtualhost basis.

Alter the following files in the org.apache.qpid.server.configuration package to set the queue properties based on this configuration:

VirtualHostConfiguration
QueueConfiguration
ServerConfiguration

Alter the AMQQueue.java interface to add the following method

 /** Post enqueue check to ensure that the queue is not overfull. If the queue is overfull
 then request the channel to begin flow control */

 void checkCapacity(AMQChannel channel);

Update the following two classes in package org.apache.qpid.server.txn to call checkCapacity on the queue after they have enqueued a
message

LocalTransactionalContext
NonTransactionalContext

Add the following code to AMQChannel in package org.apache.qpid.server

 /** The set of queues on which the session is currently blocking. Only a session blocking on
no queues can be unblocked */
 ConcurrentMap<AMQQueue, > _blockingQueues = private final Boolean new
ConcurrentHashMap<AMQQueue, >();Boolean

 /** Toggle to indicate whether the session is currently being blocked by an overfull queue
condition or not */
 AtomicBoolean _blocking = AtomicBoolean();private final new false

 /** Add the given queue to the set of those which the session is blocking on (ignore we areif
already blocking on queue)this
 moves us from being unblocked to blocked, issue a flow command */if this
 void block(AMQQueue queue)public
 {
 (_blockingQueues.putIfAbsent(queue, .TRUE) ==)if Boolean null
 {
 (_blocking.compareAndSet(,))if false true
 {
 flow();false
 }
 }
 }

 /** Remove the given queue to the set of those which the session is blocking on (ignore weif
are no longer blocking on queue)this
 If moves us from a blocking to an unblocked condition, allow client to resumethis
publishing by issuing a flow */
 void unblock(AMQQueue queue)public
 {
 (_blockingQueues.remove(queue))if
 {
 (_blocking.compareAndSet(,))if true false
 {
 flow();true
 }
 }
 }

 /** Send a Channel.Flow command to the client */
 void flow(flow)private boolean
 {
 MethodRegistry methodRegistry = _session.getMethodRegistry();
 AMQMethodBody responseBody = methodRegistry.createChannelFlowBody(flow);
 _session.writeFrame(responseBody.generateFrame(_channelId));
 }

Modify SimpleAMQQueue to perform the capacity check, and also to unblock blocked channels when the queue reduces in size.

 ConcurrentMap<AMQChannel, > _blockedChannels = private final Boolean new
ConcurrentHashMap<AMQChannel, >();Boolean

 void checkCapacity(AMQChannel channel)public
 {
 (_capcity != 0L && _atomicQueueSize.get() > _capacity)if
 {
 (_blockedChannels.putIfAbsent(channel, .TRUE)==)if Boolean null
 {
 channel.block();this
 }

 // guard against race condition where consumer takes messages, decreasing queue size
message
// but not seeing that the queue was blocked so not issuing unblock

(_atomicQueueSize.get() <= _flowResumeCapacity)if
 {
 channel.unblock();this
 _blockedChannels.remove(channel);

 }

 }
 }

 void decrementQueueSize(QueueEntry entry)private final
 {
 getAtomicQueueSize().addAndGet(-entry.getMessage().getSize());
 checkFreeCapacity();
 }

 void checkFreeCapacity()private
 {
 (_capacity != 0L && !_blockedChannels.isEmpty() && _atomicQueueSize.get() <=if
_flowResumeCapacity)
 {
 (AMQChannel c : _blockedChannels.keySet())for
 {
 c.unblock();this
 _blockedChannels.remove(c);
 }
 }
 }

Client Changes

Hook in the existing handler for ChannelFlow commands by altering the dispatchChannelFlow method in the ClientMethodDispatcherImpl
class

 dispatchChannelFlow(ChannelFlowBody body, channelId) AMQExceptionpublic boolean int throws
 {
 _channelFlowMethodHandler.methodReceived(_session, body, channelId);
 ;return true
 }

Logging

Additionally logging messages should be emitted

1) on the broker each time the queue issues an overfull request to a session to start flow control
2) on the client every time it receives a flow control command from the broker
3) on the client every time it attempts to send a message but finds itself blocked by broker flow control - in particular this message should
repeat periodically untill the message is sent

Java Broker Refactor (QPID-950)
The attached doc describes the refactoring work done as part of QPID-950

Name Size Creator Creation Date Comment

 Java Broker Refactor.doc 124 kB Rob Godfrey Dec 02, 2008 06:47

Java Broker Modularisation
In order to support multiple protocol versions and to provide greater flexibility, the Java broker should be better modularised than it is
currently

Layers

 Clean seperation of responsibility into the following areas:

I/O Layer - TCP, HTTP etc.
Protocol Layer - AMQP 0-8/0-9, AMQP 1-0, potentially others
Sessions - Active thread
Model - Queues, Messages etc.
Store - Two types of store, transaction log for recovery and disk store for flow to disk
Broker internals - Message expiry, configuration file parsing, management etc.

There will be a thread pool which services Runnable entities in the broker internals and sessions.

The I/O layer, Protocol Layer and Model can all be considered passive entities, although they may have threads for their own purpouses.
They do not initiate actions within the overall broker.

 Sessions

When a thread is allocated to a Session it will do one of three things: send things to the protocol layer for encoding, execute events from the
protocol layer and pull messages from a queue. A session has 0 or more links to queues in the model, which it can create, send, receive, or
drop, and a transaction which is in either not begun or in progress. Commiting a transaction moves it to not begun.

 Events

Events are read from the I/O layer by the protocol layer when asked for by a session.

A protocol event's handler is called by a Session which has a thread. The handler has access to the current transaction. It is responsible for
interacting with the model, enqueuing messages, creating queues etc

 Model

The model provides entities modelling version independent Queues, Messages and other entities which Protocol Events interact with, and
which are maintained by the broker internals. The layout of model entities such as queues is likely to be stored in a SQL database for ease of
tooling.

 I/O layer

This is responsible for reading and writing byte streams and making them available to the protocol layer for decoding. See Network IO
 for more details.Interface

 Stores

There are two types of store. There are transaction logs, which record events in a way which makes it possible to recover to a known state in
the event of broker failure without losing messages. There are also on-disk stores which provide random-access retrieval of messages which
are too large or too numerous to store in memory.

 Protocol plugin

A protocol plugin provides a set of ProtocolHandlers which implement a particular version of the AMQP specification. They contain handlers
for the events necessary, codecs for message from other protocol versions and model entities to implement protocol-specific behaviour.

For instance, the AMQP 0-8/0-9 plugin will contain a subclass of Queue which implements the Exchange behaviour for routing and support
for immediate and mandatory message flags through dead letter queues and 0 span message TTLs. These queues would be 0 length and
would have links to other queues which mapped to bindings. Messages would arrive at those queues and be moved onto the link by the
queue subclass.

Java Broker Configuration Design

Java Broker Configuration Design

The Java broker configuration xml files have grown in complexity through M4 and reached a state where we need to look at the simplifying

http://cwiki.apache.org/confluence/download/attachments/103838/Java+Broker+Refactor.doc
http://cwiki.apache.org/confluence/display/~godfrer

1.
2.
3.
4.
5.
6.

1.

1. a.
i.
ii.
iii.

b.
i.

c.
i.
ii.

the design to help both our users and our selves.

QPID-1612

Current Issues

We use an XML format but don't validate the XML.
We can't validate because we use dynamic tags in the Virutalhost sections.
We don't ensure that all configuration values are used in the code.
We have two three locations where virtualhost information is declared.
Information is duplicated rather than defaulted, such as Virtualhost store class.
Advanced configuration options are available and highlighted via the config file but we would never advocate their use.

Improvement Plans

As we are currently using Commons Configuration it would make sense to made use to use as much of their code rather than writing our
own.

Steps to improving design:

Centralise configuration into ServerConfiguration facade

Start using a ConfigurationFactory
Allows us to split up our configuration moving the Virtualhost sections to it's own file.
Allows validation of the main configuration file.
Allows an optional user-config.xml file to be included where users can easily override default values.

Redesign Virtualhost file to allow validation
Allow default values for all Virtualhosts

Investigate mechanism to allow plugins and broker elements to identify sections of configuration they use.
Fail to start broker if there are missing sections of the configuration.
Fail to start broker if there are unused sections of the configuration.

Example for new config.xml that would work with Commons ConfigurationFactory:

<configuration>
 <system/>
 <xml fileName="${QPID_HOME}/etc/broker-environment.xml" validating="true"/>
 <xml fileName="${QPID_HOME}/etc/user-config.xml" optional="true" validating="true"/>
 <xml fileName="${QPID_HOME}/etc/previous-broker-config.xml" validating="true"/>
</configuration>

Java Broker Design - Flow to Disk

Flow to Disk Design

Overview
Other Implementations
Current Functionality

Design
Approach Overview
Approach Summary
Limitations
Future Enhancements

Design Notes
Areas of Note
Areas for investigation
Validation Rules
Alerting
Testing
Message Flows

M4 Flows
Flows after Flow-To-Disk

Design Details
AMQChannel

 RecoveryTransactionLog
AMQQueue/QueueEntry
Purger
Inhaler

Implementation details for and state updatesqueue*Memory flow
QueueBacking

BackingFormat

Overview

Currently, the Java Broker can do one of two things with a message it has to deliver:

https://issues.apache.org/jira/browse/QPID-1612

1.
2.

1.

2.

1.

2.

3.

4.
5.
6.
7.

8.

9.
10.

1.

2.

3.

Keep transient messages in memory until delivered
Write persistent messages to a message store (like BDB) and keep in memory until delivery complete or memory is full.

This means that the broker is not able to avoid OoM exceptions i.e. send enough messages to the broker, especially if your consumers are
not active, and you could bring the broker down once it explodes its available heap.

This page pulls together the ideas from .QPID-949

Other Implementations

Active MQ use the idea of a message cursor and have a number of different policies for performing 'Message Spooling' : .Message Cursors

Current Functionality

Currently the broker treats persistent and transient messages differently. Persistent messages are written to disk as they are received and
handles created as . This means that when an Out of Memory(OoM) condition occurs then all the persistentWeakReferenceMessageHandles
message handles are GC'd. Performance hits the floor as all messages at the front of the queues must be read from disk whilst new
messages are kept in memory but at the back of the queue.

Transient messages are created as and so cannot be purged from memory. When an OoM condition occurs theInMemoryMessageHandles
broker cannot recover.

Design

There are areas of the broker that are in need of improvement that could be affected by this implementation:

MessageStore : Currently only persistent msgs are written here along with transactional data. The MS should become a
TransactionLog_ so messages should not be retrieved from here for normal operation.
Message Reference Counting : To minimise message data duplication references are used to record how many queues the
message has been enqueued on. This is currently maintained by the message but has been a large cause of runtime problems. If
the maintains a list of Message,Queue Tuples then we can remove the error prone reference count integer that isTransactionLog
currently used.

Approach Overview

The approach here is to reduce the overall complexity of the broker so that it is in easier to reason about smaller chunks. Focusing at the
level of a Queues would make life easier as we move towards AMQP 1-0. To facilitate this we should move to handling persistent and
transient messages in a similar way. To this end the objects should be merged into . The current reference*MessageHandle AMQMessage
counting will be the responsibility of the new . The errors and testing of the reference counting is a tricky issue to tackleTransactionLog
cleanly within the Java Broker. The queues will gain additional counts to ensure that it can track its memory usage based on the size of the
message body + header + Object Contant to represent the in memory data objects. This will allow the Queues to better reason and act upon
their memory usage.

Approach Summary

Remove shared state from the class, and move everything into s (this allows for a message to be flowedAMQMessage QueueEntry
to disk on one queue while staying in memory on another).
Break apart the interface creating a new interface that covers only the logging of the durableMessageStore TransacitonLog
transactional events (message data arriving, enqueues, dequeues).
Move reference counting into the TransactionLog
At this point we will have removed our current (fragile) flow-to-disk capabilities on persistent messages... and all messages will be
held in memory while live
Add a new properties to queues to keep track of memory usage.
Create to enable storage and retrieval of flowed messages.QueueBacking
Update / to use for, disk to diskQueueEntries AMQMessage QueueBacking
Add capabilities to queues to shrink their in memory profile by flowing queue-entries to disk (from the tail upward) until they are
under a given notional memory usage.
Add check on message enqueue to ensure queue size does not grow beyond defined limit. Mark queue as flowed to disk when that
occurs. Immediately flowing new messages on that queue, and potentially starting a thread.Purger
Add check on message send to potentially start an thread to restore flowed messages.Inhale
Add properties to for flow to disk control extensions as defined in .QueueDeclare C++ broker

Limitations

The current design of the broker that utilises a new queue per topic subscriber does not lend itself well to this design. If a large number of
subscribers fall behind due to high volume and start flowing to disk, then the amount of data flowing to disk will impare performance. A
change in the broker to implement topics in a more AMQP 1-0 style where new subscribers are actually browsers on a special TopicQueue
will alleviate the problem.

Future Enhancements

Enable the flow to disk of the queue structure. This will remove the final constraints on memory and only limit the broker to the
amount of disk space available.
Dynamic sizing of queues. Policies for this sizing. i.e. fn(MessageSize,ConsumeRate) so slow consumers can have their queues
flowed sooner with a smaller in memory cache. Whilst fast consumers with large messages would have a larger cache.
Conversion of Topic implementation to use an AMQP 1-0 style single queue where each consumer is a browser.

Design Notes

https://issues.apache.org/jira/browse/QPID-949
http://activemq.apache.org/message-cursors.html
http://svn.apache.org/viewvc/qpid/trunk/qpid/cpp/src/qpid/client/QueueOptions.cpp?view=markup

1.

2.

3.

4.

1.
2.

a.
3.

1.
a.

2.

1.
2.

1.
2.

a.

Areas of Note

Initially a thread will not be required if we are to simply let messages be deleted on ack. However, if we do not have a smallPurger
prefetch on the client then we will quickly OOM the broker. Ensuring the prefetch is set to a more sensible value (<100) is important
here.
Priority Queue implementation will be more tricky as may be destined for the front of the queue unlike theIncomingMessage
non-priority case where new messages go at the end. The implementation for this will require a thread.Purger
The value will be initially a fixed value or at least a calculation based on . However, it should bequeueMinMemory queueMaxMemory
implemented with the future prospect of using a dynamic sizing method.
Care must be taken for the NO_ACK mode as the dequeue is performed delivery so the message must be in memory beforebefore
that occurs or the data will be lost.

Areas for investigation

When to perform an fsync?
Will NFS be capable of supporting the backing.

Sizing guidelines for users, What is the overhead/message on disk
Raise awareness that the data will now end up on disk. If it is confidential it should be sent encrypted.

Validation Rules

What checks to run on start-up
Defined Queues sum to less than X * Xmx value.queueMaxMemory

How to calcuate default values

Alerting

New Alerts when Queue flows and recovers
Suggestion to set less than to get early warning that flow-to-disk may occur.queueDepth queueMaxMemory

Testing

What happens when the disk fills up.
Currently the Java Brokers behaviour with WeakReferences is quite poor after it has dropped all the references.

Generate test that models the current behaviour and ensure that the new flow-to-disk improves the performance.

Message Flows

To highlight how these changes will affect the current message delivery flow what follows are a series of message flow diagrams to highlight
the changes:

M4 Flows

This is what message delivery via a queue would look like in the M4 broker. Messages is received as an and the data ifIncomingMessage
persistent is written to the . The message is fully received it becomes an and is then routed to a Queue where aMessageStore AMQMessage

 is created that references that .QueueEntry AMQMessage

In the case of persistent message delivery the message data is held via a WeakReference. So when the broker reaches a full memory
scenario it will purge the references to the message data. New messages received by the broker are kept in memory but for messageALL
delivery the message must be fetched from the store which may be an expensive operation.

The situation is slightly better for Topics. An that is routed to multiple Queues can be referenced by many soAMQMessage QueueEntries
duplication of memory is not required.

When a full memory situation occurs then as with the Queue case message data is purged. However, the references continue to be shared
and an unchecked race to repopulate the message data occurs. No data loss should occur in the race only duplicated effort in reading from
disk twice.

Flows after Flow-To-Disk

This design for Flow-To-Disk aims not to impact the normal message delivery flow. Here you can see that persistent data is written to the
 as it was in the for M4.TransactionLog MessageStore

The change occurs when the queue hits its defined memory limit. At this point new messages to that queue are written to the ALL
. An process ensures that the subscribers do not starve for data that has been flowed.QueueBacking Inhaler

The topic scenario is slightly altered by the desire to keep each queue responsible for its own message flow to disk. AMQMessage
references can be shared between queues in normal delivery but when a message is flowed to disk for a give queue that queue will restore
the message only for its consumption.

The orange messages highlight the duplication of message data in memory. This duplication vastly simplifies the responsibilities for flowing to
and from disk.

Of course when the queue leaves a flowed state newly received message data can again be shared between queues. Again note that the
orange messages are pair vertically to represent the duplicated data from messages that have been restored from disk.

Design Details

To highlight the changes that will be required lets look at the processing that is performed on an incoming message:

AMQChannel

When a persistent message is received the headers and chunks are recorded in the new , the remainder of the current TransactionLog
 will be moved to a new interface.MessageStore RoutingTable

+- TransactionLog -+
| enqueue |
| dequeue |
| storeHeader |
| storeChunk |
| |
| startTransaction |
| commit |
| abort |
+------------------+

+--RoutingTable--+
| createQueue |
| createExchange |
| createBinding |
| |
| deleteQueue |
| deleteExchange |
| deleteBinding |
+----------------+

1.
2.

1.
2.

The is a distilled version of the current interfaces. The log is the persistent record of the state of the broker.TransactionLog MessageStore
On start up this log is used to restore the the routing and message states. It is not to be used as a lookup mechanism, the queue's must now
be responsible for remembering all the enqueue messages and not rely on the previous . As no random access to the log fileMessageStore
is needed it can be implemented as a write ahead log. It can periodically cleanup the old state by writing a new log but as it its primary
function is to ensure state is persisted to disk it need not maintain maps of the data thus simplifying its implementation. The responsibility for
remembering the message data is delegated to the Queue. The shall absorb the current reference counting code and beTransactionLog
responsible for deciding when to recoverably delete a message. Currently the reference counting is still spread across a number of different
classes and has a couple of serious problems. The will record a series of Queue/Message tuples so that it can pairTransactionLog
enqueue/dequeue calls. When there are no more references to the message then it can safely know that the message is no longer needed.
By using a list of tuples rather than an integer count the is capable of safely interleaving transactions as there is no sharedTransactionLog
count value.

TransactionLog Recovery

Currently the is responsible for providing unique MessageIDs, this is not strictly part of a as a result it wouldMessasgeStore TransactionLog
not make sense to include it in the interface. What is recommended is that we unify our message creation as part of removing the

 objects. Messages recovered directly from the store currently create the directly with a Message ID; while*MessageHandle *MessageHandle
message delivered via the wire ask the for an ID before creating an which in turn creates the MessageStore IncomingMessage

. As we will be removing the objects it makes sense to unify our message creation through a Factory *MessageHandle *MessageHandle
. This will allow the factory to be responsible for the sequence of IDs. When recovery is in progress a call toMessageFactory

createMessage(id) will take place and the factory need only:

ensure the id is unique
record the highest value seen to seed its sequence of IDs handed out by createMessage()

+--MessageFactory---+
| createMessage(id) |
| createMessage() |
+-------------------+

AMQQueue/QueueEntry

When a message has been fully received it is then routed to the required Queues as before. Only persistent messages that are routed to
persistent queues are written to the which is then responsible for the ultimate deletion of persistent message data.TransactionLog

For this to occur the existing model needs to be updated. The objects we currently have need to be merged in to and*Handle AMQMessage
all the state about the message needs to be moved to the . This will allow us to null the reference as and when theQueueEntry AMQMessage
message is flowed to disk. The interface will be augmented to allow the Queue to flow the data when required. When the data isQueueEntry
recovered then no attempt is made to restore the single instance of the message. i.e. If a single message is sent to 10 queues initially there
will be one and one copy of the data. When a queue is flowed then it will lose the reference to that message so on recover aAMQMessage
new message with a copy of the data will be created soley for that queues use.

+-QueueEntry-+
| flow |
| isFlowed |
| recover |
+------------+

Our existing Queue needs to be updated to be able to record the additional state of the s. Currently we have and QueueEntry queueCount
 that represent the count and data size used by the queue. The Queue needs to have additional , queueSize queueMaxMemory

, and added. It is proposed that only the data size is used for flow to disk calculations asqueueMinMemory queueInMemory isFlowed
counting messages will not give us the control that we need over memory usage.

These new variables will be used to control two new threads and .Inhaler Purger

Purger

When is reached the queue is set to flow and all new messages on to the queue are sent straight to disk. As messagesqueueMaxMemory
are sent to a subscriber there are a couple of possibilities when the queue is in a flowed state:

The messages are also flowed to disk.

2. A number or percentage of the could be kept to handle rollbacks.queueMaxMemory

Using the first mechanism we do not need to have a thread for the simple queue case. However for the second case and to handlePurger
queues where the position of the incoming message is not known then the thread will be required. The simply needs to start atPurger Purger
the front of the queue and record the amount of data still in memory on the Queue when is reached all subsequentqueueMaxMemory
messages are flowed.

Inhaler

The is an optimisation to ensure that the broker returns to peek performance after a flow to disk event. Lazily loading messages onInhaler
demand would be quite slow; so on delivery to a subscriber a check can be performed to see if the current is less than the queueInMemory

 which would indicate that there is room to reload older messages. The can then begin to load messages from diskqueueMinMemory Inhaler
until has been reached or all messages are back in memory. If all the messages are back in memory then the queue flowqueueMaxMemory
state can be reset allowing incoming messages to stay in memory.

: as there are no locks a second check by the is required to ensure a message was not flowed between the last load and theNOTE Inhaler
change of queue state.

The updates to delivery to the queue and to the subscriber are expected to be updated in the following ways:

Pseudo-Code - Delivery to Subscriber
while (message in queue)
 subscriber.deliver(message)

 // With a low prefetch or an more complex purging thread this should not be required.
 if (flowed)
 flowToDisk(message)

 if (_queueInMemory < _queueMinMemory)
 startInhaler

Pseudo-Code - Delivery to Queue
 addToQueue(message)

 if (flowed)
 flowToDisk(message)
 else
 if (_queueInMemory > _queueMaxMemory)
 setFlowed
 startPurger

The additional overhead of checking state is done after the message deliveries have been performed and are simple calculations compared
to the existing message flow paths. As a result the non-flowed state performance should not be affected.

Implementation details for and state updatesqueue*Memory flow

Here are some further details on how the new values will be calculated.queue*Memory

Implementation details for Delivery to Subscriber, this is taken from and is also used by .SimpleAMQQueue AMQPriorityQueue

public void dequeue(StoreContext storeContext, QueueEntry entry) throws FailedDequeueException
 {
 // Current _queueDepth calcualations
 decrementQueueCount();
 decrementQueueSize(entry);

 // Add update for _queueInMemory_
 decrementQueueInMemorySize(entry);

 ... snip complete entry clean up, including any TransactionLog dequeue and QueueBacking delete
...

 if (_queueInMemory.get < _queueMinMemory.get())
 {
 _asyncInhaler.execute(inhaler);
 }

When the has completely restored all messages to the queue it can call to continue normal message delivery. Inhaler setFlowed(false) NOTE
: It is expected that the will have to run once more over the queue to ensure that no new messages were flowed between it retrievingInhaler
all messages on disk and the resetting of the flowed status.

Implementation details for Delivery to Queue, again this is taken from and is also used by .SimpleAMQQueue AMQPriorityQueue

 public QueueEntry enqueue(StoreContext storeContext, AMQMessage message) throws AMQException
 {
 // Current _queueDepth calcualations
 incrementQueueCount();
 incrementQueueSize(message);

 // Add update for _queueInMemory_
 incrementQueueInMemorySize(message);

 // Add check to see if we should be flowing.
 if (_queueInMemory.get() > _queueMaxMemory.get())
 {
 setFlowed(true);
 // if we are to have a purging thread then this is where it would be started.
 // _asyncPurger.execute(purger);
 }

 ... snip section about adding to queue and attempting deliveries ...

 // For the SimpleAMQQueue case messageAddedToEndOfQueue() will always return true.
 // The AMQPriorityQueue implementation will be more complicated.
 if (_flowed.get && messageAddedToEndOfQueue())
 {
 entry.flow();
 }

QueueBacking

The flow to disk implementation will be performed on a queue by queue basis so a new will be created to handle the flowingQueueBacking
of messages to and from disk.

+-QueueBacking-+
| flow |
| recover |
| delete |
+--------------+

When a message is dequeue then it must also be removed from .QueueBacking
: care must be taken here for the NO_ACK mode as the dequeue is performed delivery so the message must be in memoryNOTE before

before that occurs or the data will be lost.

BackingFormat

The initial implementation of the will be . This will need a new configuration parameter 'flow-to-disk-path' itQueueBacking FileQueueBacking
will default to '$QPID_WORK/queueBacking'. In this directory a new directory will be created to match the queue name that this backing
represents. It is in this directory that the queue contents will be written. Each message will be written to its own file which will include the
header and body. So the resulting file structure will be as follows:

QPID_WORK/
 /queueBacking/
 /<queueName>/
 /<bin>/<msgID>

Whilst NTFS can store over 4M files per directory, FAT32 is limited to 65534 and ext3 only 32000. That coupled with the fact that looking up
a file in a large directory is not efficient it makes most sense to implement a hash map on disk using the MessageID as the key. Using the
least significant 8 bits as the hashing function will give us 512 bins to evenly spread the messages on disk. This approach will improve look
ups times and allow us to write over 16M messages per queue before we hit any file system limits.

FtD Code Review Notes

Flow to Disk review points

ID Priority
(H/M/L)

Review Status

16 0.5 H is load() thread safe Done

13 0.5 H getMessage contract broken MUST NEVER return null Done

14 0.5 H getMessage should do a load, remember gap between load and purger Done

15 0.5 H document reuse of setDelivered Done

19 0.5 H _priorityListsindex.memoryUsed() + requriedSize is not threadSafe. Currently hard to reason about. Removed

21 0.5 H PriorityQueueEntryList add() not thread safe. Reclaiming memory and then setting later is not atomic. Removed

24 0.5 H setMemoryUsageMaximum / setMemoryUsageMinimum : not ThreadSafe - synchronize Removed

17 0.5 H Document atomicity of memory counting Removed

18 0.5 H Document test cases , plausable , implausable

1 0.5 M Removal of old get* Methods from TransactionLog

2 0.5 M Create Abstract BaseTransactionLog class to hold commonalities with existing TLogs

3 0.5 M Refactor Ref Counting out into BaseTransactionLog

12 0.5 M Linux ext3 means 31998 queues max per vhost per instance. as the dir is currently created even if it is not
needed.

22 0.5 M PriorityQueueEntryList _disabled -> move to isFlowed and name it better as the queue is not disabled. Only FtD
is.

Done

27 0.5 M VirtualHost:L208 : initialiseRoutingTable(hostConfig) should be done when transactionLog != RoutingTable

31 0.5 M BDBMS : Enqueue has no rollback operation.

8 0.5 FlowableQueueEntryList extends QueueEntryList, but there are no unflowable lists, and there shouldn't be in
the future either. (AS)

Done

20 0.5 Comments would help

23 non-atomic get Methods in PriorityQueueEntryList

29 0.5 BDBMS : _dequeueTxMap should move to StoreContext to remove synchronized

32 0.5 BDBMS : StoreContext needs enqueue/dequeue added.

7 0.5 Rename flow/recover -> unload/load Done

9 0.5
NTH

Extract flow strategy in to a separate interface

28 BDBMS : linked list per message is not memory conserving

30 BDBMS : In simple case where there is only one copy of message can do delete in same transactions

4 0.6 StoreContext update, initially to include the dequeue messageIds as per BDBStore

5 0.6 StoreContext -> convert -> Transaction and use that for operation.(commit,abort...)

6 0.6 Reference Count to use AtomicInts to reduce memory usage.

10 0.6 QueueEntryImpl allows direct access to the ContentHeader via the Filterable Interface, need an improved way
of doing selectors that doesn't always require the message to be pulled from disk. Some checks can be done
with data already in memory with QueueEntry; MessageID

11 0.6 NoLocal requires message to be pulled in to memory.

25 JIRA Need to be better at stop(), decide what we actually want to do on AMQQueue.stop().

26 JIRA TransactionLog, RoutingTable interfaces separated but not actually split out the implementations.

Testing

ID Priority
(H/M/L)

Test Status

1 What happens when the directory cannot hold any more messages, or queues.

1.
2.
3.

2 Test flowed queues delete backing store on close.

3 Management Console Functionality, Viewing, Moving Messages

4 Consuming from flowed queues with all ack modes : Client, Transacted, No-Ack

5 Browsers with selectors. DONE

6 Selectors on normal consumer to be completed

7 Test No_local on flowed queues : Currently flowed messages will be reloaded to check no_local values. Does it
make sense to move them to the QueueEntry?

8 Failure testing: What happens when disk runs out?

9 Failure testing: Current implementation should log error and keep message in memory. Eventually though it will
OOME the broker as it can't keep messages in memory.

10 Testing on all supported OSes and File systems. Linux : ext3, SAN(vxfs); Solaris (ZFS); Windows NTFS?

11 What happends if the disk fails/is removed?

12 0.5 Selector test, 1..4 consumers consuming message ids by chunk of 1000. Fill half then start consuming with
consumer 4. Then send final half. How does it performs?

Still to be discussed

Priority Queues

RoutingTable

Java Broker Design - High Level Overview of Refactoring

Overview
Areas of investigation
Message Representation

Summary
Approach

Storage (Message & Model)
Summary
Approach

MessageStore and TransactionLog
Model Configuration

Message Transfer
Summary
Approach

Overview

There are a number of areas of the current Java broker that we would like to look to improve. The primary aims of this work are to simplify
the various modules of the broker and clearly identify their interactions according to the identified .areas of responsibility

Where this design refers to the 'current' code base, this is the 0.5 release and the state of trunk at this point. Work completed previously on
 is being put to one side for the purpose of this design.Flow to Disk

Areas of investigation

We have identified three main areas of to improve.

Message Representation
Storage (Message & Model)
Message Transfer

Message Representation

Summary

Currently the broker uses two implementations of AMQMessageHandle, one transient, one persistent, which actively stores and retrieves the
underlying data. The AMQMessage class should provide immutable access to the message data (header and body) stored within the broker,
there should be a 1:1 relationship between AMQMessage objects and messages delivered through the broker.

Currently the AMQMessage is responsible for holding a count of references but the responsibility for maintaining this value is spread
throughout the code base. This responsibility needs to be given to a single class so that we can more easily reason about and test its
functionality.

Approach

Adjusting the existing AMQMessage to ensure that the data it stores is immutable will require moving queue specific data such as
Redelivered to the QueueEntry. Converting the existing MessageHandles to a single handle will allow us to easily unload the data as
required for Flow to Disk. The additional storage work that was done in the persistent message case will need to move to an object in the
Message Transfer layer.
Taking our existing single AMQMessage object we can delegate the responsibility to it for maintaining the reference count. This will prevent
any need for a globally locked map and any synchronisation will be reduced to the level of the message.

Storage (Message & Model)

Summary

Currently we have the MessageStore interface which is responsible for all persistent storage for the broker. This not only includes Message
Data but also, Queueing details, Queue and Exchange Creations and the bindings between them. This makes for difficulties during broker
start up as there are also model configuration located in the configuration files which all needs to be processed before message recovery can
be performed.

Approach

The existing MessageStore interface will be slimmed down to be only responsible for storing and retrieving messages. This will then allow a
flow to disk mechanism to put the messages on disk independently. A new TransactionLog will be created to record the enqueue and
dequeue operations. To store the Queue, Exchange and Binding model information a new ModelConfiguration will be created to persist this
data.

MessageStore and TransactionLog

The get a better idea of how these new classes will interact this is the sequence of events that will occur during broker startup. The diagram
shows the startup and recovery of the TransactionLog which will retrieve the messages from the MessageStore that are still active. Once the
TransactionLog has completed an Orphan detection phase is run on the MessageStore. The exact details of what this process involves can
be made a configurable policy decision. However, the initial suggestions are; to leave the messages in the store for tool analysis; the
messages can be annotated to record the number of times the message has been detected as an orphan and delete messages that have
been marked X number of times; with the introduction of dead letter queues the messages could be moved here.

This sequence highlights how the RecordFactory and TransactionLog would interact. A new Transaction would have Records added or
deleted that were created via the RecordFactory. The RecordFactory along with the RecordType are the only two classes that need be Qpid
specific. The rest of the Transaction package is a generic log of Records.

Model Configuration

Providing an interface to our current configuration will allow us to de-couple our current code from the various sources that are currently used
to store this information.

Message Transfer

Summary

The owner of processing a new message takes to a queue is currently split between a number of objects. IncomingMessage, AMQChannel,
and the TransactionalContext. In addition we have the StoreContext which is used to store any required Transactional data.

Approach

The new Transaction object will be created from the context and all operations will be done through this Transaction object. The Transaction
will be passed around where the StoreContext currently is and operated on directly.

Java Broker Design - Message Representation

Message Representation

Following on from the this page will provide a more detailed design of the changes to the broker.high level design

Overview
Design

Message Representation Interface
Unified Reference Counting.
Message Interest
MessageHeader

Technical Design

Overview

Currently the broker uses two implementations of AMQMessageHandle, one transient, one persistent, which actively stores and retrieves the
underlying data. The AMQMessage class should provide immutable access to the message data (header and body) stored within the broker,
there should be a 1:1 relationship between AMQMessage objects and messages delivered through the broker.

Currently the AMQMessage is responsible for holding a count of references but the responsibility for maintaining this value is spread
throughout the code base. This responsibility needs to be given to a single class so that we can more easily reason about and test its
functionality.

This work is part of the refactoring.MessageStore

Design

As part of the initial high level design the following interfaces were designed.

Message Representation Interface

Message

 Message<Header MessageHeader>public interface extends
{
 /**
 * Add additional content data to message.this
 *
 * @param buffer The data that is to be added.
 */
 void addContent(ByteBuffer buffer);

 /**
 * Signal that all content has been received.
 *
 * The returned CompleteFuture can then be used to ensure that all
 * persistent data has been safely persisted.
 *
 * @ CompleteFuture to ensure data is persisted.return
 */
 CompleteFuture contentComplete();

 /**
 * Get the Message ID Messagefor this
 *
 * @ the message idreturn
 */
 getMessageID(); long

 /**
 * Retrieve the Header Messagefor this
 * The is parameterised so the caller does not need to immediatelyreturn
 * from the {@link MessageHeader} that the MessageStore knows about. cast
 *
 * @ the Header Messagereturn for this
 */
 Header getHeader();

 /**
 * Write the Message to the specified ByteBuffer.
 *
 * If the Message does not fit into the specified ByteBuffer then a
 * subsequent call must be made using the offset value.
 *
 * The offset value is the offset in to the underlying data of the Message.
 * It is needed on subsequent calls the first ByteBuffer provided wasif
 * too small.
 *
 * The method will zero when no data has been written to the Buffer.return
 *
 * @param offset position in the underlying data start from which to start
 * to the ByteBuffer.
 * @param length of data to write into the ByteBuffer
 * @param buffer to write into
 *
 * @ the amount of data written to the bufferreturn
 */
 writeContentToBuffer(offset, length, ByteBuffer buffer);long long long

 /**
 * Create a Reference to Messagenew this
 *
 * @param referer the object that is refering to Message.this
 *
 * @ a MessageReference.return

 */
 MessageReference newReference(referer);Object

 /**
 * Signal to the MessageStore that the requestor is interested in this
 * Message.
 *
 * This means that the requestor is likely to use the Message shortly so
 * the MessageStore would be advised to keep Message in memory.this
 *
 * @param requestor that is interested in Messagethis
 *
 * @ a MessageInterestreturn
 */

 MessageInterest newInterest(requestor);Object
}

The new Message interface unifies the current IncomingMessage, AMQMessage and the Store operations becoming a container for the
ByteBuffers of data that make up the content of the Message. The Message becomes a proxy for the MessageStore allowing incoming
ByteBuffers of content to be added and the ability to use a future to check that the data has been safely stored by the MessageStore.

CompleteFuture

 CompleteFuturepublic interface
{
 /** Block the calling thread the task that created has completed. */this future
 void complete();

 /**
 * Non-Blocking call to test that the task that created this future
 * has completed.
 *
 * @ the task is completereturn true if
 */
 isComplete();boolean
}

To enable support for multiple protocols the type of MessageHeader will depend on the protocol of the publishing connection. In addition the
Message will be responsible for writing its self to a given ByteBuffer. This allows the Framing layer to be responsible for setting up the
ByteBuffer and then requesting that the Message fill in its data.

Unified Reference Counting.

Reference counting is performed in a number of locations in the code so the new Message interface provides a new approach to handling
these references. The previous approach used an AtomicInteger count to know when a Message was no longer required this made
debugging difficult and so the newReference call takes the object that is referring to this Message. This will allow for the potential to provide a
list of what is referencing this Message.

The returned MessageReference object will have a release() to relinquish the reference. However, by also using a the finalizer to
automatically release the reference at GC time instances we do not explicitly need to call release().

This pattern is also going to be used for the new concept of Interest.

MessageReference/Interest

 class MessageReference/Interestpublic abstract
{
 /** Release the reference in the underlying Message. */
 void release();abstract

 /**
 * Finalise - AutoRelease
 * @ Throwablethrows
 */
 void finalize() Throwableprotected final throws
 {
 release();
 .finalize();super
 }
}

Message Interest

As mentioned above in Reference Counting, Message Interest is a new concept for the Java Broker. This allows the running broker to
provide a hint to the MessageStore that it is interested in the Message and is likely to use it shortly. This will enable the MessageStore to
better control its memory usage. Messages that have interested parties could be safely removed from memory such as by a Flow to Disk
routine. However, if Interest is requested then it would be a beneficial to load this message back in to memory or performance will suffer.
Message Interests will follow the same pattern as MessageReference, interest will be requested by an Object and the resulting
MessageInterest will allow that interest to be explicitly released.

MessageHeader

The current header (ContentHeaderBody) is used to access the header properties and protocol frame values, as a result it is focused on a
single protocol version. The introduction of a number of MessageHeader interfaces will allow the various layers to have their own
MessageHeader interface and in so doing limit the required access to the header. The main interface will contain all the existing common

properties accessors (CommonContentHeaderProperties). However, the interface should only provide accessors to the data as one of the
goals is of this change is to create immutable messages. There is an argument that the broker may wish to add additional data to the
message such as routing details. This could be performed in a similar way to SMTP by the addition of properties to the Message. An
alternative approach would be to encapsulate original message in a new message. As the broker does not currently need to add any
additional properties to messages that it delivers we can delay the decision/inclusion of this feature until the AMQP-WG decide what
approach they want implementers to use.

MessageHeader

 MessageHeaderpublic interface
{
 /* The size in bytes of the header. */
 getHeaderSize();long
 /* The size in bytes of the message body content. */
 getBodySize();long

 /*
 * General getter to allow arbitrary properties to be
 * used by JMS Selectors
 */
 getProperty(key);Object String

 /*
 * Getters Common Header properties primarily used for
 * by JMS Selectors
 */
 AMQShortString getAppId();
 AMQShortString getContentType();
 AMQShortString getCorrelationId();
 getDeliveryMode();byte
 AMQShortString getEncoding();
 getExpiration();long
 AMQShortString getMessageId();
 getPriority();byte
 AMQShortString getReplyTo();
 AMQShortString getTimestamp();
 AMQShortString getMessageType();
 AMQShortString getUserId();
}

The changes to the storage classes allow the introduction of an interface to a MessageHeader that is specific to the store classes. This
interface will allow 3rd party storage plugins written in the storage layer to be independant of any future protocol changes.

store.MessageHeader

 MessageHeaderpublic interface
{
 /**
 * is Message a Persistent Message?this
 *
 * @ it is persistentreturn true if
 */
 isPersistent();boolean

 /**
 * Write the MessageHeader to the specified ByteBuffer in the correct
 * format the specified Session.for
 *
 * If the MessageHeader does not fit into the specified ByteBuffer then a
 * subsequent call must be made using the offset value.
 *
 * The offset value is the offset in to the underlying data of the
 * MessageHeader. It is needed on subsequent calls the first ByteBuffer if
 * provided was too small.
 *
 * The method will zero when no data has been written to the Buffer.return
 *
 * @param session the target session which Header should be for this
 * formatted.
 * @param offset position in the underlying data start from which to start
 * to the ByteBuffer.
 * @param length of data to write into the ByteBuffer
 * @param buffer to write into
 *
 * @ the amount of data written to the bufferreturn
 */
 writeContentToBuffer(Session session, offset, length, ByteBuffer buffer);long long long
}

In a similar vein, a new Framing layer MessageHeader will allow access to only the properties/methods that are needed by that layer. This
approach allows the Framing layer to be independent of the message header/data it is transporting and focus on the correct formatting of
frames for the given consumer.

framing.MessageHeader

 MessageHeaderpublic interface
{
 getHeaderSize();long
 getBodySize();long

 writeContentToBuffer(Session session, offset, length, ByteBuffer buffer);long long long
}

As we will eventually have clients connected on a variety of protocol versions isolating the framing layer from any transformations that must
be performed through the MessageHeader interface should reduce any potential complexity at this layer and require that the
MessageHeader is capable of writing itself to a ByteBuffer for the given session.

MessageHeaderFactory

 MessageHeaderFactory<Header MessageHeader>public interface extends
{

 /**
 * Convert the given ByteBuffer in to an MessageHeader
 * @param buffer containing the data to convert in to an MessageHeader
 * @ the MessageHeader that was in the bufferreturn
 */
 Header createMessageHeaderFromBuffer(ByteBuffer buffer);
}

Technical Design

TBC

Network IO Interface

Objective and Scope.
Overview
Problem Statement

1 High message throughput on one publishing connection
2 Medium-High throughput on several publishing connections
3. Environmental issue prevents broker from processing buffer data
4. Slow client causes broker network buffers to grow

Exclusions: / Assumptions
Functional Requirements
Non Functional Requirements
Architecture Design

Overview of Design
Breakdown of work

Testing
Impact
Compatibility / Migration Implications
Risks

Network IO Interface discussion points
New common network and protocol interfaces
Port server to new interface

Objective and Scope.

Overview

The broker is prone to heap exhaustion, leading to OutOfMemory errors. One major source of memory consumption are the buffers used to
hold unprocessed AMQP frames once they have been read from the socket. These are currently able to grow uninhibited, and there is no
means available to control them. Further, the transport layer is poorly implemented and difficult to work in. Improving encapsulation is an
explicit goal of this work.

For more information on the current design, please see .Current Architecture

Problem Statement

When the broker is unable to process frames as quickly as they are being sent these buffers begin to fill up and the broker has no way to limit
those. For the broker to effectively manage its memory usage, it needs to be able to at least place an upper bound on the size of it's network
buffers. It also has no way to know how large those buffers are.

1 High message throughput on one publishing connection

This is where the publishing client is sending a consistently sustained high rate of messages to the broker, and is more likely to happen
where some of the messages are persistent

Data from the client gets out of the client side buffers and into the broker side buffers. The broker is processing messages onto the queues
as fast as it can, but gets backed up and the broker side buffers grow until eventually the broker OOM's, the heap filled by the MINA buffers
along with the data in queues.

2 Medium-High throughput on several publishing connections

This is where the are multiple connections sending data to the broker, at varying rates from medium to high (as measured in Qpid terms as
greater than the ave/max throughputs measured in test). The broker threads are being managed by the JVM in terms of processor time i.e.
yielding to each other in an unpredictable way.

As for case 1 above, with the caveat that it's far harder to predict how long it'd take to happen and how the TCP socket level behaviour will
impact the client. It's also a more likely real world scenario i.e. probably more than one connection for MDS publication (for example) would
result in a set of growing buffers resulting in OOM.

3. Environmental issue prevents broker from processing buffer data

This is where the broker, for example, runs out of SAN or something else (disk for logging etc) and so cannot process the messages out of
the buffers and onto the queues. CPU ?

As for case 1, assuming that the broker just needs to be up to have data being buffered which previous tests certainly indicate i.e. a publisher
can happily pump data into a disabled broker for some time before the connection gets killed.

4. Slow client causes broker network buffers to grow

This is where the client is not reading data as fast as the broker is sending it. The data will be buffered on the broker, increasing memory
usage. This is particularly problematic when sending messages to the client since the payload will then be in both the message store and the
network buffers at the same time, doubling usage per message.

1.

2.
3.
4.
5.
6.
7.

1.
2.

3.
4.
5.
6.

7.
8.
9.

10.
11.
12.

1.
2.
3.
4.
5.

6.

1.

2.

3.

4.

5.

6.

7.

8.

Exclusions: / Assumptions

No AMQP semantics are involved. The aim of this work is purely to limt the size of the network buffers between the client producing
AMQP frames and the broker processing them. It does not involve any protocol specific work. In OSI terms, this work is aimed at
layer 4, not layer 7.
Higher level information should be determined by the broker itself. No policy will be applied beyond blocking reads if the buffer is full.
Buffers are sized uniformly across all connections
Buffers are fixed at startup and do not change
Standard TCP flow control is the only mechanism used to signal to the client that it should cease to send data.
It is better for the client to block further writes to the socket than allowing memory consumption to grow unimpeeded
The broker should not block

Functional Requirements

Buffer size control - all buffers have an upper size limit other than the queue itself
TCP options: SO_KEEPALIVE, OOBINLINE, SO_RCVBUF, SO_REUSEADDR, SO_SNDBUF, SO_LINGER, SO_TIMEOUT,
TCP_NODELAY
SSL: link level encryption, do we want to consider things like certificate validation etc here or at a higher level? Consult with RHS
signal on idle requires timer support
Need to be notified when socket has been closed
The broker needs to know that the transport layer is full and the write would / did not succeed - "don't send anymore just now until I
clear this Future"?
Non-TCP transports such as InVM, infiniband.
Network buffers can be of unlimited size
Rate statistics need to be available, including total throughput and average time for send() to complete. See Java Broker Design -

 for detailsOperational Logging
send() should (optionally) fail after a configurable timeout rather than block forever
Need to be able to change buffer sizes on new connections at runtime, existing connections can remain unchanged
Send and recieve buffers should be independently sized

Non Functional Requirements

Startup loading of transport plugins
User can select specific transport to use
Peer A running transport A can talk to Peer B running transport B
Connections do not require a thread each (broker only, client can probably live with that)
the semantics of org.apache.qpid.BasicMessageProducer.send() need to change. It may now block if there isn't enough free space
to write the entire message out. The change to this methods semantics needs to be considered in the light of the stated JMS
semantics and the change to support acknowledgement of publishes in AMQP 0-10 and higher.
Need to document relative impact of buffer sizes

Architecture Design

Common should have an interface which all transport plugins can implement and which the server and client can use. The interface would
include a means to set the standard socket options and to limit it's total memory usage.

TCP itself has a flow control mechanism which kicks in when the receiver of data cannot read from the socket as fast as data is being sent.
TCP sockets use send and receive buffers to attempt to smooth the flow from application to network and maximize network performance. By
limitting the rate at which the application reads from the network to the rate at which is can process the data the sender of the data is throttled
to that production rate.

Overview of Design

Common will hold a transport layer interface which the existing MINA transport will be ported too. We will also port the 0-10 client
o.a.q.transport.network.io package to that interface. This interface should be quite simple.
Methods to send, receive, flush, close, open, listen and a method to set TCP options are likely to be sufficient. These would operate
on a QpidByteBuffer, essentially MinaByteBuffer to avoid having to fix our use of expanding buffers at the same time.
The server and client both use common for their network layer, and will need to be updated to use the new interface. They will need
to pass through the configured socket options.
When processing the incoming data, one frame at a time will be processed and that frames processing will be completed before the
next one is read. There will be no other data structures used to hold unprocessed frames. This will mean that the sender will become
aware of variations in the recievers processing speed much sooner than is currently the case. Slow downs or pauses in processing
incoming frames will cause the buffer to fill up and flow control to kick in. This can be mitigated if desired by increasing the relevant
buffer sizes.
The server will need to be substantively modified to push the MINA specific parts into the appropriate plugin. This primarily involves
replacing the MINA ByteBuffer with a QpidByteBuffer and refactoring the MINA specific parts of the protocol handlers.
Implementing fixed size IO buffers would require replacing MINA with an alternative implmentation of the transport layer. the first
step in any such process would be to clearly encapsulate the concept of a transport layer using the existing MINA code as the initial
implementation. The next step would be to adapt the already used 0-10 transport to sit clearly behind the same interface. Finally a
network transport more atuned to the needs of a broker (supporting large numbers of incoming connections) could be developed
from the base of the existing 0-10 transport.
The changes would impact the client and broker where they interface with the transport layer. In the first phase the client and broker
would be altered to use this implementation independent interface. Once this work had been completed the client and broker could
be tested and released using the MINA implementation proving that no adverse impact from the encapsulation of the transport layer
had occurred.
Once the first phase of the work has been completed, alternative transport implementations could be developed. this would require
no code changes to the client or broker, but would require system testing to prove that behaviour was correct when using the

8.

9.

1.
a.
b.

2.
3.
4.
5.

a.

1.

2.

1.

2.
3.

alternative transport implementation.
Bounding the buffers attempts to address the issue of regulating incoming data flow to the rate at which it can be processed by the
receiver. This will generally occur when the sender is capable of sending bursts of data at a high rate. This is most evident with
persistent messages where the rate at which messages can be persisted to disk is much lower than the rate at which they can be
sent over the network. Fundamentally if it is not able to process messages at the rate at which they are being sent, Qpid should not
accept them, pretending to do so is giving the application a false impression about what Qpid is doing, and is potentially only
deferring an issue to a later point when there will be a great deal of message loss. Further more the behaviour is non-JMS compliant
(JMS expect publishing to be a synchronous activity).

Breakdown of work

Encapsulate existing networking layer better
New common network and protocol interfaces
Port server to new interface

[Port client to new interface]
Remove Job/Event
Bind network buffers
Tests

Representative workload tests need to be developed and put into perftests.

Testing

Testing under load and handling error conditions (unexpected disconnection etc) will need to be carried out.

New load tests which simulate application workloads need to be developed so that we can provide accurate configuration guidance. These
tests then need to be carried out on Windows, Linux and Solaris in all permutations of client/server.

New unit tests will need to be written to cover the transport plugins and the new interfaces. Existing test coverage in this area is minimal.

Impact

There is a potential effect upon performance, we will need to measure this once it has been implemented to quantify what effect, if any, it has
had.

Compatibility / Migration Implications

Older clients connected to a new broker may suffer OOM when tcp flow control kicks in. This seems preferrable to the broker
suffering OOM.
Clients which upgrade their library may experience a change in behaviour of the send() method, since it may now block if the clients
network buffer is full. This needs to be appropriately communicated. It should not be significantly different in behaviour from using
transactions in the producer session however.

Risks

MINA is quite deeply embedded in the server and will require some work to excise it fully. This is somewhat mitigated by the decision
to import mina.ByteBuffer and continue using that.
Differences in behaviour of transport layer may expose other bugs in the broker which were being hidden before.
Inadequate test coverage, in particular the lack of representative application workloads in the performance test suite.

Network IO Interface discussion points

Discussion Points : 2009-07-03

This page captures points to be addressed from a discussion between:
Robery Godfrey (RG)
Marnie McCormack (MM)
Martin Ritchie (MR)
Aidan Skinner (AS)

Use Cases

ID Raised By Description Status Outcome

UC-1 AS Need more details on what the client changes that need to be done, in a new Doc.

UC-2 MM Use Case 4 Outbound buffers can fill if client is slow. Added

Functional Requirements

ID Raised
By

Description Status Outcome

F-1 AS We are trying to bind all buffers/queues other than the AMQP Queue itself. Clarified

F-2 MR More clarity : F-6: Transport layer will not block but report full Clarified

F-3 MM Move Marnie's Points from Compatibility / Migration in to the functional requirements
section

Moved

F-4 MM from C/M:3 Ability to switch IO implmentation (mina/new io)/ Run with bounded/unbounded
buffers at start up. Not dynamically.

Added

F-5 RG Keep rate statistics rather than logging on the buffers. Capturing data is cheaper than
logging directly.

Added
reference to
operational
logging

F-6 RG Average time for sends to complete Added to stat
gathering req

F-7 ALL C/M:4 Logging: Goal is to identify problem area Client/Network/Broker, capturing the size
of the buffers will help us identify if it is the client or broker that is the cause.

Added

F-8 MM C/M:5 Bound Changes: Bounding buffers will have impact. A) what size do you set it to. B)
What paradigms will need their buffers changed.

Added sizing
documentation
to NFRs

F-9 MM C/M:5 BC: Buffer should be configurable at in a dynamic context, new connections will
have the new buffer size. Existing connections will remain unchanged.

Added to FRs

F-10 RG C/M:5 It is not necessary for the input and output buffers to be the same size. That is the
buffer used to receive mesages from a publish(input) and the buffer used to hold
messages being sent to the a client(output).

Added to FRs

Non-Functional Requirements

ID Raised
By

Description Status Outcome

NF-1 AS 4. Current 0-10 client IO has one thread per connection. So not suitable for
direct use in broker just now.

Clarified relevant NFR

NF-2 RG 5. We need to document current sematics before we can say it will change. Added
MessageProducer.send()
behaviour

NF-3 MR (From comments) 5. send() should have option for not blocking. Added to FR

Comments

ID Raised
By

Description Status Outcome

C-1 RG All IO buffers would be affected

C-2 RG Mina more likely with persistent message

C-3 MM Break this down in to components. Added work breakdown and
suggested order

C-4 MM Expand all TCP options (TCPNoDelay...) detail what they are being
exposed for, setting/reading

Added complete list

Discussion Points : 2009-07-07

This page captures points to be addressed from a discussion between:
Robery Godfrey (RG)
Marnie McCormack (MM)
Martin Ritchie (MR)
Aidan Skinner (AS)

General

ID Raised By Description Status Outcome

G-1 MM Diagrams would help

Functional Requirements

ID Raised By Description Status Outcome

F-11 MM F-8,9,10 : Need to be reworked to be in 3rd person Done

1.
2.
3.
4.
5.
6.

1.
2.

Overview of Design

ID Raised By Description Status Outcome

O-1 ALL O-4 : Capture the impact of removing the Job Queue/Limiting. The implications of of the changes

perhaps accompanied with statistics showing improved performance.
Client is now exposed to latency, i.e. If broker is impacted then client will see this.

Done

O-2 MR o-5 : Expand details of substantive changes Done

Breakdown of work

ID Raised
By

Description Status Outcome

B-1 RG B-1 : Highlight that the inclusion of QpidByteBuffer will be done as part of common interace
creation

Done

B-2 MM/RG Put BofCP into the BoWork section, higlighting wich parts relate to which task. Done

Testing

ID Raised By Description Status Outcome

T-1 MM Define representative testing platforms, LAN, MAN, WAN, etc

Discussion Points : 2009-07-28

ID Raised
By

Description Status Outcome

1 LB Change breakdown of work into phases. Phase 1 enapsulation of broker, phase 2 encapsulation of
client etc

New common network and protocol interfaces

Purpose

This design page describes the low level design for the new interface which is aimed at facilitating encapsulation for the Network code in both
the Java Broker & Client.

This is the first step in decoupling the exsiting IO layer from both the surrounding Qpid code and more specifically from the current tie-in to
MINA.

This document will provide sufficient information for architecture review and also for input to task breakdown & planning.

Interface Requirements

Provide an API which supports pluggable network layers
Facilitate the replacement of instantiations of MINA classes with an abstraction
Network interface and drivers should be thread model agnostic. The
Ability to set TCP options (see main design doc for details)
Provide support for configuration of related properties including buffer size
The interface will support an SSLEngine

Current design

For details on the current implementation see Current Architecture

New Design

NetworkDriver takes bytes from the network and passes them to the ProtocolEngine. It also accepts bytes from the ProtocolEngine and
writes them to the network.

ProtocolEngine accepts bytes from the NetworkDriver and turns them into AMQFrames for processing. It accepts frames and encodes them
into bytes which it then hands off to the NetworkDriver.

Design choices

Initial designs will only support TCP (see main design doc for info)
The NetworkDriver.send() method will not block, and neither will the ProtcolEngine.received(). As soon as they have stored the data
for later processing they will return.

New network / protocol engine interface in org.apache.qpid.common

In the new version, a NetworkDriver is created by a ProtocolEngine (in the case of outgoing conenctions) or is bound to a socket and creates
a ProtocolEngine when new connections are created. The network driver passes raw data to the ProtocolEngine which is responsible for both
decoding the frames and processing them. When the ProtocolEngine wishes to send data, it does so by calling the NetworkDriver. The
existing mechanisms for frame listeners etc are retained, but are decoupled from the network processing parts.

At the start of a connection the the NetworkDriver will pass data to a ProtocolEngine which will handle protocol negotiation. The
implementation will use the existing Sender and Reciever interfaces in org.apache.qpid.transport which will allow the use of the existing
alternate transport layer implementations.

The thread of control remains with the network driver up until recieved(), when the ProtocolEngine becomes responsible. The ProtocolEngine
should return from recieved after it has accepted the data for processing without blocking the network thread. Conversely, the NetworkDriver
should return control to the thread calling send() as soon as possible after accepting the data for writing.

Data comes in from the operating system, is read from the socket by the NetworkDriver and given to the ProtocolEngines received method.
The ProtocolEngine is responsible for processing the bytes and interfacing to the rest of the broker or client.

The ProtocolEngine will write bytes to the wire using the NetworkDriver which implements the existing Sender interface from
org.apache.qpid.transport

Sender (already exists):

/**
 * This is implemented by things which accept data sending to a remote end pointinterface for
 */

 Sender<T>public interface
{

 // Sets the TCP idle time out
void setIdleTimeout(l);long

 // Accepts the data sendingfor
void send(T msg);

 // Flushes all data pending
void flush();

 // Closes the connection
void close();

}

The ProtocolEngine will implement the Reciever interface to be given bytes by the NetworkDriver in it's received method.

Receiever (already exists):

/**
 * This is implemented by things which accept data processinginterface for
 */

 Receiver<T>public interface
{

 // Called when data has been received from the network
void received(T msg);

 // Called when an exception has occured
void exception(Throwable t);

 // Called when the underlying socket has been closed readingfor
void closed();

}

The ProtocolEngine will implement the following interface:

/**
 * A ProtocolEngine is a Receiver java.nio.ByteBuffers. It takes the data passed to it in thefor
received
 * decodes it and then process the result.
 */

 ProtocolEngine Receiver<java.nio.ByteBuffer>public interface extends
{
 // Sets the network driver providing data ProtocolEnginefor this
void setNetworkDriver (NetworkDriver driver)

 // Returns the remote address of the NetworkDriver
void SocketAddress getRemoteAddress()

 // Returns number of bytes written
 getWrittenBytes()long

 // Returns number of bytes read
 getReadBytes()long

 // Called by the NetworkDriver when the socket has been closed readingfor
void closed()

 // Called when the NetworkEngine has not written data the specified period of time (willfor
trigger a
// heartbeat)
void writerIdle()

 // Called when the NetworkEngine has not read data the specified period of time (will closefor
the connection)
void readerIdle()

 /**
 * Accepts an AMQFrame writing to the network. The ProtocolEngine encodes the frame intofor
bytes and
 * passes the data onto the NetworkDriver sendingfor
 */

 void writeFrame(AMQDataBlock frame)
}

 ProtocolEngineFactory public interface
{

 // Returns a instance of a ProtocolEnginenew
ProtocolEngine newProtocolEngine()

}

The NetworkDriver will implement the following interface:

 NetworkDriver Sender<java.nio.ByteBuffer>public interface extends
{
 // Creates a NetworkDriver which attempts to connect to destination on port and attaches the
ProtocolEngine to
// it using the SSLEngine providedif

 NetworkDriver open(port, InetAddress destination, ProtocolEngine engine,static int
NetworkDriverConfiguration config, SSLEngine engine) OpenException;throws

 // listens incoming connections on the specified ports and address and creates a for new
NetworkDriver which
// processes incoming connections with ProtocolEngines created from factory using the SSLEngine if
provided

 void bind (port, InetAddress[] addresses, ProtocolEngineFactory factory, static int
 NetworkDriverConfiguration config, SSLEngine engine) throws
BindException;

 // Returns the remote address of underlying socket
void SocketAddress getRemoteAddress()

 /**
 * The length of time after which the ProtocolEngines readIdle() method should be called noif
data has been
 * read
 */
 void setMaxReadIdle(idleTime) int

 /**
 * The length of time after which the ProtocolEngines writeIdle() method should be called noif
data has been
 * written
 */
 void setMaxWriteIdle(idleTime) int

}

The NetworkConfiguration interface provides configuration data for the NetworkDriver:

/**
 * This provides a means NetworkDrivers to configure TCP options such as incominginterface for
and outgoing
 * buffer sizes and set particular options on the socket. NetworkDrivers should honour the values
returned
 * from here the underlying implementation supports them. if
 */

 NetworkDriverConfiguration public interface
{
 // Taken from Socket

 getKeepAlive()boolean
 getOOBInline()boolean
 getReuseAddress()boolean
 getSoLinger() Integer // means offnull

 getSoTimeout()int
 getTcpNoDelay()boolean
 getTrafficClass()int

 // The amount of memory in bytes to allocate to the incoming buffer

 getReceiveBufferSize(); int

 // The amount of memory in bytes to allocate to the outgoing buffer

 getSendBufferSize(size); int int
}

Realtionship to existing design

The can be thought of with AMQMinaProtocolSession taking the place of the ProtocolEngine andCurrent Architecture
AMQPFastProtocolHandler being the NetworkDriver. However the seperation of responsibility is not clear between the two and the are both
tied directly to MINA.

Current and proposed network interfaces notes

ID Raised
By

Description Status Outcome

1 RG Requirements 5,6,8,9 are design choices Done Moved to new section

2 RG Requirement 10 is observation / scope limit Done Moved to new section

3 RG Requirement 7 should be removed Done Removed

4 RG Requirement 9 expand buffering of bytes before wire, writers are not synch
it's about the contract. Similar to requirement 5

Done Folded into 5

5 MM Requirement 3 should be reworded since it's not exposing methods Done Reworded

6 RG Explain configuration interface better later in documentation Done added text

7 MM Document needs better flow requirements, current implemenation, new
implemntation, dont' see how it all hangs together

Done Current implementation
removed, replaced with
reference to current
architecture page

8 MM Doesn't highlight current problems Done Current architecture page talks
about this in detail

9 LB Link to reason why we're doing this work Done see point 7, 8

10 RG Previous / current design - move out and list w/explanation of what is wrong,
link here and can then provide what is being done to address this.

Done Added link to current design
page

11 RG Add link to old design parts Done added linke

12 MM Not clear how docs link together. Hard to review, tick boxes w/out expected
content defined

Comment

13 RG new implemntation needs to specify that protocol engine turns frames into
bytes

Done added text

14 RG Move diagram / overview of approach top top before detailed discussion Done Moved

15 RG Highlight that phase 1 is removing MINA leakage behind new interfaces and
that's all

Done Clarified in Port server to new
interface

16 MM Highlight now and phase 1, show MINA leakage Done see 15

17 RG Phaseing - interfaces, new decoders. Smaller parts better Done see Network IO page

18 ALL new diagram - future state, phase 1 Done see Port server to new
 pageinterface

19 MM Description does not tie with interfaces Done Amended

20 RG Interfaces could do with class level doc, how it's used, what it does. Network
driver extends sender, explain how it uses sender. ProtocolEngine is a
reciever. ND is a sender

Done added doc

21 MM Hard to see links between sender/reciever and class Done made explicit that ND is a
Sender, PE a Receiver

22 RG Put more details about the abstract interfaces and the concrete classes later
when we talk about this and refer back to interfaces

Done see 21

23 MM ND clearer seperation between what is Sender and what is ND and that ND
extends Sender

Done see 21

24 MM Need state transition diagram to show data transfer Done see 25

25 RG Sequence diagram showing flow of control Done added diagram

26 RG Detail to do with Job should move to impl doc Done removed Job info

27 MM Exception handling on interfaces, open, bind, configuration Done added throws clauses

28 RG Mention exception needs handled, throws OpenExcep/BindExcept. NOT
AMQE. AMQE delenda est

Done see 27

29 RG "New design" not new implementation Done changed title

30 RG ProtocolEngine desc should mention that it also converts frames to bytes Done added to description

31 RG NetworkDriverConfiguration needs to text to explain what is going with these
details

Done added text

32 RG Reduce interface diagram to just who network driver / protocol engine Done added diagram

1.
2.
3.
4.

33 MM Highlight difference with old Done added section detailing this

34 RG/MR map ND -> MINA, Rest -> Decoder Done see 33

35 RG Highlight lack of MINA leakage Done see Port server to new
interface

36 RG Implementation details (AMQProtocolEngine_0_N) should be removed Done removed

Port server to new interface

Objectives
Overview of new implementation
Work required

Add QpidByteBuffer
Implement NetworkDriver

MINANetworkDriver class
Changes required to implement MINANetworkDriver

Implementation of ProtocolEngine
Changes required to implement AMQProtocolEngine
Changes required to implement AMQProtocolEngineFactory

Implement NetworkConfiguration
Transport layer selection in o.a.q.server.Main

Notes:

Port server to new interface notes
Port server to new interface tests

Objectives

Implement ProtocolEngine and NetworkDriver from New common network and protocol interfaces
Isolate MINA dependencies into MINANetworkDriver
No changes to threading model
No changes to configuration file

Overview of new implementation

This first phase confines the MINA dependency behind the NetworkDriver interface. As can be seen by comparison from the following
diagram describing the 0.5 implementation, the changes to the flow of control are not significantly different. The only significant change is to
decouple the protocol processing from the network processing.

Work required

Add QpidByteBuffer

Class Method Change

org.apache.mina.common.ByteBuffer all At a number of points in the code we rely on behaviour present in MINA ByteBuffers but
not java.nio.ByteBuffers, in particular the auto-expanding functionality. To avoid having
to rewrite those parts at this stage we should import the MINA ByteBuffer class as
QpidByteBuffer and continue to use it as is. Note that this functionality is not related to
the network buffers, the QpidByteBuffers are the outputted data structure. The existing
implementations will have their MINA or java.nio.ByteBuffers converted to
QpidByteBuffers by the ProtocolEngine after decoding

Implement NetworkDriver

MINANetworkDriver class

/***
 * This class wraps the existing MINA implementation behind the NetworkDriver . This usesinterface
 * the AsyncWritePoolingFilter to buffer network writes so that send() is not synchronous.
 */

 class MINANetworkDriver NetworkDriver IoHandlerAdapterpublic implements extends
{
 /**
 * Creates a concrete NetworkDriver which opens a connection to the specified address on the
port
 * and starts the given ProtocolEngine instance using MINA
 */
 NetworkDriver open (port, InetAddress destination, ProtocolEngine enginer, static int
 NetworkDriverConfiguration config);

 /**
 * Listens incoming connections on the specified port and IPaddresses. Creates a for new
concrete
 * NetworkDriver each incoming connection and creates a ProtocolEngine with the givenfor
factory
 */
 NetworkDriver bind (port, InetAddress[] addresses, ProtocolEngineFactory factory, static int
 NetworkDriverConfiguration config);

 void SocketAddress getRemoteAddress()

 /**
 * The length of time after which the ProtocolEngines readIdle() method should be called noif
data has been
 * read
 */
 void setMaxReadIdle(idleTime) int

 /**
 * The length of time after which the ProtocolEngines writeIdle() method should be called noif
data has been
 * written
 */
 void setMaxWriteIdle(idleTime) int

 /**
 * Adds the data to an Event through AsynchWritePoolingFilter writing to MINAfor
 */
 void send(java.nio.ByteBuffer data)

}

Changes required to implement MINANetworkDriver

It replaces AMQPFastProtocolHandler and the majority of the implementation will be taken from that class. bind() will be taken from the
existing org.apache.qpid.server.Main

Class Method Change

AMQPFastProtocolHandler general Renamed to MINANetworkDriver, implements NetworkDriver interface

AMQPFastProtocolHandler exceptionCaught AMQP functionality removed, passes exception onto ProtocolEngine

AMQPFastProtocolHandler messageRecieved calls ProtocolEngine.received()

AMQPFastProtocolHandler sessionClosed calls ProtocolEngine.closed()

AMQPFastProtocolHandler sessionCreated creates a new ProtocolEngine from ProtocolEngineFactory, other AMQP
functionality moved to AMQProtocolEngine. Configuration taken from
NetworkDriverConfiguration

AMQPFastProtocolHandler sessionIdle calls ProtocolEngine.readerIdle() or ProtocolEngine.writerIdle() as appropriate

AMQMinaProtocolSession AMQMinaProtocolSession Threading pool configuration moved to NetworkDriver

AMQMinaProtocolSession initHeartbets moved to NetworkDriver.setMaxReadIdle() and NetworkDriver
.setMaxWriteIdle()

AMQMinaProtocolSession getRemoteAddress moved to NetworkDriver.getRemoteAddress

Main bind Moved to NetworkDriver

Main startup Network configuration moved to NetworkDriver, replaced with construction of
NetworkDriver

Implementation of ProtocolEngine

/***
 * This class replaces the existing AMQMinaProtocolSession and the ProtocolEngine implements

. It is interface
 * responsible processing bytes into frames and processing those frames. It is alsofor for
responsible for
 * turning frames into bytes and passing them onto the NetworkDriver writing. for
 */

 class AMQProtocolEngine ProtocolEnginepublic implements
{
 /**
 * Processes data. It uses AMQDecoder to decode the frame and place it into a Job laterfor
processing
 */
 void received(java.nio.ByteBuffer data)

 void setNetworkDriver (NetworkDriver driver)

 /**
 * calls NetworkDriver.getRemoteAddress()
 */
 SocketAddress getRemoteAddress()

 getWrittenBytes() long

 getReadBytes() long

 /**
 * Closes the protocol engine, aborts in-progress transactions etc.
 */
 void closed()

 /**
 * Generates a heartbeat frame
 */
 void writerIdle()

 /**
 * Closes the connection
 */
 void readerIdle()

}

Changes required to implement AMQProtocolEngine

Class Method Change

AMQMinaProtocolSession Whole class Rename to AMQProtocolEngine. decouple the AMQP semantics from the
underlying networking, for which it should now use MINANetworkDriver.
This class will implement the ProtocolEngine interface and become the
central point for processing AMQP frames. It will use a Job to hold
RecievedEvents for processing outside of the network thread.

AMQMinaProtocolSession received implement and use AMQDecoder to decode the byte stream before placing
onto Job for processing

AMQProtocolSessionMBean Needs updated to use
AMQProtocolSession without
relying on the underlying
implementation

Event, Job Created by
AMQProtocolEngine.recieved
rather than
AsynchPoolingReadFilter

AMQDecoder Should no longer extend
CumulativeProtocolDecoder

AMQPFastProtocolHandler AMQP related functionality moved to AMQProtocolEngine

AMQPProtocolProvider Removed

 class AMQProtocolEngineFactory ProtocolEngineFactory public implements
{

 // Returns a instance of an AMQProtocolEngine new
ProtocolEngine newProtocolEngine()

}

Changes required to implement AMQProtocolEngineFactory

No existing code needs to be changed here. The factory will simply create an AMQProtocolEngine and return it.

Implement NetworkConfiguration

Class Method Change

ServerConfiguration getNetworkConfiguration new method, needs to construct and return network configuration information

Transport layer selection in o.a.q.server.Main

Currently the broker's Main method contains setup code specific to MINA.

Main needs to be modified to remove the MINA specific option (NIO, MultiIO, executor pool etc) processing from there. This should be
replaced with creation of a Network Driver instance with configuration being picked up & applied in the same way as other subsystems are
configured ie. from ServerConfiguration.

Class Method Change

Main bind Moved to NetworkDriver

Main startup Network configuration moved to NetworkDriver, replaced with construction of NetworkDriver and calling
MINANetworkDriver.bind

Port server to new interface notes

ID Raised
By

Description Status Outcome

1 RG Overview not helpful, should reflect contents of doc Done Removed, replaced with ToC

2 MM Overview points 3/4 don't clearly relate to sections of doc Done Removed

3 MM Highlight no changes to configuration file Done Added to objectives

4 MM Overview should be Table of Contents Done Removed, replaced with ToC

5 RG MINANetworkDriver should talk about how it's implemented using Mina Done Added implementation details

6 MM Implementation of ProtocolEngine should highlight new code / changed
code

Done Added detailed list of code
changes

7 MM Describe the work / be clear on how they hang together

8 MM List of tasks between encapsulate / detailed changes, approach work in
discrete tasks

Done Split work on a class-by-class
basis

9 RG Intermediate steps unlikely to be useful Just a
note

10 MM Taks list needs to relate to document content Done Task list now integral part of
structure

11 AS/RG Split into better tasks - new interfaces, heartbeating, MINANetworkDriver,
ProtocolEngine

12 MM Diagram should show difference between current state and new state Done Diagram coloured in

1.
a.
b.
c.
d.

2.

3.

13 MM Tasks should related to overview, remove dependency on MINA Done

14 LB Highlight this is phase 1 Done In Network IO page

Port server to new interface tests

Test Objectives
Performance Test Plan
Existing System Tests

ConnectionTest
AcknowledgeTest
MultipleConnectionTest
SimpleACLTest

New system tests required
ServerHeartbeatTest

testClientWriteIdleTest
Existing Unit Tests
New unit tests required

MINANetworkDriver tests
testBindOpen
testBindSocketInUse
testSend
testSetReadIdle
testSetWriteIdle
testClosed
testExceptionCaught
testGetRemoteAddress

AMQDecoder tests
testDecodePI09
testDecodePI08
testDecodePartialDataBlock
testDecodeCompleteDataBlock
testEncodeFrame

AMQProtocolEngine tests
testPartialReceived
testCompleteReceived
testReaderIdle
testWriterIdle
testGetRemoteAddress

AMQProtocolEngineMbean tests
testGetRemoteAddress

NetworkDriverConfiguration tests

Test Objectives

This initial phase of work involves minimal changes to existing classes and behaviour. There should be no impact on performance and
existing functionality should remain unchanged. The only significant change is the stage at which the byte stream is encoded and decoded.
Testing needs to verify that there has not been a negative affect on the fundamental parts of connection processing: connection
establishment, encoding, decoding, frame handling, virtualhost selection failure, authentication failure, authorization failure and handling
multiple connections at the same time.

Performance Test Plan

There should be no impact on performance since the underlying implementation and threading model remains the same. The performance
test suite will be used to validate that there has not been a negative impact on performance.

Existing System Tests

There should be no change in functionality, the existing system tests should continue to function as is. System tests will present the main
validation that this work has not had any negative impact. All system tests which create a connection to a broker will exercise the changed
code.

In particular the following test cases contain tests which fully exercise the changed code paths in the broker:

ConnectionTest

This TestCase contains:

testSimpleConnection which verifies that a basic AMQP connection can be created establishing that:
TCP connections can be created from client to broker
Protocol negotiation continues to work
The broker can decode and encode frames properly
The broker is properly handling decoded frames

testPasswordFailureConnection which verifies that a connection with incorrect authentication fails to be established and throws the
correct exception
testUnresolvedVirtualHostFailure which verifies that a connection to the wrong virtual host fails to be established and throws the
correct exception

1.
2.

1.

AcknowledgeTest

This TestCase contains:

test2ConsumersAutoAck which verifies that multiple connections doing input/output simultaneouslyworks
test2ConsumersTx which verifies that multiple connections doing input/output simultaneously inside a transaction works

MultipleConnectionTest

This TestCase contains:

test which verifies that many connections reading and writing to the broker at the same time works

SimpleACLTest

This TestCase contains multiple tests which will verify that connection attempts where authorization fails continue to throw the correct
exception.

New system tests required

No system tests exist which test the AMQP heartbeating functionality.

ServerHeartbeatTest

testClientWriteIdleTest

This test will open a client connection and let it idle for longer than the timeout period. It will verify that the connection remains usable after
this idle period.

Existing Unit Tests

Existing unit test coverage of the classes involved is minimal to non-existent. I will add tests for the changed functionality, but not for the
existing functionality which has not been modified. org.apache.mina.common.ByteBuffer has an existing comprehensive unit test which will
be imported along with it.

New unit tests required

Unit tests will need to be written for MINANetworkDriver, AMQProtocolEngine and AMQDecoder.

MINANetworkDriver tests

The unit test will create a ProtocolEngine to implement a simple echo server which will send back any recieved data.

testClientWriteIdleTest
testBindOpen
testBindSocketInUse
testSend
testSetReadIdle
testSetWriteIdle
testClosed
testExceptionCaught
testGetRemoteAddress

testBindOpen

This test will create two NetworkDrivers, one of which binds to a socket and one of which opens a socket. This test will assert that the open
fails before the bind and that open succeeds after the bind.

testBindSocketInUse

This test will create two NetworkDrivers, bind one to a port and check that that succeeds. It will then attempt to bind the second
NetworkDriver to the same port and verify that BindException is thrown.

testSend

This test will create one NetworkDriver and call it's send method and verify that the data is passed to the ProcotolEngines receive() method.

testSetReadIdle

This test will create one NetworkDriver and set it's read idle timeout. It will verify that the ProtocolEngines readIdle method is called after the
appropriate time.

testSetWriteIdle

This test will create one NetworkDriver and set it's write idle timeout. It will verify that the ProtocolEngines writeIdle method is called after the
appropriate time.

testClosed

This test will create one NetworkDriver and close it. It will verify that the ProtocolEngines closed method is called.

testExceptionCaught

This test will create one NetworkDriver bind it and open a socket. It will forcibly close the socket to generate an exception. It will verify that
the ProtocolEngines exception method is called.

testGetRemoteAddress

This getRemoteAddress method and returns a SocketAddress that corresponds to localhost.

AMQDecoder tests

testDecodePI09
testDecodePI08
testDecodePartialDataBlock
testDecodeCompleteDataBlock
testEncodeFrame

testDecodePI09

This test will create a byte buffer containing an AMQP 0-9 protocol header and check that testDecode returns a ProtocolInitiation with the
protocolMajor set to 0 and protocolMinor set to 9.

testDecodePI08

This test will create a byte buffer containing an AMQP 0-9 protocol header and check that testDecode returns a ProtocolInitiation with the
protocolMajor set to 0 and protocolMinor set to 8.

testDecodePartialDataBlock

This test will create a byte buffer containing a partial data block and verify that doDecode returns null to indicate that the data should be held
until more arrives.

testDecodeCompleteDataBlock

This test will create a byte buffer containing a complete AMQP data block and verify that doDecode returns an AMQFrame of the
apppropriate type.

testEncodeFrame

This test will create an AMQP frame and verify that encodeFrame returns a byte array with the appropriate contents.

AMQProtocolEngine tests

testPartialReceived
testCompleteReceived
testReaderIdle
testWriterIdle
testGetRemoteAddress

These tests will use a MockNetworkDriver to test the functionality of the ProtocolEngine parts of AMQProtocolEngine.

testPartialReceived

This test will pass in a ByteBuffer containing a partial AMQP frame and check that the frame handler is not called. It will then pass in a
second ByteBuffer containing the rest of the AMQ frame and check that the frame handler is called.

testCompleteReceived

This test will pass in a ByteBuffer containing a complete AMQP frame and check that the frame handler is called.

testReaderIdle

This test will call the ProtocolEngines readerIdle method and check that the ProtocolEngine closes itself

testWriterIdle

This test will call the ProtocolEngines writerIdle method and check that the ProtocolEngine calls the NetworkDriver.send() method with an
encoded HeartBeatBody frame.

testGetRemoteAddress

This test will verify that the ProtocolEngine.getRemoteAddress method calls the NetworkDriver.getRemoteAddress method and returns the
same data.

AMQProtocolEngineMbean tests

testGetRemoteAddress

testGetRemoteAddress

This test will verify that the ProtocolEngineMbean.getRemoteAddress method calls the ProtocolEngine.getRemoteAddress method and
returns the same data.

NetworkDriverConfiguration tests

This test case will construct a ServerConfiguration with known values.

h7. testGetKeepAlive

This test will verify that the method returns the expected value.

h7. testGetOOBInline

This test will verify that the method returns the expected value.

h7. testGetReuseAddress

This test will verify that the method returns the expected value.

h7. testGetSoLinger

This test will verify that the method returns the expected value.

h7. testGetSoTimeout

This test will verify that the method returns the expected value.

h7. testGetTcpNoDelay

This test will verify that the method returns the expected value.

h7. testGetTrafficClass

This test will verify that the method returns the expected value.

h7. testGetReceiveBufferSize

This test will verify that the method returns the expected value.

h7. testGetSendBufferSize

This test will verify that the method returns the expected value.

Java Broker Design - Operational Logging

Operational Logging

The current logging configuration in the Java broker is focused for developers. Logging is performed on a class basis and as a result it is not
easy to enable logging to get an operational view of the broker. Some work has been done to create configuration files that set the levels on
various classes to provide the operational view of the broker (see). While this provides some good detail it does notDebug using log4j
provide the full picture.

The page will document the logging information that would be useful to provide, a suggested approach that should be followed and
guidelines to developers for adding operational logging messages.

Overview
Log Streams
Logging Content

Status Updates
Statistics updates

Logging Format
Logging Hierarchy
Guidelines for logging changes
Further Design Details

Overview

Currently logging is performed added in an ad-hoc manner by the devloper, ususlly to assist in the developemnt of the code base.

Log messages should be aimed at helping to provide users and/or support staff with information on the health of the broker; and - in the case
where there has been some issue - help them diagnose the cause of that issue.

As such these messages should be readable without knowledge of the Qpid code base, they should not be so frequenet as to impact the
performance of the broker but should be frequent enough such that diagnosis of issues is possible.

Log messages should occur whenever a significant event occurs, for instance the creation or destruction of a connection to the broker. The
log message should contain enough information to be able to correlate the message with a business process event. In the case of a
connection open the remote address, the login name, the virtual host, and the application id should be included in the log message.

Log messages at level and above are expected to be turned on in a production environment.INFO

Log Streams

There are number of data streams that this work should aim to address either directly as part of the standard opperation or through a

1.
2.

dynamically configurable change.

Major status changes reflecting broker state.
Receive periodic statistical data on broker performance/processing.
Ability to full track a single message through the broker.

Logging Content

There are two types of logging that are valuable to the operation of a Qpid broker:

State updates
Statistical updates

The main focus of the logging update is to improve the log file output however it should be remembered that the values should also be easily
queried via the management console.

The existing logging within the broker should also be taken into consideration when performing this work. The analysis of this logging can be
found .here

Status Updates

The following model objects should log updates on state changes, creation / descruction events, this will usually mean a single log instruction
as the event occurs.

Broker
VirtualHost
MessageStore
Connection
Channel
Queue
Exchange
Binding

Statistics updates

In addition to status events being logged, we should periodically log statistics. Each model object may have a set of statistics that they wish
to report but it is expected that the statistics will be based on the period between logs. There may also be desire to log at more than one
interval. i.e once per minute, hour, day. The models objects may record state that can then be reported with the periodic statistics update.

Rate Statistics

The rate values can be reported at each of the levels as highlighed bellow. However, for Subscription only the outgoing rate makes sense.

Broker
VirtualHost
MessasgeStore
Connection
Channel
Queue
Exchange
Incoming message rate (count / bytes)
Outgoing message rate (count / bytes)
Min / Max / Average message size

Subscription
Outgoing message rate (count / bytes)
Min / Max / Average message size

Total Statistics

The total values can be reported for a number of objects as listed here, as with the rate values the totals for subscription only make sence for
outgoing messages.

Broker
VirtualHost
MessageStore
Connection
Channel
Last Activity / Idle Notification
Total Incoming message (count / bytes)
Total Outgoing message (count / bytes)
Peak Incoming message (count / bytes)
Peak Outgoing message (count / bytes)

Broker
VirtualHost
MessageStore
Number of currrent connections
Total number of connections made

Subscription
Last Activity / Idle Notification
Total Outgoing messages (count / bytes)
Peak Outgoing message (count / bytes)

In addition there are a number of statistics that can be reported by the various model objects. These values can be included in any periodic
report.

Broker
Heap current usage
Heap peak usage

MessasgeStore
Disk space used
Memory used
Entities Stored (Queue, Exchange, Binding, Message)

Connection
Number of active sessions
Number of current sessions
Number of consumers

Channel
Number of consumers

Queue
Current subcription count
Active subcription count
Binding Count
Current Queue size (count / bytes)
Messages sent (count / bytes)

Exchange
Min / Max / Average message size
Last Activity / Idle Notification
Bound queues
Total Messages sent (count / bytes)

Subscription
Min / Max / Average message size
Last Activity / Idle Notification
Total Outgoing messages (count / bytes)
Peak Outgoing message (count / bytes)
Unacknowledged size (count / bytes)

As will be mentioned in the section, any collection and reporting must be mindful of the performance overhead in doing so.guidelines

Logging Format

In order to keep the amount of data logged to the essential the message should be short and unambiguous - but easily recognisable. So the
following formats are recommend for each model. The UID listed bellow will allow the disabmbigiuation between multiple entries. This value
must be human readable so is expected to be an integer value.

Broker
b-
VirtualHost
vh(<name>)
Conection
con:<uid>(<username>, <ip>, <vhost-name>)
Channel
ch:<uid>
Subscription
sub:<uid>(<queue-name>)

Example:

[conn:1(guest, 127.0.0.1, /)]/[ch:2]/[sub:1(myqueue)]

Logging Hierarchy

When looking at augmenting the logging of the broker it makes sence to take a step back and provide an operational based logging hierarchy
.qpid. in addition to the developer focused org.apache.qpid.

The hierarchy of loggers should be structured such that it is easy to enable start or stop monitoring at runtime. The suggested hierarchy is as
follows. The hierarchy is more of a graph and as a result it is possible to have more than one path to a logger. When implementingNOTE
care must be taken so that each event is only logged once. i.e. Enabling and logging should result in the Exchange Queue not Binding

operation being logged twice, once for the 'queue to exchange' and once for the 'exchange to queue'. In both cases the log statement will be
the same however ony one instance should actually be logged.

qpid Broker

 [<username>]
 Connection [<id>] Channel [<id>] Subscription [<id>]

 VirtualHost <name> Binding

 Exchange [<name>]

 Queue [<name>]

 MessageStore

This would allow the quick enabling or disabling of the various logging events.

Guidelines for logging changes

To date there has been no discussion around what, who or even when to log and each developer has been left provide logging that they see
fit. As mentioned earlier Log messages should occur whenever a significant event occurs, The log message should contain enough
information to be able to correlate the message with a business process event. In the case of a connection open the remote address, the
login name, the virtual host, and the application id should be included in the log message.

The log statements should be short and the reader should not need to refer to previous log statements in order to fully understand the
situation. i.e. A new consumer log statement should include the connnection and virtualhost details rather than just the connection details and
so requiring the user to read back to find the details around the connection creation.

All log statements that perform any computation before the log call must be wrapped with the calls to remove theis<LEVEL>Enabled
computation should the log statement not be required.

When adding a new log statement a comment should be placed before hand highlighting if this is on the critical message routing path to
allow reviewers to better gauge the potential impact. In addition the performance suit should be run with and without the log statement to get
an actual measure of the impact.

Further Design Details

Existing Logging Analysis
Logging Format Design
Status Update Design

Existing Logging Analysis

Existing Logging Analysis

Taking a look at the the logging levels (extracted details attached) already present in the broker the following log statements should be
encorporated in to any detailed design for status logging.

There should be two levels of logging. Standard info (Detailed 'I:' below) is expected to be the default status of the broker. A debug ('D:')
setting could also be provided to present more details. This debug level should also be suffcient to address the message tracing goal.

Broker
I:Startup Complete(Broker Ready)/Port Bind

MessageStore
D:Enqueue
D:Dequeue

Channel
D:MessageDropping(DeadLetter)

Queue
D:Enqueue
D:Dequeue

Exchange
D:Route

Subscription
D:Send
D:Rejection

Authentication

I:Auth Success
I:Auth Failure

Management
I:Startup Complete/Port Bind
I:Admin Changes

Logging Format Design

Logging Format Design

This design follows on from the high level design to provide a more detailed description of the format that all logged messages will take.work
The design is split in to two sections:

LogSubject Detail
Log Formating

LogSubject Detail

Each LogSubject in the system has a format that for logging its own indentifier. It is invisaged that each Model instance will have a
LogSubject member variable to act as a cache for their log format.

LogSubject Identifiers

The following is the basic LogSubject identifiers:

LogSubject Identifier

Broker b

MessageStore ms

VirtualHost vh(<name>)

Conection con:<uid>(<username>@<ip>/<vhost-name>)

Channel ch:<uid>

Queue qu(<queueName>)

Exchange ex(<exchangeName>)

Binding bd(<routingKey>)

Subscription sub:<uid>:qu(<queueName>)

Plugin pl(name[, <optional values>]*)

The plugin format allows for simple identification of the plugin such as 'ACL', 'Firewall' as well as giving the plugin the option to extend its
base format. This extension is to allow easy processing of the log file.

LogSubject Paths

Broker, VirtualHost & Connection are root identifiers which means no parent nodes need be pre-appended to the log statement.

LogSubject Log Path Example

MessageStore vh(name)/ms [vh(/)/ms]

Channel <Connection>/ch:<uid> [con:1(user@127.0.0.1/)/ch:1]

Queue <Virtualhost>/qu(<queueName>) [vh(/)/qu(testQueue)]

Exchange <Virtualhost>/ex(<exchangeName>) [vh(/)/ex(amq.direct)]

Binding <Virtualhost>/<Exchange>/<Queue>/bd(<routingKey>) [vh(/)/ex(amq.direct)/qu(testQueue)/bd(testQueue)]

Subscription sub:<uid>:qu(<queue-name>) [sub:2:qu(testQueue)]

Plugin <Entity>/pl(name[, <optional values>]*) [pl(ACL, Consume, qu(testQueue))]

The plugin entitiy allows for plugins to log additional details about their operation on an entity. For example as shown above an ACL plugin
can log details about the attempt to consume from Queue 'testQueue'.

Log Formatting

To ensure that all log messages are displayed consistently the logging framework will provide the Datetime and Entity details, the requested
log message will be added to the end this preamble:

Log Format

<ISO-8601 Datetime (UTC based w/ TZ)> <Logging Level> [<LogActor>] [<LogSubject>] <LogMessage>

Example Log Statement

2009-06-29 13:35:10,1234 +0100 Message [con:1(user@127.0.0.1/)/ch:2] [sub:1:qu(myqueue)]
Subscription Event Occcured

Status Update Design

Status Update

Following on from the high level , this page will provide a more detailed design approach to implement status update logging in thedesign
Java broker.

The logging identified is not suitable to be directly used by Log4j as there is multiple routes and loops in the graph.hierarchy

Abstracting the logging is recommended as this will allow us to simply provide Qpid specific optimisations such as providing the log prefix.

This design will cover the following areas:
Contents

Logging Configuration
Status Updates
Logging Abstraction
Logging Usage
Initial Status Messages

Additional Documentation

Logging Format Design
Functional Specification
Test Plan
Test Specification
Technical Specification

Logging Configuration

At this stage configuration will be limited to the addition to the main config.xml file of the following option:

<broker>
 ...
 ON<status-updates> </status-updates>
 ...
</broker>

This on setting will be the default value if the section is not included in the configuration file. The setting will be global for allstatus-update
virtualhosts and will be exposed via the management console as logger 'qpid.status' to allow dynamic setting.

The ability to configure more fine grained logging will be investigated , but will not be implemented in the initial phase.here

Status Updates

In the first phase updates only status updates will be provided. Status updates should take the form of general operational logging level, no
logging on message delivery path way and No performance impact. The recommendation will be to have these enabled for production use.
e.g. Creation/Destruction events

The status updates can also be used in a second phase to provide additional logging to assist development.
The additional logging can be performed on the message delivery path way. This may have performance impact and so would not be
recommended for long term production use.
e.g. Message Enqueue/Dequeue

Logging Abstraction

The abstraction layer allows us to fully decouple the logging mechanism from any operational logging that the broker may wish to perform.
The following code highlights show how we would abstract the logging operations.

The approach to logging is that a will be recoreded as a and will be used to perform logging the log messages asLogActor ThreadLocal
highlighted on . The will take two parameters, the and the . When a Status eventLogging Format Design LogActor LogSubject LogMessage
occurs that should be logged the can be retrieved from the thread thus avoiding passing the through as a parameter to allLogActor LogActor
locations were it must be logged. The initial will be and . Later phases would introduce LogActors AMQPActor ManagementActor

. These are responsible for checking that the logging should be performed for both themselves and the HouseKeepingActor LogActors

. The then provids their log formatted name as per the format along with the message to the LogSubject LogActor design
. Initially the configuration will be a simple on/off, however, in a future phase the details can be used to identify if loggingRootMessageLogger

should proceed for that and combination. At this stage selective configurations is not part of this design.LogActor LogSubject

The use of the allows for situations such as to have a associated with the . This will allow a LogActor Binding Connection Binding Binding
create event to be logged like this:

2009-06-29 13:35:10,1234 +0100 MESSAGE [con:1(guest@127.0.0.1/)/ch:2]
[ex(amq.direct)/qu(testQueue)/bd(routingKey)] BND-1001 : Binding Created

rather having no details about how the creation occurred:

2009-06-29 13:35:10,1234 +0100 MESSAGE [vh(/)/ex(amq.direct)/qu(testQueue)/bd(routingKey)]
BDN-1001 : Create

Interfaces

LogActor

/**
 * LogActor the entity that is stored as in a ThreadLocal and used to perform logging.
 *
 * The actor is responsible formatting its display name the log entry.for for
 *
 * The actor performs the requested logging.
 */

 LogActorpublic interface
{
 /**
 * Logs the specified LogMessage about the LogSubject
 *
 * Currently logging has a global setting however will later be revised andthis
 * as such the LogActor will need to take into consideration any configuration new
 * as a means of enabling the logging of LogActors and LogSubjects.
 *
 * @param actor The actor that is requesting the logging
 * @param message The message to log
 */
 void message(LogSubject subject, LogMessage message);public
}

LogSubject

/**
 * Each LogSubject that wishes to be logged will implement to provide theirthis
 * own display representation.
 *
 * The display representation is retrieved through the toString() method.
 */

 LogSubjectpublic interface
{
 /**
 * Logs the message as provided by .valueOf(message).String
 *
 * @returns the display representation of LogSubjectString this
 */
 toString();public String
}

RootMessageLogger

/**
 * The RootMessageLogger is used by the LogActors to query if
 * logging is enabled the requested message and to provide the actualfor
 * message that should be logged.
 */

 RootMessageLoggerpublic interface
{
 /**
 * Determine the LogSubject and the LogActor should beif
 * generating log messages.
 *
 * @param logSubject The subject of log requestthis
 * @param logActor The actor requesting the logging
 * @ the message should be logged.return boolean true if
 */
 isMessageEnabled(LogActor actor, LogSubject subject);boolean

 /**
 * Log the raw message to the configured logger.
 *
 * @param message The message to log
 * @param throwable Optional Throwable that should provide stact trace
 */
 void rawMessage(message, Throwable throwable);String
}

RawMessageLogger

/**
 * A RawMessage Logger takes the given and any Throwable and writes theString
 * data to its resource.
 */

 RawMessageLoggerpublic interface
{
 /**
 * Log the message and formatted stack trace any Throwable.for
 *
 * @param message to log.String
 * @param throwable Throwable which to provide stack trace.for
 */
 void rawMessage(message, Throwable throwable);public String
}

Logging Usage

Logging of a Channel Creation

pubic class Connection
...
 LogActor amqpActor = // retrieved from ThreadLocal.
//_channelSubject is an instance LogSubject that knows how to represent Connectionthis
amqpActor.logMessage(_connectionSubject, LogMessages.CHANNEL_CREATE());this

...

Would result in the following based on the .Logging Format Design

2009-06-29 13:35:10,1234 +0100 MESSAGE [con:1(guest@127.0.0.1/)] [ch:2] ChM-1001 : Channel Created

Logging of a new consumer creation

...
 amqpActor.logMessage(_subsriptionSubject, LogMessages.SUBSCRIPTION_CREATE());this
...

Would result in the following:

2009-06-29 13:35:10,1234 +0100 MESSAGE [con:1(guest@127.0.0.1/)/ch:2] [sub:1:qu(myqueue)] Sub-1001
: Subscription Created

Initial Status Messages

Broker

Startup
Configuration details
Ready
Shutdown

ManagementConsole

Startup
Configuration details
Ready
Close

VirtualHost

Create
Configuration details
Close

MessageStore

Startup
Recover Status
Start
Progress
End
Close

Connection

Open
Close

Channel

Create
Flow Status
Destroy

Queue

Create
Destroy

Exchange

Create
Destroy

Binding

Create
Destroy

Subscription

Create
Destroy

Operational Logging - Status Update - Functional Specification

Functional Specification

This page documents the functional specification for the status updates improvement to the Java Broker.

Log Messages

This is the list of initial status messages that the broker will be configured to produce at for status logging.
These messages will be parameterised as shown and will be accesed via an interface so that we need only maintain the text in a single
location. While the messages here do no show These standarised messages will also allow for easy internationalisation.
Each section includes the expected full format of a log message. So taking the logging as an example an entry in the log file for theBroker
startup of a 0.6 release broker would be:

2009-07-09 15:50:20 +0100 MESSAGE BRK-1001 : Startup : Version 0.6 Build: exported

The expected format is shown at the start of each section in . This is then followed by the list of messages that can be logged. Thisitalics
formating (as fully defined) is the reason that each log message that follows does not need to contain a lot of details. For example, whenhere
logging the creation of a Channel you would want to know more details than just the prefetch count hence when the message is logged it
would look like this:

2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2] CHN-1001 : Create :
Prefetch 400

Broker
<DATETIME> MESSAGE <Message>
BRK-1001 : Startup : Version: <Version> Build: <Build>
BRK-1002 : Starting : Listening on <Transport> port <Port>
BRK-1003 : Shuting down : <Transport> port <Port>
BRK-1004 : Ready
BRK-1005 : Stopped
BRK-1006 : Using configuration : <path>
BRK-1007 : Using logging configuration : <path>

ManagementConsole
<DATETIME> MESSAGE <Message>
MNG-1001 : Startup
MNG-1002 : Starting : <service> : Listening on port <Port>
MNG-1003 : Shuting down : <service> : port <Port>
MNG-1004 : Ready
MNG-1005 : Stopped
MNG-1006 : Using SSL Keystore : <path>

VirtualHost
<DATETIME> MESSAGE [vh:(<name>)] <Message>
VHT-1001 : Created : <name>
VHT-1002 : Closed

MessageStore
<DATETIME> MESSAGE [vh:(<name>)] <Message>
MST-1001 : Created : <name>
MST-1002 : Store location : <path>
MST-1003 : Closed
MST-1004 : Recovery Start [: <queue.name>]
MST-1005 : Recovered <count> messages for queue <queue.name>
MST-1006 : Recovery Complete [: <queue.name>]

Connection
<DATETIME> MESSAGE [con:1(guest@127.0.0.1/test)] <Message>
CON-1001 : Open : Client ID <id> : Protocol Version : <version>
CON-1002 : Close

Channel
<DATETIME> MESSAGE [con:1(guest@127.0.0.1/test)/ch:2] <Message>
CHN-1001 : Create : Prefetch <count>
CHN-1002 : Flow <value>
CHN-1003 : Close

Queue
<DATETIME> MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/qu(myqueue)] <Message>
QUE-1001 : Create : [AutoDelete] [Durable|Transient] [Priority:<levels>] Owner:<name>
QUE-1002 : Deleted

Exchange
<DATETIME> MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/ex(amq.direct)] <Message>
EXH-1001 : Create : [Durable] Type:<value> Name:<value>
EXH-1002 : Deleted

Binding
<DATETIME> MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/ex(amq.direct)/qu(myQueue)/rk(myQueue)] <Message>
BND-1001 : Create [: Arguments : <key=value>]
BND-1002 : Deleted

Subscription
<DATETIME> MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/sub:1:qu(myqueue)] <Message>
SUB-1001 : Create : [Durable] [Arguments : <key=value>]
SUB-1002 : Close

Comments

ID by Summary Status

1 Robbie MC has two ports one for RMI Registry, one
for RMI ConnectorServer

I've parameterized startup/shutdown to take a service value. So I'd expect
two entries in the log for our current MC

2 Robbie MC IDs are not unique fixed

Operational Logging - Status Update - Technical Specification

Technical Specification

Overview
New classes

Interface list
Class List
Psuedo-Code Example

How to provide fixed log messages
Additions to existing classes

Main
ApplicationRegistry
ConfigurationFileApplicationRegistry
JMXManagedObjectRegistry
VirtualHost
DerbyMessageStore/MemoryMessageStore
DerbyMessageStore
AMQMinaProtocolSession
AMQChannel
QueueRegistry
AbstractExchange
ExchangeBindings
SubscriptionImpl

Deletions from existing classes
AMQMinaProtocolSession
AMQPFastProtocolHandler
BasicConsumeMethodHandler
ChannelFlowHandler.java:
Configuration
ConnectionCloseMethodHandler
DerbyMessageStore
HeadersExchange
JMXManagedObjectRegistry
Main
MemoryMessageStore
QueueBindHandler
QueueDeclareHandler
QueueUnbindHandler
SimpleAMQQueue
SubscriptionImpl
VirtualHost

Feedback

Overview

This technical specification page will detail four areas of work to complete the Status Update change:

The new classes required
How to provide fixed log messages
The additions to existing classes
The deletions from existing classes

New classes

The new classes required draws on the work already completed. The abstraction layer will be the new code created as part of thisdesign
work. This can be split in to Interfaces and Classes.

Interface list

These interfaces form the abstraction layer.

Interface Description

LogActor Actor that will perform the logging.

LogSubject Subject of the logging .

LogMessage Factory to generate LogMessages.

RootMessageLogger Root logger that performs logging.

RawMessageLogger Wrapper for object that actually performs the logging.

 Class List Implementation of the Actors

Class Description

AMQPActor Responsible for providing data about the Connection when logging.

ManagementActor Responsible for providing data about the Management Connection when logging.

Implementation of the LogSubject

Each of these will ensure they toString according to the .LogSubjects format design

Class Description

ConnectionLogSubject Logger responsible for the Connection format.

ChannelLogSubject Logger responsible for the Channel format.

QueueLogSubject Logger responsible for the Queue format.

ExchangeLogSubject Logger responsible for the Exchange format.

BindingLogSubject Logger responsible for the Binding format.

SubscriptionLogSubject Logger responsible for the subscription format.

MessageStoreLogSubject Logger responsible for the MessageStore format.

RootMessageLoggerImpl Base logger that performs the final message formatting before logging.

LogMessageFactoryImpl Factory to create the LogMessages.

Logging

Class Description

Log4jRawMessageLogger Wrapper to use log4j as the output mechanism.

TestRawMessageLogger Wrapper that provides an inspectable log for testing.

Log Messages

Class Description

BrokerLogMessages A static class that contains accessors to the various parametrised log messages.

Psuedo-Code Example

// logActor is retreived from the ThreadLocal
// a logMessage of type logMessage (with parms) is then requested the specified subject.for
logActor.logMessage(logSubject, LogMessage(parms))

...
instance of LogActor{

RootLogger logger = ...getRootLogger();L

 void logMessage(LogSubject subject, LogMessage message)public
 {
 (logger.isMessageEnabled(, subject)if this
 {
 // FormatMessage in to :
// MESSAGE [.toString()] [subject.toString()] <messageID> : <message value>this
logger.logMessage(FormatMessage(, subject, message));this
 }
 }
}

How to provide fixed log messages

The calls for providing a fixed method of accessing the messages. Such as the followingdesign

 version= ;String "0.6"
 build=794277;int

 message = BrokerLogMessages.BRK-1001(version, build);String

The value of above would bemessage

BRK-1001 : Startup : Version: 0.6 Build: 794277

This can be done easily with the use of a and a property file.MessageFormatter

BRK-1001 = Startup : Version {0} Build: {1}

Initially the BrokerLogMessages class could be hand coded but in a future iteration it could be generated based on the content of the
property file.

Additions to existing classes

The following classes will have logging added to provide the required log messages specified in the .Functional Specification

Main

BRK-1001 : Startup : Version: <Version> Build: <Build>
BRK-1004 : Ready
BRK-1007 : Using logging configuration : <path>

ApplicationRegistry

BRK-1002 : Starting : Listening on <Transport> port <Port>
BRK-1003 : Shuting down : <Transport> port <Port>
BRK-1005 : Stopped

ConfigurationFileApplicationRegistry

BRK-1006 : Using configuration : <path>

JMXManagedObjectRegistry

MNG-1001 : Startup
MNG-1002 : Starting : <service> : Listening on port <Port>
MNG-1003 : Shuting down : <service> : port <Port>
MNG-1004 : Ready
MNG-1005 : Stopped
MNG-1006 : Using SSL Keystore : <path>

VirtualHost

VHT-1001 : Created : <name>
VHT-1002 : Closed

DerbyMessageStore/MemoryMessageStore

MST-1001 : Created : <name>
MST-1003 : Closed

DerbyMessageStore

MST-1002 : Store location : <path>
MST-1004 : Recovery Start [: <queue.name>]
MST-1005 : Recovered <count> messages for queue <queue.name>
MST-1006 : Recovery Complete [: <queue.name>]

AMQMinaProtocolSession

CON-1001 : Open : Client ID <id> : Protocol Version : <version>
CON-1002 : Close

AMQChannel

CHN-1001 : Create : Prefetch <count>
CHN-1002 : Flow <value>
CHN-1003 : Close

QueueRegistry

QUE-1001 : Create : [AutoDelete] [Durable|Transient] [Priority:<levels>] Owner:<name>
QUE-1002 : Deleted

AbstractExchange

EXH-1001 : Create : [Durable] Type:<value> Name:<value>
EXH-1002 : Deleted

ExchangeBindings

BND-1001 : Create [: Arguments : <key=value>]
BND-1002 : Deleted

SubscriptionImpl

SUB-1001 : Create : [Durable] [Arguments : <key=value>]
SUB-1002 : Close

Deletions from existing classes

The following log statements should be removed from the broker packages as they are being replaced with a new message.

AMQMinaProtocolSession

_logger.info("Channel[" + channelId + "] awaiting closure - processing close-ok");
_logger.info("Closing channel due to: " + e.getMessage());
_logger.info("Closing connection due to: " + e.getMessage());
_logger.info("Closing connection due to: " + e.getMessage());
_logger.debug("REALLY Closing protocol session:" + _minaProtocolSession);

AMQPFastProtocolHandler

_logger.info("Protocol session created for:" + protocolSession.getRemoteAddress());
_logger.info("Session opened for:" + protocolSession.getRemoteAddress());
_logger.info("Protocol Session closed for:" + protocolSession.getRemoteAddress());
_logger.debug("AMQPFastProtocolHandler created");

BasicConsumeMethodHandler

_logger.debug("BasicConsume: from '" + body.getQueue() +
_logger.debug("No queue for '" + body.getQueue() + "'");
_logger.debug("Closing connection due to invalid selector");

ChannelFlowHandler.java:

_logger.debug("Channel.Flow for channel " + channelId + ", active=" + body.getActive());

Configuration

_devlog.info("Configuring logger using configuration file " + logConfigFile.getAbsolutePath());
_devlog.info("log file " + logConfigFile.getAbsolutePath() + " will be checked for changes every
_devlog.debug("Using configuration file " + _configFile.getAbsolutePath());
ex.getMessage());

ConnectionCloseMethodHandler

_logger.info("ConnectionClose received with reply code/reply text " + body.getReplyText() + " for
" + session);

DerbyMessageStore

_logger.info("Configuring Derby message store for virtual host " + virtualHost.getName());
 _logger.info("Recovering persistent state...");
_logger.info("Persistent state recovered successfully");
_logger.info("Recovering durable exchange " + exchange.getName() + " of type " +
exchange.getType() + "...");
_logger.info("Restoring binding: (Exchange: " + exchange.getName() + ", Queue: " + queueName
_logger.info("Recovered message counts: " + queueRecoveries);
_logger.debug("public void createQueue(AMQQueue queue = " + queue + "): called");
_logger.debug("public void removeQueue(AMQShortString name = " + name + "): called");
_logger.debug("On recovery, delivering " + message.getMessageId() + " to " + queue.getName());

HeadersExchange

_logger.debug("Exchange " + getName() + ": Unbinding " + queue.getName());
_logger.debug("Exchange " + getName() + ": routing message with headers " + headers);

JMXManagedObjectRegistry

log.info("Initialising managed object registry using platform MBean server");
_log.info("JMX ConnectorServer using SSL keystore file " + ksf.getAbsolutePath());
_startupLog.info("JMX ConnectorServer using SSL keystore file " + ksf.getAbsolutePath());

Main

_brokerLogger.info("Starting Qpid Broker " + QpidProperties.getReleaseVersion()
_brokerLogger.info("Qpid.AMQP listening on non-SSL address " + bindAddress);
_brokerLogger.info("Qpid.AMQP listening on SSL port " + config.getSSLPort());
_brokerLogger.info("Qpid Broker Ready :" + QpidProperties.getReleaseVersion()

MemoryMessageStore

_log.info("Using capacity " + DEFAULT_HASHTABLE_CAPACITY + " for hash tables");
_log.info("Using capacity " + hashtableCapacity + " for hash tables");

QueueBindHandler

_log.info("Binding queue " + queue + " to exchange " + exch + " with routing key " + routingKey);

QueueDeclareHandler

_logger.info("Queue " + queueName + " bound to default exchange(" + defaultExchange.getName() +
")");
_logger.info("Queue " + queueName + " declared successfully");

QueueUnbindHandler

_log.info("Binding queue " + queue + " to exchange " + exch + " with routing key " + routingKey);

SimpleAMQQueue

_logger.info("Auto-deleteing queue:" + this);

SubscriptionImpl

_logger.info("Closing subscription (" + debugIdentity() + "):" + this);

VirtualHost

_logger.info("Binding queue:" + queue + " with routing key '" + routingKey + "' to exchange:" +
this);
_logger.debug("Loading configuration for virtualhost: " + config.getName());

Feedback

ID From Comment Response

1 Marnie Ensure data logged in messaged due to be deleted is not lost.

2 Marnie Following 1: Exception handling messages need further thought as replacing with 'Close' messages loses the
cause

3 Marnie Be mindful of performance in generating these log messages

4 Marnie It is not clear that the LogActors, LogSubjects will be created and attached to their repective model objects

Operational Logging - Status Update - Test Plan

Test Plan

This plan is to test the new logging functionality presented in the .Status Update Design

Test Objectives
Performance Testing
Operation Testing
Performance Test Plan
Operational Test Plan
Test Specification

Test Objectives

1.
2.

This plan will define the various areas that must be tested to validate the new logging meets its requirements. This information will the be
used during the subsequent technical design and development phases to ensure that the testing approaches defined in this plan are
possible.

The plan will focus on two areas:

Performance Testing
Operation Testing

Performance Testing

One of the biggest risks of adding more logging to the broker is the potential performance impact they will have in terms of a) creating the
messages to log and b) actually logging the message. Therefore validating our changes have a negligible performance impact is key.

Approach

A series of test must be written that cover all the log messages that the broker will generate. The approach to validate any performance
changes should then be to run the test multiple times to generate an average performance. The impact of the logging additions must be
negligible. The performance test suite has shown that that there can be up to 5% variance between test runs so if this testing is to be
performed as an automated system test we must be careful to ensure that we do not end up with test failures due to an unusually variance.
Testing should be performed to establish a baseline from which we can determine what amount of variance occurs between the two test
runs. This variance can then be used to determine the failure criteria. However, it should be noted that such a comparison technique will only
ensure that the impact of the logging does not shift between each run. The test will not address any potential drift in performance of the
broker as a whole, only the difference between logging on and logging off.

The test should run with interleaved test setups, i.e. Logging On then Loggging off. This will help minimise any external factors that could
impact the timing. The time spent logging however, will still represent a very small percentage of time for a test case and as such the test will
be more susceptible to external factors during the test run.

Operation Testing

There are two components to testing the functionality of the new logging.

Unit Testing
System Testing

Unit Testing

Unit testing must be completed on each module and code coverage should cover at least 80% (aiming towards 100%) of the code base. The
unit testing however, will only verify that the module performs as expected with the use of a test output logger.

System Testing

System testing will need to be performed to validate that the correct log messages appear in the right order when run as a full system. By
using the test output logger used for the Unit testing it will be possible to validate an InVM broker correctly logs at the appropriate time. To
complete system testing the log4j output from an external broker test run must be examined to ensure it contains the expected output. The
alerting tests already perform this sort of external log validation so this should be easy to replicate.

Additionally, we will want to add tests to understand how the system behaves under certain failure conditions. This will not be required as
part of this initial work. However, when we remove log4j we need to understand what the differences will with any new logging framework in
failure situations, i.e. disk full, disk loss(crash, NFS delay). The difference with a disk loss (crash, NFS delay) is the write IO will not
necessarily respond immediately while a disk full notification will usually respond immediately.

Performance Test Plan

The performance of the broker can be measured by the JMS Client by ensuring that all the updated modules are executed in the test run.
The time it takes to startup create a new JMS Session and subscribe and the cleanly shut everything down will ensure all of the new log
messages have the option of logging. Now the overhead in broker startup and shutdown will have a large effect on the test run however this
should mean it will be easier to compare startup times as they should be very similar.

Operational Test Plan

The lists the various status log messages that the broker will be configured to produce. What this section details isFunctional Specificiation
how testing will be carried out for each of these log statements.

Broker

The messages can be split in to two categories. Startup and shutdown messages. The testing here focuses on the messagesBroker Broker
and ignore the fact that during a system testing of the broker other log messages will also be printed.

Startup

As all the startup messages are printed on startup then they cannot be printed individually. So by monitoring the logging output on startup we
can verify that messages BKR-1001,1002,1004,1006,1007 are logged. It is expected that the output would be very similar to this:

2009-07-09 15:50:20 +0100 MESSAGE BRK-1006 : Using configuration : build/etc/config.xml
2009-07-09 15:50:20 +0100 MESSAGE BRK-1007 : Using logging configuration : build/etc/log4j.xml
2009-07-09 15:50:20 +0100 MESSAGE BRK-1001 : Startup : Version: 0.6 Build: <svn revision>
2009-07-09 15:50:20 +0100 MESSAGE BRK-1002 : Starting : Listening on TCP port 5672
2009-07-09 15:50:20 +0100 MESSAGE BRK-1004 : Ready

Additionally testing should be performed with SSL enabled to verfify that the additional BRK-1002 message is logged.

2009-07-09 15:50:20 +0100 MESSAGE BRK-1002 : Starting : Listening on TCP/SSL port 8672.

Shutdown

On shutdown the broker will log a BRK-1003 for each interface that has been started. So if we have started both the TCP and the TCP/SSL
listeners then we would expect both to be printed out before the Stopped message.

2009-07-09 15:50:20 +0100 MESSAGE BRK-1003 : Shutting down : TCP port 5672
2009-07-09 15:50:20 +0100 MESSAGE BRK-1003 : Shutting down : TCP/SSL port 8672
2009-07-09 15:50:20 +0100 MESSAGE BRK-1005 : Stopped

ManagementConsole

The management console also has a startup and shutdown phase like the broker.

Startup

The Management console uses two ports so both of these will be logged at startup. Two test runs must be performed to validate that the
'SSL Keystore' output is only present when correctly enabled.

2009-07-09 15:50:20 +0100 MESSAGE MNG-1001 : Startup
2009-07-09 15:50:20 +0100 MESSAGE MNG-1002 : Starting : RMI Registgry : Listening on port 8999
2009-07-09 15:50:20 +0100 MESSAGE MNG-1002 : Starting : RMI ConnectorServer : Listening on port
9099
2009-07-09 15:50:20 +0100 MESSAGE MNG-1006 : Using SSL Keystore : test_resources/ssl/keystore.jks
2009-07-09 15:50:20 +0100 MESSAGE MNG-1004 : Ready

Shutdown

During shutdown the two listeners created during startup will shutdown. The use of SSL will not provide any additional shutdown mesasage
to verify.

2009-07-09 15:50:20 +0100 MESSAGE MNG-1003 : Shutting Registgry : Listening on port 8999
2009-07-09 15:50:20 +0100 MESSAGE MNG-1003 : Shutting down : RMI ConnectorServer : Listening on
port 9099
2009-07-09 15:50:20 +0100 MESSAGE MNG-1005 : Stopped

VirtualHost

Virtualhosts cannot be programatically created so the log messages will have to be found during the startup/shutdown of the broker.

Startup

During startup the following messages will be logged as the Virtualhost is created.VHT

2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] VHT-1001 : Created : test

Shutdown

On shutdown the Virutalhost will only log that it has been closed.

2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] VHT-1002 : Closed

MessageStore

The MessageStore details will be logged as part of the Virtualhost startup and shutdown.

Startup

Aside from the easy to test create(MST-1001) and store location(MST-1002) messages, a persistent store such as DerbyDB will also need to
be used for testing so that the recovery messages MST-1004-6 can be tested.
It is expected that on recovery start MST-1004 will be logged without a queue name. Then as each queue is recovered then a
start(MST-1004), count (MST-1005) and complete (MST-1006) will be logged. Only when all queues have been recovered will a final
complete (MST-1006) be logged. This would give a sequence such as:

2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1001 : Created
2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1001 : Created : DerbyMessageStore
2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1002 : Store location : ./derbyDB
2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1004 : Recovery Start
2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1004 : Recovery Start \[: qu(myQueue)]
2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1005 : Recovered 100 messages for qu(myQueue)
2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1006 : Recovery Complete \[: qu(myQueue)]
2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1006 : Recovery Complete

Shutdown

On shutdown the MessageStore will only log that it has been closed.

2009-07-09 15:50:20 +0100 MESSAGE [vh:(test)] MST-1003 : Closed

Connection

New connections can be easily performed in isolation by connecting to the running broker. The connection open and close log messagse
should be presented in response to the new connection and the closure of the connection.

2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)] CON-1001 : Open : Client ID
client1 : Protocol Version : 0-9
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)] CON-1002 : Close

Channel

As with Connection creation Channel creation can be tested in isolation. Whilst a channel will be created along with the Connection. A new
channel can be created from the Java client by creating a new JMS Session. The current Java client will start all Channels on the JMS
Connection flowed. This means that an initial 'CHN-1002 : Flow Stopped' message will be logged. Only when the JMS Connection is started
will the Channel bun unflowed and a 'CHN-1002 : Flow Started' logged.

Additional testing should be done to ensure that CHN-1002 messages are logged when the client exceeds its prefetch count and the broker
flows the client.

2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2] CHN-1001 : Create :
Prefetch 500
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2] CHN-1002 : Flow Stopped
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2] CHN-1002 : Flow Started
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2] CHN-1003 : Close

Queue

There are a number of properties that can be set on a Queue and as a reusult they all need to be tested in isolation and validated that the
correct log message is generated based on this template:

2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/qu(myqueue)] \\
 QUE-1001 : Create : [AutoDelete] [Durable|Transient] [Priority:<levels>]
Owner:<name>

Property combinations to test:

Durable | Transient
AutoDelete
Priority

This results in 8 tests as each Combination of AutoDelete|Priority|None is tested against Durable|Transient.

A simple deleted is logged when the queue is finally deleted.

2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/qu(myqueue)] QUE-1002 :
Deleted

Exchange

As with Queue logging the Exchange has the Durable option that must be tested independently. During broker startup the default exchanges
will be created and so will be logged. Testing should ensure that these log messages are indeed correctly logged.
However as Exchanges can be programatically declared this should also be tested.

2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/ex(amq.direct)] EXH-1001 :
Create : Durable Type:amq.direct Name:amq.direct
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/ex(amq.direct)] EXH-1001 :
Create : Type:amq.direct Name:amq.direct
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/test)/ch:2/ex(amq.direct)] EXH-1002 :
Deleted

Binding

Bindings will be created via JMS in the Java client along side Queue and Subscriber creation. The Qpid Java Client uses the Arguments field
to ensure exclusive queues do not get filled with messages when a selector is in use. This adds another dimension to the testing as part of
the system testing needs to include validation of the message prefix (content between []) as testing needs to cover the binding of Queues to
a different exchanges and with a varienty of routing keys.

This gives us the following dimensions of testing that needs to be performed:

Exchange
Arguments
RoutingKey

If we take bindings between amq.direct and amq.topic and vary the routing key (for Queues the default is the queue name when used with
the Java Client). We have 4 test cases that we need to run on Exclusive and Non-Exclusive queues.

2009-07-09 15:50:20 +0100 MESSAGE [
con:1(guest@127.0.0.1/test)/ch:2/ex(amq.direct)/qu(myQueue)/rk(myQueue)] \\
 BND-1001 : Create [: Arguments : <key=value>]
2009-07-09 15:50:20 +0100 MESSAGE [
con:1(guest@127.0.0.1/test)/ch:2/ex(amq.direct)/qu(myQueue)/rk(myQueue)] \\
 BND-1002 : Delete

Subscription

There are two types of subscription, durable and non-durable. The durable subscription can be tested from the Java Client by creating a JMS
Durable Topic Subscription. Additionally both types of subscription can have an additional argument for the JMS selector. The non-durable
subscription type can also operate as a JMS Queue Browser which has an additional 'autoclose' argument.

This makes 5 different possible Create (SUB-1001) log messages.

2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/)/ch:2/sub:1:qu(myqueue)] SUB-1001 :
Create : Durable [Arguments : <key=value>]
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/)/ch:2/sub:1:qu(myqueue)] SUB-1001 :
Create [: Arguments : <key=value>]
2009-07-09 15:50:20 +0100 MESSAGE [con:1(guest@127.0.0.1/)/ch:2/sub:1:qu(myqueue)] SUB-1002 :
Close

Test Specification

The next step is to provide an enumerated list of tests for completion.
Each test in the list will include:

Functional description of what is being tested.
Input(actions and/or data)
Expected outputs:

... that will cause failure

... that can safely be ignored.

Test Specification

Operational Logging - Status Update - Test Specification

Test Specification

Overview
Operational Test Cases
Performance Test Case

Overview

The Test Specification will detail a 1:1 mapping from specification to test case.
Each test specification in the list will include:

Functional description of what is being tested.
Input(actions and/or data)
Expected outputs:

... that will cause failure

... that can safely be ignored.

These details will then be used as the basis of each test that is created allowing for better maintainability in the test code.

Operational Test Cases

Broker Test Suite
Broker Startup

testBrokerStartupConfiguration
testBrokerStartupCustomLog4j
testBrokerStartupDefaultLog4j
testBrokerStartupStartup
testBrokerStartupListeningTCPDefault
testBrokerStartupListeningTCPSSL
testBrokerStartupReady

Broker Shutdown
testBrokerShutdownListeningTCPDefault
testBrokerShutdownListeningTCPSSL
testBrokerShutdownStopped

Management Console Test Suite
Management Startup

testManagementStartupEnabled
testManagementStartupDisabled
testManagementStartupRMIRegistry
testManagementStartupRMIRegistryCustom
testManagementStartupRMIConnectorServer
testManagementStartupRMIConnectorServerCustom
testManagementStartupSSLKeystore
testManagementStartupReady

Management Shutdown
testManagementShutdownRMIRegistry
testManagementShutdownRMIConnectorServer
testManagementShutdownStopped

Virtualhost Test Cases
testVirtualhostCreation
testVirtualhostClosure

MessageStore Tests
testMessageStoreCreation
testMessageStoreStoreLocation
testMessageStoreClose
testMessageStoreRecoveryStart
testMessageStoreQueueRecoveryShowRecovered
testMessageStoreQueueRecoveryCountEmpty
testMessageStoreQueueRecoveryCountPlural
testMessageStoreQueueRecoveryCountSingular
testMessageStoreQueueRecoveryComplete
testMessageStoreRecoveryComplete

Connection Test Suite
testConnectionOpen
testConnectionClose
testConnectionCloseViaManagement

Channel
testChannelCreate
testChannelConsumerFlowStopped
testChannelConsumerFlowStarted
testChannelCloseViaConnectionClose
testChannelCloseViaChannelClose
testChannelCloseViaError

Queue
testQueueCreatePersistent
testQueueCreatePersistentAutoDelete
testCreateQueuePersistentPriority
testCreateQueuePersistentAutoDeletePriority
testQueueCreateTransient
testQueueCreateTransientAutoDelete
testCreateQueueTransientPriority
testCreateQueueTransientAutoDeletePriority
testCreateQueueTransientViaManagementConsole
testQueueDelete
testQueueAutoDelete
testQueueDeleteViaManagementConsole

Exchange
testExchangeCreateDurable
testExchangeCreate
testExchangeDelete

Binding
testBindingCreate
testBindingCreateWithArguments
testBindingCreateViaManagementConsole

1.
2.
3.

1.
2.
3.

testBindingDelete
testBindingDeleteViaManagementConsole

Subscription
testSubscriptionCreate
testSubscriptionCreateDurable
testSubscriptionCreateWithArguments
testSubscriptionCreateDurableWithArguments
testSubscriptionCreateQueueBrowser
testSubscriptionClose

Test Structure
Risks

This section enumerates the various operational tests described in the identified from the . This text shouldTest Plan Functional Specification
form the basis of the Technical Documentation for the specified test class.

Broker Test Suite

The Broker test suite validates that the follow log messages as specified in the .Functional Specification

BRK-1001 : Startup : Version: <Version> Build: <Build>
BRK-1002 : Starting : Listening on <Transport> port <Port>
BRK-1003 : Shuting down : <Transport> port <Port>
BRK-1004 : Ready
BRK-1005 : Stopped
BRK-1006 : Using configuration : <path>
BRK-1007 : Using logging configuration : <path>

These messages should only occur during startup. The tests need to verify the order of messages. In the case of the BRK-1002 and
BRK-1003 the respective ports should only be available between the two log messages.

 Broker Startup testBrokerStartupConfiguration

Description: On startup the broker must report the active configuration file. The logging system must output this so that we can know what
configuration is being used for this broker instance.
Input:
The value of specified on the command line.-c
Output:

<date> MESSAGE BRK-1006 : Using configuration : <config file>

Constraints:
This the first log message.MUST BE BRK
Validation Steps:

This is first log message.BRK
The ID is correctBRK
The config file is the full path to the file specified on the commandline.

testBrokerStartupCustomLog4j

Description:
On startup the broker must report correctly report the log4j file in use. This is important as it can help diagnose why logging messages are
not being reported. The broker must also be capable of correctly recognising the command line property to specify the custom logging
configuration.

 Input:
The value of specified on the command line.-l
Output:

<date> MESSAGE BRK-1007 : Using logging configuration : <log4j file>

Validation Steps:

The ID is correctBRK
This should occur before the BRK-1001 : Startup message
The log4j file is the full path to the file specified on the commandline.

testBrokerStartupDefaultLog4j

Description:
On startup the broker must report correctly report the log4j file in use. This is important as it can help diagnose why logging messages are
not being reported.

 Input:
No custom value should be provided on the command line so that the default value is correctly reported.-l
Output:

1.
2.
3.

1.
2.

1.
2.
3.

1.
2.
3.

a.
b.

<date> MESSAGE BRK-1007 : Using logging configuration : <$QPID_HOME>/etc/log4j.xml

Validation Steps:

The ID is correctBRK
This occurs before the startup message.BRK-1001
The log4j file is the full path to the file specified on the commandline.

testBrokerStartupStartup

Description: On startup the broker reports the broker version number and svn build revision. This information is retrieved from the resource
'qpidversion.properties' which is located via the classloader.

 The 'qpidversion.properties' file located on the classpath.Input:
Output:

<date> MESSAGE BRK-1001 : Startup : qpid Version: 0.6 Build: 767150

Validation Steps:

The ID is correctBRK
This occurs before any listening messages are reported.BRK-1002

testBrokerStartupListeningTCPDefault

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must be reported as they are made available.

 Input:
The default configuration with no SSL
Output:

<date> MESSAGE BRK-1002 : Starting : Listening on TCP port 5672

Constraints:
Additional broker configuration will occur between the Startup(BRK-1001) and Starting(BRK-1002) messages depending on what
VirtualHosts are configured.
Validation Steps:

The ID is correctBRK
This occurs after the startup messageBRK-1001
Using the default configuration a single will be printed showing values TCP / 5672BRK-1002

testBrokerStartupListeningTCPSSL

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must be reported as they are made available.

 Input:
The default configuration with SSL enabled
Output:

<date> MESSAGE BRK-1002 : Starting : Listening on TCP port 5672
<date> MESSAGE BRK-1002 : Starting : Listening on TCP/SSL port 8672

Constraints:
Additional broker configuration will occur between the Startup(BRK-1001) and Starting(BRK-1002) messages depending on what
VirtualHosts are configured.
Validation Steps:

The ID is correctBRK
This occurs after the startup messageBRK-1001
With SSL enabled in the configuration two will be printed (order is not specified)BRK-1002

One showing values TCP / 5672
One showing values TCP/SSL / 5672

testBrokerStartupReady

Description:
The final message the broker will print when it has performed all initialisation and listener startups will be to log the ReadyBRK-1004
message

 Input:
No input, all successful broker startups will show messages.BRK-1004
Output:

2009-07-09 15:50:20 +0100 MESSAGE BRK-1004 : Ready

1.
2.
3.

1.
2.
3.
4.

1.
2.
3.
4.

1.
2.

Validation Steps:

The ID is correctBRK
This occurs after the startup messageBRK-1001
This must be the last message the broker prints after startup. Currently, if there is no further interaction with the broker then there
should be no more logging.

 Broker Shutdown testBrokerShutdownListeningTCPDefault

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must then report a shutting down message as they stop
listening.

 Input:
The default configuration with no SSL
Output:

<date> MESSAGE BRK-1003 : Shutting down : TCP port 5672

Validation Steps:

The ID is correctBRK
Only TCP is reported with the default configuration with no SSL.
The default port is correct
The port is not accessible after this message

testBrokerShutdownListeningTCPSSL

Description:
On startup the broker may listen on a number of ports and protocols. Each of these must then report a shutting down message as they stop
listening.

 Input:
The default configuration with SSL enabled
Output:

<date> MESSAGE BRK-1003 : Shutting down : TCP port 5672
<date> MESSAGE BRK-1003 : Shutting down : TCP/SSL port 8672

Validation Steps:

The ID is correctBRK
With SSL enabled in the configuration two will be printed (order is not specified)BRK-1003
The default port is correct
The port is not accessible after this message

testBrokerShutdownStopped

Description:
 Input:

No input, all clean broker shutdowns will show messages.BRK-1005
Output:

<date> MESSAGE BRK-1005 : Stopped

Constraints:
This is the message the broker will log.LAST
Validation Steps:

The ID is correctBRK
This is the last message the broker will log.

Management Console Test Suite

The Management Console test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the management console messages occur correctly and according to the following format:

MNG-1001 : Startup
MNG-1002 : Starting : <service> : Listening on port <Port>
MNG-1003 : Shutting down : <service> : port <Port>
MNG-1004 : Ready
MNG-1005 : Stopped
MNG-1006 : Using SSL Keystore : <path>

 Management Startup testManagementStartupEnabled

1.
2.

1.

1.
2.

1.
2.

1.

Description:
Using the startup configuration validate that the management startup message is logged correctly.

 Input:
Standard configuration with management enabled
Output:

<date> MNG-1001 : Startup

Constraints:
This is the message logged by FIRST MNG
Validation Steps:

The ID is correctBRK
This is the message logged by FIRST MNG

testManagementStartupDisabled

Description:
Verify that when management is disabled in the configuration file the startup message is not logged.

 Input:
Standard configuration with management disabled
Output:

 messagesNO MNG
Validation Steps:

Validate that no messages are produced.MNG

testManagementStartupRMIRegistry

Description:
Using the default configuration validate that the RMI Registry socket is correctly reported as being opened

 Input:
The default configuration file
Output:

<date> MESSAGE MNG-1002 : Starting : RMI Registry : Listening on port 8999

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

The ID is correctMNG
The specified port is the correct '8999'

testManagementStartupRMIRegistryCustom

Description:
Using the default configuration validate that the RMI Registry socket is correctly reported when overridden via the command line.

 Input:
The default configuration file and a custom -m value
Output:

<date> MESSAGE MNG-1002 : Starting : RMI Registgry : Listening on port <port>

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

The ID is correctMNG
The specified port is as specified on the command line.

testManagementStartupRMIConnectorServer

Description:
Using the default configuration validate that the RMI ConnectorServer socket is correctly reported as being opened

 Input:
The default configuration file
Output:

<date> MESSAGE MNG-1002 : Starting : RMI ConnectorServer : Listening on port 9099

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

1.
2.

1.
2.

1.
2.

1.
2.
3.
4.

1.
2.

The ID is correctMNG
The specified port is the correct '9099'

testManagementStartupRMIConnectorServerCustom

Description:
Using the default configuration validate that the RMI Registry socket is correctly reported when overridden via the command line.

 Input:
The default configuration file and a custom -m value
Output:

<date> MESSAGE MNG-1002 : Starting : RMI ConnectorServer : Listening on port <port>

Constraints:
The RMI ConnectorServer and Registry log messages do not have a prescribed order
Validation Steps:

The ID is correctMNG
The specified port is as specified on the commandline.

testManagementStartupSSLKeystore

Description:
Using the default configuration with SSL enabled for the management port the SSL Keystore path should be reported via MNG-1006

 Input:
Management SSL enabled default configuration.
Output:

<date> MESSAGE MNG-1006 : Using SSL Keystore : test_resources/ssl/keystore.jks

Validation Steps:

The ID is correctMNG
The keystore path is as specified in the configuration

testManagementStartupReady

Description:
Using the default configuration the final stage of management startup is to report a Ready message.MNG-1004

 Input:
Default broker configuration.
Output:

<date> MESSAGE MNG-1004 : Ready

Validation Steps:

The ID is correctMNG
There has been a messageMNG-1001
There has been at least one Listening messageMNG-1002
No further messages are produced as part of the startup process, i.e. before broker use.MNG

Management Shutdown testManagementShutdownRMIRegistry

Description:
Using the default configuration the management RMI Registry will start and so on shutdown it will log that it is shutting down.

 Input:
The default configuration file.
Output:

<date> MNG-1003 : Shutting down : RMI Registry : Listening on port 8999

Validation Steps:

The ID is correctMNG
The message has been logged.MNG-1004

testManagementShutdownRMIConnectorServer

Description:
Using the default configuration the management RMI ConnectorServer will start and so on shutdown it will log that it is shutting down.

 Input:
The default configuration file.
Output:

1.
2.

1.
2.
3.
4.

1.
2.
3.

1.
2.

<date> MNG-1003 : Shutting down : RMI ConnectorServer : Listening on port 9099

Validation Steps:

The ID is correctMNG
The message has been logged.MNG-1004

testManagementShutdownStopped

Description:
On final shutdown the management console will report that it has stopped. All logging must be complete before this message is logged.MNG

 Input:
The default configuration file.
Output:

<date> MNG-1005 : Stopped

Validation Steps:

The ID is correctMNG
The message has been logged.MNG-1004
For each message that was logged a is also logged before this message.MNG-1002 MNG-1003
This is the last message reported.MNG

Virtualhost Test Cases

The virtualhost test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the management console messages occur correctly and according to the following format:

VHT-1001 : Created : <name>
VHT-1002 : Work directory : <path>
VHT-1003 : Closed

testVirtualhostCreation

Description:
Testing can be performed using the default configuration. The goal is to validate that for each virtualhost defined in the configuration file a

 Created message is provided.VHT-1001
 Input:

The default configuration file
Output:

<date> VHT-1001 : Created : <name>

Validation Steps:

The ID is correctVHT
A is printed for each virtualhost defined in the configuration file.VHT-1001
This must be the message for the specified virtualhost.first

testVirtualhostClosure

Description:
Testing can be performed using the default configuration. During broker shutdown a Closed message will be printed for each ofVHT-1002
the configured virtualhosts. For every virtualhost that was started a close must be logged. After the close message has been printed no
further logging will be performed by this virtualhost.

 Input:
The default configuration file
Output:

<date> VHT-1002 : Closed

Validation Steps:

The ID is correctVHT
This is the last message for the given virtualhost.VHT

MessageStore Tests

The MessageStore test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the MessageStore messages occur correctly and according to the following format:

1.
2.

1.
2.

1.
2.

1.
2.

MST-1001 : Created : <name>
MST-1002 : Store location : <path>
MST-1003 : Closed
MST-1004 : Recovery Start [: <queue.name>]
MST-1005 : Recovered <count> messages for queue <queue.name>
MST-1006 : Recovery Complete [: <queue.name>]

testMessageStoreCreation

Description:
During Virtualhost startup a MessageStore will be created. The first message that must be logged is the MessageStoreMST MST-1001
creation.

 Input:
Default configuration
Output:

<date> MST-1001 : Created : <name>

Validation Steps:

The ID is correctMST
The <name> is the correct MessageStore type as specified in the Default configuration

testMessageStoreStoreLocation

Description:
Persistent MessageStores will require space on disk to persist the data. This value will be logged on startup after the MessageStore has
been created.

 Input:
Default configuration
Output:

<date> MST-1002 : Store location : <path>

Validation Steps:

The ID is correctMST
This must occur after MST-1001

testMessageStoreClose

Description:
During shutdown the MessageStore will also cleanly close. When this has completed a closed message will be logged. No furtherMST-1003
messages from this MessageStore will be logged after this message

 Input:
Default configuration
Output:

<date> MST-1003 : Closed

Validation Steps:

The ID is correctMST
This is the log message from this MessageStorelast

testMessageStoreRecoveryStart

Description:
Persistent message stores may have state on disk that they must recover during startup. As the MessageStore starts up it will report that it is
about to start the recovery process by logging . This message will always be logged for persistent MessageStores. If there is noMST-1004
data to recover then there will be no subsequent recovery messages.

 Input:
Default persistent configuration
Output:

<date> MST-1004 : Recovery Start

Validation Steps:

The ID is correctMST
The MessageStore must have first logged a creation event.

1.
2.

1.
2.

3.
4.
5.
6.
7.

1.
2.

3.
4.
5.
6.
7.

1.
2.

3.
4.
5.

6.

testMessageStoreQueueRecoveryShowRecovered

Description:
A persistent MessageStore may have data to recover from disk. The message store will use to report the start of recovery for aMST-1004
specific queue that it has previously persisted.

 Input:
Default persistent configuration
Output:

<date> MST-1004 : Recovery Start : <queue.name>

Validation Steps:

The ID is correctMST
This must occur after the recovery start has been logged.MST-1004

testMessageStoreQueueRecoveryCountEmpty

Description:
A persistent queue must be persisted so that on recovery it can be restored independently of any messages that may be stored on it. This
test verifies that the MessageStore will log that it has recovered 0 messages for persistent queues that do not have any messages.
Input:

Default persistent configuration
Persistent queue with no messages enqueued
Output:

<date> MST-1005 : Recovered 0 messages for queue <queue.name>

Validation Steps:

The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The count is 0
'messages' is correctly printed
The queue.name is non-empty

testMessageStoreQueueRecoveryCountPlural

Description:
On recovery all the persistent messages that are stored on disk must be returned to the queue. will report the number ofMST-1005
messages that have been recovered from disk.
Input:

Default persistent configuration
Persistent queue with multiple messages enqueued
Output:

<date> MST-1005 : Recovered <count> messages for queue <queue.name>

Validation Steps:

The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The count is > 1
'messages' is correctly printed
The queue.name is non-empty

testMessageStoreQueueRecoveryCountSingular

Description:
On recovery all the persistent messages that are stored on disk must be returned to the queue. will report the number ofMST-1005
messages that have been recovered from disk.
Input:

Default persistent configuration
A persistent queue with a single message enqueued.
Output:

<date> MST-1005 : Recovered 1 message for queue <queue.name>

Validation Steps:

The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The count is 1

6.
7.

1.
2.
3.
4.

1.
2.
3.

1.
2.

3.
4.

1.
2.

'message' is correctly printed
The queue.name is non-empty

testMessageStoreQueueRecoveryComplete

Description:
After the queue has been recovered the store will log that recovery has been completed. The MessageStore must not report further status
about the recovery of this queue after this message. In addition every queue recovery start message must be matched with a MST-1004

 recovery complete.MST-1006
 Input:

Default persistent configuration
Output:

<date> MST-1006 : Recovery Complete : <queue.name>

Validation Steps:

The ID is correctMST
This must occur after the queue recovery start has been logged.MST-1004
The queue.name is non-empty
The queue.name correlates with a previous recovery start

testMessageStoreRecoveryComplete

Description:
Once all persistent queues have been recovered and the MessageStore has completed all recovery it must logged that the recovery process
has completed.

 Input:
Default persistent configuration
Output:

<date> MST-1006 : Recovery Complete

Validation Steps:

The ID is correctMST
This is the message from the MessageStore during startup.last
This must be proceeded by a Recovery Start.MST-1004

Connection Test Suite

The Connection test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Connection messages occur correctly and according to the following format:

CON-1001 : Open : Client ID <id> : Protocol Version : <version>
CON-1002 : Close

testConnectionOpen

Description:
When a new connection is made to the broker this must be logged.
Input:

Running Broker
Connecting client
Output:

<date> CON-1001 : Open : Client ID <id> : Protocol Version : <version>

Validation Steps:

The ID is correctCON
This is the message for that Connectionfirst CON

testConnectionClose

Description:
When a connected client closes the connection this will be logged as a message.CON-1002
Input:

Running Broker
Connected Client
Output:

2.

3.
4.
5.

1.
2.
3.

4.
5.
6.

1.
2.

3.
4.

1.
2.
3.

4.

<date> CON-1002 : Close

Validation Steps:

The ID is correctCON
This must be the last message for the ConnectionCON
It must be preceded by a for this ConnectionCON-1001

testConnectionCloseViaManagement

Description:
When a connected client has its connection closed via the Management Console this will be logged as a message.CON-1002
Input:

Running Broker
Connected Client
Connection is closed via Management Console
Output:

<date> CON-1002 : Close

Validation Steps:

The ID is correctCON
This must be the last message for the ConnectionCON
It must be preceded by a for this ConnectionCON-1001

Channel

The Channel test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Channel messages occur correctly and according to the following format:

CHN-1001 : Create : Prefetch <count>
CHN-1002 : Flow <value>
CHN-1003 : Close

testChannelCreate

Description:
When a new Channel (JMS Session) is created this will be logged as a Create message. The messages will contain the prefetchCHN-1001
details about this new Channel.
Input:

Running Broker
New JMS Session/Channel creation
Output:

<date> CHN-1001 : Create : Prefetch <count>

Validation Steps:

The ID is correctCHN
The prefetch value matches that defined by the requesting client.

testChannelConsumerFlowStopped

Description:
The Java Broker implements consumer flow control for all ack modes except No-Ack. When the client fills the prefetch then a CHN-1002
Flow Stopped messasge will be issued in the log.
Input:

Running broker
Message Producer to put more data on the queue than the client's prefetch
Client that ensures that its prefetch becomes full
Output:

<date> CHN-1002 : Flow Stopped

Validation Steps:

The ID is correctCHN

1.
2.
3.
4.

5.

1.
2.
3.

4.
5.

1.
2.
3.

4.
5.

1.
2.
3.

4.
5.

testChannelConsumerFlowStarted

Description:
The Java Broker implements consumer flow control for all ack modes except No-Ack. When the client fills the prefetch. As soon as the client
starts to consume the messages (and ack them) the broker will resume the flow issuing a Flow Started message to the logCHN-1002
Input:

Running broker
Message Producer to put more data on the queue than the client's prefetch
Client that ensures that its prefetch becomes full
The client then consumes from the prefetch to remove the flow status.
Output:

<date> CHN-1002 : Flow Started

Validation Steps:

The ID is correctMST

testChannelCloseViaConnectionClose

Description:
When the client gracefully closes the Connection then a Close message will be issued. This must be the last message logged forCHN-1003
this Channel.
Input:

Running Broker
Connected Client
Client then requests that the Connection is closed
Output:

<date> CHN-1003 : Close

Validation Steps:

The ID is correctMST
This must be the last message logged for this Channel.

testChannelCloseViaChannelClose

Description:
When the client requests that the Channel (JMS Session) be closed then a Close message will be issued. This must be the lastCHN-1003
message logged for this Channel.
Input:

Running Broker
Connected Client
Client then requests that the Channel is closed
Output:

<date> CHN-1003 : Close

Validation Steps:

The ID is correctMST
This must be the last message logged for this Channel.

testChannelCloseViaError

Description:
If a Connection becomes interrupted and then a Close message will still be issued to signify that the Channel has been closed.CHN-1003
This must be the last message logged for this Channel.
Input:

Running Broker
Connected Client
Client then requests that the Channel is closed
Output:

<date> CHN-1003 : Close

Validation Steps:

The ID is correctMST
This must be the last message logged for this Channel.

1.
2.

3.
4.
5.

1.
2.

3.
4.
5.
6.

1.
2.

3.
4.
5.
6.

1.
2.

Queue

The Queue test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Queue messages occur correctly and according to the following format:

QUE-1001 : Create : [AutoDelete] [Durable|Transient] [Priority:<levels>] [Owner:<name>]
QUE-1002 : Deleted

testQueueCreatePersistent

Description:
When a simple persistent queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
Persistent Queue is created from a client
Output:

<date> QUE-1001 : Create : Persistent Owner:<name>

Validation Steps:

The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected

testQueueCreatePersistentAutoDelete

Description:
When an autodelete persistent queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
AutoDelete Persistent Queue is created from a client
Output:

<date> QUE-1001 : Create : AutoDelete Persistent Owner:<name>

Validation Steps:

The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message

testCreateQueuePersistentPriority

Description:
When a persistent queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
Persistent Queue is created from a client with a priority level
Output:

<date> QUE-1001 : Create : Persistent Priority:<levels> Owner:<name>

Validation Steps:

The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected
The Priority level is correctly set

testCreateQueuePersistentAutoDeletePriority

Description:
When an autodelete persistent queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
An AutoDelete Persistent Queue is created from a client with priority
Output:

2.

3.
4.
5.
6.
7.

1.
2.

3.
4.
5.

1.
2.

3.
4.
5.
6.

1.
2.

3.
4.
5.
6.

1.
2.

<date> QUE-1001 : Create : AutoDelete Persistent Priority:<levels> Owner:<name>

Validation Steps:

The ID is correctQUE
The Persistent tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message
The Priority level is correctly set

testQueueCreateTransient

Description:
When a simple transient queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
Transient Queue is created from a client
Output:

<date> QUE-1001 : Create : Transient Owner:<name>

Validation Steps:

The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected

testQueueCreateTransientAutoDelete

Description:
When an autodelete transient queue is created then a create message is expected to be logged.QUE-1001
Input:

Running broker
AutoDelete Transient Queue is created from a client
Output:

<date> QUE-1001 : Create : AutoDelete Transient Owner:<name>

Validation Steps:

The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message

testCreateQueueTransientPriority

Description:
When a transient queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
Transient Queue is created from a client with a priority level
Output:

<date> QUE-1001 : Create : Transient Priority:<levels> Owner:<name>

Validation Steps:

The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected
The Priority level is correctly set

testCreateQueueTransientAutoDeletePriority

Description:
When an autodelete transient queue is created with a priority level then a create message is expected to be logged.QUE-1001
Input:

Running broker
An autodelete Transient Queue is created from a client with a priority level
Output:

2.

3.
4.
5.
6.
7.

1.
2.
3.

4.
5.

1.
2.
3.

4.

1.
2.

3.

1.
2.
3.
4.

<date> QUE-1001 : Create : AutoDelete Transient Priority:<levels> Owner:<name>

Validation Steps:

The ID is correctQUE
The Transient tag is present in the message
The Owner is as expected
The AutoDelete tag is present in the message
The Priority level is correctly set

testCreateQueueTransientViaManagementConsole

Description:
Queue creation is possible from the Management Console. When a queue is created in this way then a create message isQUE-1001
expected to be logged.
Input:

Running broker
Connected Management Console
Queue Created via Management Console
Output:

<date> QUE-1001 : Create : Transient Owner:<name>

Validation Steps:

The ID is correctQUE
The correct tags are present in the message based on the create options

testQueueDelete

Description:
An explict QueueDelete request must result in a Deleted message being logged. This can be done via an explict AMQPQUE-1002
QueueDelete method.
Input:

Running Broker
Queue created on the broker with no subscribers
Client requests the queue be deleted via a QueueDelete
Output:

<date> QUE-1002 : Deleted

Validation Steps:

The ID is correctQUE

testQueueAutoDelete

Description:
When a Client requests a temporary queue then this is represented in the Java Broker as an autodelete exclusive queue. When the client
disconnects the queue will automatically deleted. This can be seen as a Deleted message will be logged.QUE-1002
Input:

Running Broker
Client creates a temporary queue then disconnects
Output:

<date> QUE-1002 : Deleted

Validation Steps:

The ID is correctQUE

testQueueDeleteViaManagementConsole

Description:
The ManagementConsole can be used to delete a queue. When this is done a Deleted message must be logged.QUE-1002
Input:

Running Broker
Queue created on the broker with no subscribers
Management Console connected
Queue is deleted via Management Console
Output:

4.

5.

1.
2.

3.
4.

1.
2.

3.

1.
2.
3.

4.
5.

<date> QUE-1002 : Deleted

Validation Steps:

The ID is correctQUE

Exchange

The Exchange test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Exchange messages occur correctly and according to the following format:

EXH-1001 : Create : [Durable] Type:<value> Name:<value>
EXH-1002 : Deleted

testExchangeCreateDurable

Description:
When a durable exchange is created an message is logged with the Durable tag. This will be the first message from thisEXH-1001
exchange.
Input:

Running broker
Client requests a durable exchange be created.
Output:

<date> EXH-1001 : Create : Durable Type:<value> Name:<value>

Validation Steps:

The ID is correctEXH
The Durable tag is present in the message

testExchangeCreate

Description:
When an exchange is created an message is logged. This will be the first message from this exchange.EXH-1001
Input:

Running broker
Client requests an exchange be created.
Output:

<date> EXH-1001 : Create : Type:<value> Name:<value>

Validation Steps:

The ID is correctEXH

testExchangeDelete

Description:
An Exchange can be deleted through an AMQP ExchangeDelete method. When this is successful an Delete message will beEXH-1002
logged. This will be the last message from this exchange.
Input:

Running broker
A new Exchange has been created
Client requests that the new exchange be deleted.
Output:

<date> EXH-1002 : Deleted

Validation Steps:

The ID is correctEXH
There is a corresponding Create message logged.EXH-1001

Binding

The Binding test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Binding messages occur correctly and according to the following format:

1.
2.

3.
4.

1.
2.

3.
4.
5.

1.
2.
3.

4.
5.

1.
2.

3.

BND-1001 : Create [: Arguments : <key=value>]
BND-1002 : Deleted

testBindingCreate

Description:
The binding of a Queue and an Exchange is done via a Binding. When this Binding is created a Create message will be logged.BND-1001
Input:

Running Broker
New Client requests that a Queue is bound to a new exchange.
Output:

<date> BND-1001 : Create

Validation Steps:

The ID is correctBND
This will be the message for the given bindingfirst

testBindingCreateWithArguments

Description:
A Binding can be made with a set of arguments. When this occurs we logged the key,value pairs as part of the Binding log message. When
the subscriber with a JMS Selector consumes from an exclusive queue such as a topic. The binding is made with the JMS Selector as an
argument.
Input:

Running Broker
Java Client consumes from a topic with a JMS selector.
Output:

<date> BND-1001 : Create : Arguments : <key=value>

Validation Steps:

The ID is correctBND
The JMS Selector argument is present in the message
This will be the message for the given bindingfirst

testBindingCreateViaManagementConsole

Description:
The binding of a Queue and an Exchange is done via a Binding. When this Binding is created via the Management Console a BND-1001
Create message will be logged.
Input:

Running Broker
Connected Management Console
Use Management Console to perform binding
Output:

<date> BND-1001 : Create

Validation Steps:

The ID is correctBND
This will be the message for the given bindingfirst

testBindingDelete

Description:
Bindings can be deleted so that a queue can be rebound with a different set of values.
Input:

Running Broker
AMQP UnBind Request is made
Output:

<date> BND-1002 : Deleted

Validation Steps:

3.
4.
5.

1.
2.
3.

4.
5.
6.

1.
2.

3.

1.
2.

3.
4.

1.
2.

The ID is correctBND
There must have been a Create message first.BND-1001
This will be the message for the given bindinglast

testBindingDeleteViaManagementConsole

Description:
Bindings can be deleted so that a queue can be rebound with a different set of values. This can be performed via the Management Console
Input:

Running Broker
Management Console connected
Management Console is used to perform unbind.
Output:

<date> BND-1002 : Deleted

Validation Steps:

The ID is correctBND
There must have been a Create message first.BND-1001
This will be the message for the given bindinglast

Subscription

The Subscription test suite validates that the follow log messages as specified in the .Functional Specification

This suite of tests validate that the Subscription messages occur correctly and according to the following format:

SUB-1001 : Create : [Durable] [Arguments : <key=value>]
SUB-1002 : Close

testSubscriptionCreate

Description:
When a Subscription is created it will be logged. This test validates that Subscribing to a transient queue is correctly logged.
Input:

Running Broker
Create a new Subscription to a transient queue/topic.
Output:

<date> SUB-1001 : Create

Validation Steps:

The ID is correctSUB

testSubscriptionCreateDurable

Description:
The creation of a Durable Subscription, such as a JMS DurableTopicSubscriber will result in an extra Durable tag being included in the
Create log message
Input:

Running Broker
Creation of a JMS DurableTopicSubiber
Output:

<date> SUB-1001 : Create : Durable

Validation Steps:

The ID is correctSUB
The Durable tag is present in the message

testSubscriptionCreateWithArguments

Description:
The creation of a Subscriber with a JMS Selector will result in the Argument field being populated. These argument key/value pairs are then
shown in the log message.
Input:

Running Broker
Subscriber created with a JMS Selector.
Output:

2.

3.
4.

1.
2.

3.
4.
5.

1.
2.

3.
4.
5.

1.
2.
3.

4.
5.
6.

1.
2.
3.
4.
5.

<date> SUB-1001 : Create : Arguments : <key=value>

Validation Steps:

The ID is correctSUB
Argument tag is present in the message

testSubscriptionCreateDurableWithArguments

Description:
The final combination of Create messages involves the creation of a Durable Subscription that also contains a set of Arguments,SUB-1001
such as those provided via a JMS Selector.
Input:

Running Broker
Java Client creates a Durable Subscription with Selector
Output:

<date> SUB-1001 : Create : Durable Arguments : <key=value>

Validation Steps:

The ID is correctSUB
The tag Durable is present in the message
The Arguments are present in the message

testSubscriptionCreateQueueBrowser

Description:
The creation of a QueueBrowser will provides a number arguments and so should form part of the Create message. SUB-1001
Input:

Running Broker
Java Client creates a QueueBroweser
Output:

<date> SUB-1001 : Create : Arguments : <key=value>

Validation Steps:

The ID is correctSUB
The Arguments are present in the message
Arguments keys include AutoClose and Browser.

testSubscriptionClose

Description:
When a Subscription is closed it will log this so that it can be correlated with the Create.
Input:

Running Broker
Client with a subscription.
The subscription is then closed.
Output:

<date> SUB-1002 : Close

Validation Steps:

The ID is correctSUB
There must be a Create message preceding this messageSUB-1001
This must be the message from the given Subscriptionlast

Performance Test Case

In addition to the performance test suite an additional performance test needs to be written that can be run with this new logging enabled and
disabled so that an attempt at quantifying any impact can be made.

Test Structure

The test should perform the following actions:

Connect a client
Create a channel/JMS Session
Create an exchange
Create a queue

5.
6.
7.
8.
9.

1.
2.
3.
4.

1.
2.
3.
4.

1.
2.
3.

Bind the exchange and queue
Create a subscriber on the queue
Close the Subscriber
Close the Session
Close the Connection

This will ensure that we hit as many of the new logging routines as possible.
If this test should also be run prior to any code changes so that our current performance can be recorded.

Risks

Testing of this nature is dependant on a lot of items that are out of the tests control such as:

CPU scheduling
CPU performance
Load
GC

As a result the test cannot be guaranteed to produce the same results each time. To mitigate this risk running the test in a loop an reporting
an average value of 10-20 runs should provide a more stable response.
Leaving the broker startup/shutdown out of the test loop will help improve the tests performance and repeatability.

Status Update Design - Logging Configuration

Overview

To better address this and to allow us to more eaily move between logging implementations an abstraction is recommended. This approach
will allow the simplification of the logic around determining if logging should be performed in the main code base. For example a Binding
logging statement can be controlled via Exchange and Queue, each of which may be limited to s specific instance.

Logging Control

Initialy the use of a properties file will be used to enable/disable various logging options. The property value will be one of a set list. This will
help avoid the ambigious parsing of Java Properties files.

Control File Structure

Comment Line
<logger> = <value [OFF|TRACE|DEBUG|INFO|WARN|ERROR|FATAL|ALL]>

The values for the are based on navigation through the hierarchy.<logger>

Hierarchy Refinement

Refining the hierarchy presented in the such that we can implement it in terms of an easily parseable structure for use ashigh level design
the values.<logger>

qpid broker

 [<username>]
 [<ip/hostname>]
 connection [<id>] channel [<id>] subscription [<id>]

 virtualHost <name> binding

 exchange <name>

 queue <name>

 plugin <name>

 messagestore

This hierachy has a number of paths which make it more difficult to process.

Connection can be optionally followed with up to one of the following: username,ip/host, id
Subscription can be reached through Connection and Virtualhost
Exchange and Queue can be added in either order
Binding can be routed through Queue and Exchange, or both in either order.

It is these difficulties that make it best to provide an abstraction layer so that a simple interface can be used at the site of the logging. These
difficulties can be distilled to:

Procsessing values for all values of '<name>'
Overlapping configuration resolution

3. Presentation of entities with multiple paths

Procsessing values for all values of '<name>'

To ensure that the logger path is processable the '<name>' must be present to make it easier to understand when we have an identifier or a
<name> value. i.e. Is this logging all events for exchanges on Virtualhost called 'queue' or logging all exchange events that occur in relatation
to queues.

qpid.virtualhost.queue.exchange = INFO

By introducing the use of the '*' wild card we can make these two situations easier to read:

qpid.virtualhost.queue.exchange = INFO
qpid.virtualhost.*.queue.exchange = INFO

The '*' can then be used at the end of the logger to ensure all logging from this point in the hierarchy will be logged, rather than just events to
the specified entity.

Overlapping configuration resolution

The loops in the graph will be handled by the logger configurator so that only one log entry is created for each event, even if there are
multiple matching entries in the configuration. For example, the follow two entries are equivalent and will both enable all loging for bindings. If
the user wishes to log all binding operations then only one entry is necessary but the presence of both should not cause duplicate messages.

Multiple equivalent entries doesn't result in multiple logging

qpid.virtualhost.*.exchange.*.binding = INFO
qpid.virtualhost.*.queue.*.binding = INFO

The overlapping of configuration such as logging all details of connection from user guest and from ip 127.0.0.1 will not result in a duplicated
logging if guest connects from 127.0.0.1.

Overlapping configuration doesn't result in multiple logging

qpid.connection.guest.* = INFO
qpid.connection.<127.0.0.1>.* = INFO

Presentation of entities with multiple paths

Each entitiy will have a prescribed log format which will be designed to take into consideration its place in the hierarchy, see Logging Format
 for further details.Design

Log Configuration processing

The configuration will be processed top-to-bottom. This allows for defaults to be set and specific cases to have further logging enabled. The
example below enables logging for all events and specifically adds logging for all activity related to the user 'guest'.INFO DEBUG

Example Control File

qpid.* = INFO
qpid.connection.guest,* = DEBUG

Qpid Design - Queue Implementation

Strict Ordering
Enqueing
Priority Queues

Strict Ordering

The fundamental principal of the Queuing model is that the queue provides a strict order on the messages being enqueued. Furthermore that
order is maintained through the lifetime of the entries on the queue: thus if a message is returned (e.g. the prefetched messages being
released upon the consumer closing) the order of that message with respect to other messages on the queue is maintained.

The strict ordering is enforced by the use of a queue data-structure. In order for this to be performant, the data structure uses a lockless
thread-safe designed based around the same algorithm used in the java.util.concurrent.ConcurrentLinkedList (more precisely it is based on
the public domain implementation in the backport util concurrent project). See the section on Concurrent List implementations for more
details.

Each subscription keeps a "pointer" into the list denoting the point at which that particular subscription has reached. A particular subscription
will only deliver a message if it is the next AVAILABLE entry on the queue after the pointer which it maintains which matches any selection
criteria the subscription may have.

Thread safety is maintained by using the thread-safe atomic compare-and-swap operations for maintaining queue entry state (as described
above) and also for updating the pointer on the subscription. The queue is written so that many threads may be simultaneously attempting to
perform deliveries simultaneously on the same messages and/or subscriptions.

Enqueing

When a message is enqueued (using the enqueue() method on the AMQQueue implementation) it is first added to the tail of the list. Then
the code iterates over the subscriptions (starting at the last subscription the queue was known to have delivered for reasons of fairness). For
each subscription found it attempts delivery (details describe below). If the message cannot be delivered to any subscription then the
"immediate" flag on the message is inspected. If the message required immediate delivery then the message is immediately dequeued,
otherwise an asynchronous job is created to attempt delivery at a later point.

(Note there is a "shortcut" path for queues which have an exclusive subscriber. In this case we know there is one and only one subscriber
and so we can go directly to trying to deliver to it without worrying about iterators, etc.)

Potential Issue: Looking at the code which performs the check of the immediate flag I believe there is a race condition:

 (entry.immediateAndNotDelivered())if
 {
 dequeue(storeContext, entry);
 entry.dispose(storeContext);
 }

This does not look to be safe in the case where there is a simultaneous execution of an asynchronous deliver which may acquire the
message between the check of immediateAndDelivered and dequeue. Instead of calling dequeue directly we should instead do a safe
compare-and-swap test to make sure the entry state is "AVAILABLE" before setting it to DEQUEUED. The implementation of this should
probably look much like the implementation of entry.dequeue except for the different expected starting state.
Immediate Delivery

For each subscription to the queue, we call the following code:

 void deliverToSubscription(Subscription sub, QueueEntry entry)private final final
 AMQExceptionthrows
 {

 sub.getSendLock();
 try
 {
 (subscriptionReadyAndHasInterest(sub, entry)if
 && !sub.isSuspended())
 {
 (!sub.wouldSuspend(entry))if
 {
 (!sub.isBrowser() && !entry.acquire(sub))if
 {
 // restore credit here that would have been taken away by wouldSuspend
since we didn't manage
// to acquire the entry subscriptionfor this
sub.restoreCredit(entry);
 }
 else
 {

 deliverMessage(sub, entry);

 }
 }
 }
 }
 finally
 {
 sub.releaseSendLock();
 }
 }

This code first takes a lock on the subscriber (this prevents it being removed while we are carrying out this operation). It then tests if the
given subscription can take this message at the moment (see below for more details). It then further tests if there is enough flow control credit
to send this message to this subscription. If there is credit (and the subscription is not a "browser" then is attempts to acquire the entry (
entry.acquire(sub)). If the acquisition is successful (or if the subscription is a browser and thus does not need to acquire the entry) then the
entry is delivered to the subscription, else the credit that would have been used by the message if sent is restored.

The most interesting method called in the above is subscriptionReadyAndHasInterest(sub, entry):

 subscriptionReadyAndHasInterest(Subscription sub, QueueEntryprivate boolean final final
entry)
 {
 // We need to move subscription on, past entries which are already acquired, orthis
deleted or ones it has no
// interest in.
QueueEntry node = sub.getLastSeenEntry();
 (node != && (node.isAcquired() || node.isDeleted() || !sub.hasInterest(node)))while null
 {

 QueueEntry newNode = _entries.next(node);
 (newNode !=)if null
 {
 sub.setLastSeenEntry(node, newNode);
 node = sub.getLastSeenEntry();
 }
 else
 {
 node = ;null
 ;break
 }

 }

 (node == entry)if
 {
 // If the first entry that subscription can process is the one we are trying to
deliver to it, then we are
// good

 ;return true
 }
 else
 {
 ;return false
 }

 }

Here we see how the subscription is inspected to see where its pointer into the queue (the last seen entry) is in respect to the entry we are
trying to deliver. We start from the subscription's current lastSeenEntry and work our way down the list passing over entries which are
already acquired by other subscriptions, deleted, or which this subscription has no interest in (e.g. because the node does not meet the
subscription's selection criteria); all the while we can update the lastSeenEntry to take it past the entries this subscription has now inspected.
Performing this iteration we will eventually arrive at the next entry the subscription is interested in (or just fall off the end of the list). At this
point either the next entry that the subscription is interested in is the entry we wish to deliver (success!) or not.

Priority Queues

The fundamental difference between Priority Queues and other Queues is that the strict ordering on the queue is not purely FIFO. Instead
the ordering is a combination of FIFO and the priority assigned to the message. To provide strict priority ordering (where a message of higher
priority will always be delivered in preference to a message of lower priority) we can implement a priority queue as an ordered list of standard
sub-queues with the ordering between them defined such the tail of the highest priority sub-queue is followed by the head of the sub-queue
of the next highest priority.

By defining the standard queue implementation such that the methods which determine the ordering between the nodes can be overridden,
the implementation of such a strict priority queue is almost trivial.

The interface QueueEntryList provides an extension point for adding a new queue implementation type:

 QueueEntryListpublic interface
{
 AMQQueue getQueue();

 QueueEntry add(AMQMessage message);

 QueueEntry next(QueueEntry node);

 QueueEntryIterator iterator();

 QueueEntry getHead();
}

The class PriorityQueueList provides the concrete implementation of a strict priority queue as defined above. The constructor takes an
argument defining how many priority levels are to be provided.

When a message is added to the list by calling the add() method, the class first works out which sub-queue to add the message to. This is
determined by an algorithm identical to that defined in the AMQP0-10 specification and compliant with the JMS requirements. The message
is added to the tail of the appropriate sub-queue.

The next() method returns the QueueEntry which logically follows the QueueEntry provided by the caller. First we can simply look at the
sub-queue in which the passed QueueEntry is actually in. If there is a subsequent entry in that sub-queue then we use that. If there is no
subsequent entry in the sub-queue then we must find the next highest priorty subqueue and take the head of that (repeating until we find a
subqueue which is non-empty).

The getHead() method iterates over the subqueues to find the highest priority sibqueue which is non-empty and then returns the head of that
subqueue.

The iterator() method returns an iterator that respects the ordering defined above.
The only other difference between a PriortyQueue and the standard queue is that new messages arriving may be logically "before" messages
that have arrived previously (i.e. a high priority message is always logically prior to a low priority message in the queue). This means that on
arrival of a message into the queue all subscriptions need to be inspected to make sure their pointer is not "ahead" of the new arrival.

Thus the entire implementation of AMQPriorityQueue is as follows:

 class AMQPriorityQueue SimpleAMQQueuepublic extends
{
 AMQPriorityQueue(AMQShortString name,protected final
 durable,final boolean
 AMQShortString owner,final
 autoDelete,final boolean
 VirtualHost virtualHost,final
 priorities)int
 AMQExceptionthrows
 {
 (name, durable, owner, autoDelete, virtualHost, super new
PriorityQueueList.Factory(priorities));
 }

 getPriorities()public int
 {
 ((PriorityQueueList) _entries).getPriorities();return
 }

 @Override
 void checkSubscriptionsNotAheadOfDelivery(QueueEntry entry)protected final
 {
 // check that all subscriptions are not in advance of the entry
SubscriptionList.SubscriptionNodeIterator subIter = _subscriptionList.iterator();
 (subIter.advance() && !entry.isAcquired())while
 {
 Subscription subscription = subIter.getNode().getSubscription();final
 QueueEntry subnode = subscription.getLastSeenEntry();
 (subnode != && entry.compareTo(subnode) < 0 && !entry.isAcquired())while null
 {
 (subscription.setLastSeenEntry(subnode,entry))if
 {
 ;break
 }
 else
 {
 subnode = subscription.getLastSeenEntry();
 }
 }

 }
 }

}

The constructor merely ensures passes up the machinery to ensure a PriorityQueueList (as described above) is used for the underlying
queueing model. The getPriorities() method is overridden by delegating to the PriorityQueueList and then the algorithm for updating the
subscriptions' pointers into the queue is implemented in checkSubscriptionsNotAheadOfDelivery. Thread-safe compare-and-swap operations
are used to update the pointer in-case other threads are also trying to move it; and the loop terminates early if the new QueueEntry has
already been acquired.

Qpid Design - Message Delivery

Asynchronous Delivery
Subscriptions
Removal
Flow Control
Acknowledgement
Reject and Release

Asynchronous Delivery

If there are no subscriptions that can currently take delivery of a message then we need to schedule an asynchronous delivery. While the
code is thread safe and could cope with multiple threads performing asynchronous delivery simultaneously, we limit ourselves to only having
one asynchronous delivery job scheduled at any one time, so as not to overwhelm the broker:

 void deliverAsync()public
 {
 _stateChangeCount.incrementAndGet();

 Runner runner = Runner();new

 (_asynchronousRunner.compareAndSet(, runner))if null
 {
 _asyncDelivery.execute(runner);
 }
 }

Here we first increment our count of "stateChanges". This provides us with a way of knowing between loops of the asynchronous delivery
thread whether anything else has happened that makes it worth our while running the asynchronous delivery loop again (in effect it prevents
us having to always add another thread to cope with race conditions where we want to start the async delivery just as it is ending). We then
create a new instance of the asynchronous delivery "Runner", and attempt to make this instance the current one by means of the ubiquitous
compare-and-swap operation. Here we test if we are the thread that moved the queue from having no asynchronous runner to having one;
and if so we need to schedule the runner to execute by way of calling _asyncDelivery.execute(runner).

The actual work of the asynchronous delivery is done in the processQueue(Runnable runner) method.

 void processQueue(runner) AMQExceptionprivate Runnable throws
 {
 stateChangeCount;long
 previousStateChangeCount = .MIN_VALUE;long Long
 deliveryIncomplete = ;boolean true

 extraLoops = 1;int
 deliveries = MAX_ASYNC_DELIVERIES;int

 _asynchronousRunner.compareAndSet(runner,);null

 (deliveries != 0 && while
 ((previousStateChangeCount != (stateChangeCount = _stateChangeCount.get())) ||
deliveryIncomplete)
 && _asynchronousRunner.compareAndSet(, runner))null
 {
 // we want to have one extra loop after every subscription has reached the point where
it cannot move
// further, just in the advance of one subscription in the last loop allows a differentcase
subscription to
// move forward in the next iteration

 (previousStateChangeCount != stateChangeCount)if
 {
 extraLoops = 1;
 }

 previousStateChangeCount = stateChangeCount;
 deliveryIncomplete = _subscriptionList.size() != 0;
 done = ;boolean true

In this first fragment of the method we see the constraint on how long the asynchronous delivery will keep attempting to deliver more
messages.

The first constraint "deliveries != 0" is testing a countdown value "deliveries" which is intialised with an initial maximum (currently set to 10):
every successful delivery the thread makes decrements this counter. This implements a limit on how long the processQueue method will be
allowed to run for, stopping this queue from starving other queues of processor time. At the end, if this countdown was the factor to cause the
loop to terminate, the asynchronous delivery is scheduled to run again.

The second constraint "((previousStateChangeCount != (stateChangeCount = _stateChangeCount.get())) || deliveryIncomplete) " is testing
whether there is provably nothing left to do on this queue. The first half tests if there have been any changes since the last iteration that have
incremented that state change count (and thus require another loop), the second half says, "even if there haven't been any changes keep
looping if last time round we thought there was still more to do".

The final constraint "_asynchronousRunner.compareAndSet(null, runner))" is our familiar compare-and-swap operation ensuring that this is
the designated instance of the asynchronous processer running.

This loop runs, attempting to deliver one message in each iteration:

 SubscriptionList.SubscriptionNodeIterator subscriptionIter =
_subscriptionList.iterator();
 //iterate over the subscribers and to advance their pointertry

 (subscriptionIter.advance())while
 {
 closeConsumer = ;boolean false
 Subscription sub = subscriptionIter.getNode().getSubscription();
 (sub !=)if null
 {

Iterate over the subscriptions on the queue...

 sub.getSendLock();

Lock the subscription so it does not get deleted while attempting to delvier to it.

 try
 {
 QueueEntry node = moveSubscriptionToNextNode(sub);

Find the next node which the subscription should try to deliver by skipping over already acquired entries, if it is null then this subscription is at
the tail of the queue.

 (node != && sub.isActive())if null
 {
Keep a track of whether subscription is really active and whether we managed to advance thethis
pointer on subscription in loop (these values go into determining there is anythingthis this if
left to in a loop).do new

 advanced = ;boolean false
 subActive = ;boolean false

 (!(node.isAcquired() || node.isDeleted()))if
 {
 (!sub.isSuspended())if
 {
The node is not yet acquired or deleted, and we can now be sure the subscription is active.
 subActive = ;true
 (sub.hasInterest(node))if
 {
The following code is similar to that in the deliverToSubscription method described previously.
It should be possible to factor out. The primary difference is the behaviour with a browserthis
where need to explicitly note that we have advanced.

 (!sub.wouldSuspend(node))if
 {
 (!sub.isBrowser() && !node.acquire(sub))if
 {
 sub.restoreCredit(node);

 }
 else
 {
 deliverMessage(sub, node);
 deliveries--;

 (sub.isBrowser())if
 {
 QueueEntry newNode = _entries.next(node);

 (newNode !=)if null
 {
 sub.setLastSeenEntry(node, newNode);
 node = sub.getLastSeenEntry();
 advanced = ;true
 }

 }
 }
 done = ;false
 }
 else // Not enough Credit message and wouldSuspendfor
{

This case covers the scenario where we are using bytes based flow control, and the currently available credit is less than the size of the next
message. We need to wait either for the credit to be increased (which will cause a state change event) or the entry to be picked off by
another subscription (which we capture with the state change listener)

 //QPID-1187 - Treat the subscription as suspended for
 messagethis

// and wait the message to be removed to delivery.for continue
subActive = ;false

 node.addStateChangeListener(new
QueueEntryListener(sub, node));
 }
 }
 else
 {
 // subscription is not interested in node so wethis this
can skip over it
QueueEntry newNode = _entries.next(node);
 (newNode !=)if null
 {
 sub.setLastSeenEntry(node, newNode);
 }
 }
 }
 }

Here we calculate if there is anything left to do on this particular subscription. If we are at the tail of the subscription, or the subscription is no
longer active, then this subscription can be considered done. If all subscriptions are done then we are truly finished.

 atTail = (_entries.next(node) ==);final boolean null
 done = done && (!subActive || atTail);

Here calculate if we need to auto-close the subscription - we do this if we are at the tail of the queue, and we didn't advance in this iteration
and this is an auto-close subscription.

 closeConsumer = (atTail && !advanced && sub.isAutoClose());
 }
 }
 finally
 {
 sub.releaseSendLock();
 }

 (closeConsumer)if
 {
 unregisterSubscription(sub);

 ProtocolOutputConverter converter =
sub.getChannel().getProtocolSession().getProtocolOutputConverter();
 converter.confirmConsumerAutoClose(sub.getChannel().getChannelId(),
sub.getConsumerTag());
 }

 }

This ends the iteration over subscriptions, now we calculate if we believe there we should try iterating over the subscriptions again. We use
the value of "done" we calculated while iterating over the subscriptions to determine if we need to loop again. If we believe we are done and
we have already used our "extra" loop then we can stop. If we are "done" but we have not yet used the extra loop, then we decrement the
extra loop counter (setting it to 0 might be clearer since 0 and 1 are the only valid values) and go round one more time. If we are not done
then we restore extraLoops to 1.

 (done)if
 {
 (extraLoops == 0)if
 {
 deliveryIncomplete = ;false
 }
 else
 {
 extraLoops--;
 }
 }
 else
 {
 extraLoops = 1;
 }
 }
 _asynchronousRunner.set();null
 }

This ends the the "while(..." loop. The final action in the asynchronous process is to determine if we need to schedule ourselves for another
execution:

 // If deliveries == 0 then the limitting factor was the time-slicing rather than available
messages or credit
// therefore we should schedule runner again (unless someone beats us to it :-)).this

 (deliveries == 0 && _asynchronousRunner.compareAndSet(, runner))if null
 {
 _asyncDelivery.execute(runner);
 }
 }

Subscriptions

Subscription model the entities created by the receiving of a "Basic.Consume" event in AMQP0-8/0-9. That is they represent a relationship
between an AMQP Channel (equivalent to a Java JMS Session) and a queue. As messages are placed on the queue, the queue takes
responsibility for as quickly as possible finding a subscriber which is willing to take the message. The subscriber is responsible for delivering
the message to the receiving client. As outlined above, a significant change introduced by the refactoring is that the Subscriptions now
maintain state representing a pointer into the queue. This pointer represents the current position where the subscription can guarantee that
no message prior to that is of interest to it. Generally this pointer only ever moves forward through the queue (see the section on reject and
release for the exception to this rule). This is the only dynamic state maintained directly by the subscription.

Different subclasses of SubscriptionImpl are used to model the different behviour associated with different acknowledgement modes. The
subclasses used are AckSubscription, NoAckSubscription, BrowserSubscription and GetNoAckSubscription. The last of these is a special
implementation which is used to model a Basic.Get command as a temporary subscription that can only ever receive one message.
Modelling Get in this way mirrors how the same semantics are implemented in 0-10 and removes having two separate ways to dequeue
messages from the queue.
Adding

When a "Basic.Consume" event is processed the subscription is added to the list of subscriptions on the queue, the "pointer" in the
subscription is set to point at the head of the list of queue entries, and then an asynchronous job is kicked off to deliver to that subscription as
many messages as can be delivered starting at the head. This uses an algorithm almost identical to that described above to asynchronous
message delivery, except it only considers the one subscription. This is found within the "flushSubscription" method of the queue (flushing a
subscription is a 0-10 concept where you attempt to send as much as possible to a given subscription and then signal completion when
either the subscription's credit runs out or there are no more messages on the queue).

Future Improvement: Factor out the common code between flushSubscription and processQueue.

Removal

A consumer is removed either through the reception of a "Basic.Cancel" event or through the closure of the encapsulating channel. For
thread safety, the first action is to remove the subscription from the list of subscriptions that the asynchronous delivery task iterates over.
Next the subscription's close() method is called. This takes out a lock on the subscription (to avoid conflicting with any attempt to concurrently
send to the subscription) and changes the subscription's state to "closed". The combination of these steps allow us to assert that after that
point in time the subscription will not be used by any other threads to attempt to deliver messages. Next the subscription's pointer into the
queue is null-ed out in a thread-safe way - this is done to prevent memory leaks due to references being held to points in the queue (due to
the way that the concurrent-safe queues work "deleted" elements may not be eligible for garabage collection for some time).

Finally, if the queue is of "auto-delete" type and the subscription being removed is the last subscription attached to the queue, then the queue
needs to be deleted.

Flow Control

There are now concrete classes modeling the behaviour of the flow control algorithm. These flow control managers are set at the
subscription level. For AMQP 0-8 and 0-9 flow control still happens at a per-channel level, so the same instance of the flow control manager
is shared between all subscriptions on a channel. For 0-10 implementations we will be able to use the same code to implement the
per-subscription flow-control model that it utilizes.

Acknowledgement

Reject and Release

Messages delivered to a subscription may subsequently be returned to the queue either explicitly (by use of a reject command) or implicitly
(by the closure of the channel). In this case the message must be made available again to subscribers to the queue. The issue here is that
the pointers held by the subscriptions are likely to be in advance of the point to which the message is being returned. Thus for each message
that is returned we must iterate over all subscribers to the queue, and if their current pointer is in advance of the returned message it must be
moved back such that the next entry that that subscriber sees is the returned message. We do not reset the pointer for browsing consumers
however as doing so would lead to all the browsed messages that are after the returned message in the queue being redelivered to the
browsing subscription.

Java authorization plugins
The Qpid Java Server supports pluggable authorization modules through OSGi bundles.

New plugins must implement two classes. One of these should implement the org.apache.qpid.server.security.access.ACLPlugin interface.
The other should implement the org.apache.qpid.server.security.access.ACLPluginFactory interface.

How authorization works

The collection of configured ACLPlugins are managed by an ACLManager class. This is queried by frame handlers as to whether access
should be allowed or not. When this occurs, the manager conducts a vote amongst it's plugins. If any plugin votes to deny access,
authorization is denied. If a server-level plugin denies access, but a virtualhost level plugin explicitly allows access, the virtualhost vote
overrides the server-level plugins and it's vote is for access to be allowed. An instance of a plugin may abstain from a vote.

The ACLPluginFactory Interface.

This interface has two methods: boolean supportsTag(String) and ACLPlugin newInstance(Configuration). If the Factory can produce a
plugin which is capable of handling the tag passed into supportsTag it must return true, otherwise it must return false.

If the plugin that the Factory is associated with supports that particular configuration tag, a new instance of that plugin should be created by
newInstance and configured with the Configuration instance that is passed in.

The ACLPlugin Interface.

This interface has two types of method. setConfiguration is used to pass a Configuration object to the plugin to allow it to access
configuration information. This will always be the complete children of one of the <security> sections of the server configuration file (either
server-wide or one for a specific virtualhost).

The AuthzResult authorise* methods allow the plugin to restrict or grant access for a particular action. All methods take in an
AMQProtocolSession to provide access to the authentication data and the underlying socket. If access should be granted,
AuthzResult.ALLOWED should be returned. If access should be denied, AuthzResult.DENIED should be returned. If the plugin has no
opinion as to whether access should be permitted, it should return AuthzResult.ABSTAIN.

The AbstractACLPlugin class

An abstract ACLPlugin is provided that abstains from all votes. It is useful if the plugin you are implementing only cares about a few methods,
extend this and you need only implement the authoriseFoo methods the plugin is interested in.

0.6 Broker BasicFlow Synchronisation Design

BasicFlow Synchronisation Design

The recently fixed QPID-1871/ raised the issue of QPID-2116 which is described here in more detail.0.6 Java Client Dispatcher Changes

Problem
Solution

Problem

The initial problem under investigation(QPID-1871) was the Java client and when used with the Java Broker (0-8/9) protocol was resulting in
messages returning out of order after a TxRollback. The initial analysis highlighted the Dispatcher as holding an incomming message and
acking it late. The fix for QPID-1871 does not remove the potential for the Dispatcher to hold a message rather it attempts to clear all
messages that the Dispatcher has to process so that none can be left behind. The change has fixed the related issue with the 0-10/CPP
Broker code path but the 0-8/Java broker was still failing. On further investigation it appears that the reason the Dispatcher had a message to
reject after completion in the Java case was due to the broker violating the Flow status of the Channel.

The log extracts from the highlight that whilst the Client has requested Flow = false and the Broker acknowledges with aRollbackOrderTest
FlowOk, one last message is still sent to the Client.

// Client Requests Flow = false/suspended
main 2009-09-28 13:09:20,994 DEBUG [apache.qpid.client.AMQSession] Setting channel flow :
suspended
...
// Broker Receives request acknowledges with FlowOk (not logged)
pool-1-thread-1 2009-09-28 13:09:21,020 DEBUG [qpid.server.protocol.AMQProtocolSession] Frame
Received: Frame channelId: 1, bodyFrame: [ChannelFlowBodyImpl: active=false]
pool-1-thread-1 2009-09-28 13:09:21,020 INFO [qpid.message] MESSAGE
[con:0(guest@anonymous(11875256)/test)/ch:1] [con:0(guest@anonymous(11875256)/test)/ch:1] CHN-1002
: Flow Stopped
pool-1-thread-1 2009-09-28 13:09:21,020 DEBUG [qpid.server.handler.ChannelFlowHandler]
Channel.Flow for channel 1, active=false
...
// Asynchronous delivery thread can be seen to be delivering a message to the client
pool-1-thread-2 2009-09-28 13:09:21,046 DEBUG [qpid.server.subscription.SubscriptionImpl]
(25976423) checking filters for message ((HC:32576775 ID:21 Ref:1)
pool-1-thread-2 2009-09-28 13:09:21,046 DEBUG [apache.qpid.server.AMQChannel] 1(8529229) Adding
unacked message(Message[(HC:32576775 ID:21 Ref:1)]: 21; ref count: 1 DT:289) with a
queue(org.apache.qpid.server.queue.SimpleAMQQueue@1c5ddd3) for
[channel=[anonymous(11875256)(guest):1], consumerTag=1, session=anonymous(11875256)]
...
// Client receives FlowOk message
pool-1-thread-1 2009-09-28 13:09:21,086 DEBUG [qpid.client.protocol.AMQProtocolHandler]
(2443549)Method frame received: [ChannelFlowOkBodyImpl: active=false]
pool-1-thread-1 2009-09-28 13:09:21,086 DEBUG [qpid.client.handler.ChannelFlowOkMethodHandler]
Received Channel.Flow-Ok message, active = false
...
// Client receives additional message
pool-1-thread-4 2009-09-28 13:09:21,143 DEBUG [qpid.client.protocol.AMQProtocolHandler]
(2443549)Method frame received: [BasicDeliverBodyImpl: consumerTag=1, deliveryTag=289,
redelivered=true, exchange=amq.direct, routingKey=RollbackOrderTest-testOrderingAfterRollback]
pool-1-thread-4 2009-09-28 13:09:21,144 DEBUG [qpid.client.handler.BasicDeliverMethodHandler] New
JmsDeliver method received:org.apache.qpid.client.protocol.AMQProtocolSession@c22a3b
pool-1-thread-4 2009-09-28 13:09:21,144 DEBUG [apache.qpid.client.AMQSession]
Message[ContentHeader org.apache.qpid.framing.ContentHeaderBody@1e5ba24] received in session

The additional message that is received causes the Dispatcher to awake from its call and hold until the connection is restarted._queue.take()
At this point the message is rejected as its delivery tag is old. However, the Java Broker has already resent the message with a new delivery
tag.

Solution

What needs to happen is that when the the Channel is suspended we must ensure that all Subscriptions have noticed the change in state.
This can be done by taking and releasing each of the Subscriptions send locks.

Slow Consumer Disconnect

Slow Consumer Problem Statement

The problem with slow consumers is that the broker must act as a buffer until they can catch up. However the broker does not have infinite
resources so it will fail if the consumer does not catch up.

Consumers in the Java Broker

The types of queues where a slow consumer can occur boils down to two properties: durability and bound exchange.

Queues that are bound to the amq.direct exchange, i.e. JMS Queues, are not going to be included in this work.
Queues bound to other exchanges such as amq.match, the Headers exchange will also not be included in this work.

This reduces the queues to consider to just queues bound to the topic exchange.

Topics

In AMQP consumption is always from an AMQP Queue to avoid confusion with JMS Queues in the following discussion the term topic is
defined to mean an AMQP Queue bound to the amq.topic exchange.

When a topic reaches a set threshold for message count, size or age the attached consumer session we have three options.

Flow the producer.
Disconnect the slow consumer.

Work has already been done to flow producers on queues: .Producer flow control

This leaves us with two options.

Disconnect the Slow Consumer

For non-durable topics this means that it will be deleted so potentially freeing up the memory used by the messages. Remember the
messages are shared across all topics so the memory will only be freed up when all the topics no longer require the message.

For durable topics (JMS Durable Subscriptions) disconnecting the consumer will leave the queue bound and receiving messages. This will
only make the memory situation worse as we now have a queue with no consumer rather than just a slow consumer. If all the messages on
the topic are persistent then they can be evicted from memory if required but there is no guarantee that all the messages will have been sent
persistently.

On disconnection the consumer would receive an AMQP error, 506 Resource Limit Exceeded/Resource Error. For non-durable consumers
this will always work. However, for a durable subscription it is possible that the consumer has disconnected when the limit is reached. So
whilst deleting their subscription would be in line with the configuration it would not be expected by the user. The configuration for enabling
slow consumer disconnection should allow for durable subscriptions to be maintained, targeting only transient subscriptions for
disconnection.

Design Specification

This work is mainly focused on the broker however the the client may also require changes to ensure that the error is correctly reported.

Broker Changes

Extension Point
To enable the broker to monitor the queues and perform the appropriate action we can extend a existing mechanism. That of the VirtualHost
housekeeping thread. This is a thread that checks all the queues for alerting purposes. Currently this is done via a single TimerTask however
by updating this to utilise a ScheduledThreadPoolExecutor we can run arbitrary processes in the pool and ensure that any error in their
operation does not prevent them from running on their defined schedule. This will allow slow consumers to be checked and disconnected on
a periodic basis.

Queue Detection
The target queues can easily be identified by checking their bindings. Topics are all bound to the TopicExchange. Once we have identified a
topic exchange we can use the queue assigned configuration to determine if we are checking depth, messageCount or messageAge as a
means of selecting the subscription for processing.

Processing
We will identify the session/channel that the subscription is on and close it with the appropriate error code. The delete will then ensure that
the queue is deleted and all messages released after the session/channel has been closed.

Error Code
The AMQP error code 506 will be used to communicate the failure to the client. This is defined as a Resource Error or Resource Limit
Exceeded in 0-8/9/91 and 0-10 respectively. In addition the protocol allows for a textual description to be sent back to the client. In this field
we will send 'Consuming too slow.'

Client Changes

Error Processing
Currently a 0-8/9/91 Session will propagate a ChannelCloseException to the client via the JMS ExceptionListener we need to ensure that the
0-10 code path will create the same Exception type and present it to the JMS ExceptionListener.

After Effects
The Exception that is thrown should not be classed as a 'HardError' which would result in Failover starting. After the exception has been
received the Consumer and the associated Session should be closed however the Connection will still be operational. This will allow the
client to perform recovery without having to reestablish its Connection.

Configuration

Picking up on the the addition of slow consumer configuration would be done using a 'consumer' element.Topic Configuration Design

The topic currently exposes three properties that we can use to control the client, depth, oldest message, and count. The configuration will
provide the option to one or all of these values to apply to the specified topic. In the situation where more than one value is specified they will
all be used to trigger the policy. e.g. setting count to 10 and depth to 1024 would allow the 10 messages to exist as long as their total size
was not more than 1024.

One additional property that would be of use here would be the consumption rate. If the topic reported the consumption rate this property
could be used to define a threshold that the consumer must stay above.

1.
2.
3.
4.

Consumer Element for configuration

 <consumer>
 <!-- The depth before which the policy will be applied-->
 4235264<depth> </depth>

 <!-- The message age before which the policy will be applied-->
 600000<messageAge> </messageAge>

 <!-- The number of message before which the policy will be applied-->
 50<messageCount> </messageCount>

 <!-- Policies configuration -->
 <policy name= >"Delete"
 <options>
 <option name= value= />"delete-persistent" "true"
 </options>
 </policy>
 </consumer>

This element will be added to the existing queue configuration to allow specific durable subscriptions to be identified and<consumer>
processed. In addition a new element will be added to allow configuration for topics. The resulting section of xml would look like this:<topic>

Topic configured for slow consumer disconnection

 <topic key= >"stocks.us.*"
 <consumer>
 <!-- The depth before which the policy will be applied-->
 4235264<depth> </depth>

 <!-- The message age before which the policy will be applied-->
 600000<maessageAge> </messageAge>

 <!-- The number of message before which the policy will be applied-->
 50<messageCount> </messageCount>

 <!-- Policies configuration -->
 <policy name= >"Delete"
 <options>
 <option name= value= />"delete-persistent" "true"
 </options>
 </policy>
 </consumer>

 </topic>

Testing Spec

Testing for this new feature will mainly rely on system testing.

Unit Testing

Configuration changes need to be validated as part of existing Configuration Testing.

System Testing

System testing requries a number of dimensions to be varied.

Protocol Version
Client Ack Mode
Client Consume mode
Topic Durability

Protocol Version

Testing should be completed at a minimum on the two sets of protocol 0-8/0-9/0-91 and 0-10. Ideally the test would be run on each protocol
version to verify the protocol exception is correctly propagated.

Client Ack Mode

The tests should be run against each client ack mode to validate if there is any difference in the exception handling. Transacted for instance
should fail to commit by throwing the expected exception as well as having the exception appear on the ExceptionListener.

The NoAck case has addition issue in that it can overwhelm IO layer in presence of a slow consumer. This should be verified however its
resolution is beyond the scope of this work.

Client Consume Mode

The client can consume in one of two ways. Synchronously using receive() or asynchronously using a MessageListener.

Topic Type

Topics can be created as durable or non-durable(transient) both of these configurations should be tested as any exception should be
reported in the same way. Additionally as the configuration has the ability to selectively delete durable topics this must also be tested. The
required exception should be thrown when enabled but not thrown when the configuration does not control durable topics.

Topic Configuration Design

Topic Configuration Design

Currently we are unable to provide configuration for topics. What follows is a proposal to augment our configuration to provide a 'topic'
section that can be validated.

The first important section is the topic definition. Rather than using dynamically named elements that we cannot validate we use a property to
name the topic.

 <topic key= >"stocks.us.*"

This approach allows us to simply use the dotted notation as well as enabling us to validate the xml.

Currently alerting is picked up from the global 'queues' configuration section. Now that we have a 'topic' section we can add an 'alerting'
element which can articulate more clearly the alerting values. This will allow configuration on a per topic basis and remove the confusion that
has arisen from the 'maximum*' elements in the 'queues' configuration section.

 <alerting>
 2117632<depth> </depth>
 2117632<messageSize> </messageSize>
 300000<messageAge> </messageAge>
 25<messageCount> </messageCount>
 </alerting>

To further clarify the use of existing properties a producer element can be used to house configuration that defines how producers to this
topic are to be treated. This currently means the options but it does give some additional clarity to the 'capacity'Producer flow control
element that is also mistaken to be a hard limit on the capacity of the queue.

 <producer>
 <!-- set the topic capacity to 10Mb -->
 10485760<capacity> </capacity>
 <!-- set the resume capacity to 8Mb -->
 8388608<flowResumeCapacity> </flowResumeCapacity>
 </producer>

The slow consumer design calls for configuration which is defined on that and has been included here for completeness.page

These 'topic' elements would of course be wrapped in a 'topics' element as is done for 'queues'.

Here is a complete topics example.

New Topic Section

<topics>

 <topic key= >"stocks.us.*"
 <alerting>
 2117632<depth> </depth>
 2117632<messageSize> </messageSize>
 300000<messageAge> </messageAge>
 25<messageCount> </messageCount>
 </alerting>

 <producer>
 <!-- set the topic capacity to 10Mb -->
 10485760<capacity> </capacity>
 <!-- set the resume capacity to 8Mb -->
 8388608<flowResumeCapacity> </flowResumeCapacity>
 </producer>

 <consumer>
 <!-- The maximum depth before which the policy will be applied-->
 4235264<maximumDepth> </maximumDepth>

 <!-- The maximum message age before which the policy will be applied-->
 600000<maximumMessageAge> </maximumMessageAge>

 <!-- The maximum number of message before which the policy will be applied-->
 50<maximumMessageCount> </maximumMessageCount>

 <!-- Available Policies : Delete | Cycle -->
 <policy name= >"Delete"
 <options>
 <option name= value= />"include-persistent" "true"
 </options>
 </policy>
 </consumer>

 </topic>

</topics>

Qpid Java Client refactoring
Summary

The goals of the re-factoring are as follows.

1. Provide an AMQP protocol level API.
2. Achieve a clear separation of concerns.
3. Implement proper state and event handling.
4. Provide extensibility to extend the API at any level.
5. Provide a unified interface for configuration through jvm
arguments,xml ..etc. (Used commons configuration)

The Prototype is available here https://svn.apache.org/repos/asf/incubator/qpid/branches/client_restructure/java/newclient/

The following document describes the design. java_amqp_client_design.pdf

Distributed Testing

Testing Proposal.

Use Cases.

The following usage scenarios are covered by this test framework design proposal:

Performance Testing.

https://svn.apache.org/repos/asf/incubator/qpid/branches/client_restructure/java/newclient/
http://cwiki.apache.org/confluence/download/attachments/50583/java_amqp_client_design.pdf?version=1&modificationDate=1175527005000

1.

2.

Distributed testing.

Want to be able to distribute performance tests accross many machines in parallel, in order to more accurately simulate real usage scenarios
and to be able to fully stress test the broker under load.
Want to be able to run performance tests, with the test parameters configurable, so that any reasonable toplogy can be simulated and
performance estimated.

For example:

P2P test. On 10 machines, simulating load of 1000 clients. Each machine will run 100 test circuits on 100 connections. Both ends of
the test circuit will reside on the same machine, with each client consuming its own messages. Results over all machines to be
collated to arrive at total throughput figures.
Pub/Sub test. On 10 machines, simulating load of 1000 subscribers, 1 publisher. One machine acts as the sending half of the test
circuit. The 1000 subscriber nodes, the receiving end of the circuit, are distributed as evenly as possible accross the other 9
machines. The publisher sends messages and collates throughput or latency measurements on the test circuit.

System Testing.

Thorough testing.
Functional testing at the product surface; behavioural tests to carry forward as the system evolves.

Configurable framework, capable of exercising every imaginable combination of options, both in-vm broker and standalone, accross one
client/test circuit up to many clients/test circuits in parallel.
Want to be able to exercise as many different combinations of test configuration parameters in possible in order to generate to the most
comprehensive testing of the broker and protocol as possible. Exhaustive testing of every combination will discover bugs.
Want to test the system behaviour at its surface. That is, through the JMS API or through a more direct AMQ API where necessary. The test
framework will ideally, abstract out the exact details of the API used, in order to allow forward evolution of the AMQ API.
Want to be able to set up each producer or consumer in a test circuit identically by default. More specific tests to be able to produce
variations on this theme to test specific scenarios. For example test circuits the send both persistent and transient messages etc.

Build tests out of a standardized construction block.

Diagram: The test circuit.

Publisher/Receiver pair.
Each end of which is a Producer/Consumer unit.
M producers, N consumers, talking over Z destinations.

The standard consruction block for a test, is a test circuit. This consists of a publisher, and a receiver. The publisher and receiver may reside
on the same machine, or may be distributed. Will use a standard set of properties to define the desired circuit topology.

Tests are always to be controlled from the publishing side only. The receiving end of the circuit is to be exposed to the test code through an
interface, that abstracts as much as possible the receiving end of the test. The interface exposes a set of 'assertions' that may be applied to
the receiving end of the test circuit.

In the case where the receiving end of the circuit resides on the same JVM, the assertions will call the receivers code locally. Where the
receiving end is distributed accross one or more machines, the assertions will be applied to a test report gethered from all of the receivers.
Test code will be written to the assertions making as few assumptions as possible about the exact test topology.

A test circuit defines a test topology, M producers, N consumers, Z outgoing routes between them.
The publishing end of each test circuit always resides on a single JVM, even if M > 1. If publishers are to be distributed accross many
machines, the test framework itself provides the scaling by running the same test circuit many times in parallel. This means that it is possible
to have an arbitrary number of message publishers accross one or many machines, determined by the test setup.
The receiving half of the circuit may be local, in which case all messages come back to the same machine, or distributed in which case they
may be received by many machines.
There are therefore two ways in which tests may be distributed accross multiple nodes in a network; many test circuits may be distributed
and run in parallel and/or the receiving ends of those circuits may be distributed or local.
Each node in the network can play up to 2 roles in any given test; publisher or receiver. It is possible to play both roles at once, but would like
to have a 'single_role' flag, that can be set to ensure that test nodes taking one role, will not participate in the other for the duration of a test.
For example, in the pub/sub test want one publisher and the remaining nodes to distribute the receiver role amongst themselves.

Probing for the available test topology.

Diagram: The available topology.

When the test distribution framework starts up, it should broadcast an 'enlist' request on a known topic. All available nodes in the network to
reply in order to make it known that they are available to carry out tests. For the requested test case, C test circuits are to be run in parallel.
Each test defines its desired M by N topology for each circuit. The entire network may be available to run both roles, or the test case may
have specified a limit on the number of publishing nodes and set the 'single_role' flag. If the number of publishing nodes exhausts the
available network and the single role flag is on, then there are no nodes available to run the receiver roles, the test will fail with an error at
this point. Suppose there are P nodes available to run the publisher roles, and R nodes available to run the receiver roles. The C test circuits
will be divided up as evenly as possible amongst the P nodes. The C * N receivers will be divided up as evenly as possible amongst the R
nodes.

A more concrete example. There are 10 test machines available. Want to run a pub/sub test with 2 publishers, publishing to 50 topics, with
250 subscribers, measuring total throughput. The distribution framework probes to find the ten machines. The test parameters specify a
concurrency level of 2 circuits, limited to 2 nodes, with the single role flag set, which leaves 8 nodes to play the receiver role. The test
parameters specify each circuit as having 25 topics, unique to the circuit, and 125 receivers. The total of 250 receivers are distributed

1.
2.
3.
4.
5.
6.
7.

amongst the 8 available nodes, 31 each, except for two of them which get 32. The test specifies a duration of 10 minutes, sending messages
500 bytes in size using test batches of 10000 messages, as fast as possible. The distribution framework sends a start signal to each of the
publishers. The publishers run for 10000 messages. The publishers request a report from each receiver on their cicruit. The receivers send
back to the publishers a report on the number of messages received in the batch. The publishers assert that the correct number for the batch
were indeed received, and log a time sample for the batch. This continues for 10 minutes. At the end of the 10 minutes, the publishers collate
all of their timings, failures, errors into a log message. The distribution framework requests the test report from each publishing nodes, and
these logs are combined together to produce a single log for the entire run. Some stats, such as total time taken, total messages through the
system, total throughput are calculated and added as a summary to the log, along with a record of the requested and actual topology used to
run the test.

Diagram: The requested test applied onto the available topology.

Test Procedures.

A variety of different tests can be written against a standard test circuit, many of these will follow a common pattern. One of the aims of using
a common test circuit configured by a number of test parameters, is to be able to automate the generation of all possible test cases that can
be produced from the circuit combined with the common testing pattern, and an outline of a procedure for doing this is described here. The
typical test sequence is described below:

A typical test sequence.

Initialize the test circuit from the default parameters, plus specific settings for the test.
Create the test circuit. The requested test parameters are applied to the available topology to produce a live circuit.
Send messages.
Request a status report.
Assert conditions on the publishing end of the circuit.
Assert conditions on the receiving end of the circuit.
Pass or fail the test.

The thorough test procedure.

The thorough test procedure uses the typical test sequence described above, but generates all of combinations of test parameters and
corresponding assertions against the results.

The all_combinations function produces all combinations of test parameters described in Appendix A.

all_combinations : List<Properties>

The expected_results function, produces a list of assertions, given a set of test parameters. For example, mandatory && no_route ->
assertions.add(producer.assertMessageReturned), assertions.add(receiver.assertMessageNotReceived).

expected_results: Properties -> List<Assertions>

For parameters : all_combinations
test_circuit = new TestCircuit(parameters).
test_circuit.start.

Send mesages.
Request status.

For assertion : exected_results(parameters)
Assert(assertion).

Appendix A - Test Parameters.

 Possible Values Default Value

Connection properties.

broker tcp, vm tcp://localhost

vhost <empty>

username guest

password guest

Topology properties.

max_publishing_node 1

single_role true, false true

Circuit properties. Total: 2^2 = 4 combinations.

num_publishers 1

num_consumers 1

1.
2.
3.
4.

5.
6.
7.

8.

num_destinations 1

base_out_route_name ping

base_in_route_name pong

bind_out_route true, false true

bind_in_route true, false false

consumer_out_active true, false true

consumer_in_active true, false false

JMS flags and options. Total: 2 * 2 * 2 * 6 = 48 combinations.

transactional true, false false

persistent true, false false

no_local true, false false

ack_mode tx, auto, client, dups_ok, no_ack, pre_ack auto

AMQP/Qpid flags and options. Total: 2^4 = 16 combinations.

exclusive true, false false

immediate true, false false

mandatory true, false false

durable true, false false

prefetch_size

header_fields

Standard test parameters. Total: 3 combinations.

message_size no_body, one_body, multi_body one_body

num_messages 100

outgoing_rate

inbound_rate

timeout 30 seconds

tx_batch_size 100

max_pending_data

Total combinations over all test parameters: 4 * 48 * 16 * 3 = 9216 combinations.

Defaults give an in-VM broker, 1:1 P2P topology, no tx, auto ack, no flags, publisher -> receiver route configured, no return route.

Appendix B - Clock Synchronization Algorithm.

On connection/initialization of the framework, synch clocks between all nodes in the available toplogy. For in vm tests, the clock delta and
error will automatically be zero. For throughput measurements, the overall test times will be long enough that the error does not need to be
particularly small. For latency measurements, want to get accurate clock synchronization. This should not be too hard to achieve over a quiet
local network.

After determining the list of clients available to conduct tests against, the Coordinator synchronizes the clocks of each in turn. The
synchronization is done against one client at a time, at a fairly low messaging rate over the Qpid broker. If needed, a more accurate
mechanism, using something like NTP over UDP could be used. Ensure the clock synchronization is captured by an interface, to allow better
solutions to be added at a later date. Here is a simple algorithm to get started with:

Coordinator tells client to synchronize its clock with the coordinators time.
Client stamps current local time on a "time request" message and sends to Coordinator.
Upon receipt by Coordinator, Coordinator stamps Coordinator-time and returns.
Upon receipt by Client, Client subtracts current time from sent time and divides by two to compute latency. It subtracts current time
from Coordinator time to determine Client-Coordinator time delta and adds in the half-latency to get the correct clock delta.
The first result should immediately be used to update the clock since it will get the local clock into at least the right ballpark.
The Client repeats steps 1 through 3, 25 or more times, pausing a few tens of milliseconds each time.
The results of the packet receipts are accumulated and sorted in lowest-latency to highest-latency order. The median latency is
determined by picking the mid-point sample from this ordered list.
All samples above approximately 1 standard-deviation from the median are discarded and the remaining samples are averaged
using an arithmetic mean.

1.
2.

The above algorithm includes broker latency, two network hops each way, plus possible effects of buffering/resends on the TCP protocol. A
fairly easy improvement on it might be:

Coordinator tells client to synchronize its clock with the coordinators time, provides a port/address to synchronize against.
Clients sends UDP packets to the Coordinators address and performs the same procedure as outlined above.

Low-Level API Diagram

Weekly QPID Developer Meetings

Qpid Java Meeting Minutes 04-04-2008

Agenda

ApacheCon Europe
Update on M2.1 release process
Review of code commits
Review of new JIRAs
Update on GSoC projects

Attendees

ApacheCon Europe

No-one available to travel on those dates

Update on M2.1 release process

Need to update the release notes in the release
Taking out the .svn directories
May cause the release to slip by a couple of days

Review of code commits

Revision Committer Date Comment (1st line)

r642346 gsim 2008-03-28 Prefer binding key for unbind if specified.

r642375 nsantos 2008-03-28 QPID-885: patch from Ted Ross

r642959 gsim 2008-03-31 Prevent broker exit on receiving connection with invalid
protocol version.

r642981 gsim 2008-03-31 Re-introduced old 'no-local' behaviour for exclusive queues
via a proprietary arg to queue.declare.

r643032 ritchiem 2008-03-31 QPID-890 : Removed old references to
VHostPrincipalDatabase and an errant
old.PrincipalDatabaseAccessManager change.

r643067 gsim 2008-03-31 Updated xml fragment to reflect correct types for
connection.start.mechanisms, connection.start.locales and
connection.open.capabilities

r643086 gsim 2008-03-31 Allow zero sized arrays (with no typecode or count)

r643153 aidan 2008-03-31 Add licensces

r643154 aidan 2008-03-31 Created prematurely, will recreate from release branch

r643155 aidan 2008-03-31 Branch for M2.1 release

r643162 aidan 2008-03-31 Update version in poms Some versions are wrong in the
poms, need correcting (fixed later)

r643165 aidan 2008-03-31 Tag RC1

r643442 nsantos 2008-04-01 QPID-892: Make qpidd daemon not run as root (rpm install)

r643472 gsim 2008-04-01 Fix some erroneous definitions in the transitional xml
fragment for 0-10.

r643478 gsim 2008-04-01 Added a dump method to buffer for debugging io (patch
from rafaels@redhat.com)

r643482 gsim 2008-04-01 Further correction to transitional xml def for final 0-10 (using
old schema)

r643582 aidan 2008-04-01 Add my gpg key

r643597 nsantos 2008-04-01 QPID-892 - use daemon params instead of runuser; store
pid of qpidd daemon to kill single instance

r643613 aidan 2008-04-01 Set version to M2.1 for all, it's release time

r643624 aidan 2008-04-01 Tag the first M2.1 to get voted on

r643822 arnaudsimon 2008-04-02 QPID-829 Remove 0.10 specific URL. The code path is now
selected based on broker response. We first try the highest
protocol version and update the handler if the broker replies
with a different protocol version. NOTE that we need to
update the current java broker and 0.8 client for handling
protocol headers. This should happen with the M2.1 merge.
For the moment we only support an in VM 0.8 broker.
Moreover, we'll need to migrate to a 0.10 vs 99.0 protocol
version.

Question coding standards on
import statements (amend to allow
.* ; remove unneeded imports) ;
Should probably add ability to set
explicit AMQP version

r643891 aconway 2008-04-02 Fix gcc 4.3 warnings.

r643894 arnaudsimon 2008-04-02 QPID-884 Updated ant for using a profile. I have created a
default profile that runs the tests against an 0.8 in VM broker
and cpp-async and cpp-sync that respectively runs the test
against an 0.10 cpp broker with async store and with sync
store.

Update wiki documents to discuss
the availble stores ; document
where to put them ; make another
test which refers to no store

r643900 aconway 2008-04-02 Fix doxygen warnings.

r643914 aconway 2008-04-02 Fix gcc 4.3 warnings.

r643924 arnaudsimon 2008-04-02 QPID-884 made ant task test alton/error/failure configurable
from profile file

r643957 aconway 2008-04-02 Fixed logger warning on F9.

http://svn.apache.org/viewvc?view=rev&revision=642346
http://svn.apache.org/viewvc?view=rev&revision=642375
http://svn.apache.org/viewvc?view=rev&revision=642959
http://svn.apache.org/viewvc?view=rev&revision=642981
http://svn.apache.org/viewvc?view=rev&revision=643032
http://svn.apache.org/viewvc?view=rev&revision=643067
http://svn.apache.org/viewvc?view=rev&revision=643086
http://svn.apache.org/viewvc?view=rev&revision=643153
http://svn.apache.org/viewvc?view=rev&revision=643154
http://svn.apache.org/viewvc?view=rev&revision=643155
http://svn.apache.org/viewvc?view=rev&revision=643162
http://svn.apache.org/viewvc?view=rev&revision=643165
http://svn.apache.org/viewvc?view=rev&revision=643442
http://svn.apache.org/viewvc?view=rev&revision=643472
http://svn.apache.org/viewvc?view=rev&revision=643478
http://svn.apache.org/viewvc?view=rev&revision=643482
http://svn.apache.org/viewvc?view=rev&revision=643582
http://svn.apache.org/viewvc?view=rev&revision=643597
http://svn.apache.org/viewvc?view=rev&revision=643613
http://svn.apache.org/viewvc?view=rev&revision=643624
http://svn.apache.org/viewvc?view=rev&revision=643822
http://svn.apache.org/viewvc?view=rev&revision=643891
http://svn.apache.org/viewvc?view=rev&revision=643894
http://svn.apache.org/viewvc?view=rev&revision=643900
http://svn.apache.org/viewvc?view=rev&revision=643914
http://svn.apache.org/viewvc?view=rev&revision=643924
http://svn.apache.org/viewvc?view=rev&revision=643957

r643995 aconway 2008-04-02 Encoding/decoding for new types: amqp_0_10::Map,
amqp_0_10:UnknownType

r644005 aconway 2008-04-02 Fix compile error on rhel5.

r644125 aconway 2008-04-03 Fix serialize test failure on 64 bit architerctures.

r644245 arnaudsimon 2008-04-03 QPID-897 this test was intermittently failing because of too
short timeouts. This fix is a temporary measure until we
agree about using a configurable receive timeout.

hold off on permanent fix until after
merge

r644287 kpvdr 2008-04-03 Patch from Ted Ross (see QPID-893): This patch enables
management of plugged-in store modules.

r644308 aconway 2008-04-03 amqp_0_10/built_in_types.h

r644413 aconway 2008-04-03 src/qpid/amqp_0_10/Map.h,.cpp: use preview encoding
temporarily.

r644461 aconway 2008-04-03 rubygen/0-10/exceptions.rb:

r644533 aconway 2008-04-03 qpid/Serializer.h, qpid/amqp_0_10/Codec.h:

r644688 arnaudsimon 2008-04-04 QPID-796: Added ability to enable/disable message
prefetching. Prefetching is controlled through the property
max_prefetch, it is turned off when max_prefetch =0. (this is
0.10 code path change)

`Rauise JIRA for spelling mistakes
in classes (e.g.
BasicMessageConsumer_0_10
strated() BasicMessageConsumer,
etc ; startDistpatcher ... Replace
ClientProperties.MAX_PREFETCH
== 0 with method e.g.
disallowMessagePrefetch() ...
maybe make a connection URL
property

r644689 arnaudsimon 2008-04-04 QPID-798 Added boolean property fully_sync when true a
sync is sent after a persistent message is transfered.

Make property per connection,
rather than system wide; maybe
change name to
SYNC_PERSISTENT to denote
only used on persistent messages

Review of new JIRAs

Key Component/s Affects
Version/s

Summary Status Assignee Reporter

QPID-902 C++ Broker,
Python Client

 Management Improvements for C++ Broker Open Unassigned Ted Ross

QPID-901 Java Client update the java client to the 0-10 final spec Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-900 Java
Common

M2.1 [Java Common] AMQShortString should not create new
byte[] backing when based off a heap buffer

Open Rob
Godfrey

Rob
Godfrey

QPID-899 Java
Common

M2.1 [Java Common] Bug in AMQShortString on tokenized
substrings

Open Rob
Godfrey

Rob
Godfrey

QPID-898 Ant Build
System

 remove .tar.bz2 from release target Open Unassigned Nuno
Santos

QPID-897 Java Tests M3 Configurable receive timeout Open Unassigned Arnaud
Simon

QPID-896 Java Client Provide Simple Pub/Sub examples that do not use
extends

Open Martin
Ritchie

Martin
Ritchie

QPID-895 FailoverSingleServer delays on first connection. Open Unassigned Martin
Ritchie

QPID-894 Java
Common

 Dependency on commons-lang: real need for 2.2, or can
use 2.1?

Open Rafael H.
Schloming

Nuno
Santos

QPID-893 C++ Broker Enable management of plugged-in store module Closed Unassigned Ted Ross

QPID-892 C++ Broker Make qpidd daemon not run as root (rpm install) Resolved Unassigned Nuno
Santos

QPID-891 Java Broker QueueDeclare reports incorrect message count on queue Open Unassigned Martin
Ritchie

http://svn.apache.org/viewvc?view=rev&revision=643995
http://svn.apache.org/viewvc?view=rev&revision=644005
http://svn.apache.org/viewvc?view=rev&revision=644125
http://svn.apache.org/viewvc?view=rev&revision=644245
http://svn.apache.org/viewvc?view=rev&revision=644287
http://svn.apache.org/viewvc?view=rev&revision=644308
http://svn.apache.org/viewvc?view=rev&revision=644413
http://svn.apache.org/viewvc?view=rev&revision=644461
http://svn.apache.org/viewvc?view=rev&revision=644533
http://svn.apache.org/viewvc?rev=644688&view=rev
http://svn.apache.org/viewvc?rev=644689&view=rev
https://issues.apache.org/jira/browse/QPID-902
https://issues.apache.org/jira/browse/QPID-901
https://issues.apache.org/jira/browse/QPID-900
https://issues.apache.org/jira/browse/QPID-899
https://issues.apache.org/jira/browse/QPID-898
https://issues.apache.org/jira/browse/QPID-897
https://issues.apache.org/jira/browse/QPID-896
https://issues.apache.org/jira/browse/QPID-895
https://issues.apache.org/jira/browse/QPID-894
https://issues.apache.org/jira/browse/QPID-893
https://issues.apache.org/jira/browse/QPID-892
https://issues.apache.org/jira/browse/QPID-891

QPID-890 M2.1 Broker transient_config.xml still contains reference to
outdated principal database
:PlainPasswordVhostFilePrincipalDatabase

Resolved Martin
Ritchie

Martin
Ritchie

QPID-889 Java Broker M2, M2.1 Requirement for _reapingStoreContext should be
removed.

Open Martin
Ritchie

Martin
Ritchie

QPID-888 M2, M2.1 Management methods don't correctly protect _lock from
being lost on error

Open Unassigned Martin
Ritchie

QPID-887 Java Broker M2, M2.1 QueueHousekeeping threads are poorly named Open Unassigned Martin
Ritchie

QPID-886 Java Broker M2, M2.1 CSDM.removeExpired() doesn't relinquish lock causing
broker hang.

Open Martin
Ritchie

Martin
Ritchie

QPID-885 Python Client Broker configuration utility Closed Unassigned Ted Ross

QPID-884 Java Tests M3 Improve ant task test configuration Closed Arnaud
Simon

Arnaud
Simon

QPID-883 Python Client Synchronous API in management.py Closed Unassigned Ted Ross

QPID-882 Java Client M3 XAResource does not check pre and post-conditions Open Arnaud
Simon

Arnaud
Simon

QPID-881 Java Client M3 Commands waiting on a future are not notified of a
connection closed event

Open Rafael H.
Schloming

Arnaud
Simon

QPID-880 Java Client M2,M2.1 Client is still using broker set temporary queue names Open Unassigned Martin
Ritchie

QPID-879 C++ Broker Adding support for XML-based routing Open Unassigned Jonathan
Robie

QPID-878 Java Tests M3 Some tests are not run by ant as their class name does
not end by Test

Closed Arnaud
Simon

Arnaud
Simon

QPID-877 C++ Broker,
Python Client

 Management protocol and API improvements Closed Unassigned Ted Ross

Update on GSoC projects

Had some interest, not all have been submitted.

Qpid Java Meeting Minutes 11-04-2008

Agenda

Update on M2.1 release process
Review of code commits
Review of new JIRAs
Update on GSoC projects

Attendees

Rob Godfrey
Aidan Skinner
Marnie McCormack
Martin Ritchie
Carl Trieloff
Rajith Attapatu
Rafael Schloming
Gordon Sim

Update on M2.1 release process

RC3 is out, release instructions need to be updated.
C++ documentation should exist

Review of code commits

revision committer date comment

https://issues.apache.org/jira/browse/QPID-890
https://issues.apache.org/jira/browse/QPID-889
https://issues.apache.org/jira/browse/QPID-888
https://issues.apache.org/jira/browse/QPID-887
https://issues.apache.org/jira/browse/QPID-886
https://issues.apache.org/jira/browse/QPID-885
https://issues.apache.org/jira/browse/QPID-884
https://issues.apache.org/jira/browse/QPID-883
https://issues.apache.org/jira/browse/QPID-882
https://issues.apache.org/jira/browse/QPID-881
https://issues.apache.org/jira/browse/QPID-880
https://issues.apache.org/jira/browse/QPID-879
https://issues.apache.org/jira/browse/QPID-878
https://issues.apache.org/jira/browse/QPID-877

r644689 arnaudsimon 2008-04-04
13:11:38 +0100
(Fri, 04 Apr
2008)

QPID-798 Added boolean property fully_sync when true a sync is sent after a persistent
message is transfered. .

r644727 aconway 2008-04-04
15:42:36 +0100
(Fri, 04 Apr
2008)

src/qpid/amqp_0_10/Assembly.cpp,.h:

r644732 nsantos 2008-04-04
15:58:01 +0100
(Fri, 04 Apr
2008)

QPID-898: move bz2 generation from the release target to a new release-all target

r644806 kpvdr 2008-04-04
19:14:42 +0100
(Fri, 04 Apr
2008)

Patch from Ted Ross (see QPID-902): This patch contains the following improvements for
management:\n1) Schema display cleaned up in the python mgmt-cli\n2) Locking added
automatically to management object accessors (manual
locking removed from broker/Queue.cpp)\n3) Schemas are now pre-registered with the
management agent using a package initializer. This allows management consoles to get
schema information for a class even if no instances of the class exist.

r644812 kpvdr 2008-04-04
19:25:08 +0100
(Fri, 04 Apr
2008)

Additional files for Ted Ross's checkin

r644845 aconway 2008-04-04
20:35:14 +0100
(Fri, 04 Apr
2008)

Minor cleanup of base Exception and python_tests script.

r644917 aconway 2008-04-04
22:00:40 +0100
(Fri, 04 Apr
2008)

src/qpid/amqp_0_10/Exception.h

r645470 gsim 2008-04-07
12:51:07 +0100
(Mon, 07 Apr
2008)

AsynchIoAcceptor.cpp: Limit output from codec to one buffer per 'idle' call.

r645593 aidan 2008-04-07
17:27:20 +0100
(Mon, 07 Apr
2008)

Add toplevel NOTICE and LICENSE files, add Felix to java/resources/NOTICE, make sure
all spec files are included in java source distribution

r645663 aconway 2008-04-07
21:12:31 +0100
(Mon, 07 Apr
2008)

Encoding/decoding for packed structs and optional members.

r645664 aconway 2008-04-07
21:13:59 +0100
(Mon, 07 Apr
2008)

Missing from last commit.

r645670 aconway 2008-04-07
21:42:28 +0100
(Mon, 07 Apr
2008)

Fix rhel5 build errors.

r645685 astitcher 2008-04-07
21:59:02 +0100
(Mon, 07 Apr
2008)

Fixed time classes for some changes that misunderstood how they are supposed

r645699 aconway 2008-04-07
22:16:48 +0100
(Mon, 07 Apr
2008)

rubygen/0-10/specification.rb

r645731 aidan 2008-04-08
00:05:28 +0100
(Tue, 08 Apr
2008)

Update release notes

r645732 aidan 2008-04-08
00:07:50 +0100
(Tue, 08 Apr
2008)

Tag M2.1 RC3

http://svn.apache.org/viewvc/?view=rev&revision=644689
http://svn.apache.org/viewvc/?view=rev&revision=644727
http://svn.apache.org/viewvc/?view=rev&revision=644732
http://svn.apache.org/viewvc/?view=rev&revision=644806
http://svn.apache.org/viewvc/?view=rev&revision=644812
http://svn.apache.org/viewvc/?view=rev&revision=644845
http://svn.apache.org/viewvc/?view=rev&revision=644917
http://svn.apache.org/viewvc/?view=rev&revision=645470
http://svn.apache.org/viewvc/?view=rev&revision=645593
http://svn.apache.org/viewvc/?view=rev&revision=645663
http://svn.apache.org/viewvc/?view=rev&revision=645664
http://svn.apache.org/viewvc/?view=rev&revision=645670
http://svn.apache.org/viewvc/?view=rev&revision=645685
http://svn.apache.org/viewvc/?view=rev&revision=645699
http://svn.apache.org/viewvc/?view=rev&revision=645731
http://svn.apache.org/viewvc/?view=rev&revision=645732

r645733 aconway 2008-04-08
00:22:36 +0100
(Tue, 08 Apr
2008)

src/qpid/amqp_0_10/Body.h, Header.h: placeholders.

r645804 gsim 2008-04-08
10:18:10 +0100
(Tue, 08 Apr
2008)

Fixed compilation error from ignored qualifier on function return type.

r645826 gsim 2008-04-08
11:16:32 +0100
(Tue, 08 Apr
2008)

Removed out-of-date and misleading comment.

r645951 gsim 2008-04-08
15:48:25 +0100
(Tue, 08 Apr
2008)

QPID-903: changed read-write lock to mutex (currently recursive) to avoid deadlocking when
adding bridge.

r646045 kpvdr 2008-04-08
20:29:08 +0100
(Tue, 08 Apr
2008)

Patch from Ted Ross: QPID-907: Management Improvements for C++ Broker and Store

r646054 aconway 2008-04-08
20:53:07 +0100
(Tue, 08 Apr
2008)

Summary: added 0-10 Array encoding and decoding.

r646071 aconway 2008-04-08
22:02:14 +0100
(Tue, 08 Apr
2008)

Touched existing template so new template allSegmentTypes.rb will be noticed.

r646093 cctrieloff 2008-04-08
22:51:17 +0100
(Tue, 08 Apr
2008)

QPID-908 from tross

r646099 aconway 2008-04-08
23:11:40 +0100
(Tue, 08 Apr
2008)

Fix packaing problem with generated file allSegmentTypes.h

r646113 aidan 2008-04-08
23:46:06 +0100
(Tue, 08 Apr
2008)

Nuke

r646114 aidan 2008-04-08
23:46:10 +0100
(Tue, 08 Apr
2008)

use svnexe for uploading, generate source jars

r646115 aidan 2008-04-08
23:46:26 +0100
(Tue, 08 Apr
2008)

Tag M2.1 RC3

r646376 aconway 2008-04-09
15:25:09 +0100
(Wed, 09 Apr
2008)

Improved diagnostics in allSegmentTypes test.

r646452 gsim 2008-04-09
18:59:38 +0100
(Wed, 09 Apr
2008)

Handle the set-redelivered flag on the final version of the message.release command.

r646505 gsim 2008-04-09
20:52:44 +0100
(Wed, 09 Apr
2008)

Fixes and automated tests for federation function.

r646519 rajith 2008-04-09
21:31:28 +0100
(Wed, 09 Apr
2008)

This is a fix for QPID-911. When the message id is set, _hasBeenUpdated will be set to true.

http://svn.apache.org/viewvc/?view=rev&revision=645733
http://svn.apache.org/viewvc/?view=rev&revision=645804
http://svn.apache.org/viewvc/?view=rev&revision=645826
http://svn.apache.org/viewvc/?view=rev&revision=645951
http://svn.apache.org/viewvc/?view=rev&revision=646045
http://svn.apache.org/viewvc/?view=rev&revision=646054
http://svn.apache.org/viewvc/?view=rev&revision=646071
http://svn.apache.org/viewvc/?view=rev&revision=646093
http://svn.apache.org/viewvc/?view=rev&revision=646099
http://svn.apache.org/viewvc/?view=rev&revision=646113
http://svn.apache.org/viewvc/?view=rev&revision=646114
http://svn.apache.org/viewvc/?view=rev&revision=646115
http://svn.apache.org/viewvc/?view=rev&revision=646376
http://svn.apache.org/viewvc/?view=rev&revision=646452
http://svn.apache.org/viewvc/?view=rev&revision=646505
http://svn.apache.org/viewvc/?view=rev&revision=646519

r646778 aconway 2008-04-10
13:36:58 +0100
(Thu, 10 Apr
2008)

Invocation handlers, see src/tests/amqp_0_10/handlers.cpp for example.

r646783 aconway 2008-04-10
14:00:04 +0100
(Thu, 10 Apr
2008)

Use "Exception" instead of typeid.name() as default exception name. Mangled type names
are too confusing.

r646791 kpvdr 2008-04-10
14:17:44 +0100
(Thu, 10 Apr
2008)

Minor change to format of log message when exception is thrown

r646943 aconway 2008-04-10
21:15:08 +0100
(Thu, 10 Apr
2008)

amqp_0_10: Encoding for packed structs.

r647099 gsim 2008-04-11
11:02:49 +0100
(Fri, 11 Apr
2008)

QPID-913: committed patch from tross@redhat.com

r647123 gsim 2008-04-11
12:44:12 +0100
(Fri, 11 Apr
2008)

Set executable property for commands

Attempt to achieve consensus on qpid-dev that all (C++) commits have a JIRA at the start
AS to fix release notes, again
r646519 should use updated(), check if QPID-911 affects M2.1, audit class for other usages of hasUpdated directly

Review of new JIRAs

Key Component/s Affects
Version/s

Summary Status Assignee Reporter

QPID-913 Python Client Reorganization of python utilities + a bug fix Open Unassigned Ted Ross

QPID-912 Java Client M2,M2.1 AMQSession.getQueueDepth should better describe its
failure conditions.

Open Unassigned Martin
Ritchie

QPID-911 Java Client M3 MessageID is not set for outgoing messages if that is the
only property set

Resolved Rajith
Attapattu

Rajith
Attapattu

QPID-910 Java
Broker,Java
Client

M2.1 Some poms reference inappropriate mvn repos Open Aidan
Skinner

Aidan
Skinner

QPID-909 Java Tests M2.1 DurationTestDecorator doesn't work in conjunction with
the ScaledTestDecorator

Open Unassigned Martin
Ritchie

QPID-908 Python Client Python command utility for federation routes Closed Unassigned Ted Ross

QPID-907 C++
Broker,Python
Client

 Management Improvements for C++ Broker and Store Closed Unassigned Ted Ross

QPID-906 Java Client M2.1 java.lang.NumberFormatException silently ignored in
MessageListener.onMessage(Message message)

Open Unassigned Alasdair
MacLeod

QPID-905 Java Client org.apache.qpid.client.ClientProperties dies ungracefully
when max_prefetch is not set to a valid number

Open Unassigned Rafael H.
Schloming

QPID-904 broker.clean is not set properly in any of the test profiles Open Unassigned Rafael H.
Schloming

QPID-903 C++ Broker Federation (inter-broker) links cause C++ broker to hang Closed Unassigned Ted Ross

QPID-902 C++
Broker,Python
Client

 Management Improvements for C++ Broker Closed Unassigned Ted Ross

QPID-901 Java Client update the java client to the 0-10 final spec Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-900 Java
Common

M2.1 AMQShortString should not create new[Java Common]
byte[] backing when based off a heap buffer

Open Rob
Godfrey

Rob
Godfrey

http://svn.apache.org/viewvc/?view=rev&revision=646778
http://svn.apache.org/viewvc/?view=rev&revision=646783
http://svn.apache.org/viewvc/?view=rev&revision=646791
http://svn.apache.org/viewvc/?view=rev&revision=646943
http://svn.apache.org/viewvc/?view=rev&revision=647099
http://svn.apache.org/viewvc/?view=rev&revision=647123
https://issues.apache.org/jira/browse/QPID-913
https://issues.apache.org/jira/browse/QPID-912
https://issues.apache.org/jira/browse/QPID-911
https://issues.apache.org/jira/browse/QPID-910
https://issues.apache.org/jira/browse/QPID-909
https://issues.apache.org/jira/browse/QPID-908
https://issues.apache.org/jira/browse/QPID-907
https://issues.apache.org/jira/browse/QPID-906
https://issues.apache.org/jira/browse/QPID-905
https://issues.apache.org/jira/browse/QPID-904
https://issues.apache.org/jira/browse/QPID-903
https://issues.apache.org/jira/browse/QPID-902
https://issues.apache.org/jira/browse/QPID-901
https://issues.apache.org/jira/browse/QPID-900

QPID-899 Java
Common

M2.1 Bug in AMQShortString on tokenized[Java Common]
substrings

Open Rob
Godfrey

Rob
Godfrey

QPID-898 Ant Build
System

 remove .tar.bz2 from release target Resolved Unassigned Nuno
Santos

QPID-897 Java Tests M3 Configurable receive timeout Open Unassigned Arnaud
Simon

QPID-896 Java Client Provide Simple Pub/Sub examples that do not use
extends

Open Martin
Ritchie

Martin
Ritchie

QPID-895 Java Client FailoverSingleServer delays on first connection. Open Unassigned Martin
Ritchie

QPID-894 Java
Common

 "Dependency on commons-lang: real need for 2.2, or can
use 2.1?"

Open Rafael H.
Schloming

Nuno
Santos

RS - new JIRA to moving try catch to just around onMessage()
RS - Take QPID-906 and check that it is JMS Spec compliant
CT - find cruise control files
CT - JIRA time tracking is broken, normalises 1d is 24h should be 8h

Update on GSoC projects

We discusssed our project proposals

Qpid Java Meeting Minutes 28-03-2008

Attendees

Rob Godfrey
Arnaud Simon
Aidan Skinner
Marnie McCormack
Rafi Schloming

Update on M2.1 release process

Tagged RC1 yesterday
Going to run RAT, push out over the weekend
Need to schedule updates to documentation

Update on GSoC projects

Had a large number of students, need to get mentors
Need to distribute the load

Also have interest from external parties helping with management bridge

Need to follow the timeline; process

Apache Conn Europe

Qpid has a 15 min slot Amsterdam, Wednesday 9th April. Any volunteers?

Review of the previous week's commits

http://markmail.org/search/?q=type%3Acheckins+list%3Aorg.apache.incubator.qpid-commits+order%3Adate-forward+date%3A200803+#query:type%3Acheckins%20list%3Aorg.apache.incubator.qpid-commits%20order%3Adate-forward%20date%3A200803%20+page:13+mid:ewgbylgldnbmmqgw+state:results

r639619 : Rafi comments that there is a base class on trunk which should close all connections
r640117 : We should standardize the comments on checkin to have QPID-xxx first, ensure case is correct
r640422 : Should make timeouts a configuration parameter rather than picking arbitrary values; also allow non-timeout path coverage;
r640434 : Need to look at logging levels for M3
r640503 : no JIRA number associated with the checkin!
r641212 : no need to be so generic, only need 32 bit serial numbers
r641232 : incorrect capitalization

Review newly raised JIRAs

https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&&type=-2&pid=12310520&created%3Aprevious=-1w+3d&sorter/field=issuekey&sorter/order=DESC

Update on what people are currently working on

MM: Looking at priorities for M3

AS: M2.1 and Merge

https://issues.apache.org/jira/browse/QPID-899
https://issues.apache.org/jira/browse/QPID-898
https://issues.apache.org/jira/browse/QPID-897
https://issues.apache.org/jira/browse/QPID-896
https://issues.apache.org/jira/browse/QPID-895
https://issues.apache.org/jira/browse/QPID-894
http://markmail.org/search/?q=type%3Acheckins+list%3Aorg.apache.incubator.qpid-commits+order%3Adate-forward+date%3A200803+#query:type%3Acheckins%20list%3Aorg.apache.incubator.qpid-commits%20order%3Adate-forward%20date%3A200803%20+page:13+mid:ewgbylgldnbmmqgw+state:results
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&&type=-2&pid=12310520&created%3Aprevious=-1w+3d&sorter/field=issuekey&sorter/order=DESC

RG: Broker Refactoring
Headers/Exchange

ASimon: Adding DTX tests
See QPID-884
Fix the URL for backwards compatability - check version in protocol initiation
Configuration for prefetch in 0-10

RS: Updating 0-10 client to use correct 0-10 spec
large commit next week

Update on the merge from M2.1 to trunk (Aidan)

Will resynch broker / client after M2.1 finalised

Testing

Marnie will put up test spec
Need to review to make sure all use cases covered.
Need stress tests and soak tests
Arnaud - should look at the Sonic test suite

Meeting closed 15:30 UK

Qpid Java Meeting Minutes 2008 05 02

revision committer date comment

r649547 aconway 2008-04-18 Uncommented tests.

r649554 aconway 2008-04-18 From Ted Ross: " title="Visit page outside Confluence" rel="nofollow"linktype="raw"QPID-934
linktext="https://issues.apache.org/jira/browse/ "> " title="Visit page outsideQPID-934 QPID-934
Confluence" rel="nofollow"linktype="raw" linktext="https://issues.apache.org/jira/browse/

"> ">https://issues.apache.org/jira/browse/QPID-934 QPID-934 QPID-934

This patch fixes a problem related to multiple management sessions run over the same AMQP
session (typically seen in test environments). ...

r649571 aconway 2008-04-18 Fix build problem.

r649585 aidan 2008-04-18 Merged revisions 648217-649481 via svnmerge from
 r648272 - aconway - 2008-04-15https://svn.apache.org/repos/asf/incubator/qpid/trunk

15:54:46 +0100 (Tue, 15 Apr 2008) - 1 line Fix b ...

r649642 kpvdr 2008-04-18 fix ambiguity problem found on gcc 3.4 compilers

r649648 rhs 2008-04-18 : update pom to work with new codegenQPID-901

r649661 aidan 2008-04-18 Merged revisions 649482-649660 via svnmerge from
 r649547 - aconway - 2008-04-18https://svn.apache.org/repos/asf/incubator/qpid/trunk

15:12:36 +0100 (Fri, 18 Apr 2008) - 2 lines Unco ...

r649666 astitcher 2008-04-18 Split AsynchIOAcceptor into IOHandler and connection control code

r649671 aconway 2008-04-18 Fix test failure.

r649689 astitcher 2008-04-18 Refactored Acceptor code to allow multiple acceptors to be present in the broker

r649691 astitcher 2008-04-18 Added missed new include file

r649711 aidan 2008-04-18 fix some compile errorsQPID-832

r649790 aidan 2008-04-19 QPID-832 ahem

r649905 aidan 2008-04-20 now 95% bug freeQPID-832

r649907 aidan 2008-04-20 remove log4j spewageQPID-832

r649909 aidan 2008-04-20 Merged revisions 649661-649908 via svnmerge from
 r649666 - astitcher - 2008-04-18https://svn.apache.org/repos/asf/incubator/qpid/trunk

20:44:25 +0100 (Fri, 18 Apr 2008) - 2 lines Sp ...

r649915 gsim 2008-04-20 : converted c++ client to use final 0-10 protocol * connection handler converted toQPID-920
using invoker & proxy and updated to final method defs * SessionCore & ExecutionHandler
replace by SessionIm ...

r650099 aidan 2008-04-21 Make sure that we lock early enough to avoid deadlocks hwen closingQPID-832

r650108 aidan 2008-04-21 revert last commit, 650099QPID-832

http://svn.apache.org/viewvc/?view=rev&revision=649547
http://svn.apache.org/viewvc/?view=rev&revision=649554
https://issues.apache.org/jira/browse/QPID-934
https://issues.apache.org/jira/browse/QPID-934
https://issues.apache.org/jira/browse/QPID-934
https://issues.apache.org/jira/browse/QPID-934
https://issues.apache.org/jira/browse/<a href=
https://issues.apache.org/jira/browse/QPID-934
http://svn.apache.org/viewvc/?view=rev&revision=649571
http://svn.apache.org/viewvc/?view=rev&revision=649585
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=649642
http://svn.apache.org/viewvc/?view=rev&revision=649648
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=649661
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=649666
http://svn.apache.org/viewvc/?view=rev&revision=649671
http://svn.apache.org/viewvc/?view=rev&revision=649689
http://svn.apache.org/viewvc/?view=rev&revision=649691
http://svn.apache.org/viewvc/?view=rev&revision=649711
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649790
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649905
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649907
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649909
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=649915
https://issues.apache.org/jira/browse/QPID-920
http://svn.apache.org/viewvc/?view=rev&revision=650099
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650108
https://issues.apache.org/jira/browse/QPID-832

r650122 aidan 2008-04-21 pass a genuine connection so that it doesnt NPEQPID-832

r650127 arnaudsimon 2008-04-21 Added "ID:" to message IDQPID-939

r650136 rgodfrey 2008-04-21

r650145 rgodfrey 2008-04-21 Wrong revision

r650146 rgodfrey 2008-04-21 create branch for broker refactoring

r650148 rgodfrey 2008-04-21 Initial checkpoint of queue refactoring work

r650159 gsim 2008-04-21 : send message-accept for acks (as well as completion) * AckPolicy now maintains aQPID-920
set of transfered messages for cumulative accepts

r650179 rgodfrey 2008-04-21 remove duplicate check of interest in enqueue, enable new Queue by default

r650193 aidan 2008-04-21 catch dodgy mock generated exception, just like M2.xQPID-832

r650198 aconway 2008-04-21 src/qpid/RangeSet.h: generic set implementation using ranges. - no heap allocation for simple

sets (<= 3 ranges) - binary searches for o(log) performance in complex sets

r650205 aidan 2008-04-21 handle multiple brokers properlyQPID-832

r650210 aconway 2008-04-21 Fix compile error on rhel5.

r650221 aconway 2008-04-21 Better workaround for boost::ptr_map incompatibility between boost 1.33 and 1.34, based on
public properties of ptr::map types rather than version numbers.

r650227 aconway 2008-04-21 Disable compilation of amqp_0_10 codec until ready for integration.

r650250 gsim 2008-04-21
raise error when controls other than attached are received on unattached channel *
corrected exception handling in client and on broker (broker to issue detach)

r650273 aconway 2008-04-21 Fix packaging problems for rpmbuild.

r650359 rhs 2008-04-22 : fixed ant build systemQPID-832

r650439 gsim 2008-04-22 : (based on patch from mfarrellee@redhat.com) * apply authentication to final 0-10QPID-648
codepath * consolidate conditional compilation of sasl-related code * improved handling of
connection close ...

r650440 rhs 2008-04-22 : add junit to the libs for junit-toolkitQPID-823

r650447 aidan 2008-04-22 create forrest site

r650450 gsim 2008-04-22 : do no-local checking where requested when there is an exclusive subscriptionQPID-944
active

r650478 aidan 2008-04-22 Merged revisions 649909-650455 via svnmerge from
 r649915 - gsim - 2008-04-20https://svn.apache.org/repos/asf/incubator/qpid/trunk

13:10:37 +0100 (Sun, 20 Apr 2008) - 6 lines ...QPID-92

r650565 rhs 2008-04-22 : update cpp and python management to 0-10 finalQPID-947

r650579 rhs 2008-04-22 : updated build orderQPID-832

r650581 rhs 2008-04-22 : moved 0-8 specific code into 0-8 subclass of sessionQPID-832

r650598 rhs 2008-04-22 : moved more 0-8 specific code to 0-8 subclassesQPID-832

r650604 rhs 2008-04-22 : patch from Ted Ross for updated management utilities to 0-10 finalQPID-948

r650617 rhs 2008-04-22 : moved more 0-8 specific code into 0-8 subclassesQPID-832

r650620 cctrieloff 2008-04-22 from Ted RossQPID-945

r650635 gsim 2008-04-22 Moved federation to final 0-10 codepath

r650640 gsim 2008-04-22 : allow applications to trigger the sending of a flush to serverQPID-920

r650657 astitcher 2008-04-22
Renamed the Acceptor class to be the ProtocolFactory class which better
approximates its current behaviour * Slightly refactored TCPIOPlugin to better
approximate how it would look when we imple ...

r650658 aidan 2008-04-22 make tests use new QpidTestCase magic for getting connectionsQPID-832

http://svn.apache.org/viewvc/?view=rev&revision=650122
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650127
https://issues.apache.org/jira/browse/QPID-939
http://svn.apache.org/viewvc/?view=rev&revision=650136
http://svn.apache.org/viewvc/?view=rev&revision=650145
http://svn.apache.org/viewvc/?view=rev&revision=650146
http://svn.apache.org/viewvc/?view=rev&revision=650148
http://svn.apache.org/viewvc/?view=rev&revision=650159
https://issues.apache.org/jira/browse/QPID-920
http://svn.apache.org/viewvc/?view=rev&revision=650179
http://svn.apache.org/viewvc/?view=rev&revision=650193
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650198
http://svn.apache.org/viewvc/?view=rev&revision=650205
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650210
http://svn.apache.org/viewvc/?view=rev&revision=650221
http://svn.apache.org/viewvc/?view=rev&revision=650227
http://svn.apache.org/viewvc/?view=rev&revision=650250
http://svn.apache.org/viewvc/?view=rev&revision=650273
http://svn.apache.org/viewvc/?view=rev&revision=650359
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650439
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=650440
https://issues.apache.org/jira/browse/QPID-823
http://svn.apache.org/viewvc/?view=rev&revision=650447
http://svn.apache.org/viewvc/?view=rev&revision=650450
https://issues.apache.org/jira/browse/QPID-944
http://svn.apache.org/viewvc/?view=rev&revision=650478
https://svn.apache.org/repos/asf/incubator/qpid/trunk
https://issues.apache.org/jira/browse/QPID-92
http://svn.apache.org/viewvc/?view=rev&revision=650565
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=650579
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650581
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650598
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650604
https://issues.apache.org/jira/browse/QPID-948
http://svn.apache.org/viewvc/?view=rev&revision=650617
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650620
https://issues.apache.org/jira/browse/QPID-945
http://svn.apache.org/viewvc/?view=rev&revision=650635
http://svn.apache.org/viewvc/?view=rev&revision=650640
https://issues.apache.org/jira/browse/QPID-920
http://svn.apache.org/viewvc/?view=rev&revision=650657
http://svn.apache.org/viewvc/?view=rev&revision=650658
https://issues.apache.org/jira/browse/QPID-832

r650795 gsim 2008-04-23 Added to the no-local tests, cleaned up comments (and highlighted non-standard nature of
these tests)

r650813 aidan 2008-04-23 remember to pass username to getConnectionQPID-832

r650850 rgodfrey 2008-04-23 : Quoted identifiers grammar fix for client side selectorsQPID-832

r650855 rhs 2008-04-23 : switched from execing javacc to using the javacc task; this should fix the build onQPID-832
cygwin

r650858 rhs 2008-04-23 : moved CloseTests and DurableSubscriberTests -> CloseTest andQPID-832
DurableSubscriberTest

r650875 gsim 2008-04-23 Add support for reading 0-10 arrays; Set sync bit on session header for commands sent with
auto_sync on.

r650876 rgodfrey 2008-04-23 : connection should be set to started before sessions are startedQPID-832

r650887 rgodfrey 2008-04-23 : Fixed AMQSession_0_10 so that it takes the acknowledge mode from the sessionQPID-832
not a system definition

r650890 aidan 2008-04-23 fix failover detection, rename startDispatcherQPID-832

r650901 rhs 2008-04-23 : fixed override of notifyMessage, this re-enables selectors for 0-10QPID-832

r650906 aconway 2008-04-23
SequenceSet implemented on RangeSet. - Reduced #include dependencides on
SequenceSet.h

r650922 astitcher 2008-04-23 Make python tests work with VPATH builds

r650970 astitcher 2008-04-23 Patch from Mick Goulish: Fixes to previous improved portability patch

r650997 aconway 2008-04-23 src/tests/ClientSessionTest.cpp: uncommented tests for session resume as
EXPECTED_FAILURES tests. src/tests/unit_test.h: workarounds for broken
EXPECTED_FAILURES tests in boost <= 1.34

r650999 astitcher 2008-04-23 Reverted earlier change to valgrind suppressions

r651088 aconway 2008-04-23 Fix build error introduced by earlier commit.

r651107 aidan 2008-04-23 copy trunk before performing some major operationsQPID-832

r651111 aidan 2008-04-23 Delete stuff that's just going to get synced from M2.x

r651112 aidan 2008-04-23 copy the M2.x brokerQPID-832

r651113 aidan 2008-04-23 sync from M2.xQPID-832

r651115 aidan 2008-04-24 copy from M2.xQPID-832

r651116 aidan 2008-04-24 copy from M2.xQPID-832

r651117 aidan 2008-04-24 copy from M2.xQPID-832

r651118 aidan 2008-04-24 copy from M2.xQPID-832

r651119 aidan 2008-04-24 copy from M2.xQPID-832

r651120 aidan 2008-04-24 copy from M2.xQPID-832

r651124 aidan 2008-04-24 sync build stuff from thegreatmergeQPID-832

r651125 aidan 2008-04-24 sync build stuff from thegreatmergeQPID-832

r651126 aidan 2008-04-24 sync build stuff from thegreatmergeQPID-832

r651133 aidan 2008-04-24 merge M2.xQPID-832

r651134 aidan 2008-04-24 nuke some obsolete stuffQPID-832

r651211 aidan 2008-04-24 update pom versionQPID-832

r651276 rhs 2008-04-24 : fixed DerbyMessageStore to compile on Java 1.5 (hopefully)QPID-832

r651287 aconway 2008-04-24 emacs/qpid-c+ +-mode for Emacs. qpid-style indentation plus some useful-mode.el: qpid-c
commands for inserting copyrights etc. Feel free to improve it, there's lots of room.

r651290 cctrieloff 2008-04-24 from trossQPID-953

r651301 aidan 2008-04-24 make systests runQPID-832

http://svn.apache.org/viewvc/?view=rev&revision=650795
http://svn.apache.org/viewvc/?view=rev&revision=650813
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650850
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650855
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650858
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650875
http://svn.apache.org/viewvc/?view=rev&revision=650876
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650887
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650890
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650901
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650906
http://svn.apache.org/viewvc/?view=rev&revision=650922
http://svn.apache.org/viewvc/?view=rev&revision=650970
http://svn.apache.org/viewvc/?view=rev&revision=650997
http://svn.apache.org/viewvc/?view=rev&revision=650999
http://svn.apache.org/viewvc/?view=rev&revision=651088
http://svn.apache.org/viewvc/?view=rev&revision=651107
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651111
http://svn.apache.org/viewvc/?view=rev&revision=651112
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651113
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651115
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651116
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651117
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651118
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651119
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651120
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651124
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651125
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651126
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651133
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651134
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651211
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651276
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651287
http://svn.apache.org/viewvc/?view=rev&revision=651290
https://issues.apache.org/jira/browse/QPID-953
http://svn.apache.org/viewvc/?view=rev&revision=651301
https://issues.apache.org/jira/browse/QPID-832

r651321 aconway 2008-04-24 Edits to doxygen comments for user documentation.

r651325 rgodfrey 2008-04-24 : Fix eol-styleQPID-832

r651346 nsantos 2008-04-24 add include for list, for gcc4.3

r651375 rgodfrey 2008-04-24 : Fix CRLF line endingsQPID-832

r651421 gsim 2008-04-24 Correct expected error codes for final 0-10 spec

r651423 gsim 2008-04-24 Generate c++ code from final 0-10 spec

r651425 cctrieloff 2008-04-24 by Danushka MenikkumburaQPID-958

r651431 rhs 2008-04-24 : fixed merge artifact affecting replyToQPID-832

r651474 astitcher 2008-04-25 Fix building examples when using a VPATH build

r651531 gsim 2008-04-25 Fixed caught exception type in recovery

r651997 aconway 2008-04-27 Session state as per AMQP 0-10 specification.

r652037 cctrieloff 2008-04-28 patch from SenakaQPID-918

r652041 cctrieloff 2008-04-28 - Senaka Fernando, I also edited the README in a few places.QPID-971

r652053 astitcher 2008-04-28 Work In Progress: Added initial rdma code including test server and client Turn off rdma
support by default but autoconf should now detect whether necessary rdma/ibverbs libs and
headers are pre ...

r652075 gsim 2008-04-29 : shutdown mgmt client cleanly in federation tests (patch from tross@redhat.com) QPID-977
: added custom options to queue declare to tag each message as it goes through aQPID-981

bridge queue and allow ...

r652076 gsim 2008-04-29 : management schema change missed from previous commitQPID-981

r652083 gsim 2008-04-29 : allow the size of the queue of outgoing frames to be restricted : tidy upQPID-974 QPID-544
configuration (ensuring desired settings are used correctly, allowing tcp socket options to be se
...

r652086 rhs 2008-04-29 : added backwards compatible uuid to qpid.datatypesQPID-979

r652114 gsim 2008-04-29 : allow id and exclude list to be passed through when creating a bridge withQPID-981
qpid-route

r652120 astitcher 2008-04-29 Removed some unnecessary #includes

r652170 rhs 2008-04-29 : override MINA's IoServiceListenerSupport class in order to fix infinite loopQPID-984

r652173 rhs 2008-04-29 : fixed deadlock between AMQConnection.close and FailoverHandlerQPID-983

r652180 astitcher 2008-04-29 More RDMA Work in Progress Changes to client buffering Buffering improvement to server
Removed unused state machine from RdmaIO code Move the write throttling due to limited
write buff ...

r652386 gsim 2008-04-30 and : fixes to framing for final 0-10 specQPID-988 QPID-989

r652388 ritchiem 2008-04-30 : Removed _reapingStoreContext from CSDM replaced with local StoreContext()s soQPID-889
they are not reused by different threads.

r652389 ritchiem 2008-04-30 : Renamed QueueHouseKeeping threads so they can be identified in thread dump.QPID-887
Named Queue-housekeeping-<virtualhost name>

r652399 ritchiem 2008-04-30 , : Fixed all management uses of _lock.lock / _lock.unlock so that theyQPID-888 QPID-886
correctly call unlock from a finally block in the CSDM. There are two issues that cover that.

- Fix the ...QPID-888

r652409 rajith 2008-05-01 This commit is for and build.xml ========== I added the broker-pluginsQPID-992 QPID-993
as a module to the ant build system. This was nessacery to get the plugins jar generated for

. In gene ...QPID-993

r652411 rajith 2008-05-01 Added the following tests to 0-10 exclude lists as these tests are for the java broker. However
when the java broker gets to 0-10 we should also have exclude lists per broker as well. For the
time bei ...

r652451 gsim 2008-05-01 Cleanup: Re-enable tests that now pass; delete unused templates directory.

r652469 gsim 2008-05-01 : applied patch from rajith; altered to use uuid as session name; updated verifyQPID-966
scripts for automated testing; re-enabled automated testing in c++ build

r652506 gsim 2008-05-01 Remove preview tests (no longer required)

http://svn.apache.org/viewvc/?view=rev&revision=651321
http://svn.apache.org/viewvc/?view=rev&revision=651325
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651346
http://svn.apache.org/viewvc/?view=rev&revision=651375
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651421
http://svn.apache.org/viewvc/?view=rev&revision=651423
http://svn.apache.org/viewvc/?view=rev&revision=651425
https://issues.apache.org/jira/browse/QPID-958
http://svn.apache.org/viewvc/?view=rev&revision=651431
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651474
http://svn.apache.org/viewvc/?view=rev&revision=651531
http://svn.apache.org/viewvc/?view=rev&revision=651997
http://svn.apache.org/viewvc/?view=rev&revision=652037
https://issues.apache.org/jira/browse/QPID-918
http://svn.apache.org/viewvc/?view=rev&revision=652041
https://issues.apache.org/jira/browse/QPID-971
http://svn.apache.org/viewvc/?view=rev&revision=652053
http://svn.apache.org/viewvc/?view=rev&revision=652075
https://issues.apache.org/jira/browse/QPID-977
https://issues.apache.org/jira/browse/QPID-981
http://svn.apache.org/viewvc/?view=rev&revision=652076
https://issues.apache.org/jira/browse/QPID-981
http://svn.apache.org/viewvc/?view=rev&revision=652083
https://issues.apache.org/jira/browse/QPID-974
https://issues.apache.org/jira/browse/QPID-544
http://svn.apache.org/viewvc/?view=rev&revision=652086
https://issues.apache.org/jira/browse/QPID-979
http://svn.apache.org/viewvc/?view=rev&revision=652114
https://issues.apache.org/jira/browse/QPID-981
http://svn.apache.org/viewvc/?view=rev&revision=652120
http://svn.apache.org/viewvc/?view=rev&revision=652170
https://issues.apache.org/jira/browse/QPID-984
http://svn.apache.org/viewvc/?view=rev&revision=652173
https://issues.apache.org/jira/browse/QPID-983
http://svn.apache.org/viewvc/?view=rev&revision=652180
http://svn.apache.org/viewvc/?view=rev&revision=652386
https://issues.apache.org/jira/browse/QPID-988
https://issues.apache.org/jira/browse/QPID-989
http://svn.apache.org/viewvc/?view=rev&revision=652388
https://issues.apache.org/jira/browse/QPID-889
http://svn.apache.org/viewvc/?view=rev&revision=652389
https://issues.apache.org/jira/browse/QPID-887
http://svn.apache.org/viewvc/?view=rev&revision=652399
https://issues.apache.org/jira/browse/QPID-888
https://issues.apache.org/jira/browse/QPID-886
https://issues.apache.org/jira/browse/QPID-888
http://svn.apache.org/viewvc/?view=rev&revision=652409
https://issues.apache.org/jira/browse/QPID-992
https://issues.apache.org/jira/browse/QPID-993
https://issues.apache.org/jira/browse/QPID-993
http://svn.apache.org/viewvc/?view=rev&revision=652411
http://svn.apache.org/viewvc/?view=rev&revision=652451
http://svn.apache.org/viewvc/?view=rev&revision=652469
https://issues.apache.org/jira/browse/QPID-966
http://svn.apache.org/viewvc/?view=rev&revision=652506

r652535 nsantos 2008-05-01 applying Ted Ross's patch to handle unicode encoding and management message ordering
issues

r652548 rhs 2008-05-01 : added an option to turn on deprecation during compileQPID-965

r652558 gsim 2008-05-01 : fix decode of zero sized mapQPID-989

r652567 aidan 2008-05-01 Dont wait for attain state as connection is closed by we get CloseOkQPID-994

r652568 aidan 2008-05-01 dont set the expiration time if TTL is 0QPID-1001

r652591 gsim 2008-05-01 Turn auth back on by default for c++ broker (only if SASL libs are available)

r652670 rhs 2008-05-01 : reduced message count in DupsOKTestQPID-987

r652672 rhs 2008-05-01 : added an osgi manifest to broker-plugins jarQPID-993

r652680 rhs 2008-05-01 : applied patch from Senaka to make systests run using normal junit testrunnerQPID-1002

r652689 gsim 2008-05-01 Boost's string split function causes problems on older versions of the library. Replaced with
homegrown equivalent.

r652705 rhs 2008-05-01 : added excludes for framework test classesQPID-1003

r652779 gsim 2008-05-02 : Patch from Danushka Menikkumbura.QPID-986

r652783 gsim 2008-05-02 : Patch from Danushka Menikkumbura revising installation notes.QPID-980

JIRAs

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

QPID-965 Ant Build
System

M3 (QPID-965) ant build system does not
completely replace maven

Open Unassigned Aidan Skinner

QPID-966 Python Client M3 (QPID-966) Update python examples to
use the new API

Open Rajith
Attapattu

Rajith
Attapattu

QPID-967 Java Client (QPID-967) Binding arguments in Java
JMS

Open Unassigned Jonathan
Robie

QPI3D-968 Java Client (QPID-968) runSamples script uses
incorrect log4j.xml file location

Open Unassigned Suran
Jayathilaka

QPID-969 M2 (QPID-969) Qpid/C++ M2 build failure in
man file generation

Open Unassigned Danushka
Menikkumbura

QPID-970 Java
Management
Console

M3 (QPID-970) Wrong url in README file of
Eclipse-plugin

Open Unassigned Lahiru
Gunathilake

QPID-971 C++ Client (QPID-971) README for C++ examples Open Unassigned Senaka
Fernando

QPID-972 Java Broker,
Java Client

 (QPID-972) Add runSamples.bat script for
running samples in Windows

Open Unassigned Suran
Jayathilaka

AS or MR
to review
patch

QPID-974 C++ Client M3 (QPID-974) Need to allow the size of the
queue of outgoing frames to be limited

Resolved Gordon
Sim

Gordon Sim

QPID-975 Dot Net Client (QPID-975) Prefetched messages can
cause problems with clients

Open Unassigned Martin Ritchie

QPID-976 C++ Client M3 (QPID-976) Add wider SASL support to
c++ client

Open Unassigned Gordon Sim

QPID-977 C++ Broker M3 (QPID-977) Federation tests raise
exceptions after successful completion

Closed Gordon
Sim

Ted Ross

QPID-978 C++ Broker M2, M2.1 (QPID-978) memory leak in C++ broker Open Gordon
Sim

Rudolf Polzer

QPID-979 Python Client M3 (QPID-979) Improvements for the python
client API

Open Rafael H.
Schloming

Rajith
Attapattu

QPID-980 M2 (QPID-980) Amend Qpid/C++ INSTALL
file to show how to build/install Boost to
work with the current build system

Closed Unassigned Danushka
Menikkumbura

http://svn.apache.org/viewvc/?view=rev&revision=652535
http://svn.apache.org/viewvc/?view=rev&revision=652548
https://issues.apache.org/jira/browse/QPID-965
http://svn.apache.org/viewvc/?view=rev&revision=652558
https://issues.apache.org/jira/browse/QPID-989
http://svn.apache.org/viewvc/?view=rev&revision=652567
https://issues.apache.org/jira/browse/QPID-994
http://svn.apache.org/viewvc/?view=rev&revision=652568
https://issues.apache.org/jira/browse/QPID-1001
http://svn.apache.org/viewvc/?view=rev&revision=652591
http://svn.apache.org/viewvc/?view=rev&revision=652670
https://issues.apache.org/jira/browse/QPID-987
http://svn.apache.org/viewvc/?view=rev&revision=652672
https://issues.apache.org/jira/browse/QPID-993
http://svn.apache.org/viewvc/?view=rev&revision=652680
https://issues.apache.org/jira/browse/QPID-1002
http://svn.apache.org/viewvc/?view=rev&revision=652689
http://svn.apache.org/viewvc/?view=rev&revision=652705
https://issues.apache.org/jira/browse/QPID-1003
http://svn.apache.org/viewvc/?view=rev&revision=652779
https://issues.apache.org/jira/browse/QPID-986
http://svn.apache.org/viewvc/?view=rev&revision=652783
https://issues.apache.org/jira/browse/QPID-980
https://issues.apache.org/jira/browse/QPID-965
https://issues.apache.org/jira/browse/QPID-966
https://issues.apache.org/jira/browse/QPID-967
https://issues.apache.org/jira/browse/QPID-968
https://issues.apache.org/jira/browse/QPID-969
https://issues.apache.org/jira/browse/QPID-970
https://issues.apache.org/jira/browse/QPID-971
https://issues.apache.org/jira/browse/QPID-972
https://issues.apache.org/jira/browse/QPID-974
https://issues.apache.org/jira/browse/QPID-975
https://issues.apache.org/jira/browse/QPID-976
https://issues.apache.org/jira/browse/QPID-977
https://issues.apache.org/jira/browse/QPID-978
https://issues.apache.org/jira/browse/QPID-979
https://issues.apache.org/jira/browse/QPID-980

QPID-981 C++ Broker M3 (QPID-981) Prevent looping in
inter-broker routing

Resolved Gordon
Sim

Gordon Sim

QPID-982 C++ Broker,
C++ Client,
Code
Generator

 (QPID-982) C++ rubygen code generator
sensitive to ruby version.

Open Unassigned Alan Conway

QPID-983 Java Client M3 (QPID-983) Deadlock between
AMQConnection.close and
FailoverHandler

Resolved Unassigned Rafael H.
Schloming

Want to
check for
M2.x

QPID-984 Java Client M3 (QPID-984) FailoverTest hangs Open Unassigned Rafael H.
Schloming

QPID-985 (QPID-985) Build break in C++ repo Closed Unassigned Danushka
Menikkumbura

QPID-986 C++ Broker,
C++ Client

 (QPID-986) Need to link libuuid.a to
libqpidbroker.so and libqpidclient.so in
Qpid/C++

Closed Unassigned Danushka
Menikkumbura

QPID-987 Java Tests (QPID-987)
org.apache.qpid.test.client.DupsOkTest
has high memory requirements

Resolved Unassigned Senaka
Fernando

QPID-988 C++ Broker,
C++ Client,
Java Client,
Python Client

M3 (QPID-988) Final 0-10 spec does not
include a frame-end marker between
frames

Resolved Gordon
Sim

Gordon Sim

QPID-989 C++ Broker,
C++ Client,
Java Client,
Python Client

M3 (QPID-989) Final 0-10 spec has a count
filed in maps

Resolved Gordon
Sim

Gordon Sim

QPID-990 C++ Broker M3 (QPID-990) Federation objects need to be
persistent

Open Unassigned Ted Ross

QPID-991 Java Tools (QPID-991) Qpid Junit Toolkit Ant Plugin
(Ant Task)

Open Martin
Ritchie

Senaka
Fernando

QPID-992 Java Tests M3 (QPID-992) SimpleACLTest fails in trunk Open Rajith
Attapattu

Rajith
Attapattu

Test need
to be
reviewed,
suspect
time.

QPID-993 Java Tests M3 (QPID-993)
org.apache.qpid.server.plugins.PluginTest
is failing on trunk

Resolved Rajith
Attapattu

Rajith
Attapattu

QPID-994 Java Tests (QPID-994) Reduce Memory consumed
by DupsOkTest

Open Unassigned Senaka
Fernando

QPID-995 Dot Net Client M2.1, M3 (QPID-995) StateWaiter can get terribly
confused

Open Aidan
Skinner

Aidan Skinner

QPID-996 Dot Net Client M2.1, M3 (QPID-996) .Net client SslConnectionTest
uses odd port

Open Aidan
Skinner

Aidan Skinner

QPID-997 Java Tests (QPID-997)
AMQBrokerManagerMBeanTest takes
more than 60seconds to run

Open Unassigned Martin Ritchie

QPID-998 Ant Build
System

 (QPID-998) Prevent warnings about
missing bin / etc directories

Open Martin
Ritchie

Martin Ritchie

QPID-999 Java Client (QPID-999) QPID-854 : Commit 637086
on M2.1 is missing from trunk merge

Open Unassigned Martin Ritchie

QPID-1000 Java Tests (QPID-1000) Deadlock in
unit.basic.SelectorTest

Open Unassigned Martin Ritchie Martin to
svn
annotate
and take
appropriate
action.

QPID-1001 Dot Net Client M2.1, M3 (QPID-1001) .Net client sets expiration
time incorrectly

Open Aidan
Skinner

Aidan Skinner

https://issues.apache.org/jira/browse/QPID-981
https://issues.apache.org/jira/browse/QPID-982
https://issues.apache.org/jira/browse/QPID-983
https://issues.apache.org/jira/browse/QPID-984
https://issues.apache.org/jira/browse/QPID-985
https://issues.apache.org/jira/browse/QPID-986
https://issues.apache.org/jira/browse/QPID-987
https://issues.apache.org/jira/browse/QPID-988
https://issues.apache.org/jira/browse/QPID-989
https://issues.apache.org/jira/browse/QPID-990
https://issues.apache.org/jira/browse/QPID-991
https://issues.apache.org/jira/browse/QPID-992
https://issues.apache.org/jira/browse/QPID-993
https://issues.apache.org/jira/browse/QPID-994
https://issues.apache.org/jira/browse/QPID-995
https://issues.apache.org/jira/browse/QPID-996
https://issues.apache.org/jira/browse/QPID-997
https://issues.apache.org/jira/browse/QPID-998
https://issues.apache.org/jira/browse/QPID-999
https://issues.apache.org/jira/browse/QPID-1000
https://issues.apache.org/jira/browse/QPID-1001

QPID-1002 Java Tests (QPID-1002) Improvements to Test
Framework making it possible to run
systests

Closed Martin
Ritchie

Senaka
Fernando

MR to
comment

QPID-1003 Ant Build
System, Java
Tools

 (QPID-1003) Junit treats Classes ending
with Test as testcases

Closed Martin
Ritchie

Senaka
Fernando

QPID-1004 Java Tests (QPID-1004)
org.apache.qpid.test.testcases.TTLTest
Fails

Open Unassigned Senaka
Fernando

RHS to
explain
problem in
Jira

QPID-1005 Java Client M3 (QPID-1005) Client ID Open Unassigned Arnaud Simon

QPID-1006 Java Client M3 (QPID-1006) (0.10 code path) Message
rate is very slow when big messages are
sent.

Open Unassigned Arnaud Simon

QPID-1007 Java Client M3 (QPID-1007) (0.10 code path) Need a
way of controlling MINA queue size

Open Unassigned Arnaud Simon

AOB: rhs to get permissions to edit wiki

mar to comment on 1002

Qpid Java Meeting Minutes 2008-04-18

Agenda

Update on Merge
Update on M2.1 release process
Review of code commits
Review of new JIRAs
Update on GSoC projects

Attendees

Aidan Skinner
Arnaud Simon
Carl Trieloff
Martin Ritchie
Robert Godfrey

Apologies

Gordon Sim

Update on M2.1 release process

Review of code commits

Revision Committer Date Commit Comment Review Points

r647227 rhs 2008-04-11 : temporary workaround for AMQP-218QPID-901

r647270 kpvdr 2008-04-11 Patch from Ted Ross: added set methods to hilo types in generated
management classes

r647616 aidan 2008-04-13 Correct release notesQPID-916

r647620 aidan 2008-04-13 tag RC4QPID-916

r647704 gsim 2008-04-14 : Use PLAIN (rather than the non-standard AMQPLAIN) asQPID-917
the SASL mechanism when authenticating python test clients.

r647710 gsim 2008-04-14 Correction to release notes (now support AMQP 0-9)

r647716 gsim 2008-04-14 : Initial support for sasl authentication for c++ broker. FromQPID-648
patch submitted by mfarrellee@redhat.com. Authentication is optional at
compile time (based on user selection or availability of ...

r647726 aidan 2008-04-14 delete for resync with trunk (cpp, ruby) and M2.1QPID-832
(java/broker)

r647727 aidan 2008-04-14 sync cpp with trunkQPID-832

https://issues.apache.org/jira/browse/QPID-1002
https://issues.apache.org/jira/browse/QPID-1003
https://issues.apache.org/jira/browse/QPID-1004
https://issues.apache.org/jira/browse/QPID-1005
https://issues.apache.org/jira/browse/QPID-1006
https://issues.apache.org/jira/browse/QPID-1007
http://svn.apache.org/viewvc/?view=rev&revision=647227
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=647270
http://svn.apache.org/viewvc/?view=rev&revision=647616
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=647620
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=647704
https://issues.apache.org/jira/browse/QPID-917
http://svn.apache.org/viewvc/?view=rev&revision=647710
http://svn.apache.org/viewvc/?view=rev&revision=647716
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=647726
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=647727
https://issues.apache.org/jira/browse/QPID-832

r647728 aidan 2008-04-14 sync ruby from trunkQPID-832

r647730 aidan 2008-04-14 sync broker with M2.1QPID-832

r647800 gsim 2008-04-14 : keep the sasl_conn member in the handler to avoid theQPID-648
need for friend declaration

r647825 aidan 2008-04-14 Tag RC5, with correct C++ release notesQPID-916

r647887 rhs 2008-04-14 fixed encode/decode of structs in command/control arguments to
include the type code when specified

r647903 gsim 2008-04-14 Use the errata file for final 0-10 that has a type code for xids without
which dtx.recover can't work. Return the indoubt xids as an array of
struct32s each of which contains an encoded xid.

r647937 aconway 2008-04-14 https://bugzilla.redhat.com/show_bug.cgi?id=441080

from Ville Skyttä (ville.skytta@iki.fi) qpidc's build does not use
$RPM_OPT_FLAGS so it misses some compiler security features, and
strips installed ...

r647940 gsim 2008-04-14 : more flexible sasl implementation (patch provided byQPID-648
mfarrellee@redhat.com)

r647990 gsim 2008-04-14 Fix to struct32 encoding

r647999 gsim 2008-04-14
Fix interpretation of accept-mode, 0 == EXPLICIT * Ensure
accepts are taken into account in command sequence

r648013 nsantos 2008-04-14 fix home dir permissions

r648095 aconway 2008-04-15 Struct32 encoding

r648194 gsim 2008-04-15 Remove deleted file from distribution list.

r648196 gsim 2008-04-15 : Get list of supported mechanisms from sasl lib. (Patch fromQPID-648
mfarrellee@redhat.com)

r648207 aidan 2008-04-15 Merged revisions 631979-647797 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk

........ r631987 - aconway - 2008-02-28 14:47:59 +0000 (Thu, 28 Feb
2008) - 2 lines Fixe ...

r648216 aidan 2008-04-15 Merged revisions 627417-648207 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.1

........ r627552 - rgodfrey - 2008-02-13 18:10:53 +0000 (Wed, 13 Feb
2008) - 1 line ...

r648218 aidan 2008-04-15 Merged revisions 647798-648216 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk

........ r647800 - gsim - 2008-04-14 14:57:36 +0100 (Mon, 14 Apr 2008)
- 3 lines ...QPID-64

r648272 aconway 2008-04-15 Fix build error: MapValue SIZE was too small for Struct32.

r648288 astitcher 2008-04-15 Refactored the IO framework that sits on top of Poller so that it uses a
generalised IOHandle. This means that you can define new classes
derived from IOHandle (other than Socket) that can also be add ...

r648292 nsantos 2008-04-15 add svn revision include to specfile

r648297 aconway 2008-04-15 Cleanup of size calculations and handling UnknownStruct

r648308 nsantos 2008-04-15 : applied qpid-patch36.diff on behalf of Ted RossQPID-921

r648314 aidan 2008-04-15 fix pom versionQPID-831

r648328 aidan 2008-04-15 Remove some broker introspection stuff and transactionQPID-831
bumpf

r648329 aconway 2008-04-15 Disabled failing tests, working on fixing the issues.

r648338 aconway 2008-04-15 Comment out failing test, repairing.

http://svn.apache.org/viewvc/?view=rev&revision=647728
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=647730
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=647800
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=647825
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=647887
http://svn.apache.org/viewvc/?view=rev&revision=647903
http://svn.apache.org/viewvc/?view=rev&revision=647937
https://bugzilla.redhat.com/show_bug.cgi?id=441080
http://svn.apache.org/viewvc/?view=rev&revision=647940
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=647990
http://svn.apache.org/viewvc/?view=rev&revision=647999
http://svn.apache.org/viewvc/?view=rev&revision=648013
http://svn.apache.org/viewvc/?view=rev&revision=648095
http://svn.apache.org/viewvc/?view=rev&revision=648194
http://svn.apache.org/viewvc/?view=rev&revision=648196
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=648207
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=648216
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.1
http://svn.apache.org/viewvc/?view=rev&revision=648218
https://svn.apache.org/repos/asf/incubator/qpid/trunk
https://issues.apache.org/jira/browse/QPID-64
http://svn.apache.org/viewvc/?view=rev&revision=648272
http://svn.apache.org/viewvc/?view=rev&revision=648288
http://svn.apache.org/viewvc/?view=rev&revision=648292
http://svn.apache.org/viewvc/?view=rev&revision=648297
http://svn.apache.org/viewvc/?view=rev&revision=648308
https://issues.apache.org/jira/browse/QPID-921
http://svn.apache.org/viewvc/?view=rev&revision=648314
https://issues.apache.org/jira/browse/QPID-831
http://svn.apache.org/viewvc/?view=rev&revision=648328
https://issues.apache.org/jira/browse/QPID-831
http://svn.apache.org/viewvc/?view=rev&revision=648329
http://svn.apache.org/viewvc/?view=rev&revision=648338

r648362 aconway 2008-04-15 Correct Struct32 encoding: size/code/data. Proper re-encoding for
unknown struct codes.

r648418 aconway 2008-04-15 Fix build error - missing op << for Struct32.

r648614 rgodfrey 2008-04-16 : Bug in AMQShortString on tokenized substringsQPID-899

r648617 rgodfrey 2008-04-16 : Re-use byte[] of buffer for backing of AMQShortStringQPID-900

r648637 rgodfrey 2008-04-16 : Selectors on header properties should not convertQPID-922
AMQShortStrings to Strings on every evaluation

r648639 aidan 2008-04-16 add DISCLAIMER to top-level, make sure C++ and .NetQPID-916
archives are named correctly

r648642 aidan 2008-04-16 tag RC6QPID-916

r648645 rgodfrey 2008-04-16 : Only begin store transactions when there is a persistentQPID-925
message to be committed

r648648 rgodfrey 2008-04-16 : Perform all store operations associated with anQPID-926
acknowledge in a single store transaction

r648652 rgodfrey 2008-04-16 : Multiple acknowledgements should be coalesced into singleQPID-927
multiple ack

r648658 rgodfrey 2008-04-16 : Exchange.Declare being sent prior to every message whenQPID-929
publishing to explicit destination

r648661 arnaudsimon 2008-04-16 Added a pause period for letting the finalyzer a chance toQPID-928
notify all the Mina connector threads before we check for spurious
threads.

r648666 rgodfrey 2008-04-16 : Always use exclusive consumers when subscribing to topicsQPID-931

r648669 rgodfrey 2008-04-16 : Remove references to unusued constructor argumentQPID-932
"browsedAcks" of NonTransactionalContext

r648670 rgodfrey 2008-04-16 : Remove references to unusued constructor argumentQPID-932
"browsedAcks" of NonTransactionalContext

r648672 rgodfrey 2008-04-16 : performance tweaksQPID-933

r648678 aidan 2008-04-16 update dotnet NOTICE to include log4net, make sureQPID-916
DISCLAIMER is including in c++

r648679 aidan 2008-04-16 delete, about to recreateQPID-916

r648680 aidan 2008-04-16 tag RC6QPID-916

r648681 arnaudsimon 2008-04-16 : this test was intermittently timing out when messages areQPID-897
not prefetched. This is a temporary fix until we use a configurable
timeout.

r648692 rhs 2008-04-16 : updates to the java client to use the 0-10 final spec insteadQPID-901
of the 0-10 preview spec; this includes improvements to the codegen
process as well as some modifications to the shared code pat ...

r648699 rhs 2008-04-16 : add back ExceptionHelper.java to fix the buildQPID-901

r648706 aconway 2008-04-16 Fix bug in Blob::assign assigning from an empty blob.

r648724 aconway 2008-04-16 Fix encoding for sized structs.

r648726 aconway 2008-04-16 Separate new codec from liqqpidcommon to improve link times. To be
included in libqpidcommon when we are ready to replace framing
codec.

r648735 aidan 2008-04-16 fix exception constructorsQPID-832

r648740 ritchiem 2008-04-16 : In order to allow the test to be written that highlights theQPID-886
failure we need to be able to provide a Config object not a file. So made
the method public that reads the file and added constr ...

r648764 aidan 2008-04-16 Rename in case of further M2-based releases

r648770 aconway 2008-04-16 Removed complex_types.h from Makefile.am.

r648771 rhs 2008-04-16 : don't depend on constant values matching up whenQPID-901
converting between JMS and AMQP delivery modes

r648782 aconway 2008-04-16 Add missing files to packaging.

http://svn.apache.org/viewvc/?view=rev&revision=648362
http://svn.apache.org/viewvc/?view=rev&revision=648418
http://svn.apache.org/viewvc/?view=rev&revision=648614
https://issues.apache.org/jira/browse/QPID-899
http://svn.apache.org/viewvc/?view=rev&revision=648617
https://issues.apache.org/jira/browse/QPID-900
http://svn.apache.org/viewvc/?view=rev&revision=648637
https://issues.apache.org/jira/browse/QPID-922
http://svn.apache.org/viewvc/?view=rev&revision=648639
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=648642
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=648645
https://issues.apache.org/jira/browse/QPID-925
http://svn.apache.org/viewvc/?view=rev&revision=648648
https://issues.apache.org/jira/browse/QPID-926
http://svn.apache.org/viewvc/?view=rev&revision=648652
https://issues.apache.org/jira/browse/QPID-927
http://svn.apache.org/viewvc/?view=rev&revision=648658
https://issues.apache.org/jira/browse/QPID-929
http://svn.apache.org/viewvc/?view=rev&revision=648661
https://issues.apache.org/jira/browse/QPID-928
http://svn.apache.org/viewvc/?view=rev&revision=648666
https://issues.apache.org/jira/browse/QPID-931
http://svn.apache.org/viewvc/?view=rev&revision=648669
https://issues.apache.org/jira/browse/QPID-932
http://svn.apache.org/viewvc/?view=rev&revision=648670
https://issues.apache.org/jira/browse/QPID-932
http://svn.apache.org/viewvc/?view=rev&revision=648672
https://issues.apache.org/jira/browse/QPID-933
http://svn.apache.org/viewvc/?view=rev&revision=648678
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=648679
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=648680
https://issues.apache.org/jira/browse/QPID-916
http://svn.apache.org/viewvc/?view=rev&revision=648681
https://issues.apache.org/jira/browse/QPID-897
http://svn.apache.org/viewvc/?view=rev&revision=648692
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=648699
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=648706
http://svn.apache.org/viewvc/?view=rev&revision=648724
http://svn.apache.org/viewvc/?view=rev&revision=648726
http://svn.apache.org/viewvc/?view=rev&revision=648735
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=648740
https://issues.apache.org/jira/browse/QPID-886
http://svn.apache.org/viewvc/?view=rev&revision=648764
http://svn.apache.org/viewvc/?view=rev&revision=648770
http://svn.apache.org/viewvc/?view=rev&revision=648771
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=648782

r648784 rhs 2008-04-16 : updated the JMS examples to use legal delivery modeQPID-901
values as they are now checked with the 0-10 final updates

r648834 rgodfrey 2008-04-16 : Add an Apache licensed store - created an experimentalQPID-156
Derby based store

r648904 astitcher 2008-04-17 Refactored IO Thread creation so that it happens in the Broker class -
There is now a single Poller created by the Broker class that is passed
to the Acceptor for use in network IO. It can also now ...

r649016 arnaudsimon 2008-04-17 Changed AMQBrokerDetails to throw an URL exceptionQPID-919
when the port number is not specified.

r649055 aidan 2008-04-17 Track changes from M2.x now

r649057 aidan 2008-04-17 Track changes from M2.x now

r649058 aidan 2008-04-17 Track changes from M2.x now, with right svn

r649059 gsim 2008-04-17 Some fixes to the transitional spec defs.

r649070 arnaudsimon 2008-04-17 Made connection URL property + use session level methodQPID-796

r649099 arnaudsimon 2008-04-17 Added cpp profile that does not use a store. Also updatedQPID-884
profile for taking auth into account and updated broker.clean as per
QPID-904

r649126 nsantos 2008-04-17 add full path to qpidd in init script, as it fails in some environments with
just the command name

r649130 aconway 2008-04-17 Added missing .h files to Makefile.am to fix make rpmbuild. Add
non-const Message::data() Make log/Statement.h public.

r649132 aidan 2008-04-17 Merged revisions 632071-649058 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x

........ r632363 - ritchiem - 2008-02-29 16:00:19 +0000 (Fri, 29 Feb
2008) - 1 line ...

r649141 aidan 2008-04-17 fix compile errorsQPID-831

r649159 aconway 2008-04-17 src/Makefile.am: Fix problems with rpmbuild. src/tests/README:
Updated information about boost test.

r649294 astitcher 2008-04-17 Patch for improved compatibility with gcc 3.4 and boost 1.33

r649339 aconway 2008-04-18 src/tests/python_tests: fix exit status if QPID_NO_PREVIEW is set.
src/qpid/framing/AMQFrame.h: frame header setters/getters with 0-10
naming.

r649409 arnaudsimon 2008-04-18 Make property per connection and/or system wide; changeQPID-798
name to SYNC_PERSISTENT to denote only used on persistent
messages

Add accessor to Qpid
test Case to allow
prefetch to be turned
on / off

r649432 aidan 2008-04-18 default protocol version to 0-9QPID-832

r649436 arnaudsimon 2008-04-18 : added missing session close opQPID-936

r649479 kpvdr 2008-04-18 Fix to prevent possible Timer deadlocks by holding onto mutex while
calling fire()

Review of New JIRAs

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter

QPID-914 Python Client M3 (QPID-914) Separate python management component from
core python client

Open Rafael H.
Schloming

Gordon
Sim

QPID-915 C++ Broker (QPID-915) A list of ways to avoid c++ and Python problems on
the RHEL4 platform This is HTML, i.e. for a Wiki page.

Closed Unassigned michael
goulish

QPID-916 M2.1 (QPID-916) Release M2.1 Open Aidan
Skinner

Aidan
Skinner

QPID-917 Python Client M1, M2,
M2.1, M3

(QPID-917) python tests use the default, non-standard
'AMQPLAIN' as SASL mechanism

Resolved Gordon
Sim

Gordon
Sim

http://svn.apache.org/viewvc/?view=rev&revision=648784
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=648834
https://issues.apache.org/jira/browse/QPID-156
http://svn.apache.org/viewvc/?view=rev&revision=648904
http://svn.apache.org/viewvc/?view=rev&revision=649016
https://issues.apache.org/jira/browse/QPID-919
http://svn.apache.org/viewvc/?view=rev&revision=649055
http://svn.apache.org/viewvc/?view=rev&revision=649057
http://svn.apache.org/viewvc/?view=rev&revision=649058
http://svn.apache.org/viewvc/?view=rev&revision=649059
http://svn.apache.org/viewvc/?view=rev&revision=649070
https://issues.apache.org/jira/browse/QPID-796
http://svn.apache.org/viewvc/?view=rev&revision=649099
https://issues.apache.org/jira/browse/QPID-884
https://issues.apache.org/jira/browse/QPID-904
http://svn.apache.org/viewvc/?view=rev&revision=649126
http://svn.apache.org/viewvc/?view=rev&revision=649130
http://svn.apache.org/viewvc/?view=rev&revision=649132
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=649141
https://issues.apache.org/jira/browse/QPID-831
http://svn.apache.org/viewvc/?view=rev&revision=649159
http://svn.apache.org/viewvc/?view=rev&revision=649294
http://svn.apache.org/viewvc/?view=rev&revision=649339
http://svn.apache.org/viewvc/?view=rev&revision=649409
https://issues.apache.org/jira/browse/QPID-798
http://svn.apache.org/viewvc/?view=rev&revision=649432
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649436
https://issues.apache.org/jira/browse/QPID-936
http://svn.apache.org/viewvc/?view=rev&revision=649479
https://issues.apache.org/jira/browse/QPID-914
https://issues.apache.org/jira/browse/QPID-915
https://issues.apache.org/jira/browse/QPID-916
https://issues.apache.org/jira/browse/QPID-917

QPID-918 C++ Broker M3 (QPID-918) Authentication password is logged when "trace" is
enabled

Open Unassigned Ted Ross

QPID-919 Java Client M3 (QPID-919) Wrong exception thrown when the connection URL
contains a broker name followed by ":" but no port number is
specified.

Open Arnaud
Simon

Arnaud
Simon

QPID-920 C++ Client M3 (QPID-920) Convert c++ client to final 0-10 spec Open Gordon
Sim

Gordon
Sim

QPID-921 C++ Broker,
Python Client

M3 (QPID-921) Management: persistent object-ids, SASL support,
System-ID

Closed Unassigned Ted Ross

QPID-922 Java Broker M2.1 (QPID-922) (Java Broker) Selectors comparing header
properties to constants always convert the property from
AMQShortString to String, rather than converting the constant
once

Resolved Rob
Godfrey

Rob
Godfrey

QPID-923 Python Test
Suite

M2.1 (QPID-923) Python tests are not spec version aware Open Unassigned Martin
Ritchie

QPID-924 Ruby Test
Suite

M2.1 (QPID-924) Ruby test.rb use of '0.0.0.0' for localhost doesn't
work under cygwin

Open Unassigned Martin
Ritchie

QPID-925 Java Broker M2.1 (QPID-925) (Java Broker) Only begin store transactions when
there is a persistent message to be committed

Resolved Rob
Godfrey

Rob
Godfrey

QPID-926 Java Broker M2.1 (QPID-926) (Java Broker) Perform all store operations
associated with an acknowledge in a single store transaction

Open Rob
Godfrey

Rob
Godfrey

QPID-927 M2.1 (QPID-927) (Java Client) Multiple acknowledgements should be
coalesced into single multiple ack, rather than each being sent
individually

Resolved Rob
Godfrey

Rob
Godfrey

QPID-928 Java Tests M3 (QPID-928) Test
org.apache.qpid.test.unit.client.connection.ConnectionCloseTest
intermittently failing

Open Unassigned Arnaud
Simon

QPID-929 Java Client (QPID-929) (Java Client) Exchange.Declare being sent prior to
every message when publishing to explicit destination

Resolved Rob
Godfrey

Rob
Godfrey

QPID-930 Ruby Client M1, M2,
M2.1, M3

(QPID-930) ruby channel_close test issues Open Unassigned Gordon
Sim

QPID-931 Java Client M2.1 (QPID-931) (Java Client) Always use exclusive consumers
when subscribing to topics

Resolved Rob
Godfrey

Rob
Godfrey

QPID-932 M2.1 (QPID-932) (Java) Remove references to unusued constructor
argument "browsedAcks" of NonTransactionalContext

Open Rob
Godfrey

Rob
Godfrey

QPID-933 Java Broker,
Java Client,
Java Common

M2.1 (QPID-933) (Java Performance) reduce memory copies,
boxing/unboxing and needless iterating

Resolved Rob
Godfrey

Rob
Godfrey

QPID-934 C++ Broker M3 (QPID-934) Federation tests fail intermittently Open Unassigned Ted Ross

QPID-935 (QPID-935) patch to make trunk code work with old boost and
gcc versions

Open Unassigned michael
goulish

QPID-936 Java Tests M3 (QPID-936) Test testMigrateDurableSubscriber from
org.apache.qpid.test.unit.xa.TopicTest is failing

Open Unassigned Arnaud
Simon

QPID-937 (QPID-937) Typo in getting-started page of the site Open Unassigned Suran
Jayathilaka

Qpid Java Meeting Minutes 2008-05-09

Agenda

Attendees

Rob Godfrey

Rajith Attapattu

Rafi Schloming

Review of Code Commits

https://issues.apache.org/jira/browse/QPID-918
https://issues.apache.org/jira/browse/QPID-919
https://issues.apache.org/jira/browse/QPID-920
https://issues.apache.org/jira/browse/QPID-921
https://issues.apache.org/jira/browse/QPID-922
https://issues.apache.org/jira/browse/QPID-923
https://issues.apache.org/jira/browse/QPID-924
https://issues.apache.org/jira/browse/QPID-925
https://issues.apache.org/jira/browse/QPID-926
https://issues.apache.org/jira/browse/QPID-927
https://issues.apache.org/jira/browse/QPID-928
https://issues.apache.org/jira/browse/QPID-929
https://issues.apache.org/jira/browse/QPID-930
https://issues.apache.org/jira/browse/QPID-931
https://issues.apache.org/jira/browse/QPID-932
https://issues.apache.org/jira/browse/QPID-933
https://issues.apache.org/jira/browse/QPID-934
https://issues.apache.org/jira/browse/QPID-935
https://issues.apache.org/jira/browse/QPID-936
https://issues.apache.org/jira/browse/QPID-937

revision committer date comment review points

r649339 aconway 2008-04-18 src/tests/python_tests: fix exit status if QPID_NO_PREVIEW
is set. src/qpid/framing/AMQFrame.h: frame header
setters/getters with 0-10 naming.

r649409 arnaudsimon 2008-04-18 Make property per connection and/or system wide;QPID-798
change name to SYNC_PERSISTENT to denote only used on
persistent messages

r649432 aidan 2008-04-18 default protocol version to 0-9QPID-832

r649436 arnaudsimon 2008-04-18 : added missing session close opQPID-936

r649479 kpvdr 2008-04-18 Fix to prevent possible Timer deadlocks by holding onto
mutex while calling fire()

r649547 aconway 2008-04-18 Uncommented tests.

r649554 aconway 2008-04-18 From Ted Ross: " title="Visit page outsideQPID-934
Confluence" rel="nofollow"linktype="raw"
linktext="https://issues.apache.org/jira/browse/ "> QPID-934

">https://issues.apache.org/jira/browse/QPID-934 QPID-934
This patch fixes a problem related to multiple management
sessions run over the same AMQP session (typically seen in
test environments). ...

r649571 aconway 2008-04-18 Fix build problem.

r649585 aidan 2008-04-18 Merged revisions 648217-649481 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk

r648272 - aconway - 2008-04-15 15:54:46 +0100 (Tue, 15 Apr
2008) - 1 line Fix b ...

r649642 kpvdr 2008-04-18 fix ambiguity problem found on gcc 3.4 compilers

r649648 rhs 2008-04-18 : update pom to work with new codegenQPID-901

r649661 aidan 2008-04-18 Merged revisions 649482-649660 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk

r649547 - aconway - 2008-04-18 15:12:36 +0100 (Fri, 18 Apr
2008) - 2 lines Unco ...

r649666 astitcher 2008-04-18 Split AsynchIOAcceptor into IOHandler and connection control
code

r649671 aconway 2008-04-18 Fix test failure.

r649689 astitcher 2008-04-18 Refactored Acceptor code to allow multiple acceptors to be
present in the broker

r649691 astitcher 2008-04-18 Added missed new include file

r649711 aidan 2008-04-18 fix some compile errorsQPID-832

r649790 aidan 2008-04-19 QPID-832 ahem

r649905 aidan 2008-04-20 now 95% bug freeQPID-832

r649907 aidan 2008-04-20 remove log4j spewageQPID-832

r649909 aidan 2008-04-20 Merged revisions 649661-649908 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk

r649666 - astitcher - 2008-04-18 20:44:25 +0100 (Fri, 18 Apr
2008) - 2 lines Sp ...

r649915 gsim 2008-04-20 : converted c++ client to use final 0-10 protocol *QPID-920
connection handler converted to using invoker & proxy and
updated to final method defs * SessionCore &
ExecutionHandler replace by SessionIm ...

r650099 aidan 2008-04-21 Make sure that we lock early enough to avoidQPID-832
deadlocks hwen closing

r650108 aidan 2008-04-21 revert last commit, 650099QPID-832

r650122 aidan 2008-04-21 pass a genuine connection so that it doesnt NPEQPID-832

r650127 arnaudsimon 2008-04-21 Added "ID:" to message IDQPID-939

r650136 rgodfrey 2008-04-21

http://svn.apache.org/viewvc/?view=rev&revision=649339
http://svn.apache.org/viewvc/?view=rev&revision=649409
https://issues.apache.org/jira/browse/QPID-798
http://svn.apache.org/viewvc/?view=rev&revision=649432
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649436
https://issues.apache.org/jira/browse/QPID-936
http://svn.apache.org/viewvc/?view=rev&revision=649479
http://svn.apache.org/viewvc/?view=rev&revision=649547
http://svn.apache.org/viewvc/?view=rev&revision=649554
https://issues.apache.org/jira/browse/QPID-934
https://issues.apache.org/jira/browse/QPID-934
https://issues.apache.org/jira/browse/<a href=
https://issues.apache.org/jira/browse/QPID-934
http://svn.apache.org/viewvc/?view=rev&revision=649571
http://svn.apache.org/viewvc/?view=rev&revision=649585
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=649642
http://svn.apache.org/viewvc/?view=rev&revision=649648
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=649661
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=649666
http://svn.apache.org/viewvc/?view=rev&revision=649671
http://svn.apache.org/viewvc/?view=rev&revision=649689
http://svn.apache.org/viewvc/?view=rev&revision=649691
http://svn.apache.org/viewvc/?view=rev&revision=649711
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649790
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649905
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649907
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=649909
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=649915
https://issues.apache.org/jira/browse/QPID-920
http://svn.apache.org/viewvc/?view=rev&revision=650099
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650108
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650122
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650127
https://issues.apache.org/jira/browse/QPID-939
http://svn.apache.org/viewvc/?view=rev&revision=650136

r650145 rgodfrey 2008-04-21 Wrong revision

r650146 rgodfrey 2008-04-21 create branch for broker refactoring

r650148 rgodfrey 2008-04-21 Initial checkpoint of queue refactoring work

r650159 gsim 2008-04-21 : send message-accept for acks (as well asQPID-920
completion) * AckPolicy now maintains a set of transfered
messages for cumulative accepts

r650179 rgodfrey 2008-04-21 remove duplicate check of interest in enqueue, enable new
Queue by default

r650193 aidan 2008-04-21 catch dodgy mock generated exception, just likeQPID-832
M2.x

r650198 aconway 2008-04-21 src/qpid/RangeSet.h: generic set implementation using
ranges. - no heap allocation for simple sets (<= 3 ranges) -

binary searches for o(log) performance in complex sets

r650205 aidan 2008-04-21 handle multiple brokers properlyQPID-832

r650210 aconway 2008-04-21 Fix compile error on rhel5.

r650221 aconway 2008-04-21 Better workaround for boost::ptr_map incompatibility between
boost 1.33 and 1.34, based on public properties of ptr::map
types rather than version numbers.

r650227 aconway 2008-04-21 Disable compilation of amqp_0_10 codec until ready for
integration.

r650250 gsim 2008-04-21
raise error when controls other than attached are
received on unattached channel * corrected exception
handling in client and on broker (broker to issue
detach)

r650273 aconway 2008-04-21 Fix packaging problems for rpmbuild.

r650359 rhs 2008-04-22 : fixed ant build systemQPID-832

r650439 gsim 2008-04-22 : (based on patch from mfarrellee@redhat.com) *QPID-648
apply authentication to final 0-10 codepath * consolidate
conditional compilation of sasl-related code * improved
handling of connection close ...

r650440 rhs 2008-04-22 : add junit to the libs for junit-toolkitQPID-823

r650447 aidan 2008-04-22 create forrest site

r650450 gsim 2008-04-22 : do no-local checking where requested when thereQPID-944
is an exclusive subscription active

r650478 aidan 2008-04-22 Merged revisions 649909-650455 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk

r649915 - gsim - 2008-04-20 13:10:37 +0100 (Sun, 20 Apr
2008) - 6 lines ...QPID-92

r650565 rhs 2008-04-22 : update cpp and python management to 0-10 finalQPID-947

r650579 rhs 2008-04-22 : updated build orderQPID-832

r650581 rhs 2008-04-22 : moved 0-8 specific code into 0-8 subclass ofQPID-832
session

r650598 rhs 2008-04-22 : moved more 0-8 specific code to 0-8 subclassesQPID-832

r650604 rhs 2008-04-22 : patch from Ted Ross for updated managementQPID-948
utilities to 0-10 final

r650617 rhs 2008-04-22 : moved more 0-8 specific code into 0-8 subclassesQPID-832

r650620 cctrieloff 2008-04-22 from Ted RossQPID-945

r650635 gsim 2008-04-22 Moved federation to final 0-10 codepath

r650640 gsim 2008-04-22 : allow applications to trigger the sending of a flushQPID-920
to server

http://svn.apache.org/viewvc/?view=rev&revision=650145
http://svn.apache.org/viewvc/?view=rev&revision=650146
http://svn.apache.org/viewvc/?view=rev&revision=650148
http://svn.apache.org/viewvc/?view=rev&revision=650159
https://issues.apache.org/jira/browse/QPID-920
http://svn.apache.org/viewvc/?view=rev&revision=650179
http://svn.apache.org/viewvc/?view=rev&revision=650193
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650198
http://svn.apache.org/viewvc/?view=rev&revision=650205
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650210
http://svn.apache.org/viewvc/?view=rev&revision=650221
http://svn.apache.org/viewvc/?view=rev&revision=650227
http://svn.apache.org/viewvc/?view=rev&revision=650250
http://svn.apache.org/viewvc/?view=rev&revision=650273
http://svn.apache.org/viewvc/?view=rev&revision=650359
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650439
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=650440
https://issues.apache.org/jira/browse/QPID-823
http://svn.apache.org/viewvc/?view=rev&revision=650447
http://svn.apache.org/viewvc/?view=rev&revision=650450
https://issues.apache.org/jira/browse/QPID-944
http://svn.apache.org/viewvc/?view=rev&revision=650478
https://svn.apache.org/repos/asf/incubator/qpid/trunk
https://issues.apache.org/jira/browse/QPID-92
http://svn.apache.org/viewvc/?view=rev&revision=650565
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=650579
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650581
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650598
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650604
https://issues.apache.org/jira/browse/QPID-948
http://svn.apache.org/viewvc/?view=rev&revision=650617
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650620
https://issues.apache.org/jira/browse/QPID-945
http://svn.apache.org/viewvc/?view=rev&revision=650635
http://svn.apache.org/viewvc/?view=rev&revision=650640
https://issues.apache.org/jira/browse/QPID-920

r650657 astitcher 2008-04-22
Renamed the Acceptor class to be the
ProtocolFactory class which better approximates its
current behaviour * Slightly refactored TCPIOPlugin
to better approximate how it would look when we
imple ...

r650658 aidan 2008-04-22 make tests use new QpidTestCase magic forQPID-832
getting connections

r650795 gsim 2008-04-23 Added to the no-local tests, cleaned up comments (and
highlighted non-standard nature of these tests)

r650813 aidan 2008-04-23 remember to pass username to getConnectionQPID-832

r650850 rgodfrey 2008-04-23 : Quoted identifiers grammar fix for client sideQPID-832
selectors

r650855 rhs 2008-04-23 : switched from execing javacc to using the javaccQPID-832
task; this should fix the build on cygwin

r650858 rhs 2008-04-23 : moved CloseTests and DurableSubscriberTestsQPID-832
-> CloseTest and DurableSubscriberTest

r650875 gsim 2008-04-23 Add support for reading 0-10 arrays; Set sync bit on session
header for commands sent with auto_sync on.

r650876 rgodfrey 2008-04-23 : connection should be set to started beforeQPID-832
sessions are started

r650887 rgodfrey 2008-04-23 : Fixed AMQSession_0_10 so that it takes theQPID-832
acknowledge mode from the session not a system definition

r650890 aidan 2008-04-23 fix failover detection, rename startDispatcherQPID-832

r650901 rhs 2008-04-23 : fixed override of notifyMessage, this re-enablesQPID-832
selectors for 0-10

r650906 aconway 2008-04-23
SequenceSet implemented on RangeSet. - Reduced
#include dependencides on SequenceSet.h

r650922 astitcher 2008-04-23 Make python tests work with VPATH builds

r650970 astitcher 2008-04-23 Patch from Mick Goulish: Fixes to previous improved
portability patch

r650997 aconway 2008-04-23 src/tests/ClientSessionTest.cpp: uncommented tests for
session resume as EXPECTED_FAILURES tests.
src/tests/unit_test.h: workarounds for broken
EXPECTED_FAILURES tests in boost <= 1.34

r650999 astitcher 2008-04-23 Reverted earlier change to valgrind suppressions

r651088 aconway 2008-04-23 Fix build error introduced by earlier commit.

r651107 aidan 2008-04-23 copy trunk before performing some majorQPID-832
operations

r651111 aidan 2008-04-23 Delete stuff that's just going to get synced from M2.x

r651112 aidan 2008-04-23 copy the M2.x brokerQPID-832

r651113 aidan 2008-04-23 sync from M2.xQPID-832

r651115 aidan 2008-04-24 copy from M2.xQPID-832

r651116 aidan 2008-04-24 copy from M2.xQPID-832

r651117 aidan 2008-04-24 copy from M2.xQPID-832

r651118 aidan 2008-04-24 copy from M2.xQPID-832

r651119 aidan 2008-04-24 copy from M2.xQPID-832

r651120 aidan 2008-04-24 copy from M2.xQPID-832

r651124 aidan 2008-04-24 sync build stuff from thegreatmergeQPID-832

r651125 aidan 2008-04-24 sync build stuff from thegreatmergeQPID-832

http://svn.apache.org/viewvc/?view=rev&revision=650657
http://svn.apache.org/viewvc/?view=rev&revision=650658
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650795
http://svn.apache.org/viewvc/?view=rev&revision=650813
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650850
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650855
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650858
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650875
http://svn.apache.org/viewvc/?view=rev&revision=650876
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650887
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650890
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650901
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=650906
http://svn.apache.org/viewvc/?view=rev&revision=650922
http://svn.apache.org/viewvc/?view=rev&revision=650970
http://svn.apache.org/viewvc/?view=rev&revision=650997
http://svn.apache.org/viewvc/?view=rev&revision=650999
http://svn.apache.org/viewvc/?view=rev&revision=651088
http://svn.apache.org/viewvc/?view=rev&revision=651107
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651111
http://svn.apache.org/viewvc/?view=rev&revision=651112
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651113
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651115
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651116
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651117
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651118
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651119
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651120
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651124
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651125
https://issues.apache.org/jira/browse/QPID-832

r651126 aidan 2008-04-24 sync build stuff from thegreatmergeQPID-832

r651133 aidan 2008-04-24 merge M2.xQPID-832

r651134 aidan 2008-04-24 nuke some obsolete stuffQPID-832

r651211 aidan 2008-04-24 update pom versionQPID-832

r651276 rhs 2008-04-24 : fixed DerbyMessageStore to compile on Java 1.5QPID-832
(hopefully)

r651287 aconway 2008-04-24 emacs/qpid-c+ +-mode for Emacs. qpid-style-mode.el: qpid-c
indentation plus some useful commands for inserting
copyrights etc. Feel free to improve it, there's lots of room.

r651290 cctrieloff 2008-04-24 from trossQPID-953

r651301 aidan 2008-04-24 make systests runQPID-832

r651321 aconway 2008-04-24 Edits to doxygen comments for user documentation.

r651325 rgodfrey 2008-04-24 : Fix eol-styleQPID-832

r651346 nsantos 2008-04-24 add include for list, for gcc4.3

r651375 rgodfrey 2008-04-24 : Fix CRLF line endingsQPID-832

r651421 gsim 2008-04-24 Correct expected error codes for final 0-10 spec

r651423 gsim 2008-04-24 Generate c++ code from final 0-10 spec

r651425 cctrieloff 2008-04-24 by Danushka MenikkumburaQPID-958

r651431 rhs 2008-04-24 : fixed merge artifact affecting replyToQPID-832

r651474 astitcher 2008-04-25 Fix building examples when using a VPATH build

r651531 gsim 2008-04-25 Fixed caught exception type in recovery

r651997 aconway 2008-04-27 Session state as per AMQP 0-10 specification.

r652037 cctrieloff 2008-04-28 patch from SenakaQPID-918

r652041 cctrieloff 2008-04-28 - Senaka Fernando, I also edited the README in aQPID-971
few places.

r652053 astitcher 2008-04-28 Work In Progress: Added initial rdma code including test
server and client Turn off rdma support by default but
autoconf should now detect whether necessary rdma/ibverbs
libs and headers are pre ...

r652075 gsim 2008-04-29 : shutdown mgmt client cleanly in federation testsQPID-977
(patch from tross@redhat.com) : added customQPID-981
options to queue declare to tag each message as it goes
through a bridge queue and allow ...

r652076 gsim 2008-04-29 : management schema change missed fromQPID-981
previous commit

r652083 gsim 2008-04-29 : allow the size of the queue of outgoing frames toQPID-974
be restricted : tidy up configuration (ensuringQPID-544
desired settings are used correctly, allowing tcp socket
options to be se ...

r652086 rhs 2008-04-29 : added backwards compatible uuid toQPID-979
qpid.datatypes

r652114 gsim 2008-04-29 : allow id and exclude list to be passed throughQPID-981
when creating a bridge with qpid-route

r652120 astitcher 2008-04-29 Removed some unnecessary #includes

r652170 rhs 2008-04-29 : override MINA's IoServiceListenerSupport class inQPID-984
order to fix infinite loop

Investigate whether this can be
avoided by synchronizing
transport connection

r652173 rhs 2008-04-29 : fixed deadlock between AMQConnection.closeQPID-983
and FailoverHandler

r652180 astitcher 2008-04-29 More RDMA Work in Progress Changes to client buffering
Buffering improvement to server Removed unused state
machine from RdmaIO code Move the write throttling due to
limited write buff ...

http://svn.apache.org/viewvc/?view=rev&revision=651126
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651133
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651134
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651211
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651276
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651287
http://svn.apache.org/viewvc/?view=rev&revision=651290
https://issues.apache.org/jira/browse/QPID-953
http://svn.apache.org/viewvc/?view=rev&revision=651301
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651321
http://svn.apache.org/viewvc/?view=rev&revision=651325
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651346
http://svn.apache.org/viewvc/?view=rev&revision=651375
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651421
http://svn.apache.org/viewvc/?view=rev&revision=651423
http://svn.apache.org/viewvc/?view=rev&revision=651425
https://issues.apache.org/jira/browse/QPID-958
http://svn.apache.org/viewvc/?view=rev&revision=651431
https://issues.apache.org/jira/browse/QPID-832
http://svn.apache.org/viewvc/?view=rev&revision=651474
http://svn.apache.org/viewvc/?view=rev&revision=651531
http://svn.apache.org/viewvc/?view=rev&revision=651997
http://svn.apache.org/viewvc/?view=rev&revision=652037
https://issues.apache.org/jira/browse/QPID-918
http://svn.apache.org/viewvc/?view=rev&revision=652041
https://issues.apache.org/jira/browse/QPID-971
http://svn.apache.org/viewvc/?view=rev&revision=652053
http://svn.apache.org/viewvc/?view=rev&revision=652075
https://issues.apache.org/jira/browse/QPID-977
https://issues.apache.org/jira/browse/QPID-981
http://svn.apache.org/viewvc/?view=rev&revision=652076
https://issues.apache.org/jira/browse/QPID-981
http://svn.apache.org/viewvc/?view=rev&revision=652083
https://issues.apache.org/jira/browse/QPID-974
https://issues.apache.org/jira/browse/QPID-544
http://svn.apache.org/viewvc/?view=rev&revision=652086
https://issues.apache.org/jira/browse/QPID-979
http://svn.apache.org/viewvc/?view=rev&revision=652114
https://issues.apache.org/jira/browse/QPID-981
http://svn.apache.org/viewvc/?view=rev&revision=652120
http://svn.apache.org/viewvc/?view=rev&revision=652170
https://issues.apache.org/jira/browse/QPID-984
http://svn.apache.org/viewvc/?view=rev&revision=652173
https://issues.apache.org/jira/browse/QPID-983
http://svn.apache.org/viewvc/?view=rev&revision=652180

r652386 gsim 2008-04-30 and : fixes to framing for final 0-10 specQPID-988 QPID-989

r652388 ritchiem 2008-04-30 : Removed _reapingStoreContext from CSDMQPID-889
replaced with local StoreContext()s so they are not reused by
different threads.

r652389 ritchiem 2008-04-30 : Renamed QueueHouseKeeping threads so theyQPID-887
can be identified in thread dump. Named
Queue-housekeeping-<virtualhost name>

Changed more than just the
name. Also adds a System exit -
this should be documented.
Action: move log statements to
debug - not info.

r652399 ritchiem 2008-04-30 , : Fixed all management uses ofQPID-888 QPID-886
_lock.lock / _lock.unlock so that they correctly call unlock from
a finally block in the CSDM. There are two issues that cover
that. - Fix the ...QPID-888

r652409 rajith 2008-05-01 This commit is for and build.xmlQPID-992 QPID-993
========== I added the broker-plugins as a module to the
ant build system. This was nessacery to get the plugins jar
generated for . In gene ...QPID-993

module.xml should not include
specific code such as the copy
which breaks building other
modules.

r652411 rajith 2008-05-01 Added the following tests to 0-10 exclude lists as these tests
are for the java broker. However when the java broker gets to
0-10 we should also have exclude lists per broker as well. For
the time bei ...

r652451 gsim 2008-05-01 Cleanup: Re-enable tests that now pass; delete unused
templates directory.

r652469 gsim 2008-05-01 : applied patch from rajith; altered to use uuid asQPID-966
session name; updated verify scripts for automated testing;
re-enabled automated testing in c++ build

r652506 gsim 2008-05-01 Remove preview tests (no longer required)

r652535 nsantos 2008-05-01 applying Ted Ross's patch to handle unicode encoding and
management message ordering issues

r652548 rhs 2008-05-01 : added an option to turn on deprecation duringQPID-965
compile

r652558 gsim 2008-05-01 : fix decode of zero sized mapQPID-989

r652567 aidan 2008-05-01 Dont wait for attain state as connection is closed byQPID-994
we get CloseOk

Wrong JIRA refrred to... Would
like some justification for change.

r652568 aidan 2008-05-01 dont set the expiration time if TTL is 0QPID-1001

r652591 gsim 2008-05-01 Turn auth back on by default for c++ broker (only if SASL libs
are available)

r652670 rhs 2008-05-01 : reduced message count in DupsOKTestQPID-987

r652672 rhs 2008-05-01 : added an osgi manifest to broker-plugins jarQPID-993

r652680 rhs 2008-05-01 : applied patch from Senaka to make systests runQPID-1002
using normal junit testrunner

r652689 gsim 2008-05-01 Boost's string split function causes problems on older versions
of the library. Replaced with homegrown equivalent.

r652705 rhs 2008-05-01 : added excludes for framework test classesQPID-1003

r652779 gsim 2008-05-02 : Patch from Danushka Menikkumbura.QPID-986

r652783 gsim 2008-05-02 : Patch from Danushka Menikkumbura revisingQPID-980
installation notes.

r652799 gsim 2008-05-02 Use BOOST_CHECK_EQUAL in place of
BOOST_REQUIRE_EQUAL (compatible with older boost)

r652829 gsim 2008-05-02 Use no-ack in bridging as it is currently an exclusive, temp
queue (will eventually be configurable)

r653248 gsim 2008-05-04 Fix error handling for connection close during startup.

r653249 gsim 2008-05-04 Extra log ouput for queue policy.

r653251 gsim 2008-05-04 Use amq.direct for control queue in topic test.

http://svn.apache.org/viewvc/?view=rev&revision=652386
https://issues.apache.org/jira/browse/QPID-988
https://issues.apache.org/jira/browse/QPID-989
http://svn.apache.org/viewvc/?view=rev&revision=652388
https://issues.apache.org/jira/browse/QPID-889
http://svn.apache.org/viewvc/?view=rev&revision=652389
https://issues.apache.org/jira/browse/QPID-887
http://svn.apache.org/viewvc/?view=rev&revision=652399
https://issues.apache.org/jira/browse/QPID-888
https://issues.apache.org/jira/browse/QPID-886
https://issues.apache.org/jira/browse/QPID-888
http://svn.apache.org/viewvc/?view=rev&revision=652409
https://issues.apache.org/jira/browse/QPID-992
https://issues.apache.org/jira/browse/QPID-993
https://issues.apache.org/jira/browse/QPID-993
http://svn.apache.org/viewvc/?view=rev&revision=652411
http://svn.apache.org/viewvc/?view=rev&revision=652451
http://svn.apache.org/viewvc/?view=rev&revision=652469
https://issues.apache.org/jira/browse/QPID-966
http://svn.apache.org/viewvc/?view=rev&revision=652506
http://svn.apache.org/viewvc/?view=rev&revision=652535
http://svn.apache.org/viewvc/?view=rev&revision=652548
https://issues.apache.org/jira/browse/QPID-965
http://svn.apache.org/viewvc/?view=rev&revision=652558
https://issues.apache.org/jira/browse/QPID-989
http://svn.apache.org/viewvc/?view=rev&revision=652567
https://issues.apache.org/jira/browse/QPID-994
http://svn.apache.org/viewvc/?view=rev&revision=652568
https://issues.apache.org/jira/browse/QPID-1001
http://svn.apache.org/viewvc/?view=rev&revision=652591
http://svn.apache.org/viewvc/?view=rev&revision=652670
https://issues.apache.org/jira/browse/QPID-987
http://svn.apache.org/viewvc/?view=rev&revision=652672
https://issues.apache.org/jira/browse/QPID-993
http://svn.apache.org/viewvc/?view=rev&revision=652680
https://issues.apache.org/jira/browse/QPID-1002
http://svn.apache.org/viewvc/?view=rev&revision=652689
http://svn.apache.org/viewvc/?view=rev&revision=652705
https://issues.apache.org/jira/browse/QPID-1003
http://svn.apache.org/viewvc/?view=rev&revision=652779
https://issues.apache.org/jira/browse/QPID-986
http://svn.apache.org/viewvc/?view=rev&revision=652783
https://issues.apache.org/jira/browse/QPID-980
http://svn.apache.org/viewvc/?view=rev&revision=652799
http://svn.apache.org/viewvc/?view=rev&revision=652829
http://svn.apache.org/viewvc/?view=rev&revision=653248
http://svn.apache.org/viewvc/?view=rev&revision=653249
http://svn.apache.org/viewvc/?view=rev&revision=653251

r653252 gsim 2008-05-04 Allow queue durbaility to be specified independent of
message durability.

r653253 gsim 2008-05-04 Update and cleanup scripts for automated 0-10 example
testing.

r653354 arnaudsimon 2008-05-05 and : - :use same socketQPID-1006 QPID-1007 QPID-1006
buffer size and frame size - : added io writeQPID-1007
handler into MINA chain

Use Integer.getInteger and int
constants rather than String
constants and parsing. If System
Property not an integer use
default rather than none, still with
warning, or throw
RuntimeException? Should we
have a magic value for
unbounded? What are valid
value for these numbers - what is
the effect of a negative number...
We shouldn't be catching
"Exception" but specific subtype.
 in conect():

"true".equals should instead be
Boolean.getBoolean
having tcpNoDelay default to true
is suspect
Constant being configured is it
the buffer size of the max frame
size? We may default the buffer
size to the max frame size... but
surely the disassmbler is being
created relative to the max frame
size?

r653399 arnaudsimon 2008-05-05 : added org.apache.qpid.client.configuration andQPID-1018
add io props

AMQConnection.java:
use Long.getLong rather than
System.getproperties...
Can we make properties into
some sort of enum/class with get
accessors
Property names should be made
more consistent

r653400 arnaudsimon 2008-05-05 : removed bad importsQPID-1007

r653415 ritchiem 2008-05-05 : Renamed QueueHouseKeeping threads so theyQPID-887
can be identified in thread dump. Named
Queue-housekeeping-<virtualhost name>

This change does not have the
same System.exit(-1) that the
equivalent change on M2.x had

r653416 aidan 2008-05-05 prevent messages being dequeued unecessarily,QPID-1019
from rgodfrey

r653419 aidan 2008-05-05 turn on merge tracking between trunk and M2.x

r653421 ritchiem 2008-05-05 : Patch provided provided by Senaka to preventQPID-895
delay on initial Connections with SingleServer methods.
Updated FailoverMethodTest to include a better description of
where the times come from. ...

r653426 arnaudsimon 2008-05-05 : Added a property for ignoring setClientID so weQPID-1005
are compatible with legacy applications that don't rely on the
ID being set on the connection URL.

change name of property as it
give wrong impression about
effect.

r653427 ritchiem 2008-05-05 : prevented warning about missing bin/etcQPID-998
directories in modules that don't have bin or etc.

should have a variable to control
the echo, if-verbose or something

r653434 ritchiem 2008-05-05 : Update to build system to store and clean testQPID-1021
results per module.name.

Changing of test results directory
to new directory shouldn't have
been done without consultation-
should have been posted on the
list. JIRA was filed and closed
within 30 minutes.
Broke the test report task

r653439 ritchiem 2008-05-05 : Update to build system to store and clean testQPID-1021
results per module.name. Sorry errant } broke everything.

r653441 ritchiem 2008-05-05 : Cause of delay is the missing / in the file url forQPID-997
the log4j configuration file. Under windows the path would
start which log4j assumes is some remote file system.file://c:/
For windows i ...

http://svn.apache.org/viewvc/?view=rev&revision=653252
http://svn.apache.org/viewvc/?view=rev&revision=653253
http://svn.apache.org/viewvc/?view=rev&revision=653354
https://issues.apache.org/jira/browse/QPID-1006
https://issues.apache.org/jira/browse/QPID-1007
https://issues.apache.org/jira/browse/QPID-1006
https://issues.apache.org/jira/browse/QPID-1007
http://svn.apache.org/viewvc/?view=rev&revision=653399
https://issues.apache.org/jira/browse/QPID-1018
http://svn.apache.org/viewvc/?view=rev&revision=653400
https://issues.apache.org/jira/browse/QPID-1007
http://svn.apache.org/viewvc/?view=rev&revision=653415
https://issues.apache.org/jira/browse/QPID-887
http://svn.apache.org/viewvc/?view=rev&revision=653416
https://issues.apache.org/jira/browse/QPID-1019
http://svn.apache.org/viewvc/?view=rev&revision=653419
http://svn.apache.org/viewvc/?view=rev&revision=653421
https://issues.apache.org/jira/browse/QPID-895
http://svn.apache.org/viewvc/?view=rev&revision=653426
https://issues.apache.org/jira/browse/QPID-1005
http://svn.apache.org/viewvc/?view=rev&revision=653427
https://issues.apache.org/jira/browse/QPID-998
http://svn.apache.org/viewvc/?view=rev&revision=653434
https://issues.apache.org/jira/browse/QPID-1021
http://svn.apache.org/viewvc/?view=rev&revision=653439
https://issues.apache.org/jira/browse/QPID-1021
http://svn.apache.org/viewvc/?view=rev&revision=653441
https://issues.apache.org/jira/browse/QPID-997
file://c:/

r653447 aidan 2008-05-05 Check if consumer is closed and dont reclose it No JIRA number!

r653451 aidan 2008-05-05 Use synchronous writes to fix race conditionsQPID-1022

r653452 aidan 2008-05-05 increase some timeoutsQPID-1023

r653508 gsim 2008-05-05 : allow for case where 0-10 message-propertiesQPID-1008
are not included in a received message

Wrong { convention

r653518 arnaudsimon 2008-05-05 : changed received so empty Payload areQPID-1025
processed

Rafi to review with Arnaud

r653527 gsim 2008-05-05 Updated for latest 0-10 spec and added two extra queue
options to set the flow to disk policy trigger size/count

Use StringBuilder for String
concatenation
binddingKey has too many 'd's
the exchange name / binding key
should be truncated so that the
entire string fits inside 255 bytes.
See rules laid down in exchange
on qpid-dev between rgodfrey &
cctrielloff. Care needs to be
taken with multibyte unicode
characters.

r653720 aidan 2008-05-06 Merged revisions
652388-652389,652399,652567-652568,653416 via
svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r652388 - ritchiem - 2008-04-30 15:40:18 +0100 (...

r653731 arnaudsimon 2008-05-06 : updated report task for including all subdirsQPID-1028

r653760 aidan 2008-05-06 : Generate temporary queue names using GUIDsQPID-1029
to ensure uniqueness.

r653813 arnaudsimon 2008-05-06 : This solves the issue for the 0.10 code pathQPID-1030

r653830 rajith 2008-05-06 This is a fix for I added read/write methods forQPID-1031
datetime that calls int64.

r653854 aconway 2008-05-06 From " title="Visit page outside Confluence"QPID-879
rel="nofollow"linktype="raw"
linktext="https://issues.apache.org/jira/browse/ "> QPID-879

">https://issues.apache.org/jira/browse/QPID-879 QPID-879
contributed by Jonathan Robie. XML exchange allowing
messages to be routed base on XQuery expressions.

r653875 rhs 2008-05-06 : made loading of the spec file not fail if the resultsQPID-1033
cannot be cached, e.g. due to an unwritable directory

r653904 rajith 2008-05-06 This patch was attached to . It allows to specify aQPID-953
comma separated list of queue names to filter with -f flag. Also
I removed getopt and added optparse as it provides a more
easy way of handl ...

r653912 aconway 2008-05-06 Fix for defining HAS_XML

r654097 aidan 2008-05-07 , , Fix failover, ensure that itQPID-952 QPID-951 QPID-1032
is properly detected, that frames are replayed approrpiately
and that failover does not timeout.

r654104 aidan 2008-05-07 should have been part of previous commitQPID-952

r654109 aidan 2008-05-07 increase timeouts to more reasonable levels,QPID-1036
ensure that durable queues are deleted when no longer
needed

r654113 aidan 2008-05-07 Merged revisions 653420-654109 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r653447 - aidan - 2008-05-05 13:26:29 +0100 (Mon, 05
May 2008) - 1 line ...

r654125 aidan 2008-05-07 Add integration tests to #D project

r654143 aidan 2008-05-07 Tidy up #D project a bit

r654144 aidan 2008-05-07 Tidy up #D project a bit

r654158 rhs 2008-05-07 : added convenience accessors for headersQPID-979

http://svn.apache.org/viewvc/?view=rev&revision=653447
http://svn.apache.org/viewvc/?view=rev&revision=653451
https://issues.apache.org/jira/browse/QPID-1022
http://svn.apache.org/viewvc/?view=rev&revision=653452
https://issues.apache.org/jira/browse/QPID-1023
http://svn.apache.org/viewvc/?view=rev&revision=653508
https://issues.apache.org/jira/browse/QPID-1008
http://svn.apache.org/viewvc/?view=rev&revision=653518
https://issues.apache.org/jira/browse/QPID-1025
http://svn.apache.org/viewvc/?view=rev&revision=653527
http://svn.apache.org/viewvc/?view=rev&revision=653720
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=653731
https://issues.apache.org/jira/browse/QPID-1028
http://svn.apache.org/viewvc/?view=rev&revision=653760
https://issues.apache.org/jira/browse/QPID-1029
http://svn.apache.org/viewvc/?view=rev&revision=653813
https://issues.apache.org/jira/browse/QPID-1030
http://svn.apache.org/viewvc/?view=rev&revision=653830
https://issues.apache.org/jira/browse/QPID-1031
http://svn.apache.org/viewvc/?view=rev&revision=653854
https://issues.apache.org/jira/browse/QPID-879
https://issues.apache.org/jira/browse/QPID-879
https://issues.apache.org/jira/browse/<a href=
https://issues.apache.org/jira/browse/QPID-879
http://svn.apache.org/viewvc/?view=rev&revision=653875
https://issues.apache.org/jira/browse/QPID-1033
http://svn.apache.org/viewvc/?view=rev&revision=653904
https://issues.apache.org/jira/browse/QPID-953
http://svn.apache.org/viewvc/?view=rev&revision=653912
http://svn.apache.org/viewvc/?view=rev&revision=654097
https://issues.apache.org/jira/browse/QPID-952
https://issues.apache.org/jira/browse/QPID-951
https://issues.apache.org/jira/browse/QPID-1032
http://svn.apache.org/viewvc/?view=rev&revision=654104
https://issues.apache.org/jira/browse/QPID-952
http://svn.apache.org/viewvc/?view=rev&revision=654109
https://issues.apache.org/jira/browse/QPID-1036
http://svn.apache.org/viewvc/?view=rev&revision=654113
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=654125
http://svn.apache.org/viewvc/?view=rev&revision=654143
http://svn.apache.org/viewvc/?view=rev&revision=654144
http://svn.apache.org/viewvc/?view=rev&revision=654158
https://issues.apache.org/jira/browse/QPID-979

r654457 arnaudsimon 2008-05-08 : Disable this test as it is not finished and TTL isQPID-1004
already tested

undo this change as the
subsequent change disables
TTLTest in the correct way

r654464 arnaudsimon 2008-05-08 : As this test does not extend QpidTestCase weQPID-1004
need to exclude it from the build.xml.

Log comment on commit is wrong
- it is being excluded because the
test is broken

r654505 arnaudsimon 2008-05-08 : Added module name prop and anQPID-1037
exclude.modules prop + switch systests off in cpp profiles.

rhs: don't think this change is
necessary. Also why
module.name being set when is
set automatically with exception
of junit-toolkit
suggest most of this change
should be reversed
systests execution time should be
fixed by fixing timeout
This change should have been
discussed on list (excluding an
entire test suite is a *big* change)

r654513 arnaudsimon 2008-05-08 : revert the junit-toolkit changeQPID-1037

r654529 aidan 2008-05-08 add test caseQPID-1038

r654545 aidan 2008-05-08 add a mixed send/recieve/rollback testQPID-1038

r654564 nsantos 2008-05-08 : managementgen only exists in qpid C++ source -QPID-1035
applying patched supplied by Matt Farrellee

r654566 nsantos 2008-05-08 : managementgen C++ symbol validation - appliedQPID-1026
patch supplied by Matt Farrellee

r654574 nsantos 2008-05-08 : managementgen only exists in qpid C++ source -QPID-1035
applying patched supplied by Matt Farrellee

r654584 nsantos 2008-05-08 : managementgen only exists in qpid C++ source -QPID-1035
applying patched supplied by Matt Farrellee

r654618 rhs 2008-05-08 : added access to enums through the session soQPID-979
that symbolic constants can be used rather than hard coded
ones; also added default loading of the spec

r654623 rhs 2008-05-08 : switched to a more appropriate name for locatingQPID-979
the spec

r654637 rhs 2008-05-08 : added qpid_config.py appropriate for develQPID-979
checkout

r654666 astitcher 2008-05-09 : Patch from Ted Ross: Asynchronous ConnectorQPID-1040
Code to allow non-blocking connection of new sockets

r654710 gsim 2008-05-09 Make ANONYMOUS the default authentication mechanism.

r654712 gsim 2008-05-09 Make ANONYMOUS the default mechanism

r654737 gsim 2008-05-09 : ensure delievery record is kept whereQPID-1042
accept_mode=not-required, acquire_mode=not-acquired and
flow_mode=credit

r654759 gsim 2008-05-09 Enabled PLAIN authentication and setting of username and
password for 0-10 python client. Added options to all
command line tools to allow a username and password to be
specified.

r654761 gsim 2008-05-09 Reverted change to use ANONYMOUS as default (I had a
change of heart on that)

r654780 ritchiem 2008-05-09 Create M2.1 Bug fix branch

r654785 ritchiem 2008-05-09 Moved all references to M2.1 to M2.1.x-SNAPSHOT

Recently Raised JIRAs

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

QPID-1001 Dot Net Client M2.1, M3 (QPID-1001) .Net client sets expiration
time incorrectly

Open Aidan
Skinner

Aidan Skinner Resolved?

http://svn.apache.org/viewvc/?view=rev&revision=654457
https://issues.apache.org/jira/browse/QPID-1004
http://svn.apache.org/viewvc/?view=rev&revision=654464
https://issues.apache.org/jira/browse/QPID-1004
http://svn.apache.org/viewvc/?view=rev&revision=654505
https://issues.apache.org/jira/browse/QPID-1037
http://svn.apache.org/viewvc/?view=rev&revision=654513
https://issues.apache.org/jira/browse/QPID-1037
http://svn.apache.org/viewvc/?view=rev&revision=654529
https://issues.apache.org/jira/browse/QPID-1038
http://svn.apache.org/viewvc/?view=rev&revision=654545
https://issues.apache.org/jira/browse/QPID-1038
http://svn.apache.org/viewvc/?view=rev&revision=654564
https://issues.apache.org/jira/browse/QPID-1035
http://svn.apache.org/viewvc/?view=rev&revision=654566
https://issues.apache.org/jira/browse/QPID-1026
http://svn.apache.org/viewvc/?view=rev&revision=654574
https://issues.apache.org/jira/browse/QPID-1035
http://svn.apache.org/viewvc/?view=rev&revision=654584
https://issues.apache.org/jira/browse/QPID-1035
http://svn.apache.org/viewvc/?view=rev&revision=654618
https://issues.apache.org/jira/browse/QPID-979
http://svn.apache.org/viewvc/?view=rev&revision=654623
https://issues.apache.org/jira/browse/QPID-979
http://svn.apache.org/viewvc/?view=rev&revision=654637
https://issues.apache.org/jira/browse/QPID-979
http://svn.apache.org/viewvc/?view=rev&revision=654666
https://issues.apache.org/jira/browse/QPID-1040
http://svn.apache.org/viewvc/?view=rev&revision=654710
http://svn.apache.org/viewvc/?view=rev&revision=654712
http://svn.apache.org/viewvc/?view=rev&revision=654737
https://issues.apache.org/jira/browse/QPID-1042
http://svn.apache.org/viewvc/?view=rev&revision=654759
http://svn.apache.org/viewvc/?view=rev&revision=654761
http://svn.apache.org/viewvc/?view=rev&revision=654780
http://svn.apache.org/viewvc/?view=rev&revision=654785
https://issues.apache.org/jira/browse/QPID-1001

QPID-1002 Java Tests (QPID-1002) Improvements to Test
Framework making it possible to run
systests

Closed Martin
Ritchie

Senaka
Fernando

affects
version
should be
set

QPID-1003 Ant Build
System, Java
Tools

 (QPID-1003) Junit treats Classes
ending with Test as testcases

Closed Martin
Ritchie

Senaka
Fernando

affects
version
should be
set

QPID-1004 Java Tests (QPID-1004)
org.apache.qpid.test.testcases.TTLTest
Fails

Open Unassigned Senaka
Fernando

QPID-1005 Java Client M3 (QPID-1005) Client ID Open Unassigned Arnaud Simon need more
descriptive
title.
Issue
needs
more work
- see notes
on commit
above

QPID-1006 Java Client M3 (QPID-1006) (0.10 code path)
Message rate is very slow when big
messages are sent.

Resolved Arnaud
Simon

Arnaud Simon Should be
reopened
because of
comments
above

QPID-1007 Java Client M3 (QPID-1007) (0.10 code path) Need a
way of controlling MINA queue size

Resolved Unassigned Arnaud Simon

QPID-1008 Java Client M3 (QPID-1008) 0-10 client throws NPE if
message-properties are not present

Open Unassigned Gordon Sim Should be
marked as
resolved

QPID-1009 Java
Management
Console

 (QPID-1009) Update JMX
Management Console FAQ on using
scrips on Unix systems

Open Unassigned Senaka
Fernando

QPID-1010 Java
Management
Console

 (QPID-1010) Buttons are not visible in
New Connection Dialog Box

Open Unassigned Senaka
Fernando

Someone
should look
at patch

QPID-1011 Java
Management
Console

 (QPID-1011) Qpid Management
Console Plugin has undefined
behaviour in different Eclipse
Perspectives

Open Unassigned Senaka
Fernando

Someone
should look
at patch

QPID-1012 website (QPID-1012) Attachments Links
unavailable on Configuring Qpid
Management Console wiki page

Open Unassigned Senaka
Fernando

QPID-1013 Java
Management
Console

 (QPID-1013) Documentation on
running Qpid Management Console
within Eclipse is Required

Open Unassigned Senaka
Fernando

QPID-1014 Java
Management
Console

 (QPID-1014)
qpid.management.perspective should
be replaced by a better phrase

Open Unassigned Senaka
Fernando

Someone
should look
at patch

QPID-1015 Java
Management
Console

 (QPID-1015) NPE Reported Incorrectly
by Qpid Management Console

Open Unassigned Senaka
Fernando

Someone
should look
at patch

QPID-1016 (QPID-1016) Can not get qpid-tool to
run

Closed Unassigned Danushka
Menikkumbura

QPID-1017 Python Test
Suite

 (QPID-1017) README in Qpid Python
has wrong name for run-tests

Open Unassigned Senaka
Fernando

Someone
should look
at patch

QPID-1018 Java Client M3 (QPID-1018) Client properties
centralization

Open Arnaud
Simon

Arnaud Simon See
comments
above

QPID-1019 Java Broker M2.1, M3 (QPID-1019) Message cleanup can
cause refcount to go below 0

Open Rob
Godfrey

Aidan Skinner Should be
marked
resolved

https://issues.apache.org/jira/browse/QPID-1002
https://issues.apache.org/jira/browse/QPID-1003
https://issues.apache.org/jira/browse/QPID-1004
https://issues.apache.org/jira/browse/QPID-1005
https://issues.apache.org/jira/browse/QPID-1006
https://issues.apache.org/jira/browse/QPID-1007
https://issues.apache.org/jira/browse/QPID-1008
https://issues.apache.org/jira/browse/QPID-1009
https://issues.apache.org/jira/browse/QPID-1010
https://issues.apache.org/jira/browse/QPID-1011
https://issues.apache.org/jira/browse/QPID-1012
https://issues.apache.org/jira/browse/QPID-1013
https://issues.apache.org/jira/browse/QPID-1014
https://issues.apache.org/jira/browse/QPID-1015
https://issues.apache.org/jira/browse/QPID-1016
https://issues.apache.org/jira/browse/QPID-1017
https://issues.apache.org/jira/browse/QPID-1018
https://issues.apache.org/jira/browse/QPID-1019

QPID-1020 Ant Build
System

M3 (QPID-1020) Test classes should be
built by default ant run.

Open Martin
Ritchie

Martin Ritchie

QPID-1021 Ant Build
System

M3 (QPID-1021) Module test results
should be listed by module and
removed by clean

Open Martin
Ritchie

Martin Ritchie Should be
marked
resolved

QPID-1022 Dot Net Client M2.1, M3 (QPID-1022) Client doesn't wait for
replies correctly

Open Unassigned Aidan Skinner Should be
marked
resolved

QPID-1023 Dot Net Client M2.1, M3 (QPID-1023) Various tests fail due to
insufficent time outs

Open Unassigned Aidan Skinner Should be
marked
resolved

QPID-1024 C++ Broker M3 (QPID-1024) When a message is
released by the client the c++ broker
continues to serve the same message

Closed Gordon
Sim

Rajith
Attapattu

QPID-1025 Java Client M3 (QPID-1025) (0.10 code path) Empty
body messages are not propagated to
the consumer

Open Unassigned Arnaud Simon

QPID-1026 Code
Generator

 (QPID-1026) managementgen C++
symbol validation

Open Unassigned Matthew
Farrellee

QPID-1027 Python Test
Suite

 (QPID-1027) verify script is sensitive to
shell in use

Open Unassigned Senaka
Fernando

QPID-1028 Ant Build
System

M3 (QPID-1028) Test report is not
generated

Open Unassigned Arnaud Simon Should be
marked
resolved

QPID-1029 Dot Net Client M2.1, M3 (QPID-1029) Client generates
non-unique temporary queue names

Open Aidan
Skinner

Aidan Skinner

QPID-1030 Java Client M3 (QPID-1030) Making JMS easier for
users

Open Unassigned Arnaud Simon Change
title to be
more
reflective
on
content.
Also see
comments
on commit

QPID-1031 Python Client M3 (QPID-1031) Python doesn't handle
date time for 0-10 final

Resolved Rajith
Attapattu

Rajith
Attapattu

QPID-1032 Dot Net Client M2.1, M3 (QPID-1032) Failover replays frames
but is unable to handle the OKs that
are generated

Open Aidan
Skinner

Aidan Skinner Should be
marked as
resolved

QPID-1033 Python Client M3 (QPID-1033) Continue on error if
cannot create spec pcl

Resolved Rafael H.
Schloming

Justin Ross

QPID-1034 (QPID-1034) README on verify scripts Open Unassigned Senaka
Fernando

QPID-1035 Code
Generator

 (QPID-1035) managementgen only
exists in qpid C++ source

Open Unassigned Matthew
Farrellee

can this be
resolved

QPID-1036 Dot Net Client M2.1, M3 (QPID-1036) Integration tests generate
false negatives

Open Aidan
Skinner

Aidan Skinner Should be
marked as
resolved

QPID-1037 Java Tests M3 (QPID-1037) Need a way of not
running some module tests

Closed Arnaud
Simon

Arnaud Simon

QPID-1038 Dot Net Client M2.1, M3 (QPID-1038) Blocking I/O in transport
layer leads to poor performance for
mixed sender/producer

Open Aidan
Skinner

Aidan Skinner Should be
marked as
resolved

QPID-1039 C++ Broker (QPID-1039) fix program options
behavior for Boost 103200

Open Unassigned michael
goulish

QPID-1040 C++ Broker M3 (QPID-1040) Asynchronous Protocol
Connector for C++ broker

Open Andrew
Stitcher

Ted Ross Can be
resolved?

QPID-1041 Python Client M3 (QPID-1041) Sources and sinks should
all have names (a problem in at least
the Python client)

Open Rafael H.
Schloming

Jonathan
Robie

https://issues.apache.org/jira/browse/QPID-1020
https://issues.apache.org/jira/browse/QPID-1021
https://issues.apache.org/jira/browse/QPID-1022
https://issues.apache.org/jira/browse/QPID-1023
https://issues.apache.org/jira/browse/QPID-1024
https://issues.apache.org/jira/browse/QPID-1025
https://issues.apache.org/jira/browse/QPID-1026
https://issues.apache.org/jira/browse/QPID-1027
https://issues.apache.org/jira/browse/QPID-1028
https://issues.apache.org/jira/browse/QPID-1029
https://issues.apache.org/jira/browse/QPID-1030
https://issues.apache.org/jira/browse/QPID-1031
https://issues.apache.org/jira/browse/QPID-1032
https://issues.apache.org/jira/browse/QPID-1033
https://issues.apache.org/jira/browse/QPID-1034
https://issues.apache.org/jira/browse/QPID-1035
https://issues.apache.org/jira/browse/QPID-1036
https://issues.apache.org/jira/browse/QPID-1037
https://issues.apache.org/jira/browse/QPID-1038
https://issues.apache.org/jira/browse/QPID-1039
https://issues.apache.org/jira/browse/QPID-1040
https://issues.apache.org/jira/browse/QPID-1041

QPID-1042 C++ Broker M3 (QPID-1042) Record of deliveries not
kept for non-acquired, non-accepted
subscriptions in credit flow mode

Open Gordon
Sim

Gordon Sim Can be
resolved?

QPID-1043 website M3 (QPID-1043) Add page with a clear grid
of protocol support for each qpid
component

Open Gordon
Sim

Gordon Sim

Qpid Java Meeting Minutes 2008-05-16

Agenda

Check on progress of last weeks review points
Commit review
JIRA Review
Landing Java Broker Refactoring

Attendees

Aidan, Arnaud, Rafi, Carl, Martin, Rob, Marnie

Outstanding actions

Almost all prior actions need to be taken, please seem last weeks minutes for details

Comitters need to get better at reviewing submitted patches

Review of Code Commits

revision committer date comment review
points

r654799 aidan 2008-05-09 allow merging from M2.x

r654803 aidan 2008-05-09 allow merging from M2.x

r654818 aidan 2008-05-09 Merged revisions 652388-653415,653417-654109 via svnmerge from
 r652388 -https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x

ritchiem - 2008-04-30 15:40:18 +0100 (Wed, 30 Apr 20 ...

r654866 astitcher 2008-05-09 Fix to managementgen so that VPATH builds work

r654902 gsim 2008-05-09 : Patch from Matt Farrellee - support for realms - updates to packagingQPID-648
to create a default db and the necessary conf files for plain and anon

r654907 rhs 2008-05-09 : always notify incoming message queues of session closure andQPID-1045
provide API for notifying listeners of closure; also preserve connection close code
and report in errors

r654913 aconway 2008-05-09 Support for 0-10 sessions, not yet integrated. Misc minor fixes.

r654918 rhs 2008-05-09 and : added a destination attribute to incoming queues, andQPID-1045 QPID-1041
added a start() method to incoming queues as syntactic sugar for the verbose
message flow idiom

r654927 nsantos 2008-05-09 : Qpidc.spec.in is missing dependencies and has misplaced files -QPID-1047
applied patch from Matt Farrellee

r654947 rhs 2008-05-09 : made python client use execution.sync instead of session.flush whenQPID-947
not in auto_sync mode

r655323 rgodfrey 2008-05-11 Updates on the refactoring work

r655326 rgodfrey 2008-05-11 Copy over QPID-925

r655330 rgodfrey 2008-05-11 Copy over QPID-926

r655353 gsim 2008-05-11 : Only wait for enqueue completion for persistent queues.QPID-1048

r655455 gsim 2008-05-12 Script to test federated setup using the topic test.

r655470 aidan 2008-05-12 fix test to avoid potential race condition and general incorrectnessQPID-839 AS: merge
to trunk

r655494 gsim 2008-05-12 Couple of extra simple tests for publishing and consuming in generic fashion.

r655495 gsim 2008-05-12 Extra ignores

https://issues.apache.org/jira/browse/QPID-1042
https://issues.apache.org/jira/browse/QPID-1043
http://svn.apache.org/viewvc/?view=rev&revision=654799
http://svn.apache.org/viewvc/?view=rev&revision=654803
http://svn.apache.org/viewvc/?view=rev&revision=654818
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=654866
http://svn.apache.org/viewvc/?view=rev&revision=654902
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=654907
https://issues.apache.org/jira/browse/QPID-1045
http://svn.apache.org/viewvc/?view=rev&revision=654913
http://svn.apache.org/viewvc/?view=rev&revision=654918
https://issues.apache.org/jira/browse/QPID-1045
https://issues.apache.org/jira/browse/QPID-1041
http://svn.apache.org/viewvc/?view=rev&revision=654927
https://issues.apache.org/jira/browse/QPID-1047
http://svn.apache.org/viewvc/?view=rev&revision=654947
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=655323
http://svn.apache.org/viewvc/?view=rev&revision=655326
https://issues.apache.org/jira/browse/QPID-925
http://svn.apache.org/viewvc/?view=rev&revision=655330
https://issues.apache.org/jira/browse/QPID-926
http://svn.apache.org/viewvc/?view=rev&revision=655353
https://issues.apache.org/jira/browse/QPID-1048
http://svn.apache.org/viewvc/?view=rev&revision=655455
http://svn.apache.org/viewvc/?view=rev&revision=655470
https://issues.apache.org/jira/browse/QPID-839
http://svn.apache.org/viewvc/?view=rev&revision=655494
http://svn.apache.org/viewvc/?view=rev&revision=655495

r655533 rhs 2008-05-12 : added handler for known_completed and generate known_completedQPID-947
when timely-reply is set

r655534 rhs 2008-05-12 : fixed typo in prior commitQPID-947

r655536 rhs 2008-05-12 : removed manual setting of the module.name property as it is setQPID-1037
automatically by the build scripts

r655563 gsim 2008-05-12 : Patch from Ted Ross: 1) Durability for federation linksQPID-1050
(broker-to-broker connections) 2) Improved handling of federation links: a) Links
can be created even if the remote broker is no ...

r655568 gsim 2008-05-12 : Part of patch from Jonathan Robie + changes to verify scripts to keepQPID-1044
automated testing working.

r655585 rhs 2008-05-12 : updated fix for empty payload issue, this change removes stateQPID-1025
transitions that don't consume input bytes

r655596 astitcher 2008-05-12 : Patch from Mick Goulish: Fix program options behavior for BoostQPID-1039
103200

r655597 astitcher 2008-05-12 Fix to allow VPATH builds to work after checkin for QPID-648

r655619 gsim 2008-05-12 : Patch from Ted Ross This patch contains the following: 1) TheQPID-1052
session-id reported by the management API now matches the session.name in the
session table 2) management.py API has a new ca ...

r655630 rgodfrey 2008-05-12 More fixing up of refactoring stuff; getting all maven tests passing and implementing
management methods

r655781 rgodfrey 2008-05-13 Fixed broken exception overriding

r655790 gsim 2008-05-13 Fix macro used in test for backwards compatability.

r655798 rgodfrey 2008-05-13 Changes to MessageStore interface

r655915 nsantos 2008-05-13 : Management: session.name matches session id provided by API,QPID-1052
handling of lost connections - applied patch supplied by Ted Ross

r655923 arnaudsimon 2008-05-13 : Don't use tcp-nodelay as default and set socket buffer size only whenQPID-1006
the corresponding property is set.

Discuss on
list, config
item, more
investigation
required

r655927 rhs 2008-05-13 : updated QpidTestCase to check against broker output to ensure theQPID-1053
broker is actually listening before the test attempts to connect; the text checked for
is controlled by the broker.ready sy ...

r655935 aconway 2008-05-13 Added enum CreditUnit MESSAGE=0, BYTE=1 ;

r655944 gsim 2008-05-13 : Fixed reporting of startup failures in daemon mode.QPID-1054

r655951 rhs 2008-05-13 : use int64 for encoding python both python int and longs; this ensuresQPID-1055
consistent behavior on both 64 bit and non 64 bit systems

r655956 aconway 2008-05-13 Removed confusing broker::Message typedef intrusive_ptr<Message> shared_ptr

r655957 gsim 2008-05-13 Fail with exception if queue is not durable and configured policy is exceeded.

r655964 rhs 2008-05-13 : add a timeout in case the broker is never readyQPID-1053

r655965 aconway 2008-05-13 Fix typo in examples.

r655966 aconway 2008-05-13 Ignore sasldb

r655968 gsim 2008-05-13 Minor change to tests to use correlation id rather than body for identifying
messages.

r655976 rhs 2008-05-13 : added fallbacks and fixes for running the python client on python 2.3QPID-954

r655983 aconway 2008-05-13 Added sync() to ensure all acks are receivd before exiting the Dispatcher loop.

r656004 nsantos 2008-05-13 continuation of QPID-1052

http://svn.apache.org/viewvc/?view=rev&revision=655533
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=655534
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=655536
https://issues.apache.org/jira/browse/QPID-1037
http://svn.apache.org/viewvc/?view=rev&revision=655563
https://issues.apache.org/jira/browse/QPID-1050
http://svn.apache.org/viewvc/?view=rev&revision=655568
https://issues.apache.org/jira/browse/QPID-1044
http://svn.apache.org/viewvc/?view=rev&revision=655585
https://issues.apache.org/jira/browse/QPID-1025
http://svn.apache.org/viewvc/?view=rev&revision=655596
https://issues.apache.org/jira/browse/QPID-1039
http://svn.apache.org/viewvc/?view=rev&revision=655597
https://issues.apache.org/jira/browse/QPID-648
http://svn.apache.org/viewvc/?view=rev&revision=655619
https://issues.apache.org/jira/browse/QPID-1052
http://svn.apache.org/viewvc/?view=rev&revision=655630
http://svn.apache.org/viewvc/?view=rev&revision=655781
http://svn.apache.org/viewvc/?view=rev&revision=655790
http://svn.apache.org/viewvc/?view=rev&revision=655798
http://svn.apache.org/viewvc/?view=rev&revision=655915
https://issues.apache.org/jira/browse/QPID-1052
http://svn.apache.org/viewvc/?view=rev&revision=655923
https://issues.apache.org/jira/browse/QPID-1006
http://svn.apache.org/viewvc/?view=rev&revision=655927
https://issues.apache.org/jira/browse/QPID-1053
http://svn.apache.org/viewvc/?view=rev&revision=655935
http://svn.apache.org/viewvc/?view=rev&revision=655944
https://issues.apache.org/jira/browse/QPID-1054
http://svn.apache.org/viewvc/?view=rev&revision=655951
https://issues.apache.org/jira/browse/QPID-1055
http://svn.apache.org/viewvc/?view=rev&revision=655956
http://svn.apache.org/viewvc/?view=rev&revision=655957
http://svn.apache.org/viewvc/?view=rev&revision=655964
https://issues.apache.org/jira/browse/QPID-1053
http://svn.apache.org/viewvc/?view=rev&revision=655965
http://svn.apache.org/viewvc/?view=rev&revision=655966
http://svn.apache.org/viewvc/?view=rev&revision=655968
http://svn.apache.org/viewvc/?view=rev&revision=655976
https://issues.apache.org/jira/browse/QPID-954
http://svn.apache.org/viewvc/?view=rev&revision=655983
http://svn.apache.org/viewvc/?view=rev&revision=656004
https://issues.apache.org/jira/browse/QPID-1052

r656005 aconway 2008-05-13 From Jonathan Robie: :" title="Visit page outside Confluence"QPID-1056
rel="nofollow"linktype="raw" linktext="https://issues.apache.org/jira/browse/

:"> :" title="Visit page outside Confluence"QPID-1056 QPID-1056
rel="nofollow"linktype="raw" linktext="https://issues.apache.org/jira/browse/

:"> :">https://issues.apache.org/jira/browse/ :QPID-1056 QPID-1056 QPID-1056

Python examples for the xml exchange. " title="Visit page outsideQPID-1057
Confluence" rel="nofollow"linktype="raw"
linktext="https://issues.apache.org/jira/browse/ "> "QPID-1057 QPID-1057
title="Visit page outside Confluence" rel="nofollow"linktype="raw"
linktext="https://issues.apache.org/jira/browse/ ">QPID-1057

">https://issues.apache.org/jira/browse/QPID-1057 QPID-1057

Fixes to the XmlExchange.cpp that preve ...

r656023 gsim 2008-05-13 : Patch from Ted Ross to enable persisting of inter-broker routing entitiesQPID-990

r656071 rajith 2008-05-14 Modified the verify_java_python.in file to reflect the changes made to the python
code in rev 655965. The change was to correct a few typos.

r656255 aconway 2008-05-14 Fixed python/examples/xml-exchange verify script.

r656299 aidan 2008-05-14 add ignore file

r656301 aidan 2008-05-14 Merge branch 'python-mllib' Should
have had
Jira

r656320 aconway 2008-05-14 Fix valgrind problems in VPATH builds.

r656326 aconway 2008-05-14 Exclude XML example checks if XML support is not available.

r656328 aconway 2008-05-14 svn:ignore properties.

r656331 gsim 2008-05-14 Fix for large messages.

r656335 gsim 2008-05-14 Don't fail if python tests aren't found.

r656357 rhs 2008-05-14 : made the ant build report the cummulative success/failure of the testQPID-965
suite

r656369 aconway 2008-05-14 Undo revision 656320, causing build problems.

r656373 aconway 2008-05-14 Exclude XML example if XML not enabled.

r656376 cctrieloff 2008-05-14 Added requires for XML exchange

r656427 aconway 2008-05-14 Fix example check in rpmbuild.

r656443 aconway 2008-05-14 Python tests running in rpmbuild.

r656689 rhs 2008-05-15 added .class files to svn:ignore for common

r656690 rhs 2008-05-15 fixed a typo in 010ExcludeList

r656760 rhs 2008-05-15 : phase 1 of improvements to 0-10 encode/decode; this inlines theQPID-1062
read/write method of structs into generated code resulting in roughly a 2x
improvement

r656766 nsantos 2008-05-15 change ordering of config records in management updates; patch supplied by Ted
Ross

r656849 rgodfrey 2008-05-15 Fixed credit restoration, turned off biased write pool by default, removed unused
lock from queue

r656853 aconway 2008-05-15
Enable python tets and examples in make rpmbuild. - Remove hard-coded
amqp.xml paths from python examples.

r656855 kpvdr 2008-05-15 Patch from michael goulish: : "under Boost 103200, command line argsQPID-1063
with = didn't work"

r656859 aconway 2008-05-15
Remove redundant comments about AMQP_SPEC

r656871 rhs 2008-05-15 : made qpid-config close the session/connection; added incoming.stop()QPID-1064
to cancel incoming messages and join on the listener thread; made
managementBroker.removeChannel use incoming.stop(); mo ...

http://svn.apache.org/viewvc/?view=rev&revision=656005
https://issues.apache.org/jira/browse/QPID-1056
https://issues.apache.org/jira/browse/QPID-1056
https://issues.apache.org/jira/browse/QPID-1056
https://issues.apache.org/jira/browse/QPID-1056
https://issues.apache.org/jira/browse/<a href=
https://issues.apache.org/jira/browse/QPID-1056
https://issues.apache.org/jira/browse/QPID-1057
https://issues.apache.org/jira/browse/QPID-1057
https://issues.apache.org/jira/browse/QPID-1057
https://issues.apache.org/jira/browse/QPID-1057
https://issues.apache.org/jira/browse/<a href=
https://issues.apache.org/jira/browse/QPID-1057
http://svn.apache.org/viewvc/?view=rev&revision=656023
https://issues.apache.org/jira/browse/QPID-990
http://svn.apache.org/viewvc/?view=rev&revision=656071
http://svn.apache.org/viewvc/?view=rev&revision=656255
http://svn.apache.org/viewvc/?view=rev&revision=656299
http://svn.apache.org/viewvc/?view=rev&revision=656301
http://svn.apache.org/viewvc/?view=rev&revision=656320
http://svn.apache.org/viewvc/?view=rev&revision=656326
http://svn.apache.org/viewvc/?view=rev&revision=656328
http://svn.apache.org/viewvc/?view=rev&revision=656331
http://svn.apache.org/viewvc/?view=rev&revision=656335
http://svn.apache.org/viewvc/?view=rev&revision=656357
https://issues.apache.org/jira/browse/QPID-965
http://svn.apache.org/viewvc/?view=rev&revision=656369
http://svn.apache.org/viewvc/?view=rev&revision=656373
http://svn.apache.org/viewvc/?view=rev&revision=656376
http://svn.apache.org/viewvc/?view=rev&revision=656427
http://svn.apache.org/viewvc/?view=rev&revision=656443
http://svn.apache.org/viewvc/?view=rev&revision=656689
http://svn.apache.org/viewvc/?view=rev&revision=656690
http://svn.apache.org/viewvc/?view=rev&revision=656760
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=656766
http://svn.apache.org/viewvc/?view=rev&revision=656849
http://svn.apache.org/viewvc/?view=rev&revision=656853
http://svn.apache.org/viewvc/?view=rev&revision=656855
https://issues.apache.org/jira/browse/QPID-1063
http://svn.apache.org/viewvc/?view=rev&revision=656859
http://svn.apache.org/viewvc/?view=rev&revision=656871
https://issues.apache.org/jira/browse/QPID-1064

r656918 nsantos 2008-05-16 : Management heartbeat message from broker - applied patch suppliedQPID-1061
by Ted Ross

r656920 nsantos 2008-05-16 : Management messages may lost if client attach hits a small timeQPID-1065
window - patch supplied by Ted Ross

r656924 cctrieloff 2008-05-16 by Senaka FernandoQPID-1034

r656926 cctrieloff 2008-05-16 by Senaka Fernando - with a few small editsQPID-1017

Recently Raised JIRAs

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

QPID-1038 Dot Net Client M2.1, M3 (QPID-1038) Blocking I/O in transport
layer leads to poor performance for mixed
sender/producer

Open Aidan
Skinner

Aidan
Skinner

QPID-1039 C++ Broker (QPID-1039) fix program options behavior
for Boost 103200

Closed Unassigned michael
goulish

QPID-1040 C++ Broker M3 (QPID-1040) Asynchronous Protocol
Connector for C++ broker

Closed Andrew
Stitcher

Ted Ross

QPID-1041 Python Client M3 (QPID-1041) Sources and sinks should all
have names (a problem in at least the
Python client)

Open Rafael H.
Schloming

Jonathan
Robie

QPID-1042 C++ Broker M3 (QPID-1042) Record of deliveries not kept
for non-acquired, non-accepted
subscriptions in credit flow mode

Closed Gordon
Sim

Gordon
Sim

QPID-1043 website M3 (QPID-1043) Add page with a clear grid of
protocol support for each qpid component

Open Gordon
Sim

Gordon
Sim

QPID-1044 (QPID-1044) Python examples need
updating for tutorial

Open Unassigned Jonathan
Robie

QPID-1045 Python Client M3 (QPID-1045) incoming message queues
are not always notified of session closure

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1046 Python Client M3 (QPID-1046) Provide easy way to start
incoming message flow

Resolved Rafael H.
Schloming

Justin
Ross

QPID-1047 (QPID-1047) Qpidc.spec.in is missing
dependencies and has misplaced files

Open Unassigned Matthew
Farrellee

QPID-1048 C++ Broker M3 (QPID-1048) Dispatch of durable
message from non-durable queue held up
if message is also enqueued
asynchronously on durable queue

Resolved Gordon
Sim

Gordon
Sim

QPID-1049 Java Broker M2, M2.1 (QPID-1049) Unnecessary WARN level
logging in DestWildExchange

Open Unassigned Martin
Ritchie

QPID-1050 C++ Broker M3 (QPID-1050) Durablilty of federation
config, other miscellaneous fixes

Closed Unassigned Ted Ross

QPID-1051 C++ Client (QPID-1051) The C++ examples contain
some typos and other mistakes that will
confuse users. These are usability errors

Open Alan
Conway

William
Henry

QPID-1052 C++ Broker,
Python Client

M3 (QPID-1052) Management: session.name
matches session id provided by API,
handling of lost connections

Closed Unassigned Ted Ross

QPID-1053 Java Client M3 (QPID-1053) QpidTestCase should use
something smarter than
Thread.sleep(1000) to ensure that an
external broker is listening on the port

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1054 C++ Broker M3 (QPID-1054) Startup failures not reported
when in daemon mode

Resolved Gordon
Sim

Gordon
Sim

QPID-1055 Python Client M3 (QPID-1055) map codec failures on 64 bit
systems

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1056 Python Client (QPID-1056) XML Exchange - Python
example

Resolved Unassigned Jonathan
Robie

http://svn.apache.org/viewvc/?view=rev&revision=656918
https://issues.apache.org/jira/browse/QPID-1061
http://svn.apache.org/viewvc/?view=rev&revision=656920
https://issues.apache.org/jira/browse/QPID-1065
http://svn.apache.org/viewvc/?view=rev&revision=656924
https://issues.apache.org/jira/browse/QPID-1034
http://svn.apache.org/viewvc/?view=rev&revision=656926
https://issues.apache.org/jira/browse/QPID-1017
https://issues.apache.org/jira/browse/QPID-1038
https://issues.apache.org/jira/browse/QPID-1039
https://issues.apache.org/jira/browse/QPID-1040
https://issues.apache.org/jira/browse/QPID-1041
https://issues.apache.org/jira/browse/QPID-1042
https://issues.apache.org/jira/browse/QPID-1043
https://issues.apache.org/jira/browse/QPID-1044
https://issues.apache.org/jira/browse/QPID-1045
https://issues.apache.org/jira/browse/QPID-1046
https://issues.apache.org/jira/browse/QPID-1047
https://issues.apache.org/jira/browse/QPID-1048
https://issues.apache.org/jira/browse/QPID-1049
https://issues.apache.org/jira/browse/QPID-1050
https://issues.apache.org/jira/browse/QPID-1051
https://issues.apache.org/jira/browse/QPID-1052
https://issues.apache.org/jira/browse/QPID-1053
https://issues.apache.org/jira/browse/QPID-1054
https://issues.apache.org/jira/browse/QPID-1055
https://issues.apache.org/jira/browse/QPID-1056

QPID-1057 C++ Broker (QPID-1057) Fix XML Exchange for
Python client (which does not supply an
empty FieldTable if there are no
application message headers)

Resolved Unassigned Jonathan
Robie

QPID-1058 Dot Net Client M2, M2.1 (QPID-1058) Add support for
CRAM-MD5-HASHED as used by Java
Broker

Open Unassigned Martin
Ritchie

QPID-1059 Code
Generator

M3 (QPID-1059) mllib passes absoloute
windows path as URL

Open Aidan
Skinner

Aidan
Skinner

QPID-1060 Java Broker M2.1 (QPID-1060) (Java Broker) OutOfMemory
due to continued reference to
ContentHeaderBody on Persistent
Messages

Open Rob
Godfrey

Rob
Godfrey

QPID-1061 C++ Broker,
Python Client

M3 (QPID-1061) Management heartbeat
message from broker

Closed Unassigned Ted Ross

QPID-1062 Java Client M3 (QPID-1062) improve performance of
0-10 encode/decode

Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1063 C++ Broker (QPID-1063) under Boost 103200,
command line args with "=" didn't work

Open Unassigned michael
goulish

QPID-1064 python tools M3 (QPID-1064) intermittent background
thread stack trace when using qpid-config

Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1065 C++ Broker M3 (QPID-1065) Management messages
may lost if client attach hits a small time
window

Closed Unassigned Ted Ross

QPID-1066 Java Broker M2, M2.1 (QPID-1066) cleanMainQueue call
mistakenly wrapped in isInfoEnabled()

Open Martin
Ritchie

Martin
Ritchie

Qpid Java Meeting Minutes 2008-05-23

Review of Code Commits

revision committer date comment review comments

r657064 aconway 2008-05-16 Make rpmbuild python tests work under old versions of
automake.

r657069 cctrieloff 2008-05-16 by trossQPID-1067

r657088 cctrieloff 2008-05-16 QPID-1067

r657097 rgodfrey 2008-05-16 : Release ref to transient meta data; cacheQPID-1060
message size

r657101 aidan 2008-05-16 Merged revisions 653416 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r653416 - aidan - 2008-05-05 11:24:50 +0100 (Mon, 05
May 2008) - 1 line ...QPID-1

r657106 aidan 2008-05-16 Initialized merge tracking via "svnmerge" with revisions
"651431" from
https://svn.apache.org/repos/asf/incubator/qpid/trunk

r657107 aidan 2008-05-16 Initialized merge tracking via "svnmerge" with revisions
"651431" from
https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid

r657111 aidan 2008-05-16 Merged revisions 657097 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid
........ r657097 - rgodfrey - 2008-05-16 16:08:55 +0100 (Fri, 16
May 2008) - 1 line ...QPID-1

r657112 rhs 2008-05-16 : initialize docstrings for protocol methods from theQPID-947
spec

r657116 aidan 2008-05-16 Merged revisions 657111 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
................ r657111 - aidan - 2008-05-16 16:53:21 +0100 (Fri,
16 May 2008) - 9 lines ...

r657168 aconway 2008-05-16 Added missing log/Logger.h to headers.

https://issues.apache.org/jira/browse/QPID-1057
https://issues.apache.org/jira/browse/QPID-1058
https://issues.apache.org/jira/browse/QPID-1059
https://issues.apache.org/jira/browse/QPID-1060
https://issues.apache.org/jira/browse/QPID-1061
https://issues.apache.org/jira/browse/QPID-1062
https://issues.apache.org/jira/browse/QPID-1063
https://issues.apache.org/jira/browse/QPID-1064
https://issues.apache.org/jira/browse/QPID-1065
https://issues.apache.org/jira/browse/QPID-1066
http://svn.apache.org/viewvc/?view=rev&revision=657064
http://svn.apache.org/viewvc/?view=rev&revision=657069
https://issues.apache.org/jira/browse/QPID-1067
http://svn.apache.org/viewvc/?view=rev&revision=657088
https://issues.apache.org/jira/browse/QPID-1067
http://svn.apache.org/viewvc/?view=rev&revision=657097
https://issues.apache.org/jira/browse/QPID-1060
http://svn.apache.org/viewvc/?view=rev&revision=657101
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
https://issues.apache.org/jira/browse/QPID-1
http://svn.apache.org/viewvc/?view=rev&revision=657106
https://svn.apache.org/repos/asf/incubator/qpid/trunk
http://svn.apache.org/viewvc/?view=rev&revision=657107
https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid
http://svn.apache.org/viewvc/?view=rev&revision=657111
https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid
https://issues.apache.org/jira/browse/QPID-1
http://svn.apache.org/viewvc/?view=rev&revision=657112
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=657116
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=657168

r657191 rhs 2008-05-16 : restrict docstring initialization to recent pythonQPID-947
versions

r657820 tross 2008-05-19 QPID-1071

r657827 rgodfrey 2008-05-19 Refactoring perf. tweaks

r657859 ritchiem 2008-05-19 : Removed isInfo wrapping. Added test that isQPID-1066
missing from trunk from M2.x QueueDepthSelectorTest.

r657974 tross 2008-05-19 QPID-1073

r658166 ritchiem 2008-05-20 Merged revisions 657859 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid
........ r657859 - ritchiem - 2008-05-19 17:54:06 +0100 (Mon,
19 May 2008) - 1 line ...QPID-1

r658175 ritchiem 2008-05-20 Merged revisions 658166 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
................ r658166 - ritchiem - 2008-05-20 09:37:33 +0100
(Tue, 20 May 2008) - 9 lines ...

r658246 aconway 2008-05-20 Support for AMQP 0-10 sessions in C++ broker.

r658278 ritchiem 2008-05-20 Merged revisions 648740 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r648740 - ritchiem - 2008-04-16 17:29:07 +0100 (Wed,
16 Apr 2008) - 1 line QPI ...

r658403 aconway 2008-05-20 Fix build error.

r658614 rgodfrey 2008-05-21 : Fix AMQSession race condition on no-ack flowQPID-1084
control

r658689 arnaudsimon 2008-05-21 : changed session.flush confirmed to do the sameQPID-1086
than for session.flush completed

r658816 aconway 2008-05-21 Replaced AtomicCount with AtomicValue template. Uses gcc
atomics for gcc on i686/x86_64, falls back to mutex otherwise.

r658849 aconway 2008-05-21 Added check to exclude old gcc compilers for atomic ops.

r658886 tross 2008-05-21 QPID-1087

r659083 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase

DupsOKTest: should also check
that all messages have arrived! If
timeout expires it should fail.

Is QpidTestCase not clearing
application registry between
tests: Martin to raise

r659101 aidan 2008-05-22 Add more files

r659105 aidan 2008-05-22 : If an error occurs creating a durable subscriberQPID-1085
with a selector delete the queue that was created.

0-10 : makes the client blow as
the queue doesn;t exist. Also
how is delete sent when channel
should already be closed. Also
why almost duplicated code for
createDurableSubscription
between 0-8 and 0-10.
broker appears to be processing
queue delete on a closed
channel?! - Raise JIRA

queue delete cannot be issued
after failure because channel
should be closed!

r659110 tross 2008-05-22 QPID-1088

r659127 aconway 2008-05-22 Improved logging for session state.

r659139 aconway 2008-05-22 Improved logging for session state - show incomplete
commands on receive-completed.

http://svn.apache.org/viewvc/?view=rev&revision=657191
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=657820
https://issues.apache.org/jira/browse/QPID-1071
http://svn.apache.org/viewvc/?view=rev&revision=657827
http://svn.apache.org/viewvc/?view=rev&revision=657859
https://issues.apache.org/jira/browse/QPID-1066
http://svn.apache.org/viewvc/?view=rev&revision=657974
https://issues.apache.org/jira/browse/QPID-1073
http://svn.apache.org/viewvc/?view=rev&revision=658166
https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid
https://issues.apache.org/jira/browse/QPID-1
http://svn.apache.org/viewvc/?view=rev&revision=658175
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=658246
http://svn.apache.org/viewvc/?view=rev&revision=658278
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=658403
http://svn.apache.org/viewvc/?view=rev&revision=658614
https://issues.apache.org/jira/browse/QPID-1084
http://svn.apache.org/viewvc/?view=rev&revision=658689
https://issues.apache.org/jira/browse/QPID-1086
http://svn.apache.org/viewvc/?view=rev&revision=658816
http://svn.apache.org/viewvc/?view=rev&revision=658849
http://svn.apache.org/viewvc/?view=rev&revision=658886
https://issues.apache.org/jira/browse/QPID-1087
http://svn.apache.org/viewvc/?view=rev&revision=659083
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659101
http://svn.apache.org/viewvc/?view=rev&revision=659105
https://issues.apache.org/jira/browse/QPID-1085
http://svn.apache.org/viewvc/?view=rev&revision=659110
https://issues.apache.org/jira/browse/QPID-1088
http://svn.apache.org/viewvc/?view=rev&revision=659127
http://svn.apache.org/viewvc/?view=rev&revision=659139

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase + move QpidTestCase in main so it is visible
form systests

Remove
amqj.AutoCreateVMBroker
Investigate if tests aren't working
on trunk without this setting
Remove VMTestCase? Remove
all classes that were no longer
referenced (VMBrokerSetup)
RECEIVE_TIMEOUT : get rid of
and use configurable timeout
when available
 move kills to base case

r659165 arnaudsimon 2008-05-22 : Updated TTLTest to use QpidTestCaseQPID-1079

r659186 tross 2008-05-22 Forbid broker to route to self, default to localhost when not
specified

r659262 arnaudsimon 2008-05-22 : added junit dep to client as it's not includedQPID-1079
within all environments (for example on RHEL-4)

Should move QpidTestCase into
common base package; not in
client.

r659271 rhs 2008-05-22 Made Range, RangeSet, and Session all use proper
RFC1982 comparisons per . Also switchedQPID-861
command ids from long -> int, and added a mutex to channel
to prevent multi-frame commands from interle ...

Use .intValue() not (int) (long)

r659477 arnaudsimon 2008-05-23 : Changed to use coountdownlatchQPID-1089

Recently Raised JIRAs

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter

QPID-1061 C++ Broker,
Python Client

M3 (QPID-1061) Management heartbeat message from broker Closed Unassigned Ted Ross

QPID-1062 Java Client M3 (QPID-1062) improve performance of 0-10 encode/decode Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1063 C++ Broker (QPID-1063) under Boost 103200, command line args with
"=" didn't work

Open Unassigned michael
goulish

QPID-1064 python tools M3 (QPID-1064) intermittent background thread stack trace when
using qpid-config

Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1065 C++ Broker M3 (QPID-1065) Management messages may lost if client attach
hits a small time window

Closed Unassigned Ted Ross

QPID-1066 Java Broker M2, M2.1 (QPID-1066) cleanMainQueue call mistakenly wrapped in
isInfoEnabled()

Resolved Martin
Ritchie

Martin
Ritchie

QPID-1067 C++ Broker M3 (QPID-1067) Minor improvements/fixes for command line
utilities

Closed Unassigned Ted Ross

QPID-1068 C++ Broker,
C++ Client

M3 (QPID-1068) C++ configure fails if help2man not present Open Andrew
Stitcher

Steve
Huston

QPID-1069 C++ Broker,
C++ Client

M3 (QPID-1069) Patch to build trunk with Boost 1.35 Open Andrew
Stitcher

Steve
Huston

QPID-1070 C++ Broker,
C++ Client

M3 (QPID-1070) Patch to allow configure options to set Boost
header and lib locations

Closed Andrew
Stitcher

Steve
Huston

QPID-1071 C++ Broker M3 (QPID-1071) Publish interval for management can be set to
zero

Resolved Ted Ross Ted Ross

QPID-1072 Java Client,
Java Common

M3 (QPID-1072) org.apache.qpidity packages should be moved
under org.apache.qpid

Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1073 C++ Broker M3 (QPID-1073) Broker deadlock in management code Resolved Ted Ross Ted Ross

QPID-1074 Java Broker (QPID-1074) Log Configuration Watcher in Java Broker halts
on invalid log4j.xml

Open Unassigned Senaka
Fernando

QPID-1075 Java Broker (QPID-1075) README on Java Broker Open Unassigned Senaka
Fernando

QPID-1076 Java Broker M3 (QPID-1076) Cannot run Java Broker built on cygwin from
trunk release due to qpid-run format issue

Open Marnie
McCormack

Marnie
McCormack

http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659165
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659186
http://svn.apache.org/viewvc/?view=rev&revision=659262
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659271
https://issues.apache.org/jira/browse/QPID-861
http://svn.apache.org/viewvc/?view=rev&revision=659477
https://issues.apache.org/jira/browse/QPID-1089
https://issues.apache.org/jira/browse/QPID-1061
https://issues.apache.org/jira/browse/QPID-1062
https://issues.apache.org/jira/browse/QPID-1063
https://issues.apache.org/jira/browse/QPID-1064
https://issues.apache.org/jira/browse/QPID-1065
https://issues.apache.org/jira/browse/QPID-1066
https://issues.apache.org/jira/browse/QPID-1067
https://issues.apache.org/jira/browse/QPID-1068
https://issues.apache.org/jira/browse/QPID-1069
https://issues.apache.org/jira/browse/QPID-1070
https://issues.apache.org/jira/browse/QPID-1071
https://issues.apache.org/jira/browse/QPID-1072
https://issues.apache.org/jira/browse/QPID-1073
https://issues.apache.org/jira/browse/QPID-1074
https://issues.apache.org/jira/browse/QPID-1075
https://issues.apache.org/jira/browse/QPID-1076

QPID-1077 Ant Build
System

M3 (QPID-1077) Permissions incorrect on bin directory on trunk
release

Open Unassigned Marnie
McCormack

QPID-1078 Ant Build
System

M3 (QPID-1078) Ant generated qpid-incubating.jar has the wrong
paths

Open Rafael H.
Schloming

Aidan
Skinner

QPID-1079 Java Tests M3 (QPID-1079) Tests from Systests module should extend
QpidTestCase

Open Arnaud
Simon

Arnaud
Simon

QPID-1080 Java Broker,
Java Client

M3 (QPID-1080) (0.8 code path)
org.apache.qpid.test.unit.topic.TopicSessionTest#testNoLocal
intermittently failing

Open Unassigned Arnaud
Simon

QPID-1081 Java Client M3 (QPID-1081)
org.apache.qpid.test.client.QueueBrowserAutoAckTest and
org.apache.qpid.test.client.QueueBrowserNoAckTest are
intermittently failing

Open Unassigned Arnaud
Simon

QPID-1082 Java Tests M3 (QPID-1082) Add test case to ensure that config of
housekeeping.expiredMessageCheckPeriod to 0 disables
housekeeping process

Open Aidan
Skinner

Aidan
Skinner

QPID-1083 (QPID-1083) Qpid Messaging Tutorial Open Unassigned Jonathan
Robie

QPID-1084 Java Client M2, M2.1,
M3

(QPID-1084) (Java Client) Race condition suspending
channel in no-ack flow control situations

Open Rob
Godfrey

Rob
Godfrey

QPID-1085 Java Broker M3 (QPID-1085) Creating an invalid subscriber with a durable
subscription still creates the subscription

Open Aidan
Skinner

Aidan
Skinner

QPID-1086 Java Client M3 (QPID-1086) (01.0 dode path) Client does not implement
session.flush confirmed

Resolved Unassigned Arnaud
Simon

QPID-1087 C++ Broker M3 (QPID-1087) Improvements to inter-broker federation Closed Ted Ross Ted Ross

QPID-1088 C++ Broker M3 (QPID-1088) Locking cleanup for management objects Open Ted Ross Ted Ross

QPID-1089 Java Tests M3 (QPID-1089) Test FieldTableMessageTest and
TextMessageTest may hang

Resolved Arnaud
Simon

Arnaud
Simon

Qpid Java Meeting Minutes 2008-05-30

Attendees

Agenda

Use of MINA Protect-I/O mode as default
Commits review
JIRA Review

Outstanding actions

revision committer date comment review comments

r659105 aidan 2008-05-22 : If an error occurs creating a durableQPID-1085
subscriber with a selector delete the queue that
was created.

0-10 : makes the client blow as the queue
doesn;t exist. Also how is delete sent when
channel should already be closed. Also why
almost duplicated code for
createDurableSubscription between 0-8 and
0-10.
broker appears to be processing queue delete
on a closed channel?! - Raise JIRA

queue delete cannot be issued after failure
because channel should be closed!

https://issues.apache.org/jira/browse/QPID-1077
https://issues.apache.org/jira/browse/QPID-1078
https://issues.apache.org/jira/browse/QPID-1079
https://issues.apache.org/jira/browse/QPID-1080
https://issues.apache.org/jira/browse/QPID-1081
https://issues.apache.org/jira/browse/QPID-1082
https://issues.apache.org/jira/browse/QPID-1083
https://issues.apache.org/jira/browse/QPID-1084
https://issues.apache.org/jira/browse/QPID-1085
https://issues.apache.org/jira/browse/QPID-1086
https://issues.apache.org/jira/browse/QPID-1087
https://issues.apache.org/jira/browse/QPID-1088
https://issues.apache.org/jira/browse/QPID-1089
http://svn.apache.org/viewvc/?view=rev&revision=659105
https://issues.apache.org/jira/browse/QPID-1085

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase + move QpidTestCase in main so
it is visible form systests

Remove amqj.AutoCreateVMBroker
Investigate if tests aren't working on trunk
without this setting
Remove VMTestCase? Remove all classes
that were no longer referenced
(VMBrokerSetup)
RECEIVE_TIMEOUT : get rid of and use
configurable timeout when available
 move kills to base case

r659262 arnaudsimon 2008-05-22 : added junit dep to client as it's notQPID-1079
included within all environments (for example on
RHEL-4)

Should move QpidTestCase into common
base package; not in client.

r659271 rhs 2008-05-22 Made Range, RangeSet, and Session all use
proper RFC1982 comparisons per .QPID-861
Also switched command ids from long -> int, and
added a mutex to channel to prevent multi-frame
commands from interle ...

Use .intValue() not (int) (long)

r659631 rhs 2008-05-23 : Track and report session exceptions,QPID-901
modified generator validate values before trying
to encode them. Also, moved
createDurableSubscriber from
AMQSession_0_10 -> AMQSession.

r659647 rhs 2008-05-23 : Switched over to using proper RFCQPID-947
1982 serial numbers.

r659650 rhs 2008-05-23 : only set the listeners to None QPID-1064 after
the thread has stopped

r659671 rhs 2008-05-23 : added codec and tests for array andQPID-947
list types

r659673 rhs 2008-05-23 : added test for nested listsQPID-947

Outstanding actions need to be carried forward in future

Use of Protect-I/O mode as default

Needs more testing before it is set as default in release, decision to be taken on list.

Review of Code Commits

revision committer date comment

r659535 tross 2008-05-23 qpid-tool fixed to cleanly handle brokers with management disabled

r659538 aconway 2008-05-23 qpid::SessionState: Added error checking for invalid frame
sequences. client: Fix client crash on error during connection
shutdown.

r659631 rhs 2008-05-23 : Track and report session exceptions, modified generatorQPID-901
validate values before trying to encode them. Also, moved
createDurableSubscriber from AMQSession_0_10 -> AMQSession.

r659647 rhs 2008-05-23 : Switched over to using proper RFC 1982 serial numbers.QPID-947

r659650 rhs 2008-05-23 : only set the listeners to None the thread hasQPID-1064 after
stopped

r659663 aconway 2008-05-23 Delete obsolete Channel class.

r659671 rhs 2008-05-23 : added codec and tests for array and list typesQPID-947

r659673 rhs 2008-05-23 : added test for nested listsQPID-947

r660173 aconway 2008-05-26 Fix compile error in examples.

r660254 rajith 2008-05-26 I am applying the patch provided by Senaka attached to QPID-968
We need to get rid of the defaults that points to rhm.

r660258 aconway 2008-05-26 Changes to Session API: - Session is synchronous, no futures. -
AsyncSession is async, returns futures. - Conversion functions
sync(s) async(s) return a sync/async view of session s. - Connection
...

r660265 aconway 2008-05-26 Corrected examples for new session API.

http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659262
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659271
https://issues.apache.org/jira/browse/QPID-861
http://svn.apache.org/viewvc/?view=rev&revision=659631
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=659647
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659650
https://issues.apache.org/jira/browse/QPID-1064
http://svn.apache.org/viewvc/?view=rev&revision=659671
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659673
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659535
http://svn.apache.org/viewvc/?view=rev&revision=659538
http://svn.apache.org/viewvc/?view=rev&revision=659631
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=659647
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659650
https://issues.apache.org/jira/browse/QPID-1064
http://svn.apache.org/viewvc/?view=rev&revision=659663
http://svn.apache.org/viewvc/?view=rev&revision=659671
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659673
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=660173
http://svn.apache.org/viewvc/?view=rev&revision=660254
https://issues.apache.org/jira/browse/QPID-968
http://svn.apache.org/viewvc/?view=rev&revision=660258
http://svn.apache.org/viewvc/?view=rev&revision=660265

r660302 aconway 2008-05-26 Speculative "fix" for solaris compile errors discussed on qpid-dev.

r660304 aconway 2008-05-26 Removed BOOST_REQUIRE_EQUAL, not available in older
boost.test.

r660320 aconway 2008-05-26 Fixed intermittent leak of client::Connector thread.

r660324 aconway 2008-05-26 Make help2man and doxygen dependencies optional.

r660490 rgodfrey 2008-05-27 Refactoring updates (job queue changes, enqueue collections..)

r660494 rgodfrey 2008-05-27 Missed one...

r660546 gsim 2008-05-27 Added some comments to the various connection settings.

r660562 aconway 2008-05-27 Additional API documentation around sync vs. async sessions.

r660568 aconway 2008-05-27 Copy valgrind support files in a VPATH builds.

r660616 aconway 2008-05-27 Generate code in $builddir to allow multiple VPATH builds.

r660619 aconway 2008-05-27 VPATH fix

r660625 aconway 2008-05-27 Use symbolic constants for message flow values.

r660643 aconway 2008-05-27 Tighten up sync-correctness in SubscriptionManager & Dispatcher.
Add a flush to SessionBase_0_10::sync() so it syncs in both
directions.

r660647 aconway 2008-05-27 Fixed error in RangeSet, caused compile failure on Solaris.

r660715 aconway 2008-05-27 Removed obsolete src/qpid/client/SessionImpl.h .cpp

r660886 gsim 2008-05-28 Fixes to binding of member functions as raised on qpid list by Manuel
Teira.

r660911 arnaudsimon 2008-05-28 : Implement XA resource exception handling and addQPID-1094
corresponding tests

r660922 arnaudsimon 2008-05-28 : Those changes have been suggested by LanaQPID-1097 Needs more detail, who is
Lana?

r660924 gsim 2008-05-28 : fixes to dtx error codes for latest spec changes.QPID-1095

r660952 gsim 2008-05-28 : another error code correctionQPID-1095

r660953 gsim 2008-05-28 : correction to queue query when queue is not knownQPID-1098

r660966 aidan 2008-05-28 Add tests for publishing several messages transactionallyQPID-1099
and consuming them in an OnMessage handler

r660973 arnaudsimon 2008-05-28 and : Updated XaResource for handlingQPID-1094 QPID-1095
wrong flag value, updated xa tests for using correct flag values,
excluded forget test as the current 0.10 broker does not implement
forget.

r660981 gsim 2008-05-28 Improve latency test tool to allow lower rates.

r661000 gsim 2008-05-28 Updated some 'todo' comments with clearer text.

r661267 arnaudsimon 2008-05-29 : added finally close for cleaning potential indoubt txQPID-1094

r661286 rgodfrey 2008-05-29
Avoid NPEs

r661287 rgodfrey 2008-05-29 Deliver async per subscription; not queue

r661296 rgodfrey 2008-05-29 tidy up

r661302 gsim 2008-05-29 Only record frames for replay if timeout is non-zero.

r661309 gsim 2008-05-29 Move AckPolicy impl from header to .cpp; ensure that completion is
marked even when auto-acking is turned off.

r661323 gsim 2008-05-29 Correct declarations to be the same as definitions.

r661324 rgodfrey 2008-05-29 Temp fix out of order issue with async(sub)

r661325 rgodfrey 2008-05-29 Made subscription sendLock straight lock, re-enabled per
subscription async delivery

r661326 rgodfrey 2008-05-29 Fix SubscriptionTestHelper

http://svn.apache.org/viewvc/?view=rev&revision=660302
http://svn.apache.org/viewvc/?view=rev&revision=660304
http://svn.apache.org/viewvc/?view=rev&revision=660320
http://svn.apache.org/viewvc/?view=rev&revision=660324
http://svn.apache.org/viewvc/?view=rev&revision=660490
http://svn.apache.org/viewvc/?view=rev&revision=660494
http://svn.apache.org/viewvc/?view=rev&revision=660546
http://svn.apache.org/viewvc/?view=rev&revision=660562
http://svn.apache.org/viewvc/?view=rev&revision=660568
http://svn.apache.org/viewvc/?view=rev&revision=660616
http://svn.apache.org/viewvc/?view=rev&revision=660619
http://svn.apache.org/viewvc/?view=rev&revision=660625
http://svn.apache.org/viewvc/?view=rev&revision=660643
http://svn.apache.org/viewvc/?view=rev&revision=660647
http://svn.apache.org/viewvc/?view=rev&revision=660715
http://svn.apache.org/viewvc/?view=rev&revision=660886
http://svn.apache.org/viewvc/?view=rev&revision=660911
https://issues.apache.org/jira/browse/QPID-1094
http://svn.apache.org/viewvc/?view=rev&revision=660922
https://issues.apache.org/jira/browse/QPID-1097
http://svn.apache.org/viewvc/?view=rev&revision=660924
https://issues.apache.org/jira/browse/QPID-1095
http://svn.apache.org/viewvc/?view=rev&revision=660952
https://issues.apache.org/jira/browse/QPID-1095
http://svn.apache.org/viewvc/?view=rev&revision=660953
https://issues.apache.org/jira/browse/QPID-1098
http://svn.apache.org/viewvc/?view=rev&revision=660966
https://issues.apache.org/jira/browse/QPID-1099
http://svn.apache.org/viewvc/?view=rev&revision=660973
https://issues.apache.org/jira/browse/QPID-1094
https://issues.apache.org/jira/browse/QPID-1095
http://svn.apache.org/viewvc/?view=rev&revision=660981
http://svn.apache.org/viewvc/?view=rev&revision=661000
http://svn.apache.org/viewvc/?view=rev&revision=661267
https://issues.apache.org/jira/browse/QPID-1094
http://svn.apache.org/viewvc/?view=rev&revision=661286
http://svn.apache.org/viewvc/?view=rev&revision=661287
http://svn.apache.org/viewvc/?view=rev&revision=661296
http://svn.apache.org/viewvc/?view=rev&revision=661302
http://svn.apache.org/viewvc/?view=rev&revision=661309
http://svn.apache.org/viewvc/?view=rev&revision=661323
http://svn.apache.org/viewvc/?view=rev&revision=661324
http://svn.apache.org/viewvc/?view=rev&revision=661325
http://svn.apache.org/viewvc/?view=rev&revision=661326

r661395 rgodfrey 2008-05-29 Comments and changes from review

r661405 rgodfrey 2008-05-29 fix browser behaviour on deliverAsync(sub)

r661445 aconway 2008-05-29 Packaing error - SessionId.h

r661455 cctrieloff 2008-05-29 Performnace fix, improves 6-8% on high core count machines.

r661483 tross 2008-05-29 crash when config file contains commented-outQPID-1100
commands (patch from michael goulish)

r661561 rajith 2008-05-30 This check in is for . IoHandler and IoSender uses theQPID-1102
java.io classes for IO operations and have shown very good
improvement in latency and memory usage over MINA. For certain
tests with pub ...

Should use configuration
and be more configurable.
Narrow catch Exception
clause.

r661587 gsim 2008-05-30 Convert remaining cppunit tests to boost test framework to reduce
dependencies.

r661633 arnaudsimon 2008-05-30 : changed prop nameQPID-754

Review of Recently Raised JIRAs

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

QPID-1090 C++ Broker M3 (QPID-1090) Removed pid storage for
daemon mode - rely on external
mechanisms

In
Progress

Ted Ross Ted Ross

QPID-1091 Java Tests M3 (QPID-1091) QpidTestCase does not
clean up the InVM Broker after each
test.

Open Unassigned Martin
Ritchie

MR to raise
Jira to
clean
message
stores
between
test runs

QPID-1092 Java Client M2, M2.1 (QPID-1092)
JMSObjectMessage.toBodyString
corrupts the ByteBuffer if the data is not
a String

Open Unassigned Martin
Ritchie

MR to
assign to
M3 as well

QPID-1093 Java Broker M2.1 (QPID-1093) (Java Broker) Meta data
not found when registering a consumer
using a selectors

Open Unassigned Rob
Godfrey

QPID-1094 Java Client M3 (QPID-1094) xaResource does not
correctly handle exceptions

Open Arnaud
Simon

Arnaud
Simon

QPID-1095 C++ Broker M3 (QPID-1095) dtx class does not fail with
expected error codes

Closed Gordon
Sim

Arnaud
Simon

QPID-1096 C++ Broker M3 (QPID-1096) Exception codes for dtx
need to be updated in line with final
0-10 spec

Open Gordon
Sim

Gordon
Sim

QPID-1097 Java Client M3 (QPID-1097) Need to improve 0.10
interface javadoc

Open Arnaud
Simon

Arnaud
Simon

QPID-1098 C++ Broker M3 (QPID-1098) Final 0-10 specification
reqiures empty struct to be returned if
queried queue is not found

Resolved Gordon
Sim

Gordon
Sim

QPID-1099 Dot Net Client M3 (QPID-1099) Add tests for checking
transactional message consumption
using OnMessage

Open Aidan
Skinner

Aidan
Skinner

QPID-1100 C++ Broker M3 (QPID-1100) crash when config file
contains commented-out commands.

Open Ted Ross michael
goulish

QPID-1101 Java Broker M2, M2.1 (QPID-1101) DestWildExchange uses
shallow copy of queues for routing,
causing routing to fail if queueDeleted.

Open Unassigned Martin
Ritchie

QPID-1102 C++ Client M3 (QPID-1102) A new java.io based
blocking transport for client

Open Rajith
Attapattu

Rajith
Attapattu

Java client
component,
should be
resolved.

http://svn.apache.org/viewvc/?view=rev&revision=661395
http://svn.apache.org/viewvc/?view=rev&revision=661405
http://svn.apache.org/viewvc/?view=rev&revision=661445
http://svn.apache.org/viewvc/?view=rev&revision=661455
http://svn.apache.org/viewvc/?view=rev&revision=661483
https://issues.apache.org/jira/browse/QPID-1100
http://svn.apache.org/viewvc/?view=rev&revision=661561
https://issues.apache.org/jira/browse/QPID-1102
http://svn.apache.org/viewvc/?view=rev&revision=661587
http://svn.apache.org/viewvc/?view=rev&revision=661633
https://issues.apache.org/jira/browse/QPID-754
https://issues.apache.org/jira/browse/QPID-1090
https://issues.apache.org/jira/browse/QPID-1091
https://issues.apache.org/jira/browse/QPID-1092
https://issues.apache.org/jira/browse/QPID-1093
https://issues.apache.org/jira/browse/QPID-1094
https://issues.apache.org/jira/browse/QPID-1095
https://issues.apache.org/jira/browse/QPID-1096
https://issues.apache.org/jira/browse/QPID-1097
https://issues.apache.org/jira/browse/QPID-1098
https://issues.apache.org/jira/browse/QPID-1099
https://issues.apache.org/jira/browse/QPID-1100
https://issues.apache.org/jira/browse/QPID-1101
https://issues.apache.org/jira/browse/QPID-1102

QPID-1103 Java Tests (QPID-1103) Add ability to provide a
configuration file for broker start up in
java test suite

Open Martin
Ritchie

Martin
Ritchie

QPID-1104 Dot Net Client M2.1 (QPID-1104) (.Net) Allow
acknowledgement of a single message

Open Unassigned Marnie
McCormack

QPID-1105 C++ Broker,
C++ Client,
Code
Generator

M3 (QPID-1105) Patches and additions to
port to Windows

Open Unassigned Steve
Huston

QPID-1106 M3 (QPID-1106) Make message
acknowledgment synchronous

Open Unassigned Arnaud
Simon

Needs
component.

Qpid Java Meeting Minutes 2008-06-20
Outstanding actions
Use of MINA Protect-I/O mode as default
Commits review
JIRA Review

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for using QpidTestCase +QPID-1079
move QpidTestCase in main so it is visible form systests

Remove
amqj.AutoCreateVMBroker
Investigate if tests aren't
working on trunk without this
setting
Remove VMTestCase?
Remove all classes that
were no longer referenced
(VMBrokerSetup)
RECEIVE_TIMEOUT : get
rid of and use configurable
timeout when available
 move kills to base case

r659262 arnaudsimon 2008-05-22 : added junit dep to client as it's not included within allQPID-1079
environments (for example on RHEL-4)

Should move QpidTestCase
into common base package;
not in client.

r659271 rhs 2008-05-22 Made Range, RangeSet, and Session all use proper RFC1982
comparisons per . Also switched command ids from longQPID-861
-> int, and added a mutex to channel to prevent multi-frame
commands from interle ...

Use .intValue() not (int)
(long)

r659631 rhs 2008-05-23 : Track and report session exceptions, modifiedQPID-901
generator validate values before trying to encode them. Also,
moved createDurableSubscriber from AMQSession_0_10 ->
AMQSession.

r659647 rhs 2008-05-23 : Switched over to using proper RFC 1982 serialQPID-947
numbers.

r659650 rhs 2008-05-23 : only set the listeners to None the thread hasQPID-1064 after
stopped

r659671 rhs 2008-05-23 : added codec and tests for array and list typesQPID-947

r659673 rhs 2008-05-23 : added test for nested listsQPID-947

r661561 rajith 2008-05-30 This check in is for . IoHandler and IoSender uses theQPID-1102
java.io classes for IO operations and have shown very good
improvement in latency and memory usage over MINA. For certain
tests with pub ...

Should use configuration
and be more configurable.
Narrow catch Exception
clause.

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early for immediateQPID-1144
messages in a txn

revision committer date comment Review Comments

https://issues.apache.org/jira/browse/QPID-1103
https://issues.apache.org/jira/browse/QPID-1104
https://issues.apache.org/jira/browse/QPID-1105
https://issues.apache.org/jira/browse/QPID-1106
http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659262
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659271
https://issues.apache.org/jira/browse/QPID-861
http://svn.apache.org/viewvc/?view=rev&revision=659631
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=659647
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659650
https://issues.apache.org/jira/browse/QPID-1064
http://svn.apache.org/viewvc/?view=rev&revision=659671
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659673
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=661561
https://issues.apache.org/jira/browse/QPID-1102
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144

r661698 gsim 2008-05-30 Add short sleep before killing python server to ensure it has
had a chance to send the message acknowledgement.

r661730 gsim 2008-05-30 Removed redundant flush request.

r661739 ritchiem 2008-05-30 :Changed VMTestCase to allow the creation ofQPID-1103
InVM brokers based on a configuration file. Updated
ApplicationRegistry as it was not correctly utilising the set
configuration and always using ...

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deepQPID-1101
copy.

Needs test

r662310 aconway 2008-06-02 Use InlineVector for AMQFrame, reduces heap allocations by
13%.

r662373 gsim 2008-06-02 Minor updates to tests: * sync on commit in transactional topic
test * disable loading of modules from automated test to
preserve isolation * update federated topic test script in line
with command li ...

r662390 gsim 2008-06-02 disable use of module-dir when running examples

r662397 arnaudsimon 2008-06-02 : use pre-acquire mode when message selector isQPID-1110
the empty string

r662461 aconway 2008-06-02 Fix compiler warning with gcc 4.3

r662467 ritchiem 2008-06-02 Merged revisions 661739-661746 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r661739 - ritchiem - 2008-05-30 15:42:38 +0100 (Fri, 30
May 2008) - 1 line ...

r662470 tross 2008-06-02 Management cleanup and performanceQPID-1113
enhancements

r662472 aconway 2008-06-02 Backed out previous fix compiler for warning, it fails with boost
1.33. Will seek a fix that works for all versions.

r662490 tross 2008-06-02 Fixed dereference of null pointer

r662497 aconway 2008-06-02 Fix that works on 1.33/gcc4.1 up to boost 1.34.13/gcc 4.3

r662503 aidan 2008-06-02 Remove old doc

r662505 aidan 2008-06-02 Move to documentation directory

r662506 aidan 2008-06-02 Remove stuff thats been moved

r662507 aidan 2008-06-02 Add generated forrest structure

r662508 aidan 2008-06-02 Move to proper location

r662558 aconway 2008-06-02 Added --syslog-name, --syslog-facility options.

r662561 gsim 2008-06-02 Improve performance of synchronous publication by not
requesting known-completed response for every completed
sent.

r662570 tross 2008-06-02 Daemon mode improvementsQPID-1114

r662581 aconway 2008-06-02 Separate option parsing from qpid::client::ClientSettings.

r662588 tross 2008-06-02 Added byteDepth back into Queue managment class

r662592 tross 2008-06-02 Queue stats: byteDepth now computed periodically

r662613 cctrieloff 2008-06-03 patch from Manuel TeiraQPID-1108

r662665 arnaudsimon 2008-06-03 : Added sessionCompleted support and changedQPID-1112
onMessage for invoking sessionCompleted when all expected
messages have been received.

r662675 gsim 2008-06-03 Move ConnectionOptions into qpid::client.

r662681 gsim 2008-06-03 Reverted move of ConnectionOptions (without the parse
functionality they aren't off much use). Corrected include in
ConnectionOptions.h

r662700 gsim 2008-06-03 Add ConnectionOptions.h to sources for each test program.

r662701 gsim 2008-06-03 Fixed typo in options.

http://svn.apache.org/viewvc/?view=rev&revision=661698
http://svn.apache.org/viewvc/?view=rev&revision=661730
http://svn.apache.org/viewvc/?view=rev&revision=661739
https://issues.apache.org/jira/browse/QPID-1103
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662310
http://svn.apache.org/viewvc/?view=rev&revision=662373
http://svn.apache.org/viewvc/?view=rev&revision=662390
http://svn.apache.org/viewvc/?view=rev&revision=662397
https://issues.apache.org/jira/browse/QPID-1110
http://svn.apache.org/viewvc/?view=rev&revision=662461
http://svn.apache.org/viewvc/?view=rev&revision=662467
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=662470
https://issues.apache.org/jira/browse/QPID-1113
http://svn.apache.org/viewvc/?view=rev&revision=662472
http://svn.apache.org/viewvc/?view=rev&revision=662490
http://svn.apache.org/viewvc/?view=rev&revision=662497
http://svn.apache.org/viewvc/?view=rev&revision=662503
http://svn.apache.org/viewvc/?view=rev&revision=662505
http://svn.apache.org/viewvc/?view=rev&revision=662506
http://svn.apache.org/viewvc/?view=rev&revision=662507
http://svn.apache.org/viewvc/?view=rev&revision=662508
http://svn.apache.org/viewvc/?view=rev&revision=662558
http://svn.apache.org/viewvc/?view=rev&revision=662561
http://svn.apache.org/viewvc/?view=rev&revision=662570
https://issues.apache.org/jira/browse/QPID-1114
http://svn.apache.org/viewvc/?view=rev&revision=662581
http://svn.apache.org/viewvc/?view=rev&revision=662588
http://svn.apache.org/viewvc/?view=rev&revision=662592
http://svn.apache.org/viewvc/?view=rev&revision=662613
https://issues.apache.org/jira/browse/QPID-1108
http://svn.apache.org/viewvc/?view=rev&revision=662665
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=662675
http://svn.apache.org/viewvc/?view=rev&revision=662681
http://svn.apache.org/viewvc/?view=rev&revision=662700
http://svn.apache.org/viewvc/?view=rev&revision=662701

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

r662770 ritchiem 2008-06-03 : Changed toString to beQPID-1092
String.valueOf(getObject()) Added MessageToStringTest,
tests performing toString on Message before calling
getObject().

Weird catch in close()

r662773 ritchiem 2008-06-03 Merged revisions 662770 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r662770 - ritchiem - 2008-06-03 13:32:47 +0100 (Tue,
03 Jun 2008) - 3 lines QP ...

r662774 gsim 2008-06-03 Better exception handling for commit.

r662818 ritchiem 2008-06-03 : Added tests for all other message types.QPID-1117
Refactored the common parts out of the objectTest.

r662820 ritchiem 2008-06-03 Merged revisions 662818 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r662818 - ritchiem - 2008-06-03 16:07:07 +0100 (Tue,
03 Jun 2008) - 1 line QPI ...

r662821 tross 2008-06-03 moved --pid-dir from config file to startup scriptQPID-1114

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to
send an messageAccept)

inRecover check in
BMC_0_10.postDeliver might be
a problem with async delivery

r662830 tross 2008-06-03 Management fixes: set session.detachedLifetime to 0, set
journal->queue link in all cases

r662849 rhs 2008-06-03 : modified generated code to keep packing flags inQPID-1062
wire form and override commonly used size methods for
improved performance

Remove commented out code

r662854 tross 2008-06-03 Change defaults for data-dir and pid-dir toQPID-1114
/home/ross/.qpidd

r662859 rhs 2008-06-03 : honor the timely-reply flag and handleQPID-901
known-completed

r662869 aconway 2008-06-03 Use help2man if available, pre-generated qpidd.1 if available,
fall back to dummy man page.

r662900 tross 2008-06-03 Create pid-dir if it does not exist

r663080 tross 2008-06-04 Removed assignment of a string literal that causes problems
with some newer compilers

r663124 arnaudsimon 2008-06-04 : Changed addDeliveredMessage and commit soQPID-1120
session.completed is sent before credits dry up

should send session complete
when tx size is a multiple of
PrefetchSize

r663125 ritchiem 2008-06-04 : M2x commit : Addition of a System property toQPID-1119
AMQProtocolHandler.java to allow the syncWait default to be
changed. To perform this a new SlowMessageStore has been
added to the systest pack ...

r663142 ritchiem 2008-06-04 Merged revisions 663125 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r663125 - ritchiem - 2008-06-04 15:32:49 +0100 (Wed,
04 Jun 2008) - 6 lines QP ...

r663158 aconway 2008-06-04 Avoid use of valgrind --log-file-exactly flag, removed in valgrind
3.3

r663243 gsim 2008-06-04 Change to lazy-loading to avoid relying on the content-size to
be set by client.

r663271 aconway 2008-06-04 Increased default flush interval to 1MB, send spontaneous
known-completed at the flush interval.

r663304 tross 2008-06-04 QPID-1121

r663318 aconway 2008-06-04 Request a timely reqply to session.completed based on
configured flush interval.

r663325 rhs 2008-06-04 : use BBDecoder for non fragmented segments,QPID-1062
modified BBDecoder/Encoder to use byte buffer primitives,
made various classes final (including generated classes)

http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115
http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662773
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=662774
http://svn.apache.org/viewvc/?view=rev&revision=662818
https://issues.apache.org/jira/browse/QPID-1117
http://svn.apache.org/viewvc/?view=rev&revision=662820
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=662821
https://issues.apache.org/jira/browse/QPID-1114
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=662830
http://svn.apache.org/viewvc/?view=rev&revision=662849
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=662854
https://issues.apache.org/jira/browse/QPID-1114
http://svn.apache.org/viewvc/?view=rev&revision=662859
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=662869
http://svn.apache.org/viewvc/?view=rev&revision=662900
http://svn.apache.org/viewvc/?view=rev&revision=663080
http://svn.apache.org/viewvc/?view=rev&revision=663124
https://issues.apache.org/jira/browse/QPID-1120
http://svn.apache.org/viewvc/?view=rev&revision=663125
https://issues.apache.org/jira/browse/QPID-1119
http://svn.apache.org/viewvc/?view=rev&revision=663142
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=663158
http://svn.apache.org/viewvc/?view=rev&revision=663243
http://svn.apache.org/viewvc/?view=rev&revision=663271
http://svn.apache.org/viewvc/?view=rev&revision=663304
https://issues.apache.org/jira/browse/QPID-1121
http://svn.apache.org/viewvc/?view=rev&revision=663318
http://svn.apache.org/viewvc/?view=rev&revision=663325
https://issues.apache.org/jira/browse/QPID-1062

r663338 tross 2008-06-04 Management clean-up. Made the management broker more
defensive with regard to received messages. Default and
management exchanges now have 'durable' object IDs.

r663340 aconway 2008-06-04 Fix valgrind error.

r663351 aconway 2008-06-04 Remove unused classes IList and ISList.

r663364 arnaudsimon 2008-06-04 : don't reset batch size as part of the messagesQPID-1120
are not accepted and then still available.

r663386 tross 2008-06-04 Management cleanup - Synchronized with the spec on the
Wiki

r663413 tross 2008-06-04 Management cleanup - renamed config/inst elements to
properties and statistics

r663507 arnaudsimon 2008-06-05 : Added a timeout (threading issue is still to beQPID-1123
fixed)

r663519 gsim 2008-06-05 Re-introduced previously clobbered realm option.

r663601 gsim 2008-06-05 Fix to makefile and tests (one test temporarily disabled until a
fix is found).

r663614 tross 2008-06-05 Load modules from /usr/lib64/qpidd on x86_64 architecture

r663619 nsantos 2008-06-05 install libs in arch-appropriate directory

r663621 nsantos 2008-06-05 install libs in arch-appropriate directory

r663637 nsantos 2008-06-05 install libs in arch-appropriate directory

r663653 nsantos 2008-06-05 install libs in arch-appropriate directory

r663675 gsim 2008-06-05 cleanup old irrelevant tests (from 0-10 preview functions) fix
dtx.recover test

r663676 nsantos 2008-06-05 install libs in arch-appropriate directory

r663677 rhs 2008-06-05 : fixed a race condition in connection/sessionQPID-1116
close, session close now waits for the session to be detached
before returning, this guarantees we won't have any active
sessions when the conne ...

Client.java has random cruft
added.

r663730 kpvdr 2008-06-05 Minor additions to Range and RangedSet

r663731 aconway 2008-06-05 Fixed bug in InlineAllocator

r663742 gsim 2008-06-05 Uncomment test now that inline allocator is fixed.

r663755 tross 2008-06-05 Dequeue persistent messages from store in queue purge

r663761 aconway 2008-06-05 Modified to work with boost-1.32

r663813 rhs 2008-06-06 : merge writes of separate frames within anQPID-1062
assembly, use sync flag instead of sync command on
message transfer

r663874 arnaudsimon 2008-06-06 : use sync flag instead of sync command on txQPID-1062
commit

r663999 ritchiem 2008-06-06 : Added new CramMD5HexSaslClient.cs andQPID-1058
registered it in the Sasl Factory and the client CallbackHandler

r664001 ritchiem 2008-06-06 : Addition of a CRAM-MD5-HEX as discussed onQPID-1058
the JIRA. An additional test is provided to ensure that the
handle method correctly wraps a given Database password in
hex.

r664020 ritchiem 2008-06-06 : Removal of Console WriteLine as highlighted inQPID-1058
code review by Robert Godfrey.

r664028 ritchiem 2008-06-06 Merged revisions 663999-664020 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r663999 - ritchiem - 2008-06-06 17:03:42 +0100 (Fri, 06
Jun 2008) - 1 line ...

r664112 tross 2008-06-06 Added mutexes back in to protect management counts from
corruption

http://svn.apache.org/viewvc/?view=rev&revision=663338
http://svn.apache.org/viewvc/?view=rev&revision=663340
http://svn.apache.org/viewvc/?view=rev&revision=663351
http://svn.apache.org/viewvc/?view=rev&revision=663364
https://issues.apache.org/jira/browse/QPID-1120
http://svn.apache.org/viewvc/?view=rev&revision=663386
http://svn.apache.org/viewvc/?view=rev&revision=663413
http://svn.apache.org/viewvc/?view=rev&revision=663507
https://issues.apache.org/jira/browse/QPID-1123
http://svn.apache.org/viewvc/?view=rev&revision=663519
http://svn.apache.org/viewvc/?view=rev&revision=663601
http://svn.apache.org/viewvc/?view=rev&revision=663614
http://svn.apache.org/viewvc/?view=rev&revision=663619
http://svn.apache.org/viewvc/?view=rev&revision=663621
http://svn.apache.org/viewvc/?view=rev&revision=663637
http://svn.apache.org/viewvc/?view=rev&revision=663653
http://svn.apache.org/viewvc/?view=rev&revision=663675
http://svn.apache.org/viewvc/?view=rev&revision=663676
http://svn.apache.org/viewvc/?view=rev&revision=663677
https://issues.apache.org/jira/browse/QPID-1116
http://svn.apache.org/viewvc/?view=rev&revision=663730
http://svn.apache.org/viewvc/?view=rev&revision=663731
http://svn.apache.org/viewvc/?view=rev&revision=663742
http://svn.apache.org/viewvc/?view=rev&revision=663755
http://svn.apache.org/viewvc/?view=rev&revision=663761
http://svn.apache.org/viewvc/?view=rev&revision=663813
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=663874
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=663999
https://issues.apache.org/jira/browse/QPID-1058
http://svn.apache.org/viewvc/?view=rev&revision=664001
https://issues.apache.org/jira/browse/QPID-1058
http://svn.apache.org/viewvc/?view=rev&revision=664020
https://issues.apache.org/jira/browse/QPID-1058
http://svn.apache.org/viewvc/?view=rev&revision=664028
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=664112

r664114 aconway 2008-06-06 Added exceptions to sys::Waitable. Fixed client side deadlock
involving client::Bounds. Fixed incorrect exception messages
during connection shutdown.

r664129 rgodfrey 2008-06-06 : Use thread-safe map for messageListenersQPID-1124

r664139 nsantos 2008-06-06 add missing header

r664140 rhs 2008-06-06 : log exceptions destined to be swallowed byQPID-1125
MINA

r664153 rgodfrey 2008-06-06 : Use thread-safe map for messageListenersQPID-1124

r664339 rhs 2008-06-07 : reuse channel numbers for sessions that haveQPID-1126
closed, and honor the negotiated channel-max; also removed
unnecessary catches that were swallowing stack traces from
several tests

r664695 aconway 2008-06-09 Missing lock in SessionManager::forget()

r664698 arnaudsimon 2008-06-09 : disable direct buffers as default.QPID-1127

r665733 rhs 2008-06-09 : added logging of sync bit and command-idQPID-901

r665798 rhs 2008-06-09 : made logging of ids less expensive, also limit howQPID-901
much data we dump into the log

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the callQPID-901
fails

RHS: should raise Jira for
autosync flag

r665890 gsim 2008-06-09 Moved from AccumulatedAck to SequenceSet in managing
transactional accepts Added transactional option to perftest
Removed clientid from ConnectionSettings as it appears not to
be used

r665891 aconway 2008-06-09 Updated doxygen comments in qpid/client/*.h Changed
request-response example to use SubscriptionManager like
the others.

r666051 gsim 2008-06-10 Improved exception handling for commit.

r666138 gsim 2008-06-10 Removed import of deleted test modules.

r666146 rhs 2008-06-10 updated the hello-world script

r666244 rhs 2008-06-10 updated hello-world

r666259 rhs 2008-06-10 : unless otherwise specified, limit the receiveQPID-1129
buffer size to 64K

Mina makes OOM'ing hard to
figure out

r666296 arnaudsimon 2008-06-10 Qpid-1130: don't store unack message tags when the session
is transacted

r666610 gsim 2008-06-11
make tcp-nodelay option available for all tests * option
for outputting csv from latency test (from
lgoncalv@redhat.com) * option for cumulative output
from latency test (from lgoncalv@redhat.com) * ...

r666743 rhs 2008-06-11 load the old version of the spec file for old codec tests,
removed unused test exclude list

r666850 rhs 2008-06-11 replaced example usages of message_flow with the start()
method

r667015 arnaudsimon 2008-06-12 : updated username:password --> guest:guestQPID-1134

r667095 aidan 2008-06-12 Added ignore file

r667096 aidan 2008-06-12 add generated bumpf

r667097 aidan 2008-06-12 : Fix multi-frame message handling. This fix isQPID-1135
suboptimal since it creates an extra copy, as a result it's
slower and less memory efficent. But it is correct.
Qpid.Buffer/SlicedByteBuffer.c ...

r667176 aconway 2008-06-12 Improvements to comment clarity.

r667205 aconway 2008-06-12 Propagate error messages across the Demux between
network & user threads.

http://svn.apache.org/viewvc/?view=rev&revision=664114
http://svn.apache.org/viewvc/?view=rev&revision=664129
https://issues.apache.org/jira/browse/QPID-1124
http://svn.apache.org/viewvc/?view=rev&revision=664139
http://svn.apache.org/viewvc/?view=rev&revision=664140
https://issues.apache.org/jira/browse/QPID-1125
http://svn.apache.org/viewvc/?view=rev&revision=664153
https://issues.apache.org/jira/browse/QPID-1124
http://svn.apache.org/viewvc/?view=rev&revision=664339
https://issues.apache.org/jira/browse/QPID-1126
http://svn.apache.org/viewvc/?view=rev&revision=664695
http://svn.apache.org/viewvc/?view=rev&revision=664698
https://issues.apache.org/jira/browse/QPID-1127
http://svn.apache.org/viewvc/?view=rev&revision=665733
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=665798
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=665890
http://svn.apache.org/viewvc/?view=rev&revision=665891
http://svn.apache.org/viewvc/?view=rev&revision=666051
http://svn.apache.org/viewvc/?view=rev&revision=666138
http://svn.apache.org/viewvc/?view=rev&revision=666146
http://svn.apache.org/viewvc/?view=rev&revision=666244
http://svn.apache.org/viewvc/?view=rev&revision=666259
https://issues.apache.org/jira/browse/QPID-1129
http://svn.apache.org/viewvc/?view=rev&revision=666296
http://svn.apache.org/viewvc/?view=rev&revision=666610
http://svn.apache.org/viewvc/?view=rev&revision=666743
http://svn.apache.org/viewvc/?view=rev&revision=666850
http://svn.apache.org/viewvc/?view=rev&revision=667015
https://issues.apache.org/jira/browse/QPID-1134
http://svn.apache.org/viewvc/?view=rev&revision=667095
http://svn.apache.org/viewvc/?view=rev&revision=667096
http://svn.apache.org/viewvc/?view=rev&revision=667097
https://issues.apache.org/jira/browse/QPID-1135
http://svn.apache.org/viewvc/?view=rev&revision=667176
http://svn.apache.org/viewvc/?view=rev&revision=667205

r667215 aconway 2008-06-12 Fix test error.

r667217 nsantos 2008-06-12 add missing DESIGN file to Makefile.am

r667253 aconway 2008-06-12 Default --log-output to syslog in --daemon mode.

r667324 rajith 2008-06-13 Removed --store-async option as it is no longer relevent

r667501 rhs 2008-06-13 : flush after every 64K commands issuedQPID-901

r667503 aconway 2008-06-13 Fix bug in SessionState - avoid all replay calculations for
timeout==0.

r667540 rhs 2008-06-13 : don't send known-completed for ranges we ignoreQPID-901

r667549 rajith 2008-06-13 Changed the store path back to what it was. I think we need to
provide a better solution for this as making an assumption for
the store path in incovinient. We could use an env var like
STORE_PATH tha ...

r667554 aconway 2008-06-13 Revert SessionState changes in r667503.

r667561 ritchiem 2008-06-13 : Provided a fix for the leak inQPID-1136
UnacknowledgedMessage when acking. Added a new
InternalBrokerBaseCase for performing testing on the broker
without using the client libraries. This allows fo ...

InternalMinaProtocolSession has
a bug in awaitDelivery where it
can hang because deliveryCount
is already set to !0

r667574 ritchiem 2008-06-13 Merged revisions 667561 via svnmerge from
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
........ r667561 - ritchiem - 2008-06-13 15:56:45 +0100 (Fri, 13
Jun 2008) - 3 lines QP ...

r667603 aconway 2008-06-13 Fix for broker wraparound problem.

r667615 rhs 2008-06-13 : request known-completed every 64K incomingQPID-901
commands, fixed handling of incoming known-completed to
clear out processed set

r668151 tross 2008-06-16 Bugfix: usage line did not show with --help option

r668164 aidan 2008-06-16 : Add an IMessage.Acknowledge(bool) so thatQPID-1104
only specific messages can be acknowledged, not all
messages recieved on the Channel up to that point.
Qpid.Client/Client/Message/AbstractQmsMessa ...

r668191 rhs 2008-06-16 : fix the broken paths in qpid-incubating.jar andQPID-1078
use the proper delimiter for manifest class paths

Still doesn't work on Windoze,
AS and RHS to hug

r668308 rhs 2008-06-16 : set the frame track correctlyQPID-901

r668309 rhs 2008-06-16 : add tests for RangeSet; fixed a bug found by theQPID-901
new tests

r668311 rhs 2008-06-16 : use RFC1982 comparisons for rollback mark andQPID-1139
update rollback mark to track dispatched messages

r668325 gsim 2008-06-16 : codec support for timestampsQPID-1138

r668333 rajith 2008-06-16 This is a fix for and QPId-1141. I also removedQPID-1140
commented code as well as code that wasn't used. Cleaned
up unused imports as well.

r668343 rhs 2008-06-16 add enough to the server delegate to permit java clients to
connect

r668344 rhs 2008-06-16 : made session.sync() always set the sync flag onQPID-1142
execution_sync

r668345 rhs 2008-06-16 : added buffering, we now only issue one write perQPID-1143
assembly

r668378 rhs 2008-06-17 : removed race condition in testQPID-1143

r668582 gsim 2008-06-17 Added option to start topictest scripti n transactional mode
(&durable)

r668692 marnie 2008-06-17 Applying an amended version of Suran's patch forQPID-168
this JIRA, expanding the .bat file's functionality to be closer to
the bash scripts

r669215 gsim 2008-06-18 Fix bug that commits after every message. Oops!

http://svn.apache.org/viewvc/?view=rev&revision=667215
http://svn.apache.org/viewvc/?view=rev&revision=667217
http://svn.apache.org/viewvc/?view=rev&revision=667253
http://svn.apache.org/viewvc/?view=rev&revision=667324
http://svn.apache.org/viewvc/?view=rev&revision=667501
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=667503
http://svn.apache.org/viewvc/?view=rev&revision=667540
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=667549
http://svn.apache.org/viewvc/?view=rev&revision=667554
http://svn.apache.org/viewvc/?view=rev&revision=667561
https://issues.apache.org/jira/browse/QPID-1136
http://svn.apache.org/viewvc/?view=rev&revision=667574
https://svn.apache.org/repos/asf/incubator/qpid/branches/M2.x
http://svn.apache.org/viewvc/?view=rev&revision=667603
http://svn.apache.org/viewvc/?view=rev&revision=667615
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=668151
http://svn.apache.org/viewvc/?view=rev&revision=668164
https://issues.apache.org/jira/browse/QPID-1104
http://svn.apache.org/viewvc/?view=rev&revision=668191
https://issues.apache.org/jira/browse/QPID-1078
http://svn.apache.org/viewvc/?view=rev&revision=668308
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=668309
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=668311
https://issues.apache.org/jira/browse/QPID-1139
http://svn.apache.org/viewvc/?view=rev&revision=668325
https://issues.apache.org/jira/browse/QPID-1138
http://svn.apache.org/viewvc/?view=rev&revision=668333
https://issues.apache.org/jira/browse/QPID-1140
http://svn.apache.org/viewvc/?view=rev&revision=668343
http://svn.apache.org/viewvc/?view=rev&revision=668344
https://issues.apache.org/jira/browse/QPID-1142
http://svn.apache.org/viewvc/?view=rev&revision=668345
https://issues.apache.org/jira/browse/QPID-1143
http://svn.apache.org/viewvc/?view=rev&revision=668378
https://issues.apache.org/jira/browse/QPID-1143
http://svn.apache.org/viewvc/?view=rev&revision=668582
http://svn.apache.org/viewvc/?view=rev&revision=668692
https://issues.apache.org/jira/browse/QPID-168
http://svn.apache.org/viewvc/?view=rev&revision=669215

r669236 aconway 2008-06-18 Bring cluster code up to date.

r669237 aconway 2008-06-18 Bring cluster code up to date.

r669272 aconway 2008-06-18 Fix packaging error.

r669430 rgodfrey 2008-06-19 Branch created from trunk prior to java refactor broker merge

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

Qpid Java Meeting Minutes 2008-06-27
Outstanding actions

Commits review
JIRA Review

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase + move QpidTestCase in main so it is visible
form systests

Remove
amqj.AutoCreateVMBroker
Investigate if tests aren't working
on trunk without this setting
Remove VMTestCase?
Remove all classes that were no
longer referenced
(VMBrokerSetup)
RECEIVE_TIMEOUT : get rid of
and use configurable timeout
when available
 move kills to base case

r659262 arnaudsimon 2008-05-22 : added junit dep to client as it's not included withinQPID-1079
all environments (for example on RHEL-4)

Should move QpidTestCase into
common base package; not in
client.

r659271 rhs 2008-05-22 Made Range, RangeSet, and Session all use proper RFC1982
comparisons per . Also switched command ids fromQPID-861
long -> int, and added a mutex to channel to prevent
multi-frame commands from interle ...

Use .intValue() not (int) (long)

r659631 rhs 2008-05-23 : Track and report session exceptions, modifiedQPID-901
generator validate values before trying to encode them. Also,
moved createDurableSubscriber from AMQSession_0_10 ->
AMQSession.

r659647 rhs 2008-05-23 : Switched over to using proper RFC 1982 serialQPID-947
numbers.

r659650 rhs 2008-05-23 : only set the listeners to None the thread hasQPID-1064 after
stopped

r659671 rhs 2008-05-23 : added codec and tests for array and list typesQPID-947

r659673 rhs 2008-05-23 : added test for nested listsQPID-947

r661561 rajith 2008-05-30 This check in is for . IoHandler and IoSender usesQPID-1102
the java.io classes for IO operations and have shown very
good improvement in latency and memory usage over MINA.
For certain tests with pub ...

Should use configuration and be
more configurable. Narrow catch
Exception clause.

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deepQPID-1101
copy.

Needs test

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

http://svn.apache.org/viewvc/?view=rev&revision=669236
http://svn.apache.org/viewvc/?view=rev&revision=669237
http://svn.apache.org/viewvc/?view=rev&revision=669272
http://svn.apache.org/viewvc/?view=rev&revision=669430
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659262
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659271
https://issues.apache.org/jira/browse/QPID-861
http://svn.apache.org/viewvc/?view=rev&revision=659631
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=659647
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659650
https://issues.apache.org/jira/browse/QPID-1064
http://svn.apache.org/viewvc/?view=rev&revision=659671
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=659673
https://issues.apache.org/jira/browse/QPID-947
http://svn.apache.org/viewvc/?view=rev&revision=661561
https://issues.apache.org/jira/browse/QPID-1102
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115

r662770 ritchiem 2008-06-03 : Changed toString to beQPID-1092
String.valueOf(getObject()) Added MessageToStringTest, tests
performing toString on Message before calling getObject().

Weird catch in close()

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to
send an messageAccept)

inRecover check in
BMC_0_10.postDeliver might be
a problem with async delivery

r662849 rhs 2008-06-03 : modified generated code to keep packing flags inQPID-1062
wire form and override commonly used size methods for
improved performance

Remove commented out code

r663124 arnaudsimon 2008-06-04 : Changed addDeliveredMessage and commit soQPID-1120
session.completed is sent before credits dry up

should send session complete
when tx size is a multiple of
PrefetchSize

r663677 rhs 2008-06-05 : fixed a race condition in connection/sessionQPID-1116
close, session close now waits for the session to be detached
before returning, this guarantees we won't have any active
sessions when the conne ...

Client.java has random cruft
added.

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the callQPID-901
fails

RHS: should raise Jira for
autosync flag

r666259 rhs 2008-06-10 : unless otherwise specified, limit the receive bufferQPID-1129
size to 64K

Mina makes OOM'ing hard to
figure out

r667561 ritchiem 2008-06-13 : Provided a fix for the leak inQPID-1136
UnacknowledgedMessage when acking. Added a new
InternalBrokerBaseCase for performing testing on the broker
without using the client libraries. This allows fo ...

InternalMinaProtocolSession has
a bug in awaitDelivery where it
can hang because deliveryCount
is already set to !0

r668191 rhs 2008-06-16 : fix the broken paths in qpid-incubating.jar andQPID-1078
use the proper delimiter for manifest class paths

Still doesn't work on Windoze,
AS and RHS to hug

New this week

revision committer date comment

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early for immediate messages in a txnQPID-1144

r669885 rgodfrey 2008-06-20 : Updated Direct Exchange so it does not modify lists of queuesQPID-1101

r669917 arnaudsimon 2008-06-20 : send completed every maxPrefetch / 2 instead of after every messages onceQPID-1112
maxPrefetch / 2 has been reached

r670066 aconway 2008-06-20 Patch from Manuel Teira:
https://issues.apache.org/jira/secure/CommentAssignIssue!default.jspa?action=5&id=12398038

- Use standard automake makefiles to build cpp/examples. - Rationalize examples di ...

r670089 astitcher 2008-06-20 : Patch from Steve Huston: Build with Boost 1.35QPID-1069

r670568 aconway 2008-06-23 Fix build problems in examples on older automakes

r670571 aconway 2008-06-23 Fix path problems in examples make check

r670718 aconway 2008-06-23 Const-correctness fixes in MessageStore.h

r671491 gsim 2008-06-25
remove generated Makefile from svn * add back check for exclsuions where xml
exchange support is not available

r671519 aidan 2008-06-25 Don't take arbitrary stack lengths. I really hate that we sublist at all, it's gross.QPID-551

r671553 rhs 2008-06-25 : use file.separator so that globmapper generates the correct manifest class pathQPID-1078
on cygwin

r671604 aconway 2008-06-25
use flock to lock data dir rather than a lock file. - removed troublesome global
constructor in Mutex initialization.

r671655 aconway 2008-06-25 Additions to the client API: - SubscriptionManager::get(queue) to get a single message from a
queue. - Set FlowControl per-subscription.

r671824 gsim 2008-06-26 : Avoid usage of 'source' builtin in pure sh scripts Patch from Manuel Teira thatQPID-1147
replaces "source" builtin with a dot inclusion on run_test script

http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=662849
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=663124
https://issues.apache.org/jira/browse/QPID-1120
http://svn.apache.org/viewvc/?view=rev&revision=663677
https://issues.apache.org/jira/browse/QPID-1116
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=666259
https://issues.apache.org/jira/browse/QPID-1129
http://svn.apache.org/viewvc/?view=rev&revision=667561
https://issues.apache.org/jira/browse/QPID-1136
http://svn.apache.org/viewvc/?view=rev&revision=668191
https://issues.apache.org/jira/browse/QPID-1078
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=669885
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=669917
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=670066
https://issues.apache.org/jira/secure/CommentAssignIssue!default.jspa?action=5&id=12398038
http://svn.apache.org/viewvc/?view=rev&revision=670089
https://issues.apache.org/jira/browse/QPID-1069
http://svn.apache.org/viewvc/?view=rev&revision=670568
http://svn.apache.org/viewvc/?view=rev&revision=670571
http://svn.apache.org/viewvc/?view=rev&revision=670718
http://svn.apache.org/viewvc/?view=rev&revision=671491
http://svn.apache.org/viewvc/?view=rev&revision=671519
https://issues.apache.org/jira/browse/QPID-551
http://svn.apache.org/viewvc/?view=rev&revision=671553
https://issues.apache.org/jira/browse/QPID-1078
http://svn.apache.org/viewvc/?view=rev&revision=671604
http://svn.apache.org/viewvc/?view=rev&revision=671655
http://svn.apache.org/viewvc/?view=rev&revision=671824
https://issues.apache.org/jira/browse/QPID-1147

r671825 arnaudsimon 2008-06-26 : Changed addDeliveredMessage so to avoid division by 0 error when messagesQPID-1112
are not pre-fetched

r671845 aidan 2008-06-26 : Merge Changes to the client to make the dispatcher responsible forQPID-854 QPID-999
closing the queue browser when all the messages have been processed.

r671849 ritchiem 2008-06-26 : Commented out the TimerTask so that it can be wrapped with aQPID-909
ScaledTestDecorator. Minimal change to get our existing tests to run. If closer duration control
is required then further time c ...

r671850 ritchiem 2008-06-26 Updated .gitignore with Intelij project files

r671877 gsim 2008-06-26 : don't treat connection as opened if the open never succeedsQPID-1137

r671887 arnaudsimon 2008-06-26 : Changed addDeliveredMessage so to avoid division by 0 error when maxQPID-1112
pre-fetch=1

r671902 aconway 2008-06-26 From Matt Farrellee - ">https://issues.apache.org/jira/browse/QPID-1151 QPID-1151

Remove un-necessary link dependencies from client and common libraries.

r671916 aconway 2008-06-26 Use run_test to run valgrind for start_broker consistently with other tests.

r671931 aidan 2008-06-26 : Change visibility to public so that it isn't narrowedQPID-1152

r671949 ritchiem 2008-06-26 : Commented out the TimerTask so that it can be wrapped with aQPID-909
ScaledTestDecorator. Minimal change to get our existing tests to run. If closer duration control
is required then further time c ...

r671969 aconway 2008-06-26 Consolidated cluster tests in cluster_test.cpp Improvements to BrokerFixture for testing.

r672032 aconway 2008-06-26 Plugin framework change: single PluginFactory creates per-target Plugin instances.

JIRAs

Key Component(s) Affects
Version/s

Summary Status

[https://issues.apache.org/jira/browse/
]

 (QPID-1157) Add CruiseControl support

[https://issues.apache.org/jira/browse/
]

 (QPID-1156) Compile warning re casts in cpp/src/qpid/framing/Blob.h

[https://issues.apache.org/jira/browse/
]

 (QPID-1155) Compile warning re casts in cpp/src/tests/InlineVector.cpp

[https://issues.apache.org/jira/browse/
]

 (QPID-1154) Compile warning re casts in qpid/broker/SaslAuthenticator.cpp

[https://issues.apache.org/jira/browse/
]

 (QPID-1153) managementgen/schema.py initializes unsigned value with -1

[https://issues.apache.org/jira/browse/
]

 (QPID-1152) JUnit toolkit does not compile

[https://issues.apache.org/jira/browse/
]

 (QPID-1151) All qpid C++ libraries link against everything from AC_CHECK_LIB

[https://issues.apache.org/jira/browse/
]

 (QPID-1150) IoSession interface is not implemeted in any place

[https://issues.apache.org/jira/browse/
]

 (QPID-1149) Unused JMX instrumentation in Qpid broker

[https://issues.apache.org/jira/browse/
]

 (QPID-1148) c++ broker: need abstraction layer for flock and lockf posix calls.

http://svn.apache.org/viewvc/?view=rev&revision=671825
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=671845
https://issues.apache.org/jira/browse/QPID-854
https://issues.apache.org/jira/browse/QPID-999
http://svn.apache.org/viewvc/?view=rev&revision=671849
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=671850
http://svn.apache.org/viewvc/?view=rev&revision=671877
https://issues.apache.org/jira/browse/QPID-1137
http://svn.apache.org/viewvc/?view=rev&revision=671887
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=671902
https://issues.apache.org/jira/browse/<a href=
https://issues.apache.org/jira/browse/QPID-1151
http://svn.apache.org/viewvc/?view=rev&revision=671916
http://svn.apache.org/viewvc/?view=rev&revision=671931
https://issues.apache.org/jira/browse/QPID-1152
http://svn.apache.org/viewvc/?view=rev&revision=671949
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=671969
http://svn.apache.org/viewvc/?view=rev&revision=672032
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/

[https://issues.apache.org/jira/browse/
]

 (QPID-1147) Avoid usage of 'source' builtin in pure sh scripts

[https://issues.apache.org/jira/browse/
]

 (QPID-1146) Excel RTD Server

[https://issues.apache.org/jira/browse/
]

 (QPID-1145) Client has merge related imperfectitudes

[https://issues.apache.org/jira/browse/
]

 (QPID-1144) Test
org.apache.qpid.test.testcases.ImmediateMessageTest.test_QPID_517_ImmediateFailsConsumerDisconnectedTxPubSub
intermittently failing

[https://issues.apache.org/jira/browse/
]

 (QPID-1143) python client doesn't buffer

[https://issues.apache.org/jira/browse/
]

 (QPID-1142) session.sync() hangs if session.auto_sync is False

[https://issues.apache.org/jira/browse/
]

 (QPID-1141) Exceptions caught during connection created are not sent up the stack in the IO transport

[https://issues.apache.org/jira/browse/
]

 (QPID-1140) connection id count should be static in the IO transport to provide unique names for IoHandler thread

[https://issues.apache.org/jira/browse/
]

 (QPID-1139) java client (0-10) will start rejecting messages after 2**31 deliveries

[https://issues.apache.org/jira/browse/
]

 (QPID-1138) Ruby client doesn't support timestamp in codec

[https://issues.apache.org/jira/browse/
]

 (QPID-1137) (C++) It is required to call Connection::close even if it fails to connect to the broker using Connection::open

[https://issues.apache.org/jira/browse/
]

 (QPID-1136) Broker does not correctly remove persistent message data for the store when acking messages.

[https://issues.apache.org/jira/browse/
]

 (QPID-1135) Large messages are mangled

[https://issues.apache.org/jira/browse/
]

 (QPID-1134) Default username/password should be guest/guest

[https://issues.apache.org/jira/browse/
]

 (QPID-1133) Poller implementation based on the Solaris Event Completion Framework

[https://issues.apache.org/jira/browse/
]

 (QPID-1132) Add support for Sun Studio compiler suite detection

[https://issues.apache.org/jira/browse/
]

 (QPID-1131) Refactor cpp/examples directory to be build under autotools

[https://issues.apache.org/jira/browse/
]

 (QPID-1130) (0.10 code path) Tx sessions are not releasing unacknowledged message tags

[https://issues.apache.org/jira/browse/
]

 (QPID-1129) java client runs out of memory when the socket receive buffer is large

[https://issues.apache.org/jira/browse/
]

 (QPID-1128) NPE displayed when adding queue to navigation

https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/

[https://issues.apache.org/jira/browse/
]

 (QPID-1127) (0.10 code path) The use of direct buffers causes memory exhaustion

[https://issues.apache.org/jira/browse/
]

 (QPID-1126) Client dies after 2^16 sessions are opened on a single connection

[https://issues.apache.org/jira/browse/
]

 (QPID-1125) MINA swallows exceptions in the I/O thread

[https://issues.apache.org/jira/browse/
]

 (QPID-1124) (Java Client) Use of thread-unsafe HashMap for destination->consumer causes timeouts

[https://issues.apache.org/jira/browse/
]

 (QPID-1123) (0.10 code path) Connection close intermittently hangs

[https://issues.apache.org/jira/browse/
]

 (QPID-1122) Setting sync_persistence on the connection URL doesn't work

[https://issues.apache.org/jira/browse/
]

 (QPID-1121) Broker Federation - Link to unresolvable destination cannot be deleted

[https://issues.apache.org/jira/browse/
]

 (QPID-1120) (01.0 code path) Large txs may exhaust credits

[https://issues.apache.org/jira/browse/
]

 (QPID-1119) (Java) Timeout on consumer creation with large queues

[https://issues.apache.org/jira/browse/
]

 (QPID-1118) (Java Client) JMS Destination Type no longer being set, but still relied upon for Message Creation

[https://issues.apache.org/jira/browse/
]

 (QPID-1117) AbstractBytesMessage.getText corrupts the ByteBuffer if the data is not a String

[https://issues.apache.org/jira/browse/
]

 (QPID-1116) (0.10 code path) Connection establishment process may hang

[https://issues.apache.org/jira/browse/
]

 (QPID-1115) Client ID is set even if it's disabled

[https://issues.apache.org/jira/browse/
]

 (QPID-1114) Improvements to daemon mode operations

[https://issues.apache.org/jira/browse/
]

 (QPID-1113) Management Cleanup

[https://issues.apache.org/jira/browse/
]

 (QPID-1112) (01.0 code path) only receives up to max prefetch messages when using NO_ACKNOWLEDGE mode

[https://issues.apache.org/jira/browse/
]

 (QPID-1111) (0.10 code path) Message.transfer sync flag should be used for synchronizing persistent messages

[https://issues.apache.org/jira/browse/
]

 (QPID-1110) (0.10 code path) messages are not acquired when using empty string message selector

[https://issues.apache.org/jira/browse/
]

 (QPID-1109) Decide of Protect io default settings

[https://issues.apache.org/jira/browse/
]

 (QPID-1108) QPID broker asserts in qpid::sys::RWlock::RWlock()

https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/

Qpid Java Meeting Minutes 2008-07-11

Agenda

Commits review
JIRA Review
AOCB

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase + move QpidTestCase in main so it is visible
form systests

Remove
amqj.AutoCreateVMBroker
Investigate if tests aren't working
on trunk without this setting
Remove VMTestCase?
Remove all classes that were no
longer referenced
(VMBrokerSetup)
RECEIVE_TIMEOUT : get rid of
and use configurable timeout
when available
 move kills to base case

r659262 arnaudsimon 2008-05-22 : added junit dep to client as it's not included withinQPID-1079
all environments (for example on RHEL-4)

Should move QpidTestCase into
common base package; not in
client.

r659271 rhs 2008-05-22 Made Range, RangeSet, and Session all use proper RFC1982
comparisons per . Also switched command ids fromQPID-861
long -> int, and added a mutex to channel to prevent
multi-frame commands from interle ...

Use .intValue() not (int) (long)

r661561 rajith 2008-05-30 This check in is for . IoHandler and IoSender usesQPID-1102
the java.io classes for IO operations and have shown very
good improvement in latency and memory usage over MINA.
For certain tests with pub ...

Should use configuration and be
more configurable. Narrow catch
Exception clause.

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deepQPID-1101
copy.

Needs test

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

r662770 ritchiem 2008-06-03 : Changed toString to beQPID-1092
String.valueOf(getObject()) Added MessageToStringTest, tests
performing toString on Message before calling getObject().

Weird catch in close()

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to
send an messageAccept)

inRecover check in
BMC_0_10.postDeliver might be
a problem with async delivery

r662849 rhs 2008-06-03 : modified generated code to keep packing flags inQPID-1062
wire form and override commonly used size methods for
improved performance

Remove commented out code

r663677 rhs 2008-06-05 : fixed a race condition in connection/sessionQPID-1116
close, session close now waits for the session to be detached
before returning, this guarantees we won't have any active
sessions when the conne ...

Client.java has random cruft
added.

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the callQPID-901
fails

RHS: should raise Jira for
autosync flag

r666259 rhs 2008-06-10 : unless otherwise specified, limit the receive bufferQPID-1129
size to 64K

Mina makes OOM'ing hard to
figure out

r667561 ritchiem 2008-06-13 : Provided a fix for the leak inQPID-1136
UnacknowledgedMessage when acking. Added a new
InternalBrokerBaseCase for performing testing on the broker
without using the client libraries. This allows fo ...

InternalMinaProtocolSession has
a bug in awaitDelivery where it
can hang because deliveryCount
is already set to !0

http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659262
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=659271
https://issues.apache.org/jira/browse/QPID-861
http://svn.apache.org/viewvc/?view=rev&revision=661561
https://issues.apache.org/jira/browse/QPID-1102
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115
http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=662849
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=663677
https://issues.apache.org/jira/browse/QPID-1116
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=666259
https://issues.apache.org/jira/browse/QPID-1129
http://svn.apache.org/viewvc/?view=rev&revision=667561
https://issues.apache.org/jira/browse/QPID-1136

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

Review LTC with Rob

r669885 rgodfrey 2008-06-20 : Updated Direct Exchange so it does not modifyQPID-1101
lists of queues

No Test

r671845 aidan 2008-06-26 : Merge Changes to the client to makeQPID-854 QPID-999
the dispatcher responsible for closing the queue browser when
all the messages have been processed.

JIRA clean up of anon
CloseMessage DeliveryBody
class.

r671949 ritchiem 2008-06-26 : Commented out the TimerTask so that it can beQPID-909
wrapped with a ScaledTestDecorator. Minimal change to get
our existing tests to run. If closer duration control is required
then further time c ...

Change Commit list

Qpid Java Meeting Minutes 2008-07-25

Agenda

Commits review
JIRA Review
AOCBRich Text

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase + move QpidTestCase in main so it is visible
form systests

RECEIVE_TIMEOUT : get rid of
and use configurable timeout
when available

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deepQPID-1101
copy.

Needs test

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

r662770 ritchiem 2008-06-03 : Changed toString to beQPID-1092
String.valueOf(getObject()) Added MessageToStringTest,
tests performing toString on Message before calling
getObject().

Weird catch in close()

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to
send an messageAccept)

inRecover check in
BMC_0_10.postDeliver might be
a problem with async delivery

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the callQPID-901
fails

RHS: make sure flag is used
where appropriate

r667561 ritchiem 2008-06-13 : Provided a fix for the leak inQPID-1136
UnacknowledgedMessage when acking. Added a new
InternalBrokerBaseCase for performing testing on the broker
without using the client libraries. This allows fo ...

InternalMinaProtocolSession has
a bug in awaitDelivery where it
can hang because deliveryCount
is already set to !0

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

RG: document
LocalTransactionalContext

r669885 rgodfrey 2008-06-20 : Updated Direct Exchange so it does not modifyQPID-1101
lists of queues

No Test

r671845 aidan 2008-06-26 : Merge Changes to the client to makeQPID-854 QPID-999
the dispatcher responsible for closing the queue browser
when all the messages have been processed.

JIRA clean up of anon
CloseMessage DeliveryBody
class.

r671949 ritchiem 2008-06-26 : Commented out the TimerTask so that it can beQPID-909
wrapped with a ScaledTestDecorator. Minimal change to get
our existing tests to run. If closer duration control is required
then further time c ...

Change Commit list

r672810 rajith 2008-06-30 This commit is related to . Please refer to theQPID-1161
JIRA for complete details. In Summary this contains a simple
test kit comprising of perf and soak tests. The focus is on
producing a packaged ...

http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=669885
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=671845
https://issues.apache.org/jira/browse/QPID-854
https://issues.apache.org/jira/browse/QPID-999
http://svn.apache.org/viewvc/?view=rev&revision=671949
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115
http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=667561
https://issues.apache.org/jira/browse/QPID-1136
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=669885
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=671845
https://issues.apache.org/jira/browse/QPID-854
https://issues.apache.org/jira/browse/QPID-999
http://svn.apache.org/viewvc/?view=rev&revision=671949
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=672810
https://issues.apache.org/jira/browse/QPID-1161

r674085 ritchiem 2008-07-04 - Added a ConnectionRegistry per Virtualhost toQPID-871
track the open connections. Altered the ApplicationRegistry
so that when the shutdown hook is fired it: Unbinds from the
listening sockets Then ...

Commits

revision committer date comment

r672032 aconway 2008-06-26 Plugin framework change: single PluginFactory creates per-target
Plugin instances.

r672269 aconway 2008-06-27 Fix exit status when VALIGRIND=

r672280 arnaudsimon 2008-06-27 : Added CC scripts and config filesQPID-1157

r672296 ritchiem 2008-06-27 Added qpid/java/release to ignore list

r672300 ritchiem 2008-06-27 Updated the performance tests to ensure we use all the available
test, added additional comments in pom.xml about each test section.

Why update maven?

r672303 ritchiem 2008-06-27 Added comment to gitignore to explain previous additions

r672763 aidan 2008-06-30 : remove @Override tagsQPID-1159

r672766 arnaudsimon 2008-06-30 : Added cc example automation scriptsQPID-1157

r672810 rajith 2008-06-30 This commit is related to . Please refer to the JIRA forQPID-1161
complete details. In Summary this contains a simple test kit
comprising of perf and soak tests. The focus is on producing a
packaged ...

r672854 tross 2008-06-30 Switch to async mode for management communication

r672855 tross 2008-06-30 Cosmetic change: rename ID to be 'tag'

r672864 tross 2008-06-30 - Per-thread counters in management API to avoidQPID-1160
locking

r673031 gsim 2008-07-01 Added extra option (fixed time limit in rate mode) to latency test.
Patch from acme@redhat.com.

r673058 rgodfrey 2008-07-01 : Applying patch previously applied to M2.xQPID-1084

r673071 arnaudsimon 2008-07-01 : Updated scriptsQPID-1157

r673074 arnaudsimon 2008-07-01 : Moved message ack in pre-deliver methodQPID-1163 Needs test.
Commenting out of
preDeliver
Group review of
BasicMessageConsumer*

Check inRecovery change

r673082 aidan 2008-07-01 : name housekeeping thread properly. Apply patch fromQPID-887
suran at wso2 dot com

r673158 aconway 2008-07-01 Added timeout to SubscriptionManager::get(), LocalQueue::get() and
BlockingQueue::get()

r673343 aidan 2008-07-02 Exception handling was... unpleasing... Fix up of patchQPID-962
from rhs AMQConnection: Refactor listener and remove list, we're
only interested in the most recent one anyway. Add get/set for lastEx
...

r673347 aidan 2008-07-02 make protocol negotiation work from 0-10 down to 0-9 andQPID-960
then 8-0 still needs love to do with railover, see QPID-959
AMQConnection.java: use 8_0 delegate for in-vm tests
AMQConnectionDelegat ...

r673350 aidan 2008-07-02 copy delegate properlyQPID-960

r673351 aidan 2008-07-02 remember to rename classQPID-960

r673359 gsim 2008-07-02 Improved text and rasied severity of log entry when client sessions
are deleted without first being closed.

r673401 aidan 2008-07-02 Revert " Exception handling was... unpleasing... Fix up ofQPID-962
patch from rhs" This reverts commit 673343.

http://svn.apache.org/viewvc/?view=rev&revision=674085
https://issues.apache.org/jira/browse/QPID-871
http://svn.apache.org/viewvc/?view=rev&revision=672032
http://svn.apache.org/viewvc/?view=rev&revision=672269
http://svn.apache.org/viewvc/?view=rev&revision=672280
https://issues.apache.org/jira/browse/QPID-1157
http://svn.apache.org/viewvc/?view=rev&revision=672296
http://svn.apache.org/viewvc/?view=rev&revision=672300
http://svn.apache.org/viewvc/?view=rev&revision=672303
http://svn.apache.org/viewvc/?view=rev&revision=672763
https://issues.apache.org/jira/browse/QPID-1159
http://svn.apache.org/viewvc/?view=rev&revision=672766
https://issues.apache.org/jira/browse/QPID-1157
http://svn.apache.org/viewvc/?view=rev&revision=672810
https://issues.apache.org/jira/browse/QPID-1161
http://svn.apache.org/viewvc/?view=rev&revision=672854
http://svn.apache.org/viewvc/?view=rev&revision=672855
http://svn.apache.org/viewvc/?view=rev&revision=672864
https://issues.apache.org/jira/browse/QPID-1160
http://svn.apache.org/viewvc/?view=rev&revision=673031
http://svn.apache.org/viewvc/?view=rev&revision=673058
https://issues.apache.org/jira/browse/QPID-1084
http://svn.apache.org/viewvc/?view=rev&revision=673071
https://issues.apache.org/jira/browse/QPID-1157
http://svn.apache.org/viewvc/?view=rev&revision=673074
https://issues.apache.org/jira/browse/QPID-1163
http://svn.apache.org/viewvc/?view=rev&revision=673082
https://issues.apache.org/jira/browse/QPID-887
http://svn.apache.org/viewvc/?view=rev&revision=673158
http://svn.apache.org/viewvc/?view=rev&revision=673343
https://issues.apache.org/jira/browse/QPID-962
http://svn.apache.org/viewvc/?view=rev&revision=673347
https://issues.apache.org/jira/browse/QPID-960
https://issues.apache.org/jira/browse/QPID-959
http://svn.apache.org/viewvc/?view=rev&revision=673350
https://issues.apache.org/jira/browse/QPID-960
http://svn.apache.org/viewvc/?view=rev&revision=673351
https://issues.apache.org/jira/browse/QPID-960
http://svn.apache.org/viewvc/?view=rev&revision=673359
http://svn.apache.org/viewvc/?view=rev&revision=673401
https://issues.apache.org/jira/browse/QPID-962

r673688 aidan 2008-07-03 Exception handling was... unpleasing... Fix up of patchQPID-962
from rhs AMQConnection.java: Refactor listener and stack
exceptions in a list. Add get lastException, which can now be any
Exception. ...

r673718 tross 2008-07-03 - Use array-style delete for allocated arrayQPID-1160

r673725 aconway 2008-07-03 rubygen: Change default for client API accept-mode parameters to 1.

r673947 ritchiem 2008-07-04 Removed SimpleACLTest from the build whilst we resolve the client
exception handling problems causing the failure

r674003 gsim 2008-07-04 Only override default value for accept-mode field in message.transfer
(not message.subscribe)

r674015 arnaudsimon 2008-07-04 : Added perftests projectQPID-1157

r674040 gsim 2008-07-04 Allow default values for packed structs to be overridden (currently
used for message.transfer.accept-mode)

r674055 arnaudsimon 2008-07-04 : Remove all classes that were no longer referenced +QPID-1079
updated FlowControlTest for using QpidTestCase

r674058 ritchiem 2008-07-04 Qpid-940 - ConnectionTest#testPasswordFailureConnection fails
occasionally so while these race conditions are addressed I've
converted the ConnectionTest to QpidTestCase and use it to skip the
Passwor ...

r674085 ritchiem 2008-07-04 - Added a ConnectionRegistry per Virtualhost to track theQPID-871
open connections. Altered the ApplicationRegistry so that when the
shutdown hook is fired it: Unbinds from the listening sockets Then ...

r674097 ritchiem 2008-07-04 : Forgot to exclude the test from the test runQPID-940

r674102 ritchiem 2008-07-04 Addition of tools directory for various Qpid Java tools The first too
JNDICheck allows the contents of a JNDI properties file to be parsed
and presented as JNDI will process it. Handly for validating ...

r674107 aconway 2008-07-04 Cluster prototype: handles client-initiated commands (not dequeues)
Details - Cluster.cpp: serializes all frames thru cluster (see below) -
broker/ConnectionManager: Added handler chain in front of ...

r674113 aconway 2008-07-04 Remove debugging cout accidentally left in.

r674124 aconway 2008-07-04 Disabled cluster_test temporarily, it leaks processes.

r674389 rajith 2008-07-07 The last checkin for this class was using a Java 1.6 specific method
called isEmpty in the String class. This fails the build in Java 1.5. I
modified it to use str.length == 0 which has the same effec ...

r674391 rajith 2008-07-07 This is related to . Made minor modifications to the scriptsQPID-1161
and added a log4j file for the tests. The scripts are now modified to
use the JAVA_HOME.

r674392 rajith 2008-07-07 This is related to . Added the absolute path to setevn.sh,QPID-1161
so that the following scripts can be called from any location.

r674482 gsim 2008-07-07 Temporarily reverting changes to signal handling; as checked in by
r674107 it prevents the broker being shutdown.

r674493 aconway 2008-07-07 configure.ac: check for cpg_local_get to exclude older CPG versions.

r674504 aconway 2008-07-07 Restore use of SignalHandler in qpidd.cpp, fixed errors in previous
commit.

r674510 aidan 2008-07-07 Make sure that our SASL servers actually, y'know, validateQPID-474
the password AmqPlainSaslServer.java: Actually check password
PlainSaslServer.java: Actually check password
SaslServerTestCase.java ...

Need to define security
notification mechanism

r674513 aidan 2008-07-07 forgot ASL header, oopsQPID-474

r674541 aidan 2008-07-07 Disable certain ConnectionTest tests since the 010 broker doesn't
currently implement that behaiour

r674569 rajith 2008-07-07 This is related to QPId-1161. Modified the soak tests to print latency
samples and throughput rates for every iteration. Added
run_soak_client.sh soak_report.sh as an example of how to use soak
test a ...

r674587 aconway 2008-07-07 ForkedBroker: child process exits on completion.

http://svn.apache.org/viewvc/?view=rev&revision=673688
https://issues.apache.org/jira/browse/QPID-962
http://svn.apache.org/viewvc/?view=rev&revision=673718
https://issues.apache.org/jira/browse/QPID-1160
http://svn.apache.org/viewvc/?view=rev&revision=673725
http://svn.apache.org/viewvc/?view=rev&revision=673947
http://svn.apache.org/viewvc/?view=rev&revision=674003
http://svn.apache.org/viewvc/?view=rev&revision=674015
https://issues.apache.org/jira/browse/QPID-1157
http://svn.apache.org/viewvc/?view=rev&revision=674040
http://svn.apache.org/viewvc/?view=rev&revision=674055
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=674058
http://svn.apache.org/viewvc/?view=rev&revision=674085
https://issues.apache.org/jira/browse/QPID-871
http://svn.apache.org/viewvc/?view=rev&revision=674097
https://issues.apache.org/jira/browse/QPID-940
http://svn.apache.org/viewvc/?view=rev&revision=674102
http://svn.apache.org/viewvc/?view=rev&revision=674107
http://svn.apache.org/viewvc/?view=rev&revision=674113
http://svn.apache.org/viewvc/?view=rev&revision=674124
http://svn.apache.org/viewvc/?view=rev&revision=674389
http://svn.apache.org/viewvc/?view=rev&revision=674391
https://issues.apache.org/jira/browse/QPID-1161
http://svn.apache.org/viewvc/?view=rev&revision=674392
https://issues.apache.org/jira/browse/QPID-1161
http://svn.apache.org/viewvc/?view=rev&revision=674482
http://svn.apache.org/viewvc/?view=rev&revision=674493
http://svn.apache.org/viewvc/?view=rev&revision=674504
http://svn.apache.org/viewvc/?view=rev&revision=674510
https://issues.apache.org/jira/browse/QPID-474
http://svn.apache.org/viewvc/?view=rev&revision=674513
https://issues.apache.org/jira/browse/QPID-474
http://svn.apache.org/viewvc/?view=rev&revision=674541
http://svn.apache.org/viewvc/?view=rev&revision=674569
http://svn.apache.org/viewvc/?view=rev&revision=674587

r674622 rajith 2008-07-07 This is related to Added a README file to describe whatQPID-1162
the tests are and how they can be run. Modified to consumers to print
the iteration number instead of the message id.

r674747 aidan 2008-07-08 allow messages which have been received by theQPID-293
consumer before a message listener has been set to be delivered.
BasicMessageConsumer.java: If there are messages on the
synchronous queue when ...

r674825 aconway 2008-07-08 Fix leak in XmlClientSessionTests - was leaking a Session.

r674826 aconway 2008-07-08 svn:ignore properties.

r674848 gsim 2008-07-08
release message lock when notifying queue listeners * take
copy of listeners * remove unused functionality

r674855 aconway 2008-07-08 Removed static Cpg::handlers, fixed ForkedBroker shutdown.

r674865 aconway 2008-07-08 - from Manuel Tiera Lock file abstraction in sys/ withQPID-1148
implementation portable to Linux and Solaris. Changes by myself: -
Makefile.am - must be updated for any new/renamed/removed
source ...

r674915 aconway 2008-07-08 Revert un-necessary Plugin complications. Better solution for plugin
extension points coming up...

r674939 rhs 2008-07-08 Branch at a stable point for 0-10 support (prior to M3). This includes
the C++ broker, C++ client, Java client, and Python client all
speaking the 0-10 protocol.

r674945 aconway 2008-07-08 Fix packaging error.

r674955 aconway 2008-07-08 Remove unused Serializer code.

r674976 rajith 2008-07-08 This is related to . Added the ability to pass in JVMQPID-1161
ARGs.

r674994 tross 2008-07-08 - Remove boost dependency from management agentQPID-1170
interface

r675017 aconway 2008-07-08 HandlerChain: plug-in handler chain extension points. Replaces
Handler<T>::Chain. Updated Sessoin & Connection handler chains
and Cluster.

r675144 aconway 2008-07-09 Fix for older boost versions

r675146 aconway 2008-07-09 Fix signed/unsigned compare error

r675155 aconway 2008-07-09 Removed dead code.

r675165 rhs 2008-07-09 Primarily profiling driven changes: - added batched writes of
commands/controls issued on a session - copy fragmented frames
and segments rather than trying to decode them piecemeal, removed
Fr ...

r675252 gsim 2008-07-09 Allow for pluggable exchange types.

r675338 astitcher 2008-07-09 Some small changes which clean up header file inclusions and
generally start to tidy up the network layer so that it's a bit easier to
implement new network transports

r675397 rhs 2008-07-10 : moved channel id into the ProtocolEvent interface andQPID-1062
removed ConnectionEvent, this removes the overhead of creating
ConnectionEvents

r675433 rhs 2008-07-10 : batch acks when prefetch is usedQPID-1171

r675477 gsim 2008-07-10 Honour timeout in BlockingQueue::pop(); added test for
SubscriptionManager::get() where no message exists.

r675486 gsim 2008-07-10 Assume accept-mode=1 (i.e. none required) where not explicitly
specified on a message.transfer

r675598 gsim 2008-07-10 Add a get() method to subscription manager that retrieves one
message from the specified queue if available, returns false
otherwise.

r675674 tross 2008-07-10 Move shutdown of management broker to end of shutdown sequence

http://svn.apache.org/viewvc/?view=rev&revision=674622
https://issues.apache.org/jira/browse/QPID-1162
http://svn.apache.org/viewvc/?view=rev&revision=674747
https://issues.apache.org/jira/browse/QPID-293
http://svn.apache.org/viewvc/?view=rev&revision=674825
http://svn.apache.org/viewvc/?view=rev&revision=674826
http://svn.apache.org/viewvc/?view=rev&revision=674848
http://svn.apache.org/viewvc/?view=rev&revision=674855
http://svn.apache.org/viewvc/?view=rev&revision=674865
https://issues.apache.org/jira/browse/QPID-1148
http://svn.apache.org/viewvc/?view=rev&revision=674915
http://svn.apache.org/viewvc/?view=rev&revision=674939
http://svn.apache.org/viewvc/?view=rev&revision=674945
http://svn.apache.org/viewvc/?view=rev&revision=674955
http://svn.apache.org/viewvc/?view=rev&revision=674976
https://issues.apache.org/jira/browse/QPID-1161
http://svn.apache.org/viewvc/?view=rev&revision=674994
https://issues.apache.org/jira/browse/QPID-1170
http://svn.apache.org/viewvc/?view=rev&revision=675017
http://svn.apache.org/viewvc/?view=rev&revision=675144
http://svn.apache.org/viewvc/?view=rev&revision=675146
http://svn.apache.org/viewvc/?view=rev&revision=675155
http://svn.apache.org/viewvc/?view=rev&revision=675165
http://svn.apache.org/viewvc/?view=rev&revision=675252
http://svn.apache.org/viewvc/?view=rev&revision=675338
http://svn.apache.org/viewvc/?view=rev&revision=675397
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=675433
https://issues.apache.org/jira/browse/QPID-1171
http://svn.apache.org/viewvc/?view=rev&revision=675477
http://svn.apache.org/viewvc/?view=rev&revision=675486
http://svn.apache.org/viewvc/?view=rev&revision=675598
http://svn.apache.org/viewvc/?view=rev&revision=675674

r676067 tross 2008-07-11 Remote Management Agent for management of externalQPID-1174
components

r676581 gsim 2008-07-14 Allow for pluggable exchange types.

r676613 rajith 2008-07-14 This is related to . This is already in trunk and I amQPID-1163
porting it to the qpid.0-10 branch.

r676831 aidan 2008-07-15 Multi-version interop test script

r676878 ritchiem 2008-07-15 Added missing license header and fixed execute bit onQPID-909
MessageSize.sh Added RunAll.sh for good measure

r676879 ritchiem 2008-07-15 Updated gitignore with cpp example output and other generated files

r676883 ritchiem 2008-07-15 : VirtualHost now validates that name is non-null andQPID-1175
non-empty. Full protocol validation of the virtualhost name has not
been performed.

r676884 ritchiem 2008-07-15 : Updated Tasks and gentools build to use theQPID-1176
java.source and java.target values. Added echo statements to show
the targeted build Updated other info echo statements to be an info
level so t ...

r676885 ritchiem 2008-07-15 Updated log4j format as per discussion on mailing list.

r676886 ritchiem 2008-07-15 Removed the non ASCII characters that are causing the build to
minorly complain.

r676887 ritchiem 2008-07-15 : Moved unregistration out of the sendLock. PotentialQPID-1172
refactor possible between processQueue and flushSubscription

r676932 aconway 2008-07-15 Switched from shared_ptr to intrusive_ptr and RefCounted for Broker.

r676938 rajith 2008-07-15 This is related to . I have fixed the error handling andQPID-1102
revised the while loop in IoSender based on the comments received
during the code review

r676951 aidan 2008-07-15 fix cpp client, path changes

r676963 aconway 2008-07-15 Fix "ignoring return value" warning from LockFile.h.

r676969 ritchiem 2008-07-15 : Based on Code Review : RemvoedQPID-1079
AutoCreateVMBroker code from QpidTestCase. Removed
VMTestCase and all references to it, it was only used in JUnit4
testSuite wrappers. Rather than move QpidT ...

r676971 ritchiem 2008-07-15 : Based on Code Review : RemvoedQPID-1079
AutoCreateVMBroker code from QpidTestCase. Removed
VMTestCase and all references to it, it was only used in JUnit4
testSuite wrappers. Rather than move QpidT ...

r676972 ritchiem 2008-07-15 : Update to gentools to remove commented outQPID-1176

properties that I left in via git

r676973 ritchiem 2008-07-15 : Applied fix from M2.1.x that adds requriedQPID-984
synchronization around setup and tear down of Connections.

r676978 ritchiem 2008-07-15 , , , : Updated the clientQPID-940 QPID-594 QPID-805 QPID-826
exception handling so that exceptions are not lost. In performing the
changes I noted that the AMQStateManager is only used for
connection crea ...

r676982 ritchiem 2008-07-15 : Added Protocol Level Debug logging. Uses a final staticQPID-1177
so should JIT out if disabled. To enable set
-Damqj.protocol.logging.level=info

r677256 ritchiem 2008-07-16 : Prevent Rejecting messages destined for knownQPID-1178
QueueBrowsers

r677257 ritchiem 2008-07-16 Changed erroneous error level logging to info level

r677258 ritchiem 2008-07-16 Added a warning log statement if the TransportConnection
autocreates an InVM Broker

r677259 ritchiem 2008-07-16 Converted client.failover.FailoverTest so it can utilise the standard
mechanism for failover testing, as the local CruiseControl had
testP2PFailoveWithMessagesLeft fail with extra messages being left
...

http://svn.apache.org/viewvc/?view=rev&revision=676067
https://issues.apache.org/jira/browse/QPID-1174
http://svn.apache.org/viewvc/?view=rev&revision=676581
http://svn.apache.org/viewvc/?view=rev&revision=676613
https://issues.apache.org/jira/browse/QPID-1163
http://svn.apache.org/viewvc/?view=rev&revision=676831
http://svn.apache.org/viewvc/?view=rev&revision=676878
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=676879
http://svn.apache.org/viewvc/?view=rev&revision=676883
https://issues.apache.org/jira/browse/QPID-1175
http://svn.apache.org/viewvc/?view=rev&revision=676884
https://issues.apache.org/jira/browse/QPID-1176
http://svn.apache.org/viewvc/?view=rev&revision=676885
http://svn.apache.org/viewvc/?view=rev&revision=676886
http://svn.apache.org/viewvc/?view=rev&revision=676887
https://issues.apache.org/jira/browse/QPID-1172
http://svn.apache.org/viewvc/?view=rev&revision=676932
http://svn.apache.org/viewvc/?view=rev&revision=676938
https://issues.apache.org/jira/browse/QPID-1102
http://svn.apache.org/viewvc/?view=rev&revision=676951
http://svn.apache.org/viewvc/?view=rev&revision=676963
http://svn.apache.org/viewvc/?view=rev&revision=676969
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=676971
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=676972
https://issues.apache.org/jira/browse/QPID-1176
http://svn.apache.org/viewvc/?view=rev&revision=676973
https://issues.apache.org/jira/browse/QPID-984
http://svn.apache.org/viewvc/?view=rev&revision=676978
https://issues.apache.org/jira/browse/QPID-940
https://issues.apache.org/jira/browse/QPID-594
https://issues.apache.org/jira/browse/QPID-805
https://issues.apache.org/jira/browse/QPID-826
http://svn.apache.org/viewvc/?view=rev&revision=676982
https://issues.apache.org/jira/browse/QPID-1177
http://svn.apache.org/viewvc/?view=rev&revision=677256
https://issues.apache.org/jira/browse/QPID-1178
http://svn.apache.org/viewvc/?view=rev&revision=677257
http://svn.apache.org/viewvc/?view=rev&revision=677258
http://svn.apache.org/viewvc/?view=rev&revision=677259

r677260 ritchiem 2008-07-16 : Adjusted the test size from 100 to 10, this should reduceQPID-1179
the likely hood of a slow machine failing the test.

r677262 ritchiem 2008-07-16 Renamed shutdownServer to restartBroker as that is what is does

r677263 ritchiem 2008-07-16 : Added additional logging to help diagnose aQPID-1181
NullPointerException

r677319 ritchiem 2008-07-16 Update to the logging to ensure QpidTestCase is always logged and
standardized the protocol output format between 0-8/0-9 and 0-10

r677327 ritchiem 2008-07-16 : The shutdown change had a spurious getInstance() callQPID-871
which would case a new instance of ID 1 to be created if there wasn't
one, it would then procede to shutdown that MBeanServer not the M
...

r677408 tross 2008-07-16 - Provide a better factory for creation and deletion of theQPID-1170
management agent

r677412 tross 2008-07-16 - Removed spurious include from exampleQPID-1170

r677471 aconway 2008-07-17 Cluster: shadow connections, fix lifecycle & valgrind issues. -
tests/ForkedBroker: improved broker forking, exec full qpidd. -
Plugin::addFinalizer - more flexible way to shutdown plugins. - Rewo
...

r677486 aconway 2008-07-17 Enable dequeue for prototype cluster -
qpid/broker/SemanticState.cpp: moved doOutput into write idle
callback. - qpid/broker/Connection.cpp: make doOutput an intercept
point. - qpid/cluster/*: inte ...

r677525 ritchiem 2008-07-17 : Fixed the format of the messages, realised that theQPID-1177
transport.Connection uses a logging wrapper but in my haste to make
the format the same in AMQProtocolHandler hadn't checked the
output ...

r677629 ritchiem 2008-07-17 Moved the Reflection Wrapping code used by the system tests to the
system test. If they are left in common then we must include the
common directory when using the systest-testing frameworks no
matter ...

r677633 ritchiem 2008-07-17 : Added additional logging to identify the exception thatQPID-1182
caused Authentication to fail.

r678211 rhs 2008-07-19 : redirect stdout and stderr from QpidTestCaseQPID-1184

r678260 rhs 2008-07-20 : replaced occurrances of with , also madeQPID-1185
default.testprofile always load so that all other testprofiles only need
to override values that are different

r678759 gsim 2008-07-22 Fix to transaction batching. (Backport of r669215).

r678848 rhs 2008-07-22 Updated the io transport to use a separate write thread with a circular
buffer that does opportunistic write batching. Fixed error handling and
shutdown for the io transport. Switched default from min ...

r679038 gsim 2008-07-23 Further fixes to transactional perftest: * correction to transaction
boundaries * ensure any outstanding acks are sent on completion of
subscriber

r679045 gsim 2008-07-23 Fixes for transactional perftest (merge of r679038 from qpid.0-10)

r679048 gsim 2008-07-23 : Use the right sizes to insert data inside the messageQPID-1183
payload where sizeof(size_t) != sizeof(uint32_t). Patch from Manuel
Teira.

r679059 ritchiem 2008-07-23 : The broker did not correctly handle subscriptions thatQPID-1187
would suspend due to exhaustion of bytes credit. The processQueue
loop would spin, this fix marks the subscription inactive for that ...

r679105 arnaudsimon 2008-07-23 qpid-1157: added jms tck scripts + README file + config file for
setting email related properties

r679232 rhs 2008-07-23 excluded a known-failing test for durable subscriptions, the fix is on
trunk and doesn't as yet need to be backported

r679268 astitcher 2008-07-24 Refactor to change client connector state machine to be held in
ConnectionHandler

r679276 astitcher 2008-07-24 Refactored so that Dispatcher is now independent from
DispatchHandle

http://svn.apache.org/viewvc/?view=rev&revision=677260
https://issues.apache.org/jira/browse/QPID-1179
http://svn.apache.org/viewvc/?view=rev&revision=677262
http://svn.apache.org/viewvc/?view=rev&revision=677263
https://issues.apache.org/jira/browse/QPID-1181
http://svn.apache.org/viewvc/?view=rev&revision=677319
http://svn.apache.org/viewvc/?view=rev&revision=677327
https://issues.apache.org/jira/browse/QPID-871
http://svn.apache.org/viewvc/?view=rev&revision=677408
https://issues.apache.org/jira/browse/QPID-1170
http://svn.apache.org/viewvc/?view=rev&revision=677412
https://issues.apache.org/jira/browse/QPID-1170
http://svn.apache.org/viewvc/?view=rev&revision=677471
http://svn.apache.org/viewvc/?view=rev&revision=677486
http://svn.apache.org/viewvc/?view=rev&revision=677525
https://issues.apache.org/jira/browse/QPID-1177
http://svn.apache.org/viewvc/?view=rev&revision=677629
http://svn.apache.org/viewvc/?view=rev&revision=677633
https://issues.apache.org/jira/browse/QPID-1182
http://svn.apache.org/viewvc/?view=rev&revision=678211
https://issues.apache.org/jira/browse/QPID-1184
http://svn.apache.org/viewvc/?view=rev&revision=678260
https://issues.apache.org/jira/browse/QPID-1185
http://svn.apache.org/viewvc/?view=rev&revision=678759
http://svn.apache.org/viewvc/?view=rev&revision=678848
http://svn.apache.org/viewvc/?view=rev&revision=679038
http://svn.apache.org/viewvc/?view=rev&revision=679045
http://svn.apache.org/viewvc/?view=rev&revision=679048
https://issues.apache.org/jira/browse/QPID-1183
http://svn.apache.org/viewvc/?view=rev&revision=679059
https://issues.apache.org/jira/browse/QPID-1187
http://svn.apache.org/viewvc/?view=rev&revision=679105
http://svn.apache.org/viewvc/?view=rev&revision=679232
http://svn.apache.org/viewvc/?view=rev&revision=679268
http://svn.apache.org/viewvc/?view=rev&revision=679276

r679462 gsim 2008-07-24 Set a configurable default size limit on queues

r679469 gsim 2008-07-24 Allow configurable default size limit to be set for queues (merged
from r679462).

r679481 arnaudsimon 2008-07-24 qpid-1157: updated java trunk so a report is generated when there is
a fault

r679689 gsim 2008-07-25 : Optional mechanism to avoid race when automating topicQPID-447
tests. Patch from David Sommerseth.

r679699 gsim 2008-07-25 : Patch from David Sommerseth merged from r679689.QPID-447

r679717 gsim 2008-07-25 , & : Patches from Steve HustonQPID-1154 QPID-1155 QPID-1156
to fix various minor compiler errors.

r679739 gsim 2008-07-25 Fixed bug in SubscriptionManager::get() where flush was issued
before waiting and if message showed up after flush completed but
before wait was finished there was no credit (due to flush) to deliver
...

r679748 gsim 2008-07-25 Merged fix to SubscriptionManager (was r679739)

r679756 gsim 2008-07-25 Exclude core verify script from verifications run when python
examples cannot be found.

r679762 aidan 2008-07-25 Add xslt magic for creating code review agenda, and add wrapper
script

Jiras

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

QPID-1182 Java Broker (QPID-1182) SimpleACLTest
authentication failures

Open Martin
Ritchie

Martin
Ritchie

QPID-1183 C++ Broker M3 (QPID-1183) perftest doesn't work
correctly when sizeof(size_t) !=
sizeof(uint32_t)

Resolved Unassigned Manuel
Teira

QPID-1184 Java Tests M3 (QPID-1184) all output during tests
is buffered until the test case
finishes

Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1185 Ant Build System M3 (QPID-1185) -Dlog=foo is ignored Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1186 Java Client M2.1 (QPID-1186) (Client Race
Condition) After Failover client can
ack last message from previous
session.

Open Martin
Ritchie

Martin
Ritchie

QPID-1187 Java Broker M3 (QPID-1187) Java Broker appears
to be stuck in a loop

In
Progress

Martin
Ritchie

Martin
Ritchie

QPID-1188 Java Client M3 (QPID-1188) java 0-10 client
deadlocks when running with
-Dprotectio=true

Open Rafael H.
Schloming

Rafael H.
Schloming

QPID-1189 Java Broker M3 (QPID-1189) Ant target need to be
execute twice to build Qpid

Open Unassigned Asanka
Abeysinghe

QPID-1190 Java Broker M3 (QPID-1190) Broker logs 0-10
negotiation failure

Open Marnie
McCormack

Aidan
Skinner

QPID-1191 Java Broker, JMS
Compliance

 (QPID-1191) Enable Exchange
level filters.

Open Martin
Ritchie

Martin
Ritchie

QPID-1192 Java Client, JMS
Compliance

 (QPID-1192) Client needs to send
selector string as part of Binding
request when using topics

Open Martin
Ritchie

Martin
Ritchie

QPID-1193 Java Broker
MessageStore -
DerbyStore

 (QPID-1193) Bind arguments must
be stored with binding in
DerbyStore

Open Martin
Ritchie

Martin
Ritchie

QPID-1194 Java Broker, Java
Client

 (QPID-1194) Enable Selector use
on JMS Topics in the Java Broker

Open Martin
Ritchie

Martin
Ritchie

http://svn.apache.org/viewvc/?view=rev&revision=679462
http://svn.apache.org/viewvc/?view=rev&revision=679469
http://svn.apache.org/viewvc/?view=rev&revision=679481
http://svn.apache.org/viewvc/?view=rev&revision=679689
https://issues.apache.org/jira/browse/QPID-447
http://svn.apache.org/viewvc/?view=rev&revision=679699
https://issues.apache.org/jira/browse/QPID-447
http://svn.apache.org/viewvc/?view=rev&revision=679717
https://issues.apache.org/jira/browse/QPID-1154
https://issues.apache.org/jira/browse/QPID-1155
https://issues.apache.org/jira/browse/QPID-1156
http://svn.apache.org/viewvc/?view=rev&revision=679739
http://svn.apache.org/viewvc/?view=rev&revision=679748
http://svn.apache.org/viewvc/?view=rev&revision=679756
http://svn.apache.org/viewvc/?view=rev&revision=679762
https://issues.apache.org/jira/browse/QPID-1182
https://issues.apache.org/jira/browse/QPID-1183
https://issues.apache.org/jira/browse/QPID-1184
https://issues.apache.org/jira/browse/QPID-1185
https://issues.apache.org/jira/browse/QPID-1186
https://issues.apache.org/jira/browse/QPID-1187
https://issues.apache.org/jira/browse/QPID-1188
https://issues.apache.org/jira/browse/QPID-1189
https://issues.apache.org/jira/browse/QPID-1190
https://issues.apache.org/jira/browse/QPID-1191
https://issues.apache.org/jira/browse/QPID-1192
https://issues.apache.org/jira/browse/QPID-1193
https://issues.apache.org/jira/browse/QPID-1194

QPID-1195 Java Broker (QPID-1195) Recovery with
Argument Maps

Open Martin
Ritchie

Martin
Ritchie

QPID-1196 Java Broker, Java
Broker
MessageStore -
DerbyStore

 (QPID-1196) Queue Entries
should be in terms of id's not
queue -names

Open Martin
Ritchie

Martin
Ritchie

QPID-1197 Java Broker (QPID-1197) Improve persistent
recovery

Open Unassigned Martin
Ritchie

QPID-1198 C++ Broker M3 (QPID-1198) Changes for the
solaris port

Open Andrew
Stitcher

Manuel
Teira

Qpid Java Meeting Minutes 2008-08-01

Agenda

Commits review
JIRA Review
AOCB

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase + move QpidTestCase in main so it is visible
form systests

RECEIVE_TIMEOUT : get rid of
and use configurable timeout
when available

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deepQPID-1101
copy.

Needs test

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

r662770 ritchiem 2008-06-03 : Changed toString to beQPID-1092
String.valueOf(getObject()) Added MessageToStringTest,
tests performing toString on Message before calling
getObject().

Weird catch in close()

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to
send an messageAccept)

inRecover check in
BMC_0_10.postDeliver might be
a problem with async delivery

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the callQPID-901
fails

RHS: make sure flag is used
where appropriate

r667561 ritchiem 2008-06-13 : Provided a fix for the leak inQPID-1136
UnacknowledgedMessage when acking. Added a new
InternalBrokerBaseCase for performing testing on the broker
without using the client libraries. This allows fo ...

InternalMinaProtocolSession has
a bug in awaitDelivery where it
can hang because deliveryCount
is already set to !0

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

RG: document
LocalTransactionalContext

r669885 rgodfrey 2008-06-20 : Updated Direct Exchange so it does not modifyQPID-1101
lists of queues

No Test

r671845 aidan 2008-06-26 : Merge Changes to the client to makeQPID-854 QPID-999
the dispatcher responsible for closing the queue browser
when all the messages have been processed.

JIRA clean up of anon
CloseMessage DeliveryBody
class.

r671949 ritchiem 2008-06-26 : Commented out the TimerTask so that it can beQPID-909
wrapped with a ScaledTestDecorator. Minimal change to get
our existing tests to run. If closer duration control is required
then further time c ...

Change Commit list

r672810 rajith 2008-06-30 This commit is related to . Please refer to theQPID-1161
JIRA for complete details. In Summary this contains a simple
test kit comprising of perf and soak tests. The focus is on
producing a packaged ...

https://issues.apache.org/jira/browse/QPID-1195
https://issues.apache.org/jira/browse/QPID-1196
https://issues.apache.org/jira/browse/QPID-1197
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115
http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=667561
https://issues.apache.org/jira/browse/QPID-1136
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=669885
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=671845
https://issues.apache.org/jira/browse/QPID-854
https://issues.apache.org/jira/browse/QPID-999
http://svn.apache.org/viewvc/?view=rev&revision=671949
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=672810
https://issues.apache.org/jira/browse/QPID-1161

r674085 ritchiem 2008-07-04 - Added a ConnectionRegistry per Virtualhost toQPID-871
track the open connections. Altered the ApplicationRegistry
so that when the shutdown hook is fired it: Unbinds from the
listening sockets Then ...

Commits

revision committer date comment

r674976 rajith 2008-07-08 This is related to . Added the ability to pass inQPID-1161
JVM ARGs.

r674994 tross 2008-07-08 - Remove boost dependency from management agent interfaceQPID-1170

r675017 aconway 2008-07-08 HandlerChain: plug-in handler chain extension points. Replaces
Handler<T>::Chain. Updated Sessoin & Connection
handler chains and Cluster.

r675144 aconway 2008-07-09 Fix for older boost versions

r675146 aconway 2008-07-09 Fix signed/unsigned compare error

r675155 aconway 2008-07-09 Removed dead code.

r675165 rhs 2008-07-09 Primarily profiling driven changes: - added batched writes of
commands/controls issued on a session - copy fragmented frames and
segments rather than trying to decode them piecemeal, removed Fr ...

r675252 gsim 2008-07-09 Allow for pluggable exchange types.

r675338 astitcher 2008-07-09 Some small changes which clean up header file inclusions and generally
start to tidy up the network layer so
that it's a bit easier to implement new network transports

r675397 rhs 2008-07-10 : moved channel id into the ProtocolEvent interface andQPID-1062
removed ConnectionEvent, this removes the overhead of creating
ConnectionEvents

r675433 rhs 2008-07-10 : batch acks when prefetch is usedQPID-1171

r675477 gsim 2008-07-10 Honour timeout in BlockingQueue::pop(); added test for
SubscriptionManager::get() where no message exists.

r675486 gsim 2008-07-10 Assume accept-mode=1 (i.e. none required) where not explicitly specified
on a message.transfer

r675598 gsim 2008-07-10 Add a get() method to subscription manager that retrieves one message
from the specified queue if available, returns false otherwise.

r675674 tross 2008-07-10 Move shutdown of management broker to end of shutdown sequence

r676067 tross 2008-07-11 Remote Management Agent for management of externalQPID-1174
components

r676581 gsim 2008-07-14 Allow for pluggable exchange types.

r676613 rajith 2008-07-14 This is related to . This is already in trunk andQPID-1163
I am porting it to the qpid.0-10 branch.

r676831 aidan 2008-07-15 Multi-version interop test script

r676878 ritchiem 2008-07-15 Added missing license header and fixed execute bit onQPID-909
MessageSize.sh Added RunAll.sh for good measure

r676879 ritchiem 2008-07-15 Updated gitignore with cpp example output and other generated files

r676883 ritchiem 2008-07-15 : VirtualHost now validates that name is non-null andQPID-1175
non-empty. Full protocol validation of the virtualhost name has not been
performed.

r676884 ritchiem 2008-07-15 : Updated Tasks and gentools build to use the java.source andQPID-1176
java.target values. Added echo statements to show the targeted build
Updated other info echo statements to be an info level so t ...

r676885 ritchiem 2008-07-15 Updated log4j format as per discussion on mailing list.

r676886 ritchiem 2008-07-15 Removed the non ASCII characters that are causing the build to minorly
complain.

r676887 ritchiem 2008-07-15 : Moved unregistration out of the sendLock. Potential refactorQPID-1172
possible between processQueue and flushSubscription

http://svn.apache.org/viewvc/?view=rev&revision=674085
https://issues.apache.org/jira/browse/QPID-871
http://svn.apache.org/viewvc/?view=rev&revision=674976
https://issues.apache.org/jira/browse/QPID-1161
http://svn.apache.org/viewvc/?view=rev&revision=674994
https://issues.apache.org/jira/browse/QPID-1170
http://svn.apache.org/viewvc/?view=rev&revision=675017
http://svn.apache.org/viewvc/?view=rev&revision=675144
http://svn.apache.org/viewvc/?view=rev&revision=675146
http://svn.apache.org/viewvc/?view=rev&revision=675155
http://svn.apache.org/viewvc/?view=rev&revision=675165
http://svn.apache.org/viewvc/?view=rev&revision=675252
http://svn.apache.org/viewvc/?view=rev&revision=675338
http://svn.apache.org/viewvc/?view=rev&revision=675397
https://issues.apache.org/jira/browse/QPID-1062
http://svn.apache.org/viewvc/?view=rev&revision=675433
https://issues.apache.org/jira/browse/QPID-1171
http://svn.apache.org/viewvc/?view=rev&revision=675477
http://svn.apache.org/viewvc/?view=rev&revision=675486
http://svn.apache.org/viewvc/?view=rev&revision=675598
http://svn.apache.org/viewvc/?view=rev&revision=675674
http://svn.apache.org/viewvc/?view=rev&revision=676067
https://issues.apache.org/jira/browse/QPID-1174
http://svn.apache.org/viewvc/?view=rev&revision=676581
http://svn.apache.org/viewvc/?view=rev&revision=676613
https://issues.apache.org/jira/browse/QPID-1163
http://svn.apache.org/viewvc/?view=rev&revision=676831
http://svn.apache.org/viewvc/?view=rev&revision=676878
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=676879
http://svn.apache.org/viewvc/?view=rev&revision=676883
https://issues.apache.org/jira/browse/QPID-1175
http://svn.apache.org/viewvc/?view=rev&revision=676884
https://issues.apache.org/jira/browse/QPID-1176
http://svn.apache.org/viewvc/?view=rev&revision=676885
http://svn.apache.org/viewvc/?view=rev&revision=676886
http://svn.apache.org/viewvc/?view=rev&revision=676887
https://issues.apache.org/jira/browse/QPID-1172

r676932 aconway 2008-07-15 Switched from shared_ptr to intrusive_ptr and RefCounted for Broker.

r676938 rajith 2008-07-15 This is related to . I have fixed the error handling and revisedQPID-1102
the while loop in IoSender based on the comments received during the
code review

r676951 aidan 2008-07-15 fix cpp client, path changes

r676963 aconway 2008-07-15 Fix "ignoring return value" warning from LockFile.h.

r676969 ritchiem 2008-07-15 : Based on Code Review : Remvoed AutoCreateVMBrokerQPID-1079
code from QpidTestCase. Removed VMTestCase and all references to it, it
was only used in JUnit4 testSuite wrappers. Rather than move QpidT ...

r676971 ritchiem 2008-07-15 : Based on Code Review : Remvoed AutoCreateVMBrokerQPID-1079
code from QpidTestCase. Removed VMTestCase and all references to it, it
was only used in JUnit4 testSuite wrappers. Rather than move QpidT ...

r676972 ritchiem 2008-07-15 : Update to gentools to remove commented out properties that IQPID-1176

left in via git

r676973 ritchiem 2008-07-15 : Applied fix from M2.1.x that adds requried synchronizationQPID-984
around setup and tear down of Connections.

r676978 ritchiem 2008-07-15 , , , : Updated the client exceptionQPID-940 QPID-594 QPID-805 QPID-826
handling so that exceptions are not lost. In performing the changes I noted
that the AMQStateManager is only used for connection crea ...

r676982 ritchiem 2008-07-15 : Added Protocol Level Debug logging. Uses a final static soQPID-1177
should JIT out if disabled. To enable set -Damqj.protocol.logging.level=info

r677256 ritchiem 2008-07-16 : Prevent Rejecting messages destined for knownQPID-1178
QueueBrowsers

r677257 ritchiem 2008-07-16 Changed erroneous error level logging to info level

r677258 ritchiem 2008-07-16 Added a warning log statement if the TransportConnection autocreates an
InVM Broker

r677259 ritchiem 2008-07-16 Converted client.failover.FailoverTest so it can utilise the standard
mechanism for failover testing, as the local CruiseControl had
testP2PFailoveWithMessagesLeft fail with extra messages being left ...

r677260 ritchiem 2008-07-16 : Adjusted the test size from 100 to 10, this should reduce theQPID-1179
likely hood of a slow machine failing the test.

r677262 ritchiem 2008-07-16 Renamed shutdownServer to restartBroker as that is what is does

r677263 ritchiem 2008-07-16 : Added additional logging to help diagnose aQPID-1181
NullPointerException

r677319 ritchiem 2008-07-16 Update to the logging to ensure QpidTestCase is always logged and
standardized the protocol output format between 0-8/0-9 and 0-10

r677327 ritchiem 2008-07-16 : The shutdown change had a spurious getInstance() call whichQPID-871
would case a new instance of ID 1 to be created if there wasn't one, it
would then procede to shutdown that MBeanServer not the M ...

r677408 tross 2008-07-16 - Provide a better factory for creation and deletion of theQPID-1170
management agent

r677412 tross 2008-07-16 - Removed spurious include from exampleQPID-1170

r677471 aconway 2008-07-17 Cluster: shadow connections, fix lifecycle & valgrind issues. -
tests/ForkedBroker: improved broker forking, exec full qpidd. -
Plugin::addFinalizer - more flexible way to shutdown plugins. - Rewo ...

r677486 aconway 2008-07-17 Enable dequeue for prototype cluster - qpid/broker/SemanticState.cpp:
moved doOutput into write idle callback. - qpid/broker/Connection.cpp:
make doOutput an intercept point. - qpid/cluster/*: inte ...

r677525 ritchiem 2008-07-17 : Fixed the format of the messages, realised that theQPID-1177
transport.Connection uses a logging wrapper but in my haste to make the
format the same in AMQProtocolHandler hadn't checked the output ...

r677629 ritchiem 2008-07-17 Moved the Reflection Wrapping code used by the system tests to the
system test. If they are left in common then we must include the common
directory when using the systest-testing frameworks no matter ...

r677633 ritchiem 2008-07-17 : Added additional logging to identify the exception that causedQPID-1182
Authentication to fail.

http://svn.apache.org/viewvc/?view=rev&revision=676932
http://svn.apache.org/viewvc/?view=rev&revision=676938
https://issues.apache.org/jira/browse/QPID-1102
http://svn.apache.org/viewvc/?view=rev&revision=676951
http://svn.apache.org/viewvc/?view=rev&revision=676963
http://svn.apache.org/viewvc/?view=rev&revision=676969
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=676971
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=676972
https://issues.apache.org/jira/browse/QPID-1176
http://svn.apache.org/viewvc/?view=rev&revision=676973
https://issues.apache.org/jira/browse/QPID-984
http://svn.apache.org/viewvc/?view=rev&revision=676978
https://issues.apache.org/jira/browse/QPID-940
https://issues.apache.org/jira/browse/QPID-594
https://issues.apache.org/jira/browse/QPID-805
https://issues.apache.org/jira/browse/QPID-826
http://svn.apache.org/viewvc/?view=rev&revision=676982
https://issues.apache.org/jira/browse/QPID-1177
http://svn.apache.org/viewvc/?view=rev&revision=677256
https://issues.apache.org/jira/browse/QPID-1178
http://svn.apache.org/viewvc/?view=rev&revision=677257
http://svn.apache.org/viewvc/?view=rev&revision=677258
http://svn.apache.org/viewvc/?view=rev&revision=677259
http://svn.apache.org/viewvc/?view=rev&revision=677260
https://issues.apache.org/jira/browse/QPID-1179
http://svn.apache.org/viewvc/?view=rev&revision=677262
http://svn.apache.org/viewvc/?view=rev&revision=677263
https://issues.apache.org/jira/browse/QPID-1181
http://svn.apache.org/viewvc/?view=rev&revision=677319
http://svn.apache.org/viewvc/?view=rev&revision=677327
https://issues.apache.org/jira/browse/QPID-871
http://svn.apache.org/viewvc/?view=rev&revision=677408
https://issues.apache.org/jira/browse/QPID-1170
http://svn.apache.org/viewvc/?view=rev&revision=677412
https://issues.apache.org/jira/browse/QPID-1170
http://svn.apache.org/viewvc/?view=rev&revision=677471
http://svn.apache.org/viewvc/?view=rev&revision=677486
http://svn.apache.org/viewvc/?view=rev&revision=677525
https://issues.apache.org/jira/browse/QPID-1177
http://svn.apache.org/viewvc/?view=rev&revision=677629
http://svn.apache.org/viewvc/?view=rev&revision=677633
https://issues.apache.org/jira/browse/QPID-1182

r678211 rhs 2008-07-19 : redirect stdout and stderr from QpidTestCaseQPID-1184

r678260 rhs 2008-07-20 : replaced occurrances of with , also made default.testprofileQPID-1185
always load so that all other testprofiles only need to override values that
are different

r678759 gsim 2008-07-22 Fix to transaction batching. (Backport of r669215).

r678848 rhs 2008-07-22 Updated the io transport to use a separate write thread with a circular
buffer that does opportunistic write batching. Fixed error handling and
shutdown for the io transport. Switched default from min ...

r679038 gsim 2008-07-23 Further fixes to transactional perftest: * correction to transaction boundaries
* ensure any outstanding acks are sent on completion of subscriber

r679045 gsim 2008-07-23 Fixes for transactional perftest (merge of r679038 from qpid.0-10)

r679048 gsim 2008-07-23 : Use the right sizes to insert data inside the message payloadQPID-1183
where sizeof(size_t) != sizeof(uint32_t). Patch from Manuel Teira.

r679059 ritchiem 2008-07-23 : The broker did not correctly handle subscriptions that wouldQPID-1187
suspend due to exhaustion of bytes credit. The processQueue loop would
spin, this fix marks the subscription inactive for that ...

r679105 arnaudsimon 2008-07-23 qpid-1157: added jms tck scripts + README file + config file for setting
email related properties

r679232 rhs 2008-07-23 excluded a known-failing test for durable subscriptions, the fix is on trunk
and doesn't as yet need to be backported

r679268 astitcher 2008-07-24 Refactor to change client connector state machine to be held in
ConnectionHandler

r679276 astitcher 2008-07-24 Refactored so that Dispatcher is now independent from DispatchHandle

r679462 gsim 2008-07-24 Set a configurable default size limit on queues

r679469 gsim 2008-07-24 Allow configurable default size limit to be set for queues (merged from
r679462).

r679481 arnaudsimon 2008-07-24 qpid-1157: updated java trunk so a report is generated when there is a fault

r679689 gsim 2008-07-25 : Optional mechanism to avoid race when automating topic tests.QPID-447
Patch from David Sommerseth.

r679699 gsim 2008-07-25 : Patch from David Sommerseth merged from r679689.QPID-447

r679717 gsim 2008-07-25 , & : Patches from Steve Huston to fixQPID-1154 QPID-1155 QPID-1156
various minor compiler errors.

r679739 gsim 2008-07-25 Fixed bug in SubscriptionManager::get() where flush was issued before
waiting and if message showed up after flush completed but before wait
was finished there was no credit (due to flush) to deliver ...

r679748 gsim 2008-07-25 Merged fix to SubscriptionManager (was r679739)

r679756 gsim 2008-07-25 Exclude core verify script from verifications run when python examples
cannot be found.

r679762 aidan 2008-07-25 Add xslt magic for creating code review agenda, and add wrapper script

r679801 gsim 2008-07-25 Only reduce count and size maintained for queue plicy when messages are
actually dequeued (i.e. acked).

r679805 gsim 2008-07-25 Only reduce count and size maintained for queue plicy when messages are
actually dequeued (i.e. acked).

r679822 gsim 2008-07-25 Reduce the size of messages in fanout perftest to keep the queues from
getting too large.

r679827 gsim 2008-07-25 Reduce the size of messages in fanout perftest to keep the queues from
getting too large.

r680309 aidan 2008-07-28 : Only set out and err if we're actually redirecting them.QPID-1200

r680313 aidan 2008-07-28 Add some escaping action to the sed in svncmd so that it works right

r680318 gsim 2008-07-28 Remove unused Module.h header file.

r680349 aidan 2008-07-28 Add java test profile

r680362 gsim 2008-07-28 Ensure that the management thread is stopped before shutdown() returns
(to allow sensible behaviour for deletion of statics).

http://svn.apache.org/viewvc/?view=rev&revision=678211
https://issues.apache.org/jira/browse/QPID-1184
http://svn.apache.org/viewvc/?view=rev&revision=678260
https://issues.apache.org/jira/browse/QPID-1185
http://svn.apache.org/viewvc/?view=rev&revision=678759
http://svn.apache.org/viewvc/?view=rev&revision=678848
http://svn.apache.org/viewvc/?view=rev&revision=679038
http://svn.apache.org/viewvc/?view=rev&revision=679045
http://svn.apache.org/viewvc/?view=rev&revision=679048
https://issues.apache.org/jira/browse/QPID-1183
http://svn.apache.org/viewvc/?view=rev&revision=679059
https://issues.apache.org/jira/browse/QPID-1187
http://svn.apache.org/viewvc/?view=rev&revision=679105
http://svn.apache.org/viewvc/?view=rev&revision=679232
http://svn.apache.org/viewvc/?view=rev&revision=679268
http://svn.apache.org/viewvc/?view=rev&revision=679276
http://svn.apache.org/viewvc/?view=rev&revision=679462
http://svn.apache.org/viewvc/?view=rev&revision=679469
http://svn.apache.org/viewvc/?view=rev&revision=679481
http://svn.apache.org/viewvc/?view=rev&revision=679689
https://issues.apache.org/jira/browse/QPID-447
http://svn.apache.org/viewvc/?view=rev&revision=679699
https://issues.apache.org/jira/browse/QPID-447
http://svn.apache.org/viewvc/?view=rev&revision=679717
https://issues.apache.org/jira/browse/QPID-1154
https://issues.apache.org/jira/browse/QPID-1155
https://issues.apache.org/jira/browse/QPID-1156
http://svn.apache.org/viewvc/?view=rev&revision=679739
http://svn.apache.org/viewvc/?view=rev&revision=679748
http://svn.apache.org/viewvc/?view=rev&revision=679756
http://svn.apache.org/viewvc/?view=rev&revision=679762
http://svn.apache.org/viewvc/?view=rev&revision=679801
http://svn.apache.org/viewvc/?view=rev&revision=679805
http://svn.apache.org/viewvc/?view=rev&revision=679822
http://svn.apache.org/viewvc/?view=rev&revision=679827
http://svn.apache.org/viewvc/?view=rev&revision=680309
https://issues.apache.org/jira/browse/QPID-1200
http://svn.apache.org/viewvc/?view=rev&revision=680313
http://svn.apache.org/viewvc/?view=rev&revision=680318
http://svn.apache.org/viewvc/?view=rev&revision=680349
http://svn.apache.org/viewvc/?view=rev&revision=680362

r680395 astitcher 2008-07-28 Refactor of EpollPoller to make PollerHandler lifecycle easier

r680601 rhs 2008-07-29 removed defaulted entries from the java testprofile

r680602 rhs 2008-07-29 : fixed up version of aidan's patch, there are still failures whenQPID-1201
running against an external java broker, however we seem to get past
basic connection negotiation now

Need to check that
this works with 0-8
only broker

r680673 rhs 2008-07-29 : fixed some brainos in IoSenderQPID-1201

r680691 astitcher 2008-07-29 Fix for client busy looping whilst waiting for a message

r680695 gsim 2008-07-29 Merged r680691

r680750 aidan 2008-07-29 Don't treat protocol negotiation failure as failover reducingQPID-1203
error.

r680751 aidan 2008-07-29 : use slf4j instead of log4j directlyQPID-1203

r680752 aidan 2008-07-29 : Add 08ExcludeList for external Java broker and make theQPID-1203
profile use that. Make AMQConnectionFactory take an optional clientid and
use that if specified.

r680798 tross 2008-07-29 - Patch from Steve HustonQPID-1153

r680803 rhs 2008-07-29 : renamed org.apache.qpidity -> org.apache.qpidQPID-1072

r680826 astitcher 2008-07-29 : (Partial) Fix test shell scripts to work with /bin/sh Patches fromQPID-1198
Manuel Teira. These scripts have #!/bin/sh but they were previously really
dependent on bash.

r680827 astitcher 2008-07-29 (Partial): Added explicit namespaces that the Sun C++ requiresQPID-1198
(that gcc doesn't) Patches from Manuel Teira. It's not clear at this point
whether there is a compiler problem with gcc that it ...

r680828 astitcher 2008-07-29 (Partial): replace all uses of u_intX_t with uintX_t Patches fromQPID-1198
Manuel Teira. The u_int* versions are not available in the Sun header files.
In any case using only uint* is more consistent ...

r680829 astitcher 2008-07-29 (Partial): Add #include <alloca.h> for all uses of ::alloca()QPID-1198
Patches from Manuel Teira.

r680830 astitcher 2008-07-29 (Partial): Missing header files that are really needed PatchesQPID-1198
from Manuel Teira. Compilation works on Linux due to implicit header
inclusions but fails on Solaris Some tightening up of std ...

r680831 astitcher 2008-07-29 Small comment tidy

r680833 astitcher 2008-07-29 Removed unused functions Removed unused Thread and Socket functions
- These functions also cause problems with Solaris compilations Remove
unused client connector functionality

r680918 astitcher 2008-07-30 Removed errno from a default parameter as I'm not convinced that this is
always portable as errno could be a macro

r680919 astitcher 2008-07-30 (adapted): Change use of uuid lib not to assume constQPID-1198
parameters The Solaris version of uuid.h takes uint8_t* not const uint8_t*

r680920 astitcher 2008-07-30 Related to : Moved posix platform specific "strerror" code toQPID-1198
platform specific directory

r680921 astitcher 2008-07-30 : Solaris ECF (port) based Poller Patch from Manuel TeiraQPID-1198

r680937 gsim 2008-07-30 Added error handling for case where socket cannot be accepted e.g. due to
constraints on file handles.

r680939 gsim 2008-07-30 Merged r680937. Added error handling for case where socket cannot be
accepted e.g. due to constraints on file handles.

r680941 ritchiem 2008-07-30 : Made both changes as per JIRA notesQPID-1000

r680942 ritchiem 2008-07-30 Update QpidTestCase to add /bin to the path for the external broker

r680987 rhs 2008-07-30 added defaulting of QPID_HOME

r681117 aidan 2008-07-30 : Make consumer send Selector as part of binding. :QPID-1192 QPID-1191
Add test to exhibit leak Change DurableSubscriptionTest to validate
exception type recieved Make BasicMessageConsumer validate th ...

r681164 gsim 2008-07-30 : added patches and additions required to build against boostQPID-1162
1.32. These are not deemed desirable for direct application to the trunk, but
can be used to simply update an svn checkout for co ...

http://svn.apache.org/viewvc/?view=rev&revision=680395
http://svn.apache.org/viewvc/?view=rev&revision=680601
http://svn.apache.org/viewvc/?view=rev&revision=680602
https://issues.apache.org/jira/browse/QPID-1201
http://svn.apache.org/viewvc/?view=rev&revision=680673
https://issues.apache.org/jira/browse/QPID-1201
http://svn.apache.org/viewvc/?view=rev&revision=680691
http://svn.apache.org/viewvc/?view=rev&revision=680695
http://svn.apache.org/viewvc/?view=rev&revision=680750
https://issues.apache.org/jira/browse/QPID-1203
http://svn.apache.org/viewvc/?view=rev&revision=680751
https://issues.apache.org/jira/browse/QPID-1203
http://svn.apache.org/viewvc/?view=rev&revision=680752
https://issues.apache.org/jira/browse/QPID-1203
http://svn.apache.org/viewvc/?view=rev&revision=680798
https://issues.apache.org/jira/browse/QPID-1153
http://svn.apache.org/viewvc/?view=rev&revision=680803
https://issues.apache.org/jira/browse/QPID-1072
http://svn.apache.org/viewvc/?view=rev&revision=680826
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680827
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680828
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680829
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680830
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680831
http://svn.apache.org/viewvc/?view=rev&revision=680833
http://svn.apache.org/viewvc/?view=rev&revision=680918
http://svn.apache.org/viewvc/?view=rev&revision=680919
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680920
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680921
https://issues.apache.org/jira/browse/QPID-1198
http://svn.apache.org/viewvc/?view=rev&revision=680937
http://svn.apache.org/viewvc/?view=rev&revision=680939
http://svn.apache.org/viewvc/?view=rev&revision=680941
https://issues.apache.org/jira/browse/QPID-1000
http://svn.apache.org/viewvc/?view=rev&revision=680942
http://svn.apache.org/viewvc/?view=rev&revision=680987
http://svn.apache.org/viewvc/?view=rev&revision=681117
https://issues.apache.org/jira/browse/QPID-1192
https://issues.apache.org/jira/browse/QPID-1191
http://svn.apache.org/viewvc/?view=rev&revision=681164
https://issues.apache.org/jira/browse/QPID-1162

r681193 astitcher 2008-07-30 The previous attempt to only get an xpg strerror_r with the GNU failed
instead use the definition of _GNU_SOURCE as a proxy for the gnu
version

r681318 aidan 2008-07-31 Turn off TopicSessionTest#testNonMatchingMessagesDoNotFillQueue
since c++ broker doesn't do server side selectors

r681320 aidan 2008-07-31 Fix line break

r681333 arnaudsimon 2008-07-31 qpid-1205: deleted cpp.sync profile, added cpp.noprefetch profile

r681336 arnaudsimon 2008-07-31 qpid-1205: deleted exclude list from cc

r681362 tross 2008-07-31 - Management updates for remote agentsQPID-1174

r681367 arnaudsimon 2008-07-31 qpid-1163: Added test for qpid-1163 (Note: I have checked that this test did
not pass before r673074)

r681407 gsim 2008-07-31 Fixed for 64bit systems

r681408 rajith 2008-07-31 This is related to . I have enabled the code which will print xxxxQPID-1208
when the log level != debug.

Should not ever
print the password.

r681411 rajith 2008-07-31 This is related to I have enabled the code which will print xxxxQPID-1208
when the log level != debug.

r681474 rhs 2008-07-31 : fixed io transport close to ensure threads shutdown properlyQPID-1207

r681476 rhs 2008-07-31 : made qpid-run output level configurableQPID-1210 Fix setting of level in
qpid-server to
include \ or indent
properly

r681477 rhs 2008-07-31 added tools module to the main build

r681479 cctrieloff 2008-07-31
Implementation of ACL plugin - Apply ACL to Exchange, Queue,
Binding, Subscribe - Follow Java ACL types, few added To
complete the implementation of ACL the following items are
remaining. - ACL on ...

r681483 cctrieloff 2008-07-31 missing file

r681491 cctrieloff 2008-07-31 small cleanup

r681494 cctrieloff 2008-07-31 another missing file

r681505 cctrieloff 2008-07-31 header file fix fr build

r681509 cctrieloff 2008-07-31 attempt to fix spec file

r681512 tross 2008-07-31 Added signed integer datatypes for use in management schemas

Qpid Java Meeting Minutes 2008-08-08

Agenda

Commits review
JIRA Review
AOCB

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for usingQPID-1079
QpidTestCase + move QpidTestCase in main so it is visible
form systests

RECEIVE_TIMEOUT : get rid of
and use configurable timeout
when available

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deepQPID-1101
copy.

Needs test

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

http://svn.apache.org/viewvc/?view=rev&revision=681193
http://svn.apache.org/viewvc/?view=rev&revision=681318
http://svn.apache.org/viewvc/?view=rev&revision=681320
http://svn.apache.org/viewvc/?view=rev&revision=681333
http://svn.apache.org/viewvc/?view=rev&revision=681336
http://svn.apache.org/viewvc/?view=rev&revision=681362
https://issues.apache.org/jira/browse/QPID-1174
http://svn.apache.org/viewvc/?view=rev&revision=681367
http://svn.apache.org/viewvc/?view=rev&revision=681407
http://svn.apache.org/viewvc/?view=rev&revision=681408
https://issues.apache.org/jira/browse/QPID-1208
http://svn.apache.org/viewvc/?view=rev&revision=681411
https://issues.apache.org/jira/browse/QPID-1208
http://svn.apache.org/viewvc/?view=rev&revision=681474
https://issues.apache.org/jira/browse/QPID-1207
http://svn.apache.org/viewvc/?view=rev&revision=681476
https://issues.apache.org/jira/browse/QPID-1210
http://svn.apache.org/viewvc/?view=rev&revision=681477
http://svn.apache.org/viewvc/?view=rev&revision=681479
http://svn.apache.org/viewvc/?view=rev&revision=681483
http://svn.apache.org/viewvc/?view=rev&revision=681491
http://svn.apache.org/viewvc/?view=rev&revision=681494
http://svn.apache.org/viewvc/?view=rev&revision=681505
http://svn.apache.org/viewvc/?view=rev&revision=681509
http://svn.apache.org/viewvc/?view=rev&revision=681512
http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115

r662770 ritchiem 2008-06-03 : Changed toString to beQPID-1092
String.valueOf(getObject()) Added MessageToStringTest,
tests performing toString on Message before calling
getObject().

Weird catch in close()

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to
send an messageAccept)

inRecover check in
BMC_0_10.postDeliver might be
a problem with async delivery

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the callQPID-901
fails

RHS: make sure flag is used
where appropriate

r667561 ritchiem 2008-06-13 : Provided a fix for the leak inQPID-1136
UnacknowledgedMessage when acking. Added a new
InternalBrokerBaseCase for performing testing on the broker
without using the client libraries. This allows fo ...

InternalMinaProtocolSession has
a bug in awaitDelivery where it
can hang because deliveryCount
is already set to !0

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

RG: document
LocalTransactionalContext

r669885 rgodfrey 2008-06-20 : Updated Direct Exchange so it does not modifyQPID-1101
lists of queues

No Test

r671845 aidan 2008-06-26 : Merge Changes to the client to makeQPID-854 QPID-999
the dispatcher responsible for closing the queue browser
when all the messages have been processed.

JIRA clean up of anon
CloseMessage DeliveryBody
class.

r671949 ritchiem 2008-06-26 : Commented out the TimerTask so that it can beQPID-909
wrapped with a ScaledTestDecorator. Minimal change to get
our existing tests to run. If closer duration control is required
then further time c ...

Change Commit list

r672810 rajith 2008-06-30 This commit is related to . Please refer to theQPID-1161
JIRA for complete details. In Summary this contains a simple
test kit comprising of perf and soak tests. The focus is on
producing a packaged ...

r674085 ritchiem 2008-07-04 - Added a ConnectionRegistry per Virtualhost toQPID-871
track the open connections. Altered the ApplicationRegistry
so that when the shutdown hook is fired it: Unbinds from the
listening sockets Then ...

r680602 rhs 2008-07-29 : fixed up version of aidan's patch, there are stillQPID-1201
failures when running against an external java broker,
however we seem to get past basic connection negotiation
now

Need to check that this works with
0-8 only broker

r681408 rajith 2008-07-31 This is related to . I have enabled the code whichQPID-1208
will print xxxx when the log level != debug.

Should not ever print the
password.

r681476 rhs 2008-07-31 : made qpid-run output level configurableQPID-1210 Fix setting of level in qpid-server
to include \ or indent properly

Commits

revision committer date comment Review Notes

r681666 rhs 2008-08-01 added benchmark tool for java native + jms APIs

r681674 rhs 2008-08-01 improved usage

r681690 cctrieloff 2008-08-01
Add support for ACL on message transfer - Performance optimizations
for ACL on message transfer

r681709 tross 2008-08-01 Make md5-hash of table recursively include data from referenced groups

r681727 kpvdr 2008-08-01 Removed typedefs which were generating ignored warnings on gcc 4.3 compiler.

r681773 tross 2008-08-01 - Clean up agent objects when the remote agent disconnectsQPID-1174

r681821 tross 2008-08-01 Don't pad out the last column of a table

r681824 kpvdr 2008-08-01 Initial framework for ACL reader

r682309 ritchiem 2008-08-04 : Replaced use of FileReader with FileInputStreamQPID-1215

r682410 cctrieloff 2008-08-04 updated ais instructions

r682418 cctrieloff 2008-08-04 correc version number

http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=667561
https://issues.apache.org/jira/browse/QPID-1136
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=669885
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=671845
https://issues.apache.org/jira/browse/QPID-854
https://issues.apache.org/jira/browse/QPID-999
http://svn.apache.org/viewvc/?view=rev&revision=671949
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=672810
https://issues.apache.org/jira/browse/QPID-1161
http://svn.apache.org/viewvc/?view=rev&revision=674085
https://issues.apache.org/jira/browse/QPID-871
http://svn.apache.org/viewvc/?view=rev&revision=680602
https://issues.apache.org/jira/browse/QPID-1201
http://svn.apache.org/viewvc/?view=rev&revision=681408
https://issues.apache.org/jira/browse/QPID-1208
http://svn.apache.org/viewvc/?view=rev&revision=681476
https://issues.apache.org/jira/browse/QPID-1210
http://svn.apache.org/viewvc/?view=rev&revision=681666
http://svn.apache.org/viewvc/?view=rev&revision=681674
http://svn.apache.org/viewvc/?view=rev&revision=681690
http://svn.apache.org/viewvc/?view=rev&revision=681709
http://svn.apache.org/viewvc/?view=rev&revision=681727
http://svn.apache.org/viewvc/?view=rev&revision=681773
https://issues.apache.org/jira/browse/QPID-1174
http://svn.apache.org/viewvc/?view=rev&revision=681821
http://svn.apache.org/viewvc/?view=rev&revision=681824
http://svn.apache.org/viewvc/?view=rev&revision=682309
https://issues.apache.org/jira/browse/QPID-1215
http://svn.apache.org/viewvc/?view=rev&revision=682410
http://svn.apache.org/viewvc/?view=rev&revision=682418

r682644 aidan 2008-08-05 Add slf4j deps to perftests, we should move all this to ant

r682672 aidan 2008-08-05 : Fix failover and failover tests AMQConnection: remove dead andQPID-1206
confusingly misnamed method AMQSession: rename failedOver to
failedOverDirty to convey actual usage, only set it if we faile ...

r682685 astitcher 2008-08-05 Modified error checking on TCP socket read so that it's no longer fatal

r682688 gsim 2008-08-05 Merged r682685: Modified error checking on TCP socket read so that it's no
longer fatal

r682710 tross 2008-08-05 - Committed William's patchQPID-1214

r682711 tross 2008-08-05 Removed spurious print

r682764 tross 2008-08-05 Restructured qpid-tool commands to allow active-only lists

r682774 aconway 2008-08-05 Fix sporadic shutdown hang in clustered broker. Add start-stop_cluster test scripts

r682785 gsim 2008-08-05
revised approach for setting tcp-nodelay on client to avoid breaking
platform abstractions * added ability to set tcp-nodelay on server side of
the socket also

r682791 gsim 2008-08-05
revised approach for setting tcp-nodelay on client to avoid breaking
platform abstractions * added ability to set tcp-nodelay on server side of
the socket also Merged from r682785.

r682885 aconway 2008-08-05 Fix Cluster::send encode race.

r682887 rhs 2008-08-05 Profiling driven changes: - made AMQShortString cache the toString() value -
added static initializer to IoTransport to disable use of pooled byte buffers -
modified IoSender to permit buffer ...

r682915 rhs 2008-08-05 : cleanup of prior commit (r682887)QPID-1219

r682979 cctrieloff 2008-08-05 Added actions for ACL on mgnt actions

r683087 cctrieloff 2008-08-06 correct action on purge & remove ROUTINGKEY type

r683301 gsim 2008-08-06 Merged r681164.

r683337 rhs 2008-08-06 : added customizable UUID generation and switched the defaultQPID-1221
strategy to use nameUUIDFromBytes rather than randomUUID

r683402 astitcher 2008-08-06 Refactor Thread platform code so that the implementation is completely
decoupled from its interface

r683416 aconway 2008-08-06
Added OutputTask::hasOutput() test. - Cluster only sends doOutput
events when hasOutput()

r683437 rhs 2008-08-06 : round up the buffer size to the nearest power of twoQPID-1222

r683560 gsim 2008-08-07 Remove reference to deleted sys/posix/Thread.h

r683583 aidan 2008-08-07 : Boost broker performance by lots. AMQMessage: Allow referencesQPID-1218
to be incremented in a pile IncomingMessage: Increment message references in
one go, flatten delivery loop a little. Make _d ...

TopicExchange:
init array size

r683588 gsim 2008-08-07 Updated suppressions for changes to Thread

r683595 gsim 2008-08-07 Removed recursive patch to patch

r683597 aidan 2008-08-07 : fix stupid used-only-by-tests method breakage that I have exposedQPID-1218

r683603 gsim 2008-08-07 Updated suppressions

r683617 aconway 2008-08-07 Patch from Gordon Sim to fix issues with hasOutput implementation.

r683619 tross 2008-08-07 On broker shutdown, re-join the timer thread outside of a locked scope to prevent
deadlock.

r683632 ritchiem 2008-08-07 , Initial changes to allow bind and queue arguments to beQPID-1195 QPID-1193
stored and recovered from the MessageStore. Created a test to validate that the
stored values can be recovered. DerbyStore ...

Passing in null
for stuff sucks.

http://svn.apache.org/viewvc/?view=rev&revision=682644
http://svn.apache.org/viewvc/?view=rev&revision=682672
https://issues.apache.org/jira/browse/QPID-1206
http://svn.apache.org/viewvc/?view=rev&revision=682685
http://svn.apache.org/viewvc/?view=rev&revision=682688
http://svn.apache.org/viewvc/?view=rev&revision=682710
https://issues.apache.org/jira/browse/QPID-1214
http://svn.apache.org/viewvc/?view=rev&revision=682711
http://svn.apache.org/viewvc/?view=rev&revision=682764
http://svn.apache.org/viewvc/?view=rev&revision=682774
http://svn.apache.org/viewvc/?view=rev&revision=682785
http://svn.apache.org/viewvc/?view=rev&revision=682791
http://svn.apache.org/viewvc/?view=rev&revision=682885
http://svn.apache.org/viewvc/?view=rev&revision=682887
http://svn.apache.org/viewvc/?view=rev&revision=682915
https://issues.apache.org/jira/browse/QPID-1219
http://svn.apache.org/viewvc/?view=rev&revision=682979
http://svn.apache.org/viewvc/?view=rev&revision=683087
http://svn.apache.org/viewvc/?view=rev&revision=683301
http://svn.apache.org/viewvc/?view=rev&revision=683337
https://issues.apache.org/jira/browse/QPID-1221
http://svn.apache.org/viewvc/?view=rev&revision=683402
http://svn.apache.org/viewvc/?view=rev&revision=683416
http://svn.apache.org/viewvc/?view=rev&revision=683437
https://issues.apache.org/jira/browse/QPID-1222
http://svn.apache.org/viewvc/?view=rev&revision=683560
http://svn.apache.org/viewvc/?view=rev&revision=683583
https://issues.apache.org/jira/browse/QPID-1218
http://svn.apache.org/viewvc/?view=rev&revision=683588
http://svn.apache.org/viewvc/?view=rev&revision=683595
http://svn.apache.org/viewvc/?view=rev&revision=683597
https://issues.apache.org/jira/browse/QPID-1218
http://svn.apache.org/viewvc/?view=rev&revision=683603
http://svn.apache.org/viewvc/?view=rev&revision=683617
http://svn.apache.org/viewvc/?view=rev&revision=683619
http://svn.apache.org/viewvc/?view=rev&revision=683632
https://issues.apache.org/jira/browse/QPID-1195
https://issues.apache.org/jira/browse/QPID-1193

r683635 ritchiem 2008-08-07 : Some of the NullPointerExceptions from the SimpleACLTest are dueQPID-1182
to the close and the notification overlapping due to the lack of locking. The
problem is that the AtomicBoolean _closed is ...

r683683 rhs 2008-08-07 : Patch from rgodfrey to refactor AbstractJMSMessage andQPID-1213
descendants to move AMQP version specific code into delegates and remove
unnecessary conversion between 0-8 and 0-10 objects

r683711 aconway 2008-08-07 Check CPG flow control.

r683744 rhs 2008-08-07 : removed empty .java files leftover from applying a patchQPID-1213

r683932 aidan 2008-08-08 : add methods to get the list of message ids from a queue, withQPID-1224
optional offset. Test class for this.

r683941 rhs 2008-08-08 : fixed a performance regressing from converting uuid -> string andQPID-1213
back again

r683947 ritchiem 2008-08-08 cause test to fail if it times out.QPID-1225

r683948 ritchiem 2008-08-08 Reverted the addition of *.rej and *.orig so we can see them in a status list.

r683949 ritchiem 2008-08-08 : Provided a fix for the leak in UnacknowledgedMessage when acking.QPID-1136
Added a new InternalBrokerBaseCase for performing testing on the broker without
using the client libraries. This allows f ...

r683950 ritchiem 2008-08-08 : added ApplicationRegistry.remove. Need to convert to QTC.QPID-1223

r683955 ritchiem 2008-08-08 : DupsOk test never creates the client so create one for theQPID-1226
messages. Also improved the testing to ensure we check for failure scenarions.

Jiras

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

QPID-1206 Java Client M3 (QPID-1206) Failover Tests fail Resolved Aidan
Skinner

Aidan
Skinner

QPID-1207 Java Client M3 (QPID-1207) 0-10 client throws runtime
exceptions when talking to a 0-9 broker

Open Rafael H.
Schloming

Aidan
Skinner

Needs
resolved

QPID-1208 Java Client M3 (QPID-1208) Java client logs password in
plain text when info level is enabled

Open Rajith
Attapattu

Rajith
Attapattu

Needs
resolved

QPID-1209 C++ Client M3 (QPID-1209) Port to Windows Open Andrew
Stitcher

Steve
Huston

QPID-1210 Java Common M3 (QPID-1210) qpid-run output is confusing
for command line scripts

In
Progress

Rafael H.
Schloming

Rafael H.
Schloming

Needs
Resolved

QPID-1211 Interop Testing M3 (QPID-1211) C++ interop test runner
does not build.

Open Unassigned Martin
Ritchie

QPID-1212 C++ Client (QPID-1212) C++ client trunk cannot be
used in interop testing, as it is 0-10 only
and cannot interop with the java broker.

Open Unassigned Martin
Ritchie

QPID-1213 Java Client M3 (QPID-1213) UnprocessedMessage
needs to die

Open Rafael H.
Schloming

Aidan
Skinner

QPID-1214 C++ Broker,
Python Test
Suite

 (QPID-1214) Requirement to be able to
purge the top item or top n items from a
queue.

Resolved Ted Ross William
Henry

QPID-1215 Java Tools (QPID-1215) JNDICheck uses 1.6
specific methods Properites.load(Reader)

Resolved Martin
Ritchie

Martin
Ritchie

QPID-1216 Java Client M3 (QPID-1216) ConnectionCloseTest failed
with 0-10 client

Open Rafael H.
Schloming

Aidan
Skinner

QPID-1217 Java Client M2, M2.1,
M3

(QPID-1217) AMQSession 0-8
createTemporaryQueue does not perform
the creation on the broker.

Open Unassigned Martin
Ritchie

QPID-1218 Java Broker M3 (QPID-1218) Qpid Broker has slowed
dramatically

Open Aidan
Skinner

Aidan
Skinner

QPID-1219 Java Client M3 (QPID-1219) profiling related changes for
the java 0-10 client

Resolved Rafael H.
Schloming

Rafael H.
Schloming

http://svn.apache.org/viewvc/?view=rev&revision=683635
https://issues.apache.org/jira/browse/QPID-1182
http://svn.apache.org/viewvc/?view=rev&revision=683683
https://issues.apache.org/jira/browse/QPID-1213
http://svn.apache.org/viewvc/?view=rev&revision=683711
http://svn.apache.org/viewvc/?view=rev&revision=683744
https://issues.apache.org/jira/browse/QPID-1213
http://svn.apache.org/viewvc/?view=rev&revision=683932
https://issues.apache.org/jira/browse/QPID-1224
http://svn.apache.org/viewvc/?view=rev&revision=683941
https://issues.apache.org/jira/browse/QPID-1213
http://svn.apache.org/viewvc/?view=rev&revision=683947
https://issues.apache.org/jira/browse/QPID-1225
http://svn.apache.org/viewvc/?view=rev&revision=683948
http://svn.apache.org/viewvc/?view=rev&revision=683949
https://issues.apache.org/jira/browse/QPID-1136
http://svn.apache.org/viewvc/?view=rev&revision=683950
https://issues.apache.org/jira/browse/QPID-1223
http://svn.apache.org/viewvc/?view=rev&revision=683955
https://issues.apache.org/jira/browse/QPID-1226
https://issues.apache.org/jira/browse/QPID-1206
https://issues.apache.org/jira/browse/QPID-1207
https://issues.apache.org/jira/browse/QPID-1208
https://issues.apache.org/jira/browse/QPID-1209
https://issues.apache.org/jira/browse/QPID-1210
https://issues.apache.org/jira/browse/QPID-1211
https://issues.apache.org/jira/browse/QPID-1212
https://issues.apache.org/jira/browse/QPID-1213
https://issues.apache.org/jira/browse/QPID-1214
https://issues.apache.org/jira/browse/QPID-1215
https://issues.apache.org/jira/browse/QPID-1216
https://issues.apache.org/jira/browse/QPID-1217
https://issues.apache.org/jira/browse/QPID-1218
https://issues.apache.org/jira/browse/QPID-1219

QPID-1220 Java Client M3 (QPID-1220) ConnectionTest
testClosedNotificationAndWriteToClosed
fails intermittently

Open Rafael H.
Schloming

Aidan
Skinner

QPID-1221 Java Client M3 (QPID-1221) UUID.randomUUID() is
really slow

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1222 M3 (QPID-1222) IoSender breaks when the
send buffer is not a power of 2

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1223 Java Tests (QPID-1223) All System tests not
extending QpidTestCase do not correctly
clean up VM State.

Open Unassigned Martin
Ritchie

QPID-1224 Java Broker M3 (QPID-1224) No way to get list of
message ids off of queue

Resolved Aidan
Skinner

Aidan
Skinner

QPID-1225 Java Tests M3 (QPID-1225) DupsOk doesn't fail if it
times out waiting for messages to be
recieved.

Resolved Martin
Ritchie

Martin
Ritchie

QPID-1226 Java Tests (QPID-1226) DupsOk doesn't create the
consumer so will always fail to receive
messages.

Open Unassigned Martin
Ritchie

Qpid Java Meeting Minutes 2008-08-15

Agenda

Commits review
JIRA Review
AOCB

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for using QpidTestCase +QPID-1079
move QpidTestCase in main so it is visible form systests

RECEIVE_TIMEOUT : get
rid of and use configurable
timeout when available

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deep copy.QPID-1101 Needs test

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

r662770 ritchiem 2008-06-03 : Changed toString to be String.valueOf(getObject())QPID-1092
Added MessageToStringTest, tests performing toString on Message
before calling getObject().

Weird catch in close()

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to send an
messageAccept)

inRecover check in
BMC_0_10.postDeliver
might be a problem with
async delivery

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the call failsQPID-901 RHS: make sure flag is
used where appropriate

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early for immediateQPID-1144
messages in a txn

RG: document
LocalTransactionalContext

r669885 rgodfrey 2008-06-20 : Updated Direct Exchange so it does not modify lists ofQPID-1101
queues

No Test

r671949 ritchiem 2008-06-26 : Commented out the TimerTask so that it can be wrappedQPID-909
with a ScaledTestDecorator. Minimal change to get our existing tests
to run. If closer duration control is required then further time c ...

Change Commit message
to reflect content : Update
to .gitignore - DONE

r680602 rhs 2008-07-29 : fixed up version of aidan's patch, there are still failuresQPID-1201
when running against an external java broker, however we seem to
get past basic connection negotiation now

Need to check that this
works with 0-8 only broker

https://issues.apache.org/jira/browse/QPID-1220
https://issues.apache.org/jira/browse/QPID-1221
https://issues.apache.org/jira/browse/QPID-1222
https://issues.apache.org/jira/browse/QPID-1223
https://issues.apache.org/jira/browse/QPID-1224
https://issues.apache.org/jira/browse/QPID-1225
https://issues.apache.org/jira/browse/QPID-1226
http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115
http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=669885
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=671949
https://issues.apache.org/jira/browse/QPID-909
http://svn.apache.org/viewvc/?view=rev&revision=680602
https://issues.apache.org/jira/browse/QPID-1201

r681476 rhs 2008-07-31 : made qpid-run output level configurableQPID-1210 Fix setting of level in
qpid-server to include \ or
indent properly

r683583 aidan 2008-08-07 : Boost broker performance by lots. AMQMessage: AllowQPID-1218
references to be incremented in a pile IncomingMessage: Increment
message references in one go, flatten delivery loop a little. Make _d
...

TopicExchange: init array
size

r683632 ritchiem 2008-08-07 , Initial changes to allow bind and queueQPID-1195 QPID-1193
arguments to be stored and recovered from the MessageStore.
Created a test to validate that the stored values can be recovered.
DerbyStore ...

Restore
createQueue(queue)
method remove calls with
null. DONE r684714

Additional Actions

Rob : email list about Qpid testing strategy now that we have multiple performance testing frameworks.
Martin : Document InternalBrokerBaseCase
Aidan : Email list about logging of plain text passwords in debug logging.

revision committer date comment review notes

r683955 ritchiem 2008-08-08 : DupsOk test never creates the client so create oneQPID-1226
for the messages. Also improved the testing to ensure we check
for failure scenarions.

r683989 rhs 2008-08-08 : added missing \QPID-1210

r684016 aidan 2008-08-08 Optionally use IoTransport, it's hot, but doesn't passQPID-1218
all the tests yet.

r684017 tross 2008-08-08 Ported from trunk: Usage of lockf for locking the data directory.
This ensures that locks aren't left by crashed processes

r684036 rhs 2008-08-08 : simplified unprocessed message and movedQPID-1213
version specific code into the _0_8 and _0_10 variants

FlowControllingBlockingQueue
- revert - Add new JIRA for
profiling change
ByteBufferMessaage - revert -
add to profiling jira
.transport.* - revert - add to
profiling jira

r684182 rhs 2008-08-09 : cleaned up the interface to IoTransport a bit; addedQPID-1218
IoAcceptor; fixed Session tracking of sync point; default JAVA
inside qpid-run

r684707 ritchiem 2008-08-11 Updated assert to show exception message whenQPID-1220
there is no cause set

r684708 ritchiem 2008-08-11 : Updated tests to correctly close theQPID-1223
ApplicationRegistry that were created during the test run by non
QpidTestCase classse

r684710 ritchiem 2008-08-11 : re-added createQueue(AMQQueue queue) method,QPID-1193
after code review call.

r684711 ritchiem 2008-08-11 Update to review generator to have title on all columns and h2.
for Jira section

r684713 ritchiem 2008-08-11 : Updated AckTest to correctly create and close theQPID-1223
ApplicationRegistry

r684714 ritchiem 2008-08-11 : Actually removed the calls that pass in the ugly nullQPID-1193

r684785 gsim 2008-08-11 Added some extra info to example doc for xml exchange.

r684787 astitcher 2008-08-11 Decouple the DispatchHandle from its clients by using a
DispatchHandleRef class which can be deleted at any time, but
will only cause the DispatchHandle to be deleted later when it's
definitely no lon ...

r684865 aconway 2008-08-11 Integrate CPG file descriptor into broker polling.

r684880 aconway 2008-08-11 Added doxygen comments on using the Poller.

r685104 ritchiem 2008-08-12 : Fixed Flow Control problem due to this change andQPID-1136
added test to validate that Flow Control is operating correctly

http://svn.apache.org/viewvc/?view=rev&revision=681476
https://issues.apache.org/jira/browse/QPID-1210
http://svn.apache.org/viewvc/?view=rev&revision=683583
https://issues.apache.org/jira/browse/QPID-1218
http://svn.apache.org/viewvc/?view=rev&revision=683632
https://issues.apache.org/jira/browse/QPID-1195
https://issues.apache.org/jira/browse/QPID-1193
http://svn.apache.org/viewvc/?view=rev&revision=683955
https://issues.apache.org/jira/browse/QPID-1226
http://svn.apache.org/viewvc/?view=rev&revision=683989
https://issues.apache.org/jira/browse/QPID-1210
http://svn.apache.org/viewvc/?view=rev&revision=684016
https://issues.apache.org/jira/browse/QPID-1218
http://svn.apache.org/viewvc/?view=rev&revision=684017
http://svn.apache.org/viewvc/?view=rev&revision=684036
https://issues.apache.org/jira/browse/QPID-1213
http://svn.apache.org/viewvc/?view=rev&revision=684182
https://issues.apache.org/jira/browse/QPID-1218
http://svn.apache.org/viewvc/?view=rev&revision=684707
https://issues.apache.org/jira/browse/QPID-1220
http://svn.apache.org/viewvc/?view=rev&revision=684708
https://issues.apache.org/jira/browse/QPID-1223
http://svn.apache.org/viewvc/?view=rev&revision=684710
https://issues.apache.org/jira/browse/QPID-1193
http://svn.apache.org/viewvc/?view=rev&revision=684711
http://svn.apache.org/viewvc/?view=rev&revision=684713
https://issues.apache.org/jira/browse/QPID-1223
http://svn.apache.org/viewvc/?view=rev&revision=684714
https://issues.apache.org/jira/browse/QPID-1193
http://svn.apache.org/viewvc/?view=rev&revision=684785
http://svn.apache.org/viewvc/?view=rev&revision=684787
http://svn.apache.org/viewvc/?view=rev&revision=684865
http://svn.apache.org/viewvc/?view=rev&revision=684880
http://svn.apache.org/viewvc/?view=rev&revision=685104
https://issues.apache.org/jira/browse/QPID-1136

r685115 aidan 2008-08-12 : Merge 662770 to trunk from ritchiem: ChangedQPID-1092
toString to be String.valueOf(getObject()) Added
MessageToStringTest, tests performing toString on Message
before calling getObject().

r685142 aidan 2008-08-12 merge ritchiem's 662818: : Added testsQPID-1117 QPID-1117
for all other message types. Refactored the common parts out of
the objectTest.

r685151 aidan 2008-08-12 : Merge rupertlssmiths 581293 , AddedQPID-615 QPID-615
patched version of MINAs VM Pipe cleanup thread. Will replace
once bug fix is in newer version of MINA.

r685189 gsim 2008-08-12 use decimal literal (python 2.3 converts the old hex literal into a
negative value)

r685198 gsim 2008-08-12 Merged r685189 (specify literal as decimal for the sake of python
2.3)

r685207 rhs 2008-08-12 : made getStringProperty(nonexistent) return nullQPID-1233
instead of NPE

r685218 rhs 2008-08-12 : fixed setXXXProperty to check for empty stringsQPID-1235

r685237 aconway 2008-08-12 Move frame processing out of CPG dispatch queue for cluster.
PollableQueue is a pollable in-memory queue, will probably
move it to sys.

r685273 gsim 2008-08-12 Add extra boost headers to dist tarball

r685278 aconway 2008-08-12 Replace eventfd with more portable pipe implementation in
PollableCondition.

r685289 gsim 2008-08-12 Add extra boost headers to dist tarball

r685317 aconway 2008-08-12 Queue cluster send frames, do cpg_mcast in separate thread,

batching if possible. 5x thruput improvement

r685506 rhs 2008-08-13 removed dead code from message Echo utility, and added a
message Sink utility

r685536 rhs 2008-08-13 : made setObjectProperty validate the passed inQPID-1236
value

r685871 ritchiem 2008-08-14 : Update release target to correctly specify executeQPID-1077
permissions on release targets

r685874 arnaudsimon 2008-08-14 : changed the way QPID_ARGS is setQPID-1239

r685952 ritchiem 2008-08-14 : Noticed that the defaults of 644, and 755 for filesQPID-1077
and directories were not being applied so forcibly set these
values.~

r685967 gsim 2008-08-14 distclean should delete qpid/framing/MaxMethodBodySize.h

r686021 aconway 2008-08-14 echo with_ais_group errors to stderr.

r686035 aconway 2008-08-14 Add option to run singleton cluster on default port.

r686043 aconway 2008-08-14 Stop prevoius qpidd before runing singleton cluster.

r686068 rhs 2008-08-14 : fix for NPE on broker initiated connection close,QPID-1244
also preserve the connection close text for better error reporting

r686071 rhs 2008-08-14 increased timeout for DupsOkTest to prevent intermittent failure
on build machine

r686136 rhs 2008-08-15 updated qpid.0-10/java to match trunk/qpid/java@686097

r686172 rhs 2008-08-15 : use notifyMessage rather than onMessage inQPID-1245
setMessageListener so that messages from the synchronous
queue actually get acked

r686175 rhs 2008-08-15 updated qpid.0-10/java to match trunk/qpid/java@686172

Jiras

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

http://svn.apache.org/viewvc/?view=rev&revision=685115
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=685142
https://issues.apache.org/jira/browse/QPID-1117
https://issues.apache.org/jira/browse/QPID-1117
http://svn.apache.org/viewvc/?view=rev&revision=685151
https://issues.apache.org/jira/browse/QPID-615
https://issues.apache.org/jira/browse/QPID-615
http://svn.apache.org/viewvc/?view=rev&revision=685189
http://svn.apache.org/viewvc/?view=rev&revision=685198
http://svn.apache.org/viewvc/?view=rev&revision=685207
https://issues.apache.org/jira/browse/QPID-1233
http://svn.apache.org/viewvc/?view=rev&revision=685218
https://issues.apache.org/jira/browse/QPID-1235
http://svn.apache.org/viewvc/?view=rev&revision=685237
http://svn.apache.org/viewvc/?view=rev&revision=685273
http://svn.apache.org/viewvc/?view=rev&revision=685278
http://svn.apache.org/viewvc/?view=rev&revision=685289
http://svn.apache.org/viewvc/?view=rev&revision=685317
http://svn.apache.org/viewvc/?view=rev&revision=685506
http://svn.apache.org/viewvc/?view=rev&revision=685536
https://issues.apache.org/jira/browse/QPID-1236
http://svn.apache.org/viewvc/?view=rev&revision=685871
https://issues.apache.org/jira/browse/QPID-1077
http://svn.apache.org/viewvc/?view=rev&revision=685874
https://issues.apache.org/jira/browse/QPID-1239
http://svn.apache.org/viewvc/?view=rev&revision=685952
https://issues.apache.org/jira/browse/QPID-1077
http://svn.apache.org/viewvc/?view=rev&revision=685967
http://svn.apache.org/viewvc/?view=rev&revision=686021
http://svn.apache.org/viewvc/?view=rev&revision=686035
http://svn.apache.org/viewvc/?view=rev&revision=686043
http://svn.apache.org/viewvc/?view=rev&revision=686068
https://issues.apache.org/jira/browse/QPID-1244
http://svn.apache.org/viewvc/?view=rev&revision=686071
http://svn.apache.org/viewvc/?view=rev&revision=686136
http://svn.apache.org/viewvc/?view=rev&revision=686172
https://issues.apache.org/jira/browse/QPID-1245
http://svn.apache.org/viewvc/?view=rev&revision=686175

QPID-1223 Java Tests (QPID-1223) All System tests not
extending QpidTestCase do not
correctly clean up VM State.

Open Unassigned Martin
Ritchie

QPID-1224 Java Broker M3 (QPID-1224) No way to get list of
message ids off of queue

Resolved Aidan
Skinner

Aidan
Skinner

QPID-1225 Java Tests M3 (QPID-1225) DupsOk doesn't fail if it
times out waiting for messages to be
recieved.

Resolved Martin
Ritchie

Martin
Ritchie

QPID-1226 Java Tests (QPID-1226) DupsOk doesn't create
the consumer so will always fail to
receive messages.

Resolved Unassigned Martin
Ritchie

QPID-1227 Java Tests (QPID-1227) OutOfMemoryError
running tests with 1.6 or 1.7 JDK

Closed Unassigned Nicholas
Dronen

QPID-1228 Java Broker M3 (QPID-1228) DefaultManagedObject
utilises ApplicationRegistry to get
ObjectRegistry

Open Unassigned Martin
Ritchie

QPID-1229 Java Tests M3 (QPID-1229) Move broker only tests
from systests to broker package

Open Martin
Ritchie

Martin
Ritchie

QPID-1230 Java Tests M3 (QPID-1230) Broker contains
duplicated mock object functionality and
tests.

Open Martin
Ritchie

Martin
Ritchie

QPID-1231 Java Broker (QPID-1231) Adding auto creation
ability of qpid Java broker thorugh
connection URL

Open Unassigned Rajika
Kumarasiri

QPID-1232 Dot Net Client M3 (QPID-1232) Random acknowledge
modes can be created

Open Aidan
Skinner

Aidan
Skinner

QPID-1233 Java Client M3 (QPID-1233)
AMQMessageDelegate_0_10 NPEs on
getStringProperty("nonexistent")

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1234 M3 (QPID-1234) VirtualhostConfiguration
defaults the lack of exchange for queue
binding to null not a ConfigurationError.

Open Unassigned Martin
Ritchie

QPID-1235 Java Client M3 (QPID-1235) setBooleanProperty("", x)
is supposed to throw an
IllegalArgumentException

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1236 Java Client M3 (QPID-1236) setObjectProperty("foo",
new Object()) should throw a
MessageFormatException

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1237 Java Client, JMS
Compliance

 (QPID-1237) Queue creation via the
session does not create and bind the
queue on the broker.

Open Unassigned Martin
Ritchie

QPID-1238 Java Broker M3 (QPID-1238) Java Documentation issue
for Windows users

Open Unassigned Arnaud
Simon

QPID-1239 Java Broker M3 (QPID-1239) qpid-server.bat does not
handle command line arguments

Resolved Arnaud
Simon

Arnaud
Simon

QPID-1240 Java
Management
Console

 (QPID-1240) NullPointerException
when setting access level in
UserManagement Panel

Open Unassigned Martin
Ritchie

QPID-1241 Java
Management
Console

 (QPID-1241) qpidmc.bat script does not
cope with spaces (" ") in the path.

Open Unassigned Martin
Ritchie

QPID-1242 Java
Management
Console

 (QPID-1242) Ability to view Binary
Messages was lost in the merge

Open Unassigned Martin
Ritchie

QPID-1243 Ant Build
System, Java
Management
Console

 (QPID-1243) Provide mechanism to
build management console

Open Unassigned Martin
Ritchie

QPID-1244 Java Client (QPID-1244) The 0-10 java client
sometimes NPEs when the broker
initiates connection close

Open Rafael H.
Schloming

Rafael H.
Schloming

https://issues.apache.org/jira/browse/QPID-1223
https://issues.apache.org/jira/browse/QPID-1224
https://issues.apache.org/jira/browse/QPID-1225
https://issues.apache.org/jira/browse/QPID-1226
https://issues.apache.org/jira/browse/QPID-1227
https://issues.apache.org/jira/browse/QPID-1228
https://issues.apache.org/jira/browse/QPID-1229
https://issues.apache.org/jira/browse/QPID-1230
https://issues.apache.org/jira/browse/QPID-1231
https://issues.apache.org/jira/browse/QPID-1232
https://issues.apache.org/jira/browse/QPID-1233
https://issues.apache.org/jira/browse/QPID-1234
https://issues.apache.org/jira/browse/QPID-1235
https://issues.apache.org/jira/browse/QPID-1236
https://issues.apache.org/jira/browse/QPID-1237
https://issues.apache.org/jira/browse/QPID-1238
https://issues.apache.org/jira/browse/QPID-1239
https://issues.apache.org/jira/browse/QPID-1240
https://issues.apache.org/jira/browse/QPID-1241
https://issues.apache.org/jira/browse/QPID-1242
https://issues.apache.org/jira/browse/QPID-1243
https://issues.apache.org/jira/browse/QPID-1244

QPID-1245 Java Client M3 (QPID-1245) message prefetched into
the synchronous queue don't get acked
when a message listener is set

Resolved Rafael H.
Schloming

Rafael H.
Schloming

Qpid Java Meeting Minutes 2008-08-22

Agenda

Commits review
JIRA Review
AOCB

Outstanding actions

revision committer date comment review comments

r659163 arnaudsimon 2008-05-22 : Updated ...test.client tests for using QpidTestCaseQPID-1079
+ move QpidTestCase in main so it is visible form systests

RECEIVE_TIMEOUT : get rid
of and use configurable
timeout when available

r669431 rgodfrey 2008-06-19 : Broker refactoring, copied / merged from branchQPID-950

r669480 rgodfrey 2008-06-19 : Fixed Derby Message StoreQPID-950

r661746 ritchiem 2008-05-30 : Update to DestNameExchange to perform deepQPID-1101
copy.

Needs test

r662755 arnaudsimon 2008-06-03 : Only generate client ID when necessaryQPID-1115 RG to comment on Jira

r662770 ritchiem 2008-06-03 : Changed toString to be String.valueOf(getObject())QPID-1092
Added MessageToStringTest, tests performing toString on
Message before calling getObject().

Weird catch in close()

r662827 arnaudsimon 2008-06-03 : Update previous commit by re-usingQPID-1112
messageAcknowledge (added a flag specifying whether to send
an messageAccept)

inRecover check in
BMC_0_10.postDeliver might
be a problem with async
delivery

r665841 rhs 2008-06-09 : always reset the auto-sync mode even if the call failsQPID-901 RHS: make sure flag is used
where appropriate

r669841 rgodfrey 2008-06-20 : Reference count drops to zero too early forQPID-1144
immediate messages in a txn

RG: document
LocalTransactionalContext

r669885 rgodfrey 2008-06-20 : Updated Direct Exchange so it does not modify listsQPID-1101
of queues

No Test

r680602 rhs 2008-07-29 : fixed up version of aidan's patch, there are stillQPID-1201
failures when running against an external java broker, however
we seem to get past basic connection negotiation now

Need to check that this works
with 0-8 only broker

r681476 rhs 2008-07-31 : made qpid-run output level configurableQPID-1210 Fix setting of level in
qpid-server to include \ or
indent properly

r683583 aidan 2008-08-07 : Boost broker performance by lots. AMQMessage:QPID-1218
Allow references to be incremented in a pile IncomingMessage:
Increment message references in one go, flatten delivery loop a
little. Make _d ...

TopicExchange: init array size

r684036 rhs 2008-08-08 : simplified unprocessed message and movedQPID-1213
version specific code into the _0_8 and _0_10 variants

FlowControllingBlockingQueue
- Revert change - Add new
JIRA for profiling change
ByteBufferMessaage - revert
change - add to profiling jira
.transport.* - revert - add to
profiling jira

Additional Actions

Rob : email list about Qpid testing strategy now that we have multiple performance testing frameworks.
Martin : Document InternalBrokerBaseCase
Aidan : Email list about logging of plain text passwords in debug logging.
RG : JIRA + Commit Build.xml
RHS : JIRA : Add QTC
RHS : Remove forked execution mode from tests
Rob : New VM Transport, two of them one that encodes one that sends objects

https://issues.apache.org/jira/browse/QPID-1245
http://svn.apache.org/viewvc/?view=rev&revision=659163
https://issues.apache.org/jira/browse/QPID-1079
http://svn.apache.org/viewvc/?view=rev&revision=669431
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=669480
https://issues.apache.org/jira/browse/QPID-950
http://svn.apache.org/viewvc/?view=rev&revision=661746
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=662755
https://issues.apache.org/jira/browse/QPID-1115
http://svn.apache.org/viewvc/?view=rev&revision=662770
https://issues.apache.org/jira/browse/QPID-1092
http://svn.apache.org/viewvc/?view=rev&revision=662827
https://issues.apache.org/jira/browse/QPID-1112
http://svn.apache.org/viewvc/?view=rev&revision=665841
https://issues.apache.org/jira/browse/QPID-901
http://svn.apache.org/viewvc/?view=rev&revision=669841
https://issues.apache.org/jira/browse/QPID-1144
http://svn.apache.org/viewvc/?view=rev&revision=669885
https://issues.apache.org/jira/browse/QPID-1101
http://svn.apache.org/viewvc/?view=rev&revision=680602
https://issues.apache.org/jira/browse/QPID-1201
http://svn.apache.org/viewvc/?view=rev&revision=681476
https://issues.apache.org/jira/browse/QPID-1210
http://svn.apache.org/viewvc/?view=rev&revision=683583
https://issues.apache.org/jira/browse/QPID-1218
http://svn.apache.org/viewvc/?view=rev&revision=684036
https://issues.apache.org/jira/browse/QPID-1213

Commits

revision committer date comment review
notes

r686722 ritchiem 2008-08-18 : Last few changes to correctly shutdown all ApplicationRegistries on eachQPID-1226
test run

r686811 rhs 2008-08-18 : modified tests to unsubscribe the durable subscriptions they createQPID-1252

r686818 gsim 2008-08-18 : Ensure broker receives session.detached before channel can be reused.QPID-1250

r686843 rhs 2008-08-18 updated qpid.0-10/java to match trunk/qpid/java@686835

r686846 aconway 2008-08-18 Configure --without-cpg by default for M3.

r686851 gsim 2008-08-18 : Ensure broker receives session.detached before channel can be reused.QPID-1250
Merge of 686818 from trunk.

r686852 kpvdr 2008-08-18 Added --dtx option to txtest for DTX transaction testing

r686854 kpvdr 2008-08-18 Added --dtx option to txtest for DTX transaction testing

r687010 aidan 2008-08-19 : Rebind durable subscriptions if the arguments have changedQPID-1202
TopicExchange: take field arguments into account when determining if topic binding
already exists when binding, but not for regul ...

r687108 tross 2008-08-19 Created a development branch for C++ broker management

r687138 kpvdr 2008-08-19 Missing DTX recover code for --dtx mode in txtest

r687139 rhs 2008-08-19 increased the timeout in the new DurableSubscriptionTest from 250 milliseconds to 1
second

r687140 kpvdr 2008-08-19 Missing DTX recover code for --dtx mode in txtest

r687141 kpvdr 2008-08-19 Forgot to remove unneeded comment

r687142 kpvdr 2008-08-19 Forgot to remove unneeded comment

r687156 gsim 2008-08-19 Build tweaks for distcheck: * ensure examples dirs are writable so executables can be
compiled * cleanup files on distclean

r687310 arnaudsimon 2008-08-20 qpid-1251: changed close method for closing the underlying socket on windows only.

r687313 rhs 2008-08-20 : remove the durable subscription when done with it, and increased anotherQPID-1252
timeout

r687361 gsim 2008-08-20 Remove 'clever' locking as it actually degrades performance.

r687377 rhs 2008-08-20 branch for experimental work

r687382 aidan 2008-08-20 : TopicExchance.removeFilteredQueue: if there are no instances of the filter,QPID-1202
it's ok to remove it.

r687383 aidan 2008-08-20 : make temporary queue creation actually create the temporary queue.QPID-1217
AMQSession*: consolidate createTemporaryQueue into AMQSession. ConnectionTest:
declare custom exchanges before testing t ...

r687540 rhs 2008-08-21 added codegen for 1-0-draft xml

r687664 ritchiem 2008-08-21 : Temporary commit to allow CI systems to help diagnose cause of raceQPID-1225
condition. My guess is that the session is open but closes right after the isClosed call is
done. So the client the goes ...

r687665 ritchiem 2008-08-21 Add Simple Request/Response Example from M2.x

r687667 ritchiem 2008-08-21 Remove old crufty helper that is not used.

r687688 ritchiem 2008-08-21 : Remove SimpleACLTest from the test runs as the issues has beenQPID-1225
identified.

r687741 ritchiem 2008-08-21 Stopped the broker closing the ProtocolSessions as this was causing the client to lock in
Mina seemingly missing the notify for the CloseFuture and hangs indefinately

r687742 ritchiem 2008-08-21 : Initial commit of build creator tool. Documentation to appear on Wiki. (QPID-1256
http://cwiki.apache.org/confluence/display/qpid/Build+Creator

)

http://svn.apache.org/viewvc/?view=rev&revision=686722
https://issues.apache.org/jira/browse/QPID-1226
http://svn.apache.org/viewvc/?view=rev&revision=686811
https://issues.apache.org/jira/browse/QPID-1252
http://svn.apache.org/viewvc/?view=rev&revision=686818
https://issues.apache.org/jira/browse/QPID-1250
http://svn.apache.org/viewvc/?view=rev&revision=686843
http://svn.apache.org/viewvc/?view=rev&revision=686846
http://svn.apache.org/viewvc/?view=rev&revision=686851
https://issues.apache.org/jira/browse/QPID-1250
http://svn.apache.org/viewvc/?view=rev&revision=686852
http://svn.apache.org/viewvc/?view=rev&revision=686854
http://svn.apache.org/viewvc/?view=rev&revision=687010
https://issues.apache.org/jira/browse/QPID-1202
http://svn.apache.org/viewvc/?view=rev&revision=687108
http://svn.apache.org/viewvc/?view=rev&revision=687138
http://svn.apache.org/viewvc/?view=rev&revision=687139
http://svn.apache.org/viewvc/?view=rev&revision=687140
http://svn.apache.org/viewvc/?view=rev&revision=687141
http://svn.apache.org/viewvc/?view=rev&revision=687142
http://svn.apache.org/viewvc/?view=rev&revision=687156
http://svn.apache.org/viewvc/?view=rev&revision=687310
http://svn.apache.org/viewvc/?view=rev&revision=687313
https://issues.apache.org/jira/browse/QPID-1252
http://svn.apache.org/viewvc/?view=rev&revision=687361
http://svn.apache.org/viewvc/?view=rev&revision=687377
http://svn.apache.org/viewvc/?view=rev&revision=687382
https://issues.apache.org/jira/browse/QPID-1202
http://svn.apache.org/viewvc/?view=rev&revision=687383
https://issues.apache.org/jira/browse/QPID-1217
http://svn.apache.org/viewvc/?view=rev&revision=687540
http://svn.apache.org/viewvc/?view=rev&revision=687664
https://issues.apache.org/jira/browse/QPID-1225
http://svn.apache.org/viewvc/?view=rev&revision=687665
http://svn.apache.org/viewvc/?view=rev&revision=687667
http://svn.apache.org/viewvc/?view=rev&revision=687688
https://issues.apache.org/jira/browse/QPID-1225
http://svn.apache.org/viewvc/?view=rev&revision=687741
http://svn.apache.org/viewvc/?view=rev&revision=687742
https://issues.apache.org/jira/browse/QPID-1256

r687743 ritchiem 2008-08-21 : Changed SimpleACLTest to use QpidTestCase so the failing test can beQPID-1225
excluded. This change DOES NOT mean the test will run agains the exteranl brokers.
The test explicitly shutsdown the QT ...

r687749 ritchiem 2008-08-21 Sorry went crazy with git and didn't meant to commit this change

r687764 aidan 2008-08-21 : reset queue notification lists when creating queues. Pull out defaultsQPID-1167
centrally.

r687807 aidan 2008-08-21 Update version, NOTICE files.

r687808 aidan 2008-08-21 Tag M3

r687813 aconway 2008-08-21 Pre-buffering output strategy for cluster. Additional hooks in broker code, should not
affect standalone broker.

r687850 aconway 2008-08-21 Fix typo.

r687872 aconway 2008-08-21 Use numeric version number 0.3 in AC_INIT.

r688045 gsim 2008-08-22 Update & correct some of the notes included with the release.

Jiras

Key Component(s) Affects
Version/s

Summary Status Assignee Reporter Review
Comments

QPID-1240 Java
Management
Console

 (QPID-1240) NullPointerException
when setting access level in
UserManagement Panel

Open Unassigned Martin
Ritchie

QPID-1241 Java
Management
Console

 (QPID-1241) qpidmc.bat script does
not cope with spaces (" ") in the path.

Open Unassigned Martin
Ritchie

QPID-1242 Java
Management
Console

 (QPID-1242) Ability to view Binary
Messages was lost in the merge

Open Unassigned Martin
Ritchie

QPID-1243 Ant Build
System, Java
Management
Console

 (QPID-1243) Provide mechanism to
build management console

Open Unassigned Martin
Ritchie

QPID-1244 Java Client (QPID-1244) The 0-10 java client
sometimes NPEs when the broker
initiates connection close

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1245 Java Client M3 (QPID-1245) message prefetched into
the synchronous queue don't get acked
when a message listener is set

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1246 Java Broker (QPID-1246) Broker/bin scripts do not
have execute permission set in svn

Resolved Martin
Ritchie

Martin
Ritchie

QPID-1247 Java Client (QPID-1247) the qpid tests have a lot
of boilerplate code that could be moved
to a helper class or a base test case

Open Unassigned Rafael H.
Schloming

QPID-1248 C++ Broker M3 (QPID-1248) Add "last image caching"
so a new subscriber immediately gets
the most recently sent msg - PLEASE
PLEASE PLEASE!!

Open Unassigned andrew M

QPID-1249 C++ Broker M3 (QPID-1249) Distribution created on
system where openais is not installed
fails make check on system where it is

Open Alan
Conway

Gordon
Sim

QPID-1250 Python Client M3 (QPID-1250) Race in detaching for
0-10 python client

Resolved Gordon
Sim

Gordon
Sim

QPID-1251 Java Client M3 (QPID-1251) IO transport does not
cleanly close on Windows

Resolved Arnaud
Simon

Arnaud
Simon

QPID-1252 M3 (QPID-1252) various tests create
durable subscriptions and then leave
them there

Resolved Rafael H.
Schloming

Rafael H.
Schloming

QPID-1253 M4 (QPID-1253) Add an option to sync
after 'n' bytes.

Open Unassigned Rajith
Attapattu

http://svn.apache.org/viewvc/?view=rev&revision=687743
https://issues.apache.org/jira/browse/QPID-1225
http://svn.apache.org/viewvc/?view=rev&revision=687749
http://svn.apache.org/viewvc/?view=rev&revision=687764
https://issues.apache.org/jira/browse/QPID-1167
http://svn.apache.org/viewvc/?view=rev&revision=687807
http://svn.apache.org/viewvc/?view=rev&revision=687808
http://svn.apache.org/viewvc/?view=rev&revision=687813
http://svn.apache.org/viewvc/?view=rev&revision=687850
http://svn.apache.org/viewvc/?view=rev&revision=687872
http://svn.apache.org/viewvc/?view=rev&revision=688045
https://issues.apache.org/jira/browse/QPID-1240
https://issues.apache.org/jira/browse/QPID-1241
https://issues.apache.org/jira/browse/QPID-1242
https://issues.apache.org/jira/browse/QPID-1243
https://issues.apache.org/jira/browse/QPID-1244
https://issues.apache.org/jira/browse/QPID-1245
https://issues.apache.org/jira/browse/QPID-1246
https://issues.apache.org/jira/browse/QPID-1247
https://issues.apache.org/jira/browse/QPID-1248
https://issues.apache.org/jira/browse/QPID-1249
https://issues.apache.org/jira/browse/QPID-1250
https://issues.apache.org/jira/browse/QPID-1251
https://issues.apache.org/jira/browse/QPID-1252
https://issues.apache.org/jira/browse/QPID-1253

QPID-1254 (QPID-1254) Testing Qpid workflow
mods

Resolved Unassigned Gavin

QPID-1255 M3 (QPID-1255) SimpleACLTest
testClientPublishInvalidQueueSuccess
intermittent failure in CI

In
Progress

Unassigned Martin
Ritchie

QPID-1256 (QPID-1256) Provide build tool for
combining source and patches from a
variety of sources.

In
Progress

Martin
Ritchie

Martin
Ritchie

QPID-1257 (QPID-1257) Allow individual broker
and client binary packages to be built

Open Unassigned Martin
Ritchie

QPID-1258 Java Broker,
Java Client, Java
Common, Java
Management
Console, Java
Tests, Java Tools

M3 (QPID-1258) Releases missing license
files etc.

Open Aidan
Skinner

Martin
Ritchie

Documentation

Documentation

Getting Started

Download
Getting Started

AMQP (Advanced Message Queueing Protocol)

Toward a Commodity Enterprise Middleware
AMQP (Advanced Message Queueing Protocol)

Qpid AMQP Brokers

AMQP Messaging Broker (implemented in C++)
AMQP Messaging Broker (implemented in Java)

Qpid AMQP Clients

AMQP Java JMS Messaging Client
AMQP C++ Messaging Client
AMQP .NET Messaging Client
AMQP Python Messaging Client
AMQP Ruby Messaging Client

Interoperability

AMQP Compatibility
SASL Interoperability

FAQ

Frequently Asked Questions

Build Creator

Overview

Overview
Build Creator

Command Line arguments
Targets

retrieve
prepare
release

Configuration Details
Config file

Source Section
Source Types

https://issues.apache.org/jira/browse/QPID-1254
https://issues.apache.org/jira/browse/QPID-1255
https://issues.apache.org/jira/browse/QPID-1256
https://issues.apache.org/jira/browse/QPID-1257
https://issues.apache.org/jira/browse/QPID-1258
http://queue.acm.org/detail.cfm?id=1255424
http://qpid.apache.org/amqp-compatibility.html
http://qpid.apache.org/qpid-interoperability-documentation.html
http://qpid.apache.org/faq.html

Patch Section
Builds section

Build file
Build Section
Writing release scripts

Example Files

Build Creator

The BuildCreator tool was devised to enable the easy generation of binary packages that include more than one source. The purpose of the
build creator is to simplify the building of projects that require the combining of multiple sources. To aid discussion of the tool we shall look at
the configuration file combining the Apache Qpid release with that of the BerkeleyDB Store plugin form JBoss. However, the tool is a general
binary build tool written in Python.

Command Line arguments

There are various command line arguments, mainly to change the amount of logging the tool generates.

subprocess is required for this tool and is not present in versions prior to 2.4.0
usage: buildCreator.py [options]

options:
 -h, --help show this help message and exit
 -c, --config=CONFIG
 set configuration file : default = build.config
 -v, --verbose enable verbose output
 -d, --debug enable debug output
 -q, --quiet Enable quiet ouptut
 -i, --ignore-errors Ignore errors

There are a number of available targets:

Available Targets:
 distclean [source] - Remove all or specified retrieved source
 clean [source] - Remove all or specified source build directory
 retrieve [source] - Retrieve all or specified source
 prepare [source] - Prepare all or specified source : i.e. extract archives
 patch [source] - Patch all or specified source
 showbuilds - List all builds
 build [build] - Perform the build scripts for all or specified build
 release [build] - Perform the release scripts for all or specified source
 full - Perform clean, retrieve, prepare, patch, build, release for all builds
(DEFAULT)

Targets

The default target is full which as listed above will perform all the required steps to create all the releases for the builds listed in the
configuration. Most of the targets do exactly what they say above however a few have additional points of interest:

retrieve

The target pulls together all the source and patches and places this pristine copy in the directory. This is done so that theretrieve builder/src
build can be repeatable performed with the untouched source.

prepare

The target creates the tree and copies the source and patches for the later stages. If the source was not retrieved prepare builder/build svn
then the files are inspected and if an archive format is found this is expanded into the build directory.

release

The release scripts that are specified in the build files can contain a version keyword substitution . This will append details$writeVersions(file)
about the sources and patches used to generate this release artefact. If targets are used then the revision information will be added tosvn
the file.

Configuration Details

Two files are currently required by the tool the main configuration file and the build file.

Config file

The main configuration file (build.config by default) specifies the various sources, patches and builds that should be utilised.

The configuration file is used to define any common environment variables that may be used for substitution in the build scripts. The
 section contains a list of all source locations that the build will utilise. The section allows a number of patches to be<sources> <patch>

specified to apply to the pristinely downloaded source to be modified.

NOTE: Limitiations
The build section can only contain values not elements directly<include> <build>

<builder>
 <environment>
 <[variable]>[value]</[variable]>
 </environment>

 <sources>
 <source>
 <name>[source-name]</name>
 <type>[source-type:svn|file|http|ftp]</type>
 <url>[value]</url>
 <path>[root offset, useful if to point the root of the source in to an archive
output]</path>
 </source>
 </sources>
 <patches>
 <patch>
 <name>[patch-name]</name>
 <type>[source-type:svn|file|http|ftp]</type>
 <url>[value]</url>
 <source>[source name this patches]</source>
 <prefix>[patch prefix -p value]</prefix>
 <path>[root offset, useful if the base of the patch is not the root of the
source]</path>
 </patch>

 </patches>

 <builds>
 <include>[string which is sent to ls to retrieve build include file so 'builds/*.build'
works]</include>
 </builds>

</builder>

Source Section

The section contains a number of required values.<source>

Entry Description

<name> The name you wish to give to this build. This value should not contain spaces as it can be used in the build and release scripts
as a variable to refer to the build location.

<type> There are four types of source , , , . These are explained further belowsvn file http ftp

<url> This is the URL or file path to this source

<path> Optional path if you wish to move the root of the source. i.e. in to an archive file

Source Types

The of the determines how the creator will post process the file.<type>

Type Description

svn Uses svn to retrieve the given , An optional element can be added to source to be used by the svn checkout<url> <revision>

file Uses cp to take a copy of the specified file.

http Uses wget to retrieve the specified file or directory, it currently does not recurse.

ftp Uses wget to retrieve the specified file or directory, it currently does not recurse.

Patch Section

The patch section contains all of the same entries as the . It also has two additional entries that are used in applying theSource Section
patches.

Entry Description

<source> Source name that this patch entry should be applied to.

<prefix> This is the patch prefix (-p) value used on the command line.

The value here can either be a file or a directory. In the case that it is a directory all files contained in that directory will be treated as<url>
patch files and applied to the specified with the given options.<source>

Builds section

The final section in the config file is the section. Currently this can only contain a single value. This specifies the build<builds> <include>
scripts definitions that should be included in this configuration. Any value that is a valid argument to can be used here. This allows multiplels
files to be included. Future work includes the direct embedding of the build configuration.

Build file

The build file contains scripts to perform the build and release of a desired release. There is no restriction on what can be performed during
either section however only one may be contained in each file.<build>

<builds>
 <build>
 <name>[build-name]</name>

 <dependency>
 <source>[source-name]</source>
 </dependency>

 <targets>
 <build>
 <script><![CDATA[
<shell script>
]]>
 </script>
 </build>

 <release>
 <script><![CDATA[
<shell script>
]]>
 </script>
 </release>
 </targets>

 </build>
</builds>

Build Section

The build sction contains three elements all must be present to be valid.

Element Desctiption

<name> The name of this build. This is used to name directories on disk and to refer to this build directly on the command line.

<dependency> This is a list of entries that this build requires.<source>

<targets> This contains the two scripts one for and one for . The text in these scripts are executed in a shell<build> <release>
rooted in the current directory.

Writing release scripts

To easy the writing of release scripts there are a number of variables that have been predefined for your use. The source values can<name>
be used as variables to refer to the root of that source's build location, in the examples below that would mean that would be converted$qpid
in to . As mentioned above you can also define variables in the section of the configuration. Release scriptsbuilder/build/qpid <environment>
can contain a version keyword substitution . This will append details about the sources and patches used to generate this$writeVersions(file)
release artefact. If targets are used then the revision information will be added to the file.svn

Example Files

<builder>
 <environment>
 <version>M3.0-beta</version>
 </environment>

 <sources>
 <source>
 <name>qpid</name>
 <type>file</type>
 <url>http://people.apache.org/~aidan/qpid/M3-beta/qpid-incubating-M3-beta.tar.gz</url>
 <path>qpid-incubating-M3</path>
 </source>
 <source>
 <name>bdb</name>
 <type>svn</type>

<url>https://svn.jboss.org/repos/rhmessaging/store/branches/java/broker-queue-refactor/java/bdbstore</url>
</source>
 </sources>

 <patches>
 <patch>
 <name>BDB-Classpath</name>
 <type>file</type>
 <url>/local/patches/bdb-qpid-run-classpath.diff</url>
 <source>qpid</source>
 <prefix>2</prefix>
 <path>qpid-incubating-M3/qpid/java/<path>
 </patch>

 </patches>

 <builds>
 <include>builds/*.config</include>
 </builds>

</builder>

<builds>
 <build>
 <name>qpid-broker</name>

 <dependency>
 <source>[source-name]</source>
 <source>bdb</source>
 </dependency>

 <targets>
 <build>
 <script><![CDATA[

pushd $qpid/java
ant -Dproject.version=$version build
popd

cp $qpid/java/build/lib/qpid-broker-$version.jar $bdb/lib
cp $qpid/java/build/lib/qpid-broker-test-$version.jar $bdb/lib
cp $qpid/java/build/lib/qpid-common-$version.jar $bdb/lib
cp $qpid/java/build/lib/qpid-systests-$version.jar $bdb/lib
cp $qpid/java/build/lib/qpid-perftests-$version.jar $bdb/lib
cp $qpid/java/build/lib/qpid-junit-toolkit-$version.jar $bdb/lib

cd $bdb
ant build

]]>
 </script>
 </build>

 <release>
 <script><![CDATA[
Create build package
mkdir -p $release/$build-$version
cp -r $qpid/java/build/* $release/$build-$version
cp $bdb/build/qpid-bdbstore.jar $bdb/lib/je-3.3.62.jar $release/$build-$version/lib

Build release artifact
cd $release/$build-version

Create release revisions
echo "Qpid Broker Release : $version" > REVISIONS.txt
echo -n "Built:" >> REVISIONS.txt
date +%Y-%m-%d-%H%M >> REVISIONS.txt
$writeVersions(REVISIONS.txt)

cd ..

tar cvzf $build-$version.tgz $build-$version
]]>
 </script>
 </release>
 </targets>

 </build>
</builds>

Cheat Sheet for configuring Exchange Options

Configuring Exchange Options

The C++ Broker M4 or later supports the following additional Exchange options in addition to the standard AMQP define options

Exchange Level Message sequencing
Initial Value Exchange

Note that these features can be used on any exchange type, that has been declared with the options set.

It also supports an additional option to the bind operation on a direct exchange

Exclusive binding for key

Exchange Level Message sequencing

This feature can be used to place a sequence number into each message's headers, based on the order they pass through an exchange.
The sequencing starts at 0 and then wraps in an AMQP int64 type.

The field name used is "qpid.msg_sequence"

To use this feature an exchange needs to be declared specifying this option in the declare

....
 FieldTable args;
 args.setInt(,1);"qpid.msg_sequence"

...
 // now declare the exchange
session.exchangeDeclare(arg::exchange= , arg::arguments=args);"direct"

Then each message passing through that exchange will be numbers in the application headers.

 unit64_t seqNo;
 //after message transfer
seqNo = message.getHeaders().getAsInt64();"qpid.msg_sequence"

Initial Value Exchange

This feature caches a last message sent to an exchange. When a new binding is created onto the exchange it will then attempt to route this
cached messaged to the queue, based on the binding. This allows for topics or the creation of configurations where a new consumer can
receive the last message sent to the broker, with matching routing.

To use this feature an exchange needs to be declared specifying this option in the declare

....
 FieldTable args;
 args.setInt(,1);"qpid.ive"

...
 // now declare the exchange
session.exchangeDeclare(arg::exchange= , arg::arguments=args);"direct"

now use the exchange in the same way you would use any other exchange.

Exclusive binding for key

Direct exchanges in qpidd support a qpid.exclusive-binding option on the bind operation that causes the binding specified to be the only one
for the given key. I.e. if there is already a binding at this exchange with this key it will be atomically updated to bind the new queue. This
means that the binding can be changed concurrently with an incoming stream of messages and each message will be routed to exactly one
queue.

....
 FieldTable args;
 args.setInt(,1);"qpid.exclusive-binding"

 //the following will cause the only binding from amq.direct with 'my-key'
//to be the one to 'my-queue'; there were any previous bindings thatif for
//key they will be removed. This is atomic w.r.t message routing through the
//exchange.
session.exchangeBind(arg::exchange= , arg::queue= ,"amq.direct" "my-queue"
 arg::bindingKey= , arg::arguments=args);"my-key"

...

Cheat Sheet for configuring Queue Options

Configuring Queue Options

The C++ Broker M4 or later supports the following additional Queue constraints.

Configuring Queue Options
Applying Queue Sizing Constraints
Changing the Queue ordering Behaviors (FIFO/LVQ)
Setting additional behaviors

Persist Last Node
Queue event generation

Other Clients

Applying Queue Sizing Constraints

This allows to specify how to size a queue and what to do when the sizing constraints have been reached. The queue size can be limited by
the number messages (message depth) or byte depth on the queue.

Once the Queue meets/ exceeds these constraints the follow policies can be applied

REJECT - Reject the published message
FLOW_TO_DISK - Flow the messages to disk, to preserve memory
RING - start overwriting messages in a ring based on sizing. If head meets tail, advance head
RING_STRICT - start overwriting messages in a ring based on sizing. If head meets tail, AND the consumer has the tail message
acquired it will reject

Examples:

Create a queue an auto delete queue that will support 100 000 bytes, and then REJECT

#include "qpid/client/QueueOptions.h"

 QueueOptions qo;
 qo.setSizePolicy(REJECT,100000,0);

 session.queueDeclare(arg::queue=queue, arg::autoDelete= , arg::arguments=qo);true

Create a queue that will support 1000 messages into a RING buffer

#include "qpid/client/QueueOptions.h"

 QueueOptions qo;
 qo.setSizePolicy(RING,0,1000);

 session.queueDeclare(arg::queue=queue, arg::arguments=qo);

Changing the Queue ordering Behaviors (FIFO/LVQ)

The default ordering in a queue in Qpid is FIFO. However additional ordering semantics can be used namely LVQ (Last Value Queue). Last
Value Queue is define as follows.

If I publish symbols RHT, IBM, JAVA, MSFT, and then publish RHT before the consumer is able to consume RHT, that message will be over
written in the queue and the consumer will receive the last published value for RHT.

Example:

#include "qpid/client/QueueOptions.h"

 QueueOptions qo;
 qo.setOrdering(LVQ);

 session.queueDeclare(arg::queue=queue, arg::arguments=qo);

 string key;
 qo.getLVQKey(key);

 each message, set the into application headers before transferfor
 message.getHeaders().setString(key,);"RHT"

Notes:

Messages that are dequeued and the re-queued will have the following exceptions. a.) if a new message has been queued with the
same key, the re-queue from the consumer, will combine these two messages. b.) If an update happens for a message of the same
key, after the re-queue, it will not update the re-queued message. This is done to protect a client from being able to adversely
manipulate the queue.
Acquire: When a message is acquired from the queue, no matter it's position, it will behave the same as a dequeue
LVQ does not support durable messages. If the queue or messages are declared durable on an LVQ, the durability will be ignored.

A fully worked can be found hereLVQ Example

Setting additional behaviors

Persist Last Node

This option is used in conjunction with clustering. It allows for a queue configured with this option to persist transient messages if the cluster
fails down to the last node. If additional nodes in the cluster are restored it will stop persisting transient messages.

Note

if a cluster is started with only one active node, this mode will not be triggered. It is only triggered the first time the cluster fails down
to 1 node.
The queue MUST be configured durable

Example:

#include "qpid/client/QueueOptions.h"

 QueueOptions qo;
 qo.clearPersistLastNode();

 session.queueDeclare(arg::queue=queue, arg::durable= , arg::arguments=qo);true

Queue event generation

This option is used to determine whether enqueue/dequeue events representing changes made to queue state are generated. These events
can then be processed by plugins such as that used for .queue state replication

Example:

#include "qpid/client/QueueOptions.h"

 QueueOptions options;
 options.enableQueueEvents(1);
 session.queueDeclare(arg::queue= , arg::arguments=options);"my-queue"

The boolean option indicates whether only enqueue events should be generated. The key set by this is 'qpid.queue_event_generation' and
the value is and integer value of 1 (to replicate only enqueue events) or 2 (to replicate both enqueue and dequeue events).

Other Clients

Note that these options can be set from any client. QueueOptions just correctly formats the arguments passed to the QueueDeclare()
method.

LVQ Example

Worked LVQ example

When running the following example, that happen when a message with the same key is published before the previous one if old message
gets replaced. This example sends for messages with data & values set to key1, key2, key3, key1.

If the messages are enqueued before the listener consumes then you get the following output:

Sending Data:key1
Sending Data:key2
Sending Data:key3
Sending Data:key1
Sending Data:last
Receiving Data:key1
Receiving Data:key2
Receiving Data:key3
Receiving Data:last

Source for example

#include <qpid/client/Connection.h>
#include <qpid/client/SubscriptionManager.h>
#include <qpid/client/Session.h>
#include <qpid/client/Message.h>
#include <qpid/client/MessageListener.h>
#include <qpid/client/QueueOptions.h>

#include <iostream>

using namespace qpid::client;
using namespace qpid::framing;
using namespace qpid::sys;
using namespace std;

struct Args : qpid::Options,public
 qpid::client::ConnectionSettingspublic
{
 bool help;

 Args() : qpid::Options(), help()"Simple latency test optins" false
 {
 using namespace qpid;
 addOptions()
 (, optValue(help),)"help" "Print usage statement"this
 (, optValue(host,),) "broker,b" "HOST" "Broker host to connect to"
 (, optValue(port,),)"port,p" "PORT" "Broker port to connect to"
 (, optValue(username,),)"username" "USER" "user name broker log in."for
 (, optValue(password,),)"password" "PASSWORD" "password broker log in."for
 (, optValue(mechanism,), "mechanism" "MECH" "SASL mechanism to use when

)authenticating."
 (, optValue(tcpNoDelay),);"tcp-nodelay" "Turn on tcp-nodelay"
 }
};

class Listener : MessageListenerpublic
{
 :private
 Session session;
 SubscriptionManager subscriptions;
 std::string queue;
 Message request;
 QueueOptions args;
 :public
 Listener(Session& session);
 void setup();
 void send(std::string kv);
 void received(Message& message);
 void start();
};

Listener::Listener(Session& s) :
 session(s), subscriptions(s),
 queue(session.getId().getName())
{}

void Listener::setup()

{
 // set queue mode
args.setOrdering(LVQ);

 session.queueDeclare(arg::queue=queue, arg::exclusive= , arg::autoDelete= ,true true
arg::arguments=args);
 request.getDeliveryProperties().setRoutingKey(queue);

}

void Listener::start()
{
 subscriptions.subscribe(* , queue, SubscriptionSettings(FlowControl::unlimited(),this
ACCEPT_MODE_NONE));
 subscriptions.run();
}

void Listener::send(std::string kv)
{

 std::string key;
 args.getLVQKey(key);
 request.getHeaders().setString(key, kv);

 request.setData(kv);

 cout << << kv << std::endl;"Sending Data:"
 async(session).messageTransfer(arg::content=request);

}

void Listener::received(Message& response)
{

 cout << << response.getData() << std::endl;"Receiving Data:"
 (response.getData() ==){if "last"
 subscriptions.cancel(queue);
 }
}

 main(argc, ** argv) int int char
{
 Args opts;
 opts.parse(argc, argv);

 (opts.help) {if
 std::cout << opts << std::endl;
 0;return
 }

 Connection connection;
 {try
 connection.open(opts);
 Session session = connection.newSession();
 Listener listener(session);
 listener.setup();
 listener.send();"key1"
 listener.send();"key2"
 listener.send();"key3"
 listener.send();"key1"
 listener.send();"last"
 listener.start();

 connection.close();
 0;return
 } (std::exception& error) {catch const
 std::cout << error.what() << std::endl;
 }
 1;return

}

queue state replication

Asynchronous Replication of Queue State

Overview

There is support in qpidd for selective asynchronous replication of queue state. This is achieved by:

(a) enabling event generation for the queues in question

(b) loading a plugin on the 'source' broker to encode those events as messages on a replication queue (this plugin is called
replicating_listener.so)

(c) loading a custom exchange plugin on the 'backup' broker (this plugin is called replication_exchange.so)

(d) creating an instance of the replication exchange type on the backup broker

(e) establishing a federation bridge between the replication queue on the source broker and the replication exchange on the backup broker

The bridge established between the source and backup brokers for replication (step (e) above) should have acknowledgements turned on
(this may be done through the --ack N option to qpid-route). This ensures that replication events are not lost if the bridge fails.

The replication protocol will also eliminate duplicates to ensure reliably replicated state. Note though that only one bridge per replication
exchange is supported. If clients try to publish to the replication exchange or if more than a the single required bridge from the replication
queue on the source broker is created, replication will be corrupted. (Access control may be used to restrict access and help prevent this).

The replicating event listener plugin (step (b) above) has the following options:

Queue Replication Options:
 --replication-queue QUEUE Queue on which events for
 other queues are recorded
 --replication-listener-name NAME (replicator) name by which to register the
 replicating event listener
 --create-replication-queue set, the replication willif
 be created it does notif
 exist

The name of the queue is required. It can either point to a durable queue whose definition has been previously recorded, or the
--create-replication-queue option can be specified in which case the queue will be created a simple non-durable queue if it does not already
exist.

Use with Clustering

The source and/or backup brokers may also be clustered brokers. In this case the federated bridge will be re-established between replicas
should either of the originally connected nodes fail. There are however the following limitations at present:

The backup site does not process membership updates after it establishes the first connection. In order for newly added members
on a source cluster to be eligible as failover targets, the bridge must be recreated after those members have been added to the
source cluster.

New members added to a backup cluster will not receive information about currently established bridges. Therefore in order to allow
the bridge to be re-established from these members in the event of failure of older nodes, the bridge must be recreated after the new
members have joined.

Only a single URL can be passed to create the initial link from backup site to the primary site. this means that at the time of creating
the initial connection the initial node in the primary site to which the connection is made needs to be running. Once connected the
backup site will receive a membership update of all the nodes in the primary site, and if the initial connection node in the primary
fails, the link will be re-established on the next node that was started (time) on the primary site.

Due to the acknowledged transfer of events over the bridge (see note above) manual recreation of the bridge and automatic re-establishment
of te bridge after connection failure (including failover where either or both ends are clustered brokers) will not result in event loss.

Operations on Backup Queues

When replicating the state of a queue to a backup broker it is important to recognise that any other operations performed directly on the
backup queue may break the replication.

If the backup queue is to be an active (i.e. accessed by clients while replication is on) only enqueues should be selected for
replication. In this mode, any message enqueued on the source brokers copy of the queue will also be enqueued on the backup brokers
copy. However not attempt will be made to remove messages from the backup queue in response to removal of messages from the source
queue.

Selecting Queues for Replication

Queues are selected for replication by specifying the types of events they should generate (it is from these events that the replicating plugin
constructs messages which are then pulled and processed by the backup site). This is done through options passed to the initial
queue-declare command that creates the queue and may be done either through qpid-config or similar tools, or by the application.

With qpid-config, the --generate-queue-events options is used:

 --generate-queue-events N
 If set to 1, every enqueue will generate an event that can be processed
by
 registered listeners (e.g. replication). If set to 2, events will befor
 generated enqueues and dequeuesfor

From an application, the arguments field of the queue-declare AMQP command is used to convey this information. An entry should be added
to the map with key 'qpid.queue_event_generation' and an integer value of 1 (to replicate only enqueue events) or 2 (to replicate both
enqueue and dequeue events).

Applications written using the c++ client API may fine the qpid::client::QueueOptions class convenient. This has a
enableQueueEvents() method on it that can be used to set the option (the instance of QueueOptions is then passed as the value of the
arguments field in the queue-declare command. The boolean option to that method should be set to true if only enequeue events should be
replicated; by default it is false meaning that both enqueues and dequeues will be replicated. E.g.

 QueueOptions options;
 options.enableQueueEvents();false
 session.queueDeclare(arg::queue= , arg::arguments=options);"my-queue"

Example

Lets assume we will run the primary broker on host1 and the backup on host2, have installed qpidd on both and have the replicating_listener
and replication_exchange plugins in qpidd's module directory(*1).

On host1 we start the source broker and specifcy that a queue called 'replication' should be used for storing the events until consumed by the
backup. We also request that this queue be created (as transient) if not already specified:

 qpidd --replication-queue replication-queue --create-replication-queue --log-enable info+true

On host2 we start up the backup broker ensuring that the replication exchange module is loaded:

 qpidd

We can then create the instance of that replication exchange that we will use to process the events:

 qpid-config -a host2 add exchange replication replication-exchange

If this fails with the message "Exchange type not implemented: replication", it means the replication exchange module was not
loaded. Check that the module is installed on your system and if necessary provide the full path to the library.

We then connect the replication queue on the source broker with the replication exchange on the backup broker using the qpid-route
command:

 qpid-route --ack 50 queue add host2 host1 replication-exchange replication-queue

The example above configures the bridge to acknowledge messages in batches of 50.

Now create two queues (on both source and backup brokers), one replicating both enqueues and dequeues (queue-a) and the other
replicating only dequeues (queue-b):

 qpid-config -a host1 add queue queue-a --generate-queue-events 2
 qpid-config -a host1 add queue queue-b --generate-queue-events 1

 qpid-config -a host2 add queue queue-a
 qpid-config -a host2 add queue queue-b

We are now ready to use the queues and see the replication.

Any message enqueued on queue-a will be replicated to the backup broker. When the message is acknowledged by a client connected to
host1 (and thus dequeued), that message will be removed from the copy of the queue on host2. The state of queue-a on host2 will thus
mirror that of the equivalent queue on host1, albeit with a small lag. (Note
however that we must not have clients connected to host2 publish to-or consume from- queue-a or the state will fail to replicate correctly due
to conflicts).

Any message enqueued on queue-b on host1 will also be enqueued on the equivalent queue on host2. However the acknowledgement and
consequent dequeuing of messages from queue-b on host1 will have no effect on the state of queue-b on host2.

(*1) If not the paths in the above may need to be modified. E.g. if using modules built from a qpid svn checkout, the following would be added
to the command line used to start qpidd on host1:

 --load-module <path-to-qpid-dir>/src/.libs/replicating_listener.so

and the following for the equivalent command line on host2:

 --load-module <path-to-qpid-dir>/src/.libs/replication_exchange.so

Documentation2

General
Qpid Brokers

Java Broker
General User Guides
How Tos
Management Tools

C++ Broker
General User Guides
How Tos
Management

Qpid Clients
JMS Client

General User Guides.
C++ Client

General User Guides
How Tos

Python Client
General User Guides
How Tos

Ruby Client
General User Guides
How Tos

.NET Cliet
General User Guides
How Tos

Management Tools
C++ Broker Management Tools
Java Broker Management Tools

Developer Guides
Development Tools

General

FAQ
Quick start guide
Example guide
Qpid Interoperability Documentation

Qpid Brokers

http://cwiki.apache.org/qpid/faq.html
http://cwiki.apache.org/qpid/getting-started.html

Java Broker

General User Guides

Feature Guide
FAQ
Getting Started Guide
Broker Environment Variables
Troubleshooting Guide

How Tos

Add New Users
Configure ACLs
Configure Java Qpid to use a SSL connection.
Configure Log4j CompositeRolling Appender
Configure the Broker via config.xml
Configure the Virtual Hosts via virtualhosts.xml
Debug using log4j
How to Tune M3 Java Broker Performance
Qpid Java Build How To
Use Priority Queues

Management Tools

Qpid JMX Management Console
MessageStore Tool
Qpid Java Broker Management CLI
Management Design notes

C++ Broker

General User Guides

[Feature Guide]
Running an AMQP 0-10 C++ broker
Getting Started
Queue State Replication
Understanding ACLs
Using Broker Federation
[Clustering Guide]

How Tos

How to use SSL
[RDMA How To]
[Kerberos Support]
[SASL Support]

Management

Management Tools Overview
QMan - Qpid Management bridge
Qpid Management Framework
Manage anything with Qpid - QMF Python Console Tutorial
Qpid Management Framework (QMF) Protocol

Qpid Clients

JMS Client

The Java Client supported by Qpid implements the JMS 1.1 specification.

General User Guides.

[Feature Guide]
FAQ
JMS 1.1 Specification
System Properties
Connection URL Format - The format used to describe a connection.
BindingURLFormat - The format used for creating bindings within and to a broker.
How to Use JNDI
[Using JMS client with RT Java]
[JMS Client Tuning Guide]

http://java.sun.com/products/jms/docs.html

C++ Client

General User Guides

[Feature Guide]
C++ API Guide
Configuring Queue Options
Configuring Exchange Options
Understanding Last Value Queues (LVQ)

How Tos

How to use SSL
[Message TTL, auto expire]
[RDMA How To]
[Kerberos Support]
[SASL Support]

Python Client

General User Guides

Python Client API Guide
Python Test Framework

How Tos

Ruby Client

General User Guides

Ruby Client API Guide (todo)

How Tos

.NET Cliet

General User Guides

.NET client user guide

.NET client Excel plug-in
The WCF interface for the .NET client

How Tos

Management Tools

C++ Broker Management Tools

Management Tools Overview
QMan - Qpid Management bridge
Qpid Management Framework
Manage anything with Qpid - QMF Python Console Tutorial
Qpid Management Framework (QMF) Protocol

Java Broker Management Tools

Qpid JMX Management Console
MessageStore Tool
Qpid Java Broker Management CLI

Developer Guides

Qpid .Net Documentation
Qpid Java Documentation
Qpid 'C++' Documentation
Qpid Python Test Framework

Development Tools

http://qpid.apache.org/docs/api/cpp/html/index.html
http://qpid.apache.org/docs/api/python/html/index.html

Build Creator

DocumentationB

Qpid Documentation Index

General

FAQ
Quick start guide
Example guide
Qpid Interoperability Documentation

Qpid Brokers

Java Broker
C++ Broker

Qpid Clients

JMS Client
C++ Client
Python Client
Ruby Client
.NET Client

Management Tools

C++ Broker Management Tools
Management Tools Overview
QMan - Qpid Management bridge
Qpid Management Framework
Manage anything with Qpid - QMF Python Console Tutorial
Qpid Management Framework (QMF) Protocol

Java Broker Management Tools
Qpid JMX Management Console
MessageStore Tool
Qpid Java Broker Management CLI

Developer Guides

Qpid .Net Documentation
Qpid Java Documentation
Qpid 'C++' Documentation
Qpid Python Test Framework

Development Tools

Build Creator

.NET Client

General User Guides

.NET client user guide

.NET client Excel plug-in
The WCF interface for the .NET client

C++ Broker

General User Guides

[Feature Guide]
Running an AMQP 0-10 C++ broker
Getting Started
Queue State Replication
Understanding ACLs
Using Broker Federation
[Clustering Guide]

How Tos

How to use SSL
[RDMA How To]
[Kerberos Support]

http://cwiki.apache.org/qpid/faq.html
http://cwiki.apache.org/qpid/getting-started.html

[SASL Support]

Management

Management Tools Overview
QMan - Qpid Management bridge
Qpid Management Framework
Manage anything with Qpid - QMF Python Console Tutorial
Qpid Management Framework (QMF) Protocol

Management Tools Overview

C++ Broker Management Tools Overview

qpid-tool - telnet type tool to access data, view schema, issue command an and QMF resource
qpid-config - tool to configure queues, exchanges, etc. all the details on the AMQP model
qpid-route - tool to configure broker federation
qpid-events - utility that will print to cmd line or syslog event from a broker like, userconnected, user crested/deleted a queue.** *
qpid-stats * utility that will print out queue statistics to the cmd line or syslog like rate and message depth.
QMan - acessing the above information via JMX or WS-DM (work in progress).

C++ Client

General User Guides

[Feature Guide]
C++ API Guide
Configuring Queue Options
Configuring Exchange Options
Understanding Last Value Queues (LVQ)

How Tos

How to use SSL
[Message TTL, auto expire]
[RDMA How To]
[Kerberos Support]
[SASL Support]

Example guide

Introduction

Qpid includes a set of examples using JMS, C++, Python and NET Clients (Ruby to be done soon.)
These examples are designed to interoperate with each other.
(Currently you can only use the c++ broker to demonstrate the interoperability as the java broker doesn't support AMQP 0-10 yet).

Example Structure

The examples demonstrates the following messaging use cases

Use of direct exchange
Use of topic exchange
Use of fanout exchange
Request/Reply pattern.

Getting the examples

You could get the examples by downloading the latest release from here
Or you could build them from source. Check the following URL's to browse the source code.

C++ Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
Java JMS Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
Python Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
Ruby Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples/
.NET Examples: http://svn.apache.org/viewvc/qpid/trunk/qpid/dotnet/client-010/examples/

Running the examples

todo

Java Broker

General User Guides

http://qpid.apache.org/docs/api/cpp/html/index.html
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples/
http://svn.apache.org/viewvc/qpid/trunk/qpid/dotnet/client-010/examples/

Feature Guide
FAQ
Getting Started Guide
Broker Environment Variables
Troubleshooting Guide

How Tos

Add New Users
Configure ACLs
Configure Java Qpid to use a SSL connection.
Configure Log4j CompositeRolling Appender
Configure the Broker via config.xml
Configure the Virtual Hosts via virtualhosts.xml
Debug using log4j
How to Tune M3 Java Broker Performance
Qpid Java Build How To
Use Priority Queues

Management Tools

Qpid JMX Management Console
MessageStore Tool
Qpid Java Broker Management CLI
Management Design notes

IP Whitelisting

While using a properly configured firewall is the obvious way to restrict access to a broker, it's occasionally desireable to do this on the broker
itself.

Configuration

The access restrictions apply either to the server as a whole or too a particular virtualhost. Rules are evaluated in the virtualhost first, then
the server as a whole (most-specific to least-specific). This allows whole netblocks to be restricted from all but one virtualhost. A <firewall>
element would appear in either the <broker><security><access> section or inside the equivalent <virtualhost> element.

Elements inside <firewall> would be <rule> or <include file=" />. <include> would read the file specified at path, which would contain an[path"]
<firewall host="hostname"/>.

<firewall> would contain further <rule> entries, but not <include>. If the host attribute was specified the broker would check it's hostname
against the attribute and cause a fatal error on startup if it did not match.

<rule> would have action, hostname and network attributes. Action and one of host or network would be mandatory. The action attribute
would be either allow or deny. Host contains a comma seperated list of regexps against which it would match the reverse dns lookup of the
connecting IP. Network contains a comma seperated list of of CIDR networks against which the IP would be matched.

The first <rule> which matched the connection would apply. If no rules applied, the default-action would apply.

For example, the following could appear in config.xml:

<firewall -action= >default "deny"
 <rule permission= hostname= />"allow" "*.qpid.apache.org"
 <include file= />"/path/to/file"
 <rule permission= network= />"allow" "192.168.1.0/24"
 <rule permission= network= />"allow" "10.0.0.0/8"
</firewall >

and /path/to/file could contain:

<firewall host= >"broker1.qpid.apache.org"
 <rule permission= network= virtualhost= />"deny" "192.168.1.0/24" "prod"
</firewall>

any machine in the qpid.apache.org domain could access dev.
Any machine in the 192.168.1.0/24 network would be allowed access to any virtualhost other than prod
Any machine in the 10.0.0.0/8 network would be allowed access to any virtual host
Any other machine would be denied access.

Changes would be possible while broker was running via commons-configuration magic when the file is editted. Existing connections would
be unaffected by a new rule.

Implementation

An IPRestriction class would extend ACLPlugin which listens for ConnectionOpen and checks against the list of rules. It will use the
mechanism described at .http://qpid.apache.org/java-authorization-plugins.html

IPRestriction would parse the config file, compiling into an ordered list of Rule classes, which would have two methods: boolean
match(InetAddress IPAddress) and boolean allow(). During the authorization phase it would iterate through these Rules until match() returns
true when it will authorize or not according to the value returned by allow().

Because of the way that Java pre-6 caches dns forever, a small value for networkaddress.cache.ttl is necessary.

QPID-1583

Java Broker Feature Guide

The Qpid pure Java broker currently supports the following features:

All features required by the Sun JMS 1.1 specification, fully tested
Transaction support
Persistence using a pluggable layer
Pluggable security using SASL
Management using JMX and an Eclipse Management Console application
High performance header-based routing for messages
Message Priorities
Configurable logging and log archiving
Threshold alerting
ACLs
Extensively tested on each release, including performance & reliability testing
Automatic client failover using configurable connection properties
Durable Queues/Subscriptions

Upcoming features:

Flow To Disk
IP Whitelist
AMQP 0-10 Support (for interoperability)

JMS Client

The Java Client supported by Qpid implements the JMS 1.1 specification.

General User Guides.

[Feature Guide]
FAQ
JMS 1.1 Specification
System Properties
Connection URL Format - The format used to describe a connection.
BindingURLFormat - The format used for creating bindings within and to a broker.
How to Use JNDI
[Using JMS client with RT Java]
[JMS Client Tuning Guide]

Python Client

General User Guides

Python Client API Guide
Python Test Framework

Ruby Client

General User Guides

Ruby Client API Guide (todo)

Java Broker Analysis Tools

Analysis Tools

This page contains details of the broker analysis tools available as part of the package. The design for this work is[Performance Test]
located .here

Overview
Monitoring

GC / Heap Usage
CPU Usage

http://qpid.apache.org/java-authorization-plugins.html
https://issues.apache.org/jira/browse/QPID-1583
http://java.sun.com/products/jms/docs.html
http://qpid.apache.org/docs/api/python/html/index.html

Scripting
Processing
processTests.py
processAll.sh
process.sh

Overview

To better understand the performance of the Java broker this collection of tools have been gathered to perform analysis on a variety of
logging that the broker can produce. Looking solely at the throughput values from our performance suite is not sufficient to tell us that the
broker's performance has increased.

Currently it the scripts monitor:

Heap Usage via verbose GC logging
GC Duration via verbose GC logging
CPU Usage via batch mode top

Additional logging can be added to gather data as required. The processing of the resulting log files from the broker run can then processed
and using graphs of the data are generated.GnuPlot

Monitoring

To better understand how the broker is performing there are some easy things we can start monitoring.

Verbose GC/Heap Usage
CPU Usage

GC / Heap Usage

Enabling verbose gc will allow the broker to provide us with a log file that details GC operation. SO we can get a better handle on the impact
of GC on the performance of the broker. Enabling is done by providing a few additional values via QPID_OPTS:

-Xloggc:<gc log file> -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps

This will result in a gc log file that shows all GCs performed. Of inititial interest is the extraction of:

Heap Usage (Max Allocated, Pre/Post GC Usage)
GC Count (Incremental, Full)
GC Duration (Incremental, Full, Total)
Testing+Design+-+Java+Broker+CPU+GC+Monitoring
As we gather this information a better internal view of the broker in opperation can be built. When changes are made to the broker
this data should allow us to determine how the changes have affected the GC and memory profile.

CPU Usage

In addition to the GC and Memory profiling available via the verbose gc settings monitoring the CPU usage via top is a quick and easy way to
view the cpu utilisation of the broker.

Using the following top command we can monitor a give broker and adjust the time interval in which we record the CPU usage.

$ top -d $monitor_rate -S -c -p $broker_pid -b > broker_cpu.log

Scripting

To make life easier and to allow for future automated testing the following monitoring scripts have been added to the 'perftest' package:

monitor-broker.sh
stop-monitored-broker.sh

monitor-broker.sh

The monitor-broker.sh script current starts the following processes:

The broker with additional QPID_OPTS for gc logging
Top to monitoring the CPU usage

To run this script a number of parameters are requried:

Usage ./monitor-broker.sh <Path to Test Broker> <LOG DIR> <CPU Monitor Rate (s)> [Additional
options to
 pass to Qpid broker startup]

The first parameter is the path to a qpid-broker package, or at least a directory that contains an executable broker.
The <LOG DIR> is a path that (this is checked) for all the log files to be collected for this monitored startup process. Themust not exist

http://www.gnuplot.info

verbose gc, broker log, std out/err and PID files will be written to this directory.
The rate at which top will run to monitor this broker is the third value, any value here that is valid for top's '-d' parameter is valid here.
Finally the remainder of the command line is passed directly to the qpid-server start up so additional log configuration or configuration can be
provided here. NOTE: if providing custom log4j setup please ensure that the log file is written to QPID_WORK as this is set to the <LOG
DIR> value. This will ensure that all the log files for the testing run are located in a single directory for easy later processing.

The pids of the broker and top are written to a *.pid file in the LOG_DIR. These are also used by the stop-monitored-broker.sh
script to ensure clean shutdown.

If additional processes are desired to be run if they write a PID into LOG_DIR/*.pid then they will be shutdown with the stop script.

stop-monitored-broker.sh

This is a simple script that takes the <LOG DIR> as its only parameter.

It then looks in this directory for all '.pid' files and uses their contained pid value to execute a 'kill' command.

If all processes have not stopped within 3 seconds then a 'kill -9' is executed.

runTests.sh

The final script in the monitoring package currently is 'runTest.sh' this simplifies the execution of a suite of tests.

The script takes three parameters:

Usage ./runTests.sh <Path to Test Pack> <LOG DIR> <TEST LIST FILE>

As with the monitor-broker.sh the first parameter is the path to the qpid-test package that can be build using the . The testBuild Creator
simply looks for a path that has a bin which will be used to execute your test lists.

The LOG_DIR path again is requied on startup to ensure we have a clean result set. The results of each test run are instructed tonot to exist
be written here by adding '-o <LOG_DIR> --csv' to the executed test.

Finally the 'Test List File' is a plain text file containing a single command per line to execute. The entries here should at least respond to the
'-o' parameter to ensure that their output is collected in the LOG_DIR.

An example test file might contain something link:

TQBT-AA-Qpid-01.sh -d10M
TTBT-AA-Qpid-01.sh -d10M

The two test scripts are assumed to exist in thee <path to test pack>/bin directory.

Monitoring
If you want to check the tests are running the standard out of the individual tests is redirected to <log dir>/TestRun.log

Processing

Monitoring is only the first stage to gather the data. It is the collection of processing tools that are responsible for turing the raw data into
something more human understandable.

There are three scripts here that perform take the raw data from the monitoring phase and turn that in to three graphs such as these
examples that were made during the design of these scripts:

The three scripts are:

processTests.py
processAll.sh
process.sh

processTests.py

This is the first script written in python that takes the raw output from the monitoring stage and generates test packs.

The script has two parameters the two output directories (broker and test) from the monitoring phase:

http://cwiki.apache.org/confluence/download/attachments/118853/0.5-queue-12b-0r-CPU.png
http://cwiki.apache.org/confluence/download/attachments/118853/0.5-queue-12b-0r-GCDuration.png
http://cwiki.apache.org/confluence/download/attachments/118853/0.5-queue-12b-0r-Heap.png

Usage: processTests.py [-b|--broker-log-dir] <dir> [-t|--test-dir] <dir>

The tool currently looks for all the *.csv file the individual tests have generated and uses the gathered metadata to create a slice of each of
the broker log files (gc, logging, cpu). In addition the script will gather details about the test run and broker used to form the title and filename
for the graph.

processAll.sh

The processAll.sh script searches for 'graph.data' files and then runs the process.sh script on each of them to generate the graphs for that
data.
The script takes a single argument, a directory to start searching in.

processAll.sh <search dir>

The graph images are then copied to a 'results' directory that is created in the current working directory.

process.sh

This is the main processing script for the collected data. It has been updated to work in conjuction with the processTests.py script. Further
development of this script should be performed to allow the explicit naming of the various log file and parameter inputs that this uses.

This script is currently expected to be called from processAll.sh and as a result takes a single arguement a graph.data file.

This graph.data file contains two text lines. The first is the title to give the graph, the second is the name of the file.
This is an example file of the automatic output from the processTests.py:

0.5:TQBT-AA-Qpid-01:256kb x 962 msg/sec using AutoAck
0.5-TQBT-AA-Qpid-01-2009-06-19-17.04.25-timings

In generic terms it creates the following graph.data file:

<broker version>:<test name>:<messageSize>kb x <test volume as measured> msg/sec using <ackMode of
test>
<broker version>-<test name>

The process.sh script produces three graphs:

GC Heap Usage
GC Duration
CPU Utilisation

NOTE is used to generate the graphs.GnuPlot

To generated these graphs it does a lot of data manipulation and extraction on the gc log file. Currently the script will process a
ConcurrentMark and Sweep gc log file and the format used by the new G1 collector. The processing of these files extracts the recorded time
for each gc and the instant count of minor and full GCs. This information is graphed on the GC Duration graph.

The GC log file also highlights the Allocated Heap, Pre and Post GC heap sizes. This is the data that is then graphed in the GC Heap Size
graph.

The final graph, CPU Utilisation' is generated from the cpu data gathered using top. Here the script has been updated to work with the data
output from processTests.py where the broker_cpu.log file contains a list of time-stamped entries. This is then used to show time on the
x-axis.

This improvement is also due be applied to the other two graphs. In addition to standardising the x-axis the y-axis scale for a given batch of
tests, as processed by processAll.sh, will be standardised allow for easy image comparison.

LVQ

Understanding LVQ

Last Value Queues are useful youUser Documentation are only interested in the latest value entered into a queue. LVQ semantics are
typically used for things like stock symbol updates when all you care about is the latest value for example.

Qpid C++ M4 or later supports two types of LVQ semantics:

LVQ
LVQ_NO_BROWSE

LVQ semantics:

http://www.gnuplot.info

LVQ uses a header for a key, if the key matches it replaces the message in-place in the queue except
a.) if the message with the matching key has been acquired
b.) if the message with the matching key has been browsed
In these two cases the message is placed into the queue in FIFO, if another message with the same key is received it will the 'un-accessed'
message with the same key will be replaced

These two exceptions protect the consumer from missing the last update where a consumer or browser accesses a message and an update
comes with the same key.

An example

[localhost tests]$./lvqtest --mode create_lvq
[localhost tests]$./lvqtest --mode write
Sending Data: key1=key1.0x7fffdf3f3180
Sending Data: key2=key2.0x7fffdf3f3180
Sending Data: key3=key3.0x7fffdf3f3180
Sending Data: key1=key1.0x7fffdf3f3180
Sending Data: last=last
[localhost tests]$./lvqtest --mode browse
Receiving Data:key1.0x7fffdf3f3180
Receiving Data:key2.0x7fffdf3f3180
Receiving Data:key3.0x7fffdf3f3180
Receiving Data:last
[localhost tests]$./lvqtest --mode write
Sending Data: key1=key1.0x7fffe4c7fa10
Sending Data: key2=key2.0x7fffe4c7fa10
Sending Data: key3=key3.0x7fffe4c7fa10
Sending Data: key1=key1.0x7fffe4c7fa10
Sending Data: last=last
[localhost tests]$./lvqtest --mode browse
Receiving Data:key1.0x7fffe4c7fa10
Receiving Data:key2.0x7fffe4c7fa10
Receiving Data:key3.0x7fffe4c7fa10
Receiving Data:last
[localhost tests]$./lvqtest --mode consume
Receiving Data:key1.0x7fffdf3f3180
Receiving Data:key2.0x7fffdf3f3180
Receiving Data:key3.0x7fffdf3f3180
Receiving Data:last
Receiving Data:key1.0x7fffe4c7fa10
Receiving Data:key2.0x7fffe4c7fa10
Receiving Data:key3.0x7fffe4c7fa10
Receiving Data:last

LVQ_NO_BROWSE semantics:

LVQ uses a header for a key, if the key matches it replaces the message in-place in the queue except
a.) if the message with the matching key has been acquired
In these two cases the message is placed into the queue in FIFO, if another message with the same key is received it will the 'un-accessed'
message with the same key will be replaced

Note, in this case browsed messaged are not invalidated, so updates can be missed.

An example

[localhost tests]$./lvqtest --mode create_lvq_no_browse
[localhost tests]$./lvqtest --mode write
Sending Data: key1=key1.0x7fffce5fb390
Sending Data: key2=key2.0x7fffce5fb390
Sending Data: key3=key3.0x7fffce5fb390
Sending Data: key1=key1.0x7fffce5fb390
Sending Data: last=last
[localhost tests]$./lvqtest --mode write
Sending Data: key1=key1.0x7fff346ae440
Sending Data: key2=key2.0x7fff346ae440
Sending Data: key3=key3.0x7fff346ae440
Sending Data: key1=key1.0x7fff346ae440
Sending Data: last=last
[localhost tests]$./lvqtest --mode browse
Receiving Data:key1.0x7fff346ae440
Receiving Data:key2.0x7fff346ae440
Receiving Data:key3.0x7fff346ae440
Receiving Data:last
[localhost tests]$./lvqtest --mode browse
Receiving Data:key1.0x7fff346ae440
Receiving Data:key2.0x7fff346ae440
Receiving Data:key3.0x7fff346ae440
Receiving Data:last
[localhost tests]$./lvqtest --mode write
Sending Data: key1=key1.0x7fff606583e0
Sending Data: key2=key2.0x7fff606583e0
Sending Data: key3=key3.0x7fff606583e0
Sending Data: key1=key1.0x7fff606583e0
Sending Data: last=last
[localhost tests]$./lvqtest --mode consume
Receiving Data:key1.0x7fff606583e0
Receiving Data:key2.0x7fff606583e0
Receiving Data:key3.0x7fff606583e0
Receiving Data:last
[localhost tests]$

Example source

/*
 *
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with work additional informationthis for
 * regarding copyright ownership. The ASF licenses filethis
 * to you under the Apache License, Version 2.0 (the
 *); you may not use file except in compliance"License" this
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
*
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY"AS IS"
 * KIND, either express or implied. See the License thefor
 * specific language governing permissions and limitations
 * under the License.
 *
 */

#include <qpid/client/AsyncSession.h>
#include <qpid/client/Connection.h>
#include <qpid/client/SubscriptionManager.h>
#include <qpid/client/Session.h>
#include <qpid/client/Message.h>
#include <qpid/client/MessageListener.h>
#include <qpid/client/QueueOptions.h>

#include <iostream>

using namespace qpid::client;
using namespace qpid::framing;
using namespace qpid::sys;
using namespace qpid;
using namespace std;

 Mode { CREATE_LVQ, CREATE_LVQ_NO_BROWSE, WRITE, BROWSE, CONSUME};enum
 * modeNames[] = { , , , , };const char "create_lvq" "create_lvq_no_browse" "write" "browse" "consume"

// istream/ostream ops so Options can read/display Mode.
istream& >>(istream& in, Mode& mode) {operator
 string s;
 in >> s;
 i = find(modeNames, modeNames+5, s) - modeNames;int
 (i >= 5) Exception(+s);if throw "Invalid mode: "
 mode = Mode(i);
 in;return
}

ostream& <<(ostream& out, Mode mode) {operator
 out << modeNames[mode];return
}

struct Args : qpid::Options,public
 qpid::client::ConnectionSettingspublic
{
 bool help;
 Mode mode;

 Args() : qpid::Options(), help(), mode(BROWSE)"Simple latency test optins" false
 {
 using namespace qpid;
 addOptions()
 (, optValue(help),)"help" "Print usage statement"this
 (, optValue(host,),) "broker,b" "HOST" "Broker host to connect to"
 (, optValue(port,),)"port,p" "PORT" "Broker port to connect to"
 (, optValue(username,),)"username" "USER" "user name broker log in."for
 (, optValue(password,),)"password" "PASSWORD" "password broker log in."for
 (, optValue(mechanism,), "mechanism" "MECH" "SASL mechanism to use when

)authenticating."
 (, optValue(tcpNoDelay),)"tcp-nodelay" "Turn on tcp-nodelay"
 (, optValue(mode,), "mode" "'see below'" "Action mode."
 "\ncreate_lvq: create a queue of type lvq.\n"new
 "\ncreate_lvq_no_browse: create a queue of type lvq with no lvq on browse.\n"new
 "\nwrite: write a bunch of data & keys.\n"
 "\nbrowse: browse the queue.\n"
);"\nconsume: consume from the queue.\n"
 }
};

class Listener : MessageListenerpublic
{
 :private
 Session session;
 SubscriptionManager subscriptions;
 std::string queue;
 Message request;
 QueueOptions args;
 :public
 Listener(Session& session);
 void setup(bool browse);
 void send(std::string kv);
 void received(Message& message);
 void browse();
 void consume();
};

Listener::Listener(Session& s) :
 session(s), subscriptions(s),
 queue()"LVQtester"
{}

void Listener::setup(bool browse)
{
 // set queue mode
args.setOrdering(browse?LVQ_NO_BROWSE:LVQ);

 session.queueDeclare(arg::queue=queue, arg::exclusive= , arg::autoDelete= ,false false
arg::arguments=args);

}

void Listener::browse()
{
 subscriptions.subscribe(* , queue, SubscriptionSettings(FlowControl::unlimited(),this
ACCEPT_MODE_NONE, ACQUIRE_MODE_NOT_ACQUIRED));
 subscriptions.run();
}

void Listener::consume()
{
 subscriptions.subscribe(* , queue, SubscriptionSettings(FlowControl::unlimited(),this
ACCEPT_MODE_NONE, ACQUIRE_MODE_PRE_ACQUIRED));
 subscriptions.run();
}

void Listener::send(std::string kv)
{
 request.getDeliveryProperties().setRoutingKey(queue);

 std::string key;
 args.getLVQKey(key);
 request.getHeaders().setString(key, kv);

 std::ostringstream data;
 data << kv;
 (kv !=) data << << hex << ;if "last" "." this
 request.setData(data.str());

 cout << << kv << << data.str() << std::endl;"Sending Data: " "="
 async(session).messageTransfer(arg::content=request);

}

void Listener::received(Message& response)
{

 cout << << response.getData() << std::endl;"Receiving Data:"
/* (response.getData() ==){if "last"
 subscriptions.cancel(queue);
 }
*/
}

 main(argc, ** argv) int int char
{
 Args opts;
 opts.parse(argc, argv);

 (opts.help) {if
 std::cout << opts << std::endl;
 0;return
 }

 Connection connection;
 {try
 connection.open(opts);
 Session session = connection.newSession();
 Listener listener(session);

 (opts.mode)switch
 {
 CONSUME:case
 listener.consume();
 ; break
 BROWSE:case

 listener.browse();
 ; break
 CREATE_LVQ:case
 listener.setup();false
 ; break
 CREATE_LVQ_NO_BROWSE:case
 listener.setup();true
 ; break
 WRITE:case
 listener.send();"key1"
 listener.send();"key2"
 listener.send();"key3"
 listener.send();"key1"
 listener.send();"last"
 ; break
 }
 connection.close();
 0;return
 } (std::exception& error) {catch const
 std::cout << error.what() << std::endl;
 }
 1;return

}

QMan - Qpid Management bridge

QMan : Qpid Management Bridge

QMan is a management bridge for Qpid. It allows external clients to manage and monitor one or more Qpid brokers.

Please note: All WS-DM related concerns have to be considered part of M5 release.

QMan exposes the broker management interfaces using Java Management Extensions (JMX) and / or OASIS Web Services Distributed
Management (WSDM). While the first one is supposed to be used by java based clients only the latter is an interoperable protocol that
enables management clients to access and receive notifications of management-enabled resources using Web Services.

QMan can be easily integrated in your preexisting system in different ways :

As a standalone application : in this case it runs as a server. More specifically it enables communication via RMI (for JMX) or via
HTTP (for WS-DM); Note that when the WS-DM adapter is used the JMX interface is not exposed;
As a deployable unit : it is also available as a standard Java web application (war); This is useful when there's a preexisting
Application Server in your environment and you don't want start another additional server in order to run QMan.

User Documentation

With "User Documentation" we mean all information that you need to know in order to use QMan from a user perspective. Those information
include :

Section Description

Get me up and running How to install & start QMan.

QMan Administration Console QMan (WS-DM version only) Administration Console.

JMX Interface Specification Describes each JMX interface exposed by QMan.

WS-DM Interface Specification Describes each WS-DM interface exposed by QMan.

QMan Messages Catalogue Informational / Debug / Error / Warning messages catalogue.

Technical Documentation

If you are interested in technical details about QMan and related technologies this is a good starting point. In general this section provides
information about QMan design, interfaces, patterns and so on...

Section Description

System overview A short introduction about QMan deployment context.

Components view Describes QMan components, their interactions and responsibilities.

Get me up and running

Get me up and running

Get me up...
Prerequisites
Installation

...and running
JMX Bridge (Standalone)
WS-DM Bridge
WS-DM Bridge with a preexisting Application Server

Get me up...

This section describes how to install QMan.

Prerequisites

QMan only runs with Java 5 or later. Java 6 is reccomended for the best performance.

Installation

First of all, download the distribution from here and then unzip the archive into your chosen directory. Now you should have a directory

structure like this :

bin : This contains the scripts needed to run QMan (see below for further details).
lib : This contains jars needed to run QMan (core libraries and dependencies).
log : This will contain the QMan log (see below for further details)

That's all! Please proceed to the next section in order to see how to run & configure QMan.

...and running

You can have QMan running in the following three different ways explained below; feel free to choose the way that best fits your needs...

JMX Bridge (Standalone)

This is a standalone RMI server that is able to expose Qpid broker management interface using JMX. As conseguence of that, any Java
based (management) client will be able, using JMX API, to remotely view the broker domain model, its properties, statistics and to invoke
operations exposed by the management interface.

Configuration

QMan JMX Bridge needs two configuration files : qman-config.xml (optional) and log4j.xml. The first one is optional and must be used when if
you wish to automatically connect to one or several brokers at startup; the log4j.xml configure logging.

qman-config.xml

Schema for this configuration file is very simple and for a better understanding let's start with an example :

<configuration>
 <brokers>
 <broker>
 localhost<host> </host>
 5672<port> </port>
 test<virtual-host> </virtual-host>
 guest<user> </user>
 guest<password> </password>
 4<max-pool-capacity> </max-pool-capacity>
 0<initial-pool-capacity> </initial-pool-capacity>
 -1<max-wait-timeout> </max-wait-timeout>
 </broker>
 <broker>
 myhost<host> </host>
 5672<port> </port>
 test<virtual-host> </virtual-host>
 guest<user> </user>
 guest<password> </password>
 4<max-pool-capacity> </max-pool-capacity>
 0<initial-pool-capacity> </initial-pool-capacity>
 -1<max-wait-timeout> </max-wait-timeout>
 </broker>
 </brokers>
</configuration>

host : the hostname where the broker is running;
port : the port where the broker is running;
virtual-host : the virtual host as defined on the remote broker;
user : the username used for estabilish connection;
password : the password used for estabilish connection;
max-pool-capacity : the maximum number of physical connections that the broker connection pool can contain;
initial-pool-capacity : the number of physical connections to create when creating broker connection pool;
max-wait-timeout : the maximum amount of time that a client will wait for obtaining a connection; a value of -1 means "Wait forever!".

The configuration in the example above specifies that QMan should connect to two brokers, one on localhost and one on myhost, both
listening on port 5672. If you don't want connect QMan with any broker (at startup) simply leave this file empty (or without any <broker>
declaration).

log4j.xml

For detailed information about how to configure log4j.xml please refer to http://logging.apache.org/log4j/1.2/manual.html

Run

To run QMan open up a shell / command prompt on 'bin' directory. After that execute ./qman-jmx-start.sh or qman-jmx.start.cmd (windows).
You should see the following output on the /log/qman.log file :

2009-01-08 10:04:12,253 INFO [QMan] <QMAN-000001> : Starting Q-Man...
2009-01-08 10:04:12,253 INFO [QMan] <QMAN-000002> : Reading Q-Man configuration...
...
...
...
2009-01-08 10:04:12,847 INFO [QMan] <QMAN-000023> : Q-Man service is now available on
MBeanServer.
2009-01-08 10:04:12,957 INFO [QMan] <QMAN-000019> : Q-Man open for e-business.

Stop

Simply type "q" in the shell / command prompt from which QMan has been started.

Example : using JConsole as management client

The jconsole tool () can acts as QMan client, allowing you tohttp://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
browse and interact with QMan exposed MBeans.
Remember, we are using RMI as communication protocol and therefore you need to add to JConsole classpath the QMan "client" classes.
Those classes are contained on $QMAN_HOME/lib/qpid-management-client-$Version.jar. So at the end command line for running JConsole
should look like this :

jconsole -J-Djava.class.path=$CLASSPATH:$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar

Where CLASSPATH contains the mentioned QMan jar and JAVA_HOME point on your JDK home.

http://logging.apache.org/log4j/1.2/manual.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

When JConsole appears you can find QMan MBeans under the "MBeans" tab, Q-MAN domain.

WS-DM Bridge

QMan WS-DM Bridge is a HTTP server that acts as a WS-DM Adapter and enables broker remote management using this interoperable
protocol. Briefly, let's say that broker management interface is exposed as a WS-Resources domain.

Configuration

QMan WS-DM Bridge needs three configuration files : qman-config.xml (optional), log4j.xml and jetty.xml. As the JMX version the
qman-config.xml is optional while the other two are required. Specifically, jetty.xml is used for HTTP Server / Servlet Engine configuration
and, unless you need an advanced configuration for web server, you can leave it as is.

qman-config.xml

For detailed informatiom about this file please refer to the corresponding QMan JMX section before.

log4j.xml

For detailed information about how to configure log4j.xml please refer to http://logging.apache.org/log4j/1.2/manual.html

jetty.xml

QMan WS-DM uses Jetty as Web Server / Servlet Container. Detailed information on how to configure this module can be found at
)http://docs.codehaus.org/display/JETTY/Configuring+Jetty

Run

To run QMan open up a shell / command prompt on 'bin' directory. After that execute ./qman-wsdm-start.sh or qman-wsdm.start.cmd
(windows).
You should see the following output on the /log/qman.log file :

2009-01-08 10:04:12,253 INFO [QMan] <QMAN-000001> : Starting Q-Man...
2009-01-08 10:04:12,253 INFO [QMan] <QMAN-000002> : Reading Q-Man configuration...
...
...
...
2009-01-08 10:04:12,847 INFO [QMan] <QMAN-000023> : Q-Man service is now available on
MBeanServer.
2009-01-08 10:04:12,957 INFO [QMan] <QMAN-000019> : Q-Man open for e-business.
2009-01-08 10:04:26,502 INFO [WSDMAdapter] <QMAN-000026> : Initializing WS-DM Adapter
Environment...
2009-01-08 10:04:27,455 INFO [WSDMAdapter] <QMAN-000027> : WS-DM Adapter ready for incoming
requests.

and this should be (moreless) the content of the /log/server.log:

2009-01-08 10:04:10,660 INFO [log] Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log)
via org.mortbay.log.Slf4jLog
2009-01-08 10:04:10,832 INFO [log] Extract jar:file:/.../qman.war!/ to
/.../Jetty_0_0_0_0_8080_qman.war__qman__j84idd/webapp
2009-01-08 10:04:11,957 WARN [log] Unknown realm: default
2009-01-08 10:04:13,191 INFO [log] Started SelectChannelConnector@0.0.0.0:8080

Stop

To run QMan open up a shell / command prompt on 'bin' directory and execute ./qman-wsdm-stop.sh or qman-wsdm-stop.cmd (windows).
You should see the following output on the shell :

QMan WS-DM Adapter shut down successfully.

the following on the /log/qman.log:

2009-01-09 15:37:32,589 INFO [QMan] <QMAN-000020> : Shutting down Q-Man...
2009-01-09 15:37:32,589 INFO [QMan] <QMAN-000021> : Q-Man shut down.

and the following on /log/server.log:

2009-01-09 15:36:15,444 INFO [log] Shutdown hook executing
2009-01-09 15:36:15,444 INFO [log] Shutdown hook complete

WS-DM Bridge with a preexisting Application Server

http://logging.apache.org/log4j/1.2/manual.html
http://docs.codehaus.org/display/JETTY/Configuring+Jetty

QMan WS-DM Adapter is basically a JEE standard web application. You can find the archive under the $QMAN_HOME/lib directory; it is the
qman.war file.
So, generally speaking, you can get that archive and deploy it on your preferred Application Server that is J2EE 1.4 (or later) compliant.
This kind of installation (deployment) is in general useful when there's already a Web Server in your environment.

The following is a list of servers where QMan can de deployed :

JBoss 4.2.x;
BEA Weblogic Server 9.x;
BEA Weblogic Server 10;
IBM WebSphere 7.x;
Apache Tomcat 5.x;
Jetty 6.x

Configuration

In this scenario we are working with a third-party middleware so basically the only thing that you can configure is the qman-config.xml (see
above for details).
Note that the location of the configuration file must be passed as a JVM parameter from the start command line of the server:

...

java -Dqman-config=<complete path to qman-config.xml> ...

If you don't have permission to edit the server startup script please read the User Guide in order to see how to connect QMan with broker(s)
at runtime.

JMX Interface Specification

JMX Interface Specification

This section contains QMan JMX Interface Specification.
Note that what is explained in this section refers to what is commonly addressed as "Instrumentantion Layer".
That means the "Agent Layer" is not part of QMan and therefore it relies on standard JMX API.
So, strictly speaking, the described interface in not directly exposed but rather intermediated by the agent layer and specifically by the
MBeanServer.
The following table describes the three entity types that are part of QMan management domain model.

Resource Type Description Multiplicity

QMan MBean QMan is exposed itself as an MBean. 1

 Object MBean QMan JMX representation of a Qpid domain object exposed for management / monitoring. 0...*

 Event MBean QMan JMX representation of a Qpid domain event exposed for monitoring. 0...*

Event MBean

Event MBean

Events doesn't have operations because are representation of transient entities created on broker side.

Description
Object Name
Attributes
Operations

getAttribute
Notifications

Description

QMan JMX representation of a Qpid event exposed for monitoring. Note that there will be an event MBean instance for each event produced
on Qpid side.
This chapter refers to the abstract interface that object will have.

Object Name

Q-MAN: = , =Event, = , = , =brokerId <BROKER_ID> type package <PACKAGE_NAME> class <CLASS_NAME> objectId <OBJECT_ID>

where :

Name Description Example

Q-MAN QMan management domain. This is a fixed value. N.A.

BROKER_ID Broker identifier. This is a UUID assigned to each connected broker.
Basically it indicates the (broker) owner of this event.

5004341d-7f3e-444a-b240-7d48030599f9

PACKAGE_NAME The package name. A package is a grouping of class definitions that are
related to a single software component. The package concept is used to
extend the management schema beyond just the QPID software
components.

org.apache.qpid.broker

CLASS_NAME The class name. A class is a type definition for a manageable event. bind, subscribe

Attributes

An Event MBean is a JMX representation of something that happened on Qpid side. Its state is basically composed by the arguments

The JMX interface of an event MBean lets you retrieve attributes metadata using the standard JMX API. The following example is showing
that.

Example : retrieving attributes metadata

public class Example
{
 void main([] args) Exceptionpublic static String throws
 {
 MBeanServer server = ManagementFactory.getPlatformMBeanServer();

 // Suppose the following is an object name associated with an existing managed domain instance.
ObjectName objectName = ...;

 MBeanInfo mbeanMetadata = server.getMBeanInfo(objectName);

 // List all attributes (metadata, not values)
 (MBeanAttributeInfo attribute : mbeanMetadata.getAttributes())for

 {
 .out.println(+attribute.getName());System "Name : "
 .out.println(+attribute.getDescription());System "Description : "
 .out.println(+attribute.getType());System "Type : "
 .out.println(+attribute.isReadable());System "Is Readable : "
 .out.println(+attribute.isWritable());System "Is Writable : "
 }
 }
}

Operations

getAttribute

Operation Name Description Return Type

getAttribute This operation allows client to retrieve value of an mbean attribute (argument). java.lang.Object

Argument Name Description Type Nullable Note

objectName This is the name of the target MBean. javax.management.ObjectName No N.A.

attributeName This is the name of the requested attribute. java.lang.String No N.A.

Example

public class Example
{
 void main([] args) Exceptionpublic static String throws
 {
 MBeanServer server = ManagementFactory.getPlatformMBeanServer();

 // Suppose that is an object name corresponding to a valid managed domain instance.this
ObjectName objectName = ...;

 // Suppose the mbean has an attribute (a statistic in) PendingMessagesCountthis case
 attributeValue = () server.getAttribute(objectName,);Long Long "PendingMessagesCount"

 .out.println(+attributeValue);System "Attribute Value : "
 }
}

Notifications

N.A.

Object MBean

Object MBean

Description
Object Name
Attributes
Operations

getAttribute
setAttribute
invoke

Notifications

Description

QMan JMX representation of a Qpid domain object exposed for management / monitoring. Note that there will be an object MBean for each
management object on Qpid.
This chapter refers to the abstract interface that object will have.

Object Name

Q-MAN: = , =Object, = , = , =brokerId <BROKER_ID> type package <PACKAGE_NAME> class <CLASS_NAME> objectId <OBJECT_ID>

where :

Name Description Example

Q-MAN QMan management domain. This is a fixed value. N.A.

BROKER_ID Broker identifier. This is a UUID assigned to each connected broker.
Basically it indicates the (broker) owner of this object.

5004341d-7f3e-444a-b240-7d48030599f9

PACKAGE_NAME The package name. A package is a grouping of class definitions that are
related to a single software component. The package concept is used to
extend the management schema beyond just the QPID software
components.

org.apache.qpid.broker

CLASS_NAME The class name. A class is a type definition for a manageable object. queue, session, connection

Attributes

Object MBean attributes can be classifiled under two categories :

Properties : typed members of object (that is, of its class definition) which represent a configurable attribute of the class. In general,
properties don't change frequently or may not change at all;
Statistics : typed members of object(that is, of its class definition) which represents an instrumentation attribute of the class.
Statistics are always read-only in nature and tend to change rapidly.

The JMX interface of an object MBean lets you retrieve attributes metadata using the standard JMX API. The following example is showing
that.

Example : retrieving attributes metadata

 class Examplepublic
{
 void main([] args) Exceptionpublic static String throws
 {
 MBeanServer server = ManagementFactory.getPlatformMBeanServer();

 // Suppose the following is an object name associated with an existing managed domain instance.
ObjectName objectName = ...;

 MBeanInfo mbeanMetadata = server.getMBeanInfo(objectName);

 // List all attributes (metadata, not values)
 (MBeanAttributeInfo attribute : mbeanMetadata.getAttributes())for

 {
 .out.println(+attribute.getName());System "Name : "
 .out.println(+attribute.getDescription());System "Description : "
 .out.println(+attribute.getType());System "Type : "
 .out.println(+attribute.isReadable());System "Is Readable : "
 .out.println(+attribute.isWritable());System "Is Writable : "
 }
 }
}

Operations

Note that all operations that are part of the Object MBean interface are not exposed directly. According to JMX API specs,
the invocation of those operations needs to be done using the MBeanServer Agent.

getAttribute

Operation Name Description Return Type

getAttribute This operation allows client to retrieve value of an mbean attribute (property or statistic). java.lang.Object

Argument Name Description Type Nullable Note

objectName This is the name of the target MBean. javax.management.ObjectName No N.A.

attributeName This is the name of the requested attribute. java.lang.String No N.A.

Example

 class Examplepublic
{
 void main([] args) Exceptionpublic static String throws
 {
 MBeanServer server = ManagementFactory.getPlatformMBeanServer();

 // Suppose that is an object name corresponding to a valid managed domain instance.this
ObjectName objectName = ...;

 // Suppose the mbean has an attribute (a statistic in) PendingMessagesCountthis case
 attributeValue = () server.getAttribute(objectName,);Long Long "PendingMessagesCount"

 .out.println(+attributeValue);System "Attribute Value : "
 }
}

setAttribute

Operation
Name

Description Return
Type

setAttribute This operation allows client to set the value of an mbean attribute (property). Note that it will be possible only if the
attribute is writable. You can get that information on the corresponding attribute metadata.

void

Argument
Name

Description Type Nullable Note

objectName This is the name of the target MBean. javax.management.ObjectName No N.A.

attribute This is a data transfer object representing the attribute with the its
new value.

javax.management.Attribute Yes N.A.

Example

 class Examplepublic
{
 void main([] args) Exceptionpublic static String throws
 {
 MBeanServer server = ManagementFactory.getPlatformMBeanServer();

 // Suppose that is an object name corresponding to a valid managed domain instance.this
ObjectName objectName = ...;

 // Suppose we want to set a value of 30000 attribute.for "MgmtPubInterval"
Attribute attribute = Attribute(, (3000));new "MgmtPubInterval" new Long
 server.setAttribute(objectName, attribute);
 }
}

invoke

Operation Name Description Return Type

invoke Invokes an operation on an object MBean org.apache.qpid.management.domain.handler.impl.InvocationResult

Argument Name Description Type Nullable Note

objectName The object name of the target object MBean javax.management.ObjectName No N.A.

operationName This is the operation to be invoked on the target MBean java.lang.String No N.A.

parameters These are the input parameters of the operation java.lang.Object[] No N.A.

signature The operation signature java.lang.String [] No N.A.

While mostly the interface follows the same rules of javax.management.MBeanServer.invoke() the only difference resides on return type.
The mentioned JMX interface generally returns java.lang.Object. While this is the type that the management client see, the underlying object
that is returned as result of an operation invocation on QMan is ALWAYS one of the following :

org.apache.qpid.management.domain.handler.impl.InvocationResult : This is a simple data transfer object wrapping a
java.util.Map<String, Object> that contains (optional) output parameters;
org.apache.qpid.management.domain.services.MethodInvocationException : An exception containing a status text and a status code
that ndicate whether or not the method was successful and if not, what the error was.

Example

 class Examplepublic
{
 void main([] args) Exceptionpublic static String throws
 {
 MBeanServer server = ManagementFactory.getPlatformMBeanServer();

 // Suppose that is an object name corresponding to a valid managed domain instance.this
ObjectName objectName = ObjectName();new "A:N=1"

 // Suppose the mbean has an operation
// purge(request)public int int
try
 {
 outputParameterName = ;String "result"

 operationName = ;String "purge"
 [] parameters = []{1235};Object new Object
 [] signature = []{ .class.getName()};String new String int

 InvocationResult result = (InvocationResultserver.invoke(
 objectName,
 operationName,
 parameters,
 signature);

 // Output parameters map
Map< , > outputSection = result.getOutputSection();String Object

 // Output parameter
 outputParameter = () outputSection.get(outputParameterName);Integer Integer

 .out.println(+outputParameter);System "Output parameter : "

 } (MBeanException exception)catch
 {
 Exception nested = exception.getTargetException();
 (nested MethodInvocationException)if instanceof
 {
 MethodInvocationException invocationException = (MethodInvocationException) nested;
 .out.println(+invocationException.getReturnCode());System "Status Code : "
 .out.println(+invocationException.getStatusText());System "Status Text : "
 }
 }
 }
}

Notifications

N.A.

QMan MBean

QMan MBean

Description
Object Name
Attributes
Operations

void addBroker
Notifications

Description

QMan is exposed as MBean itself. That means its public interface will be available to any connected management client.

Object Name

Q-MAN:Name=QMan,Type=Service

Attributes

N.A.

Operations

void addBroker

Operation Name Description Return Type

addBroker Connects QMan with a broker using the given connection data. void

Argument Name Description Type Nullable Note

host The IP address or DNS name where Qpid Broker is running. java.lang.String No N.A.

port The port number where Qpid broker is running. int No N.A.

username The username used for estabilishing connection with Qpid broker java.lang.String No N.A.

password The password used for estabilishing connection with Qpid broker java.lang.String No N.A.

virtualHost The virtual host name java.lang.String No N.A.

initialPoolCapacity The number of physical connections (between 0 and a positive 32-bit integer)
to create when creating the (broker) connection pool.

int No N.A.

maxPoolCapacity The maximum number of physical database connections (between 0 and a
positive 32-bit integer) that the (Qpid) connection pool can maintain.

int No N.A.

maxWaitTimeout The maximum amount of time to wait for an idle connection long No A value
of -1
means
"Wait
forever"

Example

 java.lang.management.ManagementFactory;import

 javax.management.MBeanServer;import
 javax.management.ObjectName;import

 class Examplepublic
{
 void main([] args) Exceptionpublic static String throws
 {
 MBeanServer server = ManagementFactory.getPlatformMBeanServer();

// ObjectName objectName = ObjectName();new "Q-MAN:Name=QMan,Type=Service"
ObjectName objectName = Names.QMAN_OBJECT_NAME;

 host = ;String "qpid.host.com"
 port = 2005;int

 username = ;String "qpid_username"
 password = ;String "qpid_password"

 virtualHost = ;String "qpid_virtualhost"

 initialPoolCapacity = 3; int // Open 3 connections immediately.
 maxPoolCapacity = 4; int // another on-demand additional connection.
 maxWaitTimeout = 2000;int

 server.invoke(
 objectName,
 ,"addBroker"
 []{new Object
 host,
 port,
 username,
 password,
 virtualHost,
 initialPoolCapacity,
 maxPoolCapacity,
 maxWaitTimeout},
 [] {new String
 .class.getName(),String
 .class.getName(),int
 .class.getName(),String
 .class.getName(),String
 .class.getName(),String
 .class.getName(),int
 .class.getName(),int
 .class.getName()long
 });
 }
}

Notifications

Type Class Description

org.apache.qpid.management.lifecycle.entity.schema.requested org.apache.qpid.management.jmx.EntityLifecycleNotification A schema
request for a
QMan entity
has been
sent.

org.apache.qpid.management.lifecycle.entity.schema.injected org.apache.qpid.management.jmx.EntityLifecycleNotification A schema
has been
injected on a
QMan entity.

org.apache.qpid.management.lifecycle.error.schema org.apache.qpid.management.jmx.EntityLifecycleNotification Qman has
received a
malformed
schema.

qman.lifecycle.entity.instance.created org.apache.qpid.management.jmx.EntityLifecycleNotification A new
instance
(event or
object) has
been created
on QMan
management
domain.

qman.lifecycle.entity.instance.removed org.apache.qpid.management.jmx.EntityLifecycleNotification An object
instance has
been
removed
from QMan
management
domain.

Consider that notifications are sent asynchronously so QMan is not waiting for completion of receiver task.

QMan Components View

Components View

Package configuration
Configurator
Configuration
Parser
WorkerManagerConfigurationData
BrokerConfigurationData
AccessModes
Message Handlers

Package domain
Package jmx
Package wsdm

QManLifecycleManager
WsDmAdapter
QMan
QManWsResource
QManWsAdapter
SubscriptionManager
MBeanWSResource
Other WS interfaces

At package level, QMan is composed by 4 core packages illustrated in the picture below :

Package configuration

This package contains all configuration entities / items shared between all QMan components.
Those includes both configuration items that are directly under the user control and not-public items used internally to configure (sub)
components.
As you can see, the configuration package is a central grouping of components that serves the remaining three modules.

Configurator

When QMan starts, this component is responsible to build the configuration for that instance. As you can see it uses several built-in builders
in order to create and populate the configuration instance.

Configuration

Encapsulates a configuration for a QMan instance. Note that this is a singleton because it must be accessed from everywhere inside QMan
sub-modules.

Parser

Active participants of the configuration build process. Basically they are responsible to parse a specific section of the (optional)
qman-configuration file that is given at QMan startup. At the moment we have two implementantion of this interface :

WorkerManagerConfigurationParser : parses the configuration data of the internal worker manager; It creates a
WorkerManagerConfigurationData instance.
BrokerConnectionDataParser : parses the connection data of declared brokers; For each configured broker a corresponding
BrokerConnectionData instance is created.

WorkerManagerConfigurationData

A value object encapsulating configuration data for the work manager.

BrokerConfigurationData

A value object encapsulating connection data of a remote broker.

AccessModes

A map associating a code with an access mode. At the moment we have three access modes :

RO : Read only;
RW : Read / Write;
RC : Read create;

Message Handlers

Each time a message is received from a remote broker there will be a specific message handler that is responsible for processing that
message.
On top of that, message handlers mapping associates an operation code (a character) with a message handler instance.
As you can see, there are two distinct collections of mappings. The first one contains message handlers associates with management queue,
while the second one is referred to message handlers associated with method reply queue.

Package domain

Package jmx

Contains all services that are part of QMan JMX adapter. A special note should be done for this package because even from the picture is
not clear, the JMX core could be used independently from the WSDM adapter.
That means this package contains all services and interfaces needed for expose a Qpid management domain model using JMX.
That fits a management scenario where there's a java agent layer that wants to monitor / instrument / manage one or more remote brokers.
Each managed entity will have its own JMX representation as an MBean with common and specific features (depending on the resource
type).
JMX interfaces and entities are detailed here

Package wsdm

Components that belong to this package enable QMan interfaces to be exposed using WS-DM / HTTP. As part of that, this package contains

standard JEE Web components (Servlets and Context Listeners).
WS-DM specific components

Note that this is an additional layer over the previous JMX core so the basically the same considerations apply management resources (in
this case we call them WS-Resources).

QManLifecycleManager

Simply speaking, we could say that the whole WSDM Layer acts as a facade of the JMX Adapter, so it should be able to control the lifecycle
of a that adapter. This component is a web component that (as the name suggests) provides a lifecycle management (startup & shutdown) of
a JMX adapter instance.

WsDmAdapter

An HTTP Servlet that listens for incoming WS-DM / HTTP requests and dispatches those requests to the appropriate handler.

QMan

A front controller of the JMX instrumentation layer exposed itself for management (as an MBean).

QManWsResource

QMan object representation of a WS-Resource. A WS-Resource is a composition of a management resource and a Web service through
which the resource can be accessed.

QManWsAdapter

A static WS-Resource that acts as a controller / facade of QMan WS-DM management domain model. Basically it provides the following
features :

WS-Resource creation : When a new resource is built on JMX layer, it builds the corresponding WS-Resource representation
(WS-Resource instance, WSDL, RMD and capabilities)
WS-Resource deletion : When a resource is deleted on JMX layer (i.e. a connection that has been closed, a session that has been
destroyed), it deletes the corresponding WS-Resource
Notifications : Acting as a notification producer, each time a WS-Resource is created / destroyed a dedicated message is published
on a lifecycle topic.

SubscriptionManager

A WS-Resource that enables QMan notifications. It provides operations that allow a requestor to query and manipulate subscription

resources that it manages. For example it is possible (on requestor side) to pause and resume a subscription.

MBeanWSResource

This is the interface that all QMan WS-Resources have. Although a concrete implementation of this interface is built at runtime, it indicates
that the resources will have a common set of features (attribute retrieveal, operation invocation).

Other WS interfaces

The other interfaces on the diagram simply enumerates all the WS-DM interfaces that will be implemented by the QMan WS-Resources.
More information about those interfaces are found .here

QMan Messages Catalogue

QMan Messages Catalogue

Each message produced by Qman has the following format :

<DATE> <PRIORITY> <MODULE> <MESSAGE-ID> : <MESSAGE>

Where :

<DATE> : The date and time at which the message was added;
<PRIORITY> : The priority level. Could be one of the following : DEBUG, WARN, INFO, ERROR, FATAL;
<MODULE> : The component which generated the log;
<MESSAGE-ID> : A message identifier. Each message has a unique id. It has the following format <QMAN-XXXXXXX>;
<MESSAGE> : The log message. Data recorded in this field should be ignored by analysis tools because it could change.

For example :

2009-02-12 15:20:44,971 INFO QMan <QMAN-000019> : Q-Man open e-business.for

Note that the log format described above is not fixed but could be configured using log4j. Obviously what mentioned above is referred to the
default configuration shipped with QMan distribution.
The following is a list of all QMan messages divided by priority level.

Messages Description

QMAN-000001 - QMAN-000029 Informational messages

QMAN-100001 - QMAN-100026 Error messages

QMAN-200001 - QMAN-200041 Debug messages

QMAN-300001 - QMAN-300004 Warning messages

Be Careful
QMan is under development so the list above could change easily...

QMan System Overview

System Overview

Introduction

Introduction

QMan is a bridge that enables remote management of one or more brokers.
Depending on your needs, remote management can be exposed using JMX or WS-DM. The difference between two approaches is that in
the first one only a Java client is supported, while WS-DM is language independent and therefore the corresponding management entity
(client) should only able to speak WS-DM dialect.
As conseguence of that we will divide the following documentation under two perspectives.

In the picture below you can have a big picture about the working environment where QMan runs :

As you can see QMan supports three different clients :

a Java (Application) Client which is using Java Management Extensions (JMX) API for interaction; Note that this could be a
standalone application client or a JEE application (Web & Business components);
a WS-DM enabled management client which could be an application / middleware / command line tool that is able to communicate
with WS-DM dialect;
the third client (Web Browser) is not really a management client but it refers to administration console of QMan WS-DM. This is part
of QMan Web Application and allows administration / management of QMan itself.

QMan User Guide

QMan Admin Console

Created by Andrea Gazzarini
On Thu Feb 12 09:11:48 CET 2009
Using TimTam

QMan Debug Messages

Debug messages

QMAN-200001

Message : New incoming message has been received. Message content is .<content>
Description : A new message is received. Its content is .<content>
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200002

Message : opcode is associated to handler .<opcode> <handler>
Description : Informs that operation code has been associated with the handler .<opcode> <handler>

http://cwiki.apache.org/confluence/display/~agazzarini

Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200003

Message : Incoming message with as opcode will be forwarded to for processing.<opcode> <handler>
Description : This is a runtime information regarding the association between an operation code and the associated handler.
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200004

Message : Management queue name : .<name>
Description : Informs about the name of the management queue that will be declared on the broker.
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200005

Message : Method-Reply queue name : %s.
Description : Informs about the name of the method-reply queue that will be declared on the broker.
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200006

Message : Connection returned to the pool.<id>
Description : Broker connection lifecycle debug message. A connection has been released.
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200007

Message : Test connection on reserve. Is valid? <is_valid>
Description : Broker connection lifecycle debug message. A connection has been tested.
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200008

Message : Connection has been destroyed.
Description : Broker connection lifecycle debug message. A connection has been destroyed.
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200009

Message : Unable to destroy a connection object.
Description : Broker connection lifecycle debug message. There was been a failure while destroying a connection.
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200010

Message : Event instance <broker_id>::<package_name>::<obejct_id> successfully registered with MBean Server with name
._<event_name>

Description : A new event instance has been registered on QMan domain with the name .<event_name>
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200011

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200012

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200013

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200014

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200015

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200016

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200017

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200018

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200019

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMAN-200020

Message :
Description :
Cause : This is a debug message so there's not a cause
Action : No action is required.

QMan Error Messages

Error Messages

QMAN-100001

Message : Message processing failure : incoming message contains a bad magic number and therefore will<bad_magic_number>
be discaded.
Description: Incoming Qpid message contains a bad magic number.
Cause : The incoming message contains a wrong magic number (it differs from the expected value).
Action: QMan has nothing to do with this problem; Check on broker side in order to see if some protocol change occurred.

QMAN-100002

Message : Message I/O failure : unable to read byte message content and therefore it will be discarded.
Description: QMan is not able to read the incoming message stream.
Cause : Management messages have a predefined format and adhere to specific rules so cause for this problem can be a
malformed message or a general I/O failure.
Action: See QMan logs for a better understanding of the exact cause and check if there are network issues and if something

changed on broker side (especially protocol change due to an upgrade).

QMAN-100003

Message : Message processing failure : unknown exception; see logs for more details.
Description: QMan is not able to read and /or process the incoming message.
Cause : Not well specified cause : as suggested you should see the log for further details.
Action: See QMan logs for a better understanding of the exact cause.

QMAN-100005

Message : Q-Man was unable to process the schema response message.
Description: An incoming schema message response for a class cannot be processed.
Cause : This could only happen if a protocol change occurred in the schema messages.
Action: See QMan logs for a better understanding of the exact cause and check on broker side in order to see if some protocol
change occurred.

QMAN-100006

Message : Q-Man was unable to process the schema response message.
Description: An incoming schema message response for an event cannot be processed.
Cause : This could only happen if a protocol change occurred in the schema messages.
Action: See QMan logs for a better understanding of the exact cause and heck on broker side in order to see if some protocol
change occurred.

QMAN-100007

Message : Unable to connect with broker located on . This broker will be ignored.<broker_id>
Description: QMan has been requested to connect with a broker but the connection cannot be estabilished.
Cause : Newtork issues or simply the broker is not running.
Action: See QMan logs for a better understanding of the exact cause and check if the broker is running.

QMAN-100008

Message : Management Message Handler configured for opcode %s is not available and therefore will be discarded.
Description: QMan has been requested to connect with a broker but the connection cannot be estabilished.
Cause : Newtork issues or simply the broker is not running.
Action: See QMan logs for a better understanding of the exact cause and check if the broker is running.

QMAN-100010

Message : An exception occurred while storing the result of a method invocation. Sequence number was .<sequence_number>
Description: As conseguence of a method invocation, a response is gathered from the broker. This message indicates a failure that
occurred while handling that result;
Cause : Method invocation response message must adhere to a specific (protocol defined) format. Probably the message couldn't
be parsed and / or handled because it is malformed.
Action: See QMan logs for a better understanding of the exact cause.

QMAN-100011

Message : Unknwon class kind : <class_kind>
Description: Incoming schema messages contains an unknown class kind.
Cause : Allowed class kind at the moment are Object and Event. Probably the message was malformed or a protocol change
occured on the broker side.
Action: See QMan logs for a better understanding of the exact cause and check on the broker side in order to see if some protocol
change occurred.

QMAN-100012

Message : Q-Man was unable to process the schema response message.
Description: Not well error occurs while parsing the incoming schema message.
Cause : It's hard to determine. Check the QMan logs.
Action: See QMan logs for a better understanding of the exact cause and check on the broker side in order to see if some protocol
change occurred.

QMAN-100013

Message : Unable to unregister object instance .<object_name>
Description: A new event or object instance deletion has been notified; The corresponding JMX entity unregistration failed.
Cause : This is probably due to the fact that the requested instance no longer exists on QMan and therefore was previously
unregistered.
Action: See QMan logs in order to see the name of the object that caused the failure. After that, on the same log, have a look all
lifecycle events related with this entity. This should give you a clear idea of what happened.

QMAN-100014

Message : Unable to decode value for attribute .<attribute_name>
Description: A content indication message arrived but QMan is not able to decode correctly its data.
Cause : This message appears under two circumstances : a malformed / corrupted message or a protocol change occured on the
broker side.
Action: See QMan logs in order to see the exact cause of the problem and after that ensure that no protocol changes occurred on
broker side.

QMAN-100015

Message : Unable to send a schema request schema for <package_name>.<class_name>
Description: QMan is not able to send a Schema request to Qpid.
Cause : Probably there's some problem at I/O level (i.e. network).
Action: Ensure that connection with broker is estabilished and working.

QMAN-100016

Message : Unable to decode value for .<broker_id>:<package_name>:<class_name>
Description: Basically we are talking about the same thing reported on QMAN-100014. The difference is that here we have the FQN
of the entity.
Cause : see QMAN-100014.
Action: see QMAN-100014.

QMAN-100017

Message : Cannot connect to broker on <broker_id> <connection_data>
Description: QMan is not able to estabilish a connection with broker , whose connection data is .<broker_id> <connection_data>
Cause : Network issue or the target broker is not running.
Action: Check network and target broker.

QMAN-100018

Message : Q-Man was unable to startup correctly : see logs for further details.
Description: QMan startup procedure fails.
Cause : There could be many reasons for that. Probably the cause is an error in the configuration.
Action: Check QMan configuration files and of course, have a look at logs...there should be written the exact cause of the problem.

QMAN-100019

Message : Unexpected exception occurred on WSDM adapter layer : probably request or response was malformed.
Description: Soap Request or response is malformed. Most probably issue occurs in the request (because response is
automatically generated by QMan)
Cause : The WS-DM adapter deals with Soap messages, which must be valid XML documents. If one of them (request or response)
is malformed you get this error.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see all XML messages that are
exchanged during conversations.

QMAN-100020

Message : WS-Action not supported.
Description: An action request has been made to a QMan but the requested action is not supported by the target WS-Resource.
Cause : Each managed WS-Resource has capabilities that include several actions (it depends by the resource interface). Probably
the request has been sent to the wrong resource.
Action: Using QMan administration console inspect the requested resource in order to see all the supported actions. Check the
incoming request message in order to see if it is correct.

QMAN-100021

Message : Unable to build RDM for resource .<resource_id>
Description: Resource Metadata Descriptor is an artifact that is built when a WS-Resource is created. The RDM for the reported
WS-Resource cannot be created.
Cause : RDM is basically a descriptor reporting the metadata for a WS-Resource so probably the problem is in the structure of the
resource (properties, operations). It is also possible that a resource interface contains a datatype that is not supported.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts.

QMAN-100023

Message : Unable to build WS artifacts.
Description: When a WS-Resouce is created, its WSDL and RDM is generated too. The engine wasn't able to build those artifacts.
Cause : This is, as QMAN-100021, a problem with the interface / definition of the resource that needs to be created.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts.

QMAN-100024

Message : Unable to instantiate generated capability class for .<resource_id>
Description: When a WS-Resource is created, QMan is building several classes that represent its capabilities. This error indicates
that at least one capability class failed to initialize.
Cause : This is, as QMAN-100021, a problem with the interface / definition of the resource that needs to be created.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts.

QMAN-100024

Message : Resource manager raised an exception while creating capability for .<resource_id>
Description: A resource manager is an internal component that handles resources lifecycle including creation and destruction. This
error occurs when the resource cannot be created.
Cause : This is, as QMAN-100021, a problem with the interface / definition of the resource that needs to be created.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts.

QMAN-100024

Message : Exception occurred while replacing the placeholder soap address with resource actual location.
Description: Each WS-Resource has a WSDL that represents itself as a Web service. Service description is built starting from a
template WSDL that contains a fake address replaced with the actual location when the resource is built.
Cause : This is an internal QMan error and should never appear because is due to a malformed WSDL template.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts.

QMAN-100027

Message : Shutdown failure while destroying resource .<resource_id>
Description: QMan was not able to destroy the resource .<resource_id>
Cause : Most probably the resource was busy when the shutdown has been requested.
Action: Using QMan administration console enable a fine level for WS-DM adapter log.

QMAN-100029

Message : Unable to define URI for QMan resources using . It violates RFC 2396<uri>
Description: Each WS-Resource is associated with an URI generated a runtime and based on the running environment (host, port).
Cause : Most probably some information is missing and therefore QMan is not able to create a valid URI.
Action: See installation instructions and ensure that all needed environment properties are correctly set.

QMAN-100030

Message : QMan JMX core Unexpected failure while starting up.
Description: Startup failure has occured on JMX core.
Cause : This indicates a configuration error that occurred at startup.
Action: Check QMan configuration files.

QMAN-100031

Message : Bad request has been received on this WS-Resource : Initialization is not possible because the resource has already
been initialized.
Description: An initialization request has been issued to an already initialized WS-Resource.
Cause : It is not possible to initialize a WS-Resource twice. Something was wrong on WS-DM Adapter.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts.

QMAN-100032

Message : Bad request has been received on this WS-Resource : Shutdown is not possible because the resource hasn't yet been
initialized.
Description: A shutdown request has been issued to a resource that has not been initialized.
Cause : It is not possible to shtudown a WS-Resource that isn't initialized. Something was wrong on WS-DM Adapter.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts. It is also possible that a wrong deletion message (content
indication message) arrived from Qpid broker.

QMAN-100033

Message : Bad request has been received on this WS-Resource : Shutdown is not possible because the resource has already been
shutdown.
Description: A shutdown request has been issued to an already shutdown WS-Resource.
Cause : It is not possible to shtudown a WS-Resource twice. Something was wrong on WS-DM Adapter.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts. It is also possible that a wrong deletion message (content
indication message) arrived from Qpid broker.

QMAN-100034

Message : Unable to get via XPath the schema section in WSDL.
Description: QMan is not able to deal with WSDL template for a specific WS-Resource.
Cause : This is an internal QMan error and should never appear because is due to a malformed WSDL template.
Action: Using QMan administration console enable a fine level for WS-DM adapter log. You should see detailed information about
the lifecycle of each managed resources including generated artifacts.

QMan Informational Messages

Informational Messages

QMAN-000001

Message : Starting QMan...
Description: Application is starting.
Cause : This is an informational message only.
Action: No action required.

QMAN-000002

Message : Reading Q-Man configuration...
Description: Application is reading configuration. This doesn't include the (eventual) qman-config.xml configuration file supplied
from command line.
Cause : This is an informational message only.
Action: No action required.

QMAN-000003

Message : Creating management client(s)...
Description: Each time a broker is defined and connected on QMan a dedicated (internal) management client module is created;
Cause : This is an informational message only.
Action: No action required.

QMAN-000004

Message : Management client for broker successfully connected.<broker_id>
Description: A management client for broker has been created and successfully connected. #<broker_id>
Cause : This is an informational message only.
Action: No action required.

QMAN-000005

Message : Type mapping : code = associated to (validator class is)<code> <AMQP type> <validation_class>
Description: New mapping between a Java type and an AMQP type has been created. This type will be validated using
Cause : This is an informational message only.
Action: No action required.

QMAN-000006

Message : Access Mode mapping : code = associated to <code> <access_mode>
Description: New access mode mapping has been created. The code has been associated with access mode <code>

.<access_mode>
Cause : This is an informational message only.
Action: No action required.

QMAN-000007

Message : Management Queue Message Handler Mapping : opcode = associated with <code> <class>
Description: New Management Queue Message Handler instance (class name is) has been created and associated with<class>
code .<code>
Cause : This is an informational message only.
Action: No action required.

QMAN-000008

Message : Method-Reply Queue Message Handler Mapping : opcode = associated with <code> <class>
Description: New Method-Reply Queue Message Handler instance (class name is) has been created and associated with<class>
code .<code>
Cause : This is an informational message only.
Action: No action required.

QMAN-000009

Message : Broker configuration : <broker_id> <connection_data>

Description: Broker as been connected using .<broker_id> <connection_data>
Cause : This is an informational message only.
Action: No action required.

QMAN-000010

Message : Incoming schema for ::<broker_id> <package_name>.<class_name>.
Description: Schema message response for class :: has been received.<broker_id> <package_name>.<class_name>
Cause : This is an informational message only.
Action: No action required.

QMAN-000011

Message : The shutdown sequence has been initiated for management client connected with broker <broker_id>
Description: Management client connected to broker is closing.<broker_id>
Cause : This is an informational message only.
Action: No action required.

QMAN-000012

Message : Management client connected with broker shut down successfully.<broker_id>
Description: Management client connected to broker has been closed.<broker_id>
Cause : This is an informational message only.
Action: No action required.

QMAN-000013

Message : Method-reply queue consumer has been successfully installed and bound on broker .<broker_id>
Description: Method-reply queue consumer associated with broker has been created.<broker_id>
Cause : This is an informational message only.
Action: No action required.

QMAN-000014

Message : Management queue consumer has been successfully installed and bound on broker .<broker_id>
Description: Management queue consumer associated with broker has been created.<broker_id>
Cause : This is an informational message only.
Action: No action required.

QMAN-000015

Message : Management queue with name has been successfully declared and bound on broker .<queue_name> <broker_id>
Description: Management queue with name has been created on broker #<queue_name> <broker_id>
Cause : This is an informational message only.
Action: No action required.

QMAN-000016

Message : Method-Reply queue with name has been successfully declared and bound on broker .<queue_name> <broker_id>
Description: Method-Replyqueue with name has been created on broker #<queue_name> <broker_id>.
Cause : This is an informational message only.
Action: No action required.

QMAN-000017

Message : Consumer has been removed from broker .<consumer_name> <broker_id>
Description: A consumer with name <broker_id>._<consumer_name> _has been removed from broker #
Cause : This is an informational message only.
Action: No action required.

QMAN-000018

Message : has been removed from broker .Queue <queue_name> <broker_id>
Description: Queue <broker_id>._<queue_name> _has been undeclared from broker #
Cause : This is an informational message only.
Action: No action required.

QMAN-000019

Message : QMan open for e-business.
Description: QMan is up and running_._
Cause : This is an informational message only.
Action: No action required.

QMAN-000020

Message : Shutting down Q-Man...
Description: The shutdown sequence has been initiated for QMan module.
Cause : This is an informational message only.
Action: No action required.

QMAN-000021

Message : Q-Man shut down.
Description: The shutdown sequence has been terminated for QMan module.
Cause : This is an informational message only.
Action: No action required.

QMAN-000022

Message : Q-Man has no configured broker : in order to connect with a running one use Q-Man Administration interface.
Description: QMan started without any configured broker (qman-config.xml is empty or it contains invalid broker connection). A new
connection must be estabilished at runtime.
Cause : This is an informational message only.
Action: In order to connect QMan with one or more broker you must use its administration interface.

QMAN-000023

Message : Q-Man service is now available on MBeanServer.
Description: QMan is itself a JMX MBean. This message informs that QMan was successfully registered with Management Server.
Cause : This is an informational message only.
Action: No action required.

QMAN-000026

Message : Initializing WS-DM Adapter Environment...
Description: WS-DM Adapter Enviroment is starting.
Cause : This is an informational message only.
Action: No action required.

QMAN-000027

Message : WS-DM Adapter ready for incoming requests.
Description: WS-DM Adapter successfully started.
Cause : This is an informational message only.
Action: No action required.

QMAN-000028

Message : Qpid emulator not found. Test notifications are disabled.
Description: Qpid emulator module was not found and therefore test notifications will be disabled.
Cause : This is an informational message only.
Action: No action required.

QMAN-000028

Message : Default URI will be set to <default_uri>
Description: WS-Resources default URI (used for endpoint references) will be set to <default_uri>
Cause : This is an informational message only.
Action: No action required.

QMan Warning Messages

Warning messages

QMAN-300001

Message : No handler has been configured for processing messages with as opcode. Message will be discarded.<op_code>
Description : QMan has no handler configured for operation code <op_code> and therefore the incoming message will be
discarded.
Cause : Probably something changed on broker side; a new operation code has been added and QMan doesn't know how to handle
it.
Action : No action is required as it's not possible to configure additional message handler.

QMAN-300002

Message : Unable to deal with incoming message because it contains an unknown sequence number .<sequence_number>
Description : The incoming message contains an unknown sequence number.
Cause : After a method invocation timed out, sequence number used as correlation ID between request and response is discarded.

If after that, the reponse for that invocation is received, it will contain an unknown sequence number and therefore the message will
be discarded.
Action : If a method invocation times out there could be a lot of underlying causes. Basically we suggest to check if there are
network issues.

QMAN-300003

Message : Unable to enlist given broker connection data : QMan is already connected with broker .<broker_id>
Description : A request has been made in order to connect QMan with an already connected broker.
Cause : For each connected broker QMan creates a dedicated module called management client. It is not allowed to have two
management clients connected with the same broker.
Action : No action is required. The requested broker is already connected and a management client has already been created for it.

QMAN-300004

Message : The given configuration file is not valid (it doesn't exist or cannot be read)<file>
Description: the Path supplied at startup using system property qman-config refers to an invalid configuration file.
Cause : The qman-config property points to a malformed or non-existsing configuration file.
Action: Check the value of the mentioned property and ensure that is pointing to a correct configuration file.

QMAN-300005

Message : Unable to initialize QEmu module and therefore emulation won't be enabled...
Description: The QEmu sub-module cannot startup.
Cause : This is a problem with the registration of the QEmu module with Management Server.
Action: Check the logs in order to see the cause of the problem.

WS-DM Interface Specification

WS-DM Interface Specification

This section contains QMan WS-DM Interface Specification.
Each interface will be detailed using a dedicated subsection with the following template:

Name Description

Description A brief description of the interface purpose

Request Analysis of a sample request that the interface expects

Response Analysis of a sample response that the interface produces

Faults Enumeration of all faults that are generated in error scenarios

Quick links Useful external links about the interface (OASIS specs, etc...)

QMan has three different kinds of resources :

1 WSDM Adapter resource, which is the a facade that handles lifecycle of all managed WS-Resource;
0...* QMan WS Resource, which is a web service representation of a managed resource; This is directly part of QMan / Qpid
management domain model;
1 Subscription Manager : the WS-Resource that enables notifications and allows clients to register themselves as notification
listeners.

WS-DM Adapter WS-Resource

A stateful web service facade that acts as a front-end resource from a requestor endpoint perspective.

Interface Name Description

MetadataExchange Defines messages to retrieve metadata associated with the adapter endpoint.

Connect Allows a requestor to connect QMan with a broker.

GetResourceMembers Allows a requestor to retrieve the catalogue of all managed resources.

Subscribe Allows a requestor to be registered as a notification listener.

GetCurrentMessage Allows a requestor to retrieve the last notification published on a given topic.

QMan WS-Resource

A stateful Qpid entity (that is part of Qpid management domain model) represented as a web service (stateful) instance on QMan side and
therefore exposed for management.

Interface Name Description

MetadataExchange Defines messages to retrieve metadata associated with a resource.

GetResourcePropertyDocument Allows a requestor to retrieve the values of all resource properties associated with the resource.

PutResourcePropertyDocument Allows a requestor to completely replace the values of a resource's properties with an entirely new
resource property document.

GetResourceProperty Allows a requestor to retrieve the value of a single resource property of a resource.

SetResourceProperties Allows a requestor to modify the values of multiple resource properties of a resource.

GetMultipleResourceProperties Allows a requestor to retrieve the values of multiple resource properties of a resource.

QueryResourceProperties Allows a requestor to query the resource properties document of a resource using a query expression.

Operation invocation Allows a requestor to invoke an operation exposed on the resource public interface.

Subscription Manager WS-Resource

A web service endpoint that provides operations that allow a service requestor to manage subscription resources.

Interface Name Description

MetadataExchange Defines messages to retrieve metadata associated with the subscription manager.

PauseSubscription Allows a requestor to suspend the production of notifications on the given subscription.

ResumeSubscription Allows a requestor to resume a previously suspended subscription.

Connect

Connect

Description
Request
Response
Faults

UnableToConnectFault
Quick links

Description

The Connect interface allows to connect QMan with a Qpid broker.
Two categories of parameters need to be sent in order to make a connect request :

connection parameters : host, port, username, password and virtual host name;
connection pool parameters : for each connected broker a dedicated connection pool is created too. Those parameters allows a
requestor to configure that pool.

Request

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/adapter
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://amqp.apache.org/qpid/management/qman/Connect
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
 </soap:Header>
 <soap:Body>
17. <qman:Connect = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. sofia.gazzax.com<qman:host> </qman:host>
19. 5672<qman:port> </qman:port>
20. a.gazzarini<qman:username> </qman:username>
21. p1ssw9rd<qman:password> </qman:password>
22. test<qman:virtualHost> </qman:virtualHost>
23. 1<qman:initialPoolCapacity> </qman:initialPoolCapacity>
24. 4<qman:maxPoolCapacity> </qman:maxPoolCapacity>
25. 2000<qman:maxWaitTimeout> </qman:maxWaitTimeout>
26. </qman:Connect>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a Connect request. This is done using a wsa:Action that is part of WS-Addressing specification.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 26 The connect request. Subsequent children specify connection parameters.

18 The host name / IP address where the broker is running.

19 The port number on which the broker is listening.

20 Username used for estabilishing the connection.

21 Password used for estabilishing the connection.

22 The virtual host name.

23 The initial size of broker dedicated connection pool. That means the number of connections that will be immediately created.

24 The maximum allowed size of broker dedicated connection pool.

25 The maximum wait timeout for retrieving connections from connection pool. A value of -1 means "Waits forever!"

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://amqp.apache.org/qpid/management/qman/ConnectResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/adapter
16. </wsa:Address>
 </wsa:From>
 </soap:Header>
 <soap:Body>
17. <qman:ConnectResponse = />xmlns:qman "http://amqp.apache.org/qpid/management/qman"
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request

04 - 06 Indicate this is a Connect response. This is done as usual using a wsa:Action that is part of WS-Addressing specification

07 - 09 Convey a unique identifier associated with the current response message

10 - 12 This element provides the identifier of the correlated (request) message

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator)

17 This is the connect response. Note that this is an empty element because this operation is void.

Faults

UnableToConnectFault

This is the only fault that could be returned as conseguence of a connect request. That means QMan was unable to connect with the
requested broker.

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
 <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 http://www.w3.org/2005/08/addressing/role/anonymous
 </wsa:To>
 <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 http://amqp.apache.org/qpid/management/qman/ConnectResponse
 </wsa:Action>
 <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
 </wsa:MessageID>
 <wsa:RelatesTo RelationshipType= = >"wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
 uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
 </wsa:RelatesTo>
 <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 <wsa:Address>
 http://localhost:8080/qman/services/adapter
 </wsa:Address>
 </wsa:From>
 </soap:Header>
 <soap:Body>
01. <soap:Fault>
02. <soap:Code = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
 qman:QMan<soap:Value> </soap:Value>
03. </soap:Code>
04. <soap:Reason>
 Unable to connect with the requested broker.<soap:Text> </soap:Text>
 </soap:Reason>
05. <soap:Detail>
06. <qman:UnableToConnectFault = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
07. <wsrf-bf:Timestamp = >xmlns:wsrf-bf "http://docs.oasis-open.org/wsrf/bf-2"
 2009-02-17T10:37:08+01:00
 </wsrf-bf:Timestamp>
08. <wsrf-bf:OriginatorReference = >xmlns:wsrf-bf "http://docs.oasis-open.org/wsrf/bf-2"
 <wsa:ReferenceParameters = />xmlns:wsa "http://www.w3.org/2005/08/addressing"
 <wsa:Address = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 http://romagazzarini:8080/qman/services/adapter
 </wsa:Address>
09. </wsrf-bf:OriginatorReference>
10. sofia.gazzax.com<qman:host> </qman:host>
11. 5672<qman:port> </qman:port>
12. a.gazzarini<qman:username> </qman:username>
13. p1ssw9rd<qman:virtualHost> </qman:virtualHost>
 </qman:UnableToConnectFault>
 </soap:Detail>
 </soap:Fault>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 This is a sub-element which is used on SOAP for reporting errors

02 - 03 Indicate the module that is throwing the exception

04 - 05 A human-readable text message which contains the reason of the failure.

05 An additional detail element of the current failure.

06 Custom fault element. Its name if UnableToConnectFault because we were unable to estabilish a connection.

07 The timestamp of the connection failure.

08 - 09 Reference data of the originator of this failure (QMan WS-DM Adapter)

10 host name of qpid broker that was passed as input arguments.

11 port number of qpid broker that was passed as input arguments.

12 username that was passed as input arguments.

13 password that was passed as input arguments.

Quick links

N.A.

GetCurrentMessage

GetCurrentMessage

Description
Request
Response
Faults
Quick links

Description

Allows a requestor to retrieve the last published message on a given topic. Note that this will be a non destructive read of the message,
which won't be dequeued and therefore will be available to other requestors.

Request

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/adapter
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/GetCurrentMessageRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. </qman:ResourceId>
 </soap:Header>
 <soap:Body>
18. <wsnt:GetCurrentMessage>
19. <wsnt:Topic Dialect= >"http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete"
20. qman:EventsLifeCycleTopic
21. </wsnt:Topic>
22. </wsnt:GetCurrentMessage>
23. </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a GetCurrentMessage request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

18 - 22 The GetCurrentMessage request. As you can see requested the example shows how to request the current message of the
qman:EventsLifeCycleTopic topic.
This is the topic where event lifecylcle notifications are published.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/GetCurrentMessageResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/adapter
16. </wsa:Address>
20. </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsnt:GetCurrentMessageResponse>
22. <wsnt:Message>
 <qman:LifeCycleEvent
 =xmlns:qman "http://amqp.apache.org/qpid/management/qman"
 TimeMillis= Type= >"1234295015000" "CREATED"
 <qman:Resource>
 <qman-wsa:ResourceId
 = >xmlns:qman-wsa "http://amqp.apache.org/qpid/management/qman/addressing"
 aff2f6ec-2e5c-4768-ae87-6da2c8a005ff
 </qman-wsa:ResourceId>
 org.apache.qpid.broker<qman:PackageName>
</qman:PackageName>
 connection<qman:Name> </qman:Name>
 </qman:Resource>
 </qman:LifeCycleEvent>
23. </wsnt:Message>
24. </wsnt:GetCurrentMessageResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a GetCurrentMessage response. This is done as usual using a wsa:Action that is part of WS-Addressing
specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 - 20 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 24 This is the GetCurrentMessage response. That will contain as a nested child the last published message (lines 22 - 23).

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
TopicExpressionDialectUnknownFault : The topic expression dialect is unknown.
InvalidTopicExpressionFault : The topic expression is not valid for the specified dialect.
TopicNotSupportedFault : The requested topic is not supported.

MultipleTopicsSpecifiedFault : The topic expression is ambiguous because is referring to multiple topic.
NoCurrentMessageOnTopicFault : There's no message available on the requested topic.

Quick links

Web Services Base Notification
Web Services Topics

GetMultipleResourceProperties

GetMultipleResourceProperties

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to retrieve the values of multiple resource properties of a WS-Resource.

Request

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07.
http://docs.oasis-open.org/wsrf/rpw-2/GetMultipleResourceProperties/GetMultipleResourcePropertiesRequest
08.
</wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
 </soap:Header>
 <soap:Body>
20. <wsrf-rp:GetMultipleResourceProperties
 =xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
21. qman:MgmtPubInterval<wsrf-rp:ResourceProperty > </wsrf-rp:ResourceProperty>
22. qman:Name<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
23. qman:MsgTotalEnqueues<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
24. qman:Arguments<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
25. qman:VhostRef<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
26. qman:ExpireTime<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
27. qman:Durable<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
28. qman:ConsumerCount<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
29. qman:Type<wsrf-rp:ResourceProperty> </wsrf-rp:ResourceProperty>
30. </wsrf-rp:GetMultipleResourceProperties>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

06 - 08 Indicate this is a GetMultipleResourceProperties request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource of this request. Specifically the line 18 contains the resource identifier.

20 - 30 The GetMultipleResourceProperties request. As you can see requested properties are nested children (line 21 - 29).

21 - 29 Each wsrf-rp:ResourceProperty contains a resource property QName.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05.
http://docs.oasis-open.org/wsrf/rpw-2/GetMultipleResourceProperties/GetMultipleResourcePropertiesResponse
06.
</wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsrf-rp:GetMultipleResourcePropertiesResponse
 =xmlns:qman "http://amqp.apache.org/qpid/management/qman"
 = >xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
22. 32767<qman:MgmtPubInterval> </qman:MgmtPubInterval>
23. Initial Name<qman:Name> </qman:Name>
24. 9223372036854775797<qman:MsgTotalEnqueues> </qman:MsgTotalEnqueues>
25. <qman:Arguments = >xmlns:xsi "http://www.w3.org/2001/XMLSchema-instance"
 <qman:entry>
 Key3<qman:key> </qman:key>
 2147483647<qman:value xsi:type= >"xsd:integer" </qman:value>
 </qman:entry>
 <qman:entry>
 Key4<qman:key> </qman:key>
 3.4028235E38<qman:value xsi:type= >"xsd:float" </qman:value>
 </qman:entry>
 <qman:entry>
 Key1<qman:key> </qman:key>
 aStringValue<qman:value xsi:type= >"xsd:string" </qman:value>
 </qman:entry>
 <qman:entry>
 Key2<qman:key> </qman:key>
 -9223372036854775808<qman:value xsi:type= >"xsd:long" </qman:value>
 </qman:entry>
26. </qman:Arguments>
27. 2deef1b3-d2c6-49f3-a8de-51f6a75a1a6b<qman:VhostRef> </qman:VhostRef>
28. 9223372036854775807<qman:ExpireTime> </qman:ExpireTime>
29. true<qman:Durable> </qman:Durable>
30. -2147483638<qman:ConsumerCount> </qman:ConsumerCount>
31. </wsrf-rp:GetMultipleResourcePropertiesResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a GetMultipleResourceProperties response. This is done as usual using a wsa:Action that is part of
WS-Addressing specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 31 This is the GetMultipleResourceProperties response element which contains the requested property values as nested child.

22 - 30 Each element represents a requested properties. Note that the name of the element is the name of the property.
For simple types the corresponding value is directly reported as a text content; complex types like maps (line 25 - 26)
serialization is different and is declared on the WSDL of the resource.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
InvalidResourcePropertyQNameFault : One or more of the names (QNames) in the request message doesn't correspond to a
property element of the target WS-Resource.

Quick links

Web Services Resource
Web Services Resource Properties

GetResourceMembers

GetResourceMembers

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to retrieve the catalogue of all managed resources.
Note that there's no a "GetResourceMembers" request on WSRF specification. That request is actually a GetResourceProperty for
wsrf-sg:Entry adapter property.
For each managed resource a dedicated entry will be returned on the corresponding response.

Request

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/adapter
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
 </soap:Header>
 <soap:Body>
17. <wsrf-rp:GetResourceProperty
 =xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
 = >xmlns:wsrf-sg "http://docs.oasis-open.org/wsrf/sg-2"
18. wsrf-sg:Entry
19. </wsrf-rp:GetResourceProperty>
 </soap:Body>
 </soap:Envelope>

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a GetResourceProperty request. In fact, the GetResourceMember is a GetResourceProperty request where a
requestor ask to the adapter resource the value of wsrf-sg:Entry property value.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 The GetResourceProperty request. Subsequent child specifies requested property name.

18 This adapeter property is basically the list of all managed resources that are currently under QMan management domain.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/adapter
16. </wsa:Address>
 </wsa:From>
 </soap:Header>
 <soap:Body>
17. <wsrf-sg:Entry = >xmlns:wsrf-sg "http://docs.oasis-open.org/wsrf/sg-2"
18. <wsrf-sg:ServiceGroupEntryEPR>
19. <wsa:Address = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
20. http://localhost:8080/qman/services/ServiceGroupEntry
 </wsa:Address>
 <wsa:ReferenceParameters = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 <qman:ResourceId = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
21. 1d01b4ee-7d23-3a30-342e-62fc49984fe6
 </qman:ResourceId>
22. </wsa:ReferenceParameters>
23. </wsrf-sg:ServiceGroupEntryEPR>
24. <wsrf-sg:MemberServiceEPR>
 <wsa:Address = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
25. http://localhost:8080/qman/services/QManWsResource
 </wsa:Address>
 <wsa:ReferenceParameters = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
26. <qman:ResourceId
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
 a3759467-bede-476d-8dde-169f1a652191
27. </qman:ResourceId>
 </wsa:ReferenceParameters>
28. </wsrf-sg:MemberServiceEPR>
29. <wsrf-sg:Content/>
 </wsrf-sg:Entry>
33. <wsrf-sg:Entry = >xmlns:wsrf-sg "http://docs.oasis-open.org/wsrf/sg-2"
 ...
 </wsrf-sg:Entry>
 <wsrf-sg:Entry = >xmlns:wsrf-sg "http://docs.oasis-open.org/wsrf/sg-2"
 ...
34. </wsrf-sg:Entry>
 </wsrf-rp:GetResourcePropertyResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request

04 - 06 Indicate this is a GetResourceProperty response. This is done as usual using a wsa:Action that is part of WS-Addressing
specification

07 - 09 Convey a unique identifier associated with the current response message

10 - 12 This element provides the identifier of the correlated (request) message

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator)

17 This element represent a single resource as part of QMan management domain.

18 - 22 The "group" membership information for a specific resource are detailed using a SericeGroupEntry which is separated from the
WS-Resource itself.
In fact, the service group entry is a WS-Resource itself which has its own address (line 20) and identifier (line 21). That means
we could have properties belonging to group membership of WS-Resource, not to WS-Resource itself.

24 - 28 The resource member that is part of QMan management group. This element contains all what is needed for identifying and
addressing the WS-Resource.

25 This is the resource soap:address (as declared on its WSDL)

26 - 27 The WS-Resource identifier. This is the most important information about resource. Subsequent requests directed to resource
will contain this identifier.

29 Additional (optional) management group information.

33 - 34 Those are two additional entry summaries. Note that for each resource there's a dedicated wsrf-sg:Entry.

Faults

No specific fault are thrown by this operation. A general Soap fault could be returned if, for example, the adapter is not running or is not
working.

Quick links

Web Services Service Group specification
Web Services Resource
Web Services Resource Properties

GetResourceProperty

GetResourceProperty

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to retrieve the value of a property of a WS-Resource.

Request

http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-draft-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
 </soap:Header>
 <soap:Body>
20. <wsrf-rp:GetResourceProperty
 =xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
21. qman:MgmtPubInterval
22. </wsrf-rp:GetResourceProperty>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a GetResourceProperty request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource of this request. Specifically the line 18 contains the resource identifier.

20 - 22 The GetResourceProperty request. The name of the property is the text content of this element (line 21).

21 Indicates the name of the property. In the example above the requestor is asking for the value of the MgmtPubInterval property.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsrf/rpw-2/GetResourceProperty/GetResourcePropertyResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsrf-rp:GetResourcePropertyResponse = >xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
22. <qman:MgmtPubInterval = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
23. 32767
24. </qman:MgmtPubInterval>
25. </wsrf-rp:GetResourcePropertyResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a GetResourceProperty response. This is done as usual using a wsa:Action that is part of WS-Addressing
specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 25 This is the GetResourceProperty response element which contains the requested property as nested child.

22 - 24 This element represents the requested property. Note that the name of the element is the name of the property.

23 Here is the value of the requested property.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
InvalidResourcePropertyQNameFault : The name (QName) in the request message doesn't correspond to a property element of
the target WS-Resource.|

Quick links

Web Services Resource
Web Services Resource Properties

GetResourcePropertyDocument

GetResourcePropertyDocument

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to retrieve the values of all resource properties associated with the WS-Resource.
Extract from WS-Resource properties specification :

"The ResourcePropertyDocument is the XML document representing a logical composition of resource property elements.
The resource properties document defines a particular view or projection of the state data implemented by the WS-Resource."

Request

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07.
http://docs.oasis-open.org/wsrf/rpw-2/GetResourcePropertyDocument/GetResourcePropertyDocumentRequest
08.
</wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
 </soap:Header>
 <soap:Body>
20. <wsrf-rp:GetResourcePropertyDocument = />xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a GetResourcePropertyDocument request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource of this request. Specifically the line 18 contains the resource identifier.

20 The GetResourcePropertyDocument request. Note that this is an empty element and therefore there's no additional parameter.

Response

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05.
http://docs.oasis-open.org/wsrf/rpw-2/GetResourcePropertyDocument/GetResourcePropertyDocumentResponse
06.
</wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/adapter
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsrf-rp:GetResourcePropertyDocumentResponse =xmlns:wsrf-rp

>"http://docs.oasis-open.org/wsrf/rp-2"
22. <qman:QManWsResourceProperties = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
23. 32767<qman:MgmtPubInterval> </qman:MgmtPubInterval>
24. http://www.w3.org/TR/1999/REC-xpath-19991116<wsrf-rp:QueryExpressionDialect>
</wsrf-rp:QueryExpressionDialect>
25. Initial Name<qman:Name> </qman:Name>
26. <wsrf-rl:TerminationTime = />xmlns:wsrf-rl "http://docs.oasis-open.org/wsrf/rl-2"
27. 9223372036854775797<qman:MsgTotalEnqueues> </qman:MsgTotalEnqueues>
28. <qman:Arguments = >xmlns:xsi "http://www.w3.org/2001/XMLSchema-instance"
 <qman:entry>
 Key3<qman:key> </qman:key>
 2147483647<qman:value xsi:type= >"xsd:integer" </qman:value>
 </qman:entry>
 <qman:entry>
 Key4<qman:key> </qman:key>
 3.4028235E38<qman:value xsi:type= >"xsd:float" </qman:value>
 </qman:entry>
 <qman:entry>
 Key1<qman:key> </qman:key>
 aStringValue<qman:value xsi:type= >"xsd:string" </qman:value>
 </qman:entry>
 <qman:entry>
 Key2<qman:key> </qman:key>
 -9223372036854775808<qman:value xsi:type= >"xsd:long" </qman:value>
 </qman:entry>
29. </qman:Arguments>
30. 2deef1b3-d2c6-49f3-a8de-51f6a75a1a6b<qman:VhostRef> </qman:VhostRef>
31. 1232956293823<wsrf-rl:CurrentTime = >xmlns:wsrf-rl "http://docs.oasis-open.org/wsrf/rl-2"
</wsrf-rl:CurrentTime>
32. 9223372036854775807<qman:ExpireTime> </qman:ExpireTime>
33. true<qman:Durable> </qman:Durable>
34. -2147483638<qman:ConsumerCount> </qman:ConsumerCount>
35. </qman:QManWsResourceProperties>
36. </wsrf-rp:GetResourcePropertyDocumentResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a GetResourcePropertyDocument response. This is done as usual using a wsa:Action that is part of
WS-Addressing specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 36 This is the GetResourcePropertyDocumentResponse element which contains the resource property document as nested child.

22 - 35 Resource Property Document. The example refers to a resource that has 11 properties (lines 23 - 34).

Faults

wsrf-rw:ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address
and identifier).
wsrf-rw:ResourceUnavailableFault : the requested resource is unavailable. This fault should indicate a transient condition. That
means a requester might resend the message.

Quick links

Web Services Resource
Web Services Resource Properties

MetadataExchange

Metadata Exchange (WS-MetadataExchange)

Description
Request
Response

WSDL Dialect
RMD Dialect

Faults
Quick links

Description

QMan WS-Resources are basically web services. Web Services use metadata to describe what other endpoints need to know in order to
interact with them.
The MetadataExchange interface allows a requestor to query a specific WS-Resource for its metadata.

Request

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadata
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman-wsa:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 =xmlns:qman-wsa "http://amqp.apache.org/qpid/management/qman/addressing"
 wsa:IsReferenceParameter= >"true"
18. a3759467-bede-476d-8dde-169f1a652191
19. </qman-wsa:ResourceId>
 </soap:Header>
20. <soap:Body>
21. <wsx:GetMetadata = >xmlns:wsx "http://schemas.xmlsoap.org/ws/2004/09/mex"
22. <wsx:Dialect>
23. http://schemas.xmlsoap.org/wsdl/
24. </wsx:Dialect>
 </wsx:GetMetadata>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider)

03 - 05 Convey the target endpoint also known (in the request phase) as service provider. Note that an additional information
(ResourceId) needs to be supplied in order to correctly identify the target WS-Resource

06 - 08 Indicate this is a Get Metadata request. This is done using a wsa:Action that is part of WS-Addressing specification

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor

17 - 19 Provide the WS-Resource identifier. That allows to correctly identify the requested instance

20 The SOAP <Body> is a mandatory sub-element of the Envelope, which contains information intended for the recipient of the
current message;

21 The GetMetadata request;

22 Dialect associated with the requested metadata. We could say that it identifies a specific kind of metadata. As
MetadataExchange specs says :

" When this element is present, the response MUST include only Metadata Sections with the indicated dialect;
 if the receiver does not have any Metadata Sections of the indicated dialect, the response MUST include zero Metadata

 Sections.
" When this element is not present, the implied value is any dialect.

At the moment there are two supported dialects :

Web Service Description Language (WSDL) : dialect in this case is : _http://schemas.xmlsoap.org/wsdl/_
Resource Metadata Descriptor (RMD) : dialect in this case is : _http://docs.oasis-open.org/wsrf/rmd-1_

Response

MetadataExchange supports two dialects and therefore there could be two different responses depending on the requested dialect.

WSDL Dialect

The following illustrates an example response of a GetMetadata request with WSDL dialect.
For simplicity only the top level <wsdl:definitions> element has been reported. You can find a complete metadata exchange conversation

http://schemas.xmlsoap.org/wsdl/_
http://docs.oasis-open.org/wsrf/rmd-1_

under the example directory.

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadataResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= = >"wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
18. <qman-wsa:ResourceId
 wsa:IsReferenceParameter="true"
 =xmlns:qman-wsa
"http://amqp.apache.org/qpid/management/qman/addressing"
 = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
19. a3759467-bede-476d-8dde-169f1a652191
20. </qman-wsa:ResourceId>
 </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsx:Metadata = >xmlns:wsx "http://schemas.xmlsoap.org/ws/2004/09/mex"
22. <wsx:MetadataSection>
23. <wsdl:definitions>
 ...
24. </wsdl:definitions>
 </wsx:MetadataSection>
 </wsx:Metadata>
 </soapBody>
</soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request

04 - 06 Indicate this is a Get Metadata response. This is done as usual using a wsa:Action that is part of WS-Addressing specification

07 - 09 Convey a unique identifier associated with the current response message

10 - 12 This element provides the identifier of the correlated (request) message

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message

14 - 15 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator)

17 This element will contain all parameters needed to identify the originator identity

18 - 20 This is the (source) resource identifier which correctly identify a specific WS-Resource (instance)

21 <wsx:Metadata> is the top level container element of received metadata. It is composed by several sections (one for each
requested dialect)

22 Metadata section for WSDL

23 - 24 Web Service Description Language (WSDL)

RMD Dialect

The following illustrates an example response of a GetMetadata request with RMD dialect.
For <Header> section information please refer to the previous section.
For simplicity we will report a metadata descriptor for a resource that has only one properties.

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://schemas.xmlsoap.org/ws/2004/09/mex/GetMetadataResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= = >"wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
18. <qman-wsa:ResourceId
 wsa:IsReferenceParameter="true"
 =xmlns:qman-wsa
"http://amqp.apache.org/qpid/management/qman/addressing"
 = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
19. a3759467-bede-476d-8dde-169f1a652191
20. </qman-wsa:ResourceId>
 </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsx:Metadata = >xmlns:wsx "http://schemas.xmlsoap.org/ws/2004/09/mex"
22. <wsx:MetadataSection>
24. <wsrmd:MetadataDescriptor
 interface="qman:QManWsResourcePortType"
 name="QManWsResourceMetadata"
 wsdlLocation="http://docs.oasis-open.org/wsrf/rmd-1
QManWsResource.wsdl"
 = xmlns:qman "http://amqp.apache.org/qpid/management/qman"

= >xmlns:wsrmd "http://docs.oasis-open.org/wsrf/rmd-1"
25. <wsrmd:Property
26. = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
27. modifiability="read-write"
28. mutability="mutable"
29. name="qman:operatingSystem"

30. <wsrmd:ValidValues>
 Linux<qman:operatingSystem> </<qman:operatingSystem>
 Tru64<qman:operatingSystem> </<qman:operatingSystem>
 HP-UX<qman:operatingSystem> </<qman:operatingSystem>
 Windows XP<qman:operatingSystem> </<qman:operatingSystem>
31. </wsrmd:ValidValues>

32. <wsrmd:StaticValues>
 ...
 ...
33. </wsrmd:StaticValues>

34. <wsrmd:InitialValues>
 ...
 ...
35. </wsrmd:InitialValues>

 </wsrmd:Property>
 ...
 </wsrmd:MetadataDescriptor>
 </wsx:MetadataSection>
 </wsx:Metadata>
 </soapBody>
</soap:Envelope>

Line(s) Description

24 Top level element for resource metadata descriptor. The most important things are its attributes. There you can see port type
(interface), descriptor name (name) and wsdl location

25 - 29 Property metadata descriptor. This contains metadata information about a specific property. As you can see a property has
several attributes :

mutability : The property has a constant (constant) value or it could change (mutable);
modifiability : Property access mode. Can be "read-only" or "read-write";
name : the name of the property.

30 - 31 ValidValues are used to restrict the set of valid values that a property can assume

32 - 33 StaticValues are used to define a minimum set of values that a property can assume

34 - 35 InitialValues are used to declatively define the set of values that a property will contain when the owner resource is initialized at
first time

Faults

The only exception that could be thrown in a metadata exchange scenario is when the requestor indicates an unknown dialect.

Quick links

WS-MetadataExchange
Web Services Addressing (WS-Addressing)
Web Service Description Language
Web Services Resource Metadata 1.0 (WS-ResourceMetadataDescriptor)

OperationInvocation

Operation invocation on a WS-Resource

Description
Return Type
Request
Response
Faults
Quick links

Description

This interface allows a requestor to invoke an operation on a WS-Resource.
Let's say that there's a substantial difference with the other interfaces explained in this section. The name "Operation invocation" doesn't
mean each WS-Resource
has an interface with this name. Remember, the WS-Resource interface definition is built at runtime, and therefore we don't know what will
be the set of capabilities / operations / properties
the resource will expose for management.
In this example we assume the resource has an operation called "echo" explained in detail below.
As part of that, we will provide information about

How to invoke that operation;
How to correctly specify / encode the input parameters;
What is the expected return type on a basic scenario (without exceptions);
What are possible faults that are returned as result of an exception / error scenario;

Generally speaking, an operation is mainly defined by its signature. That includes :

Operation name : the name of the operation.
Return Type : the return type of the operation.
Parameters : The input parameters that will be used by operation in order to execute its task.
Fault / Exceptions / Errors : thrown by the operation when an error occurs.

For QMan resources, consider these important points about operation signatures :

Operations have always one and only one return type : Basically it is a value object containing an (optional) output parameters map.
See section below for details.
Operations have always the same set of faults in their signature. See section below for explanation of each fault.

Return Type

Return type is a simple "Value Object" that encapsulates the (optional) the output parameters map. Note that for example void methods won't
contain that map.
The following is the schema of the mentioned return type. Obviously you can find it in each WS-Resource WSDL, too.

http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange0904.pdf
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_metadata_descriptor-1.0-spec-cs-01.pdf

<!-- Invocation Result -->
 <xsd:complexType name= >"result"
 <xsd:sequence>
 <xsd:element name= type= />"outputParameters" "qman:map"
 </xsd:sequence>
 </xsd:complexType>

 <!-- Output parameter map -->
 <xsd:complexType name= >"map"
 <xsd:sequence>
 <xsd:element name= minOccurs= maxOccurs= >"entry" "0" "unbounded"
 <xsd:complexType>
 <xsd:sequence>
 <!-- Entry key is always a string. -->
 <xsd:element name= type= />"key" "xsd:string"
 <!-- While entry value could be any arbitrary object. -->
 <xsd:element name= type= />"value" "xsd:anyType"
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

Request

For this example we suppose the WS-Resource has the following operation :

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://amqp.apache.org/qpid/management/qman/echoWithSimpleTypes
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
 </soap:Header>
 <soap:Body = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
20. <qman:echoWithSimpleTypesRequest>
21. 1373<qman:p1> </qman:p1>
22. true<qman:p2> </qman:p2>
23. 12763.44<qman:p3> </qman:p3>
24. 2727.233<qman:p4> </qman:p4>
25. 28292<qman:p5> </qman:p5>
26. 227<qman:p6> </qman:p6>
27. expectedStringResult<qman:p7> </qman:p7>
28. http://qpid.apache.org/<qman:p8> </qman:p8>
29. 1235061886761<qman:p9> </qman:p9>
30. <qman:p9 xsi:type= >"xsd:long"
 1235061886761
 </qman:p9>
31. </qman:echoWithSimpleTypesRequest>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 The action usually corresponds to the name of the operation. Genarally speaking it is composed by the QMan namespace
followed by the name of the operation.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource of this request. Specifically the line 18 contains the resource identifier.

20 - 31 The operation invocation request. Note that parameters have no type specified (except for the line 30). This is because the
corresponding

element is explicitly declared on resource WSDL. Line 30 (qman 9 parameter) has an inlined type declaration using the
xsi:type attribute because in the WSDL its declared type
is xsd:anyType so we can't know in advance what it really is.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://amqp.apache.org/qpid/management/qman/echoWithSimpleTypesResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <qman:echoWithSimpleTypesResponse = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
 <qman:echoWithSimpleTypesResponse>
22. <outputParameters = >xmlns:xsi "http://www.w3.org/2001/XMLSchema-instance"
23. 1373<qman:p1> </qman:p1>
24. true<qman:p2> </qman:p2>
25. 12763.44<qman:p3> </qman:p3>
26. 2727.233<qman:p4> </qman:p4>
27. 28292<qman:p5> </qman:p5>
28. 227<qman:p6> </qman:p6>
29. expectedStringResult<qman:p7> </qman:p7>
30. http://qpid.apache.org/<qman:p8> </qman:p8>
31. 1235061886761<qman:p9> </qman:p9>
32. <qman:p9 xsi:type= >"xsd:long"
33. 1235061886761
34. </qman:p9>
35. </outputParameters>
36. <qman:echoWithSimpleTypesResponse>
37. </qman:echoWithSimpleTypesResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a echoWithSimpleType response. This is done as usual using a wsa:Action that is part of WS-Addressing
specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 31 This is the GetMultipleResourceProperties response element which contains the requested property values as nested child.

22 - 37 This is the response body. Specifically the operation in the example is a simple "echo" operation,and therefore all input
parameters are sent back as output section.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
InvalidResourcePropertyQNameFault : One or more of the names (QNames) in the request message doesn't correspond to a
property element of the target WS-Resource.
OperationInvocationFault : The operation invocation failed.

Quick links

Web Services Resource

PauseSubscription

Pause Subscription

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to temporarily suspend an existing subscription. After successful processing the pause request the
subscription is in the paused state. Production of further notifications can be resumed using a ResumeSubscription request.
In order to be able to send a pause subscription request, the consumer must have a valid subscription reference like this :

<wsnt:SubscribeResponse = >xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
 <wsnt:SubscriptionReference>
 <wsa:Address = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 http://localhost:8080/qman/services/SubscriptionManager
 </wsa:Address>
 <wsa:ReferenceParameters = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 <qman-wsa:ResourceId>
 282f28e6-4396-4000-a19d-87a03978e8a0
 </qman-wsa:ResourceId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 2009-02-27T13:51:56+01:00<wsnt:CurrentTime> </wsnt:CurrentTime>
</wsnt:SubscribeResponse>

A pause request has no effect on an already resumed subscription.

Request

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/SubscriptionManager
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/PauseSubscriptionRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman-wsa:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman-wsa "http://amqp.apache.org/qpid/management/qman/addressing"
18. 282f28e6-4396-4000-a19d-87a03978e8a0
19. </qman-wsa:ResourceId>
 </soap:Header>
 <soap:Body = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
20. <wsnt:PauseSubscription = />xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider. In this case that's the Subscription Manager
WS-Resource.

06 - 08 Indicate this is a PauseSubscription request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource (subscription) of this request. Specifically the line 18 contains the subscription identifier
previously mentioned.

20 The pause subscription body. As you can see there are no parameters for this kind of request.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/PauseSubscriptionResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/SubscriptionManager
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman-wsa:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman-wsa "http://amqp.apache.org/qpid/management/qman/addressing"
18. 282f28e6-4396-4000-a19d-87a03978e8a0
19. </qman-wsa:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsnt:PauseSubscriptionResponse = />xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a PauseSubscription response.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 This is the response body indicating that the subscription has been successfully suspended.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
PauseFailedFault : The subscription has not been suspended.

Quick links

Web Services Resource
Web Services Base Notification

PutResourcePropertyDocument

PutResourcePropertyDocument

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

Description
Request
Response
Faults
Quick links

Description

This interface allows to completely / partially replace the resource property document of a WS-Resource. So briefly, it allows requestor to
change resource
internal state using the resource property document.
This is the main difference between this interface and the : it operates the change(s) directly on the resource propertySetResourceProperties
document.

Note for response message (extract from WS-ResourceProperties specification) :

"If, after processing the PutResourcePropertyDocument request, the XML Infoset of the WS-Resource's resource properties document is
identical to the XML Infoset of the contents of the PutResourcePropertyDocument request itself, then the contents of the
PutResourcePropertyDocumentResponse MUST be empty.
If, after processing the PutResourcePropertyDocument request, the XML Infoset of the WS-Resource's resource properties document is not
identical to the XML Infoset of the contents of the PutResourcePropertyDocument request itself, then the contents of the
PutResourcePropertyDocumentResponse MUST contain the updated resource property document. If an implementation cannot return all of
the resource property values associated with the request, due to, for example, security considerations, then it MUST fault."

Briefly, that means that if the request message contains the whole state of the target resource, and that whole state is successfully applied,
then the response message will be empty.
If, the request message contains a subsection of the resource property document and this partial "state" is applied to the target resource,
then the response message will return the new resource property document taht reflects the current resource state.

Request

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07.
http://docs.oasis-open.org/wsrf/rpw-2/PutResourcePropertyDocument/PutResourcePropertyDocumentRequest
08.
</wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
 </soap:Header>
 <soap:Body = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
21. <wsrf-rp:PutResourcePropertyDocument = >xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
22. <qman:QManWsResourceProperties>
23. <qman:MgmtPubInterval>
24. 4321
25. </qman:MgmtPubInterval>
26. </qman:QManWsResourceProperties>
27. <qman:Name>
28. New Name
29. </qman:Name>
30. </wsrf-rp:PutResourcePropertyDocument>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a PutResourcePropertyDocument request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource of this request. Specifically the line 18 contains the resource identifier.

21 - 30 The PutResourcePropertyDocument request. That will contain the new resource property document (total or partial).

22 - 29 This is the new resource property document. In this example it contains only two properties : MgmtPubInterval (23 - 25) and
Name (27 - 29).

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsrf/rpw-2/SetResourceProperties/SetResourcePropertiesResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
21. <wsrf-rp:PutResourcePropertyDocumentResponse =xmlns:wsrf-rp

>"http://docs.oasis-open.org/wsrf/rp-2"
22. 4321<qman:MgmtPubInterval> </qman:MgmtPubInterval>
 <wsrf-rp:QueryExpressionDialect = >xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
 http://www.w3.org/TR/1999/REC-xpath-19991116
 </wsrf-rp:QueryExpressionDialect>
23. New Name<qman:Name> </qman:Name>
 9223372036854775797<qman:MsgTotalEnqueues> </qman:MsgTotalEnqueues>
 <qman:Arguments
 = >xmlns:xsi "http://www.w3.org/2001/XMLSchema-instance"
 <qman:entry>
 Key3<qman:key> </qman:key>
 2147483647<qman:value xsi:type= >"xsd:integer" </qman:value>
 </qman:entry>
 <qman:entry>
 Key4<qman:key> </qman:key>
 3.4028235E38<qman:value xsi:type= >"xsd:float" </qman:value>
 </qman:entry>
 <qman:entry>
 Key1<qman:key> </qman:key>
 aStringValue<qman:value xsi:type= >"xsd:string" </qman:value>
 </qman:entry>
 <qman:entry>
 Key2<qman:key> </qman:key>
 -9223372036854775808<qman:value xsi:type= >"xsd:long" </qman:value>
 </qman:entry>
 </qman:Arguments>
 57ae7a6d-6f33-48dc-9548-82078591fb9c<qman:VhostRef> </qman:VhostRef>
 true<qman:Durable> </qman:Durable>
24. -2147483638<qman:ConsumerCount> </qman:ConsumerCount>
 </wsrf-rp:PutResourcePropertyDocumentResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a PutResourcePropertyResponse message. This is done as usual using a wsa:Action that is part of
WS-Addressing specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 24 The resource property response. The nested children are all property members of resource property document. Note that the
value of MgMtPubInterval (22) and Name (23) have been updated.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
InvalidResourcePropertyQNameFault : The name (QName) in the request message doesn't correspond to a property element of
the target WS-Resource.
UnableToPutResourcePropertyDocumentFault : In case of a not well-known failure while processing / applying the request.

Quick links

Web Services Resource
Web Services Resource Properties

QueryResourceProperties

QueryResourceProperties

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to query the resource properties document of a managed resource using a query expression.
The given expression is evaluated against the resource properties document of the target resource.
Note that although this request allows to declare a dialect for the given expression, only the XPath 1.0 dialect is supported at the moment.

Request

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07.
http://docs.oasis-open.org/wsrf/rpw-2/QueryResourceProperties/QueryResourcePropertiesRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
 </soap:Header>
 <soap:Body>
20. <wsrf-rp:QueryResourceProperties>
21. <wsrf-rp:QueryExpression Dialect= >"http://www.w3.org/TR/1999/REC-xpath-19991116"
22. boolean(/*/MgtPubInterval > 100 and /*/MsgTotalEnqueues > 56272)
23. </wsrf-rp:QueryExpression>
24. </wsrf-rp:QueryResourceProperties>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a QueryResourceProperties request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource of this request. Specifically the line 18 contains the resource identifier.

20 - 22 The QueryResourceProperties request.

22 The XPath expression that will be evaluated against the resource properties document of the target resource.
In this example we want to know if the property "MgmtPubInterval" is greater than 100 and the property MsgTotalEnqueues is
greater than 56272.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05.
http://docs.oasis-open.org/wsrf/rpw-2/QueryResourceProperties/QueryResourcePropertiesResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsrf-rp:QueryResourcePropertiesResponse =xmlns:wsrf-rp

>"http://docs.oasis-open.org/wsrf/rp-2"
22. true
23. </wsrf-rp:QueryResourcePropertiesResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a QueryResourceProperties response. This is done as usual using a wsa:Action that is part of WS-Addressing
specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 23 This is the QuertyResourceProperties response element which contains the result of the evaluated query.

22 This element represents the requested property. Note that the name of the element is the name of the property.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
UnknownQueryExpressionDialectFault : Remember that only XPath 1.0 is supported. This fault is thrown if another dialect is
declared on request message.
InvalidQueryExpressionFault : The given expression is not valid according to the corresponding dialect (XPath).
QueryEvaluationErrorFault : The evaluation of the given expression thrown an exception.

Quick links

Web Services Resource
Web Services Resource Properties

ResumeSubscription

Pause Subscription

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to resume an previously suspended subscription.
After successful processing resume request the subscription is no longer in the paused state.
In order to be able to send a resume subscription request, the consumer must have a valid subscription reference like this :

 <wsnt:SubscribeResponse = >xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
 <wsnt:SubscriptionReference>
 <wsa:Address = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 http://localhost:8080/qman/services/SubscriptionManager
 </wsa:Address>
 <wsa:ReferenceParameters = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
 <qman-wsa:ResourceId>
 282f28e6-4396-4000-a19d-87a03978e8a0
 </qman-wsa:ResourceId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 2009-02-27T13:51:56+01:00<wsnt:CurrentTime> </wsnt:CurrentTime>
 </wsnt:SubscribeResponse>

A resume request has no effect on an already resumed subscription.

Request

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/SubscriptionManager
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/ResumeSubscriptionRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman-wsa:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman-wsa "http://amqp.apache.org/qpid/management/qman/addressing"
18. 282f28e6-4396-4000-a19d-87a03978e8a0
19. </qman-wsa:ResourceId>
 </soap:Header>
 <soap:Body = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
20. <wsnt:ResumeSubscription = />xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
 </soap:Body>
 </soap:Envelope>

Line(s) Description

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider. In this case that's the Subscription Manager
WS-Resource.

06 - 08 Indicate this is a ResumeSubscription request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource (subscription) of this request. Specifically the line 18 contains the subscription identifier
previously mentioned.

20 The resume subscription body. As you can see there are no parameters for this kind of request.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsn/bw-2/SubscriptionManager/ResumeSubscriptionResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/SubscriptionManager
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman-wsa:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman-wsa "http://amqp.apache.org/qpid/management/qman/addressing"
18. 282f28e6-4396-4000-a19d-87a03978e8a0
19. </qman-wsa:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsnt:ResumeSubscriptionResponse = />xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a ResumeSubscription response.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 This is the response body indicating that the subscription has been successfully resumed.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
ResumeFailedFault : The subscription has not been resumed.

Quick links

Web Services Resource
Web Services Base Notification

SetResourceProperties

SetResourceProperties

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to change the state of a WS-Resource, modifying the values of multiple resource properties.

There are two types of changes that can be done on a resource property :

Insert: wherein a new resource property element is inserted into the resource properties document; before of that the property was
null and therefore wasn't part of the resource property document;
Update: wherein existing resource property element(s) are udpated; that is, the property was already part of the resource property
document;

In order to be fully WSRF compliant, there should be a third type of change : Delete. It will be implemented sooner
but keep in mind that at the moment is not supported.

Request

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/QManWsResource
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://docs.oasis-open.org/wsrf/rpw-2/SetResourceProperties/SetResourcePropertiesRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
17. <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
 </soap:Header>
 <soap:Body = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
21. <wsrf-rp:SetResourceProperties = >xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
22. <wsrf-rp:Insert>
 <qman:Type>
 This is a value for a string property.
 </qman:Type>
23. </wsrf-rp:Insert>
24. <wsrf-rp:Update>
 <qman:MgmtPubInterval>
 12
 </qman:MgmtPubInterval>
25. </wsrf-rp:Update>
 </wsrf-rp:SetResourceProperties>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and <Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a SetResourceProperties request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 19 This indicates the target resource of this request. Specifically the line 18 contains the resource identifier.

20 - 22 The SetResourceProperties request. Change types are specified using nested children.

21 - 23 This is an Insert change type. The property "Type" (specified using the nested child) is null on the target resource and therefore
is not yet part
of the resource property document. After that request, that property will be inserted on the property document and will have a
value of "This is a value for a string property."

24 - 25 This is an Update change type. The property "MgmtPubInterval" is not null on the target resource and therefore is already part of
its property document.
After the request will be processed, that property will have a value of 12.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsrf/rpw-2/SetResourceProperties/SetResourcePropertiesResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/QManWsResource
16. </wsa:Address>
17. <wsa:ReferenceParameters>
 <qman:ResourceId
 =xmlns:wsa "http://www.w3.org/2005/08/addressing"
 wsa:IsReferenceParameter="true"
 = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
18. 781f4ad7-4c96-4caa-b69d-291461cdb1fc
19. </qman:ResourceId>
20. </wsa:ReferenceParameters>
 </wsa:From>
 </soap:Header>
 <soap:Body>
21. <wsrf-rp:SetResourcePropertyResponse = />xmlns:wsrf-rp "http://docs.oasis-open.org/wsrf/rp-2"
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a SetResourceProperties response. This is done as usual using a wsa:Action that is part of WS-Addressing
specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 20 As part of wsa:From element, this contains (specifically on line 18) additional information needed for identifying the originator of
this message.

21 - 25 This is the SetResourceProperties response element.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
ResourceUnavailableFault : The requested resource is unavailable. This fault should indicate a transient condition. That means a
requester might resend the message.
InvalidResourcePropertyQNameFault : The name (QName) in the request message doesn't correspond to a property element of
the target WS-Resource.
SetResourcePropertyRequestFailedFault : Service provider was unable to satisfy the SetResourceProperties request.
InvalidModificationFault : The content of the SetResourceProperties request cause the resource properties document to no longer
be able to validate.
UnableToModifyResourcePropertyFault : One or more properties contained in the SetResourceProperties request are read-only.

Quick links

Web Services Resource
Web Services Resource Properties

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

Subscribe

Subscribe

Description
Request
Response
Faults
Quick links

Description

This interface allows a requestor to register itself as a listener of one or more QMan topics.

Request

Depending on filter and termination time we could have different combination of subscribe requests.

In general let's say we could specify the following :

a topic filter : contains a name of a valid and existent topic.
In this case the subscriber is interested to receive only messages that are published on a given topic;
If there's no such filter the subscriber is supposed to be interested on all topics;
a message filter : contains an expression that is evaluated against the current message.
Only if the evaluation of the given expression returns true this filter allows the message delivery.
a producer properties filter : contains an expression that is evaluated against the resource properties document of the producer.
Only if the evaluation of the given expression returns true this filter allows the message delivery.
a termination time : allows a requestor to specify a termination time of the Subscription being created.
If it is not present the subscription will never expire.

Filters are not mandatory. That means if you omit lines 23 - 34 a subscription will be created for all
messages / all topics without expiration date.
Filters are processed in AND mode. That means if one of them fails, the message won't be delivered.
Note that only XPath is supported as Dialect for filter expressions.

In the example reported below QMan (acting as a consumer) is running on localhost:8080 while the consumer is an endpoint service
located on consumer.host.name:8726.

01. <soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
02. <soap:Header>
03. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
04. http://localhost:8080/qman/services/adapter
05. </wsa:To>
06. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
07. http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/SubscribeRequest
08. </wsa:Action>
09. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
10. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
11. </wsa:MessageID>
12. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
13. <wsa:Address>
14. http://www.w3.org/2005/08/addressing/role/anonymous
15. </wsa:Address>
16. </wsa:From>
 </soap:Header>
 <soap:Body = >xmlns:qman "http://amqp.apache.org/qpid/management/qman"
17. <wsnt:Subscribe = >xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
18. <wsnt:ConsumerReference>
19. <wsa:Address = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
20. http://consumer.host.name:8726/qman/services/consumer
21. </wsa:Address>
22. </wsnt:ConsumerReference>
23. <wsnt:Filter>
24. <wsnt:TopicExpression Dialect=

>"http://docs.oasis-open.org/wsn/t-1/TopicExpression/Concrete"
25. qman:EventsLifeCycleTopic
26. </wsnt:TopicExpression>
27. <wsnt:MessageContent Dialect= >"http://www.w3.org/TR/1999/REC-xpath-19991116"
28. /NotificationMessage/Message/LifeCycleEvent/Resource/Name/text()='connection'
29. </wsnt:MessageContent>
30. <wsnt:ProducerProperties Dialect=

>"http://www.w3.org/TR/1999/REC-xpath-19991116"
31. boolean(/*/MgtPubInterval > 100)
32. </wsnt:ProducerProperties>
33. </wsnt:Filter>
34. 2009-02-20T13:29:24+01:00<wsnt:TerminationTime> </wsnt:TerminationTime>
35. </wsnt:Subscribe>
 </soap:Body>
 </soap:Envelope>

Line(s) Description

01 The SOAP <Envelope> is the root element in every SOAP message, and contains two child elements, <Header> and
<Body>.

02 The SOAP Header will contain all metadata used for identifying the conversation participants (requestor and provider).

03 - 05 Convey the target endpoint also known (in the request phase) as service provider.

06 - 08 Indicate this is a Subscribe request.

09 - 11 Convey a unique identifier associated with the current message. This will be used for request / response messages
correlation.

12 - 15 Provide the address of the source endpoint also known (in the request phase) as service requestor.

17 - 23 This is the Subscribe request.

19 - 21 This element contains the address (line 20) of the consumer service endpoint. After this request has been processed it
will be referred as Subscriber.

23 - 33 This is the most interesting part of the message : filters.

24 - 26 Topic filter : the consumer wants subscribe only the messages that are published on qman:EventsLifeCycleTopic (line
25) topic.

27 - 29 Message filter : the consumer wants receive notification only when the message is referred to a resource with
"connection" as name (28).
Basically it wants to monitor connections on broker.

30 - 32 Producer RSP filter : the consumer wants receive notification only when the producer has a property named
MgmtPubInterval that is greater than 100.

Response

<soap:Envelope = >xmlns:soap "http://www.w3.org/2003/05/soap-envelope"
 <soap:Header>
01. <wsa:To = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
02. http://www.w3.org/2005/08/addressing/role/anonymous
03. </wsa:To>
04. <wsa:Action = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
05. http://docs.oasis-open.org/wsn/bw-2/NotificationProducer/SubscribeResponse
06. </wsa:Action>
07. <wsa:MessageID = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
08. uuid:980617c8-e3a0-ebf1-8f5a-2b43d3d6d416
09. </wsa:MessageID>
10. <wsa:RelatesTo RelationshipType= ="wsa:Reply" xmlns:wsa "http://www.w3.org/2005/08/addressing"
>
11. uuid:0cdb5112-09e0-ac39-06ba-393843f06e42
12. </wsa:RelatesTo>
13. <wsa:From = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
14. <wsa:Address>
15. http://localhost:8080/qman/services/adapter
16. </wsa:Address>
 </wsa:From>
 </soap:Header>
 <soap:Body>
17. <wsnt:SubscribeResponse = >xmlns:wsnt "http://docs.oasis-open.org/wsn/b-2"
18. <wsnt:SubscriptionReference>
19. <wsa:Address = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
20. http://localhost:8080/qman/services/SubscriptionManager
21. </wsa:Address>
22. <wsa:ReferenceParameters = >xmlns:wsa "http://www.w3.org/2005/08/addressing"
23. <qman-wsa:ResourceId =xmlns:qman-wsa

>"http://amqp.apache.org/qpid/management/qman/addressing"
24. e067f34f-e7e9-4cb2-b13c-185a7e0d1d16
25. </qman-wsa:ResourceId>
26. </wsa:ReferenceParameters>
27. </wsnt:SubscriptionReference>
28. 2009-02-10T20:41:07+01:00<wsnt:CurrentTime> </wsnt:CurrentTime>
29. 2009-02-10T20:41:26+01:00<wsnt:TerminationTime> </wsnt:TerminationTime>
30. </wsnt:SubscribeResponse>
 </soapBody>
 </soap:Envelope>

Line(s) Description

01 - 03 Convey the recipient of the response message. Note that this time we are talking about the service requestor; The address
matches the <wsa:From> previously found in the corresponding request.

04 - 06 Indicate this is a Subscribe response. This is done as usual using a wsa:Action that is part of WS-Addressing specification.

07 - 09 Convey a unique identifier associated with the current response message.

10 - 12 This element provides the identifier of the correlated (request) message.

13 The <wsa:From> element (part of WS-Addressing specs too) identifies the source endpoint, the originator of this response
message.

14 - 16 This is the address of the source service endpoint. As said for lines 01-03 this time this is referred to service provider (the
message originator).

17 - 30 This is the body of the subscribe response.

18 - 27 Conveys the details of the subscription that has been created.

19 - 24 A subscription, as any other WS-Resource, has an address (20) and a resource identifier (24).

28 The creation date of the subscription.

29 The expiration / termination time of the subscription.

Faults

ResourceUnknownFault : There's no resource on QMan associated with the given reference information (soap address and
identifier).
InvalidFilterFault : The request contains a filter that is not supported.
TopicExpressionDialectUnknownFault : The request contains a topic filter with an unknown / not supported dialect.
TopicNotSupportedFault : The request contains a topic that is not supported.

InvalidTopicExpressionFault : The request contains a topic filter with an invalid expression.
InvalidProducerPropertiesExpressionFault : The request contains a producer properties filter with an invalid expression.
InvalidMessageContentExpressionFault : The request contains a message properties filter with an invalid expression.
SubscribeCreationFailedFault : The notification producer failed to process the subscribe request.

Quick links

Web Services Base Notification 1.3

Qpid ACLs

ACL Formats

The Qpid project has two ACL implementations. An initial version of ACLs was added to the Java Broker for M2.1 that uses XML
configuration. For M4 a new format was designed to be implemented by both C++ and Java brokers. M4 release includes the initial C++
implementation and M5 is expected to include the Java implementation.

Specifications

The specifications for each of the ACL formats are linked here:

v1 XML ACLs (Java Broker Only)
v2 All brokers

User Guides

To aid users in defining their ACLs we have a user guide for each of the ACL formats.

v1 XML ACLs (Java Broker Only)
v2 All brokers

Qpid Interoperability Documentation

Qpid Interoperability Documentation

This page documents the various interoperable features of the Qpid clients.

SASL

Standard Mechanisms

SASL Mechanisms

This table list the various SASL mechanisms that each component supports. The version listed shows when this
functionality was added to the product.

Component ANONYMOUS CRAM-MD5 DIGEST-MD5 EXTERNAL GSSAPI/Kerberos PLAIN

C++ Broker M3[]1 M3[,]1 2 M3[,]1 2 M1

C++ Client M3[]1 M1

Java Broker M1 M1

Java Client M1 M1

.Net Client M2 M2 M2 M2 M2

Python Client ?

Ruby Client ?

1: Support for these will be in M3 (currently available on trunk).

2: C++ Broker uses which supports CRAM-MD5 and GSSAPI but these have not been tested yetCyrus Sasl

Custom Mechanisms

There have been some custom mechanisms added to our implementations.

Component AMQPLAIN CRAM-MD5-HASHED

C++ Broker

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer#SASL_Mechanisms
http://freshmeat.net/projects/cyrussasl/

C++ Client

Java Broker M1 M2

Java Client M1 M2

.Net Client

Python Client M2

Ruby Client M2

AMQPLAIN

CRAM-MD5-HASHED

The Java SASL implementations require that you have the password of the user to validate the incoming request. This then means that the
user's password must be stored on disk. For this to be secure either the broker must encrypt the password file or the need for the password
being stored must be removed.

The CRAM-MD5-HASHED SASL plugin removes the need for the plain text password to be stored on disk. The mechanism defers all
functionality to the build in CRAM-MD5 module the only change is on the client side where it generates the hash of the password and uses
that value as the password. This means that the Java Broker only need store the password hash on the file system. While a one way hash is
not very secure compared to other forms of encryption in environments where the having the password in plain text is unacceptable this will
provide and additional layer to protect the password. In particular this offers some protection where the same password may be shared
amongst many systems. It offers no real extra protection against attacks on the broker (the secret is now the hash rather than the password).

SSL

SSL How to

1. C++ broker (M4 and up)
2. Java Client
3. .Net Client

C++ broker (M4 and up)

You need to get a certificate signed by a CA, trusted by your client.

If you require client authentication, the clients certificate needs to be signed by a CA trusted by the broker.

Setting up the certificates for testing.
For testing purposes you could use the to setup your certificates.following guide
In summary you need to create a root CA and import it to the brokers certificate data base.
Create a certificate for the broker, sign it using the root CA and then import it into the brokers certificate data base.

Load the acl module using --load-module or if loading more than one module, copy ssl.so to the location pointed by --module-dir

Ex running from source. ./qpidd --load-module /libs/ssl.soif

Specify the password file (a plain text file with the password), certificate database and the brokers certificate name using the
following options

Ex ./qpidd ... --ssl-cert-password-file ~/pfile --ssl-cert-db ~/server_db/ --ssl-cert-name
localhost.localdomain

If you require client authentication you need to add --ssl-require-client-authentication as a command line argument.

Please note that the default port for SSL connections is 5671, unless specified by --ssl-port

Here is an example of a broker instance that requires SSL client side authenticaiton

./qpidd ./qpidd --load-module /libs/ssl.so --ssl-cert-password-file ~/pfile --ssl-cert-db
~/server_db/ --ssl-cert-name localhost.localdomain --ssl-require-client-authentication

Java Client (M4 and up)

This guide is for connecting with the Qpid c++ broker.

http://www.mozilla.org/projects/security/pki/nss/ref/ssl/gtstd.html

Setting up the certificates for testing. In summary,
You need to import the trusted CA in your trust store and keystore
Generate keys for the certificate in your key store
Create a certificate request using the generated keys
Create a certficate using the request, signed by the trusted CA.
Import the signed certificate into your keystore.

Pass the following JVM arguments to your client.

-Djavax.net.ssl.keyStore=/home/bob/ssl_test/keystore.jks
 -Djavax.net.ssl.keyStorePassword=password
 -Djavax.net.ssl.trustStore=/home/bob/ssl_test/certstore.jks
 -Djavax.net.ssl.trustStorePassword=password

.Net Client (M4 and up)

If the Qpid broker requires client authentication then you need to get a certificate signed by a CA, trusted by your client.

Use the connectSSL instead of the standard connect method of the client interface.

connectSSL signature is as follows:

 void connectSSL(host, port, virtualHost, username, public String int String String String
password, serverName, certPath, bool rejectUntrusted)String String

Where

host: Host name on which a Qpid broker is deployed
port: Qpid broker port
virtualHost: Qpid virtual host name
username: User Name
password: Password
serverName: Name of the SSL server

certPath: Path to the X509 certificate to be used when the broker requires client authentication
rejectUntrusted: If true connection will not be established if the broker is not trusted (the server certificate must be added in your
truststore)

Python & Ruby Client (M4 and up)

Simply use amqps:// in the URL string as defined above

Starting a cluster

Running a Qpidd cluster

There are several pre-requisites to running a qpidd cluster:

Install and configure openais/corosync

Qpid clustering uses a multicast protocol provided by the corosync (formerly called openais) library. Install whichever is available on your OS.
E.g. in fedora10: yum install corosync.

The configuration file is /etc/ais/openais.conf on openais, /etc/corosync.conf on early corosync versions and /etc/corosync/corosync.conf on
recent corosync versions. You will need to edit the default file created when you installed

Here is an example, with places marked that you will
change. (Below, I will describe how to change the file.)

Please read the openais.conf.5 manual page

totem {
 version: 2
 secauth: off
 threads: 0
 {interface
 ringnumber: 0
 ## You must change address ##this
 bindnetaddr: 20.0.100.0
 mcastaddr: 226.94.32.36
 mcastport: 5405
 }
}

logging {
 debug: off
 timestamp: on
 to_file: yes
 logfile: /tmp/aisexec.log
}

amf {
 mode: disabled
}

You must sent the bindnetaddr entry in the configuration file to the network address of your network interface. This must be a real network
interface, not the loopback address 127.0.0.1

You can find your network interface by running ifconfig. This will list the address and the mask, e.g.

inet addr:20.0.20.32 Bcast:20.0.20.255 Mask:255.255.255.0

The bindnetaddr is the logical AND of the inet addr and mask values, in the example above 20.0.20.0

Open your firewall

In the above example file, I use mcastport 5405.
This implies that your firewall must allow UDP
protocol over port 5405, or that you disable the firewall

Use the proper identity.

The qpidd process must be started with the correct identity in order to use the corosync/openais library.

For openais and early corosync versions the installation of openAIS/corosync on your system will create a new
group called "ais". The user that starts the qpidd processes of the cluster
must have "ais" as its effective group id. You can create a user specifically for this purpose with ais as the primary group, or
a user that has ais as a secondary group can use "newgrp" to set the primary group to ais when running qpidd.

For recent corosync versions you no longer need to set your group to "ais" but you do need to create a file in /etc/corosync/uidgid.d/ to allow
access for whatever user/group ID you want to use. For example create /etc/corosync/uidgid.d/qpid th the contents:

uidgid {
 uid: qpid
 gid: qpid
}

Starting a Cluster

To be a member of a cluster you must pass the --cluster-name argument to qpidd. This is the only required option to join a cluster, other
options can be set as for a normal qpidd.

For example to start a cluster of 3 brokers on the current host
Here is an example of starting a cluster of 3 members, all on the current host but with different ports and different log files:

qpidd -p5672 --cluster-name=MY_CLUSTER --log-output=cluster0.log -d --no-data-dir --auth=no
qpidd -p5673 --cluster-name=MY_CLUSTER --log-output=cluster0.log -d --no-data-dir --auth=no
qpidd -p5674 --cluster-name=MY_CLUSTER --log-output=cluster0.log -d --no-data-dir --auth=no

In a deployed system, cluster members will normally be on different hosts but for development its useful to be able to create a cluster on a
single host.

SELinux conflicts

Developers will often start openais/corosync as a service like this:

service openais start

But will then will start a cluster-broker without using the service script like this:

/usr/sbin/qpidd --cluster-name my_cluster ...

If SELinux is in enforcing mode this may cause qpidd to hang due because of the different SELinux contexts.
There are 3 ways to resolve this:

run both qpidd and openais/corosync as services.
run both qpidd and openais/corosync as user processes.
make selinux permissive:

To check what mode selinux is running:

getenforce

To change the mode:

setenforce permissive

Note that in a deployed system both openais/corosync and qpidd should be started as services, in which case there is no problem with
SELinux running in enforcing mode.

Troubleshooting checklist.

If you have trouble starting your cluster, make sure that:

1. You have edited the correct openais/corosync configuration file and set bindnetaddr correctly
1. Your firewall allows UDP on the openais/corosync mcastport
2. Your effective group is "ais" (openais/old corosync) or you have created an appropriate ID file (new corosync)
3. Your firewall allows TCP on the ports used by qpidd.
4. If you're starting openais as a service but running qpidd directly, ensure selinux is in permissive mode

Use of Get()
Note that SubscriptionManager::get() will cause a synchronous interaction pattern with the broker where a local queue get() will not. See
example below of comparing them

Using SubscriptionManager::get():

#include <qpid/client/Connection.h>
#include <qpid/client/Session.h>
#include <qpid/client/Message.h>
#include <qpid/client/SubscriptionManager.h>
#include <qpid/sys/Time.h>
#include <unistd.h>
#include <cstdlib>
#include <iostream>
using namespace qpid::client;
using namespace qpid::framing;

 main(argc, ** argv) { int int char
 * host = argc>1 ? argv[1] : ; const char "127.0.0.1"
 port = argc>2 ? atoi(argv[2]) : 5672; int
 Connection connection;
 { try
 connection.open(host, port);
 Session session = connection.newSession();
 SubscriptionManager subs(session);
 Message m;
 (!subs.get(m, , 1*qpid::sys::TIME_SEC)) { while "testqueue"
 std::cout << << std::endl; "No message available"
 }
 std::cout << << m.getData() << std::endl; "Got: "
 session.close();
 connection.close();
 0; return
 } (std::exception& error) { catch const
 std::cout << error.what() << std::endl;
 }
 1; return
}

Using a LocalQueue directly:

#include <qpid/client/Connection.h>
#include <qpid/client/Session.h>
#include <qpid/client/Message.h>
#include <qpid/client/SubscriptionManager.h>
#include <qpid/sys/Time.h>
#include <unistd.h>
#include <cstdlib>
#include <iostream>
using namespace qpid::client;
using namespace qpid::framing;

 main(argc, ** argv) { int int char
 * host = argc>1 ? argv[1] : ; const char "127.0.0.1"
 port = argc>2 ? atoi(argv[2]) : 5672; int
 Connection connection;
 { try
 connection.open(host, port);
 Session session = connection.newSession();
 SubscriptionManager subs(session);
 LocalQueue incoming;
 subs.subscribe(incoming,); "testqueue"
 Message m;
 (!incoming.get(m, 1*qpid::sys::TIME_SEC)) { while
 std::cout << << std::endl; "No message available"
 }
 std::cout << << m.getData() << std::endl; "Got: "
 session.close();
 connection.close();
 0; return
 } (std::exception& error) { catch const
 std::cout << error.what() << std::endl;
 }
 1; return
}

Using Broker Federation

Introduction

Please note: Whereas broker federation was introduced in the M3 milestone release, the discussion in this document is based on the richer
capabilities of federation in the M4 release.

This document presents broker federation for the administrative user. For design and developer information, please see Federation Design
.Note

What Is Broker Federation?

The Qpid C++ messaging broker supports broker federation, a mechanism by which large messaging networks can be built using multiple
brokers. Some scenarios in which federation is useful:

Connecting disparate locations across a wide area network. In this case full connectivity across the enterprise can be achieved while
keeping local message traffic isolated to a single location.
Departmental brokers that have a policy which controls the flow of inter-departmental message traffic.
Scaling of capacity for expensive broker operations. High-function exchanges like the XML exchange can be replicated to scale
performance.
Co-Resident brokers Some applications benefit from having a broker co-resident with the client. This is particularly true if the client
produces data that must be delivered reliably but connectivity to the consumer(s) is non-reliable. In this case, a co-resident broker
provides queueing and durablilty not available in the client alone.
Bridging disjoint IP networks. Message brokers can be configured to allow message connectivity between networks where there is
no IP connectivity. For example, an isolated, private IP network can have messaging connectivity to brokers in other outside IP
networks.

The qpid-route Utility

The qpid-route command line utility is provided with the Qpid broker. This utility is used to configure federated networks of brokers and to
view the status and topology of networks.

qpid-route accesses the managed brokers remotely. It does not need to be invoked from the same host on which the broker is running. If
network connectivity permits, an entire enterprise can be configured from a single location.

In the following sections, federation concepts will be introduced and illustrated using qpid-route.

Links and Routes

Federation occurs when a is established between two brokers and one or more are created within that link. A is a transportlink routes link
level connection (tcp, rdma, ssl, etc.) initiated by one broker and accepted by another. The initiating broker assumes the role of withclient
regard to the connection. The accepting broker annotates the connection as being for federation but otherwise treats it as a normal client
connection.

A is associated with an AMQP session established over the link connection. There may be multiple routes sharing the same link. Aroute
route controls the flow of messages across the link between brokers. Routes always consist of a session and a subscription for consuming
messages. Depending on the configuration, a route may have a private queue on the source broker with a binding to an exchange on that
broker.

Routes are unidirectional. A single route provides for the flow of messages in one direction across a link. If bidirectional connectivity is
required (and it almost always is), then a pair of routes must be created, one for each direction of message flow.

The qpid-route utility allows the administrator to configure and manage links and routes separately. However, when a route is created and a
link does not already exist, qpid-route will automatically create the link. It is typically not necessary to create a link by itself. It is, however,
useful to get a list of links and their connection status from a broker:

$ qpid-route link list localhost:10001

Host Port Transport Durable State Last Error
===
localhost 10002 tcp N Operational
localhost 10003 tcp N Operational
localhost 10009 tcp N Waiting Connection refused

The example above shows a query to the broker at "localhost:10001". In the example, this broker has three links to other brokers.link list
Two are operational and the third is waiting to connect because there is not currently a broker listening at that address.

The Life Cycle of a Link

When a link is created on a broker, that broker attempts to establish a transport-level connection to the peer broker. If it fails to connect, it
retries the connection at an increasing time interval. If the connection fails due to authentication failure, it will not continue to retry as
administrative intervention is needed to fix the problem.

If an operational link is disconnected, the initiating broker will attempt to re-establish the connection with the same interval back-off.

The shortest retry-interval is 2 seconds and the longest is 64 seconds. Once enough consecutive retries have occurred that the interval has

grown to 64 seconds, the interval will then stay at 64 seconds.

Durable Links and Routes

If, when a link or a route is created using qpid-route, the option is used, it shall be durable. This means that its life cycle shall--durable
span restarts of the broker. If the broker is shut down, when it is restarted, the link will be restored and will begin establishing connectivity.

A non-durable route can be created for a durable link but a durable route cannot be created for a non-durable link.

$ qpid-route dynamic add localhost:10003 localhost:10004 fed.topic
$ qpid-route dynamic add localhost:10003 localhost:10004 fed.topic2 --durable
Failed: Can't create a durable route on a non-durable link

In the above example, a transient (non-durable) dynamic route was created between localhost:10003 and localhost:10004. Because there
was no link in place, a new transient link was created. The second command is attempting to create a durable route over the same link and is
rejected as illegal.

Dynamic Routing

Dynamic routing provides the simplest configuration for a network of brokers. When configuring dynamic routing, the administrator need only
express the logical topology of the network (i.e. which pairs of brokers are connected by a unidirectional route). Queue configuration and
bindings are handled automatically by the brokers in the network.

Dynamic routing uses the concept. From the client's point of view, all of the brokers in the network collectively offer aDistributed Exchange
single logical exchange that behaves the same as a single exchange in a single broker. Each client connects to its local broker and can bind
its queues to the distributed exchange and publish messages to the exchange.

When a consuming client binds a queue to the distributed exchange, information about that binding is propagated to the other brokers in the
network to ensure that any messages matching the binding will be forwarded to the client's local broker. Messages published to the
distributed exchange are forwarded to other brokers only if there are remote consumers to receive the messages. The dynamic binding
protocol ensures that messages are routed only to brokers with eligible consumers. This includes topologies where messages must make
multiple hops to reach the consumer.

When creating a dynamic routing network, The type and name of the exchange must be the same on each broker. It is strongly
recommended that dynamic routes be created using the standard exchanges (that is unless all messaging is intended to be federated).NOT

A simple, two-broker network can be configured by creating an exchange on each broker then a pair of dynamic routes (one for each
direction of message flow):

Create exchanges:

$ qpid-config -a localhost:10003 add exchange topic fed.topic
$ qpid-config -a localhost:10004 add exchange topic fed.topic

Create dynamic routes:

$ qpid-route dynamic add localhost:10003 localhost:10004 fed.topic
$ qpid-route dynamic add localhost:10004 localhost:10003 fed.topic

Information about existing routes can be gotten by querying each broker individually:

$ qpid-route route list localhost:10003
localhost:10003 localhost:10004 fed.topic <dynamic>
$ qpid-route route list localhost:10004
localhost:10004 localhost:10003 fed.topic <dynamic>

A nicer way to view the topology is to use . The argument to this command is a single broker that serves as an entryqpid-route route map
point. will attempt to recursively find all of the brokers involved in federation relationships with the starting broker and map all ofqpid-route
the routes it finds.

$ qpid-route route map localhost:10003

Finding Linked Brokers:
 localhost:10003... Ok
 localhost:10004... Ok

Dynamic Routes:

 Exchange fed.topic:
 localhost:10004 <=> localhost:10003

Static Routes:
 none found

More extensive and realistic examples are supplied later in this document.

Static Routing

Dynamic routing provides simple, efficient, and automatic handling of the bindings that control routing as long as the configuration keeps
within a set of constraints (i.e. exchanges of the same type and name, bidirectional traffic flow, etc.). However, there are scenarios where it is
useful for the administrator to have a bit more control over the details. In these cases, static routing is appropriate.

Exchange Routes

An exchange route is like a dynamic route except that the exchange binding is statically set at creation time instead of dynamically tracking
changes in the network.

When an exchange route is created, a private queue (auto-delete, exclusive) is declared on the source broker. The queue is bound to the
indicated exchange with the indicated key and the destination broker subscribes to the queue with a destination of the indicated exchange.
Since only one exchange name is supplied, this means that exchange routes require that the source and destination exchanges have the
same name.

Static exchange routes are added and deleted using and respectively. The following exampleqpid-route route add qpid-route route del
creates a static exchange route with a binding key of "global.#" on the default topic exchange:

$ qpid-route route add localhost:10001 localhost:10002 amq.topic global.#

The route can be viewed by querying the originating broker (the destination in this case, see discussion of push and pull routes for more on
this):

$ qpid-route route list localhost:10001
localhost:10001 localhost:10002 amq.topic global.#

Alternatively, the feature can be used to view the topology:route map

$ qpid-route route map localhost:10001

Finding Linked Brokers:
 localhost:10001... Ok
 localhost:10002... Ok

Dynamic Routes:
 none found

Static Routes:

 localhost:10001(ex=amq.topic) <= localhost:10002(ex=amq.topic) key=global.#

This example causes messages delivered to the exchange on broker that have a key that matches (i.e.amq.topic localhost:10002 global.#
starts with the string "global.") to be delivered to the exchange on broker . This delivery will occur regardless ofamq.topic localhost:10001
whether there are any consumers on that will receive the messages.localhost:10001

Note that this is a uni-directional route. No messages will be forwarded in the opposite direction unless another static route is created in the
other direction.

The following diagram illustrates the result, in terms of AMQP objects, of the example static exchange route. In this diagram, the exchanges,
both named "amq.topic" exist prior to the creation of the route. The creation of the route causes the private queue, the binding, and the
subscription of the queue to the destination to be created.

---+ +------------------------
 localhost:10002 | | localhost:10001
 | |
 +-------------+ | | +-------------+
 | | | | | |
 | | global.# ---------------+ | | | |
 | amq.topic |-----------> private queue |--------------->| amq.topic |
 | | ---------------+ | | | |
 | | | | | |
 +-------------+ | | +-------------+
 | |
 | |
 ---+ +------------------------

Queue Routes

A queue route causes the destination broker to create a subscription to a pre-existing, possibly shared, queue on the source broker. There's
no requirement that the queue be bound to any particular exchange. Queue routes can be used to connect exchanges of different names
and/or types. They can also be used to distribute or balance traffic across multiple destination brokers.

Queue routes are created and deleted using the and commands respectively. The followingqpid-route queue add qpid-route queue del
example creates a static queue route to a public queue called "public" that feeds the amq.fanout exchange on the destination:

Create a queue on the source broker:

$ qpid-config -a localhost:10002 add queue public

Create a queue route to the new queue

$ qpid-route queue add localhost:10001 localhost:10002 amq.fanout public

Pull vs. Push Routes

When qpid-route creates or deletes a route, it establishes a connection to one of the brokers involved in the route and configures that broker.
The configured broker then takes it upon itself to contact the other broker and exchange whatever information is needed to complete the
setup of the route.

The notion of vs. is concerned with whether the configured broker is the source or the destination. The normal case is the pullpush pull
route, where qpid-route configures the destination to pull messages from the source. A push route occurs when qpid-route configures the
source to push messages to the destination.

Dynamic routes are always pull routes. Static routes are normally pull routes but may be inverted by using the option whensrc-local
creating (or deleting) a route. If is specified, qpid-route will make its connection to the source broker rather than the destinationsrc-local
and configure the route to push rather than pull.

Push routes are useful in applications where brokers are co-resident with data sources and are configured to send data to a central broker.
Rather than configure the central broker for each source, the sources can be configured to send to the destination.

qpid-route Summary and Options

$ qpid-route
Usage: qpid-route [OPTIONS] dynamic add <dest-broker> <src-broker> <exchange> [tag]
[exclude-list]
 qpid-route [OPTIONS] dynamic del <dest-broker> <src-broker> <exchange>

 qpid-route [OPTIONS] route add <dest-broker> <src-broker> <exchange> <routing-key> [tag]
[exclude-list]
 qpid-route [OPTIONS] route del <dest-broker> <src-broker> <exchange> <routing-key>
 qpid-route [OPTIONS] queue add <dest-broker> <src-broker> <exchange> <queue>
 qpid-route [OPTIONS] queue del <dest-broker> <src-broker> <exchange> <queue>
 qpid-route [OPTIONS] route list [<dest-broker>]
 qpid-route [OPTIONS] route flush [<dest-broker>]
 qpid-route [OPTIONS] route map [<broker>]

 qpid-route [OPTIONS] link add <dest-broker> <src-broker>
 qpid-route [OPTIONS] link del <dest-broker> <src-broker>
 qpid-route [OPTIONS] link list [<dest-broker>]

Options:
 --timeout seconds (10) Maximum time to wait for broker connection
 -v [--verbose] Verbose output
 -q [--quiet] Quiet output, don't print duplicate warnings
 -d [--durable] Added configuration shall be durable
 -e [--del-empty-link] Delete link after deleting last route on the link
 -s [--src-local] Make connection to source broker (push route)
 --ack N Acknowledge transfers over the bridge in batches of N
 -t <transport> [--transport <transport>]
 Specify transport to use for links, defaults to tcp

 dest-broker and src-broker are in the form: [username/password@] hostname | ip-address
[:<port>]
 ex: localhost, 10.1.1.7:10000, broker-host:10000, guest/guest@localhost

There are several transport options available for the federation link:

Transport Description

tcp (default) A cleartext TCP connection

ssl A secure TLS/SSL over TCP connection

rdma A Connection using the RDMA interface (typically for an Infiniband network)

The and arguments are not needed. They have been left in place for backward compatibility and for advanced users whotag exclude-list
might have very unusual requirements. If you're not sure if you need them, you don't. Leave them alone. If you must know, please refer to
"Message Loop Prevention" in the advanced topics section below. The prevention of message looping is now automatic and requires no user
action.

If the link between the two sites has network latency, this can be compensated for by increasing the ack frequency with --ack N to achieve
better batching across the link between the two sites.

Caveats, Limitations, and Things to Avoid

Redundant Paths

The current implementation of federation in the M4 broker imposes constraints on redundancy in the topology. If there are parallel paths from
a producer to a consumer, multiple copies of messages may be received.

A future release of Qpid will solve this problem by allowing redundant paths with cost metrics. This will allow the deployment of networks that
are tolerant of connection or broker loss.

Lack of Flow Control

M4 broker federation uses unlimited flow control on the federation sessions. Flow control back-pressure will not be applied on inter-broker
subscriptions.

Lack of Cluster Failover Support

The client functionality embedded in the broker for inter-broker links does not currently support cluster fail-over. This will be added in a
subsequent release.

Example Scenarios

Using QPID to bridge disjoint IP networks

Multi-tiered topology

+-----+
 | 5 |
 +-----+
 / \
 +-----+ +-----+
 | 2 | | 6 |
 +-----+ +-----+
 / | \ | \
 +-----+ +-----+ +-----+ +-----+ +-----+
 | 1 | | 3 | | 4 | | 7 | | 8 |
 +-----+ +-----+ +-----+ +-----+ +-----+

This topology can be configured using the following script.

##
Define URLs for the brokers
##
broker1=localhost:10001
broker2=localhost:10002
broker3=localhost:10003
broker4=localhost:10004
broker5=localhost:10005
broker6=localhost:10006
broker7=localhost:10007
broker8=localhost:10008

##
Create Topic Exchanges
##
qpid-config -a $broker1 add exchange topic fed.topic
qpid-config -a $broker2 add exchange topic fed.topic
qpid-config -a $broker3 add exchange topic fed.topic
qpid-config -a $broker4 add exchange topic fed.topic
qpid-config -a $broker5 add exchange topic fed.topic
qpid-config -a $broker6 add exchange topic fed.topic
qpid-config -a $broker7 add exchange topic fed.topic
qpid-config -a $broker8 add exchange topic fed.topic

##
Create Topic Routes
##
qpid-route dynamic add $broker1 $broker2 fed.topic
qpid-route dynamic add $broker2 $broker1 fed.topic

qpid-route dynamic add $broker3 $broker2 fed.topic
qpid-route dynamic add $broker2 $broker3 fed.topic

qpid-route dynamic add $broker4 $broker2 fed.topic
qpid-route dynamic add $broker2 $broker4 fed.topic

qpid-route dynamic add $broker2 $broker5 fed.topic
qpid-route dynamic add $broker5 $broker2 fed.topic

qpid-route dynamic add $broker5 $broker6 fed.topic
qpid-route dynamic add $broker6 $broker5 fed.topic

qpid-route dynamic add $broker6 $broker7 fed.topic
qpid-route dynamic add $broker7 $broker6 fed.topic

qpid-route dynamic add $broker6 $broker8 fed.topic
qpid-route dynamic add $broker8 $broker6 fed.topic

Load-sharing across brokers

Advanced Topics

Federation Queue Naming

Message Loop Prevention

ACL

v2 ACL file format for brokers

This new ACL implementation has been designed for implementation and interoperability on all Qpid brokers. It is currently supported in the
following brokers:

Broker Version

C++ M4 onward

Java M5 anticipated

Contents

v2 ACL file format for brokers
Specification
Validation
Example file:

Design Documentation
Mapping of ACL traps to action and type

v2 ACL User Guide
Writing Good/Fast ACL
Getting ACL to Log
User Id / domains running with C++ broker

Specification

 Notes on file formats

A line starting with the character '#' will be considered a comment, and are ignored.
Since the '#' char (and others that are commonly used for comments) are commonly found in routing keys and other AMQP literals, it
is simpler (for now) to hold off on allowing trailing comments (ie comments in which everything following a '#' is considered a
comment). This could be reviewed later once the rest of the format is finalized.
Empty lines ("") and lines that contain only whitespace (any combination of ' ', '\f', '\n', '\r', '\t', '\v') are ignored.
All tokens are case sensitive. "name1" != "Name1" and "create" != "CREATE".
Group lists may be extended to the following line by terminating the line with the '\' character. However, this may only occur after the
group name or any of the names following the group name. Empty extension lines (ie just a '\' character) are not permitted.

Examples of extending group lists using a trailing '\' character

group group1 name1 name2 \
 name3 name4 \
 name5

group group2 \
 group1 \
 name6

The following are illegal:

'\' must be after group name
group \
 group3 name7 name8

No empty extension lines
group group4 name9 \
 \
 name10

Additional whitespace (ie more than one whitespace char) between and after tokens is ignored. However group and acl definitions
must start with "group" or "acl" respectively and with no preceding whitespace.
All acl rules are limited to a single line.
Rules are interpreted from the top of the file down until the name match is obtained; at which point processing stops.
The keyword "all" is reserved, and matches all individuals, groups and actions. It may be used in place of a group or individual name
and/or an action - eg "acl allow all all", "acl deny all all" or "acl deny user1 all".
The last line of the file (whether present or not) will be assumed to be "acl deny all all". If present in the file, any lines below this one
are ignored.

1.

2.
3.

Property names, Usernames and group names may contain only .a-z , A-Z , 0-9 , '-' , '_' & '.'
Rules must be preceded by any group definitions they may use; any name not previously defined as a group will be assumed to be
that of an individual.
ACL rules must have the following tokens in order on a single line:

The string literal "acl";
The permission;
The name of a single group or individual or the keyword "all";
The name of an action or the keyword "all";
Optionally, a single object name or the keyword "all";
If the object is present, then optionally one or more property name-value pair(s) (in the form property=value).

user = username[/domain[@realm]]
user-list = user1 user2 user3 ...
group-name-list = group1 group2 group3 ...

group <group-name> = [user-list] [group-name-list]

permission = [allow|allow-log|deny|deny-log]
action = [consume|publish|create|access|bind|unbind|delete|purge|update]
object = [virtualhost|queue|exchange|broker|link|route|method]
property =
[name|durable|owner|routingkey|passive|autodelete|exclusive|type|alternate|queuename|schemapackage|schemaclass]

acl
permission {<group-name>|<user-name>| } {action| } [object|]"all" "all" "all"
[property=<property-value>]

Validation

The new ACL file format needs to perform validation on the acl rules. The validation should be performed depending on the set value:

strict-acl-validation=[none]
The default setting should be 'warn'

On validation of this acl the following checks would be expected:

acl allow client publish routingkey=exampleQueue exchange=amq.direct

The If the user 'client' cannot be found, if the authentication mechanism cannot be queried then a 'user' value should be added to the
file.
There is an exchange called 'amq.direct'
There is a queue bound to 'exampleQueue' on 'amq.direct'

Each of these checks that fail will result in a log statement being generated.

In the case of a fatal logging the full file will be validated before the broker shuts down.

Example file:

Some groups
group admin ted@QPID martin@QPID
group user-consume martin@QPID ted@QPID
group group2 kim@QPID user-consume rob@QPID
group publisher group2 \
 tom@QPID andrew@QPID debbie@QPID

Some rules
acl allow carlt@QPID create exchange name=carl.*
acl deny rob@QPID create queue
acl allow guest@QPID bind exchange name=amq.topic routingkey=stocks.ibm.# owner=self
acl allow user-consume create queue name=tmp.*

acl allow publisher publish all durable=false
acl allow publisher create queue name=RequestQueue
acl allow consumer consume queue durable=true
acl allow fred@QPID create all
acl allow bob@QPID all queue
acl allow admin all
acl deny kim@QPID all
acl allow all consume queue owner=self
acl allow all bind exchange owner=self

Last () ruledefault
acl deny all all

Design Documentation

Mapping of ACL traps to action and type

The C++ broker maps the ACL traps in the follow way for AMQP 0-10:
The Java broker currently only performs ACLs on the AMQP connection not on management functions:

Object Action Properties Trap C++ Trap Java

Exchange Create name type alternate passive durable ExchangeHandlerImpl::declare ExchangeDeclareHandler

Exchange Delete name ExchangeHandlerImpl::delete ExchangeDeleteHandler

Exchange Access name ExchangeHandlerImpl::query

Exchange Bind name routingkey queuename owner ExchangeHandlerImpl::bind QueueBindHandler

Exchange Unbind name routingkey ExchangeHandlerImpl::unbind ExchangeUnbindHandler

Exchange Access name queuename routingkey ExchangeHandlerImpl::bound

Exchange Publish name routingKey SemanticState::route BasicPublishMethodHandler

Queue Access name QueueHandlerImpl::query

Queue Create name alternate passive durable exclusive
autodelete

QueueHandlerImpl::declare QueueDeclareHandler

Queue Purge name QueueHandlerImpl::purge QueuePurgeHandler

Queue Purge name Management::Queue::purge

Queue Delete name QueueHandlerImpl::delete QueueDeleteHandler

Queue Consume name (possibly add in future?) MessageHandlerImpl::subscribe BasicConsumeMethodHandler
BasicGetMethodHandler

<Object> Update ManagementProperty::set

<Object> Access ManagementProperty::read

Link Create Management::connect

Route Create Management:: -
-createFederationRoute

Route Delete Management:: -
-deleteFederationRoute

Virtualhost Access name TBD ConnectionOpenMethodHandler

Management actions that are not explicitly given a name property it will default the name property to management method name, if the action
is 'W' Action will be 'Update', if 'R' Action will be 'Access'.

for example, if the mgnt method 'joinCluster' was not mapped in schema it will be mapped in ACL file as follows

Object Action Property

Broker Update name=joinCluster

v2 ACL User Guide

Writing Good/Fast ACL

The file gets read top down and rule get passed based on the first match. In the following example the first rule is a dead rule. I.e. the second
rule is wider than the first rule. DON'T do this, it will force extra analysis, worst case if the parser does not kill the dead rule you might get a
false deny.

allow peter@QPID create queue name=tmp <-- dead rule!!
allow peter@QPID create queue
deny all all

By default files end with

deny all all

the mode of the ACL engine can be swapped to be allow based by putting the following at the end of the file

allow all all

Note that 'allow' based file will be a LOT faster for message transfer. This is because the AMQP specification does not allow for creating
subscribes on publish, so the ACL is executed on every message transfer. Also, ACL's rules using less properties on publish will in general
be faster.

Getting ACL to Log

In order to get log messages from ACL actions use allow-log and deny-log for example

allow-log john@QPID all all
deny-log guest@QPID all all

User Id / domains running with C++ broker

The user-id used for ACL is taken from the connection user-id. Thus in order to use ACL the broker authentication has to be setup. i.e. (if
--auth no is used in combination with ACL the broker will deny everything)

The user id in the ACL file is of the form <user-id>@<domain> The Domain is configured via the SASL configuration for the broker, and the
domain/realm for qpidd is set using --realm and default to 'QPID'.

To load the ACL module use, load the acl module cmd line or via the config file

./src/qpidd --load-module src/.libs/acl.so

The ACL plugin provides the following option '--acl-file'. If do ACL file is supplied the broker will not enforce ACL. If an ACL file name is
supplied, and the file does not exist or is invalid the broker will not start.

ACL Options:
 --acl-file FILE The policy file to load from, loaded from data dir

FileACL Design

FileACL : ACL v2 Java design documentation

Desgin

Interface

The current ACLPlugin interface has a single authorise method, however its current format ties it to the Framing layer. The interface has
been abstracted to take Actions and a new BrokerObject on which the action should be performed.

authorise(Session, Action , BrokerObject)

BrokerObjects

These new objects are taken from the ACLv2 documentation are used to represent the internal broker objects. These objects can be created
with the properties so the ACL can be evaluated without needing access to the functional broker components. Providing the actual broker
objects is not possible as that would require items such as an AMQQueue to be created before evaluating wither the the User has rights to
create the queue.

ACL Entries

Each line from the ACL file is converted into an Entry and added to a list maintaining order for later evaluation. Each ACL Action type maps
to an entry which in turn handles the processing. The Entries are much smaller and clearer to understand than the large case statement
method that was utilised in the SimpleXML ACL Plugin. There is also scope here to provide an extension point to limit the ability of an entity.

[user|group] ... limit-<limit-type>=<value>

Examples would be to limit the number of connections a user may create or IP White/Black listing.

Current Development State

1.
2.
3.

Currently the FileACL processing of the file format is complete and unit tested. Each of the entries have been created however they all do not
fully take in to consideration all the potential variations of Objects and Properties that can be specified.

Testing has started by modifying the existing SimpleACLTest to allow different configuration and ACLPlugins to be loaded and evaluated
against the existing Request/Response application design.

Items to complete

Complete implementation and testing of all Object an Property combinations
Complete parsing of to understand Realms and Domains.user
Provide an ACL independent mechanism for testing ACLs that can be performed against both Java & C++ brokers to ensure
consistency in implementation. This would also allow future ACL implementations to be tested for consistency with existing
implementations.

Note: What do these new properties mean for the Java broker.

Integration with existing ACLPlugin

The development of this plugin has been done to require no changes to the existing broker. For clarity a rename of the Permission class to
Action has been carried. The introduction of the above interface needs further discussion as any new interface will require future support.

For the moment the existing ACLPlugin interface has been implemented and maps from the Framing layer to Actions and BrokerObjects.

Future Refinement

Analysing each ACL Entry in turn for a large acl file would be expensive however, it would be possible to perform some load time
optimisations.

Examples of such optimisations are:

Each Action could have it's own list so as to eliminate the lookup and method invocation on Entries that will never succeed.
Each Entity could also have a list of entries attached to it that would allow quicker evaluation of the entries based on those that
pertain to the given Entity
Both of these optimisations can be applied to allow a much shorter list of Actions to be retrieved for a given Entity.

Qpid Management Framework

What Is QMF
Getting Started with QMF
QMF Concepts

Console, Agent, and Broker
Schema
Class Keys and Class Versioning

The QMF Protocol
How to Write a QMF Console
How to Write a QMF Agent

Please visit the for information about the future of QMF.QMFv2 Project Page

What Is QMF
QMF (Qpid Management Framework) is a general-purpose management bus built on Qpid Messaging. It takes advantage of the scalability,
security, and rich capabilities of Qpid to provide flexible and easy-to-use manageability to a large set of applications.

Getting Started with QMF
QMF is used through two primary APIs. The API is used for console applications that wish to access and manipulate manageableconsole
components through QMF. The API is used for application that wish to be managed through QMF.agent

The fastest way to get started with QMF is to work through the "How To" tutorials for consoles and agents. For a deeper understanding of
what is happening in the tutorials, it is recommended that you look at the section.Qmf Concepts

QMF Concepts
This section introduces important concepts underlying QMF.

Console, Agent, and Broker

The major architectural components of QMF are the Console, the Agent, and the Broker. Console components are the "managing"
components of QMF and agent components are the "managed" parts. The broker is a central (possibly distributed, clustered and
fault-tolerant) component that manages name spaces and caches schema information.

A console application may be a command-line utility, a three-tiered web-based GUI, a collection and storage device, a specialized application
that monitors and reacts to events and conditions, or anything else somebody wishes to develop that uses QMF management data.

An agent application is any application that has been enhanced to allow itself to be managed via QMF.

+-------------+ +---------+ +---------------+ +-------------------+
 | CLI utility | | Web app | | Audit storage | | Event correlation |
 +-------------+ +---------+ +---------------+ +-------------------+
 ^ ^ ^ ^ |
 | | | | |
 v v v v v
 +---+
 | Qpid Messaging Bus (with QMF Broker capability) |
 +---+
 ^ ^ ^
 | | |
 v v v
 +----------------+ +----------------+ +----------------+
 | Manageable app | | Manageable app | | Manageable app |
 +----------------+ +----------------+ +----------------+

In the above diagram, the are agents, the , , and are consoles, and isManageable apps CLI utility Web app Audit storage Event correlation
both a console and an agent because it can create events based on the aggregation of what it sees.

Schema

A describes the structure of management data. Each provides a schema that describes its management model including theschema agent
object classes, methods, events, etc. that it provides. In the current QMF distribution, the agent's schema is codified in an XML document. In
the near future, there will also be ways to programatically create QMF schemata.

Package

Each agent that exports a schema identifies itself using a name. The package provides a unique namespace for the classes in thepackage
agent's schema that prevent collisions with identically named classes in other agents' schemata.

Package names are in "reverse domain name" form with levels of hierarchy separated by periods. For example, the Qpid messaging broker
uses package "org.apache.qpid.broker" and the Access Control List plugin for the broker uses package "org.apache.qpid.acl". In general, the
package name should be the reverse of the internet domain name assigned to the organization that owns the agent software followed by
identifiers to uniquely identify the agent.

The XML document for a package's schema uses an enclosing <schema> tag. For example:

<schema package= >"org.apache.qpid.broker"

</schema>

Object Classes

Object classes define types for manageable objects. The agent may create and destroy objects which are instances of object classes in the
schema. An object class is defined in the XML document using the <class> tag. An object class is composed of properties, statistics, and
methods.

 <class name= >"Exchange"
 <property name= type= references= access= index= parentRef="vhostRef" "objId" "Vhost" "RC" "y"

/>"y"
 <property name= type= access= index= />"name" "sstr" "RC" "y"
 <property name= type= access= />"type" "sstr" "RO"
 <property name= type= access= />"durable" "bool" "RC"
 <property name= type= access= desc="arguments" "map" "RO" "Arguments supplied in

/>exchange.declare"

 <statistic name= type= desc= />"producerCount" "hilo32" "Current producers on exchange"
 <statistic name= type= desc= />"bindingCount" "hilo32" "Current bindings"
 <statistic name= type= desc= />"msgReceives" "count64" "Total messages received"
 <statistic name= type= desc="msgDrops" "count64" "Total messages dropped (no matching key)"
/>
 <statistic name= type= desc= />"msgRoutes" "count64" "Total routed messages"
 <statistic name= type= desc= />"byteReceives" "count64" "Total bytes received"
 <statistic name= type= desc= />"byteDrops" "count64" "Total bytes dropped (no matching key)"
 <statistic name= type= desc= />"byteRoutes" "count64" "Total routed bytes"
 </class>

Properties and Statistics

<property> and <statistic> tags must be placed within <schema> and </schema> tags.

Properties, statistics, and methods are the building blocks of an object class. Properties and statistics are both object attributes, though they
are treated differently. If an object attribute is defining, seldom or never changes, or is large in size, it should be defined as a . If anproperty
attribute is rapidly changing or is used to instrument the object (counters, etc.), it should be defined as a .statistic

The XML syntax for <property> and <statistic> have the following XML-attributes:

Attribute <property> <statistic> Meaning

name Y Y The name of the attribute

type Y Y The data type of the attribute

unit Y Y Optional unit name - use the singular (i.e. MByte)

desc Y Y Description to annotate the attribute

references Y If the type is "objId", names the referenced class

access Y Access rights (RC, RW, RO)

index Y "y" if this property is used to uniquely identify the object. There may be more than one index
property in a class

parentRef Y "y" if this property references an object in which this object is in a child-parent relationship.

optional Y "y" if this property is optional (i.e. may be NULL/not-present)

min Y Minimum value of a numeric attribute

max Y Maximum value of a numeric attribute

maxLen Y Maximum length of a string attribute

Methods

<method> tags must be placed within <schema> and </schema> tags.

A is an invokable function to be performed on instances of the object class (i.e. a Remote Procedure Call). A <method> tag has amethod
name, an optional description, and encloses zero or more arguments. Method arguments are defined by the <arg> tag and have a name, a
type, a direction, and an optional description. The argument direction can be "I", "O", or "IO" indicating input, output, and input/output
respectively. An example:

 <method name= desc= >"echo" "Request a response to test the path to the management broker"
 <arg name= dir= type= />"sequence" "IO" "uint32"
 <arg name= dir= type= />"body" "IO" "lstr"
 </method>

Event Classes

Data Types

Object attributes, method arguments, and event arguments have data types. The data types are based on the rich data typing system
provided by the AMQP messaging protocol. The following table describes the data types available for QMF:

QMF Type Description

REF QMF Object ID - Used to reference another QMF object.

U8 8-bit unsigned integer

U16 16-bit unsigned integer

U32 32-bit unsigned integer

U64 64-bit unsigned integer

S8 8-bit signed integer

S16 16-bit signed integer

S32 32-bit signed integer

S64 64-bit signed integer

BOOL Boolean - True or False

SSTR Short String - String of up to 255 bytes

LSTR Long String - String of up to 65535 bytes

ABSTIME Absolute time since the epoch in nanoseconds (64-bits)

DELTATIME Delta time in nanoseconds (64-bits)

FLOAT Single precision floating point number

DOUBLE Double precision floating point number

UUID UUID - 128 bits

FTABLE Field-table - std::map in C++, dictionary in Python

In the XML schema definition, types go by different names and there are a number of special cases. This is because the XML schema is
used in code-generation for the agent API. It provides options that control what kind of accessors are generated for attributes of different
types. The following table enumerates the types available in the XML format, which QMF types they map to, and other special handling that
occurs.

XML Type QMF Type Accessor Style Special Characteristics

objId REF Direct (get, set)

uint8,16,32,64 U8,16,32,64 Direct (get, set)

int8,16,32,64 S8,16,32,64 Direct (get, set)

bool BOOL Direct (get, set)

sstr SSTR Direct (get, set)

lstr LSTR Direct (get, set)

absTime ABSTIME Direct (get, set)

deltaTime DELTATIME Direct (get, set)

float FLOAT Direct (get, set)

double DOUBLE Direct (get, set)

uuid UUID Direct (get, set)

map FTABLE Direct (get, set)

hilo8,16,32,64 U8,16,32,64 Counter (inc, dec) Generates value, valueMin, valueMax

count8,16,32,64 U8,16,32,64 Counter (inc, dec)

mma32,64 U32,64 Direct Generates valueMin, valueMax, valueAverage, valueSamples

mmaTime DELTATIME Direct Generates valueMin, valueMax, valueAverage, valueSamples

Important
When writing a schema using the XML format, types used in <property> or <arg> must be types that have accessorDirect
style. Any type may be used in <statistic> tags.

Class Keys and Class Versioning

The QMF Protocol
The QMF protocol defines the message formats and communication patterns used by the different QMF components to communicate with
one another.

A description of the current version of the QMF protocol can be found at .QMF Protocol

A proposal for an updated protocol based on map-messages is in progress and can be found at .QMF Map Message Protocol

How to Write a QMF Console
Please see the for information about using the console API with Python.QMF Python Console Tutorial

How to Write a QMF Agent

QMan

QMan - QMF/JMX Bridge

QMan is a Qpid management bridge used for exposing one (or more) Qpid broker domain model as MBean through Java Management
Extensions (JMX).

Note:
QMan has been contributed by Andrea Gazzarini. Details and discussion can be found at .https://issues.apache.org/jira/browse/QPID-1284

Description

QMan is a standalone application that is able to communicate, using AMQP management extensions, with one or more remote brokers.

=== To be completed! ===

Package View

Package configuration

Package domain

Package services

Package handlers

Package messages

Component view

https://issues.apache.org/jira/browse/QPID-1284

Configurator

Configuration

QpidDataSource

Domain Model

QpidService

ManagementClient

Use case view

Management broker :
Management agent :
Management client :

Establishes first connection

Broadcast schema

Manages broker

Open points

JMX interface : QMan should be exposed itself as an MBean for remote management ;
Connector : QMan needs to be exposed as a service using a connector (WS-DM, SNMP, SOAP, etc...) ;
Events : the latest version of AMQP management extensions includes event definitions so QMan needs to expose such events in the
local domain model ;

Glossary

Definition Description

JMX Java Management Extensions

Screenshots

Viewing Queue Statistics
Moving Message Between Queues

QMF Map Message Protocol

QMFv2 Map Message Protocol

Introduction

This document describes the design of a proposed protocol for QMF based on map-messages (offered by the new C++ and Python APIs as
well as the existing JMS API).

If adopted, this new protocol will change the formats of the messages used by QMF components to communicate. It will also change some of
the message exchange patterns. It will significantly impact the console and agent APIs and is intended to operate with applications thatnot
use the current QMF APIs.

Some highlights of the new design:

Current QMF message bodies are in packed binary formats. While quite efficient, this style of formatting makes it difficult to make
changes to the format and content for new features. The proposed format is based on encoded maps (a.k.a. dictionaries,
field-tables) which are very easily extended and require less context to be useful.
QMF currently requires the message broker to participate in the QMF protocol. The proposed protocol removes this requirement and
will run properly on any AMQP message broker.
QMF Agents currently publish periodic updates of their managed content to a globally accessible topic. This has security implications
with regard to access to data. This is also inflexible in that updates to all data are sent at the same intervals. The proposed protocol
removes the global publishing of data and introduces a subscription-query whereby a console may request that an agent publish
certain data at a certain interval to an indicated target. Such requests can be subject to access control and may be focused on only
the data that is needed for a particular application.
The proposed protocol allows for more general use of data. For example:

Free-form data, that has no object-identifier nor schema, can be transferred. This is useful for complex queries (joins,
reports, etc.).
Methods can be invoked against an agent in the absence of a managed object.

QMF Protocol

Use of Message Headers

Standard Message Properties

Message Property Use

correlation-id Used in request/response/indication sets to correlate responses and indications to their request.

reply-to Used in requests to indicate the address for the response.

content-type 'amqp/map' or 'amqp/list'

user-id Supplied in a request if authentication/authorization at the agent is appropriate.

app-id 'qmf2'

Custom Application Headers

Application
Header Key

Use

method 'request', 'response', or 'indication'. This field describes the message's role in a particular message-exchange pattern.

partial Void. If this field is present, it indicates that the message does not contain the complete request or response (i.e. another
message will follow using the same opcode and correlation-id)

qmf.opcode QMF-specific operation code (see list below). The opcode defines what content, if any, is to be found in the message
body.

qmf.content If the opcode is a data indication, this field indicates what kind of data will be found in the message body.

qmf.agent If this message is a data indication sent by an agent, this field contains the agent's name.

QMF OpCodes

http://cwiki.apache.org/confluence/download/attachments/98414/Queue+Stats.png?version=1&modificationDate=1222776221000
http://cwiki.apache.org/confluence/download/attachments/98414/Move+Queues.png?version=1&modificationDate=1222776236000

qmf.opcode field Message Body Data Type Sent
By

Sent
To

Description

_exception QMF_DATA Agent reply-to This general-purpose message can be sent by an
agent in response to any request (query, subscription,
method) if the request could not be completed for any
reason. The QMF_DATA in the message body
contains details of why the failure occurred.

_agent_locate_request QMF_QUERY_PREDICATE Console QMF
Topic

A console may send an agent-locate-request in order
to reach all available agents. The predicate may be
used to limit the set of agents that will respond to the
request.

_agent_locate_response QMF_DATA Agent reply-to This is a response to an agent-locate-request. An
agent will send an agent-locate-response if it received
an agent-locate-request with a predicate that matches
its characteristics.

_agent_heartbeat_indication QMF_DATA Agent Topic Each agent periodically sends a heartbeat message to
a topic to indicate that it is alive and connected. The
content of the heartbeat message is the list of the
agent's characteristics.

_query_request QMF_QUERY Console Agent A console sends a query to an agent to request that
the agent send data to the requester.

_query_response List of <qmf.content> Agent reply-to The response to a query sent by a console.

_subscribe_request QMF_SUBSCRIBE Console Agent A console sends a subscribe-request to an agent to
receive data matched by a query. A subscription differs
from a query request in that it continues to send
updated information to the console when the data
changes.

_subscribe_response QMF_SUBSCRIPTION Agent reply-to When an agent receives a subscribe-request, it sends
a subscribe-response granting (or refusing) the
subscription. Should the subscription succeed, the
response will contain an identifier for the subscription
assigned by the Agent. Thereafter, it will send
data-indication messages on the same correlation-id
with updates when they happen or periodically. The
first data-indication message sent by the agent will
contain all matching data, subsequent data-indications
will contain only those matching data that has changed
since the last update.

_subscribe_cancel_indication QMF_SUBSCRIPTION_ID Console Agent A console can request that a subscription it created be
immediately cancelled. This message must have the
same correlation-id as the original request, and contain
the subscription identifier as assigned by the Agent.

_subscribe_refresh_indication QMF_SUBSCRIPTION_ID Console Agent A console can keep a subscription alive by periodically
refreshing it by sending a subscribe-refresh-indication.
This message must have the same correlation-id as
the original request, and contain the subscription
identifier as assigned by the Agent.

_data_indication List of <qmf.content> Agent reply-to
or topic

A data indication is sent by an Agent when 1)
subscription data has changed and needs to be
published, 2) an event has occurred and event data is
being published, and 3) any other time an agent wants
to send unsolicited data.

_method_request QMF_METHOD_CALL Console Agent A console may invoke a method on an object managed
by an agent. It may also invoke a method directly on
the agent if appropriate. This message contains the
method call including the input arguments.

_method_response QMF_METHOD_RESULT Agent reply-to A method call always results in a single method result.
This message carries either the output arguments from
a successful method call or it holds an exception to
describe a failure.

QMF Content Types

qmf.content field Data Type Description

_schema_package STRING Schema package name

_schema_id SCHEMA_ID Schema class identifier

_schema_class SCHEMA_CLASS Schema class definition

_object_id OBJECT_ID Managed object identifier

_data QMF_DATA Data, managed and/or described or free-form

_event QMF_EVENT Event

_query QMF_QUERY Query

Message Body Map Formats

SCHEMA_ID

SCHEMA_ID := { _package_name: STRING,
 _class_name: STRING,
 _type: '_data' | '_event',
 _hash: UUID
 }

Field Optional Description

_package_name no Package name (namespace) for the described class

_class_name no Name of the described class

_type no Class type: data or event

_hash yes Hash (uuid) to distinguish different versions of a class

SCHEMA_CLASS

SCHEMA_CLASS := { _schema_id: SCHEMA_ID,
 _values: { EACH_ATTR_NAME: SCHEMA_PROPERTY | SCHEMA_METHOD },
 _subtypes: { EACH_ATTR_NAME: qmfProperty | qmfMethod }
 }

Field Optional Description

_schema_id no Identifier for this schema class

_values no Map of schema attribute names and either their property or method descriptions. The subtype defines whether
an attribute is a property or a method.

_subtypes no Map of subtype names ('qmfProperty' or 'qmfMethod') for each attribute

SCHEMA_PROPERTY

SCHEMA_PROPERTY := { _type: QMF_TYPE,
 _access: 'RO' | 'RC' | 'RW',
 _unit: STRING,
 _min: NUMBER,
 _max: NUMBER,
 _maxlen: NUMBER,
 _dir: 'I' | 'O' | 'IO',
 _desc: STRING,
 _references: SCHEMA_ID,
 _subtype: QMF_SUBTYPE
 }

Field Optional Description

_type no The QMF data type of this property

_access yes The remote access rules for this property:
RO => Read Only (default if not specified)
RC => Read Create
RW => Read Write

_unit yes Annotation. Units of measure for numeric values

_min yes Minimum numeric value

_max yes Maximum numeric value

_maxlen yes Maximum length of a variable length value (in octets)

_dir yes Used only for method arguments. Direction of transfer:
I => Input (caller to callee)
O => Output (callee to caller)
IO => Both

_desc yes Annotation. Description of the property

_references yes If the type is a reference to another managed object, this field may be used to specify the required class for that
object

_subtype yes May be used to further specify the meaning of the value of this field. For example, a number may actually be a
timestamp or a duration. A string may be a reference to another object, or a URL.

QMF_TYPE

QMF_TYPE := 'TYPE_VOID' |
 'TYPE_BOOL' |
 'TYPE_INT' |
 'TYPE_FLOAT' |
 'TYPE_STRING' |
 'TYPE_MAP' |
 'TYPE_LIST' |
 'TYPE_UUID'

QMF_SUBTYPE

QMF_SUBTYPE := 'reference' |
 'url' |
 'timestamp' |
 'duration'

SCHEMA_METHOD

SCHEMA_METHOD := { _desc: STRING,
 _arguments: { EACH_ARG_NAME: SCHEMA_PROPERTY }
 }

Field Optional Description

_desc yes Annotation. Description of this method

_arguments no Map of argument names and SCHEMA_PROPERTY data to describe them

QMF_METHOD_CALL

QMF_METHOD_CALL := { _object_id: OBJECT_ID,
 _method_name: STRING,
 _arguments: { EACH_KEY: VALUE },
 _subtypes: { EACH_KEY: STRING }
 }

Field Optional Description

_object_id yes The identity of the managed object receiving the method call. If not supplied, this method applies generally to
the agent.

_method_name no The name of the method

_arguments yes The input arguments, if any

_subtypes yes Subtype information for the input arguments, if any

QMF_METHOD_RESULT

QMF_METHOD_RESULT := { _arguments: { EACH_KEY: VALUE },
 _subtypes: { EACH_KEY: STRING }
 }

Field Optional Description

_arguments yes Output arguments from a successful method call, if any

_subtypes yes Subtype information for the output arguments, if any

QMF_DATA

QMF_DATA := { _schema_id: SCHEMA_ID,
 _object_id: OBJECT_ID,
 _values: { EACH_KEY: VALUE },
 _subtypes: { EACH_KEY: STRING }
 }

Field Optional Description

_schema_id yes If this data is "described", this field references the schema class that describes the data.

_object_id yes If this data is "managed", this field provides the identifier that can be used to address this managed object.

_values no The map of values keyed by their property names

_subtypes yes Per-property subtypes that may be used to provide more information about the meaning of a value than its
QMF_TYPE

OBJECT_ID

OBJECT_ID := { _agent_name: STRING,
 _agent_epoch: NUMBER,
 _object_name: STRING
 }

Field Optional Description

_agent_name yes Name of the agent that is managing the referenced data

_agent_epoch yes Numeric epoch of the agent process. This number is managed by the agent and is incremented each time the
agent process starts. This field is only present for object IDs that must not be the same for a giventransient
object across an agent restart. object IDs must not include this field.Persistent

_object_name no Name of the data that uniquely identifies the data within the context of the agent.

QMF_QUERY

QMF_QUERY := { _what: QMF_QUERY_TARGET,
 _where: QMF_QUERY_PREDICATE,
 _object_id: OBJECT_ID,
 _schema_id: SCHEMA_ID
 }

Field Optional Description

_what no Identifies the kind of data being queried

_where yes Query predicate to limit the number of results of the query

_object_id yes Identifier of a single object being queried

_schema_id yes Identifier of a single schema being queried

QMF_QUERY_TARGET

QMF_QUERY_TARGET := 'SCHEMA_ID' |
 'SCHEMA' |
 'OBJECT_ID' |
 'OBJECT'

QMF_QUERY_PREDICATE

QMF_SUBSCRIBE

QMF_SUBSCRIBE := { _query: QMF_QUERY,
 _duration: NUMBER,
 _interval: NUMBER
 }

Field Optional Description

_query no The query that defines the set of data being subscribed to

_duration yes The requested time (in seconds) after which this subscription will be automatically canceled. If a
 is received by the agent running this query, this time interval will start over.subscribe_refresh_indication

_interval yes The request time (in milliseconds) between periodic updates of data in this subscription. The agent may place a
minimum on this interval.

QMF_SUBSCRIPTION

QMF_SUBSCRIPTION := { _subscription_id: STRING,
 _duration: NUMBER,
 _interval: NUMBER,
 }

Field Optional Description

_subscription_id yes Assigned by the Agent when replying to a successful subscription request. Must be supplied by the Console
when sending a subscription refresh or cancel to the Agent for this subscription.

_duration no The time (in seconds) after which this subscription will be automatically canceled.

_interval no The time (in milliseconds) between periodic updates of data in this subscription.

QMF_SUBSCRIPTION_ID

QMF_SUBSCRIPTION_ID := { _subscription_id: STRING}

Field Optional Description

_subscription_id no Supplied by the Console when sending a subscription refresh or cancel to the Agent for this subscription.

QMF Protocol

Note
This page is being updated with protocol changes introduced in M4 (and are unchanged in release 0.5)

Protocol Header

QMF messages are composed of sequences of binary-encoded data fields, in a manner consistent with the 0-10 version of the AMQP
specification.

All QMF messages begin with a message header:

octet 0 1 2 3 4 5 6 7
 +---------+---------+---------+---------+---------+---------+---------+---------+
 | 'A' | 'M' | '2' | op-code | sequence |
 +---------+---------+---------+---------+---------+---------+---------+---------+

The first three octets contain the protocol "AM2" which is used to identify the type and version of the message.magic number

The field identifies the operation represented by the messageopcode

Mapping QMF Messages to AMQP Messages

QMF messages are carried in the body segments of AMQP messages. An AMQP message body may contain 1 or more QMF messages.
QMF messages do not span AMQP messages, each QMF messages must be entirely contained within a single AMQP message body.

Protocol Exchange Patterns

The following patterns are followed in the design of the protocol:

Request-Response
Query-Indication
Unsolicited Indication

The Request-Response Pattern

In the request-response pattern, a requestor sends a message to one of its peers. The peer then does one of two things: If therequest
request can be successfully processed, a single message is sent back to the requestor. This response contains the requestedresponse
results and serves as the positive acknowledgement that the request was successfully completed.

If the request cannot be successfully completed, the peer sends a message back to the requestor with an error codecommand complete
and error text describing what went wrong.

The sequence number in the or message is the same as the sequence number in the .response command complete request

Requestor Peer
 | |
 | --- Request (seq) --> |
 | |
 | <--- Response (seq) --- |
 | |

Requestor Peer
 | |
 | --- Request (seq) --> |
 | |
 | <-------------------------- Command Complete (seq, error) --- |
 | |

The Query-Indication Pattern

The query-indication pattern is used when there may be zero or more answers to a question. In this case, the requestor sends a query
message to its peer. The peer processes the query, sending as many messages as needed back to the requestor (zero or more).indication
Once the last has been sent, the peer then sends a message with a success code indicating that the queryindication command complete
is complete.

If there is an error in the , the peer may reply with a message containg an error code. In this case, no query command complete indication
messages may be sent.

All and messages shall have the same sequence number that appeared in the message.indication command complete query

Requestor Peer
 | |
 | --- Query (seq) --> |
 | |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | |
 | <------------------------ Command Complete (seq, success) --- |
 | |

Requestor Peer
 | |
 | --- Query (seq) --> |
 | |
 | <-------------------------- Command Complete (seq, error) --- |
 | |

The Unsolicited-Indication Pattern

The unsolicited-indication pattern is used when one peer needs to send unsolicited information to another peer, or to broadcast information to
multiple peers via a topic exchange. In this case, indication messages are sent with the sequence number field set to zero.

Peer Peer
 | |
 | <----------------------------------- Indication (seq = 0) --- |
 | <----------------------------------- Indication (seq = 0) --- |
 | <----------------------------------- Indication (seq = 0) --- |
 | <----------------------------------- Indication (seq = 0) --- |
 | |

Object Identifiers

Manageable objects are tagged with a unique 128-bit object identifier. The object identifier space is owned and managed by the
management broker. Objects managed by a single management broker shall have unique object identifiers. Objects managed by separate
management brokers may have the same object identifier.

If a management console is designed to manage multiple management brokers, it must use the broker identifier as well as the object
identifier to ensure global uniqueness.

first uint64:
 63 60 59 48 47 28 27 0
 +-------+------------------+-----------------------+------------------------------+
 | flags | sequence | broker bank | agent bank |
 +-------+------------------+-----------------------+------------------------------+

second uint64:
 63 0
 +---+
 | object |
 +---+

Field Size (bits) Description

flags 4 Reserved, must be zero

sequence 12 Boot sequence of the agent, or zero for persistent IDs

broker bank 20 Bank number unique to the broker

agent bank 28 Bank number unique to the agent

object 64 Identifier assigned by the agent

For persistent IDs, sequence is zero
For non-persistent IDs, sequence is a number which increments each time the management broker is restarted.

Establishing Communication Between Client and Agent

Communication is established between the management client and management agent using normal AMQP procedures. The client creates a
connection to the broker and then establishes a session with its corresponding channel.

A private (exclusive/auto-delete) queue is then declared and bound to the qpid.management exchange. A binding with key "schema.#" will
subscribe to all schema-related information and a second binding with key "console.#" will subscribe to all management data.

A binding must also be established to the "amq.direct" exchange using the queue's name as the binding key. This will be used as a reply-to
address for requests sent to the broker and to agents.

When a client successfully binds to the qpid.management exchange, the management agent schedules a schema broadcast to be sent to the
exchange. The agent will publish, via the exchange, a description of the schema for all manageable objects in its control.

Client Broker
 | |
 | --- AMQP Connection and Session Setup -------------------------> |
 | |
 | --- Queue.declare (private data queue) ------------------------> |
 | --- Bind queue to exchange 'qpid.management' key 'schema.#' ---> |
 | --- Bind queue to exchange 'qpid.management' key 'console.#' --> |
 | --- Bind queue to exchange 'amq.direct' -----------------------> |
 | |
 | --- Broker Request --> |
 | <--- Broker Response --- |
 | |
 | |
 | |
 | <---------- Management schema via exchange 'qpid.management' --- |
 | |

Broadcast of Configuration and Instrumentation Updates

The management agent will periodically publish updates to the configuration and instrumentation of management objects under its control.
Under normal circumstances, these updates are published only if they have changed since the last time they were published. Configuration
updates are only published if configuration has changed and instrumentation updates are only published if instrumentation has changed. The
exception to this rule is that after a management client binds to the qpid.management exchange, all configuration and instrumentation
records are published as though they had changed whether or not they actually did.

Client Broker
 | |
 | <--- Object properties via 'console.obj.1.<agent-bank>.<package>.<class>' --- | |
 | <--- Object statistics via 'console.obj.1.<agent-bank>.<package>.<class>' --- | |
 | | |
 | | | Publish
 | | | Interval
 | | |
 | | V
 | <--- Object properties via 'console.obj.1.<agent-bank>.<package>.<class>' --- |
 | <--- Object statistics via 'console.obj.1.<agent-bank>.<package>.<class>' --- |
 | |

Invoking a Method on a Managed Object

When the management client wishes to invoke a method on a managed object, it sends a method request message to the qpid.management
exchange. The routing key contains the object class and method name (refer to Routing Key Structure below). The method request must
have a header entry (reply-to) that contains the name of the method-reply queue so that the method response can be properly routed back to
the requestor.

The method request contains a sequence number that is copied to the method reply. This number is opaque to the management agent and
may be used by the management client to correlate the reply to the request. The asynchronous nature of requests and replies allows any
number of methods to be in-flight at a time. Note that there is no guarantee that methods will be replied to in the order in which they were
requested.

Client Broker
 | |
 | --- Method Request (to exchange 'qpid.management') ---------> |
 | |
 | |
 | <--------------- Method Reply (via exchange 'amq.direct') --- |
 | |

Details of QMF Message Types

opcode message handled
by

description

'B' Broker
Request

broker This message contains a broker request, sent from the management console to the broker to initiate a
management session.

'b' Broker
Response

console This message contains a broker response, sent from the broker in response to a broker request
message.

'z' Command
Completion

all This message is sent to indicate the completion of a request.

'Q' Class
Query

broker,
agent

Class query messages are used by a management console to request a list of schema classes that are
known by the management broker.

'q' Class
Indication

console,
broker

Sent by the management broker, a class indication notifies the peer of the existence of a schema class.

'S' Schema
Request

broker,
agent

Schema request messages are used to request the full schema details for a class.

's' Schema
Response

console,
broker

Schema response message contain a full description of the schema for a class.

'h' Heartbeat
Indication

console This message is published once per publish-interval. It can be used by a client to positively determine
which objects did not change during the interval (since updates are not published for objects with no
changes).

'c', 'i', 'g' Content
Indication

console This message contains a content record. Content records contain the values of all properties or
statistics in an object. Such records are broadcast on a periodic interval if 1) a change has been made
in the value of one of the elements, or 2) if a new management client has bound a queue to the
management exchange.

'e' Event
Indication

console This message contains an event indication, sent by an agent to the topic exchange qpid.management.

'G' Get Query agent Sent by a management console, a get query requests that the management broker provide content
indications for all objects that match the query criteria.

'M' Method
Request

agent This message contains a method request.

'm' Method
Response

console This message contains a method result.

'P' Package
Query

broker,
agent

This message contains a schema package query request, requesting that the broker dump the list of
known packages

'p' Package
Indication

console,
broker

This message contains a schema package indication, identifying a package known by the broker

'A' Agent
Attach
Request

broker This message is sent by a remote agent when it wishes to attach to a management broker

'a' Agent
Attach
Response

agent The management broker sends this response if an attaching remote agent is permitted to join

'x' Console
Added
Indication

agent This message is sent to all remote agents by the management broker when a new console binds to the
management exchange

Broker Request Message

When a management console first establishes contact with the broker, it sends a Broker Request message to initiate the exchange.

routing_key: broker
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'B' | 0 |
 +-----+-----+-----+-----+-----------------------+

The Broker Request message has no payload.

Broker Response Message

When the broker receives a Broker Request message, it responds with a Broker Response message. This message contains an identifier

unique to the broker.

routing_key: <reply_to from request>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'b' | 0 |
 +-----+-----+-----+-----+-----------------------+----------------------------+
 | brokerId (uuid) |
 +--+

Command Completion Message

routing_key: <reply_to from request>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'z' | seq |
 +-----+-----+-----+-----+----+------------------+
 | Completion Code (uint32) |
 +----------------------------+------------------------------------+
 | Completion Text (str8) |
 +---+

Class Query

routing_key: broker
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'Q' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | package name (str8) |
 +--+

Class Indication

routing_key: <reply_to from request> (if in reply to a request)
 schema.package (if unsolicited)
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'q' | seq |
 +-----+-----+-----+-----+---------------+-------+
 | class kind (uint8) 1=Object, 2=Event |
 +---------------------------------------+------------------+
 | package name (str8) |
 +--+
 | class name (str8) |
 +--+
 | schema hash (bin128) |
 +--+

Schema Request

routing_key: broker
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'S' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | packageName (str8) |
 +--+
 | className (str8) |
 +--+
 | schema-hash (bin128) |
 +--+

Schema Response

routing_key: <reply_to from request> (if in reply to a request)
 schema.package (if unsolicited)
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 's' | seq |
 +-----+-----+-----+-----+------------+----------+
 | kind (uint8) 1=Object, 2=Event |
 +------------------------------------+---------------------+
 | packageName (str8) |
 +--+
 | className (str8) |
 +--+
 | schema-hash (bin128) |
 +---+----------+
 | propCount (uint16) |
 +---+
 | statCount (uint16) |
 +---+
 | methodCount (uint16) |
 +---+----------------------------+
 | propCount property records |
 +--+
 | statCount statistic records |
 +--+
 | methodCount method records |
 +--+

Each record is an AMQP map with the following fields. Optional fields may optionally be omitted from the map.property

field name optional description

name no Name of the property

type no Type code for the property

refPackage yes Name of referenced package (for objectReference and object types)

refClass yes Name of referenced class (for objectReference and object types)

access no Access code for the property

index no 1 = index element, 0 = not an index element

optional no 1 = optional element (may be not present), 0 = mandatory (always present)

unit yes Units for numeric values (i.e. seconds, bytes, etc.)

min yes Minimum value for numerics

max yes Maximum value for numerics

maxlen yes Maximum length for strings

desc yes Description of the property

Each record is an AMQP map with the following fields:statistic

field name optional description

name no Name of the statistic

type no Type code for the statistic

unit yes Units for numeric values (i.e. seconds, bytes, etc.)

desc yes Description of the statistic

method records contain a main map that describes the method or header followed by zero or more maps describing arguments. The main
map contains the following fields:

field name optional description

name no Name of the method or event

argCount no Number of argument records to follow

desc yes Description of the method or event

Argument maps contain the following fields:

field name optional description

name no Argument name

type no Type code for the argument

refPackage yes Name of referenced package (for objectReference and object types)

refClass yes Name of referenced class (for objectReference and object types)

dir yes Direction code for method arguments

unit yes Units for numeric values (i.e. seconds, bytes, etc.)

min yes Minimum value for numerics

max yes Maximum value for numerics

maxlen yes Maximum length for strings

desc yes Description of the argument

default yes Default value for the argument

type codes are numerics with the following values:

value type Encoding

1 uint8 uint8

2 uint16 uint16

3 uint32 uint32

4 uint64 uint64

6 str8 str8

7 str16 str16

8 absTime uint64

9 deltaTime uint64

10 objectReference bin128

11 boolean boolean

12 float float

13 double double

14 uuid uuid

15 map map

16 int8 int8

17 int16 int16

18 int32 int32

19 int64 int64

20 object package-name(str8) + class-name(str8) + hash(bin128) + object-indication-encoding

21 list list

22 array array

access codes are numerics with the following values:

value access

1 Read-Create access

2 Read-Write access

3 Read-Only access

direction codes are strings with the following values:

value direction

"I" Input (from client to broker)

"O" Output (from broker to client)

"IO" IO (bidirectional)

Heartbeat Indication

routing_key: console.heartbeat.1.<agent_bank>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'h' | 0 |
 +-----+-----+-----+-----+-----------------------+
 | timestamp of current interval (datetime) |
 +---+

Configuration and Instrumentation Content Messages

Content messages are published when changes are made to the values of properties or statistics or when new management clients bind a
queue to the management exchange.

for 'g': routing_key: <reply_to from request>
 for 'c','i': routing_key: console.obj.1.<agent_bank>.<package_name>.<class_name>
 +-----+-----+-----+-------+-----------------------+
 | 'A' | 'M' | '2' |'g/c/i'| seq |
 +-----+-----+-----+-------+-----------------------+--------+
 | packageName (str8) |
 +--+
 | className (str8) |
 +--+
 | class hash (bin128) |
 +-----+-----+-----+-----+-----+-----+-----+-----+----------+
 | timestamp of current sample (datetime) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | time object was created (datetime) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | time object was deleted (datetime) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | objectId (bin128) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | presence bitmasks (0 or more uint8 fields) |
 +-----+-----+-----+-----+-----+-----+-----+-----+------------------------+
 | config/inst values (in schema order) |
 +--+

All timestamps are uint64 values representing nanoseconds since the epoch (January 1, 1970). The objectId is a bin128 value that uniquely
identifies this object instance.

If any of the properties in the object are defined as optional, there will be 1 or more "presence bitmask" octets. There are as many octets as
are needed to provide one bit per optional property. The bits are assigned to the optional properties in schema order (first octet first, lowest
order bit first).

For example: If there are two optional properties in the schema called "option1" and "option2" (defined in that order), there will be one
presence bitmask octet and the bits will be assigned as bit 0 controls option1 and bit 1 controls option2.

If the bit for a particular optional property is set (1), the property will be encoded normally in the "values" portion of the message. If the bit is
clear (0), the property will be omitted from the list of encoded values and will be considered "NULL" or "not present".

The element values are encoded by their type into the message in the order in which they appeared in the schema message.

Event Indication Message

routing_key: console.event.1.<agent_bank>.<package_name>.<event_name>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'e' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | packageName (str8) |
 +--+
 | eventName (str8) |
 +--+
 | class hash (bin128) |
 +---+----------+
 | timestamp of event (datetime) |
 +-----------------------+-----------------------+
 | severity (uint8) |
 +-----------------------+--+
 | event argument values (in schema order) |
 +--+

Get Query Message

A Get Request may be sent by the management console to cause a management agent to immediately send content information for objects
of a class.

routing_key: agent.1.<agent_bank>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'G' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | Get request field table (map) |
 +--+

The content of a get request is a field table that specifies what objects are being requested. Most of the fields are optional and are available
for use in more extensive deployments.

Field Key Type Description

"_class" str8 The name of the class of objects being requested.

"_package" str8 The name of the extension package the class belongs to. If omitted, the package defaults to "qpid" for access to
objects in the connected broker.

_objectid bin128 The object ID of the object being requested

When the management agent receives a get request, it sends content messages describing the requested objects. Once the last content
message is sent, it then sends a Command Completion message with the same sequence number supplied in the request to indicate to the
requestor that there are no more messages coming.

Method Request

Method request messages have the following structure. The sequence number is opaque to the management agent. It is returned unchanged
in the method reply so the calling client can correctly associate the reply to the request. The objectId is the unique ID of the object on which
the method is to be executed.

routing_key: agent.1.<agent_bank>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'M' | seq |
 +-----+-----+-----+-----+-----------------------+
 | objectId (bin128) |
 +---+
 | package name (str8) |
 +---+
 | class name (str8) |
 +---+
 | class hash (bin128) |
 +---+
 | methodName (str8) |
 +---+------------------------+
 | input and bidirectional argument values (in schema order) |
 +--+

Method Response

Method reply messages have the following structure. The sequence number is identical to that supplied in the method request. The status

code (and text) indicate whether or not the method was successful and if not, what the error was. Output and bidirectional arguments are
only included if the status code was 0 (STATUS_OK).

routing_key: <reply_to from request>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'm' | seq |
 +-----+-----+-----+-----+-----------------------+
 | status code (uint32) |
 +-----------------------+----------------------------------+
 | status text (str16) |
 +-----------------------+----------------------------------+-------------+
 | output and bidirectional argument values (in schema order) |
 +--+

status code values are:

value description

0 STATUS_OK - successful completion

1 STATUS_UNKNOWN_OBJECT - objectId not found in the agent

2 STATUS_UNKNOWN_METHOD - method is not known by the object type

3 STATUS_NOT_IMPLEMENTED - method is not currently implemented

4 STATUS_INVALID_PARAMETER - input argument is invalid

5 STATUS_FEATURE_NOT_IMPLEMENTED

6 STATUS_FORBIDDEN - operation is forbidden by Access Control List

7 STATUS_EXCEPTION - exception caught during method execution

8 STATUS_UNKNOWN_PACKAGE - package name not found

9 STATUS_UNKNOWN_CLASS - class name not found in package

Messages for Extended Scenario

Extended Management Protocol

Qpid supports management extensions that allow the management broker to be a central point for the management of multiple external
entities with their own management schemas.

Broker Remote Agent
 | |
 | <--- Attach Request --- |
 | --- Attach Response --> |
 | |
 | <------------------------------------- Package Indication --- |
 | <------------------------------------- Package Indication --- |
 | |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | |
 | --- Schema Request (class key) -----------------------------> |
 | <-- Schema Response --- |
 | |
 | --- Schema Request (class key) -----------------------------> |
 | <-- Schema Response --- |
 | |
 | |

Package Query

routing_key: agent.1.<agent_bank>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'P' | seq |
 +-----+-----+-----+-----+-----------------------+

Package Indication

routing_key: <reply_to from request> (if in reply to a request)
 schema.package (if unsolicited)
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'p' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | package name (str8) |
 +--+

Agent Attach Request

routing_key: broker
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'A' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | label (str8) |
 +--+
 | system-id (uuid) |
 +---------------------------------+------------------------+
 | requested broker bank (uint32) |
 +---------------------------------+
 | requested agent bank (uint32) |
 +---------------------------------+

Agent Attach Response (success)

routing_key: <reply_to from request>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'a' | seq |
 +-----+-----+-----+-----+--------+--------------+
 | assigned broker bank (uint32) |
 +--------------------------------+
 | assigned agent bank (uint32) |
 +--------------------------------+

Console Added Indication

routing_key: agent.1.<agent_bank>
 +-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '2' | 'x' | seq |
 +-----+-----+-----+-----+-----------------------+

QMF Python Console Tutorial

Prerequisite - Install Qpid Messaging
Synchronous Console Operations

Creating a QMF Console Session and Attaching to a Broker
Accessing Managed Objects

Viewing Properties and Statistics of an Object
Invoking Methods on an Object

Asynchronous Console Operations
Creating a Console Class to Receive Asynchronous Data
Receiving Events
Receiving Objects
Asynchronous Method Calls and Method Timeouts

Discovering what Kinds of Objects are Available

Prerequisite - Install Qpid Messaging

QMF uses AMQP Messaging (QPid) as its means of communication. To use QMF, Qpid messaging must be installed somewhere in the

network. Qpid can be downloaded as source from Apache, is packaged with a number of Linux distributions, and can be purchased from
commercial vendors that use Qpid. Please see for information as to where to get Qpid Messaging.Download

Qpid Messaging includes a message broker (qpidd) which typically runs as a daemon on a system. It also includes client bindings in various
programming languages. The Python-language client library includes the QMF console libraries needed for this tutorial.

Please note that Qpid Messaging has two broker implementations. One is implemented in C++ and the other in Java. At press time, QMF is
supported only by the C++ broker.

If the goal is to get the tutorial examples up and running as quickly as possible, all of the Qpid components can be installed on a single
system (even a laptop). For more realistic deployments, the broker can be deployed on a server and the client/QMF libraries installed on
other systems.

Synchronous Console Operations

The Python console API for QMF can be used in a synchronous style, an asynchronous style, or a combination of both. Synchronous
operations are conceptually simple and are well suited for user-interactive tasks. All operations are performed in the context of a Python
function call. If communication over the message bus is required to complete an operation, the function call blocks and waits for the expected
result (or timeout failure) before returning control to the caller.

Creating a QMF Console Session and Attaching to a Broker

For the purposes of this tutorial, code examples will be shown as they are entered in an interactive python session.

$ python
Python 2.5.2 (r252:60911, Sep 30 2008, 15:41:38)
[GCC 4.3.2 20080917 (Red Hat 4.3.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

We will begin by importing the required libraries. If the Python client is properly installed, these libraries will be found normally by the Python
interpreter.

>>> from qmf.console import Session

We must now create a object to manage this QMF console session.Session

>>> sess = Session()

If no arguments are supplied to the creation of , it defaults to synchronous-only operation. It also defaults to user-management ofSession
connections. More on this in a moment.

We will now establish a connection to the messaging broker. If the broker daemon is running on the local host, simply use the following:

>>> broker = sess.addBroker()

If the messaging broker is on a remote host, supply the URL to the broker in the function call. Here's how to connect to a localaddBroker
broker using the URL.

>>> broker = sess.addBroker("amqp://localhost")

The call to is synchronous and will return only after the connection has been successfully established or has failed. If a failureaddBroker
occurs, will raise an exception that can be handled by the console script.addBroker

>>> try:
... broker = sess.addBroker("amqp://localhost:1000")
... except:
... print "Connection Failed"
...
Connection Failed
>>>

This operation fails because there is no Qpid Messaging broker listening on port 1000 (the default port for qpidd is 5672).

If preferred, the QMF session can manage the connection for you. In this case, returns immediately and the session attempts toaddBroker
establish the connection in the background. This will be covered in detail in the section on asynchronous operations.

Accessing Managed Objects

The Python console API provides access to remotely managed objects via a model. The API gives the client an object that serves as aproxy
proxy representing the "real" object being managed on the agent application. Operations performed on the proxy result in the same
operations on the real object.

The following examples assume prior knowledge of the kinds of objects that are actually available to be managed. There is a section later in
this tutorial that describes how to discover what is manageable on the QMF bus.

Proxy objects are obtained by calling the function.Session.getObjects

To illustrate, we'll get a list of objects representing queues in the message broker itself.

>>> queues = sess.getObjects(_class="queue", _package="org.apache.qpid.broker")

queues is an array of proxy objects representing real queues on the message broker. A proxy object can be printed to display a description of
the object.

>>> for q in queues:
... print q
...
org.apache.qpid.broker:queue[0-1537-1-0-58]
0-0-1-0-1152921504606846979:reply-localhost.localdomain.32004
org.apache.qpid.broker:queue[0-1537-1-0-61]
0-0-1-0-1152921504606846979:topic-localhost.localdomain.32004
>>>

Viewing Properties and Statistics of an Object

Let us now focus our attention on one of the queue objects.

>>> queue = queues[0]

The attributes of an object are partitioned into and . Though the distinction is somewhat arbitrary, tend to beproperties statistics properties
fairly static and may also be large and tend to change rapidly and are relatively small (counters, etc.).statistics

There are two ways to view the properties of an object. An array of properties can be obtained using the function:getProperties

>>> props = queue.getProperties()
>>> for prop in props:
... print prop
...
(vhostRef, 0-0-1-0-1152921504606846979)
(name, u'reply-localhost.localdomain.32004')
(durable, False)
(autoDelete, True)
(exclusive, True)
(arguments, {})
>>>

The function returns an array of tuples. Each tuple consists of the property descriptor and the property value.getProperties

A more convenient way to access properties is by using the attribute of the proxy object directly:

>>> queue.autoDelete
True
>>> queue.name
u'reply-localhost.localdomain.32004'
>>>

Statistics are accessed in the same way:

>>> stats = queue.getStatistics()
>>> for stat in stats:
... print stat
...
(msgTotalEnqueues, 53)
(msgTotalDequeues, 53)
(msgTxnEnqueues, 0)
(msgTxnDequeues, 0)
(msgPersistEnqueues, 0)
(msgPersistDequeues, 0)
(msgDepth, 0)
(byteDepth, 0)
(byteTotalEnqueues, 19116)
(byteTotalDequeues, 19116)
(byteTxnEnqueues, 0)
(byteTxnDequeues, 0)
(bytePersistEnqueues, 0)
(bytePersistDequeues, 0)
(consumerCount, 1)
(consumerCountHigh, 1)
(consumerCountLow, 1)
(bindingCount, 2)
(bindingCountHigh, 2)
(bindingCountLow, 2)
(unackedMessages, 0)
(unackedMessagesHigh, 0)
(unackedMessagesLow, 0)
(messageLatencySamples, 0)
(messageLatencyMin, 0)
(messageLatencyMax, 0)
(messageLatencyAverage, 0)
>>>

or alternatively:

>>> queue.byteTotalEnqueues
19116
>>>

The proxy objects do not automatically track changes that occur on the real objects. For example, if the real queue enqueues more bytes,
viewing the statistic will show the same number as it did the first time. To get updated data on a proxy object, use the byteTotalEnqueues

 function call:update

>>> queue.update()
>>> queue.byteTotalEnqueues
19783
>>>

Be Advised
The method was added after the M4 release of Qpid/Qmf. It may not be available in your distribution.update

Invoking Methods on an Object

Up to this point, we have used the QMF Console API to find managed objects and view their attributes, a read-only activity. The next topic to
illustrate is how to invoke a method on a managed object. Methods allow consoles to control the managed agents by either triggering a
one-time action or by changing the values of attributes in an object.

First, we'll cover some background information about methods. A (of which a is an instance), may have zero orQMF object class QMF object
more methods. To obtain a list of methods available for an object, use the function.getMethods

>>> methodList = queue.getMethods()

getMethods returns an array of method descriptors (of type qmf.console.SchemaMethod). To get a summary of a method, you can simply
print it. The _ _ function returns a string that looks like a function prototype.repr

>>> print methodList
[purge(request)]
>>>

For the purposes of illustration, we'll use a more interesting method available on the object which represents the connected Qpidbroker
message broker.

>>> br = sess.getObjects(_class="broker", _package="org.apache.qpid.broker")[0]
>>> mlist = br.getMethods()
>>> for m in mlist:
... print m
...
echo(sequence, body)
connect(host, port, durable, authMechanism, username, password, transport)
queueMoveMessages(srcQueue, destQueue, qty)
>>>

We have just learned that the object has three methods: , , and . We'll use the method tobroker echo connect queueMoveMessages echo
"ping" the broker.

>>> result = br.echo(1, "Message Body")
>>> print result
OK (0) - {'body': u'Message Body', 'sequence': 1}
>>> print result.status
0
>>> print result.text
OK
>>> print result.outArgs
{'body': u'Message Body', 'sequence': 1}
>>>

In the above example, we have invoked the method on the instance of the broker designated by the proxy "br" with a sequenceecho
argument of 1 and a body argument of "Message Body". The result indicates success and contains the output arguments (in this case copies
of the input arguments).

To be more precise... Calling on the proxy causes the input arguments to be marshalled and sent to the remote agent where theecho
method is executed. Once the method execution completes, the output arguments are marshalled and sent back to the console to be stored
in the method result.

You are probably wondering how you are supposed to know what types the arguments are and which arguments are input, which are output,
or which are both. This will be addressed later in the "Discovering what Kinds of Objects are Available" section.

Asynchronous Console Operations

QMF is built on top of a middleware messaging layer (Qpid Messaging). Because of this, QMF can use some communication patterns that
are difficult to implement using network transports like UDP, TCP, or SSL. One of these patterns is called the Publication and Subscription
pattern (pub-sub for short). In the pub-sub pattern, data sources information without a particular destination in mind. Data sinkspublish
(destinations) using a set of criteria that describes what kind of data they are interested in receiving. Data published by a sourcesubscribe
may be received by zero, one, or many subscribers.

QMF uses the pub-sub pattern to distribute events, object creation and deletion, and changes to properties and statistics. A console
application using the QMF Console API can receive these asynchronous and unsolicited events and updates. This is useful for applications
that store and analyze events and/or statistics. It is also useful for applications that react to certain events or conditions.

Note that console applications may always use the synchronous mechanisms.

Creating a Console Class to Receive Asynchronous Data

Asynchronous API operation occurs when the console application supplies a object to the session manager. The objectConsole Console
(which overrides the class) handles all asynchronously arriving data. The class has the following methods. Anyqmf.console.Console Console
number of these methods may be overridden by the console application. Any method that is not overridden defaults to a null handler which
takes no action when invoked.

Method Arguments Invoked when...

brokerConnected broker a connection to a broker is established

brokerDisconnected broker a connection to a broker is lost

newPackage name a new package is seen on the QMF bus

newClass kind, classKey a new class (event or object) is seen on the QMF bus

newAgent agent a new agent appears on the QMF bus

delAgent agent an agent disconnects from the QMF bus

objectProps broker, object the properties of an object are published

objectStats broker, object the statistics of an object are published

event broker, event an event is published

heartbeat agent, timestamp a heartbeat is published by an agent

brokerInfo broker information about a connected broker is available to be queried

methodResponse broker, seq, response the result of an asynchronous method call is received

Supplied with the API is a class called . This is a test instance that overrides all of the methods such that arrivingDebugConsole Console
asynchronous data is printed to the screen. This can be used to see all of the arriving asynchronous data.

Receiving Events

We'll start the example from the beginning to illustrate the reception and handling of events. In this example, we will create a classConsole
that handles broker-connect, broker-disconnect, and event messages. We will also allow the session manager to manage the broker
connection for us.

Begin by importing the necessary classes:

>>> from qmf.console import Session, Console

Now, create a subclass of that handles the three message types:Console

>>> class EventConsole(Console):
... def brokerConnected(self, broker):
... print "brokerConnected:", broker
... def brokerDisconnected(self, broker):
... print "brokerDisconnected:", broker
... def event(self, broker, event):
... print "event:", event
...
>>>

Make an instance of the new class:

>>> myConsole = EventConsole()

Create a class using the console instance. In addition, we shall request that the session manager do the connection managementSession
for us. Notice also that we are requesting that the session manager not receive objects or heartbeats. Since this example is concerned only
with events, we can optimize the use of the messaging bus by telling the session manager not to subscribe for object updates or heartbeats.

>>> sess = Session(myConsole, manageConnections=True, rcvObjects=False, rcvHeartbeats=False)
>>> broker = sess.addBroker()
>>>

Once the broker is added, we will begin to receive asynchronous events (assuming there is a functioning broker available to connect to).

brokerConnected: Broker connected at: localhost:5672
event: Thu Jan 29 19:53:19 2009 INFO org.apache.qpid.broker:bind broker=localhost:5672 ...

Receiving Objects

To illustrate asynchronous handling of objects, a small console program is supplied. The entire program is shown below for convenience. We
will then go through it part-by-part to explain its design.

This console program receives object updates and displays a set of statistics as they change. It focuses on broker queue objects.

Import needed classes
from qmf.console import Session, Console
from time import sleep

Declare a dictionary to map object-ids to queue names
queueMap = {}

Customize the Console class to receive object updates.
class MyConsole(Console):

 # Handle property updates
 def objectProps(self, broker, record):

 # Verify that we have received a queue object. Exit otherwise.
 classKey = record.getClassKey()
 if classKey.getClassName() != "queue":
 return

 # If this object has not been seen before, create a new mapping from objectID to name
 oid = record.getObjectId()
 if oid not in queueMap:
 queueMap[oid] = record.name

 # Handle statistic updates
 def objectStats(self, broker, record):

 # Ignore updates for objects that are not in the map
 oid = record.getObjectId()
 if oid not in queueMap:
 return

 # Print the queue name and some statistics
 print "%s: enqueues=%d dequeues=%d" % (queueMap[oid], record.msgTotalEnqueues,
record.msgTotalDequeues)

 # if the delete-time is non-zero, this object has been deleted. Remove it from the map.
 if record.getTimestamps()[2] > 0:
 queueMap.pop(oid)

Create an instance of the QMF session manager. Set userBindings to True to allow
this program to choose which objects classes it is interested in.
sess = Session(MyConsole(), manageConnections=True, rcvEvents=False, userBindings=True)

Register to receive updates for broker:queue objects.
sess.bindClass("org.apache.qpid.broker", "queue")
broker = sess.addBroker()

Suspend processing while the asynchronous operations proceed.
try:
 while True:
 sleep(1)
except:
 pass

Disconnect the broker before exiting.
sess.delBroker(broker)

Before going through the code in detail, it is important to understand the differences between synchronous object access and asynchronous
object access. When objects are obtained synchronously (using the function), the resulting proxy contains all of the object'sgetObjects
attributes, both properties and statistics. When object data is published asynchronously, the properties and statistics are sent separately and
only when the session first connects or when the content changes.

The script wishes to print the queue name with the updated statistics, but the queue name is only present with the properties. For this reason,
the program needs to keep some state to correlate property updates with their corresponding statistic updates. This can be done using the

 that uniquely identifies the object.ObjectId

If this object has not been seen before, create a new mapping from objectID to name
 oid = record.getObjectId()
 if oid not in queueMap:
 queueMap[oid] = record.name

The above code fragment gets the object ID from the proxy and checks to see if it is in the map (i.e. has been seen before). If it is not in the

map, a new map entry is inserted mapping the object ID to the queue's name.

if the delete-time is non-zero, this object has been deleted. Remove it from the map.
 if record.getTimestamps()[2] > 0:
 queueMap.pop(oid)

This code fragment detects the deletion of a managed object. After reporting the statistics, it checks the timestamps of the proxy.
 returns a list of timestamps in the order:getTimestamps

Current - The timestamp of the sending of this update.
Create - The time of the object's creation
Delete - The time of the object's deletion (or zero if not deleted)

This code structure is useful for getting information about very-short-lived objects. It is possible that an object will be created, used, and
deleted within an update interval. In this case, the property update will arrive first, followed by the statistic update. Both will indicate that the
object has been deleted but a full accounting of the object's existence and final state is reported.

Create an instance of the QMF session manager. Set userBindings to True to allow
this program to choose which objects classes it is interested in.
sess = Session(MyConsole(), manageConnections=True, rcvEvents=False, userBindings=True)

Register to receive updates for broker:queue objects.
sess.bindClass("org.apache.qpid.broker", "queue")

The above code is illustrative of the way a console application can tune its use of the QMF bus. Note that is set to False. ThisrcvEvents
prevents the reception of events. Note also the use of and the call to . If is set to False (itsuserBindings=True sess.bindClass userBindings
default), the session will receive object updates for all classes of object. In the case above, the application is only interested in broker:queue
objects and reduces its bus bandwidth usage by requesting updates to only that class. may be called as many times as desired tobindClass
add classes to the list of subscribed classes.

Asynchronous Method Calls and Method Timeouts

Method calls can also be invoked asynchronously. This is useful if a large number of calls needs to be made in a short time because the
console application will not need to wait for the complete round-trip delay for each call.

Method calls are synchronous by default. They can be made asynchronous by adding the keyword-argument _ to the methodasync=True
call.

In a synchronous method call, the return value is the method result. When a method is called asynchronously, the return value is a sequence
number that can be used to correlate the eventual result to the request. This sequence number is passed as an argument to the

 function in the interface.methodResponse Console

It is important to realize that the function may be invoked before the asynchronous call returns. Make sure your code ismethodResponse
written to handle this possibility.

Discovering what Kinds of Objects are Available

QMFv2 Project Page

QMFv2 Project Page

Introduction

This developer page shall be used to collect architecture, design, and project information for the development of the Qpid Management
Framework. It will become the basis for a distilled, user-oriented set of documentation.

Architecture
Protocol
[Design]
APIs

Changes from Version 1

Broker participation in QMF is no longer mandatory. In QMFv1, the broker provides two essential services for QMF: Agent
registration and Schema caching. In QMFv2, the need for agent registration has been removed. Schema caching remains a valuable
optimization but is not required in QMFv2.

Message body formats are based on AMQP maps. In QMFv1, message bodies were formatted as packed binary data (using the
AMQP type encodings). In QMFv2, message bodies are AMQP maps and are therefore easily extended without causing backward
compatibility problems. Another benefit of the map-message format is that all messages can be fully parsed when received without
the need for external schema data. In QMFv1, messages cannot be decoded unless the schema for the data is already known.

Federation is supported. In QMFv1, messages cannot be transferred over federation links between brokers. Each broker

represents its own isolated QMF domain. In QMFv2, agents and consoles can connect to any broker in a federated network and
interact with other agents and consoles anywhere in the network.

Agent and Object identification is more flexible. Agent and object identification in QMFv1 uses fixed-length binary data fields. In
QMFv2, variable-length strings are used. QMFv2 agents choose their own globally unique identifiers (either through configuration or
by embedding a UUID into the ID). Managed objects are identified by the ID of the owning agent plus a unique (to the agent) string
identifying the object.

Agents no longer publish data globally. Global publishing of data by agents causes security and scaling issues. In QMFv2, the
global publish is replaced by subscription queries where a console establishes a subscription and receives periodic updates about
changes to data in its field of interest. The benefits are that the query can be authorized based on an authenticated user-id and that
data is not generated if there are not consoles interested in receiving that data.

QMF uses native AMQP Types The base types in QMFv2 are the same as those supported by AMQP. There is no additional
type-id space as there is in QMFv1.

Backward/Forward Compatibility with QMFv1

The following compatibility matrix shows all combinations of V1 and V2 components (console, agent, and broker). Those intersections
marked "OK" are supported without the need for compatibility-oriented development.

V1 Console V2 Console
 +--------------------+--------------------+
 | | |
 | OK | note 3 | V1 Broker
 | | |
 V1 Agent | -----------------+ -----------------+
 | | |
 | note 1 | note 2 | V2 Broker
 | | |
 +--------------------+--------------------+
 | | |
 | note 3 | OK | V1 Broker
 | | |
 V2 Agent | -----------------+ -----------------+
 | | |
 | note 4 | OK | V2 Broker
 | | |
 +--------------------+--------------------+

The following notes address how intersections in the matrix might be supported.

Note 1: V2 broker retains V1 capability
Note 2: V2 broker proxies V1 agents (including the embedded one) to V2 protocol
Note 3: V2 clients speak both protocols, choosing which to use by the version of the connected broker
Note 4: V2 broker proxies V2 agents to V1 protocol

Planning:

The features in notes 1 and 2 be implemented. It is important that users not be required to upgrade all components of theirmust
deployments at the same time.
The feature in note 3 be implemented. This is considered lower priority.may
The feature in note 4 be implemented. Because QMF V2 is intended to scale to larger networks than are currently possibleshall not
with V1, and this feature would limit the scalability of QMF V2, this is considered non-desirable.

Development Roadmap

QMFv2 APIs

QMFv2 APIs

QMFv2 API Proposal - A working draft of the general API layout

Language Bindings

Python

Ruby

C++

Java

1.
2.

1.
2.

POJO

JMX

Windows

QMFv2 API Proposal

Proposal for "Next Generation" QMF API

Goals

Simplify QMF API

Use new QPID Messaging API

Implement QMF protocol via QPID Map messages

Improve thread safety by minimizing the callback notification mechanism.

Move to a work-queue based event model.

Component Addressing

QMF uses AMQP messaging as the means for communications between Console and Agent components. Thus instances of Agents and
Consoles must have addresses which uniquely identify them within the AMQP messaging domain.

QMF uses AMQP string types to represent Agent and Console addresses. These strings are assigned by the application, and their contents
are opaque to the QMF implementation.

A QMF address is composed of two parts - an optional string, and a mandatory string. The domain string is used to constructdomain name
the name of the AMQP exchange to which the component's name string will be bound. If not supplied, the value of the domain defaults to
"default". Both Agents and Components must belong to the same domain in order to communicate.

When a Console or Agent is instantiated, it will create a receiving endpoint (source) on the AMQP message domain. The endpoint's address
will be sent as the field for all messages originating from that Console or Agent. The address of the endpoint is created from thereply_to
value of the domain and name strings, using the following format:

"qmf.<domain-string>.direct/<name-string>"

Data Model

Representation of Managment Data

The QMF data model supports two methods for representing management data:

arbitrarily structured data
data with a formally defined structure

Arbitrarily structured data is the simpliest method for representing data under QMF. It consists of a set of named data values. Each data
value is represented by a primitive AMQP data type. The data is accessed using the data's name as a key. QMF represents arbitrarily
structured data as a map of AMQP data types indexed by a name string.

Data that has a formally defined structure extends the data representation by associating the data with a Schema. The Schema describes the
structure of all instances of data that are based on that Schema. This is akin to a record type in database design.

Both types of data representations can be managed by an agent. Managed data includes:

an object identifier
object lifecycle state

An object identifier uniquely addresses a data object within the domain of its managing agent. QMF represents the object identifier as an
opaque string. An object identifier can be assigned to the object by the agent when the object is instantiated. Alternatively, a schema can
define an object identifier by defining an ordered list of names of data items. In this case, the object identifier string is built by concatenating
the string representations of the value of each named data item. This approach is similar to defining index fields within a database record.

For example, assume a managed object with the following map of data item values:

{"field1" : "foo",
 "field2" : "bar",
 "field3" : 42,
 "field4" : "baz"}

and assume the data item list defined by the managed object's schema is:

["field1", "field3"]

The identifier for this data object would be:

"foo42"

QmfData Class

QMF defines the QmfData class to represent an atomic unit of managment data. The QmfData class defines a collection of named data
values. Optionally, a string tag, or "sub-type" may be associated with each data item. This tag may be used by an application to annotate the
data item.

When representing formally defined data, a QmfData instance is assigned a Schema.

When representing managed data, a QmfData instance is assigned an object identifier (either explicitly, or via the Schema).

class QmfData:
 <constructor>(_values=map of "name"=<AMQP Type> pairs,
 _subtypes=optional map of "name"=<AMQP String> pairs for subtype information,
 _tag=optional, application-specific tag applied to this QmfData instance
 _object_id=optional AMQP string that uniquely identifies this QmfData
instance.
 _schema=optional <class SchemaClass> reference
 _const=False)
 <constructor>(_map=map representation of QmfData, as generated by mapEncode() method,
 _schema=optional <class SchemaClass> reference
 _const=False)
 .is_managed(): returns True if object identifier string assigned, else False.
 .is_described(): returns True if schema is associated with this instance
 .get_tag(): return this object's tag if present, else None
 .get_value(name): return the value of the named data item, returns None if named property is
not present.
 .has_value(name): returns True if the named data item is present in the map, else False.
 .set_value(name, value, subType=None): set the value of the named data item. Creates a new
item if the named data does not exist. Raises an exception if _const is True.
 .get_subtype(name): returns the sub type description string, else None if not present.
 .set_subtype(name, subType): set or modify the subtype associated with name.
 .get_object_id(): returns the object id string associated with the object instance, or None
if no id assigned.
 .get_schema_class_id: returns the identifier of the Schema that describes the structure of
the data, or None if no schema.
 .map_encode(): returns a map representation of the QmfData instance, suitable for use by the
constructor.

QMF uses a map encoding to represent a QmfData class in an AMQP message. The map encoding of an instance of the QmfData Class is
made up of the following elements:

Index Optional Type Description

"_values" N map Map containing all the "name"=<AMQP Type> pairs for this object.

"_subtype" Y map Map containing all "name"=<AMQP String> subtype entries for this object.

"_tag" Y Any AMQP-supported type Application-specific tag for this object.

"_object_id" Y string Unique identifier for this data object.

"_schema_id" Y map Map containing the SchemaClassId for this object.

QmfEvent Class

QMF supports event management functionality. An event is a notification that is sent by an Agent to alert Console(s) of a change in some
aspect of the system under management. Like QMF Data, Events may be formally defined by a Schema or not. Unlike QMF Data, Events are
not manageable entities - they have no lifecycle. Events simply indicate a point in time where some interesting action occurred.

An instance of an event is represented by the QmfEvent class.

An AMQP timestamp value is associated with each QmfEvent instance. It indicates the moment in time the event occurred. This timestamp is
mandatory.

A may be associated with each QmfEvent instance. The following severity levels are supported:severity level

"emerg" - system is unusable
"alert" - action must be taken immediately

"crit" - the system is in a critical condition
"err" - there is an error condition
"warning" - there is a warning condition
"notice" - a normal but significant condition
"info" - a purely informational message
"debug" - messages generated to debug the application

The default severity is "notice".

class QmfEvent(QmfData):
 <constructor>(timestamp,
 _severity=<string>,
 _values=map of "name"=<AMQP Type> pairs,
 _subtypes=optional map of "name"=<AMQP String> pairs for subtype information,
 _tag=optional, application-specific tag applied to this QmfEvent instance
 _schema=optional <class SchemaEventClass>)
 <constructor>(_map= map encoding of a QmfEvent instance,
 _schema=optional <class SchemaEventClass>)
 .get_timestamp(): return a timestamp indicating when the Event occurred.
 .get_severity(): return the severity associated with the Event.
 .map_encode(): return a map encoding of the Event.

The map encoding of an instance of the QmfEvent class extends the map of the parent class with the following class properites:

Index Optional Type Description

"_timestamp" N AMQP Timestamp Time the event occurred.

"_severity" Y string Event severity

Schema

Schemas are used by QMF to describe the structure of management data and events. The use of Schemas is optional.

Schema Types

There are two classes (or types) of Schema - those that describe data objects, and those that describe event objects.

SchemaTypeData:
SchemaTypeEvent:

These types may be represented by the strings "_data" and "_event",
respectively.

Schema Identifier

Schema are identified by a combination of their package name and class
name. A hash value over the body of the schema provides a revision
identifier. The class SchemaClassId represents this Schema
identifier.

class SchemaClassId:
 <constructor>(package=<package-name-str>,
 class=<class-name-str>,
 type=<SchemaTypeData|SchemaTypeEvent>)
 hash=<hash-str, format="%08x-%08x-%08x-%08x">,
 .get_package_name(): returns <package-name-str>
 .get_class_name(): returns <class-name-str>
 .get_hash_string(): returns <hash-str, "%08x-%08x-%08x-%08x">
 .get_type(): returns SchemaTypeObject or SchemaTypeEvent
 .map_encode(): returns a map encoding of the instance.

If the hash value is not supplied, then the value of the hash string will be set to None. This will be the case when a SchemaClass is being
dynamically constructed, and a proper hash is not yet available.

The map encoding of a SchemaClassId:

Index Optional Type Description

"_package_name" N string The name of the associated package.

"_class_name" N string The name of the class within the package.

"_type" N string The type of schema, either "data" or "event".

"_hash_str" Y string The MD5 hash of the schema, in the format "%08x-%08x-%08x-%08x"

Schema For Describing The Properties of a Data Item

The SchemaProperty class describes a single data item in a QmfData object. A SchemaProperty is a list of named attributes and their
values. QMF defines a set of primitive attributes. An application can extend this set of attributes with application-specific attributes.

QMF reserved attribute names all start with the underscore character ("_"). Do not create an application-specific attribute with a name
starting with an underscore.

Once instantiated, the SchemaProperty is immutable.

class SchemaProperty:
 <constructor>(name=<name-value>,
 type=<type-value>,
 ...)
 .get_type(): AMQP typecode for encoding/decoding the property data
 .get_access(): "RC"=read/create, "RW"=read/write, "RO"=read only (default)
 .is_optional(): True if this property is optional
 .get_unit(): string describing units (optional)
 .get_min(): minimum value (optional)
 .get_max(): maximum value (optional)
 .get_max_len(): maximum length for string values (optional)
 .get_desc(): optional string description of this Property
 .get_direction(): "I"=input, "O"=output, or "IO"=input/output (required for method
arguments, otherwise optional)
 .get_subtype(): string indicating the formal application type for the data, example: "URL",
"Telephone number", etc.
 .is_polled(): True if changes to the data cannot be practically monitored by an Agent. Such
a data item can only
 be queried or polled - not published on change.
 .get_reference(): if type==objId, name (str) of referenced class (optional)
 .is_parent_ref(): True if this property references an object in which this object is in a
child-parent relationship.
 .get_attribute("name"): get the value of the attribute named "name". This method can be used
to retrieve
 application-specific attributes. "name" should start with the prefix "x-"
 .map_encode(): returns a map encoding of the instance.

The map encoding of a SchemaProperty's body:

Index Optional Type Description

"_qmf_type" N integer The QMF type code indicating the value's data type.

"_access" N string The access allowed to this property, default "RO"

"_optional" N boolean True if this property is optional, default False

"_unit" Y string Description of the units used to express this property.

"_min" Y integer The minimum allowed value for this property

"_max" Y integer The maximun allowed value for this property

"_maxlen" Y integer For string types, this is the maximum length in bytes required to represent the longest
permittable instance of this string.

"_desc" Y string Human-readable description of this property.

"_dir" Y string Direction for an argument when passed to a Method call: "I", "O", "IO", default value: "I"

"_subtype" Y string Type information for use by the application.

"_polled" Y boolean True if this property can only be queried/polled. Default False.

"_reference" Y string unknown?

"_parent_ref" Y boolean True if this property references an object in which this object is in a child-parent relationship.
Default False

"x-"<varies> Y Any AMQP
type

An application-defined attribute.

Schema For Describing Method Calls

The SchemaMethod class describes a method call's parameter list. The parameter list is represented by an unordered map of
SchemaProperty entries indexed by parameter name.

class SchemaMethod:
 <constructor>([args=<map of "name":<SchemaProperty> entries>],
 desc="description of the method")
 .get_desc(): return human-readable description of the method.
 .get_argument_count(): return the number of arguments
 .get_arguments(): returns a copy of the map of "name":<SchemaProperty>
 .get_argument("name"): return the SchemaProperty for the parameter "name"

 .add_argument("name", SchemaProperty): adds an additional argument to the parameter list.
 .map_encode(): returns a map encoding of the SchemaMethod instance

The map encoding of a SchemaMethod:

Index Optional Type Description

"_desc" Y string Description of the method.

"_arguments" Y map Map of "name":<SchemaProperty> values, one for each argument to the method.

Note that the "dir" SchemaProperty attribute applies to each
argument. If "dir" is not specified, it is assumed to be "I".

Schema for Data Objects and Events

The structure of QmfData objects is formally defined by the class SchemaObjectClass.

The structure of QmfEvent objects is formally defined by the class SchemaEventClass.

Both of these classes derive from the virtual base SchemaClass.

Agent applications may dynamically construct instances of these objects by adding properties and methods at run time. However, once the
Schema is made public, it must be considered immutable, as the hash value must be constant once the Schema is in use.

QMF defines the following classes to represent data and event schema:

class SchemaClass(QmfData):
 <constructor>(classId=<class SchemaClassId>,
 _desc=optional AMQP string containing a human-readable description for this
schema)
 .get_class_id(): return the SchemaClassId that identifies this Schema instance.
 .generate_hash(): generate a hash over the body of the schema, and return a string
representation of the hash in format "%08x-%08x-%08x-%08x"

The map encoding of an instance of the SchemaClass class extends the map of its parent class with elements for the following class
properties.

Index Optional Type Description

"_schema_id" N map Map containing the SchemaClassId for this object.

class SchemaObjectClass(SchemaClass):
 <constructor>(classId=<class SchemaClassId>,
 _desc=optional AMQP string containing a human-readable description for this
schema,
 _props=map of "name"=<SchemaProperty> instances,
 _meths=map of "name"=<SchemaMethod> instances,
 _id_names=(optional) ordered list of "name"s used to identify the properties
whose values are used to construct the object identifier)

 .get_id_names(): return an ordered list of names of the values that are used to construct
the key for identifying
 unique instances of this class. Returns None if no list defined.
 .get_property_count(): return the count of SchemaProperty's in this instance.
 .get_properties(): return a map of "name":<SchemaProperty> entries for each value in the
object.
 .get_property("name"): return the SchemaProperty associated with "name", else None if "name"
value does not exist.

 .get_method_count(): return the count SchemaMethod's in this instance.
 .get_methods(): return a map of "name":<SchemaMethod> entries for each method associated
with the object.
 .get_method("name"): return the SchemaMethod associated with the "name", else None if "name"
does not exist or is not a method.

 .add_property("name", SchemaProperty): add a new property.
 .add_method("name", SchemaMethod): add a new method.
 .set_id_names([name-list]): set the value of the order list of names to use when
constructing the object identifier.

The map encoding of an instance of the SchemaObjectClass class extends the map of its parent class with elements for the following class
properties.

Index Optional Type Description

"_primary_key" Y list Order list of property names used to construct the primary key for objects defined by this schema

class SchemaEventClass(SchemaClass):
 <constructor>(classId=<class SchemaClassId>,
 _desc=optional AMQP string containing a human-readable description for this
event,
 _props=map of "name":SchemaProperty instances)
 .get_property_count(): return the number of properties.
 .get_properties(): return a map of "name":<SchemaProperty> entries for each property in the
event.
 .get_property("name"): return the SchemaProperty associated with "name".

 .add_property("name", SchemaProperty): add a new property.

The map encoding of a SchemaEventClass instance uses the same format as the map for the SchemaClass.

Data Management

QMF allows data managment via the Query, Subscription, and Method Call actions.

Queries

A Query is a mechanism for interrogating the management database. A Query represents a selector which is sent to an Agent. The Agent
applies the Query against its management database, and returns those objects which meet the constraints described in the query.

A Query must specify the class of information it is selecting. This class of information is considered the of the query. Any data objectstarget
selected by the query will be of the type indicated by the .target

A Query may also specify a which is used as a filter against the set of all instances. Only those instances accepted by the filterselector target
will be returned in response to the query.

Queries are expressed using the following map syntax:

{"query": {"what":<target>,
 <selector_type>:<selector_params>}
}

Where:

The value of the "what" key is a map that specifies the for the Query. The Agent will return a list of instances of types that matchtarget target
the query.

<target> is implemented as a map with a single element in the format:

{"<target name string>": <optional map of target qualifiers>}

QMF defines the following values for :<target name string>

Target Description

"schema_package" Query against the set of known packages. Returns a list of package name strings.

"schema_id" Query against the set of SchemaClass objects, return a list of SchemaClassId instances for the objects that match.

"schema" Query against the set of SchemaClass objects, and return a list of matched SchemaClass instances.

"object_id" Query against the set of managed QmfData objects, return a list of name strings for all matching instances.

"object" Query against the set of managed objects, return a list of matching QmfData instances.

"agent" Query against all agents within the current QMF domain, return a list of name strings for each matching agent. Used
only by the "agent-locate" message.

more tbd

The value of the map entry is ignored for now, its use is TBD.<target name string>

The is optional. If it is not present, then the Query has no filter. The Agent will return every instance of type it has. If selector_type target
 is present, it may be one of the following supported values:selector_type

"id" - an exact match against the unique identifier.target's
"where" - a logical expression to apply to the .target
...more tbd...

Only one is allowed in the Query at a time.selector_type

"id" Selector

A Query with an selector is used to find one particular instance of a given type. The value of the "id" keyword is a type that suitablyid target
represents an exact identifier for the type. The Agent will return the first instance that matches the identifier.target

id selectors are only valid for the following subset of :targets

Target Selector Description

"schema" A SchemaClassId

"object" String containing the object identifier

"agent" String containing the name of the agent

The Agent will return no matches should a Query using an selector specify a target name not in the above subset.id

"Where" Selector

A Query with a selector describes a logical expression that is used to filter the target set. This logical expression is built from a set ofwhere
boolean operations that are applied against the target's data. These boolean operations may be combined using logical operations.

The Agent will apply the logical expression against every instance of the target type, and return the set of instances for which the expression
evaluates as True.

The value of the "where" keyword is a list representation of a predicate expression. QMF will support the following syntax for predicate
expressions:

PREDICATE-EXP: [LOGIC-OP LOGIC-ARG]
LOGIC-ARG: PREDICATE-EXP
LOGIC-ARG: BOOL-EXP LOGIC-ARG
LOGIC-ARG: BOOL-EXP

BOOL-EXP: [BOOL-OP BOOL-ARG]
BOOL-ARG: VARIABLE BOOL-ARG
BOOL-ARG: CONST BOOL-ARG
BOOL-ARG:

CONST: [QUOTE NAME]
CONST: [QUOTE ATOMIC]
CONST: ATOMIC

VARIABLE: [UNQUOTE NAME]
VARIABLE: NAME

ATOMIC: any non-string type
NAME: string

QUOTE: "quote"
UNQUOTE: "unquote"

LOGIC-OP: string
BOOL-OP: string

In the above expressions, the left and right braces indicate lists. For example, BOOL-EXP is a list containing a BOOL-OP followed by
BOOL-ARG.

A BOOL-EXP is a boolean test that is applied against the target. BOOL-OP defines the boolean operation that is performed on the
arguments. QMF will define a set of string literals representing the supported boolean operations. At minimum, the following boolean
operators are defined:

"eq" - equality
"ne" - inequality
"lt" - arithmetical/lexical less-than
"le" - arithmetical/lexical less-than-or-equal
"gt" - arithmetical/lexical greater-than
"ge" - arithmetical/lexical greater-than-or-equal
"re_match" - string regular expression match (one argument)
"exists" - True if named value is present in target, else False (one argument)
"true" - always true (no arguments)
"false" - always false (no arguments)
<more tbd>

All operators are binary unless otherwise noted.

LOGIC-OP defines the logical operation that is applied to its arguments. QMF will define a set of string literals representing supported logical
operations. At minimum, the following logical operators will be defined:

"and" - logical AND, all arguments must evaluate to True.
"or" - logical OR, at least one argument must evaluate to True
"not" - logical NOT, all arguments must evaluate to False
<more tbd>

Logic operations are "short-circuiting". That is, evaluation ceases as soon as the truth value of the expression is determined. For example,
the evaluation of an "and" expression stops when the first argument that evaluates as False is found.

QMF considers string arguments in boolean expressions to be names of data values in the target object. When evaluating a predicate
expression, QMF will fetch the value of the named data item from each candidate target object. The value is then used in the boolean
expression. In other words, QMF considers string arguments to be variables in the expression. In order to indicate that a string should be
treated as a literal instead, the string must be quoted using the "quote" expression.

For example, the following boolean expression contains the data item named "employee" against the string literal "Joey Jojo":

["eq" "employee" ["quote" "Joey Jojo"]]

In implementation, predicate expressions are nested lists. The first element of all lists is the operator keyword string. The remaining list
elements are arguments to the operator.

Examples:

Assume a QmfData type defines fields named "name", "address" and "town". The following predicate expression matches any instance with
a name field set to "tross", or any instance where the name field is "jross", the address field is "1313 Spudboy Lane" and the town field is
"Utopia":

["or" ["eq" "name" ["quote" "tross"]]
 ["and" ["eq" "name" ["quote" "jross"]]
 ["eq" "address" ["quote" "1313 Spudboy Lane"]]
 ["eq" ["quote" "Utopia"] "town"]
]
]

Assume a QmfData type with fields "name" and "age". A predicate to find all instances with name matching the regular expression "?ross"
with an optional age field that is greater than the value 29 or less than 12 would be:

["and" ["re_match" "name" ["quote" "?ross"]]
 ["and" ["exists" "age"]
 ["or" ["gt" "age" 27] ["lt" "age" 12]]
]
]

The valid set of values in an predicate expression is determined by the of the Query. QMF reserves a set of values it<name> target <name>
recognizes. The tables below list the set of name strings allowed for each type of , and what these names evaluate to from the target target
instance.

Target "schema_package" valid names Description

"_package_name" Evaluates to the schema's package name string.

Target "schema_id" and "schema"
valid names

Description

"_package_name" Evaluates to the schema's package name string.

"_class_name" Evaluates to the schema's class name string.

"_type" Evaluates to the schema's type string ("_data" or "_event").

"_hash_str" Evaluates to the schema's hash string value.

"_schema_id" Evaluates to the schema's full identifier (SchemaClassId).

<property-name> Name of a property defined by the schema. Evaluates to the name string, or None if the
property is not defined.

<method-name> Name of a method defined by the schema. Evaluates to the name string, or None if the
method is not defined.

Target "agent_info" valid names Description

"_name" Evaluates to the agent's name string.

Target "object_id" and "object" valid
names

Description

"_package_name" If schema assigned, evaluates to the schema's package name string, else None.

"_class_name" If schema assigned, evaluates to the schema's class name string, else None.

"_hash_str" If schema assigned, evaluates to the schema's hash string value, else None.

"_schema_id" If schema assigned, evaluates to the schema's full identifier (SchemaClassId), else None.

"_object_id" Evaluates to the identifying name string.

"_update_ts" Evaluates to the last update timestamp.

"_create_ts" Evaluates to the creation timestamp.

"_delete_ts" Evaluates to the deletion timestamp.

<value-name> Specifies the name of a data item in the QmfData data object. Evaluates to the value of the
data item.

QMF reserved values all start with the underscore character "_". Do not create value or method names starting with an underscore.<name>

The QmfQuery class represents a query:

class QmfQuery:
 <constructor>(target=<target name>,
 _target_params=None,
 _predicate=(optional)<predicate map>,
 _id=(optional)<target-identifier>)
 <constructor>(map=Map representation of a QmfQuery, as generated by .map_encode())
 .get_target(): return target name
 .get_target_param(): return params.
 .get_selector(): returns QmfQuery.ID or QmfQuery.PREDICATE
 .get_id(): return identifier if selector type is QmfQuery.ID, else None
 .get_predicate(): return predicate expression if selector type is QmfQuery.PREDICATE
 .evaluate(QmfData): evaluate query against a QmfData instance. Returns True if query
matches the instance, else false.
 .map_encode(): returns a map encoding of the QmfQuery instance

The map encoding of a QmfQuery:

Index Optional Type Description

"what" N map The target map.

"id" Y map The identifier, map format determined by target type.

"where" Y map The predicate map.

Example Queries

With the above syntax, QMF queries can be constructed using AMQP maps and lists. For example, a query for all known schema identifiers:

{"query": {"what": {"schema_id":None}}}

Note that the absence of a "where" clause acts as a "match all"
directive. This query will return a list of all known SchemaId's.

A query for all schema identifiers whose package names are equal to the string "myPackage":

{"query": {"where": ["eq" "_package_name" ["quote" "myPackage"]],
 "what": {"schema_id": None}
 }
}

Query for the particular QmfData data object with the identifier "Agent007":

{"query": {"what": {"object":None},
 "id": "Agent007"}
}

Query for the particular SchemaObjectClass instance that has the package name "MyPackage", class name "MyClass", that has a hash
string of 'b49cda2d-bbe53b97-9f6ee5d1-485ea3da':

{"query": {"what": {"schema":None},
 "id": {"_package_name": "MyPackage",
 "_class_name": "MyClass",
 "_type": "_data",
 "_hash_str": "b49cda2d-bbe53b97-9f6ee5d1-485ea3da"}}
}

Query for all SchemaClass objects that match a given package and class
name:

{"query": {"what": {"schema": None}
 "where": ["and" ["eq" "_package_name" ["quote" "myPackage"]]
 ["eq" "_class_name" ["quote" "someClass"]]]
 }
}

Query all managed objects belonging to the "myPackage" package, of the class "myClass", whose object_id matches a given regular
expression. Return a list of matching object identifiers:

{"query": {"what": {"object_id": None},
 "where": ["and" ["eq" "_package_name" ["quote" "myPackage]]
 ["eq" ["quote" "myClass"] "_class_name"]
 ["re_match" "_primary_key" ["quote" "foo*"]]
]
 }
}

Query for all QmfData objects from a particular schema, whose "temperature" property is greater or equal to 50:

{"query": {"what": {"object": None},
 "where": ["and" ["eq" "_package_name" ["quote" "aPackage]]
 ["eq" ["quote" "someClass"] "_class_name"]
 ["ge" "temperature" 50]
]
 }
}

In the previous example, the agent will convert the value 50 to a type compatible with the type given by the "temperature" property's schema
in order to do the comparison.

Query for all objects that match the given schema, which have a property named "state" which does not match the regular expression
"$Error*", or whose "owner" property is not set to "Cartman".

{"query": {"what": {"object": None},
 "where": ["and" ["eq" "_package_name" ["quote" "aPackage]]
 ["eq" ["quote" "someClass"] "_class_name"]
 ["or" ["not" ["re_match" "state" ["quote" "$Error"]]]
 ["ne" "owner" ["quote" "Cartman"]]
]
]
 }
}

Subscriptions

A subscription allows a Console application to monitor specific management data for changes in state. A Console creates a subscription with
an Agent based on a Query. The Query specifies the set of management data that is to be monitored. The Agent will periodically publish
updates to the subscribing Console(s). The update contains a snapshot of the of the monitored data.

A subscription remains in effect for a predetermined amount of time. Once the subscription expires, no further updates are published. A
console may elect to refresh a subscription prior to its expiration. Alternatively, a Console may explicitly cancel the subscription when the
data no longer needs to be monitored.

Invoking Methods

QMF allows a Console application to perform a "remote procedure call" on the Agent. The procedure - or - call executes on themethod
Agent. On completion a result is passed back to the Console. Method calls can be associated with an instance of a data object, or applied to
the Agent as a whole.

The structure of a method call may be described by the schema associated with the object. The schema can define a name for the method
and a description of its input and output parameters. The SchemaMethod class is used for this purpose.

The value(s) returned to the Console when the method call completes are represented by the MethodResult class. The MethodResult class
indicates whether the method call succeeded or not, and, on success, provides access to all data returned by the method call. Returned data
is provided in a map indexed by the name of the parameter. The map contains only those parameters that are classified as "output" by the
SchemaMethod.

Should a method call result in a failure, this failure is indicated by the presence of an error object in the MethodResult. This object is
represented by a QmfData object. The structure of this QmfData object is application-defined, but should contain a description of the reason
for the failure. There are no returned parameters when a method call fails.

A successful method invokation is indicated by the absence of the QmfData error object in the MethodResult.

class MethodResult:
 <constructor>(QmfData <exception> | <map of properties>)
 .succeeded(): returns True if the method call executed without error.
 .get_exception(): returns the QmfData error object if method fails, else None
 .get_arguments(): returns a map of "name"=<value> pairs of all returned arguments.
 .get_argument(<name>): returns value of argument named "name".

Management Events

An event is a notification that is sent by an Agent to alert Console(s) of a change in some aspect of the system under management. Agents
publish events asynchronously. Consoles have the option of receiving events from a given Agent.

To publish an event, the Agent application must call the method, passing an instance of a QmfEvent object. The Agentraise_event()
publishes the QmfEvent instance.

To receive events, the Console application must enable event reception on a per-agent basis. The Console application does this by calling
the method on the desired Agent instance. Published events from the Agent will then appear on the Console's work-queue.enable_events()
The Console application may disable events by invoking the Agent's method.disable_events()

Work-Queue Event Model.

The original QMF API defined a set of callback methods that a Console or Agent application needed to provide in order to process
asynchronous QMF events. Each asynchonous event defined its own callback method.

The new API replaces this callback model with a work-queue approach. All asynchronous events are represented by a WorkItem object.
When a QMF event occurs it is translated into a WorkItem object and placed in a FIFO queue. It is left to the application to drain this queue
as needed.

This new API does require the application to provide a single callback. The callback is used to notify the application that WorkItem object(s)
are pending on the work queue. This callback is invoked by QMF when one or more new WorkItem objects are added to the queue. To avoid
any potential threading issues, the application is allowed to call any QMF API from within the context of the callback. The purpose of thenot
callback is to notify the application to schedule itself to drain the work queue at the next available opportunity.

For example, a console application may be designed using a loop. The application waits in the for any of a number ofselect() select()
different descriptors to become ready. In this case, the callback could be written to simply make one of the descriptors ready, and then
return. This would cause the application to exit the wait state, and start processing pending events.

The callback is represented by the Notifier virtual base class. This base class contains a single method. An application derives a custom
notification handler from this class, and makes it available to the Console or Agent object.

class Notifier:
 .indication(): Called when the internal work queue becomes non-empty due to the arrival of
one or more WorkItems.
 This method will be called by the internal QMF management thread - it is illegal to invoke
any QMF APIs from
 within this callback. The purpose of this callback is to indicate that the application
should schedule itself
 to process the work items.

The WorkItem class represents a single notification event that is read from the work queue:

class WorkItem:
 .get_type(): Identifies the type of work item.
 .get_handle(): returns the reply handle for an asynchronous operation, if present.
 .get_params(): Returns the payload of the work item. The type of this object is determined by
the type of the workitem.

Console and Agent-specific WorkItem types are defined.

Console Application Model

This section describes the API that is specific to Console components.

A QMF console component is represented by a Console class. This class is the topmost object of the console application's object model.

A Console is composed of the following objects:

a connection to the AMQP bus
a queue of inbound work items
a collection of all known schemas
a list of all known remote Agents
a cache of known data object proxies

The connection to the AMQP bus is used to communicate with remote Agents. The queue is used as a source for notifications coming from
remote Agents.

QmfConsoleData Class

The QmfData class is subclassed to provide a Console specific representation of management data.

The Console application represents a managed data object by the QmfConsoleData class. The Console has "read only" access to the data
values in the data object via this class. The Console can also invoke the methods defined by the object via this class. The actual data stored
in this object is cached from the Agent. In order to update the cached values, the Console invokes the instance's refresh() method.

Note that the refresh() and invoke_method() methods require communication with the remote Agent. As such, they may block. For these two
methods, the Console has the option of blocking in the call until the call completes. Optionally, the Console can receive a notification

asynchronously when the operation is complete. See below for more detail regarding synchronous and asynchronous API calls.

class QmfConsoleData(QmfData):
 .get_timestamps(): returns a list of timestamps describing the
 lifecycle of the object. All timestamps are
 represented by the AMQP timestamp type.
 [0] = time of last update from Agent,
 [1] = creation timestamp
 [2] = deletion timestamp, or zero if not deleted.
 .get_create_time(): returns the creation timestamp
 .get_update_time(): returns the update timestamp
 .get_delete_time(): returns the deletion timestamp, or zero if not yet deleted.
 .is_deleted(): True if deletion timestamp not zero.

 .refresh([reply-handle | timeout]): request that the Agent update the value of this object's
contents.
 .invoke_method(name, inArgs{}, [[reply-handle] | [timeout]]): invoke the named method on
this instance.

Asychronous Event Model.

The Console application must support the following WorkItem types:

AGENT_ADDED
AGENT_DELETED
NEW_PACKAGE
NEW_CLASS
OBJECT_UPDATE
EVENT_RECEIVED
AGENT_HEARTBEAT
SUBSCRIBE_RESPONSE
RESUBSCRIBE_RESPONSE
SUBSCRIPTION_INDICATION

These WorkItem types are described in detail below:

AGENT_ADDED

When the QMF Console receives the first heartbeat from an Agent, an AGENT_ADDED WorkItem is pushed onto the work-queue. The
WorkItem's get_param() call returns a map which contains a reference to the new Console Agent instance. The reference is indexed from the
map using the key string "agent". There is no handle associated with this WorkItem.

Note: If a new Agent is discovered as a result of the Console method, then no AGENT_ADDED WorkItem is generated for thatfind_agent()
Agent.

AGENT_DELETED

When a known Agent stops sending heartbeat messages, the Console will time out that Agent. On Agent timeout, an AGENT_DELETED
WorkItem is pushed onto the work-queue. The WorkItem's get_param() call returns a map which contains a reference to the Agent instance
that has been deleted. The reference is indexed from the map using the key string "agent". There is no handle associated with this WorkItem.

The Console application must release all saved references to the Agent before returning the WorkItem.

NEW_PACKAGE

TBD.

NEW_CLASS

TBD.

OBJECT_UPDATE

TBD.

EVENT_RECEIVED

TBD

SUBSCRIBE_RESPONSE

The WorkItem returns the result of a subscription request made by this Console. This WorkItem is generatedSUBSCRIBE_RESPONSE
when the Console's create_subscription() is called in an asychronous manner, rather than pending for the result.

The get_params() method of a WorkItem will return an instance of the following object:SUBSCRIBE_RESPONSE

class SubscribeParams:
 .get_subscription_id(): If the subscription is successful, this method returns a
SubscriptionId object.
 Should the subscription fail, this method returns None, and get_error() can be used to
obtain an
 application-specific QmfData error object.
 .get_publish_interval(): returns the time interval in seconds on which the Agent will
publish updates
 for this subscription.
 .get_lifetime(): returns the time interval in seconds for the subscription. The subscription
will automatically
 expire after this interval if not renewed by the console.
 .get_error(): (optional) returns an application-specific QmfData object indicating why the
subscription
 request failed. Returns None if not supported.
 .get_console_handle(): returns the console handle as passed to the create_subscription()
call.

The SubscriptionId object must be used when the subscription is refreshed or cancelled - it must be passed to the Console's
refresh_subscription() and cancel_subscription() methods. The value of the SubscriptionId does not change over the lifetime of the
subscription.

The console handle will be provided by the Agent on each data indication event that corresponds to this subscription. It should not change
for the lifetime of the subscription.

The get_handle() method returns the reply handle provided to the create_subscription() method call. This handle is merely the handle used
for the asynchronous response, it is not associated with the subscription in any other way.

Once a subscription is created, the Agent that maintains the subscription will periodically issue updates for the subscribed data. This update
will contain the current values of the subscribed data, and will appear as the first WorkItem for thisSUBSCRIPTION_INDICATION
subscription.

SUBSCRIPTION_INDICATION

The WorkItem signals the arrival of an update to subscribed data from the Agent. SUBSCRIPTION_INDICATION

The get_params() method of a WorkItem will return an instance of the following object:SUBSCRIPTION_INDICATION

class SubscribeIndication:
 .get_console_handle(): returns the console handle as passed to the create_subscription()
call.
 .get_data(): returns a list containing all updated data objects associated with the
subscripion.

The get_handle() method returns None.

RESUBSCRIBE_RESPONSE

The RESUBSCRIBE_RESPONSE WorkItem is generated in response to a subscription refresh request made by this Console. This
WorkItem is generated when the Console's refresh_subscription() is called in an asychronous manner, rather than pending for the result.

The get_params() method of a WorkItem will return an instance of the following object:RESUBSCRIBE_RESPONSE

class SubscribeParams:
 .get_subscription_id(): If the re-subscription is successful, this method returns an
instance of
 the original SubscriptionId object. Should the subscription fail, this method returns
None,
 and get_error() can be used to obtain an application-specific QmfData error object.
 .get_publish_interval(): returns the time interval in seconds on which the Agent will
publish updates
 for this subscription.
 .get_lifetime(): returns the time interval in seconds for the subscription. The subscription
will automatically
 expire after this interval if not renewed by the console.
 .get_error(): (optional) returns an application-specific QmfData object indicating why the
re-subscription
 request failed. Returns None on successful resubscribe.
 .get_console_handle(): returns the console handle as passed to the create_subscription()
call, if available.
 Note: if the Agent failed the resubscribe request due to an unrecognized subscription,
this call may
 return None.

The get_handle() method returns the reply handle provided to the refresh_subscription() method call. This handle is merely the handle used
for the asynchronous response, it is not associated with the subscription in any other way.

Local representation of a remote Agent.

The console application maintains a list of all known remote Agents. Each Agent is represented by the Agent class:

class Agent:
 .get_name(): returns the identifying name string of the agent. This name is used to send
AMQP messages directly to this agent.
 .is_active(): returns True if the agent is alive (heartbeats have not timed out)
 .invoke_method(name, inArgs{}, [[reply-handle] | [timeout]]): invoke the named method
against the agent.
 .enable_events(): allows reception of events from this agent.
 .disable_events(): prevents reception of events from this agent.
 .destroy(): releases this Agent instance. Once called, the console application should not
reference this instance again.
 ?tbd?

The Console Object.

The Console class is the top-level object used by a console application. All QMF console functionality is made available by this object. A
console application must instatiate one of these objects.

As noted below, some Console methods require contacting a remote Agent. For these methods, the caller has the option to either block for a
(non-infinite) timeout waiting for a reply, or to allow the method to complete asynchonously. When the asynchronous approach is used, the
caller must provide a unique handle that identifies the request. When the method eventually completes, a WorkItem will be placed on the
work queue. The WorkItem will contain the handle that was provided to the corresponding method call.

All blocking calls are considered thread safe - it is possible to have a multi-threaded implementation have multiple blocking calls in flight
simultaineously.

If a name is supplied, it must be unique across all Consoles attached to the AMQP bus under the given domain. If no name is supplied, a
unique name will be synthesized in the format: "qmfc-<hostname>.<pid>"

class Console:
 <constructor>(name=<name-str>,
 domain=(optional) domain string for console's AMQP address,
 notifier=<class Notifier>,
 reply_timeout=<default for all blocking calls>,
 agent_timeout=<default timeout for agent heartbeat>,
 subscription_duration=<default lifetime of a subscription>)

 .destroy(timeout=None): Must be called to release Console's resources.

 .add_connection(QPID Connection): Connect the console to the AMQP cloud.

 .remove_connection(conn): Remove the AMQP connection from the console. Un-does the
add_connection() operation, and
 releases any agents associated with the connection. All blocking methods are unblocked
and given a failure status.
 All outstanding asynchronous operations are cancelled without producing WorkItems.

 .get_address():
 Get the AMQP address this Console is listening to (type str).

 .find_agent(name string, [timeout]): Query for the presence of a specific agent in the QMF
domain. Returns a
 class Agent if the agent is present. If the agent is not already known to the console,
this call will send
 a query for the agent and block (with default timeout override) waiting for a response.

 .enable_agent_discovery([Query]): Called to enable the asynchronous Agent Discovery
process. Once enabled, AGENT_ADDED
 and AGENT_DELETED work items can arrive on the WorkQueue. If a query is supplied, it
will be used to filter agent
 notifications.

 .disable_agent_discovery(): Called to disable the async Agent Discovery process enabled by
calling enable_agent_discovery().

 .get_workitem_count(): Returns the count of pending WorkItems that can be retrieved.

 .get_next_workitem([timeout=0]): Obtains the next pending work item, or None if none
available.

 .release_workitem(wi): Releases a WorkItem instance obtained by getNextWorkItem(). Called
when the application has finished
 processing the WorkItem.

 .get_agents(): Returns a list of available agents (class Agent)

 .get_agent(name string): Return the class Agent for the named agent, if known.

 .get_packages([class Agent]): Returns a list of the names of all known packages. If an
optional Agent is provided, then
 only those packages available from that Agent are returned.

 .get_classes([class Agent]): Returns a list of SchemaClassIds for all available Schema.
If an optional Agent is provided,
 then the returned SchemaClassIds are limited to those Schema known to the given Agent.

 .get_schema(class SchemaClassId [, class Agent]): Return a list of all available class
SchemaClass across all known agents.
 If an optional Agent is provided, restrict the returned schema to those supported by
that Agent.

 .get_objects(_SchemaClassId= | _package=, _class= |
 _object_identifier=,
 [timeout=],
 [list-of-class-Agent]): perform a blocking query for QmfConsoleObjects.
Returns a list (possibly empty) of matching
 objects. The selector for the query may be either:
 * class SchemaClassId - all objects whose schema match the schema identified by
_SchemaClassId parameter.
 * package/class name - all objects whose schema are contained by the named package and
class.
 * the object identified by _object_identifier
 This method will block until all known agents reply, or the timeout expires. Once the
timeout expires, all
 data retrieved to date is returned. If a list of agents is supplied, then the query is
sent to only those agents.

 .create_subscription(agent, class Query, console_handle [, reply_handle] [, timeout],
 [, publish_interval] [, lifetime]): creates a subscription to the
agent
 using the given Query. The console_handle is an application-provided handle that will
accompany each subscription update
 send from the Agent. Subscription updates will appear as SUBSCRIPTION_INDICATION
WorkItems on the Console's work queue.
 The publish_interval is the requested time interval in seconds on which the Agent should
publish updates. The lifetime
 parameter is the requested time interval in seconds for which this subscription should
remain in effect. Both the
 requested lifetime and publish_interval may be overridden by the Agent, as indicated in
the subscription response.
 This method may be called asynchronously by providing a reply_handle argument. When
called asynchronously, the result
 of this method call is returned in a SUBSCRIBE_RESPONSE WorkItem with a handle matching
the value of reply_handle.
 Timeout can be used to override the console's default reply timeout. When called
synchronously, this method returns a class
 SubscribeParams object containing the result of the subscription request.

 .refresh_subscription(SubscriptionId [, lifetime] [,reply_handle] [, timeout]): renews a
subscription identified by
 SubscriptionId. The Console may request a new subscription duration by providing a
requested lifetime. This
 method may be called asynchronously by providing a reply_handle argument. When called
asynchronously, the result
 of this method call is returned in a SUBSCRIBE_RESPONSE WorkItem. Timeout can be used
to override the console's
 default reply timeout. When called synchronously, this method returns a class
SubscribeParams object containing
 the result of the subscription request.

 .cancel_subscription(SubscriptionId): terminates the given subscription.

Example Console Application

The following pseudo-code performs a blocking query for a particular agent.

logging.info("Starting Connection")
conn = Connection("localhost")
conn.connect()

logging.info("Starting Console")
myConsole = Console()
myConsole.add_connection(conn)

logging.info("Finding Agent")
myAgent = myConsole.find_agent("com.aCompany.Examples.anAgent", _timeout=5)

if myAgent:
 logging.info("Agent Found: %s" % myAgent)
else:
 logging.info("No Agent Found!")

logging.info("Removing connection")
myConsole.remove_connection(conn)

logging.info("Destroying console:")
myConsole.destroy(_timeout=10)

The following pseudo-code performs a non-blocking query for all
agents. It completes when at least one agent is found.

class MyNotifier(Notifier):
 def __init__(self, context):
 self._myContext = context
 self.WorkAvailable = False

 def indication(self):
 print("Indication received! context=%d" % self._myContext)
 self.WorkAvailable = True

noteMe = MyNotifier(668)

logging.info("Starting Connection")
conn = Connection("localhost")
conn.connect()

myConsole = Console(notifier=noteMe)
myConsole.add_connection(conn)

myConsole.enable_agent_discovery()
logging.info("Waiting...")

while not noteMe.WorkAvailable:
 print("No work yet...sleeping!")
 time.sleep(1)

print("Work available = %d items!" % myConsole.getWorkItemCount())
wi = myConsole.get_next_workitem(timeout=0)
while wi:
 print("work item %d:%s" % (wi.getType(), str(wi.getParams())))
 wi = myConsole.get_next_workitem(timeout=0)

logging.info("Removing connection")
myConsole.remove_connection(conn)

logging.info("Destroying console:")
myConsole.destroy(10)

Agent Application Model

This section describes the API that is specific to Agent components.

A QMF agent component is represented by a instance of the Agent class. This class is the topmost object of the agent application's object
model. Associated with a particular agent are:

the set of objects managed by that agent
the set of schema that describes the structured objects owned by the agent
a collection of consoles that are interfacing with the agent

The Agent class communicates with the application using the same work-queue model as the console. The agent maintains a work-queue of
pending requests. Each pending request is associated with a handle. When the application is done servicing the work request, it passes the
response to the agent along with the handle associated with the originating request.

QmfAgentData Class

The Agent manages the data it represents by the QmfAgentData class - a derivative of the QmfData class. The Agent is responsible for
managing the values of the properties within the object, as well as servicing the object's method calls. Unlike the Console, the Agent has full
control of the state of the object.

class QmfAgentData(QmfData):
 .destroy(): mark the object as deleted by setting the deletion timestamp to the current
time.
 .set_value(name, value): update the value of the property.
 .inc_value(name, delta): add the delta to the property
 .dec_value(name, delta): subtract the delta from the property
 ?tbd?

An agent can support one of two different models for managing its database of QmfAgentData objects: internal or external store.

Internal Object Store

An agent that implements internal object store gives full responsibility for managing its data objects to the QMF infrastructure. In this model,
the application passes a reference for each managed object to the QMF agent. The agent manages the set of objects internally, directly
accessing the contents of the object in order to service console requests.

With this model, the application's complexity is reduced. The application needs to instantiate the object and register it with the agent. The
application also maintains a reference to the object, as the application is responsible for updating the object's properties as necessary.

However, the application must still service method calls. The agent notifies the application when a method call has been requested by a
console. The application services the method call, passing the result of the method back to the agent. The agent then relays the response to
the originating console.

The application may decide to delete an object instance. The application does this by invoking the destroy() method on the object. This
notifies the agent, which will mark the object as deleted in its database. Once the application invokes the destroy() method on an object, it
must no longer access the object. The agent will clean up the object at a later point in time.

Internal object store is the default model for agent object managment.

Data Consistency

The internal object store requires sharing of the managed data between the agent and the application. The application is responsible for
keeping the data up to date, while the agent is responsible for providing the data to client consoles. It is likely that these components may be
implemented in separate execution contexts. This raises the possibility that a data item could be in the process of being written to by the
application at the same moment the agent attempts to read it. This could result in invalid data being read.

To prevent this from occuring, the QmfAgentObject class provides accessors for all data in the object. These accessors provide atomic
access to the underlying data. Therefore, both the agent and the application code use these accessors to manipulate a shared object'smust
data.

External Object Store

An alternate agent implementation allows the application to take full responsibility for managing the objects. With this model, all instances of
managed objects exist external to the agent. When a console requests an action against an object, that action is transferred from the agent
to the application. The application then must process the request, and send the result to the agent. The agent then sends a reply to the
requesting console.

The model gives full control of the managed objects to the application, but usually requires more application development work.

Agent Class

The base class for the agent object is the Agent class. This base
class represents a single agent implementing internal store.

class Agent:
 <constructor>(name=<name-string>,
 domain=(optional) domain string for agent's AMQP address,
 notifier=class Notifier,
 heartbeat_interval=30,
 max_msg_size=0)
 .get_name(): return the name string of the agent.
 .set_connection(QPID Connection): connect the agent to the AMQP cloud.
 .register_object_class(class SchemaObjectClass): Register a schema for an object class
with the agent. The agent must
 have a registered schema for an object class before it can handle objects of that
class.
 .register_event_class(class SchemaEventClass) : Register a schema for an event class with
the agent. The agent must
 have a registered schema for an event class before it can handle events of that class.
 .raise_event(class QmfEvent): Cause the agent to raise the given event.
 .add_object(class QmfAgentData): passes a reference to an instance of a managed QMF object
to the agent. The object's
 name must uniquely identify this object among all objects known to this agent.
 .get_workitem_count(): Returns the count of pending WorkItems that can be retrieved.
 .get_next_workitem([timeout=0]): Obtains the next pending work item, or None if none
available.
 .release_workitem(wi): Releases a WorkItem instance obtained by get_next_workitem(). Called
when the application has finished
 processing the WorkItem.
 .method_response(name="method name",
 handle=<handle from WorkItem>,
 out_args={output argument map}
 error=<QmfData>): Indicate to the agent that the application has completed
processing a method
 request. See the description of the METHOD_CALL WorkItem.

AgentExternal Class

The AgentExternal class must be used by those applications that implement the external store model. The AgentExternal class extends the
Agent class by adding interfaces that notify the application when it needs to service a request for management operations from the agent.

class AgentExternal(Agent):
 <constructor>(name=<name-string>,
 domain=(optional) domain string for agent's AMQP address,
 notifier= class Notifier,
 heartbeat_interval=30,
 max_msg_size=65535)
 .alloc_object_id(name="object name"): indicate to QMF that the named object is available to
be managed. Once this method returns,
 the agent will service requests from consoles referencing this data.
 .free_object_id(name="object name"): indicate to QMF that the named object is no longer
available to be managed.
 .query_response(handle=<handle from WorkItem>,
 class QmfAgentObject): send a managed object in reply to a received query.
Note that ownership of the object
 instance is returned to the caller on return from this call.
 .query_complete(handle=<handle from WorkItem>,
 result=<status code>): Indicate to the agent that the application has
completed processing a query request.
 Zero or more calls to the queryResponse() method should be invoked before calling
query_complete(). If the query should
 fail - for example, due to authentication error - the result should be set to a non-zero
error code ?TBD?.

 .subscription_response(handle=<handle from WorkItem>,
 console_handle=<handle provided by Console for this subscription>,
 subscription_handle=<agent-provided context>,
 lifetime=<seconds>, publish_interval=<seconds>,
 error=<QmfData>): Indicate the result of a SUBSCRIBE_REQUEST
WorkItem.
 If the subscription request is successful, the Agent application must provide a unique
subscription_handle. If replying
 to a sucessful subscription refresh, the original subscription_handle must be supplied.
The lifetime parameter should be
 set to the duration of the subscription in seconds. The publish_interval should be set
to the time interval in seconds
 between successive publications on this subscription. If the subscription or refresh
fails, the subscription_handle
 should be set to None and error may be set to an application-specific QmfData instance
that describes the error. Should
 a refresh request fail, the console_handle may be set to None if unknown.

 .subscription_indicate(console_handle, [list of subscribed data]): Send a list of updated
subscribed data to the Console.

 .subscription_cancel(handle=<handle from WorkItem>, console_handle): Acknowledge a
Subscription Cancel WorkItem.

Asychronous Event Model.

The Agent uses the same notification driven work-queue model as the Console. In the Agent case, the following set of WorkItem types are
supported:

METHOD_CALL
QUERY
SUBSCRIBE_REQUEST
RESUBSCRIBE_REQUEST
UNSUBSCRIBE_REQUEST

Note Well: In the case of an internal store agent implementation, only the METHOD_CALL work item is generated. An external store agent
must support all work item types.

METHOD_CALL

The WorkItem describes a method call that must be serviced by the application on behalf of this agent.METHOD_CALL

The get_params() method of a WorkItem will return an instance of the following object:METHOD_CALL

class MethodCallParams:
 .get_name(): returns a string containing the name of the method call.
 .get_object_id(): returns the identifier for the object on which this
 method needs to be invoked. Returns None iff there is no associated
 object (a method call against the agent itself).
 .get_args(): returns a map of input arguments for the method. Arguments
 are in "name"=<value> pairs. Returns None if no arguments are supplied.
 .get_user_id(): returns authenticated user id of caller if present, else None.

On completion of the method call, the application must provide the result of the call to the Agent. This is done by invoking the Agent's
method_response() method. The method_response() method must be passed the handle from the WorkItem.METHOD_CALL

On successful completion of a method call, any output arguments from the method call must be passed in the out_args map parameter, in
name=<value> pairs. The error parameter must be set to None.

If the method call fails the application must indicate the failure by passing a QmfData instance via the error parameter. The structure of this
QmfData is application-specific, and meant to provide a description of the failure to the console.

QUERY

QUERY parameters: (class Query,
 user_id=<authenticated id of the user>)

The QUERY WorkItem describes a query that the application must service. The application should call the query_response() method for each
object that satisfies the query. When complete, the application must call the query_complete() method. If a failure occurs, the application
should indicate the error to the agent by calling the query_complete() method with a description of the error.

SUBSCRIBE_REQUEST

The WorkItem provides a query that the agent application must periodically publish until the subscription isSUBSCRIBE_REQUEST
cancelled or expires. On receipt of this WorkItem, the application should call the Agent::subscription_response() method to acknowledge the
request. On each publish interval, the application should call Agent::subscription_indicate(), passing a list of the objects that satisfy the query.
The subscription remains in effect until an WorkItem for the subscription is received, or the subscription expires.UNSUBSCRIBE_REQUEST

The get_params() method call of the SUBSCRIBE_REQUEST WorkItem returns an instance of the following object:

class SubscriptionParams:
 .get_console_handle(): returns the handle that the console uses to identify this
subscription.
 This handle must be passed along with every published update from the Agent.
 .get_query(): returns the QmfQuery object associated with the subscription.
 .get_publish_interval(): returns the requested time interval in seconds for updates.
Returns
 zero if the Agent's default interval should be used.
 .get_lifetime(): returns the requested lifetime for the subscription. Zero if the Agent's
 default subscription lifetime should be used.
 .get_user_id(): returns authenticated user id of Console if present, else None.

The Agent application must call the AgentExternal::subscription_response() method in response to this WorkItem.

The get_handle() WorkItem method returns the reply handle which should be passed to the Agent's subscription_response() method.

RESUBSCRIBE_REQUEST

The is sent by a Console to renew an existing subscription. The Console may request a new duration for theRESUBSCRIBE_REQUEST
subscription, otherwise the previous lifetime interval is repeated.

The get_params() method call of the WorkItem returns an instance of the following object:RESUBSCRIBE_REQUEST

class ResubscribeParams:
 .get_subscription_id(): returns the subscription identifier provided by the Agent.
 .get_lifetime(): returns the requested lifetime for the subscription. Zero if the previous
 interval should be used.
 .get_user_id(): returns the authenticated user id of the Console if present, else None.

The Agent application must call the AgentExternal:subscription_reponse method in response to this WorkItem.

The get_handle() WorkItem method returns the reply handle which should be passed to the Agent's subscription_reponse() method

UNSUBSCRIBE_REQUEST

The is sent by a Console to terminate an existing subscription.UNSUBSCRIBE_REQUEST

The get_params() method call returns the subscription identifier assigned by the Agent when the subscription is created.

The Agent application should terminate the given subscription if it exists, and cancel sending any further updates against it.

QMFv2 Architecture

QMFv2 Architecture

Introduction

QMF (Qpid Management Framework) is a set of APIs, in multiple programming languages, that provide an abstraction for object-oriented and
service-oriented remote management. It is layered on top of AMQP messaging and implemented using the Apache Qpid messaging APIs.

Architectural Components and Operations

There are two central components in the architecture of QMF: The and the . An agent is a software component that isAgent Console
managed via QMF and a console is a component that manages agents. The distinction will become clearer as we discuss operations.

A better way to describe and is to call them . For example, a software program may perform the of , andconsole agent roles role QMF Agent
therefore become manageable via QMF. Another program may act in the of and manage some number of agents. It isrole QMF Console
also possible for a software program to act in both roles simultaneously and can do so using a single connection into the AMQP messaging
infrastructure.

+-----------+ +-----------+
 | Console | | Console |
 +-----+-----+ +-----+-----+
 | |
 | |
+--------+----------------+-------------------------+
| |
| Standard AMQP Messaging |
| |
+----------+--------------+--------------+----------+
 | | |
 | | |
 +----+----+ +----+----+ +----+----+
 | Agent | | Agent | | Agent |
 +---------+ +---------+ +---------+

In QMF, there may be any number of agents and any number of consoles. Of course, if there are no agents, it won't be a very interesting
network. Agents and consoles may appear and disappear dynamically.

Addressing and Scoping

QMF, being distributed in nature, needs a way to address the various entities that it represents. Further, the addressing of entities within
QMF is organized in a scope hierarchy as follows:

+--+
| Domain |
| |
| +-------------------------------+ +-------------------+ |
	Agent		Console			
	+--------------------+	+-------------------+				
		Object				
				+-------------------+		
					Topic Addresses	-+
	+--------------------+				-+	
		+-------------------+				
+-------------------------------+ +-------------------+						
+-------------------+						
+--+

QMF Domain

Note that this is a new concept being introduced in QMFv2. It refers to a top-level scope for the addressing of all QMF entities. Multiple
domains may be established so that independent, disjoint QMF deployments can share the same AMQP messaging network.

Console Address

When a console joins the network (i.e. an application that acts in the role of "Qmf Console"), it uses a unique and temporary identifier for
addressing. This address is most likely different for each execution of the application. It is used only for reply messages sent directly to the

console from an agent in the network.

Agent Address

The agent address, like the console address, must be unique within the domain. Unlike the console address, the agent address beshould
persistent, remaining the same even after the agent application is shut down and restarted.

Object Address

Topic Addresses

Operations

QMF operations are defined in terms of the console and agent roles. This section will introduce the operations at a fairly high level. For full
details on how the operations operate, refer to the API specification for the programming language you are interested in.

Agent Locate

After a console first connects itself to an AMQP messaging broker, the first thing it must do is identify one or more agents with which to
interact. This is done in one of two ways, depending on the purpose of the console application.

The console may attempt to locate a single specific agent by name (i.e. The HP printer on the second floor). In this case, the console
communicates directly with the agent to see if it is present in the network (using a direct exchange and the agent's unique name).

Alternatively, the console may wish to interact with a set of agents, possibly all of them. In this case, the console establishes a set of criteria
in the form of a query (i.e. "all printers where vendor == 'HP'") and builds a list of available agents. In this case, the console sends a multicast
query (using a topic exchange) and collects responses from matching agents. Furthermore, if a new agent comes on line that meets the
criteria, the console will learn about the new agent.

Query

A is initiated by a console and answered by one or more agents. A query requests data from an agent and supplies selection criteriaquery
for the data. Once each agent sends the requested data to the console, the query operation is complete.

Subscription Query

A is similar to a normal query except that after the requested data is sent by an agent, the query remains open andsubscription query
subsequent changes to the requested data are sent to the address supplied by the console.

A subscription query is kept open by the agent and is closed in one of two situations. Either the console explicitly closes the subscription
query or it times out after a time interval. The console may periodically refresh an exiting subscription query to keep it from timing out. This
allows for subscription queries to be cleaned up in case the requesting console goes away without shutting down the subscription.

Schema Query

Method Invocation

Event Distribution

The QMF Data Model

+---- QmfData
 |
 +---- QmfDescribed
 | |
 | +---- QmfManaged
 | |
 | +---- QmfEvent
 |
 +---- QmfClassManaged
 |
 +---- QmfClassEvent

Data Type Extends Contains

QmfData Values - An arbitrarily structured map of keys and values

QmfDescribed QmfData SchemaClassKey - Uniquely identifies the schema that describes the content of Values

QmfManaged QmfDescribed AgentId - Uniquely identifies the agent that manages this object.
 - Uniquely identifies the object in the scope of the agent.ObjectId
 - Identifies the creation, deletion, and last-changed timestamps for this object.Lifecycle

QmfEvent QmfDescribed Severity - Identifies the severity of this instance of the event.
 - Identifies the time that the event was raised.Timestamp

1.
2.
3.
4.
5.

QmfClassManaged QmfData

QmfClassEvent QmfData

Other names that have been assigned to these concepts:

Data Class Other Names Used in the Past

QmfManaged Object, QmfObject

QmfDescribed Unmanaged Object

QmfClassManaged SchemaObjectClass, Object Class

QmfClassEvent SchemaEventClass, Event Class

Broker job queue limits

Broker memory usage
It is possible for the broker to recieve frames at a rate faster than it can process. When this occurs a large number of Jobs and Events are
produced. This can further slow down the system by increasing memory usage, causing the GC to to run frequently and generally compound
the issue. This is undesireable.

High level solution

Ultimately, the broker needs to decide to cease creating new jobs until those that already exist have been processed. The broker will stop
reading frames from the network layer. The servers network buffer will fill, and for OS will cease to read the socket as TCP flow control kicks
in. The corresponding client side buffer to fill, and then writes to it will block.

When memory usage falls as the events are processed, the broker will start to process frames again, and normal operation will resume.
However, if the broker does not recover sufficently quickly it is possible that the socket will time out and the connection will be closed.

Required changes

To completely implement the above solution, a number of changes are required.
The broker needs to be able to determine currently used / available memory. This can be obtained via JMX.
The threads which process Jobs and Events need to be signalled to pause, and to resume.
Protectio in the MINA layer of both the client and the broker needs to be enabled by default.
When a memory threshold is reached, the broker should fire an event which signals the job processing threads to pause. In future
this event should be listened for by other mechanisms designed to mitigate the issue - such as flow to disk.

JMX Console Use Cases
1. User needs to know which queues have messages
2. User needs to know which queues are taking up memory
3. User needs to remove problematic message
4. User needs to disconnect problematic client

Current Architecture

Current implementation
Issues
Current implementation

Broker
Client connection creation
Client processing

Current implementation
Inside Qpid, data is read from a socket and placed in a buffer. A separate thread then takes this buffer and attempts to parse it as an AMQP
command. this AMQP command is then put on a second buffer. Finally a third thread reads the command and processes it.

Currently the two buffers between these three threads are unbounded. This means that data is read from the network as fast as possible with
no regard as to whether the broker has the capacity to process it.

Queues are themselves a kind of buffer between client applications.

From a queue the message can be assigned to be send to a client. At this point a delivery command is placed in another buffer awaiting
sending on the network. When received by the client a similar process to receiving on the broker occurs

The whole process looks something like this

1.
2.

3.
4.
5.

6.

Client App sends message -> (MINA Buffer)
-> MINA Thread takes message and sends to TCP -> (TCP Buffer)
-> TCP places bytes on wire ->
~~~~~ Network ~~~~~
-> TCP reads from wire -> (TCP Buffer)
-> MINA Reads from TCP -> (MINA Buffer)
-> Bytes parsed and converted into AMQP Command -> (Job Queue Buffer)
-> AMQP Command processed, message placed on Queue -> (Queue - which is a buffer)
-> Message taken from queue and delivery command created -> (MINA Buffer)
-> MINA Thread takes message and sends to TCP -> (TCP Buffer)
-> TCP places bytes on wire ->
~~~~~ Network ~~~~~
-> TCP reads from wire -> (TCP Buffer)
-> MINA Reads from TCP -> (MINA Buffer)
-> Bytes parsed and converted into AMQP Command -> (Job Queue Buffer)
-> AMQP Command processed, message placed on Delivery Queue -> (Delivery Queue Buffer)
-> Message received by client application code

Or, pictorally:

Of all the buffers above, only the TCP buffers are bounded (the Delivery Queue Buffer in the client is potentially bounded by prefetch,
although prefetch is not set on bytes but on messages which may be of arbitrary size), every other buffer is a potential source of out of
memory exceptions.

From the above we can see that there are many potential sources of OutOfMemoryExceptions. We need to consider where we may get
unbounded growth, what scenarios will cause that, and what other ways we have to mitigate those risks.

In general we get growth of the IO (MINA) buffers when sender and receiver are operating at mismatched rates (i.e. the Client and Broker).
We will get unbounded growth of the queue if the sending client is producing at a faster rate than the receiving client can process.

Issues

The current MINA networking uses unbounded buffers.
We replace over a dozen MINA classes, none of which have any unit test coverage. We failed to get our patches upstream and
haven't attempted since then.
Existing unit test coverage is minimal (approx 30%)
Improving unit test coverage is difficult due to poor encapsulation
Poor encapsulation has lead to tight coupling of MINA to server

6.

7.

8.
9.

The current behaviour of send() leaves the potential for message loss when not using transactions and violates JMS spec. Persistent
messages which are held in either the client or servers buffers before being written to disk can be lost.
MINA's internal state is currently a black box, leaving no way to determine how much memory is being used by an individual client
connection.
The way that we use MINA is suboptimal for our purpouses but is difficult to change due to the tight coupling
Supporting alternative transport layers is impossible due to tight coupling of MINA (OSI layer 4) with the AMQP handlers (OSI layer
7).

Current implementation

Broker

Currently the broker decodes the incoming network data, adds the frames to a Job queue which are then processed as Events by
AMQPFastProtocolHandler which passes the majority of the work to AMQMinaProtocolSession. Often this results in a FrameHandler being
called. On the outbound route Frames are written to AMQMinaProtocolSession which calls IoSession.writeFrame which passes the data to
Mina for writing to the wire.

Client connection creation

When the client creates a connection it creates an AMQConnectionDelegate for the protocol version it requires and passes the new protocol
handler to TransportConnection which creates a socket of the requested type (new TCP socket, existing TCP socket or InVM). It then
attaches the socket to the protocol handler which init()s a new ProtocolSession which begins version negotiation with the broker.

Client processing

Once a socket has been opened the client processes data similarly to the broker, decoding frames using AMQDecoder and passing them to
AMQProtocolHandler which, normally, calls a frame handler to perform the actual work. If this frame is one which has a listener waiting for it,
those listeners are notified.

Outgoing data is generated in AMQSession or it's delegate and written to AMQProtocolHandler, optionally with a return frame to wait for. This
is passed to Mina directly.

If the frame is a BasicDeliver containing message payload, it adds an UnprocessedMessage to the session which then waits for the
ContentHeaderBody and ContentBody payloads to arrive. Once all the expected bodies have been recieved, the complete message is given
to the AMQSession for that channel.

The AMQSession instance adds the message to it's internal delivery queue and any locks waiting on the queue are notified. The Dispatcher
thread takes the message and delivers it to one of the consumers.

The BasicMessageConsumer converst the UnprocessedMessage to an AbstractJMSMessage and then either delivers it to MessageListener
if one has been set or stores it on an queue which is popped when the application calls the consumers recieve() method.

MessageProducer.send() behaviour
In network terms, the semantics of the current (0.5) implementation of BasicMessageProducer_0_8 is as follows. The message is split into
an AMQP ContentHeader frame and one or more ContentBody frames. These frames are then combined back into an
CompositeAMQDataBlock and passed to a MinaProtocolSession.write(), which places it onto the client side outgoing MINA buffers for
writing.

At this point, send() returns. It has not actually sent the message data to the broker, nor has the broker accepted that data.

Multiple Java Brokers - Use Cases

Purpose

This page is intended to outline the known use cases for running multiple Java Brokers, addressing logged issues and limitations of the
current implementation (as of V0.5). It is about clustering proper.not

Use Cases

High Volume Transient Broker

Description

This use case relates to applications with a high residual message load i.e. where message data on the broker remains in memory for some
time or consumption lags production such that a backlog is constantly present in the broker queues.

This paradigm is reasonably common, partly because publication threads are generally handling only the simple publish call where we often
see consumption threads handling writes to RDBMS or other time expensive processing. Thus a rate gap opens up, and creates a data
tailback.

1.
2.
3.

4.

In this scenario, particularly for deployments on a 32bit VM, the broker can exhaust a 3GB heap or start to perform poorly as it approaches
max heap.

Result

Broker side OoM or performance degradation requiring bounce. Messages in flight not processed, client applications experience connection
loss.

Possible Solution A - Load Balancing Module

For our end users, we could potentially reduce the hassle factor in running 2 brokers by providing a solution comprised of load balancing
module which would reside alongside the broker i.e. on server side. This module would intercept published messages and share them
between multiple brokers (scaling according to app parameters). Consumers would require multiple connections, but publication would be
unaffected and the burden of load balancing could be shifted from the user application to Qpid.

Possible Solution B - No Message Order, 2 Brokers

In this scenario, it would be possible to use 2 brokers and message order would not matter. Publishing clients would use 2 connections and
publish alternately to each broker, providing a simplistic load balancing solution. Consuming clients would then consume from the 2 brokers,
using the same topic name etc. The consumer could choose to consume in parallel, thus potentially speeding up processing time or by taking
messages singly from the two sources alternately.

Possible Solution C - With Message Order, Paired Flow

Again, using 2 brokers but this time working with the assumption that the application data flows across the broker can be separated by
source/destination. An easy solution for this is to simply divide the required traffic by source or destination and put an amount on each
broker.

This may necessitate multiple consuming connections (to each of the brokers) on the client side where there are multiple sources feeding the
same client. Alternatively, for some applications, the clients can be segmented in pairs of publisher-consumer by flow.

Possible Solution D - Redirect to Passive Broker

An alternative approach might be to monitor heap use on the primary broker and kick off a second broker once the first is under heavy load.
Client connections (publishing and consuming) would required to be redirected to the secondary broker until the first broker recovers. This is
a kind of active-passive pair approach, indeed the secondary broker could be up all the time and simply redirected to as required. Rob
mentioned that AMQP 1-0 has the concept of redirect, so it may be something we could look at to inform the solution.

There are some questions around a redirect solution:

might require an ability to manually override on an incoing connection so that if broker 1 is maxed out due to a down consumer, on
restart that consumer can drain broker 1.
could the console be used to redirect connections - allowing operate control, or possibly using a JMX script or similar (with requried
MBean method support added) to allow us a cheap solution not broker oriented ?

Considerations

Where message order is important, only a solution which separated flows in pairs could be used
Failover ?
Management of the brokers might need some scripting such that they can be brought up & down as a pair, to at least black box the
operations cost
? Priority Queues ...

Java Client Test Coverage

Goal

This page aims to collect information about the current test coverage for the JMS client.
Note this doesn't cover unit tests as there are proper tools to analyse that. This is specifically focused on creating an inventory of our
systests, integreation tests etc.
Hopefully this can help us identify gaps, duplication etc..

Structure.

I haven't really thought about a structure yet, hoping to figure it out as we collect more content. For now I will just list the tests under specific
functional areas.

System Tests/Functionality

Connection

Test Class package notes

prefetch AMQConnection org.apache.qpid.test.unit.client testPrefetch()

heartbeat AMQConnection org.apache.qpid.test.unit.client testHeartbeat()

1.

2.

3.

4.
5.

Performance Tests

Interop Tests

ACL Design

Current ACL Design
Andrew Kennedy's Proposal For ACL v3
[Rajith Attapattu's Proposal For ACL v3]

andrew acl proposal

ACL Implementation

See also and for discussion on the object type and itsMethod Considered Harmful Method Considered Harmful Redux METHOD
implications.

Use Cases

Allow access to broker functions to be controlled by an ACL, with the checks being carried out independantly of the mechanism used
to access the broker. This would mean that a single permission would apply whether the queue was created when aCREATE QUEUE
user logged in and used it, or if that user connected to the broker via JMX or QMF and used the management operations to create
the queue.
Permissions must be definable at a virtualhost level, with fallback to global permissions. This allows access to be granted for
operations only on a certain host, while global operations such as broker administration can be defined at the global level. It also
allows default behaviour to be specified globally and then overridden on a per-host basis.
The ACL mechanism controls access to operations on particular objects for all users, if at least one user has a rule controlling
access to that operation on that type of object. This means that all users requiring access to a particular operation must be
configured. The default behaviour will be to deny access.
It should be possible for the addition of one access control rule to trigger the addition of other rules, to simplify creation of rulesets.
The behaviour of the access control mechanism should be configurable.

Plugin interaction

The plugins can return four different values - , , and . Since we can have two plugins of the same typeALLOWED DENIED ABSTAIN DEFER
looking at a particular access request, one for the virtual host and the other for global, the reults ineract as follows:

Host Global Result

ALLOWED any ALLOWED

DENIED any DENIED

ABSTAIN ALLOWED ALLOWED

ABSTAIN DENIED DENIED

ABSTAIN ABSTAIN ABSTAIN

ABSTAIN DEFER global

ABSTAIN none ABSTAIN

DEFER ALLOWED ALLOWED

DEFER DENIED DENIED

DEFER ABSTAIN host

DEFER DEFER global

DEFER none host

The and entries in the Result column indicate that the default answer for that plugin should be returned.host global

ACL File

The access control file consists of a series of rules, describing the permissions granted to users or groups for operations on object types, with
specific properties. these are all restricted to certain values, as illustrated by the following lists of tokens:

Permission

ALLOW, ALLOW_LOG, DENY, DENY_LOG

1.
2.

3.

4.

5.
6.
7.

Operation

ALL, CONSUME, PUBLISH, CREATE, ACCESS, CONNECT, BIND, UNBIND, DELETE, PURGE, UPDATE, (ADMIN ?)

ObjectType

ALL, VIRTUALHOST, QUEUE, TOPIC, EXCHANGE, BROKER, LINK, ROUTE, METHOD, (USER, LOG, CONFIG ?)

ObjectProperty

ROUTING_KEY, NAME, QUEUE_NAME, OWNER, TYPE, ALTERNATE, INTERNAL, NO_WAIT, NO_LOCAL, NO_ACK, PASSIVE,
DURABLE, EXCLUSIVE, TEMPORARY, AUTO_DELETE

The ObjectProperties are keys that are listed as pairs after an Operation/ObjectType combination. They be in thiskey = value must
format; a lone string is not accepted here. This is to make the ACL entries less ambiguous.

Allowed Combinations

The object types and operations are related, with only certain combinations allowed. The table below lists allowed combinations with . They
rows contain ObjectTypes and the columns Operations.

 CONSUME PUBLISH CREATE ACCESS BIND UNBIND DELETE PURGE UPDATE EXECUTE

VIRTUALHOST y

QUEUE y y y y

TOPIC y y y

EXCHANGE y y y y y

BROKER y

LINK

ROUTE

METHOD y y y

OBJECT y

See for more information on how and are intended to work.Method Considered Harmful Redux METHOD OBJECT

ACL Configuration

These are true/false properties that can be specified to confgure the ACL mechanism further, and would be added to the start of an ACL file.

transitive If true, the creation of ACLS, so that if, e.g. is permissioned, appropriate and CREATE QUEUE ACCESS VIRTUALHOST
 permissions would also be added.BIND EXCHANGE

defaultdeny Sets the default result to if true.DENIED
defaultallow Sets the default result to if true.ALLOWED
expand Expands synthetic objects, such as if true.TOPIC
controlled If there are no access controls on a particular object and operation, the result should be to abstain, wheras if the
controlled configuration property is true, the requestshould be denied.

Syntax

Whitespace is considered to be any ASCII byte with a value below 0x20, and is ignored when it occurs between tokens.
Continuations using the '\' character (ASCII 0x5c) are allowed anywhere on a line, and can consist of a blank line with a continuation
character as the lat non-whitespace token
Comments are line-style comments, and any text after an un-quoted '#' (ASCII 0x23) are ignored, including continuations. The '#'
charater may appear in a quoted string.
Quoted strings consist of any ASCII inside matching pairs of ''' or '"' (ASCII 0x27 and 0x22) characters, including any otherwise
special characters.
Tokens are case sensitive, but quoted strings .NOT ARE
The '=' (ASCII 0x3d) character is special, and is used to indicate property value assignment.
Wildcards are specified using the '*' (ASCII 0x2a) character in a property value string, which may be quoted.

The declarations are as follows, using some kind of grammar, with + and * having the usual regular expression meanings, parenthesis
denote grouping and brackets denote optional elements.

CONFIG (<config-property> '=' <TRUE | FALSE>) +
GROUP <group-name> (<username | group-name>) +
[<number>] ACL <permission> <username | group-name | ALL> <operation> [<object-type> (
<property-name> '=' <property-value>) *]

This allows a rather looser and more readable style for ACL files, while still retaining the ability to read the stricter files accepted by the C++

broker. Bear in mind that the group declarations are to be deprecated, in favour of an external directory service, using a plugin mechanism.

The initial <number> is used to allow rulesets to be created which allow indicidual rules to be enabled and disabled using an admin interface,
and an ACL file using numbered lines would be restricted to having increasing numbers per rule, although gaps would be allowed to enable
rules to be inserted later, again using an admin interface. This administrative interface would also allow saving of a modified ruleset and
re-loading.

Examples

Allow "adk@iterator.co.uk" Create Queue \
 Owner="adk@iterator.co.uk" Routingkey = "chocolate biscuits" \
 QueueName="kitten.*"

allow adk to create queues
Allow "adk@iterator.co.uk" Create Queue \
 Owner = "adk@iterator.co.uk" \
 Routingkey = "chocolate biscuits" \
 QueueName=kitten

allow adk access to this virtual host
110 ALLOW "adk@iterator" ACCESS VIRTUALHOST

allow creating temporary queues and queues with names matching adk.*
210 ALLOW-LOG \
 "adk@iterator" BIND EXCHANGE \
 routingKey="adk.*" \
 name="amq.direct" # allow adk.* queue bind to amq.direct
220 \
 ALLOW-LOG "adk@iterator" BIND EXCHANGE \
 routingKey="tmp.*" name="amq.direct"
230 ALLOW "adk@iterator" CREATE QUEUE name="adk.*" owner="adk@iterator"
240 ALLOW "adk@iterator" CREATE QUEUE temporary="true" owner="adk@iterator"

allow publish and consume of messages on the queues
310 ALLOW "adk@iterator" CONSUME QUEUE name="adk.*"
315 ALLOW "adk@iterator" PUBLISH QUEUE routingkey="adk.export#extra" # foo
320 ALLOW "adk@iterator" PUBLISH QUEUE name="adk.*"

default deny
910 DENY ANY ALL ALL

Method Considered Harmful

A lot of the object types and operations used in the ACL file are shared between the Java and C++ brokers and are non-contentious, since
they represent actual objects that exist in AMQP - broker, queue, exchange and so forth. What appears to be at issue is how to permission
extra funtionality in the broker, such as administration of user accounts or logging levels The C++ broker's 'METHOD' object is one
mechanism, and results in ACL lines that specify a single method or set of methods that can be executed, and does not convey whether
these are reading, writing or have other side effects on the broker. An example is shoen below:

ACL ALLOW adk UPDATE METHOD name=getLoggingLevel
ACL ALLOW adk UPDATE METHOD name=setLoggingLevel
ACL ALLOW adk UPDATE METHOD name=reloadLoggingConfig

This seems to be at the wrong level of abstraction. Looking at this in a general fashion, there are three things we wish to do to objects: get a
property, set a property and execute an operation. These can be mapped to READ, WRITE, EXECUTE or GET, SET, INVOKE, ACCESS,
UPDATE, ADMIN, and so on as operations. The next step would be to decide what the object type is that is being manipulated. I would be
happy for this to be one of the existing AMQP objects, including BROKER, since this follows the existing pattern of permissions. Another
point to note is that existing mechanisms such as JMX already have the conceptual split into these three types of action.

If we abandon the METHOD object in favour of existing object types, we still need to be able to permission such items as users and logging,
and I propose these are made part of the broker object, with the possibility of adding other, vendor-specific extensions too. This would result
in ACL lines as shown below, which would grant permission to view attributes of the logging subsystem, update those attributes and execute
other administrative actions. Finally, if there is a management schema change and the names of methods used change, or new methods and
attributes are added, the ACL file does not have to be changed, since the permissions relate to subsystems or extensions.

ACL ALLOW adk ACCESS BROKER extension=logging
ACL ALLOW adk UPDATE BROKER extension=logging
ACL ALLOW adk ADMIN BROKER extension=logging

or

ACL ALLOW adk ADMIN BROKER subsystem=acl

If we want to create an ACL file format that is usable across AMQP brokers, then the use of 'extension=<name>' or 'subsystem=<name>'
with a set of pre-defined names, say 'logging', 'users', 'configuration', and a naming convention to prevent clashes, such as 'x-<vendor>-*' for
vendor specific implementations or just 'x-*' for experimental extensions/subsystems seems appropriate.

Method Considered Harmful Redux

Method Madness

"Though this be madness, yet there is method in't."
Polonius, Hamlet Act 2, scene 2

Introduction

The main point of contention in the ACL debate seems to centre around the mechanism used to permission non AMQP entities, the current
 method is felt to be unsuitable. This document proposes an update to this syntax and describes exactly how it should beMETHOD

interpreted across brokers.

Access Control

The things that are being controlled or permissioned by entries in the access control list are objects that form part of the Qpid broker. These
entities could reasonably be said to be of the broker, although I don't feel that a tree-type structure is either helpful or necessarychildren
here, since there is no parallel in the Qpid or AMQP internals. A flat space has therefore been assumed, continuing currentobject type
behavior. These types of object have until now simply represented the major types of object that exist and are manipulable inside a broker.
The only addition is that of the broker itself, since there are some operations and actions that can only realistically be said to be performed
globally. This is the rationale behind such proposed ACL entries as:

ACL ALLOW robot ACCESS LOG
ACL DENY robot UPDATE CONFIG
ACL DENY kitten UPDATE USERS
ACL ALLOW kitten ADMIN LOG

The , and object types here represent subsystems or components or simply collections of management methods thatLOG CONFIG USERS
perform a similar set of tasks. They are actual broker objects, although (see later) they may be QMF classes, with their own managementnot
schema and package.

A different approach to access control for these management methods relies on the object type being used for permissioning,BROKER
giving rise to ACL entries as follows:

ACL DENY robot ACCESS BROKER
ACL DENY kitten UPDATE BROKER subsystem=logging
ACL ALLOW kitten ACCESS BROKER method=get*
ACL ALLOW kitten ACCESS BROKER method=invoke*
ACL ALLOW kitten MANAGE BROKER subsystem=users

This object type represents the entire runtime entity, and is in fact represented in the QMF management schema, with properties,BROKER
statistics and methods available. This is not meant to indicate a preference for QMF as a final reference point, it should be noted, rather this
is illustrative of the sorts of entities an access control object type could map to.

<class name="Broker">
 <property name="name" />
 <property name="systemRef" />
 <property name="port" />
</class>

Existing Syntax

The previous ACL entries would all be permissioned using the object type in the current C++ broker, assuming a logical extensionMETHOD
of the existing syntax. The problem with this syntax is that it is very closely coupled to the management framework, QMF. Also, the
granularity of the controls falls awkwardly between extremes, and requires too much specificity to enumerate all methods dealing with a
particular area of interest when controlling that type of access, and not distinguishing between methods on various differentgetName
managed objects. This makes it impossible to correctly permission access to multiple objects with similarly named methods. Also, since JMX
provides access to properties using a method call, a permission for that method would need to be created to allow access to aREAD
property, which blurs the distiction between methods and properties.

Mechanism versus Meaning

Since the current C++ implementation is based exclusively on QMF, only features supported and used by QMF are available. It is preferable
to have a mechanism-agnostic access control specification, since QMF and JMX will not be the only management entry-points for ever, with

SNMP and other industry standards available as well as future JEE development. Also, it should be possible to permission access in a
manner that does not depend on the version of the QMF schema or API, depending only on the existence or not of particular manageable
objects within the broker. This means that when a new method or attribute is added at an API change, or a method name is changed,
existing ACLS will have the same meaning as before. This semantic preservation is the aspect of the ACLs that is most important.

The existing object types all relate to the Qpid broker objects, and the best way to move forward is to maintain that relationship, and ensure
that all operations have the correct meaning and are controlled correctly in the broker, no matter how they are accessed. This means that an

 ACL entry would entail granting permission to view the properties of a queue via the QMF console, via a JMX consoleACCESS QUEUE
utility or the JMX API and by interrogating the queue over JMS or through the C++ AMQP client.

Operational Constraints

The operation is assumed here to map to some kind of read-only access. Typically in a software management system the followingACCESS
three types of operation are available:

Read - Access the contents of an attribute, statistic or property.
Write - Set the contents of an attribute or property.
Execute - Call a method or take an action or operation.

It is proposed that the existing operations are maintained, along with the mappings to object types they are allowed to manipulate (as
described in a previous text) and the three types described above are mapped as follows:

ACCESS - Read
UPDATE - Write
EXECUTE - Execute

ACCESS continues to describe simple, read-only property or attribute access, mapping nicely a JMX intent of INFO or a type ofget
operation. would be used for read-write access to properties, when the operation carried out is a simple change of value with noUPDATE
side effects. The new operation replaces the contentious or described previously, and more accuratelyEXECUTE ADMIN MANAGE
describes the execution or invocation of an administrative action or operation with a particular effect on the broker.

Brokerage

The object type is to be used to control access to any new set of features. For example, if it is desired to add an ACL entry that willBROKER
allow the group to read and write properties on the QMF managed object, and additionally to execute all methods that are present,robots Acl
this could be done as follows:

ACL ALLOW robots ACCESS BROKER package="org.apache.qpid.acl"
ACL ALLOW robots UPDATE BROKER package="org.apache.qpid.acl"
ACL ALLOW robots EXECUTE BROKER package="org.apache.qpid.acl"

If a logging subsystem was added, with the QMF management schema package defined as and methods such as org.apache.qpid.log
, , , are defined, along with properties like and setLoggingLevel getAvailableLoggingLevels reloadLogFile rollLogFile currentLevel
 then it could be permissioned this way:lastLogEntryTime

ACL ALLOW robots ACCESS BROKER package="org.apache.qpid.log"
ACL ALLOW robots UPDATE BROKER package="org.apache.qpid.log"
ACL ALLOW kitten EXECUTE BROKER package="org.apache.qpid.log" method="rollLogFile"
ACL ALLOW robots EXECUTE BROKER package="org.apache.qpid.log" method="reloadLogFile"
ACL DENY robots EXECUTE BROKER package="org.apache.qpid.log"

In this example, the group can only execute while (a member) can also execute , and the group hasrobots reloadLogFile kitten rollLogFile
read/write access to all properties and statistics. It should be obvious that there is scope for adding arbitrary new packages and then
permissioning them. Also, if the contents of the packages are well defined and they are suitably finely grained then it will mostly suffice to
permission at the package level for all operations and properties. This gives freedom to update APIs and add new methods without making
ACL files obsolete or causing security issues, since the of the ACL entries should be unchanged.meaning

Care will need to be taken with, for example, JMX method, which offers a level of indirection that could enable bypassing accessinvoke
checks. This is currently handled at a common JMX entry point, and should suffice at present.

Syntactic Sugar

In an attempt to divorce the ACL syntax from the mechanism further, it could also be possible to remove references to the package and use a
different naming scheme, which would have a mapping to QMF, JMX managed objects and any future management information repository.
This could work as follows, with mapping to the JMX MBean and a QMF package with a users UserManagement org.apache.qpid.users

 class. The change to the ACL syntax is trivial. Additionally, changing all properties to simply would standardise the syntaxUsers name
further, with only a small loss of readability.

ACL ALLOW kitten EXECUTE BROKER component="users" name="*"
ACL ALLOW kitten UPDATE BROKER component="users" name="fileName"

It is possible that another object could be chosen instead of , such as (however this gives the issue of changing theBROKER METHOD
meaning of existing files) but this would not change the discussion presented above. The only issue might be that it is cumbersome to add a

permission granting access to all management methods, properties and statistics, both read and write, at the same time. Even though
 will usually include permissions, two lines are needed (for separately) unless it is satisfactory for toUPDATE ACCESS EXECUTE EXECUTE

include (and hence) rights.UPDATE ACCESS

ACL DENY robot EXECUTE METHOD component="config" name="reload*"
ACL ALLOW kitten ACCESS METHOD component="config" name="*"

It could be pointed out that ought more correctly to read and similarly for , however it isACCESS METHOD ACCESS PROPERTY UPDATE
felt that the number of object types should be kept to a minimum, which is the purpose of this proposal.

Conclusion

The ACL changes described above are fairly simple, but should provide a sensible and easily extensible syntax that will allow both the Java
and C++ brokers to provide fine grained access control for custom components that are specific to each implementation without
compromising cross- platform file compatibility. The actual access and management mechanisms for the brokers do not impact the ACL
syntax, which remains agnostic, and also maintains its meaning through API upgrades and extensions without compromising platform
security.

There are several options for ACL file syntax describing access to methods controlling a (for example) logging mechanism, which are
summarised below:

Extra object type created for each set of management methods, with unique per-object set of properties. This is the least extensible
mechanism.

ACL ALLOW kitten EXECUTE LOG

Specify all method names to be permissioned as in the current C++ broker implementation, using as the object type. ThisMETHOD
does not allow property access to be permissioned or prevent name clashes in different managed object classes.

ACL ALLOW kitten UPDATE METHOD name="methodNameOne"
ACL ALLOW kitten UPDATE METHOD name="methodNameTwo"

Use or object type and specify the component or subsystem by an arbitrary name, with the option to specifyBROKER METHOD
down to individual methods by adding a wildcarded name pattern. Using in this way is close to the current C++ syntax.METHOD
Alternatively, the QMF package name could be used to identify the component. Different operations are used to describe access to
properties or attributes.

ACL ALLOW kitten EXECUTE BROKER subsystem=logging
ACL ALLOW kitten EXECUTE BROKER package="org.apache.qpid.log"

ACL ALLOW kitten EXECUTE METHOD component="log" name="reload*"
ACL ALLOW kitten UPDATE METHOD component="log"
ACL ALLOW robot ACCESS METHOD component="log"
ACL ALLOW robot EXECUTE METHOD component="acl" name="reload*"
ACL DENY robot EXECUTE METHOD component="config" name="reload*"
ACL ALLOW robot EXECUTE METHOD component="config"

The last described syntax is close to a preferred option, and incorporates features from recent discussion, althoughdev.qpid.apache.org
any updates or suggestions are welcome.

(this has the interesting/useful feature/bug of falling back to C++ broker syntax if the property is omitted. This would be legalNote component
in the Java broker, just not recommended.)

Post Scriptum

The following points should clarify some of the proposed features, however the syntax as described in the is intended toConclusion
represent the preferred usage.

In the C++ broker there exists a feature wherby plugins, uniquely identified by a schema package and a class name, can have ACLs applied
to them. This will also become available in the Java broker, and would be permissioned using the object type. This allows objectsOBJECT
that are external to the broker to be controlled. For the Java broker it is intended that the main class for a plugin would check with the security
manager using the Java package and class names as properties, as below.

ACL ALLOW kittens ACCESS OBJECT package="com.example.plugin" class="Example"

When management functions are being permissioned, a symbolic name for a logical grouping of related methods, properties, attributes and
operations is used to identify what is being controlled. This is identified using the property in the examples above. Thesecomponent
groupings will map onto JMX managed objects or MBeans, QMF management schemas, or some other form of mangement object. It is

intended that a particular broker implementation handles these mappings internally and ignores mappings that do not exist, such as logging
management on the C++ broker currently. It is also possible to offer finer grained control by specifying the property for the ACL entry,name
thus restricting the scope to a single method or property. It also be possible to specify other properties that have meaning for a paricularmay
broker implementation, thus maintaining backward compatibility. The list of possible property names should be fixed as part of the definition
of the ACL file format.

Andrew D Kennedy, , 2010-05-20andrew.international@gmail.com

AMQP Distributed Transaction Classes (C++)

Overview
This page describes the classes involved in handling distributed transactions in the C++ broker. The store plugins are not described; only the
classes in the broker proper are described here. The store plugin modules should have separate documentation.

Much of the code is common for local/one-phase transactions; however, this document is primarily concerned with distributed/two-phase
transactions.

The basic approach taken in the C++ broker is that, once a transaction is begun, enqueue/dequeue commands received from a client are
recorded in a list of operations associated with the transaction but not actually carried out until the transaction is committed (one phase) or
prepared (two-phase).

Classes
These classes are all in the namespace.qpid::broker

Record-Keeping Classes

DtxManager. Maps xid to a DtxWorkRecord.
DtxWorkRecord. Refers to work to be done under the transaction using a vector of DtxBuffer objects.

How could this have multiple DtxBuffer objects associated? When dtx-start is called with the join flag set, the
subsequent work is added to a set of operations previously performed (perhaps on a different session). [Gordon]

DtxBuffer. Per-xid list of operations requested under the transaction. The operations are derived from TxOp. [As above, each buffer
contains the operations between one pair fo start/end calls. Where end has the suspend flag set and a subsequent start has the join
flag set, a new buffer will be populated and associated with the xid - Gordon]
TxPublish. Publish (enqueue) operation record. Has a message and list of Queues the message will be available on; message
routing is done when the publish command is received although the actual delivery to the queue(s) happens when the transaction is
prepared.
TxAccept. Accept (dequeue) operation record. The point at which a dequeue is recognized depends on acceptance policy; it may be
on delivery/ack or when message is explicitly accepted.

Operation Classes

SessionAdapter. Handles operations on a session; has a SemanticState.
SemanticState. Implements the handling of transactional commands start, publish, etc.
RecoveryManagerImpl. Involved in recovering prepared distributed transactions. This is a target that the store module calls to rebuild
the record-keeping objects above. The primary methods in transaction recovery are:
recoverTransaction. Associate an xid with a TPCTransactionContext. Returns a RecoverableTransaction.
RecoverableTransaction::enqueue, dequeue. Rebuilds the records of what message enqueue/dequeue operations have been
prepared and may be committed or rolled back. [The current recovery of prepared transactions loses the original position of
consumed messages in the queue, thus if the transaction is then rolled back, the messages may be requeued in the wrong place -
Gordon].

API Error Conditions
Types of errors that are possible:

connection failure (after connection has been established)

connection cannot be established

missed heartbeats

authentication errors

authorisation errors

queue not found

exchange not found

other address validation errors (e.g. exchange is of different type to that specified)

session terminated by management

connection terminated by management

broker side queue limit breached

exclusive subscriber violation

feature not supported exception from broker (e,g, unsupported exchange type)

protocol violation errors (by which I mean any sort of framing error or problem that is a result of a bug in the library or broker rather
than being an invalid command by the application)

internal error in broker, i.e. some as yet unidentified bug, misconfiguration or environmental problem

internal error in client: same thing for client-side misconfiguration or bugs.

Exceeded client-side limitation: a client-side queue is over-full. E.g. user has not respected flow control limits on the client side.

Transaction related errors - not sure what the set is, probably just copy from spec exceptions.

Impact of errors:

session no longer valid[1]

connection no longer valid[1]

transaction aborted

no longer term impact, specific call simply failed

[1] May want to distinguish between amqp 0-10 session and sessions in the messaging api here. E.g. even if a particular condition kills the
amqp 0-10 session/connection, that may not prevent recreating the session or reconnecting.

Broker Management QMF Coverage

Broker Management via QMF
As part of the effort to bring more commonality between the Java and C++ brokers I have been attempting to implement QMF management
in the Java Broker. Currently the Java Broker can process the majority of the QMF Management commands (although it will not accept

 Ultimatlely the aim must be to allow management and configuration of the brokers using the same set of tools.agents connecting to it).

In implementing QMF management I have noted a number of questions - some general and related to the nature of QMF, some more
specific to the particular set of entities and methods in the management schema for the Qpid (C++) Broker, and some simply relating to the
deifnition of individual properties or statistics. I have also noted where I think additions to the existing schema would be useful.

Currently, even if fully implemengted, management through QMF would not be sufficient to duplicate the existing management functions
available in the Java Broker (e.g. through the JMX console).

General Comments on the Schema

Why are there no methods to create entities? Although one can use AMQP commands to accomplish this task it means you have to
switch between two distinct command sets to manage the broker; it also means you cannot simply piggyback the QMF management
over other transports. (further, for AMQP 1-0 we are removing "management" commands from the core protocol)

GS: See QPID-2317; I'd like using this to be as simple as sending a correctly formatted/encoded message to a special address. I believe with
QMFv2 that will indeed be the pattern. It is a useful addition as the new APIs in c++ and python aim to be be protocol independent and thus
do not expose the 0-10 declare methods.

There are no tools for inspecting the contents of messages within the broker. Where a message is stuck on the queue, it is useful to
be able to inspect its properties and/or content.

GS: You could do this by browsing the queue (though there is no support then for moving or modifying a message). A scheme that avoids
duplicating too much of the standard messaging behaviour would be good.

RG: the problem with that is that it requires you to be on an AMQP 0-10 connection. I would like it to be that we can conduct QMF over other
protocols, namely AMQP0-9 or JMX. I understand your concern about duplicating functionality... as you already mentioned, moving can't be
done easily anyway, but I see this inspection somewhat differently to browsing... and (in particular) without some form of server side selector
I don't think the C++ broker could do what I am talking about (pick an arbitrary message from the queue and inspect it).

Values with High/Low watermarks... the historic low for these will almost invariably be 0, so what is the point?

Absolute times are specified in nanoseconds... this is "unusual" and it's pretty much impossible to get an accurate absolute time in
nanoseconds. Milliseconds for absolute time and nanoseconds for deltas would make more sense.

The model and methods are not designed to cope with a broker which can support multiple virtual hosts.

It would be nice to have the ability to configure dynamic event configuration... i.e. the ability to say "publish an event to this address

every time this condition is met". You can build this on top of the statistic updates, but it requires you to have a fairly frequent
management publish period and a process actively monitoring the output.

* GS: I'm very much in favour of aligning the two brokers. We would however need to come up with a mechanism for allowing the c++ broker
to retain backwards compatibility with a schema as currently defined. E.g. support for multiple schemas?

The java broker exposes an interface for conducting live User Management, eg add/delete/view users, set password, set
management access rights (read only, read/write, or admin which is read/write plus access to the more sensitive management
mbeans such as UserManagement itself). It would be good to expose this type of management via QMF as well.

The Java broker exposes an interface for viewing and adjusting its logging levels while running. This too would be useful to expose
via QMF.

General comments on QMF

have a generic way to be able to create new entities,
have a way to modify the mutable properties of existing entities.
when sending schema, where a particular value is of a restricted domain (e.g. has min and/or max values; or takes a value from a
restricted enumerated set) then that restricted domain is communicated.
add ability to "reset" statistic counters... This would actually make low watermark counts useful.
add ability to query for objects based on criteria (e.g. get me all exchanges whose vhostRef is X)

Comments on Individual Schema Classes

System

Properties

General: what is this supposed to represent - the machine the broker is running on, or the process that is contains the broker?

Name Type Description C++ Java Notes

systemId uuid Y Is this a qpid specific property?

osName sstr Operating System Name Y

nodeName sstr Node Name Y What exactly is this supposed to be... hostname?

release sstr Y What exactly is this supposed to be... release of the OS?

version sstr Y What's the difference between this and release?

machine sstr Y What is this?

Broker

Properties

Name Type Description C++ Java Notes

systemRef objId System ID Y

port uint16 TCP Port for
AMQP Service

 Y A broker may be listening on more than one port - I suggest that we want to
have a new entity to represent listening ports/transports

workerThreads uint16 Thread pool
size

 Y

maxConns uint16 Maximum
allowed
connections

 N Java broker currently doesn't support a connection limit

connBacklog uint16 Connection
backlog limit
for listening
socket

 N What is this? It "defines the maximum length to which the queue of pending
connections for sockfd may grow (from man page for the listen() system call"

stagingThreshold uint32 Broker stages
messages
over this size
to disk

 N Java Broker does not currently support stagingThe 'staging' functionality is
poorly conceived on the c++ broker and needs reviewed; it is really just about
handling very large messages by not requiring that the full contents ever be
held in memory

mgmtPubInterval uint16 Interval for
management
broadcasts

 Y

version sstr Running
software
version

 Y

dataDir sstr Persistent
configuration
storage
location

 Y Java Broker currently displays the value of $QPID_HOME here

Statistics

Name Type Description C++ Java Notes

uptime deltaTime Y Why have this as a statistic that is going to constantly change? start time as a property
would do equally well

Sggested Additions

number of current / high watermark of connections

Methods

Signature Description C++ Java Notes

(uint32 sequence, lstr body)
echo (uint32 sequence, lstr
body)

Request a
response to test
the path to the
management
broker

 Y

void connect (sstr host, uint32
port, bool durable, sstr
authMechanism, sstr username,
sstr password, sstr transport)

Establish a
connection to
another broker

 Y Doesn't allow a vhost to be specified, nor is transport defined (is ssl a
 transport?) yes, ssl would be a transport as would e.g. rdma. Perhaps

a URL would be simpler?

void queueMoveMessages (
sstr srcQueue, sstr destQueue,
uint32 qty)

Move messages
from one queue
to another

 N Queues are local to vhosts, not brokers... since you may have queues
with the same name on two separate vhosts on the same broker - this
method cannot be implemented on a broker which supports multiple
vhosts. Should also add an arguments map to allow filters to be
applied

Suggested Additions

ability to create virtual hosts
shutdown/restart broker?
reload (security) configuration.

Agent

The Java Broker does not currently support the Agent class

Properties

Name Type Description C++ Java Notes

connectionRef objId N

label sstr Label for agent N

registeredTo objId Broker agent is registered to N

systemId uuid Identifier of system where agent resides N

brokerBank uint32 Assigned object-id broker bank N

agentBank uint32 Assigned object-id agent bank N

Vhost

Properties

Name Type Description C++ Java Notes

brokerRef objId Y

name sstr Y

federationTag sstr Y

Statistics

Suggested Additions

number (and high watermark) of queues/exchanges
number (and high watermark) of connections

Methods

Suggested Additions

create queue
create exchange
create binding
delete queue
delete exchange
delete this vhost

Queue

Properties

Name Type Description C++ Java Notes

vhostRef objId Y

name sstr Y

durable bool Y

autoDelete bool Y

exclusive bool Y

arguments map Arguments supplied in queue.declare Y

altExchange objId Y

Statistics

Name Type Description C++ Java Notes

msgTotalEnqueues count64 Total
messages
enqueued

 Y

msgTotalDequeues count64 Total
messages
dequeued

 Y

msgTxnEnqueues count64 Transactional
messages
enqueued

msgTxnDequeues count64 Transactional
messages
dequeued

msgPersistEnqueues count64 Persistent
messages
enqueued

 Y

msgPersistDequeues count64 Persistent
messages
dequeued

 Y

msgDepth count32 Current size
of queue in
messages

 Y Is this with or without unacked messages (i.e. does it include all
messages for which the dequeue has not yet been committed)?It

 includes unacked messages
Also would seem to make sense to provide high watermark for queue
depth (bytes and msg)GS: +1 on high watermark for queue depth;
would be very useful

byteDepth count32 Current size
of queue in
bytes

 Y

byteTotalEnqueues count64 Total
messages
enqueued

 Y

byteTotalDequeues count64 Total
messages
dequeued

 Y

byteTxnEnqueues count64 Transactional
messages
enqueued

byteTxnDequeues count64 Transactional
messages
dequeued

bytePersistEnqueues count64 Persistent
messages
enqueued

 Y

bytePersistDequeues count64 Persistent
messages
dequeued

 Y

consumerCount hilo32 Current
consumers on
queue

 Y

bindingCount hilo32 Current
bindings

 Y

unackedMessages hilo32 Messages
consumed but
not yet acked

 It would seem more useful on a per subscription basis (so we can see
which subscriptions are holding on to messages without acking them).
GS: I agree

messageLatency mmaTime Broker latency
through this
queue

 This generates a number of statistics (Max/Min/Avg/Samples) each of
which is said to be measured in nanoseconds. What does Samples
mean in this context?this isn't actually implemented on c++ yet

Suggested Additions

age of oldest message on the queue (and high watermark),
high watermark for message size
high watermark for queue depth (bytes)
high watermark for message count
messages/bytes expired due to TTL

Methods

Signature Description C++ Java Notes

void
purge (
uint32
request)

Discard all or
some
messages on
a queue

 Y Would be nice to add an arguments map so that filters could be supplied. Also making request
an IO parameter so you can return how many messages were purged. Finally are the
messages supposed to be purged from the head, the tail or randomly throughout the queue?

Suggested Additions:

mechanisms to move / copy messages to another queue (with filters to allow specifying arbitrary messages, not first X msg)
rename this queue
delete this queue
mechanism to inspect messages on the queue

Exchange

Properties

Name Type Description C++ Java Notes

vhostRef objId Y

name sstr Y

type sstr Y

durable bool Y

autoDelete bool Y

altExchange objId Y

arguments map Arguments supplied in exchange.declare

Statistics

Name Type Description C++ Java Notes

producerCount hilo32 Current producers on
exchange

N N How is this supposed to be calculated? RGem: This is not actually
implemented on the C++ broker either

bindingCount hilo32 Current bindings Y

msgReceives count64 Total messages received Y

msgDrops count64 Total messages dropped (no
matching key)

 Y

msgRoutes count64 Total routed messages Y

byteReceives count64 Total bytes received Y

byteDrops count64 Total bytes dropped (no
matching key)

 Y

byteRoutes count64 Total routed bytes Y

Methods

Suggested Additions

rename
set AlternateExchange
delete

Binding

Properties

Name Type Description C++ Java Notes

exchangeRef objId Y

queueRef objId Y

bindingKey sstr Y

arguments map Y

origin sstr Y definition would be good... why is this not in "arguments" (since that is how it is set)?

Statistics

Name Type Description C++ Java Notes

msgMatched count64 Y

Methods

Suggested Additions

delete

Subscription

Properties

Name Type Description C++ Java Notes

sessionRef objId Y

queueRef objId Y

name sstr Y

browsing bool Y is this supposed to be a pre/non acquire indicator? Is this true only when
pre-acquiring and accept-mode is none?This is true of the acquire-mode was
not-acquired (for 0-10). It is independent of the accept-mode which is exposed via the
acknowledged property

acknowledged bool Y is this simply accept-mode = explicit?yes

exclusive bool Y

creditMode sstr WINDOW
or CREDIT

 Y

arguments map Y

Statistics

Name Type Description C++ Java Notes

delivered count64 Messages delivered Y

Suggested Additions

available credit
unacknowledged msg/bytes
delivered bytes

Methods

Suggested Additions

delete

Connection

Properties

Name Type Description C++ Java Notes

vhostRef objId Y

address sstr Y Is this the local or remote address? Whichever, we
 should also have the other one. It is the remote

address

incoming bool Y

SystemConnection bool Infrastucture/ Inter-system
connection (Cluster, Federation,
...)

 Y

federationLink bool Is this a federation link Y

authIdentity sstr authId of connection if
authentication enabled

 Y

remoteProcessName sstr Name of executable running as
remote client

 These are a subset of the clientProperties sent by the
client - should we not just show the client Props?

remotePid uint32 Process ID of remote client

remoteParentPid uint32 Parent Process ID of remote client

Suggested Additions

vhost
server/client properties maps
protocol version

Statistics

Name Type Description C++ Java Notes

closing bool This client is closing by management request Why is this a statistic???

framesFromClient count64

framesToClient count64

bytesFromClient count64

bytesToClient count64

Suggested Additions

attached sessions (with high watermark)

Methods

Signature Description C++ Java Notes

void close ()

Link

Properties

Name Type Description C++ Java Notes

vhostRef objId Y

host sstr Y

port uint16 Y

transport sstr Y What are the valid transports? at present, tcp, rdma and ssl(which is over tcp)

durable bool Y

Suggested Additions

remote vhost

Statistics

Name Type Description C++ Java Notes

state sstr Operational
state of the
link

 Are the valid states defined anywhere? c++ broker currently includes the following
states: WAITING, CONNECTING, OPERATIONAL, FAILED, CLOSED, PASSIVE (from

 Link.h)

lastError sstr Reason link is
not operational

Methods

Signature Description C++ Java Notes

void close ()

void bridge (bool durable, sstr src, sstr dest, sstr key, sstr tag, sstr excludes, bool
srcIsQueue, bool srcIsLocal, bool dynamic, uint16 sync)

Bridge messages
over the link

 Y

Bridge

Properties

Name Type Description C++ Java Notes

linkRef objId Y

channelId uint16 Y

durable bool Y

src sstr Y

dest sstr Y

key sstr Y

srcIsQueue bool Y

srcIsLocal bool Y

tag sstr what is this and what does it do? It is used for loop detection and is the value to be
used for qpid.trace.id on the subscription queue

excludes sstr what is this and what does it do? Also used for loop detection and is the value to be
used for qpid.trace.excludes on the subscription queue

dynamic bool Y

sync uint16

Methods

Signature Description C++ Java Notes

void close ()

Session

Properties

Name Type Description C++ Java Notes

vhostRef objId Y

name sstr Y

channelId uint16 Y

connectionRef objId Y

detachedLifespan uint32

attached bool Y

expireTime absTime

maxClientRate uint32

Suggested Additions

transactional mode

Statistics

Name Type Description C++ Java Notes

framesOutstanding count32

TxnStarts count64 Total transactions started Are these supposed to be tx or dtx transactions? or either

TxnCommits count64 Total transactions committed

TxnRejects count64 Total transactions rejected

TxnCount count32 Current pending transactions

clientCredit count32 Client message credit

Suggested Additions:

subscription count/watermark
unacked messages/bytes

Methods

Signature Description C++ Java Notes

void solicitAck ()

void detach ()

void resetLifespan ()

void close ()

Java Client Design

Client Design

This page seeks to capture the current state of the Java client and serve as a place to discuss future changes.

Current Design

Change Proposals.

0.6 Java Client Dispatcher Changes

0.6 Java Client Dispatcher Changes

Java Client Dispatcher Changes.

Investigation of has highlighted a race condition between the Dispatcher and the clients request to rollback.QPID-1871

Problem Summary
Operation Details
Code Problem
Further Details
Comment Responses

Problem Summary

The problem here is that the Dispatcher has the ability to hold on to a message so when the rollback
process is believed to have completed the then rejects the final message AFTER the Dispatcher TxRollback
so that one message gets sent ahead of the other messages. The reject is dropped as the message has been
resent. This is specific to the Java Client causing the Java Broker to return messages out of order. This may be the reason that the

 has been disabled. It is not clear currently if this will also affect the CPP broker. Further investigation is in required.RollbackOrderTest

Operation Details

Due to the way that the AMQSession.Dispatcher is paused when a rollback operation is in progress it is possible that the Dispatcher thread is
'holding' a message for dispatch. The main loop of is shown here:AMQSession.Dispatcher

 (!_closed.get() && ((disp = (Dispatchable) _queue.take()) !=))while null
 {
 disp.dispatch(AMQSession.);this
 }

The problem is highlighted in the call below (which is the result of on an). If the dispatchMessage disp.dispatch() UnprocessedMessage
 is in the process of dispatching messages when a second thread calls rollback then the connection will be stopped and theDispatcher

dispatcher can remove a message from and then stop in the _queue dispatchMessage

 void dispatchMessage(UnprocessedMessage message)private
 {
 deliveryTag = message.getDeliveryTag();long

 (_lock)synchronized
 {
 try
 {
 (connectionStopped())while
 {
 _lock.wait();
 }
 }
 (InterruptedException e)catch
 {
 // pass
}

 (!(message CloseConsumerMessage)if instanceof
 && tagLE(deliveryTag, _rollbackMark.get()))
 {
 rejectMessage(message,);true
 }
 else
 {
 (_messageDeliveryLock)synchronized
 {
 notifyConsumer(message);
 }
 }
 }

 current = _rollbackMark.get();long
 (updateRollbackMark(current, deliveryTag))if
 {
 _rollbackMark.compareAndSet(current, deliveryTag);
 }
 }

When the connection is resumed the deliveryTag of the current message will be 'less than or equal' to the as this has been set_rollbackMark
to the highest deliveryTag received prior to rollback.

https://issues.apache.org/jira/browse/QPID-1871

1.
2.

 _rollbackMark.set(_highestDeliveryTag.get());

There are no guards in the code to stop the IO layer adding a new message to whilst rollback is in progress. However, both 0-8 and_queue
0-10 ensure that message flow has stopped whilst recovery is processed. The 0-8 sets ChannelFlow=false and waits for the Ok, in 0-10 the
consumers are stopped and a sync performed.

Code Problem

The investigation of this problem has highlighted a two areas which need to be addressed:

The ability to ensure the dispatcher is not holding a message.
The ability to confirm when the dispatcher will not process any more messages.

How the holds a messageDispatcher

The call is guaranteed never to return null and once we have entered the call there is no way to stop the Dispatcher._queue.take() take()

 (!_closed.get() && ((disp = (Dispatchable) _queue.take()) !=))while null

Hence we perform the stop as soon as possible after the , but this results in us holding on to a message.take()

Ideally we need to be able to stop the whilst it is in the method.Dispatcher take()

How the can keep processing.Dispatcher

The is currently uses the call to suspend its activities when the connection has been marked as stopped.Dispatcher connecitonStopped()
However, we need to know that the has actually hit this section otherwise we need to guarantee that the is empty.Dispatcher _queue

 (_lock)synchronized
 {
 try
 {
 (connectionStopped())while
 {
 _lock.wait();
 }
 }
 (InterruptedException e)catch
 {
 // pass
}

Having the signal that it has stopped processing will allow us to know that we have hit the stopped state. However, this will meanDispatcher
that we have the opportunity to process one extra message AFTER the rollback command has been requested.

Further Details

After a discussion with Rafi/Rob on the recent Python changes expending effort in refactoring the client is probably not worth the effort. If the
client message delivery were re-written to mirror the approach taken in the Python codebase then it would be simplier and easier to reason
about. As a result I have devised a much smaller, though slightly ugly approach that will address our immediate rollback issues. The
approach can be found .here

Comment Responses

User Comment via Response

rhs AMQSession.syncDispatchQueue is used in 0-10 for this email This will not work if the dispatcher is performing the
rollback (Deadlock).
Also we need to stop processing the messages
immediately and not allow any further processing.

rhs Agree the client is badly in need of some improvements in
maintainability and readability, however in this particular case I
don't think moving the rollback processing from one thread to
another actually improves the situation significantly.

email It is not so much moving from on thread to another but
from moving from the AMQSession / Dispatcher objects to
just the Dispatcher.

rhs I suspect in order do this properly we really need to stop
thinking in terms of code being associated with a given thread,
and think instead about what locks we have, what data
structures those locks protect, and which locks need to be
held in order to execute a given piece of code.

email The focus of this change was to consolodate the
operations on the received messagse. I would like to see a
clean interface where messages are passed in for for
dispatching. The cleaning operations should then be full
contained in that interface not in a couple of locations as it
is currently.

rhs Really we need to be able to articulate exactly what locks the
client has, what data structure(s) each lock protects, and what
order should be used to acquire multiple locks when
necessary.

email Agreed, documenting what we have and how it works
would be very useful for this discussion.

0.6 Java Client Dispatcher Changes - Details

Approach to addressing Dispatcher issues.

Looking at the current rollback implementation we have two different approaches. One for 0-8 and one for 0-10. The change is being driven
because the 0-8 has a race condition causing message ordering of a single message to change. The 0-10 implementation works for the

 case but has a deadlock in the case.receive() onMessage()

Recent work in the Python client would suggest that the better approach to implementing a client would be to use fewer locks and to remove
the distinction between the and the cases. Putting the Message Listener thread in to the application space brings aonMessage() receive()
large amount of simplification as there is no difference between the synchronous() and the asynchronous() cases. Thisreceive() onMessage()
change however is much larger than can reasonably be scoped in to 0.6.

So given that the desired solution is to large and we have a solution that works for the synchronous 0-10 case the simplest approach is to
address the race condition and then move the logic up to be shared between 0-8 and 0-10.

How the 0-10 synchronous approach addresses rollback.
Nature of deadlock
Steps to address issue.
Other usages of to investigatesyncDispatchQueue()
Changes to 0-8 code path to use the 0-10 rollback functionality.
Potential improvements.

How the 0-10 synchronous approach addresses rollback.

To ensure that all the received messages have been processed, the session is stopped and then a special message is added to the
IO/Dispatcher that the caller can wait to be processed. This is done in _queue syncDispatchQueue()

syncDispatchQueue()

 void syncDispatchQueue()
 {
 CountDownLatch signal = CountDownLatch(1);final new
 _queue.add(Dispatchable() {new
 void dispatch(AMQSession ssn)public
 {
 signal.countDown();
 }
 });
 try
 {
 signal.await();
 }
 (InterruptedException e)catch
 {
 RuntimeException(e);throw new
 }
 }

This is tested via RollbackOrderTest.testOrderingAfterRollback()

Nature of deadlock

The problem is that the test only covers calling the synchronous receive(). The addition of a test thattestOrderingAfterRollbackOnMessage()
calls from the Dispatcher Thread highlights the deadlock. When the Dispatcher Thread calls it places anrollback() syncDispatchQueue()
entry on then for it to be processed. However, the Dispatcher Thread is the thread that does the processing so suspending it_queue awaits()
means that the entry will never be processed.

Steps to address issue.

A similar issue has already occurred and been addressed. The method performs a check to see if it is thestartDispatcherIfNecessasry()
Dispatcher thread.

1.
2.
3.

AMQSession.startDispatcherIfNecessary()

 void startDispatcherIfNecessary()
 {
 //If we are the dispatcher then we don't need to check we are started

 (.currentThread() == _dispatcherThread)if Thread
 {
 ;return
 }
 ...

The change to the is to only do the if the current thread is not the Dispatcher. If the thread is the DispatchersyncDispatcherQueue() await()
thread then we should proceed to process the contents of ._queue

As long as the rollback mark is correctly set before we call then the messages in the will be correctlysyncDispatchQueue() _queue
rejected/released. After that the rollback can proceed as before by calling . There is no danger of having a singledispatcher.rollback()
message stuck on the Dispatcher thread as we just ensured that queue was fully processed.

The processing of the may vary from the normal run as we cannot allow any message to be dispatched to the consumer. So whilst_queue
the should cover all messages in the we should also reject/release any other message in the queue rather than_rollbackMark _queue
dispatch it to a consumer. It is not expected that we would have any other messages in the queue however, we should ensure that this error
case is covered.

Other usages of to investigatesyncDispatchQueue()

Searching for usages of yields three hits:syncDispatchQueue()

AMQSession failoverPrep()
AMQSession_0_10.releaseForRollback()
BasicMessageConsumer_0_10.getMessageFromQueue(long)

They are all currently in the 0-10 codebase (as expected) there is nothing in the changes that will affect the other two usages; failoverPrep()
and . Only has the possibility of being called from and hence being subjectgetMessageFromQueue(long) releaseForRollback() onMessage()
to the new logic. is part of the JMS calls and is called from the IO layer when failovergetMessageFromQueue(long) receive() failoverPrep()
needs to occur.

Changes to 0-8 code path to use the 0-10 rollback functionality.

Currently is called from the method:releaseForRollback() AMQSession.rollback()

AMQSession.rollback()

 void rollback() JMSExceptionpublic throws
 {
 ...
 releaseForRollback();

 ...

In the 0-10 code path the following sync and rollback of the is done before it performs message release.dispatcher

0-10.releaseForRollback()

 void releaseForRollback()public
 {
 startDispatcherIfNecessary();
 syncDispatchQueue();
 _dispatcher.rollback();
 ...

If these step are brought up to then the 0-8 and 0-10 components need only perform their block rejects/release, andAMQSession.rollback()
the 0-8 path need not call .AMQSession.rollback()

Potential improvements.

Part of the goal of doing this, less than elegant, solution is to share as much code between 0-8 and 0-10 as possible. While this will align the
process of performing rollback the method of recording the deliveryTags of delivered messages is still duplicated between the two protocols.
0-10 uses and 0-8 uses . Attempting to consolidate these may not be needed but they both perform_txRangeSet _deliveredMessageTags
the same function so would be beneficial to the client to investigate if the RangeSet could be used in the 0-8 code path.

Qpid extensions to AMQP

Overview

This page is an attempt to collect in a single place all the extensions that have been made (thorough the use of arguments/options/tec.) to
AMQP across the Qpid Java and C++ Brokers.

Ultimately the aim is to try to get both brokers implementing as much common functionality as possible through common extensions - and to
advertise which extensions are available in a common way, so that clients can take advantage of functions that are present (or work around
functions that are not).

Connection

Connection.Start

Options are carried in the server-properties field

Name C++ Java Description

qpid.federation_tag Y Y

Connection.Start-Ok

Options are carried in the client-properties field

Name C++ Java Description

qpid.client_pid Y N Allows the process id of a client to be reported by mgmt tools

qpid.client_ppid Y N Allows the parent process id of a client to be reported by mgmt tools

qpid.client_process Y N Allows the process name of a client to be reported by mgmt tools

Session

???

Exchange

Exchange.Declare

Name C++ Java Description

qpid.ive Y N Specifies 'initial value exchange' behaviour is desired

qpid.msg_sequence Y N Requests that the exchange sequences all messages routed through it and adds the sequence
number to the message headers

Binding

Exchange.Bind

Options are carried in the arguments field

Name C++ Java Description

qpid.fed.origin Y Y

x-filter-jms-selector Y* (Java Broker topic exchange only currently) add a JMS Selector to the binding to filter messages
against an SQL style query

Queue

Queue.Declare

Options are carried in the arguments field

Name C++ Java Description

no-local Y Specifies that the queue should discard any messages enqueued by sessions on the
same connection as that which declares the queue

qpid.policy_type Y N Valid values "reject", "flow_to_disk", "ring", "ring_strict"

qpid.max_size Y N Defines the maximum number of messages that a queue can contain before the action
dictated by the policy_type is taken.

qpid.max_count Y N Defines the maximum size of message data (in bytes) that a queue can contain before
the action dictated by the policy_type is taken.

qpid.file_count Y N This is really a property of a particular store implementation (sets the number of files to
use for the queue's 'journal')

qpid.file_size Y N This is really a property of a particular store implementation (sets the size of the files to
use for the queue's 'journal')

qpid.last_value_queue Y N Enables last value queue behaviour

qpid.last_value_queue_no_browse Y N Enables special mode for last value queue behaviour (see QPID-2104)

qpid.msg_sequence Y N Causes a sequence number to be added to headers of enqueued messages

qpid.queue_event_generation Y N Causes an event to be generated for enqueues and dequeues, currently used for
asynchronous state replication

qpid.trace.id Y Y Adds the given trace id as to the application header "x-qpid.trace" in messages sent
from the queue

qpid.trace.excludes Y Y Does not send on messages which include one of the given (comma separated) trace
ids

x-qpid-priorities Y Defines the number of distinct priority levels supported by the queue

x-qpid-maximum-message-age Y Specifies that if the oldest message on the queue gets above this age then alerts
should be sent

x-qpid-maximum-message-size Y Specifies that if the queue gets above this size (in bytes) an alert should be sent

x-qpid-maximum-message-count Y Specified that if the queue gets above this size (in message count) an alert should be
sent

x-qpid-minimum-alert-repeat-gap Y Specified the minimum time gap between consecutive alerts

x-qpid-capacity Y Defines the size of the queue in bytes at which flow control on producers will be
brought into affect

x-qpid-flow-resume-capacity Y Defines the size on bytes of the queue when flow control will be rescinded

Subscription

Message.Subscribe (Basic.Consume in 0-8/0-9)

Name C++ Java Description

x-filter-jms-selector Y add a JMS Selector to the subscription to filter messages against an SQL style query

x-filter-no-consume Y (0-8/0-9 only) Implements browsing for 0-8/0-9 - messages sent on the subscription are not acquired

x-filter-auto-close Y (0-8/0-9 only) The server closes the subscription when the queue becomes empty

Qpid Java Broker - Guidance for 64Bit VM

User Guidance for large heaps using 64Bit VM

Background

The Qpid Java Broker's performance and scalability is bound by the availability of heap to hold in flight data and message references
particularly for transient only brokers (i.e. those using the MemoryMessageStore). Historically, we have been limited to ~3GB of useable
heap memory.

Using a 64Bit VM opens this up, with increased addressable memory space. We performed testing on a variety of heap sizes, to provide user
guidance on utilising a 64Bit VM.

Testing/Results

Heap Size & Broker Performance

The testing looked at two areas performance and cpu usage whilst increasing the heap up to 18GB.

Testing has shown that a 6GB heap performs very similarly to a 3GB Heap on the 32Bit VM so if your storage requirements are just above
the 3GB limit then there should be no impact to moving to a 6GB 64Bit Heap. Performance/throughput is largely similar.

Heap Size & Max Message

The maximal performance testing was performed with heaps ranging up to 18GB. This allows a 6 fold increase in the amount of transient
messages that the broker can hold.

Testing with 32KB messages showed that over 180,000 messages can safely be stored using an 18GB heap with in-memory storage (i.e.
transient only broker). Depending on your usage pattern and volumes the impact of using a large heap is an approximate drop in
performance of 2.5% for every 1GB over 6GB for point to point (single publisher single consumer) and 3.3% for publish & subscribe (single
publisher to 5 consumers).

For a broker backed with a BDB persistent store (BDBMessageStore) then the number of messagses that can be stored in the broker is
bound instead by available disk. We tested up to 500,000 messages in a 256MB heap successfully retained.

Heap Size & CPU Utilisation

During both point to point and publish & subscribe testing the CPU usage scaled linearly with the additional data stored in the broker.

Testing has shown that for every extra 6GB approximately one additional core is required for GC processing, housekeeping tasks, etc. So if
your current testing shows you need 3 cores then to use a 12GB heap this requirement would increase to 4 cores.

Additional Test Info

Testing has been performed on a 64Bit VM with a variety of Xmx values.

Testing was performed on a 8-way server with 32GB of RAM using JDK 1.6.0_18(b07).

Download

Production Releases
These releases are well tested and appropriate for production use. 0.6 is the latest release of Qpid.

Qpid supports the latest version of AMQP 0-10, and some components also the AMQP 0-8 and 0-9, earlier versions. The Java Broker and
Client provide protocol negotiation. Other versions can be found here

For details on cross component compatibility among releases, see: AMQP Release Compatibility for Qpid

If you have any questions about these releases, please mail the user list user list

Latest Release

Multiple Component Packages

Component Download AMQP 0-10 AMQP 0-8/0-9

Full release & keys http://www.apache.org/dist/qpid/0.6/ Y Y

C++ broker & client http://www.apache.org/dist/qpid/0.6/qpid-cpp-0.6.tar.gz Y

Java broker, client & tools http://www.apache.org/dist/qpid/0.6/qpid-java-0.6.tar.gz Y Y

Single Component Package

Broker

Language Download AMQP 0-10 AMQP 0-8/0-9

Java http://www.apache.org/dist/qpid/0.6/qpid-java-broker-0.6.tar.gz Y Y

Client

Language Download AMQP
0-10

AMQP
0-8/0-9

C# (.NET, WCF) WCF channel (C++ Broker
Compatible)

http://www.apache.org/dist/qpid/0.6/qpid-wcf-0.6.zip Y

http://www.apache.org/dist/qpid/
http://www.apache.org/dist/qpid/0.6/
http://www.apache.org/dist/qpid/0.6/qpid-cpp-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-java-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-java-broker-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-wcf-0.6.zip

C# (.NET, WCF, Excel) 0-10 client (C++ Broker
Compatible)

http://www.apache.org/dist/qpid/0.6/qpid-dotnet-0-10-0.6.zip Y

C# (.NET) 0-8 client (Java Broker Compatible) http://www.apache.org/dist/qpid/0.6/qpid-dotnet-0-8-0.6.zip Y

Java http://www.apache.org/dist/qpid/0.6/qpid-java-client-0.6.tar.gz Y Y

Python http://www.apache.org/dist/qpid/0.6/qpid-python-0.6.tar.gz Y Y

Ruby http://www.apache.org/dist/qpid/0.6/qpid-ruby-0.6.tar.gz Y Y

Management tools

C++ broker management

Component Download AMQP 0-10

cmd line (packaged with python) http://www.apache.org/dist/qpid/0.6/qpid-python-0.6.tar.gz Y

QMan JMX bridge, WS-DM http://www.apache.org/dist/qpid/0.6/qpid-management-client-0.6.tar.gz Y

Java broker management

Component Download

JMX Management Console Linux x86 Linux x86_64 Mac OS X Solaris 10 Sparc Windows x86

Windows Installer

The Windows installer is available from . It is built from the 0.6 C++ broker & client and C# WCFhttp://www.riverace.com/qpid/downloads.htm
Channel source distributions listed above. It has been tested for Windows XP SP3 and above.

Previous Release

Multiple Component Packages

Component Download AMQP 0-10 AMQP 0-8/0-9

Full release & keys http://www.apache.org/dist/qpid/0.5/ Y Y

C++ broker & client http://www.apache.org/dist/qpid/0.5/qpid-cpp-0.5.tar.gz Y

Java broker, client & tools http://www.apache.org/dist/qpid/0.5/qpid-java-0.5.tar.gz client Y

Single Component Package

Broker

Language Download AMQP 0-10 AMQP 0-8/0-9

Java http://www.apache.org/dist/qpid/0.5/qpid-java-broker-0.5.tar.gz Y

Client

Language Download AMQP
0-10

AMQP
0-8/0-9

C# (.NET, WCF, Excel) 0-10 client (C++ Broker
Compatible)

http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-10-0.5.zip Y

C# (.NET) 0-8 client (Java Broker Compatible) http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-8-0.5.zip Y

Java http://www.apache.org/dist/qpid/0.5/qpid-java-client-0.5.tar.gz Y Y

Python http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz Y Y

Ruby http://www.apache.org/dist/qpid/0.5/qpid-ruby-0.5.tar.gz Y Y

Management tools

C++ broker management

Component Download AMQP 0-10

http://www.apache.org/dist/qpid/0.6/qpid-dotnet-0-10-0.6.zip
http://www.apache.org/dist/qpid/0.6/qpid-dotnet-0-8-0.6.zip
http://www.apache.org/dist/qpid/0.6/qpid-java-client-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-python-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-ruby-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-python-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-management-client-0.6.tar.gz
http://www.apache.org/dist/qpid/0.6/qpid-jmx-management-console-0.6-linux-gtk-x86.tar.gz
http://www.apache.org/dist/qpid/0.6//qpid-jmx-management-console-0.6-linux-gtk-x86_64.tar.gz
http://www.apache.org/dist/qpid/0.6//qpid-jmx-management-console-0.6-macosx.zip
http://www.apache.org/dist/qpid/0.6//qpid-jmx-management-console-0.6-solaris-gtk-sparc.zip
http://www.apache.org/dist/qpid/0.6//qpid-jmx-management-console-0.6-win32-win32-x86.zip
http://www.riverace.com/qpid/downloads.htm
http://www.apache.org/dist/qpid/0.5/
http://www.apache.org/dist/qpid/0.5/qpid-cpp-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-java-broker-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-10-0.5.zip
http://www.apache.org/dist/qpid/0.5/qpid-dotnet-0-8-0.5.zip
http://www.apache.org/dist/qpid/0.5/qpid-java-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-ruby-0.5.tar.gz

cmd line (packaged with python) http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz Y

QMan JMX bridge, WS-DM http://www.apache.org/dist/qpid/0.5/qpid-management-client-0.5.tar.gz Y

Java broker management

Component Download

JMX Management Console Linux x86 Linux x86_64 Mac OS X Windows x86

Command line interface http://www.apache.org/dist/qpid/0.5/qpid-management-tools-qpid-cli-0.5.tar.gz

QpidComponents.org
QpidComponents.org provides further components for Apache Qpid, including both persistence and management tools. These components
are open source, but are not developed as part of the Apache Qpid project due to licensing or other restrictions.

Contributed C++ Packages

Pre-built Linux Packages

Fedora

On Fedora, Qpid can be installed using yum. Because Java RPMs are not yet available in Fedora repos, the Java client is not in these
distributions.

To install the server:

yum install qpidd

To install C++ and Python clients:

yum install qpidc-devel

yum install amqp python-qpid

To install documentation:

yum install rhm-docs

To install persistence using an external store module:

yum install rhm

Windows Installer

The Windows installer is available from . It is built from the 0.5 C++ broker andhttp://www.apache.org/dist/qpid/0.5-windows/qpidc-0.5.msi
client source distribution listed above. It has been tested for Windows XP SP2 and above.

The Windows executables require the Visual C++ 2008 SP1 run-time components. If the Visual C++ 2008 SP1 runtime is not available, the
Qpid broker will not execute. If you intend to run the broker and Visual C++ 2008 is not installed, you must install the Visual C++ 2008 SP1
Redistributable. Please see

 for download andhttp://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-3802B2AF5FC2&displaylang=en
installation instructions.

If you intend to develop Qpid client applications using this kit, you should install (please be sure to select VC9 supportBoost version 1.35
when installing) in addition to Visual Studio 2008 SP1.

Source Code Repository
The latest version of the code is always available in the .Source Repository

http://www.apache.org/dist/qpid/0.5/qpid-python-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-client-0.5.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-linux-gtk-x86_64.tar.gz
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-macosx.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-eclipse-plugin-0.5-win32-win32-x86.zip
http://www.apache.org/dist/qpid/0.5/qpid-management-tools-qpid-cli-0.5.tar.gz
http://QpidComponents.org
http://www.apache.org/dist/qpid/0.5-windows/qpidc-0.5.msi
http://www.microsoft.com/downloads/details.aspx?familyid=A5C84275-3B97-4AB7-A40D-3802B2AF5FC2&displaylang=en
http://www.boostpro.com/download/boost_1_35_0_setup.exe

The AMQP Distributed Transaction Classes (Java)
The distributed transaction classes provide support for the X-Open XA architecture. The dtx-demarcation class is used to demarcate
transaction boundaries on a given channel that is subsequently used to perform AMQP native transactional work (produce publish
messages). Transaction coordination and recovery operations are provided by the dtx-coordination class.

A Transaction Manager uses RM Client XA interface to demarcate transaction boundaries and coordinate transaction outcomes. RM Clients
use the dtx-demarcation class to associate transactional work with a transactional channel. The transactional channel is exposed to the
application driving the transaction. The application can then use the transactional channel to transactionally produce and consume
messages. RM clients use dtx-coordination to propagate transaction outcomes and recovery operations to the AMQP broker. A second
coordination channel can be used for that purpose.

More details about can be found at:

https://wiki.108.redhat.com/wiki/index.php/AMQP:Transaction_SIG_dtx_XML
http://cwiki.apache.org/confluence/download/attachments/55787/dtx-classes-specification-document-v1.2.pdf
http://cwiki.apache.org/confluence/download/attachments/55787/dtx-classes-presentation-v0.10-PMC-03142007.pdf

The Qpid Implementation in Java

As shown on the following class diagram, there are two protocol specific dtx classes, that is to say DtxDemarcation and DtxCoordination that
are highlighted in yellow.

DtxDemarcation

DtxDemarcation interacts with the corresponding AMQChannel. The operation select creates the corresponding TransactionalContext (a
channel has by default a non-transactional context). The operations start and end associate and disassociate a provided xid with the current
TransactionalContext that percolates the call to the TransactionManager (operations begin and end respectively). Note that the operation end
is responsible for acknowledging the messages against the context i.e. those messages are seen as being consumed under the currently
associated xid.

DtxCoordination

DtxCoordination directly interacts with the TransactionManager. Note that it is a requirement that the operation end is called on all involved
channels (i.e. all the acknowledged messages have been specifically consumed under the provided xid).

TransactionalContext

There are three flavours of TransactionalContext: the non transactional one, the local and distributed ones. The distributed and local contexts
are very similar and both extend the abstract context. Note that the distributed context does not implement commit and rollback as this is
DtxCoordination that is responsible for deciding of a transaction outcome.

TransactionManager and MessageStore

Transaction manager and message store are linked as the message store may need to add transaction records to the transaction identified
by a given xid. Moreover, the transaction manager may need to use the transactional facilities of the underlying store. This is the case of the
JDBCStore and JDBCTransactionManager. The JDBCTransactionManager uses the transaction facilities of the JDBCStore for performing
ACID operations during prepare and commit.

This is the responsibility of the MessageStore to recover queues and exchanges and messages. Note that the JDBCTransactionManager
delegates the responsibility of getting the list of in-doubt transactions to the JDBCStore but another implementation of TransactionManager
may handle that directly.
The MessageStore implementation should not load the messages in memory during recovery but only set the messageID. The message
header, publish info and payload are lazily loaded. Note that the message payloads are currently loaded in memory. We can however easily
implement a direct streaming of message payload on the wire (The MessageStore interface can be extended for supporting that).

AMQP compatibility
Qpid provides the most complete and compatible implementation of AMQP. And is the most aggressive in implementing the latest

https://wiki.108.redhat.com/wiki/index.php/AMQP:Transaction_SIG_dtx_XML
http://cwiki.apache.org/confluence/download/attachments/55787/dtx-classes-specification-document-v1.2.pdf
http://cwiki.apache.org/confluence/download/attachments/55787/dtx-classes-presentation-v0.10-PMC-03142007.pdf

version of the specification. Qpid can be downloaded here

There are two brokers:

C++ with support for AMQP 0-10
Java with support for AMQP 0-8, 0-9, and 0-10.

There are client libraries for C++, Java (JMS), .Net (written in C#), python and ruby.

All clients support 0-10 and interoperate with both brokers as of 0.6.

The JMS client supports 0-8, 0-9 and 0-10 and interoperates with both brokers.

The python and ruby clients will also support all versions, but the API is dynamically driven by the specification used and so differs
between versions. To work with the C++ broker you must use 0-10. To work with the Java broker you can use any version as of 0.6,
or prior to 0.6 you can use 0-8 or 0-9.

There are two separate C# clients, one for 0-8 that interoperates only with the Java broker, and one for 0-10.

There is also a WCF channel, which wraps the 0-10 native C++ client library.

QMF Management is supported in Ruby, Python, C++, and can be translated to Java JMX & WS-DM via the QMan management tool.

AMQP Compatibility of Qpid releases:

Qpid implements the AMQP Specification, and as the specification has progressed Qpid is keeping up with the updates. This means that
different Qpid versions support different versions of AMQP. Here is a simple guide on what use.

Here is a matrix that describes the different versions supported by each release
Y = supported
N = unsupported
IP = in progress
P = planned

Component Spec

 M2.1 M3 M4 0.5 0.6

Java client 0-10 Y Y Y Y

 0-9 Y Y Y Y Y

 0-8 Y Y Y Y Y

Java broker 0-10 Y

 0-9 Y Y Y Y Y

 0-8 Y Y Y Y Y

C++ client/broker 0-10 Y Y Y Y

 0-9 Y

Python client 0-10 Y Y Y Y

 0-9 Y Y Y Y Y

 0-8 Y Y Y Y Y

Ruby client 0-10 Y Y Y

 0-8 Y Y Y Y Y

C# client 0-10 Y Y Y

 0-8 Y Y Y Y Y

WCF channel 0-10 Y

Interop table by AMQP specification version

Above table represented in another format.

 release 0-8 0-9 0-10

Java client M3 M4 0.5 0.6 Y Y Y

Java client M2.1 Y Y N

Java broker 0.6 Y Y Y

Java broker M3 M4 0.5 Y Y N

Java broker M2.1 Y Y N

C++ client/broker M3 M4 0.5 0.6 N N Y

C++ client/broker M2.1 N Y N

Python client M3 M4 0.5 0.6 Y Y Y

Python client M2.1 Y Y N

Ruby client M4, 0.5, 0.6 Y Y Y

Ruby client M3 Y Y N

C# client 0-10 M4 0.5 0.6 N N Y

C# client 0-8 M3 M4 0.5 0.6 Y N N

WCF channel 0.6 N N Y

Queue Replay

Background

A lengthy discussion on replay in (page #7,) highlighted a number of requirements and possible implementation optionsJanuary 2007 Thread
for adding replay to Qpid and AMQP. The requirements come from the desire to speed up the rate a consumer can read messages and to
simplify its recovery when it starts. This page is to give some background, a proposal and finally some implementation options for discussion.

History

When a an application updates the state of a single , e.g a database or queue manager, it normally does so within theResource Manager
context of a local and this transaction exhibits the following ACID properties:Transaction

Atomicity The result of the transaction are either all commited or all rolled back.
Consistency The completed transaction transformed the resource from one known state to another. Inserting a row into a database
or removing a message from a queue are common examples.
Isolation Changes the the resources state effected by the transaction does not become visible ouside of the transaction until the
transaction commits.
Durability The changes that reasult from the transactions commitment survive subsequent system or media faulures.

Distributed Transaction

A distributed transaction is typically implemented by performing a (2PC) over which there are several varients the mostTwo Phase Commit
well know being the X/Open XA specification. Where both the middleware and the consumer support XA, a separate Transaction Manager
isused to coordinate the local transactions. The transaction manager coordinates atomicity at the global level whist each resource manager is
responsible for the ACID properties of its local transactions.

These benefits do not come without cost.

Increased transaction processing latency, typically due to the additional forced disk writes.
Applications can become blocked pending the resolution of an in-doubt global transaction.
Reduced concurrency
Multi-system deadlock
Administration complexity
Backing up the transaction manager involves co-ordinating all transaction logs at the same time or processing must be suspended.

Idempotence and Replaying

When a message is being moved from system A to system B (e.g. from WebSphereMQ to ORACLE), distributed transactions can be avoided
if;

System B can handle duplicates (or can detect them and deal with them accordingly) - i.e. it is idempotent.
System A can replay messages from a known stable point in history.

The most common way of doing this is simply managing the local transactions so that system B commits before system A. The start of replay
is them the end of the last transaction on system A.

Typically a MOM will immediately delete a message once it has been commited by all of its consumers.

Commit is Not The End

If messages are made available for replay to a consumer after it has been commited, we can stretch the point in time the consumer recovers
from back to any point.

http://mail-archives.apache.org/mod_mbox/incubator-qpid-dev/200701.mbox/browser
http://mail-archives.apache.org/mod_mbox/incubator-qpid-dev/200701.mbox/%3c000d01c73b18$b9e0a670$b092fea9@thinkpad%3e

A few minutes ago
Trade ID FFS987654321
Start of day
End of yesterday
Friday.

This larger recovery window lets downstream consumers the flexibility to recover from more failure scenarios.

Retry an end of day batch job.
Replay due to reference data problem in target system.
Replay due to database or application failure.

Replay as a First Class Service

When a traditional queue is opened for reading, it is opened and the next message is the oldest one that has not been destructively read (i.e.
read and commited).

In isolation, a consumer manages its own local transactions with the message broker to confirm when a message or group of messages is
processed, stored and . The local transaction leads to a in the queue storage to mark the messages as read.stable disk write

In this XA free world the consumer relys on the messaging to replay messages from the applications last good known state. As its always
reading from a queue, the only extension to the queues semantics is to let it be opened for reading from a known message, irrespective of
whether the message has been committed or not and it goes without saying that they should be in the same order in which they were
originally delivered.

Many consumers of a guaranteed message flow are writing to a database and this database is the consumers view of its state, it's certainly
where the consumer recovers from when it starts up. The traditional model of using a transaction manager, typically XA, to co-ordinate the
local transactions on the database and messaging broker is slow and not without its problems.

Another model is to have the messaging infrastructure support replay of messages from a known point in history i.e. to correlate the current
state of the consumers database with a message that last caused an update to the database from this channel. This is not anlast received
all encompassing pattern but rather compliments other ways to synchronize state between a message broker and a database.

Requirements

Replay messages from a queue from a given message identified by a message ID or a header property.
Administrative support to purge messages from a queue as part of a business process such as End of Day
Zero impact on other queues and their consumers.

Proposal: A Replayable Queue

Queues are the storage agents in AMQP so are the logical point to provide replay. A Replayable Queue () is not the default queueRQ
behavior but rather has to be . In may ways an RQ is somewhere between a traditional queue and a transaction logexplicitly configured
such as HOWL

An RQ has the following properties:

An RQ can only have a . Multiple consumers complicate the problem so I propose discounting them for now.single consumer
Messages are when consumed by a regular consumer. The act of acknowledging the message is just another propertynot deleted
on the message. Indeed, the consumer may never acknowledge the message as this implies a write on the message broker to
update the messages state.
When an RQ is opened for reading, the consumer must give a selector that will to begin messageidentify a point in the queue
delivery from.
Administratively in the queue exist. These points can be defined by an administration API and associated tooling anddefined points
used as points to replay from.
Queues are by the administration API or associated tooling. This allows external processes such as End ofpurged of messages
Day to initiate message archiving or deletion when it is safe to do so.
An RQ can be replicated. Implementation options? SAN replication, dual writes?

Benefits

An RQ, by virtue of a single consumer, does not need to be written to when a consumer reads messages as it is the responsibility of
the consumer to provide the synchronization point when it first connects. This can significantly speed up the consumer as its
bottleneck will be its own database write.

A complete record of all messaging activity is available.

Downsides

The size of the store needs careful management so any implementation details do not cause performance issues.

Implementation Options in Qpid.

Configuration

Storage

Management

Usage from JMS

Getting Involved

http://howl.objectweb.org/

There are many ways you can get involved in Qpid:
1. Use Qpid and post us your feedback to dev@qpid.apache.org
2. Participate on the .mailing lists

 All patches must be attached to a JIRA with the appropriate ASL assigned to it or we can't use it!Remeber
3. Contibute via JIRA . We use the 'Starter' component in JIRA to indicate tasks we think are good entry points.JIRA issues
4. Review the current code
5. Help write user documentation or wiki documentation
6. Help write user examples.
7. Most definitely add more tests.

Please be sure to take a look at the coding guidelines for the section of the project that you contribute to

Java Coding Standards
C++ Coding Standards
C++ Tips
OS version considerations

Some Ideas to contribute
Themes and JIRA's for our road map are located here Please fell free to mail the dev list if you want to pick up any of these itemsroadmap
on the project.

looking to pitch in

Project Etiquette
Please read and digest our . This is a key guide for new contributers and required reading.Qpid Project Etiquette Guide

Becoming a committer:
Qpid uses the following guidelines for voting in new committers. First off we would like new committers to have provided meaningful
contribution to the project. By contributions we include development (tests, features, examples) or documentation through patches and
interactions with the project through lists and JIRA. It should be noted that as we send our JIRA to the dev list, thus some people filter the
JIRA's to limit traffic. It is thus good to cross post something to the dev list every now and again, if the discussion is being held primarily on
JIRA.

The key question is what does the Qpid project consider to be a meaningful contribution to be come a committer. As this bar is set for all new
commiters Qpid will be conservative in general with adding new committers.

The Qpid project will look to see if someone consistently provides quality contributions and interactions with the project over a period or 1 to 2
months. Based on that the PMC will vote the new committers onto the project.

If you have any question please mail or dev@qpid.apache.org private@qpid.apache.org

Many thanks for you interest,
the Qpid team.

Joining the PMC
Nominations for Qpid PMC membership will be voted on by the Qpid PMC.

GSoC

Potential GSoC Projects

qpid-java-qmf

Candidates:
Project Goal: Add QMF support to the Java Broker
Mentors:

Project Description:

qpid-java-message-store-tool

Candidates:
Project Goal: Improve message store tool
Mentors:

qpid-java-monitoring-alerting

Candidates:
Project Goal: Improve the Java servers reporting, accounting and alerting

http://issues.apache.org/jira/browse/qpid

Mentors:

Project Description:

qpid-scheduling

Candidates:
Project Goal: provide a mechanism to allow better scheduling of tasks ?
Mentors:

Project Description:

qpid-java-bridging

Candidates:
Project Goal: Facilitate moving messages between JMS providers, such as Qpid -> ActiveMQ
Mentors:

Project Description:

qpid-java-xml-exchange

Candidates:
Project Goal: Implement an XQuery capable exchange, equivalent to and compatible with C++ servers
Mentors:

Project Description:

qpid-stonehenge-integration

Candidates:
Project Goal: Investigate integration with Apache Stonehenge project, potentially other Apache projects
Mentors:

Project Description:

OSVC

A RHEL4 Grimoire

by Michael Goulish on this 11th day of April, 2008

Introduction

Programmer! Turn back now, if you can, to the daylit world!

But if you must walk this road - take with you this map! Do not stray into the mires and pits where I have wandered and despaired.

Herein I will describe what I can of the perils I have encountered in the antique land of RHEL4.

Iterators and the "->" operator.

I believe this is a compiler problem with the -> operator, in the neighborhood of any kind of iterators.

Code like this will not compile:

ConsumerImplMap::iterator i = consumers.find(delivery.getTag());

 (i != consumers.end())if
{ get_pointer(i)->acknowledged(delivery); // <--- Bad! }

Do this instead:

ConsumerImplMap::iterator i = consumers.find(delivery.getTag());

 (i != consumers.end())if
{ (*i).second->complete(delivery); // <--- Good! }

(Thanks, Kim!)

Don't use BOOST_FIXTURE_TEST_CASE

Because it Doesn't Exist.

All it does is allow you to use a class (or struct) declaration in many test cases without declaring it in every one.

So what? Big deal! Just declare your structure in each test case, and use the QPID_AUTO_TEST_CASE macro instead!

If you have this struct:

struct ClientSessionFixture : Foopublic
{ bar; }int

Don't do this:

BOOST_FIXTURE_TEST_CASE(testQueueQuery, ClientSessionFixture)
{ bar = 666; BOOST_CHECK_EQUAL (bar, 666); }

Do do this:

QPID_AUTO_TEST_CASE(testQueueQuery)
{ ClientSessionFixture fix; fix.bar = 666; BOOST_CHECK_EQUAL (fix.bar, 666); }

(Thanks, Alan!)

Don't use the BOOST_ macros !TEST

If you are tempted to use

BOOST_AUTO_TEST_SUITE, or

BOOST_AUTO_TEST_CASE, or

BOOST_AUTO_TEST_SUITE_END,

dont!

Use instead:

QPID_AUTO_TEST_SUITE, or

QPID_AUTO_TEST_CASE, or

QPID_AUTO_TEST_SUITE_END !

They turn into Appropriate Things depending on the version of Boost you are using.

Sometimes the Appropriate Thing is whitespace...

(Thanks, Alan and Kim !)

Don't use boost::iostreams.

They don't exist.

/usr/include/boost/iostreams/: No such file or directory

Instead, use low-level Unix IO, from the Dawn of Time.

open()

read()

write()

Qpid Project Etiquette Guide

Purpose

This guide, written by Rafael Schloming, gives both Qpid committers and submitters a useful introduction to project etiquette, shedding light
on how we do things & why. Following this etiquette makes the path to righteousness less long and winding !

Maintainers

The Qpid project consists of a number of major components spread across almost as many different languages. Thus it is rare for qpid
committers to be experts in every single area of the project.

As such it is expected that qpid committers make some effort to reach out to their teammates before directly modifying components that are
outside their chosen areas.

You should use the dev list to reach out to Qpid developers and comment on any JIRAs you're progressing.

Patch Submission

As a committer it can be difficult to decide whether/how to provide feedback when someone submits a patch. Often it is tempting to just fix up
the patch and avoid the slower and sometimes awkward process of telling someone that they got some part of it wrong.

However, it is necessary to ensure that those who submit patches get to learn what they need to know in order to become a valued qpid
committer.

In that spirit, here are a few guidelines for contributing patch submissions and how we handle them:

Submitters should produce the final patch(s) as applied to the tree. Producing a patch that needs little or no rework is a key skill for a
qpid committer.

Maintainers may make requests for 'trivial' updates to the patch. Such requests are vital to ensuring that contributers get familiar with
subtle yet important aspects of the code, stylistic conventions, etc.

Make sure the submitter is familiar with project etiquette so they understand why we make seemingly trivial requests. We'll ask new
contributers to read this etiquette info for that reason !

A one-time patch from someone passing through may need nothing more than a polite thank you regardless of the content. If a
submitter does aim for committership, best to make it plain you're planning to stay around on the project.

Break up unrelated changes. It wouldn't be considered correct for a committer to glom together too many unrelated changes within a
single commit, and so we won't commit this kind of patch from submitters.

You need a JIRA for any patch to be attached to, which should accurately describe the change.

Big Ideas

Every so often someone has a Big Idea that they get excited about and want to go do. They generally mail the list about it to give people the
opportunity to comment, and then when nobody says anything they go off and do it.

Fast forward six months later they commit/merge/enable/publish the result of their Big Idea, and suddenly everyone understands the full
implications, and not everyone is happy.

Guidelines

So, here are a few guidelines for making sure this doesn't happen, starting with how to write a good proposal for a Big Idea:

Make sure your proposal is recognizable as a proposal. An easy way to avoid ambiguity is to start a new thread for your proposal
and stick "proposal" somewhere in the subject.

Understand who and what your proposal effects, and make this clear. If you think X's implementation of Y doesn't deserve to live and
you're going to rewrite the whole thing from scratch then make this very clear so X can object sooner rather than later.

Make sure you call out loudly that you intend to kill feature A, even if you think no-one on earth should care.

Even if you're going to write an Atari emulator, and you're 100% sure that it won't overlap with anything in the rest of the project,
make sure you understand how and why it relates to the rest of the project in general, and make that clear.

Be concrete. Often a proposal of the form "hey, I did a little of this, here is a proof-of-concept, I'd like to do it for real now" is far more
effective than a proposal of the form "hey, I have this vague idea about this, I'm going to vaguely suggest it would be good if
someone did it".

Talk about the long term implications of your proposal. If it's code then someone needs to maintain it, and committers will expect this
to be you. Make clear your intentions.

Never assume silence implies complicity, more likely it means people didn't understand the implications of your proposal, or didn't
have time to figure out why they didn't like it. Ask again !

The bigger your idea is, the more time and effort you should spend on the proposal, and ensuring that you get positive responses
and deal with the comments and feedback provided in your actual implementation.

Talk early, talk often

No matter how incredibly excellent your proposal is, there is going to need to be some discussion before the result of your Big Idea is

blessed. Here are some things you can do to help that discussion go smoothly:

Make frequent progress reports. Every hour/day/week/month you spend working without telling people what you're doing is an
hour/day/week/month of your time that you risk wasting.

Define milestones and make them visible to the rest of the project. Just like a concrete proof-of-concept can help a proposal, it helps
to give people a concrete look at what you're doing while it's in progress. This can go a long way towards avoiding surprises.

And finally

When the time does come to commit/merge/enable/publish your Big Idea, it really shouldn't be a surprise to anyone if you've followed the
steps up until now, but make sure you let people know in advance by making note in your final few progress reports of when you expect to be
finished, and sending a note to the dev list a day or so before you flip the big switch.

HermesJMS

This is a draft

Background
HermesJMS is a console for JMS messaging and supports QPID. This page shows how to configure Hermes with QPID.

As the QPID codebase is moving quickly forward at the moment and there are some workarounds in place within Hermes to support it, you
should ensure that you download the latest Hermes build from HEAD

Finally, you should familiarise youself with Hermes via the tutorials on the website before continuing. Look at the Tibco EMS and JBoss
tutorials for how to use connection factories directly or via JNDI. This page uses them directly.

Configuring
To get QPID working, you need to configure the libraries to load via the GUI. Hermes loads up each provider in its own classloader to avoid
any dependency problems across providers. This tutorial assumes you've downloaded and built QPID via the task.ant dist

Configure the CLASSPATH
Start Hermes and select and click on the tab. Create a new classpath group (right click for this) and addOptions -> Configuration Providers
the following JARS to it:

http://hermesjms.com
http://hermesjms.com/patches

When asked, choose the scan option to get Hermes to search the libraries to find any classes that implement JMS connection factory
interfaces, this is essential for the next step.

Finally, click OK.

Configure The Session
Right click on the tree of sessions and select . In the session combo box at the top put in the name you want, for exampleNew -> Session
QPID. Its important the next thing you do is select the loader so the dialog can find any connection factories.

In the combo box choose the .Class org.apache.qpid.client.AMQConnectionFactory

Next, in the property list for the connection factory, right click to add new properties and use the combo to select which one and add their
value.

Finally, and very importantly, check the checkbox at the top. QPID does not support JMS queue browsing but Hermes letsUse consumer
you use a { instead. Remember of course that if an consumer is currently active you will not get the real queue content,MessageConsumer
Hermes uses a transacted session and some messages may be uncommitted in another consumers session.

Add Destinations

Currently you must manually add queues and topics. You can add them now or later from the , or New queue New topic New durable
 actions in the toolbar. If you add them now then right click in the destination list to add them.subscription

The session and destinations should look something like this. Once happy, click OK.

Try a Browse
Finally, double click on a queue or topic in the newly created session in the tree and you should get see something like the following
(assuming you've got something in the queue or being published in the topic to see):

This message is a JMS so there not much to see until you see its really a message and clicking on the FIX tab revealsBytesMessage FIX
it.

Other Features
Refer to the site for how to use all the other feature of HermesJMS with QPID.HermesJMS

http://fixprotocol.org
http://hermesjms.com

Issues
1. Queues must already exist before you browse them.

1. is not supported on a message so is shown.get/setJMSDestination() Unknown

Informal M2.1 code review 2008-03-18
rgodfrey, 634720, BasicMessageConsumer.java: add comment to document DUPS_OK and AUTO_ACK closenes
ritchiem, 635549, SelectorParserTest.java: fix and enable test DONE
aidan, 637146, AMQConnection.java: add comment
ritchiem, 637170: jira that only outer failover should rety QPID-855
ritchiem, 637176: change CancelTest logger to use CancelTest class DONE
ritchiem, 637977: raise Jira to fix client to not communciate on channels it has been told are closed QPID-865

Navigation

Apache Qpid

Home
Download

 Getting Started
Documentation
Mailing Lists
Issue Reporting
FAQ/How to

Resources

Getting Involved
Qpid Integrated with..
Source Repository
Building Qpid
Developer Pages
QMF

About Qpid

People
License
Project Status
Acknowledgments

About AMQP

What is AMQP ?
AMQP Specification Download

Acknowledgments

https://issues.apache.org/jira/browse/QPID-855
https://issues.apache.org/jira/browse/QPID-865
http://issues.apache.org/jira/browse/qpid

We
acknowledge
ej-technologies
for
giving
us
a
free
team
license
for
profiling
Qpid
Java
code.

We
acknowledge
Headway
Software
for
giving
us
free
licenses
of
Structure101
for
analyzing
and
managing
the
architecture
of
Qpid
Java
code.

FAQ

FAQ
About AMQP

What is AMQP?
Where did AMQP come from
Why use AMQP?

Qpid & AMQP
Is Qpid AMQP Compliant?
What Client support does Qpid have?
What messaging topologies are supported by AMQP and Qpid?
What AMQP and other exchanges does Qpid support?

Security
What encryption does Qpid support?
What authentication does Qpid support?
What authorization does Qpid support?
How to setup Kerberos with the Java client

Semantics of Exclusive
I want to be able to have an exclusive consumer, but when it dies I want another to be able to pick up the queue
and then block others, can this be done?
When will the queue become free for a re-declare

Performance
Does Qpid Perform (Latency/Throughput)?
How do I measure throughput?
How do I measure latency?
How do I measure performance with Java clients?
Can I run my Java client with JAVA-RT?
Does Qpid support flow control?
How do I configure producer side flow control

Management
What Management does Qpid support
How do I manage a broker?
What logging tracing and events does Qpid support?
Can I get to all the management data from a client?
What is QMF
What are QMF Agents, and what do they do for me?
What is QMFC and what does it do for mr?
What is QMan

http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com
http://www.ej-technologies.com
http://www.headwaysoftware.com/products/structure101
http://www.headwaysoftware.com
http://www.headwaysoftware.com
http://www.headwaysoftware.com

Clustering, Federation and Disaster Recovery
Does Qpid provide Fault Tolerance for the cluster?
How do I start a fault tolerant cluster?
What does the cluster guarantee?
Do clients get notified members joining or leaving the cluster?
Can I specify more than one host to connect initially to the cluster to avoid single point of failure?
How does Clustering work?
What is Federation?
Disater recover features are in process, Q&A will be added once they are complete.

Heartbeats
What would happen when there is a no heartbeat within a predefined interval?
What happens if the broker is unable to send heartbeat?
Does the client retry?
Failover taking too long...

Threading
Could someone provide a brief description of the worker thread duties in the current Qpid release?
Why was the number X chosen as the default number of worker threads?
What happens in parallel?
How are worker threads allocated to individual client sessions if there are more clients than threads in the pool?

Persistence
Does Qpid support persistence (durability)?
Where do I get the 3rd party persistence store modules?
How do I build the persistence store module from subversion checkouts?
Which version of the store should I use when building against qpid 0.X?
How do I use the persistence store module?
How do I configure the persistence store?
[C++ store] What is a RHM_IORES_ENQCAPTHRESH error?
[C++ store] What is the TPL? What are the --tpl-* options for?

How To
C++

How to use RDMA with Qpid
Message TTL, auto expire
How to install the qpid-tools for c++ broker?

Java

This page is a collection of FAQ and How to-s for Qpid. If you have a question, post it to the users list and we will place the answer
here to build out our FAQ/ How to.

FAQ

About AMQP

What is AMQP?

AMQP is a wire-level protocol and model for high performance enterprise messaging.

From the AMQP website:

AMQP is an Open Standard for Messaging Middleware.

By complying to the AMQP standard, middleware products written for different platforms and in different languages can send messages to
one another. AMQP addresses the problem of transporting value-bearing messages across and between organizations in a timely manner.

AMQP enables complete interoperability for messaging middleware; both the networking protocol and the semantics of broker services are
defined in AMQP.

Where did AMQP come from

AMQP was born out from Frustration by John O'Hara at JPMC. He started a project internally to create commodity messaging that was easy
to use. Carl Trieloff from Red Hat had started a project to build messaging for both users and for use in infrastructure, while looking around
spoke to John about his work. Out of these discussion was born the AMQP working Group with 6 initial members, under an agreement that it
will be eternally be licensed for everyone to use.

Since then the Working Group has had many join, and has been making solid progress working on revisions of the specification. For more
details see.

Why use AMQP?

AMQP is has been designed to be able to handle the hardest workloads, scale to the largest systems, but also deal with reduction of change
and maintenance costs by doing a refresh on many aged practices. The specification is also not language specific allowing the freedom from
language and platform lock in, without compromise on user experience, security, scalability and consistently excellent performance.

Text mostly taken from

Qpid & AMQP

Is Qpid AMQP Compliant?

http://www.amqp.org
http://jira.amqp.org/confluence/display/AMQP/About+AMQP
http://jira.amqp.org/confluence/display/AMQP/About+AMQP
http://jira.amqp.org/confluence/display/AMQP/About+AMQP

Yes, Apache Qpid implements the latest AMQP specifications, providing transaction management, queuing, distribution, security,
management, clustering, federation and heterogeneous multi-platform support and a lot more. And Apache Qpid is extremely fast. Apache

.Qpid aims to be 100% AMQP Compliant

What Client support does Qpid have?

Apache Qpid provides AMQP Client APIs for the following languages:

C++
C# .NET, using WCF
Ruby
Python
Java JMS, fully conformant with Java CTS1.1

If you need another client, join the lists and ask or feel free to contribute one.

What messaging topologies are supported by AMQP and Qpid?

AMQP provides the ability to do Point-to-Point, Peer-to-Peer, Pub-Sub, and Eventing. This allows many patterns to be craeted:

Point-to-point

This is one of the simplest use-cases. AMQP allows for this in a few ways.
a.) A client can create a named queue allowing the producer to publish the message to the direct exchange with the key mapping the queue
name. This will route the message to that queue.
b.) The above pattern can be extended by specifying a reply-to address in the published messages allowing for the consumer to reply the
producer without knowing who it was send from prior to receiving the message.

One-to-many

There are a few patterns that can be used.

a.) AMQP provides a 'fanout' exchange which will send a message to all the queues that have been bound to it. Different domains or topics
are created with the 'fanout' exchange by declaring different named fan-out exchanges.

b.) A 'topic' or 'headers' exchange can also be used. in this case the pattern match is used to send the message to all the bound queues. It
can be thought of as a filter allowing you to create just about any One-to-many routing patterns.

Pub-Sub

Topic can be created with the 'topic' or other 'direct' exchange to allow consumer to bind to into the steams of data they care about. This
pattern combined with the use of reply-to and Alternate-routing is the staple of what most people use messaging for today.

FAST Reliable Messaging

AMQP 0-10 allows for fully reliable transfers between any two peers. This means that you can publish or subscribe to the broker fully reliable
without requiring the need for transactions. This can all be done in async mode with the C++ broker allowing for high throughput while
running entirely reliable.

Transactional

AMQP supports two types of transactions in AMQP 0-10, TX and DTX. This allows for local (1PC), and 2PC transaction and the ability to
coordinate with a TM (Transaction Manager). The Java broker supports TX, the C++ broker support TX, DTX, XA, JTA for fully ACID
transactions. This allows you to commit a single unit of work with may contain enqueues & dequeues either locally on the broker, or in
coordination with other transactional resource like RDBMS.

Transient message delivery

By default messages are transient. Transient message can be sent to queues that are durable. They will not be safe stored or recovered, and
will perform as any other transient message - fast!

Durable message delivery

There is a header on each message where the message properties are specified, one of these is durability. Messages that are marked as
durable and published to a durable queue will be safe stored. Durable messages will survive restart of the broker or cluster.

Federation (Hub-spoke, Trees, graphs)

As AMQP 0-10 is symmetric for peer-to-peer communication all the building block are in place for creating networks of brokers. The C++
broker allows you to link the brokers together using 'qpid-route' and then create routes between the brokers either statically or with dynamic
routes.

This allows for a message to be published to one broker and consumed from another broker in the federated broker network. This feature is
great to create data-center, or project isolation, but allow cross communication. It also allows networks to be created to scaled. For more
details see

And many others, including custom pattern

Message Reply, Rings, Initial Value Caches, Last Value Messaging

All the above cases can be constructed using the AMQP and features of Qpid. For example reply can be constructed using message
browsing and setting TTL on the messages. The C++ broker also support ring queues, last value queues, initial value caches on exchanges.
With a bit of throught many additional patterns can be constructed.

Store-and-forward

Store-and-forward can be achieved by publishing to well know durable queues, that are not marked with auto delete. Consumers will be able
to 'came back' to consume then at any time, even after restarts.

What AMQP and other exchanges does Qpid support?

Both brokers support:

Direct Exchange
Topic Exchange
Fanout Exchange
Headers Exchange

In additional the C++ broker support

XML Exchange - Query routing
Custom exchange via plug-in.

Custom exchanges allow you to provide your own custom routing logic and algorithms via a plug-in. If you build an interesting exchange,
please feel free to contribute it back to the Qpid project.

Security

What encryption does Qpid support?

Qpid support SSL/TSL as per the AMQP specification.
In addition the C++ broker supports Kerberos encryption of messages independent on which transport is used. Support in not yet
included in all clients for this but is in process.

What authentication does Qpid support?

SASL Authentication is supported. All Clients support PLAIN, and Kerberos support if being added to all the clients. The C++ broker support
Kerberbos authentication.

What authorization does Qpid support?

Full ACL is supported in the brokers. .For details on configuring ACL see

ACL supports realms and allows for granular permission to be set on all the broker actions including management on an user or group basis.

How to setup Kerberos with the Java client

You could force the java client to use kerberos auth by specifying it in the connection URL as follows.

amqp://guest:guest@clientid/testpath?brokerlist='tcp://localhost:5672?'&sasl_mechs='GSSAPI'

You would then need to pass in the following jvm arguments

-Djavax.security.auth.useSubjectCredsOnly=false
(This will force the SASL GASSPI client to obtain the kerberos credentials explicitly instead of
obtaining from the that owns the currents thread)"subject"
-Djava.security.auth.login.config=myjas.conf (specifies the jass config file)this
-Dsun.security.krb5.debug= (to enable detailed debug info troubleshooting)true for

Before running the java client you would need to do kinit and grab a kerberos ticket. Alternative you could set useTicketCache=false and
when the client loads, it will prompt you for the user/pass and will obtain the ticket
(You would also need to setup your kerberos environment properly -refer to doc links below).

Sample JASS Config file

com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule required useTicketCache= ;true
};

Semantics of Exclusive

I want to be able to have an exclusive consumer, but when it dies I want another to be able to pick up the queue and
then block others, can this be done?

Yes, Declare you queue exclusive. this will prevent anyone else from connecting to the queue. If the consumer dies the next consumer can
attach to the queue by redeclaring it using the exclusive flag. Make sure not to set auto delete. Any consumer trying to declare, while a
consumer is attached to the queue will receive an exception.

When will the queue become free for a re-declare

Once the session that held the consumer is closed.

Performance

Does Qpid Perform (Latency/Throughput)?

Yes, The Qpid C++ broker has been achieved great benchmark results in published papers by those that redistribute it. Red Hat MRG
product build on Qpid has shown 760,000msg/sec ingress on an 8 way box or 6,000,000msg/sec OPRA messages.

Latencies have been recored as low as 180-250us (.18ms-.3ms) for TCP round trip and 60-80us for RDMA round trip using the C++ broker.

How do I measure throughput?

There is a great resource supplied in the C++ broker test directory called perftest. If allows you to create load on a broker for all the
exchanges, multiple queues, multiple connection, coordinate multiple publishing and consuming processes, beachmark transactions and
much much more such as acquire mode, txn size, message size.

For all the options

./perftest --help

How do I measure latency?

There is a great resource supplied in the C++ broker test directory called latencytest. It is a loopback test that produces messages by count
or at a rate, time stamps them and then consumes them back and record the latency. It supports many of the Qpid options, including the
ability to vary things like frame-size.

Latencies to expect round trip:

1G TCP ~ .3ms -.5ms
10G TCP - .18ms - .22ms
RDMA transport - 40us - 80us

Don't forget to set tune the machine and set --tcp-nodelay on both the C++ broker & client.

For all the options

./latencytest --help

How do I measure performance with Java clients?

In Java we provide a utility called QpidBench. It allows you to test the performance of the native AMQP API in Java for 0-10 and the JMS API
against both brokers.

Can I run my Java client with JAVA-RT?

Yes, recently a thread abstraction layer has been added to the Java client allowing it to be used with both the SUN and IBM RT JVMs. This
increases the determinism of latency when using the Java client.

Does Qpid support flow control?

yes, AMQP 0-10 allows for flow control on the consumer and producer.

How do I configure producer side flow control

from qpidd --help

set the following in the config file on via cmd line options.

http://www.redhat.com/mrg

 --max-session-rate MESSAGES/S (0) Sets the maximum message rate per session
(0=unlimited)

Management

What Management does Qpid support

The Java broker supports JMX and provides an Eclipse plug-in and command line tool to manage via JMX. The C++ broker has far more
extensive management support via QMF which will be added to the Java broker in a future release.

The C++ Broker supports a layered management protocol over AMQP called QMF. This allows for the management of resource either in the
broker or connected to the broker via the AMQP fabric. This management includes statistics, control, eventing, and reporting/updating
properties.

How do I manage a broker?

A set of tools are provided to manage the C++ broker, they include

qpid-tool - telnet type tool to access data, view schema, issue command an and QMF resource
qpid-config - tool to configure queues, exchanges, etc. all the details on the AMQP model
qpid-route - tool to configure broker federation
qpid-events - utility that will print to cmd line or syslog event from a broker like, userconnected, user crested/deleted a queue.
qpid-stats - utility that will print out queue statistics to the cmd line or syslog like rate and message depth.

Then you can also access all thsi information via JMX or WS-DM (work in progress) using QMan.

What logging tracing and events does Qpid support?

Qpid support the ability to output events from any the broker or any managed object via QMF, or to do a variety of logging from the broker &
clients. for tracing options run qpidd --help.

Multiple levels of of logging are supported in the C++ broker from debug, warning, error, info, etc – all of which can be filtered.

Can I get to all the management data from a client?

yes, All the management data is just AMQP messages on specially named queues. An API is provided for working with the management
data called QMFC

What is QMF

QMF is the layered Management protocol used to manage the C++ broker. For details on teh protocol see the Development pages.

QMF allows you to manage any resource and provides the following infrsstructure:

Properties
Statistics
Commands
Events
Schema for resources and versioning
tools for creating agents and consuming QMF data.

What are QMF Agents, and what do they do for me?

An Agent is any client (producer or consumer) that generates a QMF schema and registers itself to be management by QMF.

A great use case of this is a consumer that is processing order from a queue can reference itself to that queue and for example provide a
schema for the number or successful orders process and a method to suspend processing. Now it becomes possible to use qpid-tool to
connect to the broker, see which order processors are on queue via the reference and the via the stats of the order processor client. It is also
possible to issue a command to the client via qpid-tool to suspend processing. ACL in the broker can be applied to all these actions if
desired.

What is QMFC and what does it do for mr?

QMFC is the API used to consume QMF data, event and issue commands to QMF agents from an AMQP client.

What is QMan

Qman is a tool that dynamically reads the QMF Schema information and creates JMX objects that consumed by any JMX console or
application server to manage Qpid. QMan is also adding support for WS-DM management of QMF resources.

Clustering, Federation and Disaster Recovery

Does Qpid provide Fault Tolerance for the cluster?

The C++ broker has plug-ins for Active-Active clustering which keep all the nodes of the cluster in sync. This means that any action that is
performed on one of the brokers on the cluster is performed on all of them at the same time. New nodes can be added to the cluster at any
time, and removed at any time with no consequences, exept for the extra multi-cast load created for the sync on joining.

How do I start a fault tolerant cluster?

See Starting a cluster

What does the cluster guarantee?

Everything! All configuration, all messages and all actions are replicated in a cluster. This means that two consumers can be connected to
different nodes in the cluster and they will behave EXACTLY the same as if they where on a single broker.

Do clients get notified members joining or leaving the cluster?

yes, All clients are updated with the addresses of node add/removed as supported by the AMQP 0-10 specification. This means that the
client can dynamically track the nodes in the cluster and reconnect as required.

Can I specify more than one host to connect initially to the cluster to avoid single point of failure?

yes, the AMQP address is multi-honed and more than one IP address can be specified at the initial connection. The client will then iterate
through the host until it makes a successful connection. This feature can also be used in none clustered brokers.

How does Clustering work?

When C++ brokers are configured into a cluster, the nodes communicate with each other over a mulitcast protocol called AIS, an open Telco
multicast protocol that provides all the quorum and group services.

Every action that is performed on any node of the cluster is then sequenced via totem and then performed on each node of the cluster in
sync. As the cluster backbone is multicast, a separate network can be used for cluster communication and there is little impact adding
additional nodes to the cluster with-in reason.

What is Federation?

Federation provides the ability to create networks of brokers that communicate with each other in all types of typologies. This allows a
producer to publish messages to one broker and someone to consume the messages from another broke somewhere on the broker
federated network.

For more details see

Disater recover features are in process, Q&A will be added once they are complete.

Heartbeats

Heartbeat can be configured to allow clients to detect when a broker has failed and connect to another broker or cluster member.Heartbeats
are sent by the broker at a client specified, per-connection frequency. If the client does not receive a heartbeat or any other traffic for two
heartbeat intervals, the connection will be made to fail.

What would happen when there is a no heartbeat within a predefined interval?

If there is no traffic for two heartbeat intervals, the client will fail the connection. The application will see the exact same response as when
the connection is killed.

What happens if the broker is unable to send heartbeat?

As above, if there is no other traffic the client will eventually kill the connection.

Does the client retry?

You can control the heartbeat interval on the client through the heartbeat member of ConnectionSettings (it is measured in seconds). Some
of the options on policies do vary for different clients.

Failover taking too long...

First check to make sure a heartbeat has been specified in the connection properties for the connection.

Then make sure that the interfaces on each broker are reachable from the host you run my clients, else it will take a long time for the socket
to timeout until it gets to one that can be reached.

Make sure the list of URL's on the cient are the ones you want tht client to try

Make sure that the broker is only exporting URL's that the client can connect to, use the --cluster-url option on the broker to specify this.

Threading

Could someone provide a brief description of the worker thread duties in the current Qpid release?

1.
2.

3.

4.

The broker uses IO threads for all the work it does. This means that when work is signalled via an event (socket, RDMA, timer) an IO thread
is scheduled and it runs until it completes the work and then returns back to the IO thread pool. This allows the CPUs to be utilized efficiently.
The general rule is that we allocate 1 thread per core +1. So on a 8 way machine you see worker-threads default to 9. On a 4 way it will be 5.
Sometimes it if work changing the default allocation if:

a.) you run on high core count machine >8 to a lower number
b.) if you taskset, then set to the cores allocated +1

Why was the number X chosen as the default number of worker threads?

Qpidd defaults to cores + 1

What happens in parallel?

Concurrency in the broker is at the session level. So yes. If you want more concurrency, create another session on the same connection.

How are worker threads allocated to individual client sessions if there are more clients than threads in the pool?

They are not allocated to a specific client

Persistence

Does Qpid support persistence (durability)?

Yes, there are third-party (non-Apache) modules for both C++ and Java. Historically, BDB has been used to provide persistence for both C++
and Java. However, this has created a licensing conflict with Apache, and thus the store modules are maintained off-site.

The Java broker includes a fully Apache licensed persistent store that uses Derby DB.

The terms and are used interchangeably in this FAQ.durable persistent

Where do I get the 3rd party persistence store modules?

The 3rd party persistence store modules may be obtained through anonymous subversion at the following locations:

C++: http://anonsvn.jboss.org/repos/rhmessaging/store/trunk/cpp
Java: http://anonsvn.jboss.org/repos/rhmessaging/store/trunk/java/bdbstore

For further details see 3rd Party Libraries

How do I build the persistence store module from subversion checkouts?

C*++*The README file contains detailed instructions, but here is a summary:

Make sure that both the db4-devel and libaio-devel packages are installed prior to building.
Make sure that qpid is built and you know the location of the qpid directory (ie the top-level directory containing the python and cpp
sub-directories).
In the store directory, run:

./bootstrap

./configure --with-qpid-checkout=/abs/path/to/qpid/dir
make

When built, the store library will be located in the directory.msgstore.so lib/.libs

JavaTODO

Which version of the store should I use when building against qpid 0.X?

C++
If you build qpid from svn trunk, you should be able to build the store against it using the store trunk. However, if you build the store from a
released version of qpid, you will need to check out a specific version of the store to get it to compile:

release store tag store revision

0.5 qpid-0.5-release 3373

0.6 qpid-0.6-release 3793

To check out revision , use:revno

svn co http://anonsvn.jboss.org/repos/rhmessaging/store/trunk/cpp -r [revno]

http://anonsvn.jboss.org/repos/rhmessaging/store/trunk/cpp
http://anonsvn.jboss.org/repos/rhmessaging/store/trunk/java/bdbstore

1.

2.

3.

1.

2.

To check out tag , use:tagname

svn co http://anonsvn.jboss.org/repos/rhmessaging/store/tags/[tagname]/cpp

JavaTODO

How do I use the persistence store module?

C++

Start the broker making sure that the store module is loaded, ie

qpidd --load-module=/path/to/msgstore.so --data-dir=/path/to/store-files ...

Make sure that queues that will handle persistent messages are set durable.

Note: Existing non-persistent queues cannot be made persistent
If a queue has been declared without persistence, doing so again with persistence enabled while the old queue still
exists in the broker will be ignored. Make sure that when a queue is declared persistent, there is no non-persistent
queue of the same name in existence.

For each message sent to a durable queue, make sure that it is set durable.

JavaTODO

How do I configure the persistence store?

C++

The broker loads help information from each module. To see the help options for the store, load the store module and specify help:

qpidd --load-module /abs/path/to/store/lib/.libs/msgstore.so --help

Note that a set of journal files will be created for each queue declared and marked persistent. Each persistent queue has its own private
journal. These are stored in the data directory by default (ie it uses the broker's setting) or can be overridden with the --data-dir --store-dir
option. Note that if the broker is started with the option, then no store default exists, and the option MUST be--no-data-dir --store-dir
specified.

The store file details - or "store geometry" - can be set with command-line options. These include the size and number of files that make up
the journal for each queue. The options sets the number of files to use (between 4 and 64) and the sets the size--num-jfiles --jfile-size-pgs
of the file in 64kiB blocks.

The size of the pages in the write page cache is set with the option, and sets a size in KiB. (Legal values are powers of--wcache-page-size
2, ie: 1, 2, 4, 8, 16, 32, 64, 128). Typically small page sizes give improved latency (especially for small messages), but are bad for message
throughput, while large page sizes improve throughput but may cause some messages to have higher latencies.

JavaDerby StoreFor details of configuring the Derby Store see [here]

3rd Party Stores

For details of using the 3rd party persistent modules see here

[C++ store] What is a RHM_IORES_ENQCAPTHRESH error?

The journal ran out of space (ENQueue CAPacity THRESHold). The journal is a circular file buffer of fixed capacity set by the journal file size
and number of files. When an attempt to write a record causes the journal to exceed an approx. 80% threshold, then the enqueue is rejected
with this error code. Dequeues (a written record of a consumed message) may continue, however, as these free up space in the journal.
Once space has been freed up, enqueues may continue as normal.

This error may be caused by:

The journal is too small for the size and number of messages being stored. The journal must be made large enough to hold all of the
messages you expect to be on the queue at any one moment (a worst-case scenario). Make the journal capacity larger through the
use of the and parameters.--num-jfiles --jfile-size-pgs

Rule of thumb for sizing the journal
Make the journal twice the size of all the messages you need to store at any one moment in time.

2. Messages are not being dequeued (consumed) as expected. Since the store is a circular file buffer, if one un-dequeued (not
consumed) message remains, it can eventually "block" the storage of new messages as the buffer gets overwritten.

[C++ store] What is the TPL? What are the --tpl-* options for?

The TPL stands for . The store creates a single instance of a journal for storing transaction boundaries called theTransaction Prepared List
Transaction Prepared List. Because the TPL is frequently flushed and has very different usage patterns to a normal store, it has been
provided with its own set of configuration parameters:

--tpl-num-jfiles: The number of files in the TPL journal
--tpl-jfile-size-pgs: The file size in 64kiB blocks of the TPL journal.
--tpl-wcache-page-size: The size of the write cache in the TPL in KiB, which is typically set a lot smaller than the average message
store.

How To

C++

How to use RDMA with Qpid

The RDMA plugin uses native OFED1.3 and puts AMQP directly onto the DMA. When using the RDMA plug-in for Qpid note the following

IP over IB or Fibre needs to be setup for the initial negociation
You need to make sure you have enough memory to pin for DMA use ulimit -l something large
you might need to edit /etc/security/limits.conf first then log in again

Once you have it up and running, use latencytest to make sure it is working. You should see latencies between 50 and 80us round trip.

Message TTL, auto expire

I need to be able to set time for a message that I send to be removed from the queue if it is not read by my subscriber. For example: I
enqueue a message and I want it to be automatically dequeued after a certain amount of time has passed.Is there a feature like this in qpid?

yes, the TTL can be set in the message headers and the messages get dequeued if TTL expires

E.g. from c++:

Message m();"Hello World!"
 m.getDeliveryProperties().setTtl(500);

Sets a 500 millisecond timeout.

How to install the qpid-tools for c++ broker?

I see

[commands]$./qpid-queue-stats
 Traceback (most recent call last):
 File , line 29, in"./qpid-queue-stats"
 from qmf.console Session, Consoleimport
 ImportError: No module named qmf.console

This problem occurs because the PYTHONPATH environment variable does not include the location of the qpid python files. If you are
running from the SVN checkout, add <path>/qpid/python to PYTHONPATH (where <path> is the location of your SVN tree). If you are
installing from source, make sure you configure with the same prefix where Python is installed. This is most likely:

configure --prefix=/usr
make
make install

If you are running from vendor RPMs, this should work automatically.

Java

Add New Users
Configure ACLs
Configure Broker and Client Heartbeating
Configure Java Qpid to use a SSL connection.

Configure Log4j CompositeRolling Appender
Configure Operational Status Logging
Configure the Broker via config.xml
Configure the Virtual Hosts via virtualhosts.xml
Debug using log4j
Firewall Configuration
How to Tune M3 Java Broker Performance
How to Use JNDI
Interact with a JMX MBean
Qpid Java Build How To
Split configuration files
Tune Broker and Client Memory Usage
Use Last Value Queues (LVQ)
Use Priority Queues
Use Producer Flow Control

License
Qpid is licensed in under the ASL 2.0. Please look at the notice files provided with the downloads to see the list of embedded components.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this
document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of
the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code,
documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not
limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by
a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for
which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright
owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this
definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue
tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by
Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object
form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those
patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of
their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

http://www.apache.org/licenses/

1.

1.

1.

1.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or
without modifications, and in Source or Object form, provided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License; and

You must cause any modified files to carry prominent notices stating that You changed the files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do
not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License.
You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and
conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided
Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in5. Submission of Contributions
the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names
of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under
this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character
arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with
this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not
on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

Project Status

Qpid is graduated November 2008 as TLP
Qpid will be transitioning to it new home out of the incubator. If you find pages that need updating, please mail the qpid-dev list.

If you would like to become a committer and join the PMC, . We would love to have you on the project!this is how we do it

Our Resolution, Approved November 2008.

Here is a copy of our resolution:

WHEREAS, the Board of Directors deems it to be in the best
interests of the Foundation and consistent with the
Foundation's purpose to establish a Project Management
Committee charged with the creation and maintenance
of open-source software related to distributed messaging,
for distribution at no charge to the public.

NOW, THEREFORE, BE IT RESOLVED, that a Project Management
Committee (PMC), to be known as the "Apache Qpid Project",
be and hereby is established pursuant to Bylaws of the
Foundation; and be it further

RESOLVED, that the Apache Qpid Project be and hereby is
responsible for the creation and maintenance of software
related to distributed messaging; a multiple language
implementation providing daemons and APIs for publish &
subscribe, eventing and a wide range of message distribution patterns
based on the Advanced Message Queuing Protocol (AMQP) and
related technologies such as (transaction management, federation,
security, management); and be it further

RESOLVED, that the office of "Vice President, Qpid" be and
hereby is created, the person holding such office to serve at
the direction of the Board of Directors as the chair of the
Apache Qpid Project, and to have primary responsibility for
management of the projects within the scope of responsibility
of the Apache Qpid Project; and be it further

RESOLVED, that the persons listed immediately below be and
hereby are appointed to serve as the initial members of the
Apache Qpid Project:

Aidan Skinner aidan.skinner@gmail.com
Alan Conway aconway@redhat.com
Arnaud Simon asimon@redhat.com
Carl Trieloff cctrieloff@redhat.com
Craig Russell Craig.Russell@sun.com
Gordon Sim gsim@redhat.com
Jonathan Robie jonathan.robie@redhat.com
John O'Hara john.r.ohara@gmail.com
Kim van der Riet kim.vdriet@redhat.com
Marnie McCormack marnie.mccormack@googlemail.com
Martin Ritchie ritchiem@apache.org
Manuel Teira mteira@tid.es
Paul Fremantle paul@wso2.com
Nuno Santos nsantos@redhat.com
Rafael Schloming rafaels@redhat.com
Rajith Attapattu rattapat@redhat.com
Robert Greig robert.j.greig@gmail.com
Robert Godfrey rob.j.godfrey@gmail.com
Steve Huston shuston@riverace.com
Ted Ross tross@redhat.com
Yoav Shapira yoavs@apache.org

NOW, THEREFORE, BE IT FURTHER RESOLVED, that
Carl Trieloff be appointed to the office of Vice President,
Qpid, to serve in accordance with and subject to the
direction of the Board of Directors and the Bylaws of the
Foundation until death, resignation, retirement, removal or
disqualification, or until a successor is appointed; and be it
further

RESOLVED, that all responsibility pertaining to the Qpid
encumbered upon the Apache Incubator be hereafter discharged.

General items

The Qpid project proposal can be found at http://wiki.apache.org/incubator/QpidProposal
The project containing the initial source and mail-list for reference prior to the incubator can be found at here

People

Apache Qpid Committers

http://wiki.apache.org/incubator/QpidProposal
http://anonsvn.jboss.org/repos/rhmessaging/snapshot/trunk/blaze/

The people listed below have made significant contributions to Qpid by working long and hard to make quality software for the rest of the
world to use.

In addition to providing us contribuions, or being commmitters some of the following people are also members of the Project Management
Committee (PMC). Refer to the How the ASF works for details on meritocracy.

If you would like to contribute to Qpid please look at the Get Involved page to see how you can contribute.

Aidan Skinner Alan Conway Arnaud Simon Andrea Gazzarini

Andrew Stitcher Carl Trieloff Gordon Sim Jim Meyering

Ken Giusti John O'Hara Jonathan Robie Kim van der Riet

Lahiru Gunathilake Manuel Teira Marnie McCormack Martin Ritchie

Michael Goulish Nuno Santos Paul Fremantle Rafael Schloming

Rajith Attapattu Robbie Gemmell Robert Godfrey Robert Greig

Rupert Smith Steve Huston Ted Ross Yoav Shapira

Many thanks to the following people for providing contributions:

Colin Crist Bhupendra Bhardwaj Kevin Smith Steve Vinoski

Steven Shaw Tomas Restrepo

And many thanks to our project's mentors:

Scott Deboy
Paul Fremantle
Craig Russell
Cliff Schmidt
Yoav Shapira

MartinRitchie
This is just a sandbox test area for Martin Ritchie

Cloaked Content2

Robbie Gemmell

GSoC 2009 Progress

The table below gives an overview of current progress.

Issue # Description Target
Week

%
Complete

Notes

QPID-1926 make qpid-management-common an OSGI
bundle

 100 Done, merged to trunk

QPID-1927 move JMX MBean interface definitions to
management-common

 100 Done, merged to trunk

QPID-1928 remove Queue MBean reliance on
AMQException for unused throws clause

 100 Done, merged to trunk

QPID-1929 create a factory class to generate the views
for the various MBeans

 100 Done, merged to trunk

QPID-1930 create a new view for the User
Management mbean

 100 Done, merged to trunk

QPID-1931 create a new view for the Logging
Management mbean

 100 Done, merged to trunk

QPID-1942 create a new queue / exchange /
connection selection view

 100 Done, merged to trunk

QPID-1945 create a new view for the
VirtualHostManager mbeans

 100 Done, merged to trunk

QPID-1941 moved messages remain listed on original
queue when viewing messages using JMX,
but are not actually considered to still be on
the queue

7 100 Done, merged to trunk

QPID-1932 create a new view for the Queue mbeans 7 100 Done, merged to trunk

QPID-1944 create a new view for the Connection
mbeans

7 100 Done, merged to trunk

QPID-1943 create a new view for the Exchange
mbeans

7 100 Done, merged to trunk

QPID-1946 add an mbean to present system
information, including API versioning for the
JMX interface

8 100 Done, committed to trunk

QPID-1966 add status bar for feedback reports 8 100 Done, committed to trunk

QPID-1947 enable automated update to negate need
for users to manually refresh the data

8 100 Done, committed to trunk

QPID-1991 remove the containing Type folders for the
top-level single mbeans in the server
navigation tree

8 100 Done, committed to trunk

QPID-1990 provide ability to determine queue order of
messages when viewing via JMX

8 100 Done, committed to trunk

QPID-1969 per-virtualhost notification areas show all
notifications sent by the server

9 100 Done, committed to trunk

QPID-1967 gather list of available exchange types from
broker instead of hardcoding in console

9 100 Done, committed to trunk

QPID-1961 widen viewMessages(int From, int To)
AMQQueueMBean method to use Long
values

9 100 Done, committed to trunk

QPID-1968 expose ability to delete arbitrary message
from queue

9 100 Done, committed to trunk

QPID-1981 Expose message copying ability through
JMX

9 100 Done, committed to trunk

QPID-1994 auto-refresh mechanism can generate NPE
during application shutdown

9 100 Done, committed to trunk

QPID-1995 Notification tabs all start a thread on
creation, and never halt them

9 100 Done, committed to trunk

QPID-1996 Notifications view clears the table and
forces deselection at every refresh

9 100 Done, committed to trunk

QPID-2000 retrieving attributes for the queue selection
list takes excessively long with large
numbers of queues

9 100 Done, committed to trunk

QPID-1978 New list views in MC should allow multiple
selection

9 100 Done, committed to trunk

QPID-2006 enable opening queues and exchanges
directly from other mbean views

9 100 Done, committed to trunk

QPID-1977 No way back from object view 10 100 Done, committed to trunk

QPID-2007 new UI dialogs open in the upper left corner
of the screen on Windows

10 100 Done, committed to trunk

QPID-2008 queue names are not sorted when
presented for user selection in some new UI
dialogs

10 100 Done, committed to trunk

QPID-2009 password fields are not masked in the new
UserManagement UI

10 100 Done, committed to trunk

QPID-2013 Previous/Next N Message button in queue
browser should take current size as step
size

11 100 Done, committed to trunk

QPID-2014 Clear notifications should prompt when
clearing all of them

11 100 Done, committed to trunk

QPID-2015 Add ability to configure attributes shown on
queue list

11 100 Done, committed to trunk

QPID-2021 provide new icons to distinguish the various
'manager' mbeans

11 100 Done, committed to trunk

QPID-2032 AddUser operation in the new
UserManagement UI does not MD5 hash
the password when connected to pre-0.5
brokers

11 100 Done, committed to trunk

QPID-2036 SimpleAMQQueue
getMessagesRangeOnTheQueue(from,to)
incorrectly shows the last message on a
queue following its deletion

11 100 Done, committed to trunk

QPID-2037 navigation tree node doesnt auto-expand
upon connection when adding a new server

11 100 Done, committed to trunk

QPID-2018 Clear queue doesn't clear acquired
messages which is a little confusing if that's
all there is

12 100 Done, committed to trunk

QPID-2016 Reload Log4J configuration file 12 60 Developing a custom XMLWatchdog to enforce stricter
validation to the WatchDog reloading, also to be used on
conjunction with the forced reload. May prompt some
changes to logging configuration during broker startup

QPID-2039 the JMX ConnectorServer is not closed
during shutdown of the
JMXManagedObjectRegistry

12 0

QPID-2043 create a new JMX management console
testing spec

12 0

QPID-2044 create a new JMX management console
user guide

12 0

QPID-2040 failed update to the
PlainPasswordFilePrincipalDatabase on
disk may go unnoticed, preventing broker
restart

 0

QPID-2041 failed update to the
Base64MD5PasswordFilePrincipalDatabase
on disk may go unnoticed, preventing
broker restart

 0

QPID-2042 update to the management access rights
may not be saved to disk, but still report
success

 0

Proposal for a new JMS Destination configuration

The proposal is organized as follows.
1. Use cases
2. Design concepts/notes
3. Configuration format with examples
4. Complete list of options available
5. Code patch (attached to JIRA)

Use cases

The following were requested by Qpid users via JIRA's and user list.

Arbitrary exchange types (Ex XML exchange).
Any kind of queue declare options (Ex. qpid.max-size, alt-exchange)
Any kind of queue binding options
Ability to support destination specific parameters like
o msg credits, byte credits
o sync-publish, sync-ack
o whether a queue should be created/bound by producer side
Bind a queue to multiple exchange/binding key pairs.

Design concepts/notes

I have moved away from the previous URL format as it,
Does not clearly identify a resource, hence against the concept of a URL
It is impossible to fit all information in to a URL

The new format is integrated alongside the old system with absolutely no change to existing way of doing things.
A mix and match of both the old and new system could be used (if really needed).

The new format takes ideas from the AMQP 1.0 spec.
But it is not intended to support AMQP 1.0 when it comes out. If it ends up being a pre-cursor for supporting AMQP 1.0 it would just
be a bonus.

The new format clearly identifies the dual role of a javax.jms.Destination.
That being the producer and consumer's view of a destination.

The new format allows a way to support,
Arbitrary exchange types (Ex XML exchange).
Any kind of queue declare options (Ex. qpid.max-size, alt-exchange)
Any kind of queue binding options
Ability to support destination specific parameters like

msg credits, byte credits
sync-publish, sync-ack
whether a queue should be created/bound by producer side

Bind a queue to multiple exchange/binding key pairs.

Define queues, links and then compose them to create destinations.

Provides sensible defaults . At least I tried to .

Configuration format with examples

The new format consists of definitions for queues, publisher/consumer links and destinations in key/value pairs.

xqueue.<id> = name='value1'[;key2='value2';key3='value3'......]
pub.link.<id> = key1='value1';key2='value2';key3='value3'......
sub.link.<id> = key1='value1';key2='value2';key3='value3'......

xdestination.<jndiName> = queue='<id>'[;pub.link='<id>';sub.link='<id>']

Using queue, pub/sub links def's you can compose destinations.

Examples

In the simplest form

xqueue.myQueue = name='myQueue'
xdestination.myQueue = queue=myQueue

This is equivalent to the old queue = myQueue format.

Using qpid specific options and per destination switches

xqueue.tradeQueue1 = name='trade-queue1';durable='true'
xqueue.tradeQueue2 = name='trade-queue2';qpid.max_size='5000';qpid.policy_type='ring'

pub.link.trade1 = filter='amq.direct/tradeQueue1';sync-publish='all'
pub.link.trade2 = filter='amq.direct/tradeQueue2';create-queue='true'

sub.link.mylink = msg-credits='1000';byte-credits='1000';sync-ack='true'

xdestination.myLocalTrades = queue='tradeQueue1';pub.link='trade1';sub.link='myLink'

xdestination.myDailyTrades = queue='tradeQueue2';pub.link='trade2';sub.link='myLink'

Binding a queue to multiple exchange/routing key pairs

Using the above queue definition.

sub.link.multiLink =
msg-credits='1000';bindings='{amq.topic/stocks.*};{amq.match//x-match='any',sym='RHT'}'

xdestination.myDailyTrades = queue='tradeQueue2';sub.link='multiLink'

Complete list of options

xqueue
name : name of the queue
durable
exclusive
auto-delete
alt-exchange
no-local (??)
qpid.max_count
qpid.max_size
qpid.policy_type { reject | flow_to_disk | ring | ring_strict }
qpid.last_value_queue {1}
qpid.last_value_queue_no_browse {1}
qpid.LVQ_key
qpid.persist_last_node {1}
qpid.queue_event_generation { 0,1,2 } (0 to disable,1 to replicate, only enqueue events)

sub.link
filter
filter-type
msg-credits
byte-credits
sync-ack
bindings - format as follows

{exchange-name/bindingkey[/key=value,key=value,...};{....}..]

pub.link
filter
filterType
sync-publish {persistent|all}
create-queue (producer side will declare/bind the queue)

Proposal for a new JMS Destination configuration2

The proposal is organized as follows.

This proposal is written with input from Rafael and Rob and is intend to support AMQP 1.0 and AMQP 0-8/9/10 as well.

1. Use cases
2. Configuration format with examples
3. Complete list of options available
4. Code patch (attached to JIRA)

1.0 Use cases

The following were requested by Qpid users via JIRA's and user list.

Arbitrary exchange types (Ex XML exchange).
Any kind of queue declare options (Ex. qpid.max-size, alt-exchange)
Any kind of queue binding options
Ability to support destination specific parameters like
o msg credits, byte credits
o sync-publish, sync-ack
o whether a queue should be created/bound by producer side

2.0 Configuration format with examples

queuex.<name> = {key='value', ...}
destinationx.<name> = <address> # destination without
options
destinationx.<name> = <address>; {a='b', c={x='y', z='w', ...}, ...} # destination with options

In a production environment the queues will most likely be pre-configured using an admin tool. However if you need to create queues
dynamically the queuex definition allows you to configure your queues in the jndi.properties file it self. It's just a simple key-value
pair.

The address will encode the following (scheme, node-name, node-type*, subject*) with * denoting optional elements.

The exact format is not decided yet. Rafael is planning to use a similar struct for the python client. It would be great if all
clients use a similar struct and encoding scheme to represent an address scheme

The use of curly braces in the option key-value pairs in the destination is used to facilitate nesting.

'For the purpose of the examples we will assume the following ecoding for the address struct'.

<node-type>::<node-name>/<subject>

2.1 Examples

<node-name>
<node-type>::<node-name>
<node-type>::<node-name>/<subject>

exchange::amq.topic/foo.bar
my-node
my-topic/my-subject.
my-queue/my-subject
my-exchange/my-Subject

2.2 Rules for interpreting the format

For 0-10/9/8, node names without a specified type will be resolved to either a queue or an exchange by querying the broker.

Subscribing to an exchange will result in a private queue being automatically created and bound (the subject if provided will be used
as the binding key).

Publishing to an exchange will result in the subject being used as the routing key. Publishing to a queue will result in the default
exchange being used to route directly to the queue (note that this will result in the routing key being set to the queue name).

In both cases the subject will be set as a message property.

Complete list of options

The options here are not a static list. The format is extensible and new options could be introduced any time in the future.

queuex
name : name of the queue
durable
exclusive
auto-delete
alt-exchange
no-local (??)
qpid.max_count
qpid.max_size
qpid.policy_type { reject | flow_to_disk | ring | ring_strict }
qpid.last_value_queue {1}
qpid.last_value_queue_no_browse {1}
qpid.LVQ_key
qpid.persist_last_node {1}
qpid.queue_event_generation { 0,1,2 } (0 to disable,1 to replicate, only enqueue events)

destinationx.
filter
filter-type
msg-credits
byte-credits

sync-ack
sync-publish {persistent|all}
bindings - format as follows - a Qpid specific extension for binding a queue to multiple exchange/binding key pairs

{ bind={exchange-name=<name>, binding-key=<key>, [args={a='b',c='d',...}]} [,
bind={}] }

Qpid .Net Documentation

Purpose

Introduction
Currently the .NET code base provides two client libraries that are compatible respectively with AMQP 0.8 and 0.10.
The 0.8 client is located in qpid\dotnet and the 0.10 client in: qpid\dotnet\client-010

You will need an AMQP broker to fully use those client libraries. Qpid trunk currently provide a C++ 0.10 broker and a 0.8/0.9 Java broker.

User Guide

.NET User Guide
Excel AddIn
WCF

Developer Information

Qpid Developer Documentation
[Coding Standards]
How Tos

Build .NET Client
Releasing
Run tests
Setup .Net Client on Windows

.NET User Guide

Tutorial
This tutorial consists of a series of examples using the three most commonly used exchange types - Direct, Fanout and Topic
exchanges. These examples show how to write applications that use the most common messaging paradigms.

direct
In the direct examples, a message producer writes to the direct exchange, specifying a routing key. A message consumer reads
messages from a named queue. This illustrates clean separation of concerns - message producers need to know only the exchange
and the routing key, message consumers need to know only which queue to use on the broker.
fanout
The fanout examples use a fanout exchange and do not use routing keys. Each binding specifies that all messages for a given
exchange should be delivered to a given queue.
pub-sub
In the publish/subscribe examples, a publisher application writes messages to an exchange, specifying a multi-part key. A subscriber
application subscribes to messages that match the relevant parts of these keys, using a private queue for each subscription.
request-response
In the request/response examples, a simple service accepts requests from clients and sends responses back to them. Clients create
their own private queues and corresponding routing keys. When a client sends a request to the server, it specifies its own routing
key in the reply-to field of the request. The server uses the client's reply-to field as the routing key for the response.

Running the Examples

Before running the examples, you need to unzip the file Qpid.NET-net-2.0-M4.zip, the following tree is created:

<home>
 |-qpid
 |-lib (contains the required dlls)
 |-examples
 |- direct
 | |-example-direct-Listener.exe
 | |-example-direct-Producer.exe
 |- fanout
 | |-example-fanout-Listener.exe
 | |-example-fanout-Producer.exe
 |- pub-sub
 | |-example-pub-sub-Listener.exe
 | |-example-pub-sub-Publisher.exe
 |- request-response
 |-example-request-response-Client.exe
 |-example-request-response-Server.exe

Make sure your PATH contains the directory <home>/qpid/lib
The examples can be run by executing the provided exe files:

$ cd <home>/qpid/examples/examplefolder
$ example-...-.exe [hostname] [portnumber]

where is the qpid broker host name (default is localhost) and is the port number on which the qpid broker is[hostname] [portnumber]
accepting connection (default is 5672).

Creating and Closing Sessions

All of the examples have been written using the Apache Qpid .NEt 0.10 API. The examples use the same skeleton code to initialize the
program, create a session, and clean up before exiting:

using ;System
using .IO;System
using .Text;System
using .Threading;System
using org.apache.qpid.client;
using org.apache.qpid.transport;

...

 void Main(string[] args)private static
 {
 string host = args.Length > 0 ? args[0] : ;"localhost"
 port = args.Length > 1 ? Convert.ToInt32(args[1]) : 5672;int
 Client connection = Client();new
 try
 {
 connection.connect(host, port, , ,);"test" "guest" "guest"
 ClientSession session = connection.createSession(50000);

 //--------- Main body of program --

 connection.close();
 }
 (Exception e)catch
 {
 Console.WriteLine(+ e.StackTrace);"Error: \n"
 }
 }
...

Writing Direct Applications

This section describes two programs that implement direct messaging using a Direct exchange:
• org.apache.qpid.example.direct.Producer (from example-direct-producer) publishes messages to the amq.direct exchange, using the

routing key routing_key.
•org.apache.qpid.example.direct.Listener (from example-direct-Listener) uses a message listener to receive messages from the queue
named message_queue.

Running the Direct Examples

1) Make sure your PATH contains the directory <home>/qpid/lib

2) Make sure that a qpid broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above
command.

3) Read the messages from the message queue using direct listener, as follows:

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-direct-Listener.exe [hostname] [portnumber]

or with mono:

$ mono ./example-direct-Listener.exe [hostname] [portnumber]

This program is waiting for messages to be published, see next step:

4) Publish a series of messages to the amq.direct exchange by running direct producer, as follows:

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-direct-Producer.exe [hostname] [portnumber]

or with mono:

$ mono ./example-direct-Producer.exe [hostname] [portnumber]

This program has no output; the messages are routed to the message queue, as instructed by the binding.

5) Go to the windows where you are running your listener. You should see the following output:

Message: Message 0
Message: Message 1
Message: Message 2
Message: Message 3
Message: Message 4
Message: Message 5
Message: Message 6
Message: Message 7
Message: Message 8
Message: Message 9
Message: That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only

the code that must be added to the skeleton shown in Section "Creating and Closing Sessions".

Reading Messages from the Queue

The program , listener.cs, is a message listener that receives messages from a queue.

First it creates a queue named message_queue, then binds it to the amq.direct exchange using the binding key routing_key.

//--------- Main body of program --
// Create a queue named , and route all messages whose"message_queue"
// routing key is to newly created queue."routing_key" this
session.queueDeclare();"message_queue"
session.exchangeBind(, ,); "message_queue" "amq.direct" "routing_key"

The queue created by this program continues to exist after the program exits, and any message whose routing key matches the key specified
in the binding will be routed to the corresponding queue by the broker. Note that the queue could have been be deleted using the following
code:

session.queueDelete();"message_queue"

To create a message listener, create a class derived from IMessageListener, and override the messageTransfer method, providing the code
that should be executed when a message is received.

 class MessageListener : IMessageListenerpublic
{

 void messageTransfer(IMessage m)public
 {

}

The main body of the program creates a listener for the subscription; attaches the listener to a message queue; and
subscribe to the queue to receive messages from the queue.

lock (session)
{
 // Create a listener and subscribe it to the queue named "message_queue"
IMessageListener listener = MessageListener(session);new
 session.attachMessageListener(listener,); "message_queue"
 session.messageSubscribe();"message_queue"
 // Receive messages until all messages are received
Monitor.Wait(session);
}

The MessageListener's messageTransfer() function is called whenever a message is received. In this example the message is printed and
tested to see if it is the final message. Once the final message is received, the messages are acknowledged.

BinaryReader reader = BinaryReader(m.Body, Encoding.UTF8);new
[] body = [m.Body.Length - m.Body.Position];byte new byte

reader.Read(body, 0, body.Length);
ASCIIEncoding enc = ASCIIEncoding();new
string message = enc.GetString(body);
 Console.WriteLine(+ message);"Message: "
// Add message to the list of message to be acknowledged this
_range.add(m.Id);

(message.Equals())if "That's all, folks!"
{
 // Acknowledge all the received messages
_session.messageAccept(_range);
 lock(_session)
 {
 Monitor.Pulse(_session);
 }
}

Publishing Messages to a Direct Exchange

The second program in the direct example, Producer.cs, publishes messages to the amq.direct exchange using the routing key routing_key.

First, create a message and set a routing key. The same routing key will be used for each message we send, so you only need to set this
property once.

IMessage message = Message();new
// The routing key is a message property. We will use the same
// routing key each message, so we'll set propertyfor this
// just once. (In most simple cases, there is no need to set
// other message properties.)
message.DeliveryProperties.setRoutingKey(); "routing_key"

Now send some messages:

// Asynchronous transfer sends messages as quickly as
// possible without waiting confirmation.for

 (i = 0; i < 10; i++)for int
{
 message.clearData();
 message.appendData(Encoding.UTF8.GetBytes(+ i)); "Message "
 session.messageTransfer(, message); "amq.direct"
}

Send a final synchronous message to indicate termination:

// And send a syncrhonous message to indicate termination.final
message.clearData();
message.appendData(Encoding.UTF8.GetBytes());"That's all, folks!"
session.messageTransfer(, , message); "amq.direct" "routing_key"
session.sync();

Writing Fanout Applications

This section describes two programs that illustrate the use of a Fanout exchange.

Listener.cs makes a unique queue private for each instance of the listener, and binds that queue to the fanout exchange. All
messages sent to the fanout exchange are delivered to each listener's queue.
Producer.cs publishes messages to the fanout exchange. It does not use a routing key, which is not needed by the fanout exchange.

Running the Fanout Examples

1) Make sure your PATH contains the directory <home>/qpid/lib

2) Make sure that a qpid broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above
command.

3) In separate windows, start one or more fanout listeners as follows:

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-fanout-Listener.exe [hostname] [portnumber]

or with mono:

$ mono ./example-fanout-Listener.exe [hostname] [portnumber]

The listener creates a private queue, binds it to the amq.fanout exchange, and waits for messages to arrive on the queue. When the listener
starts, you will see the following message:

Listening

This program is waiting for messages to be published, see next step:

4) In a separate window, publish a series of messages to the amq.fanout exchange by running fanout producer, as follows:

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-fanout-Producer.exe [hostname] [portnumber]

or with mono:

$ mono ./example-fanout-Producer.exe [hostname] [portnumber]

This program has no output; the messages are routed to the message queue, as prescribed by the binding.

5) Go to the windows where you are running listeners. You should see the following output for each listener:

Message: Message 0
Message: Message 1
Message: Message 2
Message: Message 3
Message: Message 4
Message: Message 5
Message: Message 6
Message: Message 7
Message: Message 8
Message: Message 9
Message: That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only
the code that must be added to the skeleton shown in Section "Creating and Closing Sessions".

Consuming from a Fanout Exchange

The first program in the fanout example, Listener.cs, creates a private queue, binds it to the amq.fanout exchange, and waits for messages to
arrive on the queue, printing them out as they arrive. It uses a Listener that is identical to the one used in the direct example:

 class MessageListener : IMessageListenerpublic
 {
 readonly ClientSession _session;private
 readonly RangeSet _range = RangeSet();private new
 MessageListener(ClientSession session)public
 {
 _session = session;
 }

 void messageTransfer(IMessage m)public
 {
 BinaryReader reader = BinaryReader(m.Body, Encoding.UTF8);new
 [] body = [m.Body.Length - m.Body.Position];byte new byte
 reader.Read(body, 0, body.Length);
 ASCIIEncoding enc = ASCIIEncoding();new
 string message = enc.GetString(body);
 Console.WriteLine(+ message);"Message: "
 // Add message to the list of message to be acknowledged this
_range.add(m.Id);
 (message.Equals())if "That's all, folks!"
 {
 // Acknowledge all the received messages
_session.messageAccept(_range);
 lock (_session)
 {
 Monitor.Pulse(_session);
 }
 }
 }
 }

The listener creates a private queue to receive its messages and binds it to the fanout exchange:

string myQueue = session.Name;
session.queueDeclare(myQueue, Option.EXCLUSIVE, Option.AUTO_DELETE);
session.exchangeBind(myQueue, ,);"amq.fanout" "my-key"

Now we create a listener and subscribe it to the queue:

lock (session)
{
 Console.WriteLine();"Listening"
 // Create a listener and subscribe it to my queue.
IMessageListener listener = MessageListener(session);new
 session.attachMessageListener(listener, myQueue);
 session.messageSubscribe(myQueue);
 // Receive messages until all messages are received
Monitor.Wait(session);
}

Publishing Messages to the Fanout Exchange

The second program in this example, Producer.cs, writes messages to the fanout queue.

// Unlike topic exchanges and direct exchanges, a fanout
// exchange need not set a routing key.
IMessage message = Message();new
// Asynchronous transfer sends messages as quickly as
// possible without waiting confirmation.for

 (i = 0; i < 10; i++)for int
{
 message.clearData();
 message.appendData(Encoding.UTF8.GetBytes(+ i));"Message "
 session.messageTransfer(, message);"amq.fanout"
}

// And send a syncrhonous message to indicate termination.final
message.clearData();
message.appendData(Encoding.UTF8.GetBytes());"That's all, folks!"
session.messageTransfer(, message);"amq.fanout"
session.sync();

Writing Publish/Subscribe Applications

This section describes two programs that implement Publish/Subscribe messaging using a topic exchange.

• Publisher.cS sends messages to the amq.topic exchange, using the multipart routing keys usa.news, usa.weather, europe.news, and
europe.weather.
• Listener.cs creates private queues for news, weather, usa, and europe, binding them to the amq.topic exchange using bindings that match
the corresponding parts of the multipart routing keys.

In this example, the publisher creates messages for topics like news, weather, and sports that happen in regions like Europe, Asia, or the
United States. A given consumer may be interested in all weather messages, regardless of region, or it may be interested in news and
weather for the United States, but uninterested in items for other regions. In this example, each consumer sets up its own private queues,
which receive precisely the messages that particular consumer is interested in.

Running the Publish-Subscribe Examples

1) Make sure your PATH contains the directory <home>/qpid/lib

2) Make sure that a qpid broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above
command.

3) In separate windows, start one or more topic subscribers as follows:

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-pub-sub--Listener.exe [hostname] [portnumber]

or with mono:

$ mono ./example-pub-sub-Listener.exe [hostname] [portnumber]

You will see output similar to this:

Listening messages ...for
Declaring queue: usa
Declaring queue: europe
Declaring queue: news
Declaring queue: weather

Each topic consumer creates a set of private queues, and binds each queue to the amq.topic exchange together with a binding that indicates
which messages should be routed to the queue.

4) In another window, start the topic publisher, which publishes messages to the amq.topic exchange, as follows:

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-pub-sub-Producer.exe [hostname] [portnumber]

or with mono:

$ mono ./example-pub-sub-Producer.exe [hostname] [portnumber]

This program has no output; the messages are routed to the message queues for each topic_consumer as specified by the bindings the
consumer created.

5) Go back to the window for each topic consumer. You should see output like this:

Message: Message 0 from usa
Message: Message 0 from news
Message: Message 0 from weather
Message: Message 1 from usa
Message: Message 1 from news
Message: Message 2 from usa
Message: Message 2 from news
Message: Message 3 from usa
Message: Message 3 from news
Message: Message 4 from usa
Message: Message 4 from news
Message: Message 5 from usa
Message: Message 5 from news
Message: Message 6 from usa
Message: Message 6 from news
Message: Message 7 from usa
Message: Message 7 from news
Message: Message 8 from usa
Message: Message 8 from news
Message: Message 9 from usa
....
Message: That's all, folks! from weather
Shutting down listener controlfor
Message: That's all, folks! from europe
Shutting down listener controlfor

Now we will examine the code for each of these programs. In each section, we will discuss only
the code that must be added to the skeleton shown in Section "Creating and Closing Sessions".

Publishing Messages to a Topic Exchange

The first program in the publish/subscribe example, Publisher.cs, defines two new functions: one that publishes messages to the topic
exchange, and one that indicates that no more messages are coming.

The publishMessages function publishes a series of five messages using the specified routing key.

 void publishMessages(ClientSession session, string routing_key)private static
{
 IMessage message = Message();new
 // Asynchronous transfer sends messages as quickly as
// possible without waiting confirmation.for

 (i = 0; i < 10; i++)for int
 {
 message.clearData();
 message.appendData(Encoding.UTF8.GetBytes(+ i));"Message "
 session.messageTransfer(, routing_key, message);"amq.topic"
 }
}

The noMoreMessages function signals the end of messages using the control routing key, which is reserved for control messages.

 void noMoreMessages(ClientSession session)private static
{
 IMessage message = Message();new
 // And send a syncrhonous message to indicate termination.final
message.clearData();
 message.appendData(Encoding.UTF8.GetBytes());"That's all, folks!"
 session.messageTransfer(, , message);"amq.topic" "control"
 session.sync();
}

In the main body of the program, messages are published using four different routing keys, and then the end of messages is indicated by a
message sent to a separate routing key.

publishMessages(session,);"usa.news"
publishMessages(session,);"usa.weather"
publishMessages(session,);"europe.news"
publishMessages(session,);"europe.weather"

noMoreMessages(session);

Reading Messages from the Queue

The second program in the publish/subscribe example, Listener.cs, creates a local private queue, with a unique name, for each of the four
binding keys it specifies: usa.#, europe.#, #.news, and #.weather, and creates a listener.

Console.WriteLine();"Listening messages ..."for
// Create a listener
prepareQueue(, , session);"usa" "usa.#"
prepareQueue(, , session);"europe" "europe.#"
prepareQueue(, , session);"news" "#.news"
prepareQueue(, , session);"weather" "#.weather"

The prepareQueue() method creates a queue using a queue name and a routing key supplied as arguments it then attaches a listener with
the session for the created queue and subscribe for this receiving messages from the queue:

// Create a unique queue name consumer by concatenatingfor this
// the queue name parameter with the Session ID.
Console.WriteLine(+ queue);"Declaring queue: "
session.queueDeclare(queue, Option.EXCLUSIVE, Option.AUTO_DELETE);

// Route messages to the queue they match the routing key.new if
// Also route any messages to with the routing key to"control"
// queue so we know when it's time to stop. A publisher sendsthis
// a message with the content , using the"That's all, Folks!"
// routing key, when it is finished."control"

session.exchangeBind(queue, , routing_key);"amq.topic"
session.exchangeBind(queue, ,);"amq.topic" "control"

// subscribe the listener to the queue
IMessageListener listener = MessageListener(session);new
session.attachMessageListener(listener, queue);
session.messageSubscribe(queue);

Writing Request/Response Applications

In the request/response examples, we write a server that accepts strings from clients and converts them to upper case, sending the result
back to the requesting client. This example consists of two programs.

Client.cs is a client application that sends messages to the server.
• Server.cs is a service that accepts messages, converts their content to upper case, and sends the result to the amq.direct
exchange, using the request's reply-to property as the routing key for the response.

Running the Request/Response Examples

1) Make sure your PATH contains the directory <home>/qpid/lib

2) Make sure that a qpid broker is running:

$ ps -eaf | grep qpidd

If a broker is running, you should see the qpidd process in the output of the above
command.

3) Run the server.

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-request-response-Server.exe [hostname] [portnumber]

or with mono:

$ mono ./example-request-response-Server.exe [hostname] [portnumber]

You will see output similar to :this

Waiting for requests

4) In a separate window, start a client:

$ cd <home>/qpid/examples/direct

With cygwin:

$./example-request-response-Client.exe [hostname] [portnumber]

or with mono:

$ mono ./example-request-response-Client.exe [hostname] [portnumber]

You will see output similar to this:

Activating response queue listener : clientSystem. []for Byte
Waiting all responses to arrive ...for
Response: TWAS BRILLIG, AND THE SLITHY TOVES
Response: DID GIRE AND GYMBLE IN THE WABE.
Response: ALL MIMSY WERE THE BOROGROVES,
Response: AND THE MOME RATHS OUTGRABE.
Shutting down listener clientSystem. []for Byte
Response: THAT'S ALL, FOLKS!

4) Go back to the server window, the output should be similar to this:

Waiting requestsfor
Request: Twas brillig, and the slithy toves
Request: Did gire and gymble in the wabe.
Request: All mimsy were the borogroves,
Request: And the mome raths outgrabe.
Request: That's all, folks!

Now we will examine the code for each of these programs. In each section, we will discuss only the code that must be added to the skeleton
shown in Section "Creating and Closing Sessions".

The Client Application

The first program in the request-response example, Client.cs, sets up a private response queue to receive responses from the server, then
sends messages the server, listening to the response queue for the server's responses.

string response_queue = + session.getName();"client"
// Use the name of the response queue as the routing key
session.queueDeclare(response_queue);
session.exchangeBind(response_queue, , response_queue);"amq.direct"

// Create a listener the response queue and listen response messages.for for
Console.WriteLine(+ response_queue);"Activating response queue listener : "for
IMessageListener listener = ClientMessageListener(session);new
session.attachMessageListener(listener, response_queue);
session.messageSubscribe(response_queue);

Set some properties that will be used for all requests. The routing key for a request is request.
The reply-to property is set to the routing key for the client's private queue.

IMessage request = Message();new
request.DeliveryProperties.setRoutingKey();"request"
request.MessageProperties.setReplyTo(ReplyTo(, response_queue));new "amq.direct"

Now send some requests...

string[] strs = {
 ,"Twas brillig, and the slithy toves"
 ,"Did gire and gymble in the wabe."
 ,"All mimsy were the borogroves,"
 ,"And the mome raths outgrabe."
 "That's all, folks!"
 };
foreach (string s in strs)
{
 request.clearData();
 request.appendData(Encoding.UTF8.GetBytes(s));
 session.messageTransfer(, request);"amq.direct"
}

And wait for responses to arrive:

Console.WriteLine();"Waiting all responses to arrive ..."for
Monitor.Wait(session);

The Server Application

The second program in the request-response example, Server.cs, uses the reply-to property as the routing key for responses.

The main body of Server.cs creates an exclusive queue for requests, then waits for messages to arrive.

 string request_queue = ;const "request"
// Use the name of the request queue as the routing key
session.queueDeclare(request_queue);
session.exchangeBind(request_queue, , request_queue);"amq.direct"

lock (session)
{
 // Create a listener and subscribe it to the request_queue
IMessageListener listener = MessageListener(session);new
 session.attachMessageListener(listener, request_queue);
 session.messageSubscribe(request_queue);
 // Receive messages until all messages are received
Console.WriteLine();"Waiting requests"for
 Monitor.Wait(session);
}

The listener's messageTransfer() method converts the request's content to upper case, then sends a response to the broker, using the
request's reply-to property as the routing key for the response.

BinaryReader reader = BinaryReader(request.Body, Encoding.UTF8);new
[] body = [request.Body.Length - request.Body.Position];byte new byte

reader.Read(body, 0, body.Length);
ASCIIEncoding enc = ASCIIEncoding();new
string message = enc.GetString(body);
Console.WriteLine(+ message);"Request: "

// Transform message content to upper case
string responseBody = message.ToUpper();

// Send it back to the user
response.clearData();
response.appendData(Encoding.UTF8.GetBytes(responseBody));
_session.messageTransfer(, routingKey, response);"amq.direct"

Excel AddIn

Excel AddIn

Qpid .net comes with Excel AddIns that are located in:

<project-root>\qpid\dotnet\client-010\addins

There are currently three projects:
ExcelAddIn: An RTD excel Addin
ExcelAddInProducer: A sample client to demonstrate the RTD AddIn
ExcelAddInMessageProcessor: A ample message processor for the RTD AddIn

Qpid RDT AddIn

Deploying the RTD AddIn

Excel provides a function called RTD (real-time data) that lets you specify a COM server via its ProgId here "Qpid" so that you can push qpid
messages into Excel.

The provided RTD AddIn consumes messages from one queue and process them through a provided message processor.

For using the Qpid RTD follows those steps:

1) Copy the configuration Excel.exe.config into Drive\Program Files\Microsoft Office\Office12

2) Edit Excel.exe.xml and set the targeted Qpid broker host, port number, username and password.

3) Select the cell or cell range to contain the RTD information

4) Enter the following formula =rtd("Qpid",,"myQueue") Where MyQueue is the queue from which you wish to receive messages from

Note: The Qpid RTD is a COM-AddIn that must be registered with Excel. This is done automatically when compiling the Addin with visual
studio.

Defining a message processor

The default behavior of the RDT AddIn is to display the message payload. This could be altered by specifying your own message processor.
A Message processor is a class that implements the API ExcelAddIn.MessageProcessor. For example, the provided processor in
client-010\addins\ExcelAddInMessageProcessor displays the message body and the the header price when specified.

To use you own message processor follows those steps:
1) Write your own message processor that extends ExcelAddIn.MessageProcessor
2) Edit Excel.exe.config and uncomment the entries:
<add key="ProcessorAssembly"
value="<path>\qpid\dotnet\client-010\addins\ExcelAddInMessageProcessor\bin\Debug\ExcelAddInMessageProcessor.dll"/>
<add key="ProcessorClass" value="ExcelAddInMessageProcessor.Processor"/>

ProcessorAssembly is the path on the Assembly that contains your processor class
ProcessorClass is your processor class name
3) run excel and define a rtd function

Note: the provided ExcelAddInProducer can be used for testing the provided message processor. As messages are sent to queue1 the
following rtd function should be used =rtd("Qpiud",,"queue1")

Qpid .Net How To

Collection of How Tos

Build .NET Client

Build .NET Client

Prerequisites

Setup environment

Building 0.9 Client

Generate framing from /Qpid.Common/amqp.xml specificiation file:

$ build-framing

Alternatively, just switch to /Qpid.Common and run "ant" there.

You can build from Visual Studio 2005 normally. Alternatively, you can build debug releases for any supported framework from the command
line using Nant:

To build .NET 2.0 executables (to bin/net-2.0):

$ build-dotnet20

To build .NET 1.1 executables (to bin/net-1.1):

$ build-dotnet11

To build for Mono on Linux (to bin/mono-2.0):

$ build-mono

Building 0.10 Client

Prerequisites:

Generate code from <project home>/dotnet/client-010/gentool:

$ cd <project home>/dotnet/client-010/gentool
$ ant

You can build from Visual Studio 2005 normally. Alternatively, you can build debug releases for any supported framework from the
command line using Nant:

To build .NET 2.0 executables (to bin/net-2.0):

$ cd <project home>/dotnet/client-010/
$ nant

To build for Mono on Linux (to bin/mono-2.0):

$ cd <project home>/dotnet/client-010/
$ nant -t:mono-2.0

Releasing

Releasing 0.10 Client

For .NET 2.0

$ cd <project home>/dotnet/client-010/
$ nant release-pkg

Generates ./bin/net-2.0/release/Qpid.NET-net-2.0-yyyyMMdd.zip

For Mono

$ cd <project home>/dotnet/client-010/
$ nant -t:mono-2.0 release-pkg

Generates ./bin/mono-2.0/release/Qpid.NET-mono-2.0-yyyyMMdd.zip

Run tests

Setup

1) Start an C++ 0.10 broker
2) Edit the file: <project home>\dotnet\client-010\test\test.config and set the host name and port number of your broker. If security is enabled
you may need to change the value of username and password.

For .NET 2.0

$ cd <project home>/dotnet/client-010/
$ nant test

For Mono on Linux

$ cd <project home>/dotnet/client-010/
$ nant -t:mono-2.0 test

Setup .Net Client on Windows

Setup

Install:

Microsoft Visual Studio 2005 (VS2005) or Mono
NAnt - only required for builds outside VS2005 (.net 1.1, .net 2.0, mono 2.0)
Ant
Cygwin (or alternatively build via cmd but alter instructions below accordingly)

Set up PATH to include Nant.exe:

$ PATH=/cygdrive/c/WINDOWS/Microsoft.NET/Framework/v2.0.50727:$PATH

Set up PATH to include ant:

$ PATH=$ANT_HOME/bin:$PATH

WCF

Introduction
WCF (unifies the .Net communication capabilities into a single, common, general Web serviceWindows Communication Foundation)
oriented framework. A good WCF tutorial can be found .here

WCF separates how service logic is written from how services communicate with clients. Bindings are used to specify the transport,
encoding, and protocol details required for clients and services to communicate with each other. Qpid provide a WCF binding:
org.apache.qpid.wcf.model.QpidBinding. WCF Services that use the Qpid binding communicate through queues that are dynamically created
on a Qpid broker.

How to use Qpid binding
WCF services are implemented using:

A service contract with one or more operation contracts.
A service implementation for those contracts.
A configuration file to provide that implementation with an endpoint and a binding for that specific contract.

The following configuration file can be used to configure a Hello Service:

http://www.netfxharmonics.com/2008/11/Understanding-WCF-Services-in-Silverlight-2#WCFSilverlightIntroduction

<configuration>
 <system.serviceModel>
 <services>
 <!-- the service class -->
 <service name= >"org.apache.qpid.wcf.demo.HelloService"
 <host>
 <baseAddresses>
 <!-- Use SOAP over AMQP -->
 <add baseAddress="soap.amqp: />///"
</baseAddresses>
 </host>

 <endpoint
 address="Hello"
 <!-- We use a Qpid Binding, see below def -->
 binding="customBinding"
 bindingConfiguration="QpidBinding"
 <!-- The service contract -->
 contract= />"org.apache.qpid.wcf.demo.IHelloContract"
 </service>
 </services>

 <bindings>
 <customBinding>
 <!-- cf def of the qpid binding -->
 <binding name= >"QpidBinding"
 <textMessageEncoding />
 <!-- specify the host and port number of the broker -->
 <QpidTransport
 host="192.168.1.14"
 port= />"5673"
 </binding>
 </customBinding>
 </bindings>

 <extensions>
 <bindingElementExtensions>
 <!-- use Qpid binding element: org.apache.qpid.wcf.model.QpidTransportElement -->
 <add
 name="QpidTransport"
 type= />"org.apache.qpid.wcf.model.QpidTransportElement, qpidWCFModel"
 </bindingElementExtensions>
 </extensions>

 </system.serviceModel>
</configuration>

Endpoints and bindings can also be set within the service code:

/* set HostName, portNumber and MyService accordingly */
Binding binding = QpidBinding(, portNumber); new "HostName"
ServiceHost service = ServiceHost(typeof(MyService), Uri(new new "soap.amqp:));///"
service.AddServiceEndpoint(typeof(IBooking), binding,);"MyService"
service.Open();
....

Qpid 'C++' Documentation

Introduction
Contributors should read:

README in subversion for build instructions.
C++ coding tips
C++ style guide
C++ public API guidelines
OS version considerations

https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/README

1.

2.

Auto tools guide

Testing guidelines:

All classes should be unit tested with (Some tests are still using , they will be converted.)Boost.Test CppUnit
Broker should pass withPythonBrokerTest

./run-tests -I cpp_ignore.tests

Currently built/tested with g++ on Linux using GNU make.

Design Notes

C++ Broker Startup and Plugins
C++ handler chaining
Management Design notes
Persistent Message Store Module

CppApiGuide

C++ public API guidelines.
These guidelines are for the public client API to be released in qpid 1.0. The "plugin" API exposed for bdbstore should eventually follow these
guidelines but it can be deferred.

Public header files

Public headers under: qpid/cpp/src/include

Non-unit client tests should be built with -I include and -I . so that missing public headers can be quickly identified.without

 Only src/include headers are installed with package qpidc-devel. Package qpidd-devel should only install src/include headers, but for 1.0 it
may still install private headers.

PIMPL idiom

Value classes needed by the user (e.g. framing data types, message content) are exposed as normal classes in public headers.

Service classes (e.g. Session, Connection etc) use the pimpl idiom for compatibility isolation. See .http://en.wikipedia.org/wiki/Pimpl

Thread safety

I believe making the session thread safe will make it simpler to use in various circumstances (some of which may be unforeseen). I don't
think it necessarily adds significant overhead (though this is something we can verify).

CppBrokerStartPlugins
The C++ broker automatically loads available plugins when it starts. It can get plugins from two places:

All loadable plugins from the directory specified with the --module-dir option. This option has a platform-specific default which is used
unless the --no-module-dir is specified.
Individual plugins specified with the --load-module option

The broker will try to dynamically load shareable modules from the above locations. What actually registers the plugin with the Broker,
though, is an action performed by the loaded module. Most (if not all) of the current plugins use a static instance of a class derived from
qpid::Plugin. The object construction ends up calling the Plugin constructor which records the presence of the plugin.

There is no way to explicitly unload a plugin during execution. The scheme relies on process run-down unloading the dynamically loaded
modules. However, there is a finalization procedure executed before the process runs down.

The C++ broker follows these basic steps at start time:

Load plugins (static initializers set up basic objects)
Broker calls qpid::Plugins::addOptions to add options from all plugins to the broker's option set. It does this by calling getOptions() on
each known plugin instance. The qpid::Options-derived object is owned by the plugin and will be modified by option parsing.
Parse the argc/argv and config file options against the known option sets.
Call earlyInitialize(Target&) on each known plugin. Each plugin is expected to evaluate the type of the Target (by trying
dynamic_cast on it) and only act on Target types it knows about. At this point the options have been parsed and are available.
Initiate recovery
Call initialize(Target&) on each known plugin.
Run

http://www.lrde.epita.fr/~adl/dl/autotools.pdf
http://www.boost.org/libs/test/doc/index.html
http://cppunit.sourceforge.net/cppunit-wiki
http://en.wikipedia.org/wiki/Pimpl

CppEventChannelIo

Event channel IO abstraction.
Goals: provide an IO abstraction layer that can be efficiently implemented using differente techniques:

select/poll/epoll
aio_
ec_ new linux event channel.
shared mem, IPC etc.

The event channel is the central IO absctraction.

Async requests are posted to the channel as Events. When the request is complete it is returned from getEvent() with the data filled in.

We provide synchronous APIs to wrap post(event), wait for getEvent(). On posix these APIs are actually implemented using user-level
context swithching so we get a simple programing model with minimal blocking and kernel context switching.

Note: this means that code before and after an apparently synchronous call ''may execute in different threads''. Don't use thread-local
storage. The term "task" will denote the user-level execution context and we'll provide "task-locak storage" that is carried with the user
context if we need it.

We can provide some simple in-process synchronization via the event channel to allow use level tasks to block on application events.

Core concepts:

EventChannel:

Manages thread pool.

Worker threads loop getting and processing events.

Async requests: post request event, it will be processed when complete.

Notification: Threads can block on a notification event to be woken when some other thread posts that event.

Task:

like lightweight thread

ucontext APIs for user-level context switch.

Linux ec_ + ucontext implementation:

EventChannel is thin facade over native ec_ APIs.

Tasks are scheduled onto threads.

ideally our threads ''never block'' (but they can be preempted)

when a thread hits a blocking point it suspends the current task and swaps to a ready task.

when the suspended task is unblocked (e.g. async IO completes) it becomes ready and will be picked up by another thread.

Linux epoll + ucontext:

Prove ucontext ideas.

Use traditional polling inside EventChannel.

APR portable impl: only need client support - simple blocking socket calls.

Computing thread pool size:

Initial size based on availabe CPU paralleism

On linux /proc/cpuinfo? Any portable options.

Thread pool grows automatically to avoid deadlock.

ThreadPool: Size should stay close to actuall hardware paralellism + some delta due to pre-empted threads and thread-blocking
synchronization calls required in the event channel implementation itself.

Questions:

Does the thread pool need to shrink to reclaim resources?

Is there a risk of unbounded growth? How to avoid without deadlock?

CppHandlerChains
The C++ broker uses handler chains to break complex processing into individual pieces.

Each session has its own set of FrameHandler chains.
Frames from the network are delivered to the first handler in the chain.
Handlers do something with a frame, then pass it to the next handler.
Handlers may "filter" frames by not passing some frames to the next handler.

Current status (2002/9/20)
Each chain starts with a SessionHandler. It handles L2 (session open, close etc.) and passes other frames to the next handler.

L3/L4 frames are handled by the SemanticHandler.

For clustering, a ClusterHandler is inserted at the start of the chain. It replicates frames to a backup broker so the backup can handle failover.
It then passes frames on to the normal session handlers.

Approach for multi-frame segments

The frame handler chain continues to handle individual frames.
Each handler uses a FrameSet to accumulate its frames.
Frame no longer contains a Body, moved to FrameSet

class FrameSet { // sketch
void add(Frame& frame); const // True if

 AMQMethodBody* getMethod(); const // 0 means not complete.
 AMQHeaderBody* getHeader();const

 AMQContentBody* getContent(); const
};

Note: All the visitor/dispatch classes using AMQFrame need to be reworked. Dispatch will always be based on an AMQMethodBody,
not a frame.

Rationale:

''Frame rather than Segment/FrameSet handlers'': Allows most flexibility to compose or not compose frames into segments & FrameSets. For
example a cluster handler needs to replicate frame-by-frame, so we don't want to compose the full segment up front. Since the FrameSet
class provides the composition logic, this is specified only once and easy to use in frame handlers.

''No Segment class'': A segment by itself is not very useful. A non-content method is just a FrameSet containing a single method segment.
For content bearing methods are a frameset with headers & content. There's little value for a stand alone segment class.

CppStyleGuide

Qpid C++ style guide
Qpid C++ follows this guide: http://geosoft.no/development/cppstyle.html

With the following amendments:

Rule 34: Qpid source files have .h and .cpp extensions.
Rule 71: Qpid uses 4 space indent, not 2. .No tabs
Rule 75, 81: Qpid allows (but does not require) else/catch to be on same line as preceeding }
Rule 11: Qpid does add an underscore to member variable names.not

And the following additional rules:

Rule q1: Unlike other blocks, the contents of namespace blocks are indented to prevent excessive line splitting, and multiplenot
namespaces may be opened or closed on a single line. For example:

namespace qpid { namespace common {

class SomeClass {
 void foo();
};

}} // namespace qpid::common

http://geosoft.no/development/cppstyle.html

1.
2.
3.

Debate and changes

The discussion on qpid-dev did raise debate about some points of the style guide. The exceptions and new rules above reflect:

Points that were agreed on the list.
De-facto style of the codebase as it stands today.

Anyone who feels strongly about further modifications to the style guide should:

Raise the issue on qpid-dev.
Get consensus among the active qpid C++ developers for the change.
Reformat the entire qpid codebase to conform to the change.

If you are not willing to do step 3 then don't bother raising the issue.

Persistent Message Store Module
Persistent storage and recovery is provided by a plug-in module to the C++ broker. This page describes the relationship between the
persistent message store module and the rest of the C++ broker.

A high-level view of the major classes involved in the store module plugin are shown below:

Concrete Plugin

When the plugin is loaded, the Concrete Plugin is instantiated. It is responsible for managing both the Concrete Options and the Concrete
Message Store.

Concrete Options

The Concrete Options class defines and parses the options which are valid for the plugin. The particular options can vary by plugin.

Concrete Message Store

The Concrete Message Store implements the qpid::broker::MessageStore interface. The broker invokes methods on the MessageStore
interface as operations requiring persistence take place during broker execution.

Note that the Concrete Message Store class can also inherit from Manageable to allow it to be managed via QMF. The particular message
store should develop its own schema that makes sense.

PythonBrokerTest

Python Broker System Test Suite

This is a suite of python client tests that exercise and verify broker functionality. Python allows us to rapidly develop client test scenarios and
provides a 'neutral' set of tests that can run against any AMQP-compliant broker.

The python/tests directory contains a collection of python modules, each containing several unittest classes, each containing a set of test
methods that represent some test scenario. Test classes inheirt from , it inherits qpid.TestBas qpid/testlib.py unittest.TestCase
but adds some qpid-specific and convenience functions.setUp/tearDown

TODO: get pydoc generated up to qpid wiki or website automatically?

Running the tests

Simplest way to run the tests:

Run a broker on the default port
./run_tests

For additional options: ./run_tests --help

Expected failures

Until we complete functionality, tests may fail because the tested
functionality is missing in the broker. To skip expected failures
in the C++ or Java brokers:

 ./run_tests -I cpp_failing.txt
 ./run_tests -I java_failing.txt

If you fix a failure, please remove it from the corresponding list.

Qpid Integrations

AMQP integrations

HermesJMS - The integration of Hermes JMS with Qpid
Twisted AMQP - https://launchpad.net/txamqp
Apache Camel - http://activemq.apache.org/camel/amqp.html
Apache Axis2 Java - http://wso2.org/library/3663
Apache Axis2 C - http://ws.apache.org/axis2/c/docs/axis2c_manual.html#amqptrans
Apache Synapse
libvirt - Provides QMF access to visualizationhttp://libvirt.org/
Ovirt - QMFC - used to build management toolshttp://ovirt.org/
Python web plugin - Plug-in for AMQP support from web browser
Red Hat MRG - Distro of Qpid with added management console and persistencehttp://redhat.com/mrg
Condor - QMF Agents and AMQP job routinghttp://www.cs.wisc.edu/condor/

Qpid Java Documentation

Purpose
This is the index of all Qpid Java Documentation.

Introduction
The Qpid pure Java broker currently supports the following features:

All features required by the Sun JMS 1.1 specification, fully tested
Transaction support
Persistence using a pluggable layer
Pluggable security using SASL
Management using JMX and an Eclipse Management Console application
High performance header-based routing for messages

https://launchpad.net/txamqp
http://activemq.apache.org/camel/amqp.html
http://wso2.org/library/3663
http://ws.apache.org/axis2/c/docs/axis2c_manual.html#amqptrans
http://libvirt.org/
http://ovirt.org/
http://redhat.com/mrg
http://www.cs.wisc.edu/condor/

Message Priorities
Configurable logging and log archiving
Threshold alerting
ACLs
Extensively tested on each release, including performance & reliability testing
Automatic client failover using configurable connection properties
Durable Queues/Subscriptions

Upcoming features:

Flow To Disk
IP Whitelist
AMQP 0-10 Support (for interoperability)

Useful Links

General User Guides

FAQ
Getting Started Guide
Broker Environment Variables
System Properties
Troubleshooting Guide
URL Formats for Qpid
Example Classes
AMQP Error Codes
How Tos

Add New Users
Configure ACLs
Configure Broker and Client Heartbeating
Configure Java Qpid to use a SSL connection.
Configure Log4j CompositeRolling Appender
Configure Operational Status Logging
Configure the Broker via config.xml
Configure the Virtual Hosts via virtualhosts.xml
Debug using log4j
Firewall Configuration
How to Tune M3 Java Broker Performance
How to Use JNDI
Interact with a JMX MBean
Qpid Java Build How To
Split configuration files
Tune Broker and Client Memory Usage
Use Last Value Queues (LVQ)
Use Priority Queues
Use Producer Flow Control

Management Tools

JConsole
MessageStore Tool
Qpid JMX Management Console

Management Design notes

Developer Information

Build How To
Qpid Java Run Scripts
Developer Pages
Coding Standards
AMQP Version Handling
URL format for Connections and Binding
Creating Java unit tests with InVM broker

Testing

Interoperability Testing

Performance Testing

Sustained Tests
IBM JMS Performance Test Results

http://cwiki.apache.org/confluence/display/qpid/Qpid+IBM+JMS+Performance+Test+Results

Release Plans

Release Plans

3rd Party Libraries

Qpid Persistence Options
There are currently two options for persistence in Qpid, as shown in the table below.

Persistence Style Provider Advantages Disadvantages

In-Memory Qpid MemoryMessageStore Comes as part of the Qpid package Not persistent

Derby DB Store Qpid DerbyMessageStore Allows persistence for larger messages/volumes Limited testing reported

Berkeley DB Store Berkeley project Allows persistence for larger messages/volumes Not Apache licensed

Using In-Memory Persistence

Using In-Memory persistence is the default when you install Qpid and requires no additional install/configuration.

Using Derby Message Store

Simply use the following Store class:

<store>
 org.apache.qpid.server.store.DerbyMessageStore<class> </class>
</store>

Using Berkeley DB Persistence

Install Berkeley DB

If you choose to use the Berkeley DB solution for scalability purposes then you should download & install version 3.1 from
http://www.oracle.com/technology/software/products/berkeley-db/je/index.html

Amend your Qpid configuration to switch BDB on

The default Qpid configuration file can be found in the etc directory of your install and is named config.xml.

To use BDB, simply add the following element:

<store>
 org.apache.qpid.server.store.berkeleydb.BDBMessageStore<class> </class>
</store>

alternatively an example file is provided named persistent_config.xml

Install the Qpid bridge modules for Berkeley DB

You can either build the module from source which is available from the .JBoss Site

However, as a temporary measure, you can use the bridging modules from this page or . You should thenM1-BDBStore M2-BDBStore
ensure that this jar is included in the classpath for the broker (see more info below), along with the BDB jar (je-<version>.jar).

This can simply be done by editing the your classpath to add the two jars that you need and then pass an option into qpid-server to use your
classpath.

So, first set your classpath to something like this:

CLASSPATH=$QPID_HOME/lib/qpid-incubating.jar:$QPID_HOME/lib/bdbstore.jar:$QPID_HOME/lib/je-<version>.jar

Then, run qpid-server passing the following additional flag:

http://www.oracle.com/technology/software/products/berkeley-db/je/index.html
http://anonsvn.jboss.org/repos/rhmessaging/store/branches/java/
http://cwiki.apache.org/confluence/download/attachments/29783/M1-bdbstore.jar?version=1&modificationDate=1205169732000
http://cwiki.apache.org/confluence/download/attachments/29783/M2-bdbstore.jar?version=1&modificationDate=1205169980000

qpid-server -run:external-classpath=first

You can check the classpath being used by adding an additional option to output the classpath in use:

qpid-server -run:external-classpath=first -run:print-classpath

alternatively you can edit the QPID_LIBS variable in the qpid-server script.

We hope to be able to integrate these modules into our Apache project shortly - but pending a discussion about the appropriate way to
handle this process.

3rd Party Tools

Using Qpid Java with 3rd Party Tools

Mule

Mule

Connection configuration options

There are many ways of configuring Mule and many options that can be set. The following XML snippet shows two options for setting your
connection configuration details. One uses the the other uses direct properties to set a the connection details. Note: that theConnection URL
URL format allows for more freedom of configuration while the direct property approach will pickup the defaults for most values.

One reason you may wish to use the URL format is to specify a 'nofailover' mechanism so that you can better control via mule what occurs
when the connection is lost.

See the page for more details on setting the failover mechanism.Connection URL Format

 <connector name= className= >"jmsConnector1" "org.mule.providers.jms.JmsConnector"
 <properties>
 <property name= value="connectionFactoryClass"

/>"org.apache.qpid.client.AMQConnectionFactory"

 ...

 <!-- Property entry using a URL -->for
 <map name= >"connectionFactoryProperties"
 <property name= value="connectionURLString" "amqp:

/>//guest:guest@clientID/test?brokerlist='tcp://localhost:5672'"
</map>

 <!-- Property entry using individual values -->for
 <!-- Note: that you can only set the following items -->
 <!-- All other values will be defaulted. -->
 <!--map name= >"connectionFactoryProperties"
 <property name= value= />"virtualPath" "/test"
 <property name= value= />"host" "localhost"
 <property name= value= />"port" "5672"
 <property name= value= />"defaultUsername" "guest"
 <property name= value= />"defaultPassword" "guest"
 </map-->

 </properties>
 </connector>

AMQP Error Codes
The Java server will return errors to the client under certain circumstances. These error codes are defined in the .AMQP Spec

 Common error codes include:

http://jira.amqp.org/confluence/display/AMQP/Download

Code Name Reason

312 No Route The message is being sent to a destination that does not exist.

313 No Consumers The message is marked as immediate delivery, but no consumers are able to recieve the message at
this time.

403 Access Refused Implise that you've been . refused access
Note that incorrect user/password credentials will result in a 530 error.

404 Not Found The client attempted an operation on an entity which does not exist.

405 Already Exists The client attempted to create an entity which already exists.

406 In Use The client attempted to delete an entity which is currently being used.

407 Invalid Routing Key The client attempted to use an invalid routing key.

408 Request Timeout The requested operation could not be completed in time.

409 Invalid Argument The client provided an argument which the server did not recognise, eg. invalid JMS selector.

530 Not Allowed The client attempted an operation which it does not have permission for.
Failure to supply correct user/password credentials will result in a 530.

542 Unsupported Protocol
Version

The server does not support the requested AMQP version.

Example Classes

Overview

Some example client code is provided to help you get started, using JNDI and JMS.

Downloading the source

The source code for the example client classes being provided is contained in the example package which can be found in:

https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/

Building the Example source

You can build the example source using Maven by simply typing 'mvn' in the example directory.

Notes on the source package

Note that if you wish to build the example client code from within your IDE you will need to add the following jars contained in the Qpid binary
release into your classpath:

qpid-client-<MILESTONE>.jar
qpid-common-<MILESTONE>.jar
geronimo-jms_1.1_spec-1.0.jar

At the time of writing MILESTONE is 'M4'.

NB: At runtime, you'll need to put all the jars in the client/lib dir into your classpath along with these jars.

The example packages classes currently use log4j for logging. You may instead wish to amend the logging and exception handling in line
with your project standards.

Class Overview

Essentially we have provided example client classes to act as a publisher and a subscriber for handling messages using AMQ, as far as
possible via JMS.

Contributions to the example classes are most welcome. Please send your classes to dev@qpid.apache.org.

Basic Classes

This section outlines the classes that you're likely to find most useful.

Publisher

This class contains the methods for publishing messages to a queue, using the example.properties file to populate the initial context and

https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/

1.
2.

3.

4.

5.

provide an example queue and topic.

FileMessageDispatcher

This class provides a simple wrapper around the publisher for dispathcing messages from file input, providing a really easy way to get started
publishing messages. So, first create some files you'd like to use as payload for your test messages.

Then, you simply pass one argument to the FileMessageDispatcher class which is the path to your test message files. The dispatcher will
then create a message from each file in the directory. You can opt to use the path to a single file as an alternative, in the same way.

Subscriber

This class acts as a consumer of messages sent to a queue.

Helper Classes/Exceptions

This section gives some additional information about helper classes in the example packages.

MessageFactory

This class constructs a message with payload from an input file provided and sets a property on the message using the filename.

MessageFactoryException

Exception thrown if a message cannot be created in the factory class.

Examples Using AMQP Immediate Delivery Feature

MonitorMessageDispatcher

This is an additional wrapper class to be run independently as the monitor which allows you to provide a heartbeat (set to 20 seconds
intervals but can be changed at will) being consumed by the example subscriber. When we detect that the subscriber has stopped, you can
opt to make a call to an application specific 'recovery process' by amending the exception handling in the main method when a
UndeliveredMessageException is caught (marked by a TODO), or simply exit gracefully if appropriate.

UndeliveredMessageException

Thrown when the subscriber is not there to read the monitor traffic which has been marked as for immediate delivery.

MonitoredSubscriber

Subclass of the Subscriber which also reads messages from the monitor queue to let us know that it's consuming ok.

The package contains utility classes for file manipulation etc and constants for general use (to reduce the maintenance overhead)shared
which could perhaps be replaced with config properties as appropriate.

Getting Started
To get started with Apache Qpid, follow the steps below.

Download the software Download
Start a broker.

Instructions for running a Qpid Java broker (AMQP 0-8, 0-9)
Instructions for running a Qpid C++ broker (AMQP 0-10)
Management tools (AMQP 0-10, works with the Qpid C++ broker)

Run an example program from the downloaded software, or from the following URLs (these are svn URLs, which you can use to
browse the examples or check them out):

C++ (AMQP 0-10):
Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
Running the C++ Examples

Java JMS (AMQP 0-10):
Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
Script for Running the Java JMS Examples

Python (AMQP 0-10):
Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
Running the Python Examples

Ruby (AMQP 0-10):
Examples: https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples/

.NET (AMQP 0-10):
Examples: http://svn.apache.org/viewvc/qpid/trunk/qpid/dotnet/client-010/examples/
.NET Tutorial

Read the API Guides and Documentation
C++ Client API (AMQP 0-10)
JNDI Configuration for Java JMS
Python Client API (AMQP 0-10)
Documentation

Get your Questions Answered
Read the FAQ
Ask a question on the user list users-subscribe@qpid.apache.org

https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/examples/README.txt
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/java/client/example/src/main/java/runSample.sh
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/python/examples/README
https://svn.apache.org/repos/asf/qpid/trunk/qpid/ruby/examples/
http://svn.apache.org/viewvc/qpid/trunk/qpid/dotnet/client-010/examples/
http://qpid.apache.org/docs/api/cpp/html/index.html
http://qpid.apache.org/docs/api/python/html/index.html

MgmtC++

Managing the C++ Broker

There are quite a few ways to interact with the C++ broker. The command line tools
include:

qpid-route - used to configure federation (a set of federated brokers)
qpid-config - used to configure queues, exchanges, bindings and list them etc
qpid-tool - used to view management information/statistics and call any management actions on the broker
qpid-printevents - used to receive and print QMF events

Using qpid-config

This utility can be used to create queues exchanges and bindings, both durable and transient. Always check for latest options by running
--help command.

$ qpid-config --help
Usage: qpid-config [OPTIONS]
 qpid-config [OPTIONS] exchanges [filter-string]
 qpid-config [OPTIONS] queues [filter-string]
 qpid-config [OPTIONS] add exchange <type> <name> [AddExchangeOptions]
 qpid-config [OPTIONS] del exchange <name>
 qpid-config [OPTIONS] add queue <name> [AddQueueOptions]
 qpid-config [OPTIONS] del queue <name>
 qpid-config [OPTIONS] bind <exchange-name> <queue-name> [binding-key]
 qpid-config [OPTIONS] unbind <exchange-name> <queue-name> [binding-key]

Options:
 -b [--bindings] Show bindings in queue or exchange list
 -a [--broker-addr] Address (localhost) Address of qpidd broker
 broker-addr is in the form: [username/password@] hostname | ip-address [:<port>]
 ex: localhost, 10.1.1.7:10000, broker-host:10000, guest/guest@localhost

Add Queue Options:
 --durable Queue is durable
 --cluster-durable Queue becomes durable if there is only one functioning cluster node
 --file-count N (8) Number of files in queue's persistence journal
 --file-size N (24) File size in pages (64Kib/page)
 --max-queue-size N Maximum in-memory queue size as bytes
 --max-queue-count N Maximum in-memory queue size as a number of messages
 --limit-policy [none | reject | flow-to-disk | ring | ring-strict]
 Action taken when queue limit is reached:
 none (default) - Use broker's default policy
 reject - Reject enqueued messages
 flow-to-disk - Page messages to disk
 ring - Replace oldest unacquired message with new
 ring-strict - Replace oldest message, reject if oldest is acquired
 --order [fifo | lvq | lvq-no-browse]
 Set queue ordering policy:
 fifo (default) - First in, first out
 lvq - Last Value Queue ordering, allows queue browsing
 lvq-no-browse - Last Value Queue ordering, browsing clients may lose
data
 --generate-queue-events N
 If set to 1, every enqueue will generate an event that can be processed
by
 registered listeners (e.g. for replication). If set to 2, events will be
 generated for enqueues and dequeues

Add Exchange Options:
 --durable Exchange is durable
 --sequence Exchange will insert a 'qpid.msg_sequence' field in the message header
 with a value that increments for each message forwarded.
 --ive Exchange will behave as an 'initial-value-exchange', keeping a reference
 to the last message forwarded and enqueuing that message to newly bound
 queues.

Get the summary page

$ qpid-config
Total Exchanges: 6
 topic: 2
 headers: 1
 fanout: 1
 direct: 2
 Total Queues: 7
 durable: 0
 non-durable: 7

List the queues

$ qpid-config queues
Queue Name Attributes
===
pub_start
pub_done
sub_ready
sub_done
perftest0 --durable
reply-dhcp-100-18-254.bos.redhat.com.20713 auto-del excl
topic-dhcp-100-18-254.bos.redhat.com.20713 auto-del excl

List the exchanges with bindings

$./qpid-config -b exchanges
Exchange '' (direct)
 bind pub_start => pub_start
 bind pub_done => pub_done
 bind sub_ready => sub_ready
 bind sub_done => sub_done
 bind perftest0 => perftest0
 bind mgmt-3206ff16-fb29-4a30-82ea-e76f50dd7d15 => mgmt-3206ff16-fb29-4a30-82ea-e76f50dd7d15
 bind repl-3206ff16-fb29-4a30-82ea-e76f50dd7d15 => repl-3206ff16-fb29-4a30-82ea-e76f50dd7d15
Exchange 'amq.direct' (direct)
 bind repl-3206ff16-fb29-4a30-82ea-e76f50dd7d15 => repl-3206ff16-fb29-4a30-82ea-e76f50dd7d15
 bind repl-df06c7a6-4ce7-426a-9f66-da91a2a6a837 => repl-df06c7a6-4ce7-426a-9f66-da91a2a6a837
 bind repl-c55915c2-2fda-43ee-9410-b1c1cbb3e4ae => repl-c55915c2-2fda-43ee-9410-b1c1cbb3e4ae
Exchange 'amq.topic' (topic)
Exchange 'amq.fanout' (fanout)
Exchange 'amq.match' (headers)
Exchange 'qpid.management' (topic)
 bind mgmt.# => mgmt-3206ff16-fb29-4a30-82ea-e76f50dd7d15

Using qpid-route

This utility is to create federated networks of brokers, This allows you for forward messages between brokers in a network. Messages can be
routed statically (using "qpid-route route add") where the bindings that control message forwarding are supplied in the route. Message routing
can also be dynamic (using "qpid-route dynamic add") where the messages are automatically forwarded to clients based on their bindings to
the local broker.

$ qpid-route
Usage: qpid-route [OPTIONS] dynamic add <dest-broker> <src-broker> <exchange> [tag]
[exclude-list]
 qpid-route [OPTIONS] dynamic del <dest-broker> <src-broker> <exchange>

 qpid-route [OPTIONS] route add <dest-broker> <src-broker> <exchange> <routing-key> [tag]
[exclude-list]
 qpid-route [OPTIONS] route del <dest-broker> <src-broker> <exchange> <routing-key>
 qpid-route [OPTIONS] queue add <dest-broker> <src-broker> <exchange> <queue>
 qpid-route [OPTIONS] queue del <dest-broker> <src-broker> <exchange> <queue>
 qpid-route [OPTIONS] route list [<dest-broker>]
 qpid-route [OPTIONS] route flush [<dest-broker>]
 qpid-route [OPTIONS] route map [<broker>]

 qpid-route [OPTIONS] link add <dest-broker> <src-broker>
 qpid-route [OPTIONS] link del <dest-broker> <src-broker>
 qpid-route [OPTIONS] link list [<dest-broker>]

Options:
 -v [--verbose] Verbose output
 -q [--quiet] Quiet output, don't print duplicate warnings
 -d [--durable] Added configuration shall be durable
 -e [--del-empty-link] Delete link after deleting last route on the link
 -s [--src-local] Make connection to source broker (push route)
 -t <transport> [--transport <transport>]
 Specify transport to use links, defaults to tcpfor

 dest-broker and src-broker are in the form: [username/password@] hostname | ip-address
[:<port>]
 ex: localhost, 10.1.1.7:10000, broker-host:10000, guest/guest@localhost

A few examples:

qpid-route dynamic add host1 host2 fed.topic
qpid-route dynamic add host2 host1 fed.topic

qpid-route -v route add host1 host2 hub1.topic hub2.topic.stock.buy
qpid-route -v route add host1 host2 hub1.topic hub2.topic.stock.sell
qpid-route -v route add host1 host2 hub1.topic 'hub2.topic.stock.#'
qpid-route -v route add host1 host2 hub1.topic 'hub2.#'
qpid-route -v route add host1 host2 hub1.topic 'hub2.topic.#'
qpid-route -v route add host1 host2 hub1.topic 'hub2.global.#'

The link map feature can be used to display the entire federated network configuration by supplying a single broker as an entry point:

$ qpid-route route map localhost:10001

Finding Linked Brokers:
 localhost:10001... Ok
 localhost:10002... Ok
 localhost:10003... Ok
 localhost:10004... Ok
 localhost:10005... Ok
 localhost:10006... Ok
 localhost:10007... Ok
 localhost:10008... Ok

Dynamic Routes:

 Exchange fed.topic:
 localhost:10002 <=> localhost:10001
 localhost:10003 <=> localhost:10002
 localhost:10004 <=> localhost:10002
 localhost:10005 <=> localhost:10002
 localhost:10006 <=> localhost:10005
 localhost:10007 <=> localhost:10006
 localhost:10008 <=> localhost:10006

 Exchange fed.direct:
 localhost:10002 => localhost:10001
 localhost:10004 => localhost:10003
 localhost:10003 => localhost:10002
 localhost:10001 => localhost:10004

Static Routes:

 localhost:10003(ex=amq.direct) <= localhost:10005(ex=amq.direct) key=rkey
 localhost:10003(ex=amq.direct) <= localhost:10005(ex=amq.direct) key=rkey2

Using qpid-tool

This utility provided a telnet style interface to be able to view, list all stats and action
all the methods. Simple capture below. Best to just play with it and mail the list if you have
questions or want features added.

qpid:
qpid: help
Management Tool QPIDfor
Commands:
 list - Print summary of existing objects by class
 list <className> - Print list of objects of the specified class
 list <className> all - Print contents of all objects of specified class
 list <className> active - Print contents of all non-deleted objects of specified class
 list <list-of-IDs> - Print contents of one or more objects (infer className)
 list <className> <list-of-IDs> - Print contents of one or more objects
 list is space-separated, ranges may be specified (i.e. 1004-1010)
 call <ID> <methodName> <args> - Invoke a method on an object
 schema - Print summary of object classes seen on the target
 schema <className> - Print details of an object class
 set time-format - Select timestamp format ()short short default
 set time-format - Select timestamp formatlong long
 quit or ^D - Exit the program
qpid: list
Management Types:Object
 ObjectType Active Deleted
 ================================
 qpid.binding 21 0
 qpid.broker 1 0
 qpid.client 1 0
 qpid.exchange 6 0
 qpid.queue 13 0
 qpid.session 4 0
 qpid.system 1 0
 qpid.vhost 1 0

qpid: list qpid.system
Objects of type qpid.system
 ID Created Destroyed Index
 ==================================
 1000 21:00:02 - host
qpid: list 1000

 of type qpid.system: (last sample time: 21:26:02)Object
 Type Element 1000
 ===
 config sysId host
 config osName Linux
 config nodeName localhost.localdomain
 config release 2.6.24.4-64.fc8
 config version #1 SMP Sat Mar 29 09:15:49 EDT 2008
 config machine x86_64
qpid: schema queue
Schema class 'qpid.queue':for
 Element Type Unit Access Notes Description

===
vhostRef reference ReadCreate index
 name -string ReadCreate indexshort
 durable ReadCreateboolean
 autoDelete ReadCreateboolean
 exclusive ReadCreateboolean
 arguments field-table ReadOnly Arguments supplied in
queue.declare
 storeRef reference ReadOnly Reference to persistent
queue (durable)if
 msgTotalEnqueues uint64 message Total messages enqueued
 msgTotalDequeues uint64 message Total messages dequeued
 msgTxnEnqueues uint64 message Transactional messages
enqueued
 msgTxnDequeues uint64 message Transactional messages
dequeued
 msgPersistEnqueues uint64 message Persistent messages
enqueued
 msgPersistDequeues uint64 message Persistent messages
dequeued
 msgDepth uint32 message Current size of queue in
messages
 msgDepthHigh uint32 message Current size of queue in
messages (High)
 msgDepthLow uint32 message Current size of queue in
messages (Low)
 byteTotalEnqueues uint64 octet Total messages enqueued
 byteTotalDequeues uint64 octet Total messages dequeued
 byteTxnEnqueues uint64 octet Transactional messages
enqueued
 byteTxnDequeues uint64 octet Transactional messages
dequeued
 bytePersistEnqueues uint64 octet Persistent messages
enqueued
 bytePersistDequeues uint64 octet Persistent messages
dequeued
 byteDepth uint32 octet Current size of queue in
bytes
 byteDepthHigh uint32 octet Current size of queue in
bytes (High)
 byteDepthLow uint32 octet Current size of queue in
bytes (Low)
 enqueueTxnStarts uint64 transaction Total enqueue
transactions started
 enqueueTxnCommits uint64 transaction Total enqueue
transactions committed
 enqueueTxnRejects uint64 transaction Total enqueue
transactions rejected
 enqueueTxnCount uint32 transaction Current pending enqueue
transactions
 enqueueTxnCountHigh uint32 transaction Current pending enqueue
transactions (High)
 enqueueTxnCountLow uint32 transaction Current pending enqueue
transactions (Low)
 dequeueTxnStarts uint64 transaction Total dequeue
transactions started

 dequeueTxnCommits uint64 transaction Total dequeue
transactions committed
 dequeueTxnRejects uint64 transaction Total dequeue
transactions rejected
 dequeueTxnCount uint32 transaction Current pending dequeue
transactions
 dequeueTxnCountHigh uint32 transaction Current pending dequeue
transactions (High)
 dequeueTxnCountLow uint32 transaction Current pending dequeue
transactions (Low)
 consumers uint32 consumer Current consumers on
queue
 consumersHigh uint32 consumer Current consumers on
queue (High)
 consumersLow uint32 consumer Current consumers on
queue (Low)
 bindings uint32 binding Current bindings
 bindingsHigh uint32 binding Current bindings (High)
 bindingsLow uint32 binding Current bindings (Low)
 unackedMessages uint32 message Messages consumed but
not yet acked
 unackedMessagesHigh uint32 message Messages consumed but
not yet acked (High)
 unackedMessagesLow uint32 message Messages consumed but
not yet acked (Low)
 messageLatencySamples delta-time nanosecond Broker latency through

 queue (Samples)this
 messageLatencyMin delta-time nanosecond Broker latency through

 queue (Min)this
 messageLatencyMax delta-time nanosecond Broker latency through

 queue (Max)this
 messageLatencyAverage delta-time nanosecond Broker latency through

 queue (Average)this
Method 'purge' Discard all messages on queue
qpid: list queue
Objects of type qpid.queue
 ID Created Destroyed Index
 ===
 1012 21:08:13 - 1002.pub_start
 1014 21:08:13 - 1002.pub_done
 1016 21:08:13 - 1002.sub_ready
 1018 21:08:13 - 1002.sub_done
 1020 21:08:13 - 1002.perftest0
 1038 21:09:08 - 1002.mgmt-3206ff16-fb29-4a30-82ea-e76f50dd7d15
 1040 21:09:08 - 1002.repl-3206ff16-fb29-4a30-82ea-e76f50dd7d15
 1046 21:09:32 - 1002.mgmt-df06c7a6-4ce7-426a-9f66-da91a2a6a837
 1048 21:09:32 - 1002.repl-df06c7a6-4ce7-426a-9f66-da91a2a6a837
 1054 21:10:01 - 1002.mgmt-c55915c2-2fda-43ee-9410-b1c1cbb3e4ae
 1056 21:10:01 - 1002.repl-c55915c2-2fda-43ee-9410-b1c1cbb3e4ae
 1063 21:26:00 - 1002.mgmt-8d621997-6356-48c3-acab-76a37081d0f3
 1065 21:26:00 - 1002.repl-8d621997-6356-48c3-acab-76a37081d0f3
qpid: list 1020

 of type qpid.queue: (last sample time: 21:26:02)Object
 Type Element 1020
 ==
 config vhostRef 1002
 config name perftest0
 config durable False
 config autoDelete False
 config exclusive False
 config arguments {'qpid.max_size': 0, 'qpid.max_count': 0}
 config storeRef NULL
 inst msgTotalEnqueues 500000 messages
 inst msgTotalDequeues 500000
 inst msgTxnEnqueues 0
 inst msgTxnDequeues 0
 inst msgPersistEnqueues 0
 inst msgPersistDequeues 0
 inst msgDepth 0
 inst msgDepthHigh 0
 inst msgDepthLow 0
 inst byteTotalEnqueues 512000000 octets
 inst byteTotalDequeues 512000000
 inst byteTxnEnqueues 0
 inst byteTxnDequeues 0

 inst bytePersistEnqueues 0
 inst bytePersistDequeues 0
 inst byteDepth 0
 inst byteDepthHigh 0
 inst byteDepthLow 0
 inst enqueueTxnStarts 0 transactions
 inst enqueueTxnCommits 0
 inst enqueueTxnRejects 0
 inst enqueueTxnCount 0
 inst enqueueTxnCountHigh 0
 inst enqueueTxnCountLow 0
 inst dequeueTxnStarts 0
 inst dequeueTxnCommits 0
 inst dequeueTxnRejects 0
 inst dequeueTxnCount 0
 inst dequeueTxnCountHigh 0
 inst dequeueTxnCountLow 0
 inst consumers 0 consumers
 inst consumersHigh 0
 inst consumersLow 0
 inst bindings 1 binding
 inst bindingsHigh 1
 inst bindingsLow 1
 inst unackedMessages 0 messages
 inst unackedMessagesHigh 0
 inst unackedMessagesLow 0
 inst messageLatencySamples 0
 inst messageLatencyMin 0
 inst messageLatencyMax 0

 inst messageLatencyAverage 0
qpid:

Using qpid-printevents

This utility connects to one or more brokers and collects events, printing out a line per event.

$ qpid-printevents --help
Usage: qpid-printevents [options] [broker-addr]...

Collect and print events from one or more Qpid message brokers. If no broker-
addr is supplied, qpid-printevents will connect to 'localhost:5672'. broker-
addr is of the form: [username/password@] hostname | ip-address [:<port>] ex:
localhost, 10.1.1.7:10000, broker-host:10000, guest/guest@localhost

Options:
 -h, --help show this help message and exit

You get the idea... have fun!

RAJB

General User Guides Java

FAQ
Getting Started Guide
Troubleshooting Guide
How To
URL Formats for Qpid
Example Classes

RASC

Building the C++ Broker and Client Libraries

The root directory for the C++ distribution is named . The README file in that directory gives instructions for building the brokerqpidc-0.4
and client libraries. In most cases you will do the following:

[qpidc-0.4]$./configure}}
[qpidc-0.4]$ make

Running the C++ Broker

Once you have built the broker and client libraries, you can start the broker from the command line:

[qpidc-0.4]$ src/qpidd

Use the option to run the broker as a daemon process:--daemon

[qpidc-0.4]$ src/qpidd --daemon

You can stop a running daemon with the option:--quit

[qpidc-0.4]$ src/qpidd --quit

You can see all available options with the option--help

[qpidc-0.4]$ src/qpidd --help

Most common questions getting qpidd running

Error when starting broker: "no data directory"

The qpidd broker requires you to set a data directory or specify (see help for more details). The data directory is used for--no-data-dir
the journal, so it is important when reliability counts. Make sure your process has write permission to the data directory.

The default location is

/lib/ /qpiddvar

An alternate location can be set with --data-dir

Error when starting broker: "that process is locked"

Note that when qpidd starts it creates a lock file is data directory are being used. If you have a un-controlled exit, please mail
the trace from the core to the dev@qpid.apache.org mailing list. To clear the lock run

./qpidd -q

It should also be noted that multiple brokers can be run on the same host. To do so set alternate data directories for each qpidd instance.

Using a configuration file

Each option that can be specified on the command line can also be specified in a configuration file. To see available options, use on--help
the command line:

./qpidd --help

A configuration file uses name/value pairs, one on each line. To convert a command line option to a configuration file entry:

a.) remove the '--' from the beginning of the option.
b.) place a '=' between the option and the value (use or to enable options that take no value when specified on the command line).yes true
c.) place one option per line.

For instance, the option takes no value, the option takes the values or . The following configuration--daemon --log-to-syslog yes no
file sets these two options:

daemon=yes
log-to-syslog=yes

Can I use any Language client with the C++ Broker?

Yes, all the clients work with the C++ broker; it is written in C+, but uses the AMQP wire protocol. Any broker can be used with any client that
+ broker, it is highly recommended to run AMQP 0-10.uses the same AMQP version. When running the C

Note that JMS also works with the C++ broker. For more details on using the Java client refer to these pages:

How to Use JNDI
URL Formats for Qpid
Example Classes

Authentication

Linux

The PLAIN authentication is done on a username+password, which is stored in the sasldb_path file. Usernames and passwords can be
added to the file using the command:

saslpasswd2 -f / /lib/qpidd/qpidd.sasldb -u <REALM> <USER>var

The REALM is important and should be the same as the --auth-realm
option to the broker. This lets the broker properly find the user in
the sasldb file.

Existing user accounts may be listed with:

sasldblistusers2 -f / /lib/qpidd/qpidd.sasldbvar

NOTE: The sasldb file must be readable by the user running the qpidd daemon, and should be readable only by that user.

Windows

On Windows, the users are authenticated against the local machine. You should add the appropriate users using the standard Windows tools
(Control Panel->User Accounts). To run many of the examples, you will need to create a user "guest" with password "guest".

If you cannot or do not want to create new users, you can run without authentication by specifying the no-auth option to the broker.

Slightly more complex configuration

The easiest way to get a full listing of the broker's options are to use the --help command, run it locally for the latest set of options. These
options can then be set in the conf file for convenience (see above)

./qpidd --help

Usage: qpidd OPTIONS
Options:
 -h [--help] Displays the help message
 -v [--version] Displays version information
 --config FILE (/etc/qpidd.conf) Reads configuration from FILE

Module options:
 --module-dir DIR (/usr/lib/qpidd) Load all .so modules in directorythis
 --load-module FILE Specifies additional module(s) to be loaded
 --no-module-dir Don't load modules from module directory

Broker Options:
 --data-dir DIR (/ /lib/qpidd) Directory to contain persistent data generated by the brokervar
 --no-data-dir Don't use a data directory. No persistent
 configuration will be loaded or stored
 -p [--port] PORT (5672) Tells the broker to listen on PORT
 --worker-threads N (3) Sets the broker thread pool size
 --max-connections N (500) Sets the maximum allowed connections
 --connection-backlog N (10) Sets the connection backlog limit thefor
 server socket
 --staging-threshold N (5000000) Stages messages over N bytes to disk
 -m [--mgmt-enable] yes|no (1) Enable Management
 --mgmt-pub-interval SECONDS (10) Management Publish Interval
 --ack N (0) Send session.ack/solicit-ack at least every
 N frames. 0 disables voluntary ack/solitict
 -ack

Daemon options:
 -d [--daemon] Run as a daemon.
 -w [--wait] SECONDS (10) Sets the maximum wait time to initialize the
 daemon. If the daemon fails to initialize, prints
 an error and returns 1
 -c [--check] Prints the daemon's process ID to stdout and
 returns 0 the daemon is running, otherwiseif
 returns 1
 -q [--quit] Tells the daemon to shut down
Logging options:
 --log-output FILE (stderr) Send log output to FILE. FILE can be a file name
 or one of the special values:
 stderr, stdout, syslog
 -t [--trace] Enables all logging
 --log-enable RULE (error+) Enables logging selected levels and componentfor
 s. RULE is in the form 'LEVEL+:PATTERN'
 Levels are one of:
 trace debug info notice warning error critical
 For example:
 '--log-enable warning+' logs all warning, error
 and critical messages.
 '--log-enable debug:framing' logs debug messages
 from the framing namespace. This option can be
 used multiple times
 --log-time yes|no (1) Include time in log messages
 --log-level yes|no (1) Include severity level in log messages
 --log-source yes|no (0) Include source file:line in log messages
 --log-thread yes|no (0) Include thread ID in log messages
 --log-function yes|no (0) Include function signature in log messages

Loading extra modules

By default the broker will load all the modules in the module directory, however it will NOT display options for modules that are not loaded. So
to see the options for extra modules loaded you need to load the module and then add the help command like this:

./qpidd --load-module libbdbstore.so --help
Usage: qpidd OPTIONS
Options:
 -h [--help] Displays the help message
 -v [--version] Displays version information
 --config FILE (/etc/qpidd.conf) Reads configuration from FILE

 / non module options would be here ... /

Store Options:
 --store-directory DIR Store directory location persistence (overridesfor
 --data-dir)
 --store-async yes|no (1) Use async persistence storage - store supportsif
 it, enables AIO O_DIRECT.
 --store-force yes|no (0) Force changing modes of store, will delete all
 existing data mode is changed. Be SURE you wantif
 to !do this
 --num-jfiles N (8) of files in persistence journalNumber
 --jfile-size-pgs N (24) Size of each journal file in multiples of read
 pages (1 read page = 64kiB)

Getting Started Guide

Installing & Using Qpid (Java)

Introduction

The information below details how to install and use the main Broker and Client packages.

Essentially, to make use of the Qpid AMQP infrastructure you need to be able to run a broker instance to handle messaging traffic and talk to
your client code. Your own application code will make use of the Qpid client package provided to interface with the broker.

Related pages to get you going

Troubleshooting Guide
How to Use JNDI
URL Formats for Qpid
Example Classes

Minor apologies since these instructions are heavily linux/unix focused. If you have difficulty using our .bat script (see below) please email
qpid-users for assistance.

Prerequisites

The Qpid broker requires Java 5 or later to be available. For maximum performance Java 6 is recommended. Note that JDK 5 has a bug
which may cause problems, so plase use versions later than 1.5.0_15 !

The Java JMS client can be run using Java 1.4, 5 or 6. Note that the 1.4 client libraries come in a separate package.

Downloading & Installing Qpid

The latest binary and source distributions of Qpid Broker and Client packages are available from the .downloads page

If you want to use a newer version than an official release then you should check out the code from the and thenSubversion repository
consult the page.Build How To

Broker Install

Unpack the archive into any directory of your choice e.g c:/qpid

Once unpacked, the package will be installed in a directory with a release label (i.e. qpid-broker-0.5) and the directories underneath should
look something like this:

/bin

Contains various startup utilities:

qpid-server is a bash script which runs the broker on linux/unix. You should set the environment variable QPID_HOME to point at
your install path e.g. C:/qpid/qpid-broker-0.5. This enables the startup script to find default config files in the installed etc directory.

1.

2.

3.

qpid-run is a script which allows shell commands to be executed which the qpid-server script utilises.

qpid-server.bat is a dos script which runs the broker on Windows. See note above about QPID_HOME.

create-example-ssl-stores(.sh/.bat) bash shell / dos batch script to create an example SSL keystore and truststore for use by the brokers
JMX management connections, which now ship with SSL enabled by default. Either provide your own keystore by modifying the broker
configuration, or run the appropriate script from the /etc directory to create example stores to allow initial broker startup. Alternatively you can
modify the configuration files in /etc to turn SSL use off.

The other scripts in this directory can be safely ignored for now.

/lib

Contains all the jars used by the broker.

The contains a manifest file which puts the requisite jars into the classpath for broker startup.qpid-all.jar

Other files & jars in here can be safely ignored for now.

/etc

Contains the config files used by the broker on startup.

If running on a unix or linux platform check that the appropriate permissions have been applied to the .sh scripts. If not, then update i.e.
chmod 755 *.sh

Environment Variables

Qpid Locations

You should set the following variables:

QPID_HOME - specifies where your install of Qpid exists, used for broker lookups of files etc
 - defines location of all working files created by the broker including log and db (i.e. BDB if used)QPID_WORK

 - ensure that the QPID_HOME/bin directory is added to your path so that the server scripts can runPATH

First set the QPID_HOME variable to reflect the root of your installation. For example, if you have installed the broker package into a
directory <homedir>/broker/qpid-xx then you should set the QPID_HOME variable to <homedir>/broker/qpid-xx.
You can also set the QPID_WORK variable in order to control the destination directory for the log dir into which broker logging is
generated. For example, if you wish to set the working directory to be <homedir>/working you should set the QPID_WORK directory
to be <homedir>/working. Note that the QPID_WORK variable defaults to the current user's home directory if not set.
Then set your PATH variable appropriately to include the bin dir

Setting JAVA environment

You must make the JDK available available by setting the JAVA_HOME environment variable and adding the JAVA_HOME/bin directory to
your PATH.

You should use JDK 1.6, or at least a version later than 1.5_15.

For example, if you have installed the JDK in /home/jdk1.6 then:
JAVA_HOME should be set to /home/jdk1.6
PATH should include /home/jdk1.6/bin

To check that you have completed this change successfully, simply type

java -version

You should see something like

java version "1.6.0_02"
Java(TM) SE Runtime Environment (build 1.6.0_02-b06)
Java HotSpot(TM) Server VM (build 1.6.0_02-b06, mixed mode)

The Qpid scripts set the classpath and other flags required for the broker to run.

Configuration

We ship two example configuration files with the Java broker:

persistent_config.xml - when you want to use any persistent messages with the Qpid broker (currently with BDB)
 - for transient messaging onlytransient_config.xml

You can simply use one of these config files to get started, using the -c option to specify to the qpid-server script. See details next in the next
section for more info on command line options.

Please visit our page to get more generic information on how to set up your chosen persistence implementation for Qpid.3rd Party Libraries

Running the Qpid Broker

There are scripts provided to run the broker on Windows and on Linux/Unix.

Running the Qpid Broker on Linux/Unix

Make sure you have set the QPID_HOME variable as specified above, and QPID_WORK if you don't want the default
Make sure you have provided an SSL keystore for the JMX management connections, or disabled the SSL usage, as detailed above
in the 'broker install' section.
One of the config files (persistent_config.xml or transient_config.xml) supplied in the etc directory one level below your root dir
probably doesn't need modification and should be passed in using -c and the path to your config file
Then run the qpid-server script from the root dir of your install. (The qpid-server script also supports cygwin environments.)

Command Line Arguments

You can get a list of all command line arguments by using the -h argument.

The following command line options are available:

Option Long Option Description

b bind Bind to the specified address overriding any value in the config file

c config Use the given configuration file

h help Prints list of options

l logconfig Use the specified log4j.xml file rather than that in the etc directory

p port Specify port to listen on. Overrides value in config file

v version Print version information and exit

w logwatch Specify interval for checking for logging config changes. Zero means no checking

For more detailed information on configuration, please see Qpid Design - Configuration

Checking the broker has started up

You can check that the broker has started up successfully by viewing the output it sends to stdout and looking for the start up port info:

2009-07-15 14:04:49,411 WARN [main] management.JMXManagedObjectRegistry (JMXManagedObjectRegistry.java:187) - Starting JMX
ConnectorServer on port '8999' (+9099) with SSL
2009-07-15 14:04:49,842 INFO [main] server.Main (Main.java:279) - Starting Qpid Broker 0.5 build: xxxxxxx
2009-07-15 14:04:49,910 INFO [main] server.Main (Main.java:387) - Qpid.AMQP listening on non-SSL address 0.0.0.0/0.0.0.0:5672

Running the Qpid Broker on Windows

Simply set the QPID_HOME variable and run the .bat script. All other details as identical to running on Linux/Unix.

So for example:
qpid-server.bat

Getting Help

You can view our and for assistance. If you can't find the information that you need there, then email our FAQ Troubleshooting Guide [qpid
users list]

Java broker log monitoring

Alert Monitoring

To set up required checks match log output on the following strings:

"ERROR"
"WARN"

With the following exclusions for warnings that are to be ignored:

"Requested requeue of message:"
"Routing map contains:"
"Dropping message as requeue not required and there is no dead letter queue"

"Compressing Buffers on queue."
"No additional SASL providers registered."
"No Database or no mechanisms to initialise authentication"
"VirtualHost authentication Managers require spec change to be operational."

Errors.

Message Text Reason

Error decrementing ref count on message <message id>: Application coding error. Error logged but not rethrown and no other
action taken. Broker keeps running.

Unsupported field type <class> for <field> IGNORING
configured value

Error during configuration, application configuration error. Ignored.

Unable to expand property: Error during configuration, application configuration error. Ignored.

Unable to access field <field> IGNORING configured value Error during configuration, application configuration error. Ignored.

Exception occured in creating the direct exchange mbean Rethrown as AMQException.

MESSAGE LOSS: Message should be sent on a Dead Letter
Queue

Non-mandatory message not routable. Route for message not set up
correctly.

Exception occured in creating the topic exchenge mbean Could not create mbean for exchange. Rethrown as AMQException.

Exception occured in creating the direct exchange mbean Could not create mbean for exchange. Rethrown as AMQException.

Exception occured in creating the HeadersExchangeMBean Could not create mbean for exchange. Rethrown as AMQException.

Default XPath evaluator could not be loaded Coding error.

Error closing protocol session: Error logged but not rethrown and no other action take. Broker keeps
running.

Error disposing of Sasl server: Error logged but not rethrown and no other action take. Broker keeps
running.

Error disposing of Sasl server: Error logged but not rethrown and no other action take. Broker keeps
running.

Unable to listen on SSL port: Broker won't start. Port is unavailable. Port may be in use on server

Unable to bind service to registry: Broker won't start.

AMQProtocolSession MBean creation has failed Could not create mbean for session. Rethrown as AMQException.

Received incorrect protocol initiation Client failed to open session. Possibly out of date client being used?

Error in protocol initiation Client fail to open session. Possibly out of date client being used?

IOException caught in <session id>, session closed implictly: Connection lost due to io error.

Exception caught in <session id>, closing session explictly: Connection closed due to error/bad operation.

Unable to get body count: The message store lost part of the message? or corrupt message taken
off the wire?

Error getting body count: The message store lost part of the message? or corrupt message taken
off the wire?

Error getting size of message body. The message store lost part of the message? or corrupt message taken
off the wire?

Message was dequeued, but could not then be deleted though
it is no longer referenced:

According to the comment this is a rare but harmless error.

Just send message: <message id> BUT removed this from
queue: <message id>

Unexpected condition on the broker. Message sent should be message
removed from queue.

Unable to deliver message as dequeue failed: Message could not be delivered.

Attempt to send Null message Application coding error.

Sending <message> when subscriber(<client id>) is closed! Application coding error.

Sending <message> when subscriber(<client id>) is closed! Application coding error.

MESSAGE LOSS : Unable to re-deliver messages Failed messages cannot be redelivered.

[MESSAGES LOST]Unable to re-deliver messages as queue
is null.

Failed messages cannot be redelivered.

Unable to re-deliver messages as queue is null. Failed messages cannot be redelivered.

Queue is null won't be able to resend messages Failed messages cannot be redelivered.

Unable to remove from index(<index>) subscription: Unsubscription failed, due to unknown subscriber. Broker ignores and
keeps running.

Error configuring application: Bad configuration. Rethrown as runtime. Ignore.

Unable to instantiate configuration class <class> - ensure it
has a public default constructor

Error in application configuration.

State manager received error notification[Current
State:<state>]:

Protocol error. Client application may have used protocol incorrectly.
Broker should handle this error correctly.

On commiting transaction, unable to determine whether
delivered to a consumer immediately:

Application coding error.

Failed to deliver messages following txn commit: Application coding error.

Unable to instantiate configuration class <class> - ensure it
has a public default constructor

Configuration exception. Rethrown as illegal argument.

Could not load version.properties resource: The application has not been compiled with a version stamp. Bad build.

Error decoding FieldTable in deferred decoding mode Rethrown as illegal argument.

Warnings.

Message Text Reason

<object id> Requested requeue of message(<message id>): <delivery tag> but no
queue defined and no DeadLetter queue so DROPPING message.

Undeliverable non-mandatory message.

Requested requeue of message: <delivery tag> but no such delivery tag exists.
<num unacked messages>

Coding error. Ignore.

No queues found for routing key <routing key> Unroutable message, no route set up.

Routing map contains: <routing keys> Debug trace of above.

Ignoring special header: <key> Badly configured headers exchange. Application has
not set up its headers exchange correctly.

Ignoring unrecognised match type: <value> Badly configured headers exchange. Application has
not set up its headers exchange correctly.

Invalid <class> implementation: Coding error.

Dropping reject request as message is null for tag: <delivery tag> Coding error.

Dropping message as requeue not required and there is no dead letter queue Seems to be handled else where.

Unrecognised frame <class> Bad frame.

Requesting rejection by null subscriber: <id> Coding error.

Compressing Buffers on queue. Warn about (costly?) internal broker actions.

No Configuration specified. Using default access controls for VirtualHost:'<vhost
name>'

Security not configured for the application.

No access control specified. Using default access controls for VirtualHost:'<vhost
name>'

Security not configured for the application.

Database '<database id>' cannot perform access management Application configuration error.

Specified PrincipalDatabase is not an AccessManager so using default
AccessManager

Application configuration error.

No Principal databases specified. Broker running with NO AUTHENTICATION. Application configuration error.

No authentication specified for '<host>'. Using Default authentication manager Possible application configuration error.

No authentication specified. Using Default authentication manager Possible application configuration error.

Unable to set order of providers. Coding or configuration error.

No additional SASL providers registered. Configuration warning.

More than one principle database provided currently authentication mechanism will
override each other.

Configuration error.

No Database or no mechanisms to initialise authentication Reported elsewhere so ingore.

we need a server that will correctly convert the incomming plain text for comparison
to file.

Application coding error.

Setting Accessable Name for VirualHost is not allowed. Application coding error.

VirtualHost authentication Managers require spec change to be operational. Warning about future AMQP spec changed.

Unable to find resource <resource path> from classloader The application has not been compiled with a
version stamp. Bad build.

Could not find protocol conversion classes for <major version>-<minor version> Application coding error.

Any access denied to vHost '<vhost name>' by <authorizer name> Potential attempted security breach.

Errors for Persistent Messaging (BDB Store) Only.

Message Text Reason Action

Unable to create exchange: Failed to instantiate exchange from BDB, possibly
corrupt data store.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Unable to create binding: Failed to instantiate binding from BDB, possibly
corrupt data store.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Unable to create queue: Failed to instantiate queue from BDB, possibly
corrupt data store.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Unkown queue: <queue name>
cannot be bound to exchange:

Failed to instantiate queue from BDB, possibly
corrupt data store.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Failed to enqueue: Message could not be placed on queue. Rethrown
as AMQException.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Failed to dequeue message
<message id>:

Failed to load message from BDB, possibly
corrupt data store. Rethrown as AMQException.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Error: BDB Database error prevented message delivery.
Rethrown.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Error converting entry to object: Failed to instantiate meta data from BDB, possibly
corrupt data store.

Shutdown broker. Restart broker to recover, if
this fails, initiate restore from BDB backup.

Error shutting down message
store:

Message store could not be cleanly shut down.
Possibly corrupt message store?

Restart broker to recover, if this fails, initiate
restore from BDB backup.

Java Environment Variables

Setting Qpid Environment Variables

Qpid Deployment Path Variables

There are two main Qpid environment variables which are required to be set for Qpid deployments, QPID_HOME and QPID_WORK.

QPID_HOME - This variable is used to tell the Qpid broker where it's installed home is, which is in turn used to find dependency JARs which
Qpid uses.

QPID_WORK - This variable is used by Qpid when creating all 'writeable' directories that it uses. This includes the log directory and the
storage location for any BDB instances in use by your deployment (if you're using persistence with BDB). If you do not set this variable, then
the broker will default (in the qpid-server script) to use the current user's homedir as the root directory for creating the writeable locations that
it uses.

Setting Max Memory for the broker

If you simply start the Qpid broker, it will default to use a -Xmx setting of 1024M for the broker JVM. However, we would recommend that you
make the maximum -Xmx heap size available, if possible, of 3Gb (for 32-bit platforms).

You can control the memory setting for your broker by setting the QPID_JAVA_MEM variable before starting the broker e.g. -Xmx3668m .
Enclose your value within quotes if you also specify a -Xms value. The value in use is echo'd by the qpid-server script on startup.

JMS Compliance

Strickt JMS Compliance

By default where AMQP is more flexible than JMS the AMQP option is used. To restrict operation to the JMS 1.1 specification set the system
property:

-Dstrict-jms=true

Management Design notes

Status of This Document

This document does not track any current development activity. It is the specification of the management framework implemented in the M3
release of the C++ broker and will be left here for user and developer reference.

Development continues on the Qpid Management Framework (QMF) for M4. If you are using M3, this is the document you need. If you are
using the SVN trunk, please refer to for up-to-date information.Qpid Management Framework

Introduction

This document describes the management features that are used in the QPID C++ broker as of the M3 milestone. These features do not
appear in earlier milestones nor are they implemented in the Java broker.

This specification is a standard and is not endorsed by the AMQP working group. When such a standard is adopted, the QPIDnot
implementation will be brought into compliance with that standard.

Links

The schema is checked into .svn

Design note for getting info in and out via JMX

JMX WS-DM Gateway

Management Requirements

Must operate from a formally defined management schema.
Must natively use the AMQP protocol and its type system.
Must support the following operations

SET operation on configurable (persistent) aspects of objects
GET operation on all aspects of objects
METHOD invocation on schema-defined object-specific methods
Distribution of unsolicited periodic updates of instrumentation data

Data updates shall carry an accurate sample timestamp for rate calculation
Updates shall carry object create/delete timestamps.
Transient objects shall be fully accounted for via updates. Note that short-lived transient objects may come and go
within a single update interval. All of the information pertaining to such an object must be captured and transmitted.

Distribution of unsolicited event and/or alert indications (schema defined)
Role-based access control at object, operation, and method granularity
End-to-end encryption and signing of management content
Schema must be self-describing so the management client need not have prior knowledge of the management model of the system
under management.
Must be extensible to support the management of objects beyond the QPID component set. This allows AMQP to be used as a
general-purpose management protocol.

Definition of Terms

class A type definition for a manageable object.

package A grouping of class definitions that are related to a single software component. The package concept is used to extend the
management schema beyond just the QPID software components.

object Also "manageable object". An instantiation of a class. An object represents a physical or logical component in the core
function of the system under management.

property A typed member of a class which represents a configurable attribute of the class. In general, properties don't change
frequently or may not change at all.

statistic A typed member of a class which represents an instrumentation attribute of the class. Statistics are always read-only in
nature and tend to change rapidly.

method A member of a class which represents a callable procedure on an object of the class. Methods may have an arbitrary set of
typed arguments and may supply a return code. Methods typically have side effects on the associated object.

https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid/specs/management-schema.xml

1.

2.

1.
2.
3.
4.

event A member of a class which represents the occurence of an event of interest within the system under management.

management
broker

A software component built into the messaging broker that handles management traffic and distributes management data.

management
agent

A software component that is separate from the messaging broker, connected to the management broker via an AMQP
connection, which allows any software component to be managed remotely by QPID.

Operational Scenarios: Basic vs. Extended

The extensibility requirement introduces complexity to the management protocol that is unnecessary and undesirable for the user/developer
that wishes only to manage QPID message brokers. For this reason, the protocol is partitioned into two parts: The , whichbasic protocol
contains only the capability to manage a single broker; and the , which provides the hooks for managing an extended setextended protocol
of components. A management console can be implemented using only the basic protocol if the extended capabilities are not needed.

Architectural Framework

Architectural Framework

The Management Exchange

The management exchange (called "qpid.management" currently) is a special type of exchange used for remote management access to the
Qpid broker. The management exchange is an extension of the standard "Topic" exchange. It behaves like a topic exchange with the
following exceptions:

When a queue is successfully bound to the exchange, a method is invoked on the broker's management agent to notify it of the
presence of a new remote managment client.
When messages arrive at the exchange for routing, the exchange examines the message's routing key and if the key represents a
management command or method, it routes it directly to the management agent rather than routing it to queues using the topic
algorithm.
The management exchange is used by the management agent to distribute unsolicited management data. Such data is classified by
the routing key allowing management clients to register for only the data they need.

Routing Key Structure

As noted above, the structure of the binding and routing keys used on the management exchange is important to the function of the
management architecture. The routing key of a management message determines:

The type of message (i.e. operation request or unsolicited update).
The class of the object that the message pertains to.
The specific operation or update type.
The namespace in which the class belongs. This allows for plug-in expansion of the management schema for manageable objects
that are outside of the broker itself.

Placing this information in the routing key provides the ability to enforce access control at class, operation, and method granularity. It also
separates the command structure from the content of the management message (i.e. element values) allowing the content to be encrypted
and signed end-to-end while still allowing access control at the message-transport level. This means that special access control code need
not be written for the management agent.
There are two general types of routing/binding key:

Command messages use the key: or agent.<bank#> broker
Unsolicited keys have the structure: wheremgmt.<agent>.<type>.<package>.<class>.<severity>

<agent> is the uuid of the originating management agent,
<type> is one of "schema", "prop", "stat", or "event",
<package> is the namespace in which the <class> name is valid, and
<class> is the name of the class as defined in the schema.
<severity> is relevant for events only. It is one of "critical", "error", "warning", or "info".

In both cases, the content of the message (i.e. method arguments, element values, etc.) is carried in the body segment of the message.

The namespace allows this management framework to be extended with the addition of other software packages.<package>

The Protocol

Protocol Header

The body segments of management messages are composed of sequences of binary-encoded data fields, in a manner consistent with the
0-10 version of the AMQP specification.

All management messages begin with a message header:

octet 0 1 2 3 4 5 6 7
 +---------+---------+---------+---------+---------+---------+---------+---------+
 | 'A' | 'M' | '1' | op-code | sequence |
 +---------+---------+---------+---------+---------+---------+---------+---------+

The first three octets contain the protocol "AM1" which is used to identify the type and version of the message.magic number

The field identifies the operation represented by the messageopcode

Protocol Exchange Patterns

The following patterns are followed in the design of the protocol:

Request-Response
Query-Indication
Unsolicited Indication

The Request-Response Pattern

In the request-response pattern, a requestor sends a message to one of its peers. The peer then does one of two things: If therequest
request can be successfully processed, a single message is sent back to the requestor. This response contains the requestedresponse
results and serves as the positive acknowledgement that the request was successfully completed.

If the request cannot be successfully completed, the peer sends a message back to the requestor with an error codecommand complete
and error text describing what went wrong.

The sequence number in the or message is the same as the sequence number in the .response command complete request

Requestor Peer
 | |
 | --- Request (seq) --> |
 | |
 | <--- Response (seq) --- |
 | |

Requestor Peer
 | |
 | --- Request (seq) --> |
 | |
 | <-------------------------- Command Complete (seq, error) --- |
 | |

The Query-Indication Pattern

The query-indication pattern is used when there may be zero or more answers to a question. In this case, the requestor sends a query
message to its peer. The peer processes the query, sending as many messages as needed back to the requestor (zero or more).indication
Once the last has been sent, the peer then sends a message with a success code indicating that the queryindication command complete
is complete.

If there is an error in the , the peer may reply with a message containg an error code. In this case, no query command complete indication
messages may be sent.

All and messages shall have the same sequence number that appeared in the message.indication command complete query

Requestor Peer
 | |
 | --- Query (seq) --> |
 | |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | <--------------------------------------- Indication (seq) --- |
 | |
 | <------------------------ Command Complete (seq, success) --- |
 | |

Requestor Peer
 | |
 | --- Query (seq) --> |
 | |
 | <-------------------------- Command Complete (seq, error) --- |
 | |

The Unsolicited-Indication Pattern

The unsolicited-indication pattern is used when one peer needs to send unsolicited information to another peer, or to broadcast information to
multiple peers via a topic exchange. In this case, indication messages are sent with the sequence number field set to zero.

Peer Peer
 | |
 | <----------------------------------- Indication (seq = 0) --- |
 | <----------------------------------- Indication (seq = 0) --- |
 | <----------------------------------- Indication (seq = 0) --- |
 | <----------------------------------- Indication (seq = 0) --- |
 | |

Object Identifiers

Manageable objects are tagged with a unique 64-bit object identifier. The object identifier space is owned and managed by the management
broker. Objects managed by a single management broker shall have unique object identifiers. Objects managed by separate management
brokers may have the same object identifier.

If a management console is designed to manage multiple management brokers, it must use the broker identifier as well as the object
identifier to ensure global uniqueness.

62 48 47 24 23 0
 +-+-------------+-----------------------+-----------------------+
 |0| sequence | bank | object |
 +-+-------------+-----------------------+-----------------------+

 bit 63 - reserved, must be zero
 bits 63 .. 48 - broker boot sequence (32K)
 bits 47 .. 24 - bank (16M)
 bits 23 .. 0 - object (16M)

For persistent IDs, boot-sequence is zero
For non-persistent IDs, boot sequence is a constant number which increments each time the management broker is restarted.
Bank number:

0 - reserved
1 - broker-persistent objects
2..4 - store-persistent objects
> 4 - transient objects

Establishing Communication Between Client and Agent

Communication is established between the management client and management agent using normal AMQP procedures. The client creates a
connection to the broker and then establishes a session with its corresponding channel.

Two private queues are then declared (only one if method invocation is not needed). A management queue is declared and bound to the
qpid.management exchange. If the binding key is "mgmt.#", all management-related messages sent to the exchange will be received by this
client. A more specific binding key will result in a more restricted set of messages being received (see the section on Routing Key Structure
below).

If methods are going to be invoked on managed objects, a second private queue must be declared so the client can receive method replies.
This queue is bound to the amq.direct exchange using a routing key equal to the name of the queue.

When a client successfully binds to the qpid.management exchange, the management agent schedules a schema broadcast to be sent to the
exchange. The agent will publish, via the exchange, a description of the schema for all manageable objects in its control.

Client Broker
 | |
 | --- AMQP Connection and Session Setup ----------------------> |
 | |
 | --- Queue.declare (private data queue) ---------------------> |
 | --- Bind queue to exchange 'qpid.management' key 'mgmt.#' --> |
 | |
 | --- Queue.declare (private method-reply queue) -------------> |
 | --- Bind queue to exchange 'amq.direct' --------------------> |
 | |
 | --- Broker Request ---> |
 | <-- Broker Response --- |
 | |
 | |
 | |
 | <------- Management schema via exchange 'qpid.management' --- |
 | |

Broadcast of Configuration and Instrumentation Updates

The management agent will periodically publish updates to the configuration and instrumentation of management objects under its control.
Under normal circumstances, these updates are published only if they have changed since the last time they were published. Configuration
updates are only published if configuration has changed and instrumentation updates are only published if instrumentation has changed. The
exception to this rule is that after a management client binds to the qpid.management exchange, all configuration and instrumentation
records are published as though they had changed whether or not they actually did.

Client Broker
 | |
 | <------------------ Object properties via 'mgmt.*.prop.#' --- | |
 | <------------------ Object statistics via 'mgmt.*.stat.#' --- | |
 | | |
 | | | Publish Interval
 | | |
 | | |
 | | V
 | <------------------ Object properties via 'mgmt.*.prop.#' --- |
 | <------------------ Object statistics via 'mgmt.*.stat.#' --- |
 | |

Invoking a Method on a Managed Object

When the management client wishes to invoke a method on a managed object, it sends a method request message to the qpid.management
exchange. The routing key contains the object class and method name (refer to Routing Key Structure below). The method request must
have a header entry (reply-to) that contains the name of the method-reply queue so that the method response can be properly routed back to
the requestor.

The method request contains a sequence number that is copied to the method reply. This number is opaque to the management agent and
may be used by the management client to correlate the reply to the request. The asynchronous nature of requests and replies allows any
number of methods to be in-flight at a time. Note that there is no guarantee that methods will be replied to in the order in which they were
requested.

Client Broker
 | |
 | --- Method Request (to exchange 'qpid.management') ---------> |
 | |
 | |
 | <--------------- Method Reply (via exchange 'amq.direct') --- |
 | |

Messages for the Basic Scenario

The principals in a management exchange are the and the . The management agent is integrated intomanagement client management agent
the QPID broker and the management client is a remote entity. A management agent may be managed by zero or more management clients
at any given time. Additionally, a management client may manage multiple management agents at the same time.

For authentication and access control, management relies on the mechanisms supplied by the AMQP protocol.

Basic Opcodes

opcode message description

'B' Broker
Request

This message contains a broker request, sent from the management console to the broker to initiate a
management session.

'b' Broker
Response

This message contains a broker response, sent from the broker in response to a broker request message.

'z' Command
Completion

This message is sent to indicate the completion of a request.

'Q' Class
Query

Class query messages are used by a management console to request a list of schema classes that are known by
the management broker.

'q' Class
Indication

Sent by the management broker, a class indication notifies the peer of the existence of a schema class.

'S' Schema
Request

Schema request messages are used to request the full schema details for a class.

's' Schema
Response

Schema response message contain a full description of the schema for a class.

'h' Heartbeat
Indication

This message is published once per publish-interval. It can be used by a client to positively determine which
objects did not change during the interval (since updates are not published for objects with no changes).

'c', 'i', 'g' Content
Indication

This message contains a content record. Content records contain the values of all properties or statistics in an
object. Such records are broadcast on a periodic interval if 1) a change has been made in the value of one of the
elements, or 2) if a new management client has bound a queue to the management exchange.

'G' Get Query Sent by a management console, a get query requests that the management broker provide content indications for
all objects that match the query criteria.

'M' Method
Request

This message contains a method request.

'm' Method
Response

This message contains a method result.

Broker Request Message

When a management client first establishes contact with the broker, it sends a Hello message to initiate the exchange.

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'B' | 0 |
 +-----+-----+-----+-----+-----------------------+

The Broker Request message has no payload.

Broker Response Message

When the broker receives a Broker Request message, it responds with a Broker Response message. This message contains an identifier
unique to the broker.

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'b' | 0 |
 +-----+-----+-----+-----+-----------------------+----------------------------+
 | brokerId (uuid) |
 +--+

Command Completion Message

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'z' | seq |
 +-----+-----+-----+-----+-----------------------+
 | Completion Code |
 +-----------------------+---+
 | Completion Text |
 +---+

Class Query

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'Q' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | package name (str8) |
 +--+

Class Indication

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'q' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | package name (str8) |
 +--+
 | class name (str8) |
 +--+
 | schema hash (bin128) |
 +--+

Schema Request

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'S' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | packageName (str8) |
 +--+
 | className (str8) |
 +--+
 | schema-hash (bin128) |
 +--+

Schema Response

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 's' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | packageName (str8) |
 +--+
 | className (str8) |
 +--+
 | schema-hash (bin128) |
 +-----------+-----------+-----------+-----------+----------+
 | propCnt | statCnt | methodCnt | eventCnt |
 +-----------+-----------+-----------+-----------+----------------------------+
 | propCnt property records |
 +--+
 | statCnt statistic records |
 +--+
 | methodCnt method records |
 +--+
 | eventCnt event records |
 +--+

Each record is an AMQP map with the following fields. Optional fields may optionally be omitted from the map.property

field name optional description

name no Name of the property

type no Type code for the property

access no Access code for the property

index no 1 = index element, 0 = not an index element

optional no 1 = optional element (may be not present), 0 = mandatory (always present)

unit yes Units for numeric values (i.e. seconds, bytes, etc.)

min yes Minimum value for numerics

max yes Maximum value for numerics

maxlen yes Maximum length for strings

desc yes Description of the property

Each record is an AMQP map with the following fields:statistic

field name optional description

name no Name of the statistic

type no Type code for the statistic

unit yes Units for numeric values (i.e. seconds, bytes, etc.)

desc yes Description of the statistic

method and records contain a main map that describes the method or header followed by zero or more maps describing arguments.event
The main map contains the following fields:

field name optional description

name no Name of the method or event

argCount no Number of argument records to follow

desc yes Description of the method or event

Argument maps contain the following fields:

field name method event optional description

name yes yes no Argument name

type yes yes no Type code for the argument

dir yes no yes Direction code for method arguments

unit yes yes yes Units for numeric values (i.e. seconds, bytes, etc.)

min yes no yes Minimum value for numerics

max yes no yes Maximum value for numerics

maxlen yes no yes Maximum length for strings

desc yes yes yes Description of the argument

default yes no yes Default value for the argument

type codes are numerics with the following values:

value type

1 uint8

2 uint16

3 uint32

4 uint64

6 str8

7 str16

8 absTime(uint64)

9 deltaTime(uint64)

10 objectReference(uint64)

11 boolean(uint8)

12 float

13 double

14 uuid

15 map

16 int8

17 int16

18 int32

19 int64

access codes are numerics with the following values:

value access

1 Read-Create access

2 Read-Write access

3 Read-Only access

direction codes are numerics with the following values:

value direction

1 Input (from client to broker)

2 Output (from broker to client)

3 IO (bidirectional)

Heartbeat Indication

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'h' | 0 |
 +-----+-----+-----+-----+-----------------------+
 | timestamp of current interval (datetime) |
 +---+

Configuration and Instrumentation Content Messages

Content messages are published when changes are made to the values of properties or statistics or when new management clients bind a
queue to the management exchange.

+-----+-----+-----+-------+-----------------------+
 | 'A' | 'M' | '1' |'g/c/i'| seq |
 +-----+-----+-----+-------+-----------------------+--------+
 | packageName (str8) |
 +--+
 | className (str8) |
 +--+
 | class hash (bin128) |
 +-----+-----+-----+-----+-----+-----+-----+-----+----------+
 | timestamp of current sample (datetime) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | time object was created (datetime) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | time object was deleted (datetime) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | objectId (uint64) |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | presence bitmasks (0 or more uint8 fields) |
 +-----+-----+-----+-----+-----+-----+-----+-----+------------------------+
 | config/inst values (in schema order) |
 +--+

All timestamps are uint64 values representing nanoseconds since the epoch (January 1, 1970). The objectId is a uint64 value that uniquely
identifies this object instance.

If any of the properties in the object are defined as optional, there will be 1 or more "presence bitmask" octets. There are as many octets as
are needed to provide one bit per optional property. The bits are assigned to the optional properties in schema order (first octet first, lowest
order bit first).

For example: If there are two optional properties in the schema called "option1" and "option2" (defined in that order), there will be one
presence bitmask octet and the bits will be assigned as bit 0 controls option1 and bit 1 controls option2.

If the bit for a particular optional property is set (1), the property will be encoded normally in the "values" portion of the message. If the bit is
clear (0), the property will be omitted from the list of encoded values and will be considered "NULL" or "not present".

The element values are encoded by their type into the message in the order in which they appeared in the schema message.

Get Query Message

A Get Request may be sent by the management console to cause a management agent to immediately send content information for objects
of a class.

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'G' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | Get request field table |
 +--+

The content of a get request is a field table that specifies what objects are being requested. Most of the fields are optional and are available
for use in more extensive deployments.

Field Key Mandatory Type Description

"_class" yes short-string The name of the class of objects being requested.

"_package" no short-string The name of the extension package the class belongs to. If omitted, the package defaults to
"qpid" for access to objects in the connected broker.

"_agent" no uuid The management agent that is the target of the request. If omitted, agent defaults to the
connected broker.

When the management agent receives a get request, it sends content messages describing the requested objects. Once the last content
message is sent, it then sends a Command Completion message with the same sequence number supplied in the request to indicate to the
requestor that there are no more messages coming.

Method Request

Method request messages have the following structure. The sequence number is opaque to the management agent. It is returned unchanged
in the method reply so the calling client can correctly associate the reply to the request. The objectId is the unique ID of the object on which
the method is to be executed.

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'M' | seq |
 +-----+-----+-----+-----+-----------------------+
 | objectId (uint64) |
 +---+
 | methodName (str8) |
 +---+------------------------+
 | input and bidirectional argument values (in schema order) |
 +--+

Method Response

Method reply messages have the following structure. The sequence number is identical to that supplied in the method request. The status
code (and text) indicate whether or not the method was successful and if not, what the error was. Output and bidirectional arguments are
only included if the status code was 0 (STATUS_OK).

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'm' | seq |
 +-----+-----+-----+-----+-----------------------+
 | status code |
 +-----------------------+----------------------------------+
 | status text (str8) |
 +-----------------------+----------------------------------+-------------+
 | output and bidirectional argument values (in schema order) |
 +--+

status code values are:

value description

0 STATUS_OK - successful completion

1 STATUS_UNKNOWN_OBJECT - objectId not found in the agent

2 STATUS_UNKNOWN_METHOD - method is not known by the object type

3 STATUS_NOT_IMPLEMENTED - method is not currently implemented

Messages for Extended Scenario

Extended Management Protocol

Qpid supports management extensions that allow the management broker to be a central point for the management of multiple external
entities with their own management schemas.

Broker Remote Agent
 | |
 | <--- Attach Request --- |
 | --- Attach Response --> |
 | |
 | <------------------------------------- Package Indication --- |
 | <------------------------------------- Package Indication --- |
 | |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | <--------------------------------------- Class Indication --- |
 | |
 | --- Schema Request (class key) -----------------------------> |
 | <-- Schema Response --- |
 | |
 | --- Schema Request (class key) -----------------------------> |
 | <-- Schema Response --- |
 | |
 | |

Extended Opcodes

opcode message description

'P' Package Query This message contains a schema package query request, requesting that the broker dump the list of
known packages

'p' Package Indication This message contains a schema package indication, identifying a package known by the broker

'A' Agent Attach
Request

This message is sent by a remote agent when it wishes to attach to a management broker

'a' Agent Attach
Response

The management broker sends this response if an attaching remote agent is permitted to join

'x' Console Added
Indication

This message is sent to all remote agents by the management broker when a new console binds to the
management exchange

Package Query

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'P' | seq |
 +-----+-----+-----+-----+-----------------------+

Package Indication

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'p' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | package name (str8) |
 +--+

Attach Request

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'A' | seq |
 +-----+-----+-----+-----+-----------------------+----------+
 | label (str8) |
 +-----------------------+----------------------------------+
 | system-id (uuid) |
 +-----------------------+----------------------------------+
 | requested objId bank |
 +-----------------------+

Attach Response (success)

1.
2.
3.

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'a' | seq |
 +-----+-----+-----+-----+-----------------------+
 | assigned broker bank |
 +-----------------------+
 | assigned objId bank |
 +-----------------------+

Console Added Indication

+-----+-----+-----+-----+-----------------------+
 | 'A' | 'M' | '1' | 'x' | seq |
 +-----+-----+-----+-----+-----------------------+

JMX Gateway

Qpid Management and JMX

Currently the C++ broker supports the AMQP-mgmt protocol and makes all it's management information available to any language client.
Each object that is managed has a schema and MD5 sum so that version-ing can be handled.

To play with this look here
To see the current object schema

The Java Broker already has JMX exposed – schema to be link here...

What all the pieces are...

Consuming the mgmt events from JMX

We have a GSoC project done by Rahul, that will take the schema from AMQP-mgnt and then dynamically expose those over JMX and
WS-DM. This means that any of the management data from the broker can be managed by any JMX console or WS-DM console. I believe
that Andrea will be helping with the WS-DM piece.

Notes on this project

Putting JMX events across the AMQP-mgmt pipe

In this case we want to be able to take any JMX objects and map them into the AMQP-mgnt pipe, as an agent. This makes is possible for
any process including our current Java broker to place all its events onto the infrastucrure. I believe Andrea is doing this for us.

Command line tools for JMX

The ability to hit the JMX interfaces from cmd line tool for scripting on JMX. This is a GSoC project, Lahiru is doing this for us.

Mapping the schema

Brought up by Rob, basically we need to work through all the management commands and instrumentation data that the two brokers have
and make sure the full set is represented into the schema

Finally we need to work out if our users want us to provide a translation bridge between the two schema.

qmf_architecture

Architectural Framework

Components

Management Broker

The management broker has the following responsibilities:

Manage the object-id space used to uniquely identify all manageable objects.
Route agent commands from a console to the appropriate agent.
Cache schema information provided by agents for the use of consoles.

Management Agent

The management agent consists of two parts. The first part is a component of the Qpid Management Framework and provides an API
interface for the second part. The second part is specific to the software system being managed and is developed by the same team that

https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid/specs/management-schema.xml
https://issues.apache.org/jira/browse/QPID-955
https://svn.apache.org/repos/asf/incubator/qpid/trunk/qpid/specs/management-schema.xml

1.
2.
3.

1.

2.

develops the target system.

The management agent is responsible for the following:

Defining and owning the management schema for the target system.
Maintaining manageable objects that are associated with physical or logical objects in the target system.
Executing schema-defined method requests on object under its care.

Management Console

The management console consists of two main parts: The framework-supplied access API and the user-defined application built on the API.
The user application is typically a CLI utility or a Graphical/Browser user interface but can take any other form as well.

Other examples of console applications are:

Event and audit storage applications
Event correlation applications
Two-tiered management servers (for web-based UIs)
Bridges to other management protocols
Automated monitoring and control applications that react to changes in the managed infrastructure
Test harnesses
Custom-built applications for any purpose

Interfaces

Console Interface

Console | Framework
 --------+--
 |
 | +------------+
 | +----------------- | | |
 | | reply-queue <--------| amq.direct |
 | +----------------- | |
 | +------------+
 |
 | +-----------------+
 | +----------------- | | |
 | | topic-queue <--------| qpid.management |
 | +----------------- | |
 | | |
 | agent commands | |
 | --------------------------->| |
 | | |
 | +-----------------+
 |

Agent Interface

Features

Redundant components and paths

Single point of entry

Old Text

There are two primary interfaces defined in the management architecture:

The Management Console Interface is used by management clients (CLIs, GUIs, console servers, etc.) to remotely access
management data.
The Extension Interface is used by software components (not necessarily related to the QPID infrastructure) to provide access to
their managed objects.

+---------+ +---------+ +---------+
 | | | | | |
 | CLI/GUI | | Console |<======>| CLI/GUI |
 | | | Server | | |
 +---------+ | | +---------+
 ^ +---------+
 | ^
 | |
 v v
 +---------------------------------+
 | |
 | Managed QPID Infrastructure |
 | |
 +---------------------------------+
 ^
 |
 v
 +------------+
 | |-+
 | Management | |-+
 | Extensions | | |
 | | | |
 +------------+ | |
 +------------+ |
 +------------+

Both management interfaces are based on the AMQP protocol and its type system.

Management Tools

Current Management Tools

This is a list of the current managment tools available for the Qpid Java Broker.

JMX Management Console
JConsole
MessageStore Tool

JConsole

JConsole

JConsole is a management tool that comes with the Java Runtime Environment (6+) or Java Development Kit (5+) and provides a very
simple view of managed beans. It requires no special configuration to be used with Qpid.
You can run JConsole with the command 'jconsole' assuming you have Java installed and configured to be available in your PATH.

Recent versions of the broker can make use of SSL to encrypt their RMI based JMX connections. If the broker being connected to is making
use of this ability then additional configuration may be required, particularly when using self-signed certificates, in order to provide JConsole
with access to an SSL truststore capable of validating the certificate recieved from the broker. If you dont to do this JConsole will fail to
connect, although it will not emit a clear indication of why.

As example, in order to connect to the broker using the test SSL resources within the Qpid subversion repository, in the trunk/qpid/java
directory the following command could be used to start jconsole:

jconsole -J-Djavax.net.ssl.trustStore=test-profiles/test_resources/ssl/certstore.jks
-J-Djavax.net.ssl.trustStorePassword=password

To attach to a (remotely) running broker, simply enter the host, port, and login details in the JConsole connect dialog.
Once you are connected expand the tree nodes marked "org.apache.qpid" to gain access to the Qpid related MBeans.

For further details see Sun's JConsole guide

MessageStore Tool

MessageStore Tool

We have a number of implementations of the Qpid MessageStore interface. This tool allows the interrogation of these stores while the broker
is offline.

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

MessageStore Implementations

BDBMessageStore (3rd Party)
JDBCStore
MemoryMessageStore

Introduction

Each of the MessageStore implementations provide different back end storage for their messages and so would need a different tool to be
able to interrogate their contents at the back end.

What this tool does is to utilise the Java broker code base to access the contents of the storage providing the user with a consistent means to
inspect the storage contents in broker memory. The tool allows the current messages in the store to be inspected and copied/moved
between queues. The tool uses the message instance in memory for all its access paths, but changes made will be reflected in the physical
store (if one exists).

Usage

The tools-distribution currently includes a unix shell command 'msTool.sh' this script will launch the java tool.

The tool loads $QPID_HOME/etc/config.xml by default. If an alternative broker configuration is required this should be provided on the
command line as would be done for the broker.

msTool.sh -c <path to different config.xml>

On startup the user is present with a command prompt

$ msTool.sh
MessageStoreTool - for examining Persistent Qpid Broker MessageStore instances
bdb$

Available Commands

The available commands in the tool can be seen through the use of the 'help' command.

bdb$ help
+--+
| Available Commands |
+--+
| Command | Description |
+--+
| quit | Quit the tool. |
| list | list available items. |
| dump | Dump selected message content. Default: show=content |
| load | Loads specified broker configuration file. |
| clear | Clears any selection. |
| show | Shows the messages headers. |
| select | Perform a selection. |
| help | Provides detailed help on commands. |
+--+
bdb$

A brief description is displayed and further usage information is shown with 'help <command>'

bdb$ help list
list availble items.
Usage:list queues [<exchange>] | exchanges | bindings [<exchange>] | all
bdb$

Future Work

Currently the tool only works whilst the broker is offline i.e. it is up, but not accepting AMQP connections. This requires a stop/start of the
broker. If this functionality was incorporated into the broker then a telnet functionality could be provided allowing online management.

Qpid JMX Management Console

Qpid JMX Management Console

Overview

1.
2.

1.
2.
3.

1.

The Qpid JMX Management Console is a standalone Eclipse RCP application that communicates with the broker using JMX.

Configuring Management Users
Configuring Qpid JMX Management Console

Management Console Security
Qpid JMX Management Console FAQ
Qpid JMX Management Console User Guide
Qpid Management Features

Configuring Management Users

The Qpid Java broker has a single source of users for the system. So a user can connect to the broker to send messages and via the JMX
console to check the state of the broker.

Adding a new management user

The broker does have some minimal configuration available to limit which users can connect to the JMX console and what they can do when
they are there.

There are two steps required to add a new user with rights for the JMX console.

Create a new user login, see HowTo:Add New Users
Grant the new user permission to the JMX Console

Granting JMX Console Permissions

By default new users do not have access to the JMX console. The access to the console is controlled via the file .jmxremote.access

This file contains a mapping from user to privilege.

There are three privileges available:

readonly - The user is able to log in and view queues but not make any changes.
readwrite - Grants user ability to read and write queue attributes such as alerting values.
admin - Grants the user full access including ability to edit Users and JMX Permissions in addition to readwrite access.

This file is read at start up and can forcibly be reloaded by an admin user through the management console.

Access File Format

The file is a standard Java properties file and has the following format

<username>=<privilege>

If the username value is not a valid user (list in the specified PrincipalDatabase) then the broker will print a warning when it reads the file as
that entry will have no meaning.

Only when the the username exists in both the access file and the PrincipalDatabase password file will the user be able to login via the JMX
Console.

Example File

The file will be timestamped by the management console if edited through the console.

#Generated by JMX Console : Last edited by user:admin
#Tue Jun 12 16:46:39 BST 2007
admin=admin
guest=readonly
user=readwrite

Configuring Qpid JMX Management Console

Configuring Qpid JMX Management Console

Qpid has a JMX management interface that exposes a number of components of the running broker.
You can find out more about the features exposed by the JMX interfaces .here

Installing the Qpid JMX Management Console

Unzip the archive to a suitable location.

1.

SSL encrypted connections
Recent versions of the broker can make use of SSL to encrypt their RMI based JMX connections. If a broker being
connected to is making use of this ability then additional console configuration may be required, particularly when
using self-signed certificates. See for details.Management Console Security

JMXMP based connections
In previous releases of Qpid (M4 and below) the broker JMX connections could make use of the JMXMPConnector for
additional security over its default RMI based JMX configuration. This is no longer the case, with SSL encrypted RMI being
the favored approach going forward. However, if you wish to connect to an older broker using JMXMP the console will
support this so long as the file is provided to it. For details see .jmxremote_optional.jar Management Console Security

Running the Qpid JMX Management Console

The console can be started in the following way, depending on platform:

Windows: by running the 'qpidmc.exe' executable file.

Linux: by running the 'qpidmc' executable.

Mac OS X: by launching the consoles application bundle (.app file).

Using the Qpid JMX Management Console

Please see for details on using this Eclipse RCP application.Qpid JMX Management Console User Guide

Using JConsole

See JConsole

Using HermesJMS

HermesJMS also offers integration with the Qpid management interfaces. You can get instructions and more information from
.http://wiki.apache.org/qpid/HermesJMS

Using MC4J

MC4J is an alternative management tool. It provide a richer "dashboard" that can customise the raw MBeans.

Installation

First download and install MC4J for your platform. Version 1.2 beta 9 is the latest version that has been tested.
Copy the directory into the directory blaze/java/management/mc4j <MC4J-Installation>/dashboards

Configuration

You should create a connection the JVM to be managed. Using the menu option. TheManagement->Create Server Connection
connection URL should be of the form: making the appropriate hostservice:jmx:rmi:///jndi/rmi://localhost:8999/jmxrmi
and post changes.

Operation

You can view tabular summaries of the queues, exchanges and connections using the Global Dashboards->QPID tree view. To drill down on
individual beans you can right click on the bean. This will show any available graphs too.

Management Console Security

Management Console Security

SSL encrypted RMI (0.5 and above)
JMXMP (M4 and previous)
User Accounts & Access Rights

SSL encrypted RMI (0.5 and above)

Current versions of the broker make use of SSL encryption to secure their RMI based JMX ConnectorServer for security purposes. This
ships enabled by default, although the test SSL keystore used during development is not provided for security reasons (using this would
provide no security as anyone could have access to it).

Broker Configuration

http://wiki.apache.org/qpid/HermesJMS
http://www.mc4j.org

The broker configuration must be updated before the broker will start. This can be done either by disabling the SSL support, utilizing a
purchased SSL certificate to create a keystore of your own, or using the example 'create-example-ssl-stores' script in the brokers bin/
directory to generate a self-signed keystore.

The broker must be configured with a keystore containing the private and public keys associated with its SSL certificate. This is
accomplished by setting the Java environment properties and respectively with thejavax.net.ssl.keyStore javax.net.ssl.keyStorePassword
location and password of an appropriate SSL keystore. Entries for these properties exist in the brokers main configuration file alongside the
other management settings (see below), although the command line options will still work and take precedence over the configuration file.

<management>
 <ssl>
 <enabled>true</enabled>
 <!-- Update below path to your keystore location, eg ${conf}/qpid.keystore -->
 <keyStorePath>${prefix}/../test_resources/ssl/keystore.jks</keyStorePath>
 <keyStorePassword>password</keyStorePassword>
 </ssl>
</management>

JMX Management Console Configuration

If the broker makes use of an SSL certificate signed by a known signing CA (Certification Authority), the management console needs no
extra configuration, and will make use of Java's built-in CA
truststore for certificate verification (you may however have to update the system-wide default truststore if your CA is not already present in
it).

If however you wish to use a self-signed SSL certificate, then the management console must be provided with an SSL truststore containing a
record for the SSL certificate so that it is able to validate it when presented by the broker. This is performed by setting the

 and environment variables when starting the console. This can be done at thejavax.net.ssl.trustStore javax.net.ssl.trustStorePassword
command line, or alternatively an example configuration has been made within the console's qpidmc.ini launcher configuration file that may
pre-configured in advance for repeated usage. See the for more information on this configuration process.User Guide

JConsole Configuration

As with the JMX Management Console above, if the broker is using a self-signed SSL certificate then in order to connect remotely using
JConsole, an appropriate trust store must be provided at startup. See for further details on configuration.JConsole

Additional Information

More information on Java's handling of SSL certificate verification and customizing the keystores can be found in the JSSE Reference Guide
.

JMXMP (M4 and previous)

In previous releases of Qpid (M4 and below) the broker, can make use of Sun's Java Management Extensions Messaging Protocol (JMXMP)
to provide encryption of the JMX connection, offering increased security over the default unencrypted RMI based JMX connection.

Download and Install

This is possible by adding the jmxremote_optional.jar as provided by Sun. This jar is covered by the Sun Binary Code License and is not
compatible with the Apache License which is why this component is not bundled with Qpid.

Download the JMX Remote API 1.0.1_04 Reference Implementation from . The includedhere
'jmxremote-1_0_1-bin\lib\jmxremote_optional.jar' file must be added to the broker classpath:

First set your classpath to something like this:

CLASSPATH=jmxremote_optional.jar

Then, run qpid-server passing the following additional flag:

qpid-server -run:external-classpath=first

Following this the configuration option can be updated to enabled use of the JMXMP based JMXConnectorServer.

Broker Configuration

To enabled this security option change the value in your broker configuration file.security-enabled

<management>
 <security-enabled>true</security-enabled>
 </management>

You may also (for M2 and earlier) need to set the following system properties using the environment variable QPID_OPTS:

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/download.jsp

QPID_OPTS="-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port=8999
-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false"

JMX Management Console Configuration

If you wish to connect to a broker configured to use JMXMP then the console also requires provision of the Optional sections of the JMX
Remote API that are not included within the JavaSE platform.

In order to make it available to the console, place the 'jmxremote_optional.jar' (rename the file if any additional information is present in the
file name) jar file within the 'plugins/jmxremote.sasl_1.0.1/' folder of the console release (on Mac OS X you will need to select 'Show package
contents' from the context menu whilst selecting the management console bundle in order to reveal the inner file tree).

Following the the console will automatically load the JMX Remote Optional classes and attempt the JMXMP connection when connecting to a
JMXMP enabled broker.

User Accounts & Access Rights

In order to access the management operations via JMX, users must have an account and have been assigned appropriate access rights.
See Configuring Management Users

Qpid JMX Management Console FAQ

Errors

How do I connect the management console to my broker using security ?

I am unable to connect Qpid JMX MC/JConsole to a remote broker running on Linux, but connecting to localhost on that machine works ?

Qpid JMX Management Console User Guide

Qpid JMX Management Console User Guide

The guide can be found below in wiki form, or downloaded as a file: (DOC) (PDF)

Introduction
Startup & Configuration
Startup
SSL configuration
JMXMP configuration
Managing Server Connections
Main Toolbar
Connecting to a new server
Reconnecting to a server
Disconnecting from a server
Removing a server
Navigating a connected server
ConfigurationManagement MBean
LoggingManagement MBean
Runtime Options
ConfigurationFile Options
ServerInformation MBean
UserManagement MBean
VirtualHostManager MBean
Notifications
Managing Queues
Managing Exchanges
Managing Connections

Introduction

The Qpid JMX Management Console is a standalone Eclipse RCP application for managing and monitoring the Qpid Java server utilising its
JMX management interfaces.

This guide will give an overview of configuring the console, the features supported by it, and how to make use of the console in managing the
various JMX Management Beans (MBeans) offered by the Qpid Java server.

Startup & Configuration

Startup

http://cwiki.apache.org/confluence/download/attachments/91960/Qpid_JMX_MC_User_Guide.doc?version=3&modificationDate=1251307060000
http://cwiki.apache.org/confluence/download/attachments/91960/Qpid_JMX_MC_User_Guide.pdf?version=3&modificationDate=1251307060000

The console can be started in the following way, depending on platform:

Windows: by running the executable file.qpidmc.exe
Linux: by running the executable.qpidmc
Mac OS X: by launching the application bundle.Qpid Management Console.app

SSL configuration

Newer Qpid Java servers can protect their JMX connections with SSL, and this is enabled by default. When attempting to connect to a server
with this enabled, the console must be able to verify the SSL certificate presented to it by the server or the connection will fail.

If the server makes use of an SSL certificate signed by a known Signing CA (Certification Authority) then the console needs no extra
configuration, and will make use of Java's default system-wide CA TrustStore for certificate verification (you may however have to update the
system-wide default CA TrustStore if your certified is signed by a less common CA that is not already present in it).

If however the server is equipped with a self-signed SSL certificate, then the management console must be provided with an appropriate SSL
TrustStore containing the public key for the SSL certificate, so that it is able to validate it when presented by the server. The server ships with
a script to create an example self-signed SSL certificate, and store the relevant entries in a KeyStore and matching TrustStore. This script
can serve as a guide on how to use the Java Keytool security utility to manipulate your own stores, and more information can be found in the
JSSE Reference Guide: http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

Supplying the necessary details to the console is performed by setting the and javax.net.ssl.trustStore javax.net.ssl.trustStorePassword
environment variables when starting it. This can be done at the command line, but the preferred option is to set the configuration within the

 launcher configuration file for repeated usage. This file is equipped with a template to ease configuration, this should beqpidmc.ini
uncommented and edited to suit your needs. It can be found in the root of the console releases for Windows, and Linux. For Mac OS X the
file is located within the consoles application bundle, and to locate and edit it you must select when accessing.app 'Show Package Contents'
the context menu of the application, then browse to the sub folder to locate the file. Contents/MacOS

JMXMP configuration

Older releases of the Qpid Java server can make use of the Java Management Extensions Messaging Protocol (JMXMP) to provide
protection for their JMX connections. This occurs when the server has its main configuration set with the management 'security-enabled'
property set to true.

In order to connect to this configuration of server, the console needs an additional library that is not included within the Java SE platform and
cannot be distributed with the console due to licensing restrictions.

You can download the JMX Remote API 1.0.1_04 Reference Implementation from the Sun website . The included here
 file must be added to the folder of the console release (again,jmxremote-1_0_1-bin/lib/jmxremote_optional.jar plugins/jmxremote.sasl_1.0.1

in Mac OS X you will need to select from the context menu whilst selecting the management console bundle in'Show package contents'
order to reveal the inner file tree).

Following this the console will automatically load the JMX Remote Optional classes and negotiate the SASL authentication profile type when
encountering a JMXMP enabled Qpid Java server.

Managing Server Connections

Main Toolbar

The main toolbar of the console can be seen in the image below. The left most buttons respectively allow for adding a new server
connection, reconnecting to an existing server selected in the connection tree, disconnecting the selected server connection, and removing
the server from the connection tree.

Beside these buttons is a combo for selecting the refresh interval; that is, how often the console requests updated information to display for
the currently open area in the main view. Finally, the right-most button enables an immediate update.

Connecting to a new server

To connect to a new server, press the toolbar button, or select the menu item. At thisAdd New Server Qpid Manager -> Add New Connection
point a dialog box will be displayed requesting the server details, namely the server hostname, management port, and a username and
password. An example is shown below:

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/download.jsp

Once all the required details are entered, pressing Connect will initiate a connection attempt to the server. It the attempt fails a reason will be
shown and the server will not be added to the connection tree. If the attempt is successful the server will be added to the connections list and
the entry expanded to show the initial administration MBeans the user has access to and any VirtualHosts present on the server, as can be
seen in the figure below.

If the server supports a newer management API than the console in use, once connected this initial screen will contain a message on the
right, indicating an upgraded console should be sought by the user to ensure all management functionality supported by the server is being
utilised.

Reconnecting to a server

If a server has been connected to previously, it will be saved as an entry in the connection tree for further use. On subsequent connections
the server can simply be selected from the tree and using the toolbar button or menu item. At thisReconnect Qpid Manager -> Reconnect
stage the console will prompt simply for the username and password with which the user wishes to connect, and following a successful
connection the screen will appear as shown previously above.

Disconnecting from a server

To disconnect from a server, select the connection tree node for the server and press the toolbar button, or use the Disconnect Qpid
 menu option.Manager -> Disconnect

Removing a server

To remove a server from the connection list, select the connection tree node for the server and press the toolbar button, or use the Remove
 menu option.Qpid Manager -> Remove Connection

Navigating a connected server

Once connected to a server, the various areas available for administration are accessed using the Qpid Connections tree at the left side of
the application. To open a particular MBean from the tree for viewing, simply select it in the tree and it will be opened in the main view.

As there may be vast numbers of Queues, Connections, and Exchanges on the server these MBeans are not automatically added to the tree
along with the general administration MBeans. Instead, dedicated selection areas are provided to allow users to select which
Queue/Connection/Exchange they wish to view or add to the tree. These areas can be found by clicking on the Connections, Exchanges,
and Queues nodes in the tree under each VirtualHost, as shown in the figure above. One or more MBeans may be selected and added to the
tree as Favourites using the button provided. These settings are saved for future use, and each time the console connects to the server it will
check for the presence of the MBean previously in the tree and add them if they are still present. Queue/Connection/Exchange MBeans can
be removed from the tree by right clicking on them to expose a context menu allowing deletion.

As an alternative way to open a particular MBean for viewing, without first adding it to the tree, you can simply double click an entry in the
table within the Queue/Connection/Exchange selection areas to open it immediately. It is also possible to open some MBeans like this whilst
viewing certain other MBeans. When opening an MBean in either of these ways, a Back button is enabled in the top right corner of the main
view. Using this button will return you to the selection area or MBean you were previously viewing. The history resets each time the tree is
used to open a new area or MBean.

ConfigurationManagement MBean

The ConfigurationManagement MBean is available on newer servers, to users with admin level management rights. It offers the ability to
perform a live reload of the sections defined in the main server configuration file (e.g. defaults to:). This is mainly toSecurity etc/config.xml
allow updating the server Firewall configuration to new settings without a restart, and can be performed by clicking the Execute button and
confirming the prompt which follows.

LoggingManagement MBean

The LoggingManagement MBean is available on newer servers, and accessible by admin level users. It allows live alteration of the logging
behaviour, both at a Runtime-only level and at the configuration file level. The latter can optionally affect the Runtime configuration, either
through use of the servers automated LogWatch ability which detects changes to the configuration file and reloads it, or by manually
requesting a reload. This functionality is split across two management tabs, Runtime Options and ConfigurationFile Options.

Runtime Options

The Runtime Options tab allows manipulation of the logging settings without affecting the configuration files (this means the changes will be
lost when the server restarts), and gives individual access to every Logger active within the server.

As shown in the figure above, the table in this tab presents the Effective Level of each Logger. This is because the Loggers form a hierarchy
in which those without an explicitly defined (in the logging configuration file) Level will inherit the Level of their immediate parent; that is, the
Logger whose full name is a prefix of their own, or if none satisfy that condition then the RootLogger is their parent. As example, take the

 Logger. It is parent to all those below it which begin with and unless they have a specific Level of their own,org.apache.qpid org.apache.qpid
they will inherit its Level. This can be seen in the figure, whereby all the children Loggers visible have a level of WARN just like their parent,
but the RootLogger Level is INFO; the children have inherited the WARN level from rather than INFO from the RootLogger.org.apache.qpid

To aid with this distinction, the Logger Levels that are currently defined in the configuration file are highlighted in the List. Changing these
levels at runtime will also change the Level of all their children which haven't been set their own Level using the runtime options. In the latest
versions of the LoggingManagement MBean, it is possible to restore a child logger that has had an explicit level se, to inheriting that of its
parent by setting it to an INHERITED level that removes any previously set Level of its own.

In order to set one of more Loggers to a new Level, they should be selected in the table (or double click an individual Logger to modify it) and
the button pressed to load the dialog shown above. At this point, any of the available Levels supported by the serverEdit Selected Logger(s)
can be applied to the Loggers selected and they will immediately update, as will any child Loggers without their own specific Level.

The RootLogger can be similarly edited using the button at the bottom left of the window.

ConfigurationFile Options

The ConfigurationFile Options tab allows alteration of the Level settings for the Loggers defined in the configuration file, allowing changes to
persist following a restart of the server. Changes made to the configuration file are only applied automatically while the sever is running if it
was configured to enable the LogWatch capability, meaning it will monitor the configuration file for changes and apply the new configuration
when the change is detected. If this was not enabled, the changes will be picked up when the server is restarted. The status of the LogWatch
feature is shown at the bottom of the tab. Alternatively, in the latest versions of the LoggingManagement MBean it is possible to reload the
logging configuration file on demand.

Manipulating the Levels is as on the Runtime Options tab, either double-click an individual Logger entry or select multiple Loggers and use
the button to load the dialog to set the new Level.

One issue to note of when reloading the configuration file settings, either automatically using LogWatch or manually, is that any Logger set to
a specific Level using the Runtime Options tab that is not defined in the configuration file will maintain that Level when the configuration file is
reloaded. In other words, if a Logger is defined in the configuration file, then the configuration file will take precedence at reload, otherwise
the Runtime options take precedence.

This situation will be immediately obvious by examining the Runtime Options tab to see the effective Level of each Logger – unless it has
been altered with the RuntimeOptions or specifically set in the configuration file, a Logger Level should match that of its parent. In the latest
versions of the LoggingManagement MBean, it is possible to use the RuntimeOptions to restore a child logger to inheriting from its parent by
setting it with an INHERITED level that removes any previously set Level of its own.

ServerInformation MBean

The ServerInformation MBean currently only conveys various pieces of version information to allow precise identification of the server version
and its management capabilities. In future it is likely to convey additional server-wide details and/or functionality.

UserManagement MBean

The UserManagement MBean is accessible by admin level users, and allows manipulation of existing user accounts and creation of new user
accounts.

To add a new user, press the button, which will load the dialog shown below.Add New User

Here you may enter the new users Username, Password, and select their JMX Management Rights. This controls whether or not they have
access to the management interface, and if so what capabilities are accessible. access allows undertaking any operations that doRead Only
not alter the server state, such as viewing messages. access allows use of all operations which are not deemed admin-onlyRead + Write
(such as those in the UserManagement MBean itself). access allows a user to utilize any operation, and view the admin-only MBeansAdmin
(currently these are ConfigurationManagement, LoggingManagement, and UserManagement).

One or more users at a time may be deleted by selecting them in the table and clicking the button. The console will thenDelete User(s)
prompt for confirmation before undertaking the removals. Similarly, the access rights for one or more users may be updated by selecting
them in the table and clicking the button. The console will then display a dialog enabling selection of the new access level andSet Rights
confirmation to undertake the update.

An individual user password may be updated by selecting the user in the table in and clicking the button. The console will thenSet Password
display a dialog enabling input of the new password and confirmation to undertake the update.

The server caches the user details in memory to aid performance. If may sometimes be necessary to externally modify the password and
access right files on disk. In order for these changes to be known to the server without a restart, it must be instructed to reload the file
contents. This can be done using the provided button (on older servers, only the management rights file is reloaded, onReload User Details
newer servers both files are. The description on screen will indicate the behaviour). After pressing this button the console will seek
confirmation before proceeding.

VirtualHostManager MBean

Each VirtualHost in the server has an associated VirtualHostManager MBean. This allows viewing, creation, and deletion of Queues and
Exchanges within the VirtualHost.

Clicking the button in the Queue section will open a dialog allowing specification of the Name, Owner (optional), and durabilityCreate
properties of the new Queue, and confirmation of the operation.

One or more Queues may be deleted by selecting them in the table and clicking the button. This will unregister the Queue bindings,Delete
remove the subscriptions and delete the Queue(s). The console will prompt for confirmation before undertaking the operation.

Clicking the button in the Exchange section will open a dialog allowing specification of the Name, Type, and Durable attributes of theCreate
new Exchange, and confirmation of the operation.

One or more Exchanges may be deleted by selecting them in the table and clicking the button. This will unregister all the relatedDelete
channels and Queue bindings then delete the Exchange(s). The console will prompt for confirmation before undertaking the operation.

Double-clicking on a particular Queue or Exchange name in the tables will open the MBean representing it.

Notifications

MBeans on the server can potentially send Notifications that users may subscribe to. When managing an individual MBean that offers
Notifications types for subscription, the console supplies a Notifications tab to allow (un)subscription to the Notifications if desired and
viewing any that are received following subscription.

In order to provide quicker access to/awareness of any received Notifications, each VirtualHost area in the connection tree has a
Notifications area that aggregates all received Notifications for MBeans in that VirtualHost. An example of this can be seen in the figure
below.

All received Notifications will be displayed until such time as the user removes them, either in this aggregated view, or in the Notifications
area of the individual MBean that generated the Notification.

They may be cleared selectively or all at once. To clear particular Notifications, they should be selected in the table before pressing the Clear
button. To clear all Notifications, simply press the button without anything selected in the table, at which point the console will requestClear
confirmation of this clear-all action.

Managing Queues

As mentioned in earlier discussion of Navigation, Queue MBeans can be opened either by double clicking an entry in the Queues selection
area, or adding a queue to the tree as a favourite and clicking on its tree node. Unique to the Queue selection screen is the ability to view
additional attributes beyond just that of the Queue Name. This is helpful for determining which Queues satisfy a particular condition, e.g.
having <X> messages on the queue. The example below shows the selection view with additional attributes Consumer Count, Durable,

 (selected using the button at the bottom right corner of the table)MessageCount, and QueueDepth Select Attributes .

Upon opening a Queue MBean, the Attributes tab is displayed, as shown below. This allows viewing the value all attributes, editing those
which are writable values (highlighted in blue) if the users management permissions allow, viewing descriptions of their purpose, and
graphing certain numerical attribute values as they change over time.

The next tab contains the operations that can be performed on the queue. The main table serves as a means of viewing the messages on
the queue, and later for selecting specific messages to operate upon. It is possible to view any desired range of messages on the queue by
specifying the visible range using the fields at the top and pressing the button. Next to this there are helper buttons to enable fasterSet
browsing through the messages on the queue; these allow moving forward and back by whatever number of messages is made visible by the
viewing range set. The Queue Position column indicates the position of each message on the queue, but is only present when connected to
newer servers as older versions cannot provide the necessary information to show this (unless only a single message position is requested).

Upon selecting a message in the table, its header properties and redelivery status are updated in the area below the table. Double clicking a
message in the table (or using the button to its right) will open a dialog window displaying the contents of theView Message Content
message.

One or more messages can be selected in the table and moved to another queue in the VirtualHost by using the button,Move Message(s)
which opens a dialog to enable selection of the destination and confirmation of the operation. Newer servers support the ability to similarly
copy the selected messages to another queue in a similar fashion, or delete the selected messages from the queue after prompting for
confirmation.

Finally, all messages (that have not been acquired by consumers) on the queue can be deleted using the button, which willClear Queue
generate a prompt for confirmation. On newer servers, the status bar at the lower left of the application will report the number of messages
actually removed.

Managing Exchanges

Exchange MBeans are opened for management operations in similar fashion as described for Queues, again showing an Attributes tab
initially, with the Operations tab next:

Of the four default Exchange Types all but have their bindings presented in the format shown(direct, fanout, headers, and topic) headers
above. The left table provides the binding/routing keys present in the exchange. Selecting one of these entries in the table prompts the right
table to display all the queues associated with this key. Pressing the button opens a dialog allowing association of an existing queueCreate
with the entered Binding.

The Exchange type (default instantiation) is presented as below:headers amq.match or amq.headers

In the previous figure, the left table indicates the binding number, and the Queue associated with the binding. Selecting one of these entries
in the table prompts the right table to display the header values that control when the binding matches an incoming message.

Pressing the button when managing a Exchange opens a dialog allowing creation of a new binding, associating an existingCreate headers
Queue with a particular set of header keys and values. The key is required, and instructs the server whether to match the bindingx-match
with incoming messages based on ANY or ALL of the further key-value pairs entered. If it is desired to enter more than 4 pairs, you may
press the button to create a new row as many times as is required. Add additional field

When managing a Exchange, double clicking an entry in the left-hand table will open the MBean for the Queue specified in theheaders
binding properties.

When managing another Exchange Type, double clicking the Queue Name in the right-hand table will open the MBean of the Queue
specified.

Managing Connections

Exchange MBeans are opened for management operations in similar fashion as described for Queues, again showing an Attributes tab
initially, with the Operations tab next, and finally a Notifications tab allowing subscription and viewing of Notifications. The Operations tab can
be seen in the figure below.

The main table shows the properties of all the Channels that are present on the Connection, including whether they are , the Transactional
 on them, and the if there is one (or if there is not).Number of Unacked Messages Default Queue null

The main operations supported on a connection are Commiting and Rolling Back of Transactions on a particular Channel, if the Channel is
Transactional. This can be done by selecting a particular Channel in the table and pressing the or Commit Transactions Rollback

 buttons at the lower right corner of the table, at which point the console will prompt for confirmation of the action. These buttonsTransactions
are only active when the selected Channel in the table is Transactional.

The final operation supported is closing the Connection. After pressing the button, the console will prompt for confirmationClose Connection
of the action. If this is carried out, the MBean for the Connection being managed will be removed from the server. The console will be notified
of this by the server and display an information dialog to that effect, as it would if any other MBean were to be unregistered whilst being
viewed.

Double clicking a row in the table will open the MBean of the associated if there is one.Default Queue

Qpid Management Features

1.
2.
3.
4.

1.
a.
b.

2.

1.
a.
b.
c.
d.
e.
f.

g.
h.

2.
3.
4.
5.

1.
2.
3.
4.
5.
6.
7.
8.

a.
b.
c.
d.

1.
2.
3.
4.

Management tool: See our for details of how to use various console options with the Qpid managementManagement Console page
features.

The management of QPID is categorised into following types-

Exchange
Queue
Connection
Broker

 : Following is the list of features, which we can have available for managing and monitoring an1) Managing and Monitoring Exchanges
Exchange running on a Qpid Server Domain-

Displaying the following information for monitoring purpose-
The list of queues bound to the exchange along with the routing keys.
General Exchange properties(like name, durable etc).

Binding an existing queue with the exchange.

2) Managing and Monitoring Queues: Following are the features, which we can have for a Queue on a Qpid Server Domain-

Displaying the following information about the queue for monitoring purpose-
General Queue properties(like name, durable, etc.)
The maximum size of a message that can be accepted from the message producer.
The number of the active consumers accessing the Queue.
The total number of consumers (Active and Suspended).
The number of undelivered messages in the Queue.
The total number of messages received on the Queue since startup.
The maximum number of bytes for the Queue that can be stored on the Server.
The maximum number of messages for the Queue that can be stored on the Server.

Viewing the messages on the Queue.
Deleting message from top of the Queue.
Clearing the Queue.
Browsing the DeadMessageQueue - Messages which are expired or undelivered because of some reason are routed to the
DeadMessageQueue. This queue can not be deleted. [Note: The is open because it depends on how these kind of messages will
be handeled?]

3) Managing and Monitoring Connections: Following are the features, which we can have for a connection on a QPID Server Domain-

Displaying general connection properties(like remote address, etc.).
Setting maximum number of channels allowed for a connection.
View all related channels and channel properties.
Closing a channel.
Commit or Rollback transactions of a channel, if the channel is transactional.
Notification for exceeding the maximum number of channels.
Dropping a connection.
The work for implies that there are potentially some additional requirementsNetwork IO Interface

Alert when tcp flow control kicks in
Information available about current memory usage available through JMX interface
Dynamic removal of buffer bounds? (fundamentally not possible with TransportIO)
Management functionality added to JMX interface - UI changes?

4) Managing the Broker: Features for the Broker-

Creating an Exchange.
Unregistering an Exchange.
Creating a Queue.
Deleting a Queue.

Multiple AMQP Version Support

Multiple-AMQP Version Support in Qpid
1. Current Generator Status
2. Generator Description

2.1. Overview
2.2. AMQP verion model

3. Code Generation
3.1. Difference Modes
3.2 Java Generation
3.3. C++ Generation

Multiple-AMQP Version Support in Qpid
This page describes an effort to allow multiple AMQP versions to be supported in the broker. This implies:

that a broker will be able to accept a connection from clients requesting a variety of versions of the AMQ protocol;
The versions to be supported in this manner are determined at compile time;
A code generator generates the framing classes directly from the XML specification file(s), allowing generated classes to support any

of the supported versions.
Each of these classes need only the major and minor version numbers at instantiation to represent a frame from that protocol
version.

The thinking behind the following generator description is described in . Option 3 (Intelligent Generation) was selected for thisAMQPVersion.1
implementation.

1. Current Generator Status

The Java generator is more-or-less complete and has been checked into subversion under the gentools directory for initial review. It has not
been integrated into the Qpid project as yet; I would like to complete the C++ generation first. However, while the C++ work is in progress,
the Java generator is available for review and comment. For instructions on installing and running, see the README file in the gentools
directory.

2. Generator Description

2.1. Overview

The generator first reads in all the listed specification files and constructs from them a memory model (structure) of the specifications
"superimposed" on top of each other so that the differences between them are easy to determine. A domain map (which maps all domain
names to their simple domain types) is also constructed.

The generator then uses the model to perform code generation. This is achieved by using templates which contain the static parts of the
code (which are simply reproduced) and in which are embedded tokens. These tokens, when encounted in the template, are passed on to
the generator class, which then uses the context and model to generate specific the version-dependent sections of the code.

Both of these are discussed in more detail below.

2.2. AMQP verion model

The memory model has two parts - the and the (specification structure) itself.domain map model

Domain Map

The domain map is a two-level map. The lowest level maps the simple domain types to the AMQP versions in which they are defined. The
upper level maps the domain names to the simple domain type.

In the following hypothetical example, the domain is changed from in v.0.8 to in v.0.9, then back to in v.0.10. The class-id short long short
 domain was introduced in v.0.10, while the was removed in v0.9.queue-type redirected

access-ticket --- shortstr --- V[0.8, 0.9, 0.10]

class-id -+------ short ------ V[0.8, 0.10]
 +------ long ------- V[0.9]

queue-type ------ shortstr --- V[0.10]

redirected ------ bit -------- V[0.8]

A simplified version of the object model is as follows:

Domain Map class diagram

Specification Model

The specification model consists of a series of embedded maps in the same logical structure as the XML specification elements themsleves:
the model contains a map of class maps; class maps contain field and method maps; method maps contain field maps. At the lowest level,
there is a map to a set of AMQP versions.

The following illustrates a small portion of a model.
The class has an index of for versions 0.8 - 0.10. The method has index in v.0.8 and 0.9, but was changed to inAccess 30 request 10 20

1.
2.

3.

a.
b.
c.
d.

v.0.10. This method has a field in ordinal and a field in ordinal for all versions. The field is of domain for versionactive 1 realm 0 realm path
0.8, but was changed to shortstr in versions 0.9 ans 0.10. The domains in this model are the domain names, not the domaindomain NOTE:
types. The Domain Map above is used to look up the domain type.

C Access -+---- I 30 ---------- V[0.8, 0.9, 0.10]
 +---- M request -+-+- I 10 -------- V[0.8, 0.9]
 | +- I 20 -------- V[0.10]
 +-+- F active --+- O 1 ---------- V[0.8, 0.9, 0.10]
 | +- D bit -------- V[0.8, 0.9, 0.10]
 +- F realm -+--- O 0 ---------- V[0.8, 0.9, 0.10]
 +-+- D path ------- V[0.8]
 +- D shortstr --- V[0.9, 0.10]

C = class; M = method; F = field; D = domain name; I = index; O = ordinal; V = version(s)

An is the index number of a field implied by its relative position in the XML specification file. The first field in a class or method hasordinal
ordinal 0, the second ordinal 1, etc.

A simplified version of the object model is as follows:

Model class diagram

Generation

The Generator itself consists of a template passer and large number of code-generating methods for handling the various tokens that are
embedded in the templates.

Templates contain three types of tokens:

Filename tokens, which determine the name of the file to be generated;
Simple Class/Method/Field replacement tokens in which the name of these elements are used to replace the token (e.g.
"${CLASS}${METHOD}Body" becomes "BasicConsumeBody");
List tokens, in which a code snippet is generated once for each item in the list. A second token on the same line determines the code
snippet that will be generated. The list tokens cannot be combined or embedded within each other. There are four list tokens:

%{VLIST} which generates once per version;
%{CLIST} which generates once per class;
%{MLIST} which generates once per method;
%{FLIST} which generates once per field.

3. Code Generation

3.1. Difference Modes

The following changes may take place between one version and the next:

Addition of classes, methods, fields or domains;
Deletion of classes, methods, fields or domains;
Modification of field domains or domain types;
Modification of the ordinal position of fields;
Modification of the index of classes or methods;

1.
2.
3.
4.
5.
6.
7.
8.
9.

3.2 Java Generation

3.2.1. MethodBody classes

MethodBody classes here.

3.2.2. PropertyContentHeader classes

PropertyContentHeader classes here.

3.2.3. Registry classes

Registry classes here.

3.3. C++ Generation

Watch this space...

AMQPVersion.1
Back to Multiple AMQP Version Support

Approach to adding support for multiple AMQP versions into the broker

I had intended to follow approach 2 below, however after some brainstorming, a better and more efficient approach has been proposed. The
following is a summary of the possible courses of action.

Kim van der Riet

1. Present status: No AMQP version discrimination.

ADVANTAGES:

a. Nothing changes in the code, and everyone keeps doing what they are already doing...

DISADVANTAGES:

a. There is no easy way of hosting more than one version of AMQP at the same time in the broker.
b. The code that touches the version-specific generated method body classes is scattered all over the place. This makes it difficult to
maintain the code if there a change to the AMQP protocol. In order to help conceive the scope of possible protocol changes (outside ofis
any policy the AMQP WG may have in this regard) consider the following possible change types/scopes:

A method call (class, method, fields, types) does not change, but the use or purpose of a field changes;
A method call changes the type of one or more fields;
A method call changes the number of fields (including by removing a field from one version to the next);
A method call changes the order of the fields;
A totally new method call is added;
A method call is removed;
A class is added;
A class is removed;
Any of 5-9 above in such a way as to alter the class/method numbers of unchanged elements (e.g. a class is removed, so class
Basic changes from 60 to 50)

2. Initial approach to solving problem: Namespace discrimination.

a. In this approach, each version of the protocol is generated as before, but into a namespace unique to that version.
b. The objects are made version-aware, and carry the major and minor version numbers of the current session from the ProtocolSession

 objects used to start the session.ProtocolInitiation
c. The points in the code where version-specific method body objects and/or calls are made are moved into a single layer - the method
handlers. Static function calls are added where necessary to instantiate and/or process these objects. Since the method handlers are
version-aware, they would contain the logic to select the correct namespace.
d. The generated code would contain additional methods which allow the fields within any method body to be accessed or set using a
parametrized function call. This would aid the coding of the version-sensitive logic used in the method handlers.

 +--------+ +---------+ +------------+ +---------+
 | Broker | | Method | | Generated | | Encoder |
 | code | <---> | Handler | <---> | MethodBody | <---> | Decoder |
 | | | classes | | classes | | classes |
 +--------+ +---------+ +------------+ +---------+
 1 1 set n sets, 1/version 1 or possibly more

ADVANTAGES:

a. Allows multiple AMQP versions to be used simultaneously in the broker.
b. Isolates the scope of version-specific code to the method handlers, where hand-coded logic specific to the needs of individual AMQP
versions may reside. This aids maintainability in the event of additional versions being added/versions being changed.
c. Forces the code to choose a specific AMQP version to use the classes.MethodBody
d. Works using existing code-generation system (XSLT).

DISADVANTAGES

a. Code duplication: Since in most AMQP version changes, 90+% of the specification remains unchanged, the generated classes will contain
mostly exact duplicates from version to version.
b. The ideal system of version fallback (in which default behavior is to use the latest class and to hand-code logic only where differences
exist) does not operate. Each version must be handled separately whether identical or not.
c. The code using the parametrized function calls is more complex and not as easy to understand as direct calls.

3. Revised approach: Intelligent generation

a. In this approach, the limitations of the existing XSLT code generation are removed. We assume that we can compare one version of the
AMQP specification to another, and generate code for the latest version and code to handle only the differences between the latest and each
earlier version. To achieve this, we conceptually refactor the XML specification file so that the version information is contained inside the
elements instead of outside them. Then each version of the spec is added cumulatively to create a complete map of the specification. For
example, assume the following simple example:

AMQP 1.0:
Basic.Consume(Ticket ticket, Queue queue, ConsumerTag consumer_tag, NoLocal no_local, NoAck
no_ack, bool exclusive, bool nowait);
AMQP 1.2:
Basic.Consume(Ticket ticket, Queue queue, ConsumerTag consumer_tag, int no_ack, bool exclusive,
bool nowait, NoLocal no_local, int priority);

would be refactored to something like (abbreviated):

<AMQP>
 <class name="Basic>
 <version major= minor= num= />"1" "0" "60"
 <version major= minor= num= />"1" "2" "50"
 <method name= >"Consume"
 <version major= minor= num= />"1" "0" "20"
 <version major= minor= num= />"1" "2" "20"
 <field name= type= >"ticket" "Ticket"
 <version major= minor= num= />"1" "0" "0"
 <version major= minor= num= />"1" "2" "0"
 </field>
 <field name= type= >"queue" "Queue"
 <version major= minor= num= />"1" "0" "1"
 <version major= minor= num= />"1" "2" "1"
 </field>
 <field name= type= >"consumer_tag" "ConsumerTag"
 <version major= minor= num= />"1" "0" "2"
 <version major= minor= num= />"1" "2" "2"
 </field>
 <field name= type= >"no_local" "NoLocal"
 <version major= minor= num= />"1" "0" "3"
 <version major= minor= num= />"1" "2" "6"
 </field>
 <field name= type= >"no_ack" "NoAck"
 <version major= minor= num= />"1" "0" "4"
 </field>
 <field name= type= >"no_ack" "int"
 <version major= minor= num= />"1" "2" "3"
 </field>
 <field name= type= >"exclusive" "bool"
 <version major= minor= num= />"1" "0" "5"
 <version major= minor= num= />"1" "2" "4"
 </field>
 <field name= type= >"nowait" "bool"
 <version major= minor= num= />"1" "0" "6"
 <version major= minor= num= />"1" "2" "5"
 </field>
 <field name= type= >"priority" "int"
 <version major= minor= num= />"1" "2" "7"
 </field>
 </method>
 </class>
</AMQP>

This would result in the generation of only a single class, and since all instances of this class are version-aware, each knowsMethodBody
how to handle calls for a given version (pseudo-java):

class BasicConsumeBody AMQPMethodBodyextends
{
 _major, _minor;public int
 BasicConsumeBody(major, minor) {_major = major; _minor = minor;}public int int
 getAMQPClass(){ (major == 1 && minor == 0) 60; 50;} public int if return else return // the
class number has changed!

 getAMQPMethod(){ 20;}public int return

 Ticket getTicket() {...}public
 Queue getQueue() {...}public
 ConsumerTag getConsumerTag() {...}public
 NoLocal getNoLocal() {....}public
 T getNoAck(<T>) { (major == 1 && minor == 0)...} public Class if // NoAck changes type

 getExclusive() {...}public boolean
 getNoWait() {...}public boolean
 getPriority() Exception { (major != 1 || minor != 2) ...} public int throws if throw // Priority
field is in 1.2 only
// also setXXX() methods...for
}

Static functions would require major and minor to be passed to be able to operate.
a.#2 As before, the objects are made version-aware, and carry the major and minor version numbers of the currentProtocolSession
session from the objects used to start the session.ProtocolInitiation

b. As before, the points in the code where version-specific method body objects and/or calls are made are moved into a single layer - the
method handlers.
c. If different versions of a particular method have additional and/or different parameters, the generated class may be thought of as a
cumulative collection of all these parameters/types. Since the object is AMQP version-aware, it is possible for the handlers to know which
fields to use and/or how to initialize/handle the unused fields for any call which addresses less than all the available fields. Possible courses
of action include ignoring the unused field, or initializing it with a meaningful default. Making the field members of the class public would
afford this flexibility, and the get/set methods could simply be viewed as convenience methods. Where the type of a field changes, the
different fields would require some kind of name-mangling to indicate their type.

ADVANTAGES

a. Only a single class for each method body
b. Single get/set method for each field
c. Common code is simple and remains unchanged from version to version
d. Where a field type changes, a type method is used; this will break all areas in the code which used to use this method, andClass<T>
conveniently indicate where hand-coded logic is required.
e. Where there is a field that is unique to a subset of versions, auto-generated code will throw an exception if it is invoked from a session of
the wrong version. The addition of the exception will break the compilation (i.e. must be caught), and will indicate places in the code where
hand-coded logic will be required.
f. The existing handler code can remain substantially unchanged.

DISADVANTAGES

a. Complexity...
b. This generation is beyond the capabilities of XSLT (or would be inordinately difficult), and we would need to switch to either Python (or
Jython) or a purpose-written Java generator to do the job.
c. It is not clear from the interface what field is valid in what version. There has been some discussion on name-mangling to solve this, but
the general dislike for name-mangling in general and the complexities it brings seem to outweigh any advantages...

Qpid Java FAQ

Purpose

Here are a list of commonly asked questions and answers. Click on the the bolded questions for the answer to unfold. If you have any
questions which are not on this list, please email our qpid-user list.

Contents

Purpose
Contents
Getting Started

What is Qpid
Why am I getting a ConfigurationException at broker startup

InvocationTargetException
Cannot locate configuration source null/virtualhosts.xml

How do I run the Qpid broker
How can I create a connection using a URL
How do I represent a JMS Destination string with QPID

Queues
Topics

How do I connect to the broker using JNDI
I'm using Spring and Weblogic - can you help me with the configuration for moving over to Qpid
How do I configure the logging level for Qpid
How can I configure my application to use Qpid client logging
How can I configure the broker
What ports does the broker use?
How can I change the port the broker uses at runtime
What command line options can I pass into the qpid-server script
Command Line Options
How do I authenticate with the broker and What user id & password should I use
How do I create queues that will always be instantiated at broker startup
How do I create queues at runtime
How do I tune the broker
Where do undeliverable messages end up
Can I configure the name of the Qpid broker log file at runtime

Setting a prefix or suffix
Including the PID

My client application appears to have hung
How do I contact the Qpid team
How can I change a user's password while the broker is up
How do I know if there is a consumer for a message I am going to send
How do I use an InVM Broker for my own tests
How can I inspect the contents of my MessageStore
Why are my transient messages slower than expected
Why does my producer fill up the broker with messages
The broker keeps throwing an OutOfMemory exception
Why am I getting a broker side exception when I try to publish to a queue or a topic

Why is there a lot of AnonymousIoService threads
"unable to certify the provided SSL certificate using the current SSL trust store" when connecting the Management Console
to the broker.
Client keeps throwing 'Server did not respond in a timely fashion' [error code 408: Request Timeout].
Can a use TCP_KEEPALIVE or AMQP heartbeating to keep my connection open

Getting Started

Can you help me get started with Qpid?
How do I install the Qpid broker ?
Where can I find more information?
Qpid JMX Management Console FAQ

What is Qpid

The java implementation of Qpid is a pure Java message broker that implements the AMQP protocol. Essentially, Qpid is a robust,
performant middleware component that can handle your messaging traffic.

It currently supports the following features:

High performance header-based routing for messages
All features required by the JMS 1.1 specification. Qpid passes all tests in the Sun JMS compliance test suite
Transaction support
Persistence using the high performance Berkeley DB Java Edition. The persistence layer is also pluggable should an alternative
implementation be required. The BDB store is available from the page3rd Party Libraries
Pluggable security using SASL. Any Java SASL provider can be used
Management using JMX and a custom management console built using Eclipse RCP
Naturally, interoperability with other clients including the Qpid .NET, Python, Ruby and C++ implementations

Why am I getting a ConfigurationException at broker startup

InvocationTargetException

If you get a java.lang.reflect.InvocationTargetException on startup, wrapped as ConfigurationException like this:

Error configuring message broker: org.apache.commons.configuration.ConfigurationException:
java.lang.reflect.InvocationTargetException
2008-09-26 15:14:56,529 ERROR [main] server.Main (Main.java:206) - Error configuring message
broker: org.apache.commons.configuration.ConfigurationException:
java.lang.reflect.InvocationTargetException
org.apache.commons.configuration.ConfigurationException:
java.lang.reflect.InvocationTargetException
at
org.apache.qpid.server.security.auth.database.ConfigurationFilePrincipalDatabaseManager.initialisePrincipalDatabase(ConfigurationFilePrincipalDatabaseManager.java:158)

at
org.apache.qpid.server.security.auth.database.ConfigurationFilePrincipalDatabaseManager.initialisePrincipalDatabases(ConfigurationFilePrincipalDatabaseManager.java:87)

at
org.apache.qpid.server.security.auth.database.ConfigurationFilePrincipalDatabaseManager.<init>(ConfigurationFilePrincipalDatabaseManager.java:56)

at
org.apache.qpid.server.registry.ConfigurationFileApplicationRegistry.initialise(ConfigurationFileApplicationRegistry.java:117)

at org.apache.qpid.server.registry.ApplicationRegistry.initialise(ApplicationRegistry.java:79)
at org.apache.qpid.server.registry.ApplicationRegistry.initialise(ApplicationRegistry.java:67)
at org.apache.qpid.server.Main.startup(Main.java:260)
at org.apache.qpid.server.Main.execute(Main.java:196)
at org.apache.qpid.server.Main.<init>(Main.java:96)
at org.apache.qpid.server.Main.main(Main.java:454)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:90)
Caused by: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at
org.apache.qpid.server.security.auth.database.ConfigurationFilePrincipalDatabaseManager.initialisePrincipalDatabase(ConfigurationFilePrincipalDatabaseManager.java:148)

.. then it means you have a missing password file.

You need to create a password file for your deployment and update your config.xml to reflect the location of the password file for your
instance.

The config.xml can be a little confusing in terms of element names and file names for passwords.

To do this, you need to edit the passwordDir element for the broker, which may have a comment to that effect:

<passwordDir><!-- Change to the location --></passwordDir>

The file should be named passwd by default but if you want to you can change this by editing this element:

<value>${passwordDir}/passwd</value>

Cannot locate configuration source null/virtualhosts.xml

If you get this message, wrapped inside a ConfigurationException then you've come across a known issue, see JIRA QPID-431

The work around is to use a qualified path as the parameter value for your -c option, rather than (as you migth be) starting the broker from
your installed etc directory. Even going up one level and using a path relative to your £QPID_HOME directory would sort this e.g qpid-server
-c ./etc/myconfig.xml

How do I run the Qpid broker

The broker comes with a script for unix/linux/cygwin called qpid-server, which can be found in the bin directory of the installed package. This
command can be executed without any paramters and will then use the default configuration file provided on install.

For the Windows OS, please use qpid-server.bat.

There's no need to set your classpath for QPID as the scripts take care of that by adding jar's with classpath defining manifest files to your
classpath.

For more information on running the broker please see our page.Getting Started

How can I create a connection using a URL

Please see the documentation.Connection URL Format

How do I represent a JMS Destination string with QPID

Queues

A queue can be created in QPID using the following URL format.

direct://amq.direct/<Destination>/<Queue Name>

For example: direct://amq.direct/<Destination>/simpleQueue

Queue names may consist of any mixture of digits, letters, and underscores.

The is described in more detail on it's own page.BindingURLFormat

Topics

A topic can be created in QPID using the following URL format.

topic://amq.topic/<Topic Subscription>/

The topic subscription may only contain the letters A-Z and a-z and digits 0-9.

The topic subscription is formed from a series of words that may only contain the letters A-Z and a-z and digits 0-9.
The words are delimited by dots. Each dot represents a new level.

For example: stocks.nyse.ibm

Wildcards can be used on subscription with the following meaning.

match a single level
 match zero or more levels#

For example:
With two clients
1 - stocks.*.ibm
2 - stocks.#.ibm

https://issues.apache.org/jira/browse/QPID-431

Publishing will be received by both clients but and will only be received by clientstocks.nyse.ibm stocks.ibm stocks.world.us.ibm
2.

The topic currently does not support wild cards.

How do I connect to the broker using JNDI

see How to Use JNDI

I'm using Spring and Weblogic - can you help me with the configuration for moving over to Qpid

Here is a donated Spring configuration file which shows the config for Qpid side by side with Weblogic. HtH !appContext.zip

How do I configure the logging level for Qpid

The system property

amqj.logging.level

can be used to configure the logging level.
For the broker, you can use the environment variable AMQJ_LOGGING_LEVEL which is picked up by the qpid-run script (called by
qpid-server to start the broker) at runtime.

For client code that you've written, simply pass in a system property to your command line to set it to the level you'd like i.e.

-Damqj.logging.level=INFO

The log level for the broker defaults to INFO if the env variable is not set, but you may find that your log4j properties affect this. Setting the
property noted above should address this.

How can I configure my application to use Qpid client logging

If you don't already have a logging implementation in your classpath you should add slf4-log4j12-1.4.0.jar and log4j-1.2.12.jar.

How can I configure the broker

The broker configuration is contained in the <installed-dir>/etc/config.xml file. You can copy and edit this file and then specify your own
configuration file as a parameter to the startup script using the -c flag i.e. qpid-server -c <your_config_file's_path>

For more detailed information on configuration, please see Qpid Design - Configuration

What ports does the broker use?

The broker defaults to use port 5672 at startup for AMQP traffic.
If the management interface is enabled it starts on port 8999 by default.

The JMX management interface actually requires 2 ports to operate, the second of which is indicated to the client application during
connection initiation to the main (default: 8999) port. Previously this second port has been chosen at random during broker startup, however
since Qpid 0.5 this has been fixed to a port 100 higher than the main port(ie Default:9099) in order to ease firewall navigation.

How can I change the port the broker uses at runtime

The broker defaults to use port 5672 at startup for AMQP traffic.
The broker also uses port 8999 for the JMX Management interface.

To change the AMQP traffic port use the -p flag at startup. To change the management port use -m
i.e. qpid-server -p <port_number_to_use> -m <port_number_to_use>

Use this to get round any issues on your host server with port 5672/8999 being in use/unavailable.

For additional details on what ports the broker uses see FAQ entry.this
For more detailed information on configuration, please see Qpid Design - Configuration

What command line options can I pass into the qpid-server script

The following command line options are available:

Command Line Options

The following options are available:

Option Long Option Description

b bind Bind to the specified address overriding any value in the config file

http://cwiki.apache.org/confluence/download/attachments/28400/appContext.zip?version=1&modificationDate=1161255247000

c config Use the given configuration file

h help Prints list of options

l logconfig Use the specified log4j.xml file rather than that in the etc directory

m mport Specify port to listen on for the JMX Management. Overrides value in config file

p port Specify port to listen on. Overrides value in config file

v version Print version information and exit

w logwatch Specify interval for checking for logging config changes. Zero means no checking

How do I authenticate with the broker and What user id & password should I use

You should login as user guest with password guest

How do I create queues that will always be instantiated at broker startup

You can configure queues which will be created at broker startup by tailoring a copy of the virtualhosts.xml file provided in the installed
qpid-version/etc directory.

So, if you're using a queue called 'devqueue' you can ensure that it is created at startup by using an entry something like this:

<virtualhosts>
 <default>test</default>
 <virtualhost>
 <name>test</name>
 <test>
 <queue>
 <name>devqueue</name>
 <devqueue>
 <exchange>amq.direct</exchange>
 <maximumQueueDepth>4235264</maximumQueueDepth> <!-- 4Mb -->
 <maximumMessageSize>2117632</maximumMessageSize> <!-- 2Mb -->
 <maximumMessageAge>600000</maximumMessageAge> <!-- 10 mins -->
 </devqueue>
 </queue>
 </test>
 </virtualhost>
</virtualhosts>

Note that the name (in thie example above the name is 'test') element should match the virtualhost that you're using to create connections to
the broker. This is effectively a namespace used to prevent queue name clashes etc. You can also see that we've set the 'test' virtual host to
be the default for any connections which do not specify a virtual host (in the <default> tag).

You can amend the config.xml to point at a different virtualhosts.xml file by editing the <virtualhosts/> element.

So, for example, you could tell the broker to use a file in your home directory by creating a new config.xml file with the following entry:

<virtualhosts>/home/myhomedir/virtualhosts.xml</virtualhosts>

You can then pass this amended config.xml into the broker at startup using the -c flag i.e.
qpid-server -c <path>/config.xml

How do I create queues at runtime

Queues can be dynamically created at runtime by creating a consumer for them. After they have been created and bound (which happens
automatically when a JMS Consumer is created) a publisher can send messages to them.

How do I tune the broker

There are a number of tuning options available, please see the page for more information.How to Tune M3 Java Broker Performance

Where do undeliverable messages end up

At present, messages with an invalid routing key will be returned to the sender. If you register an exception listener for your publisher (easiest
to do by making your publisher implement the ExceptionListener interface and coding the onException method) you'll see that you end up in
onException in this case. You can expect to be catching a subclass of org.apache.qpid.AMQUndeliveredException.

Can I configure the name of the Qpid broker log file at runtime

If you simply start the Qpid broker using the default configuration, then the log file is written to $QPID_WORK/log/qpid.log

This is not ideal if you want to run several instances from one install, or acrhive logs to a shared drive from several hosts.

To make life easier, there are two optional ways to configure the naming convention used for the broker log.

Setting a prefix or suffix

Users should set the following environment variables before running qpid-server:

QPID_LOG_PREFIX - will prefix the log file name with the specified value e.g. if you set this value to be the name of your host (for example)
it could look something like host123qpid.log

QPID_LOG_SUFFIX - will suffix the file name with the specified value e.g. if you set this value to be the name of your application (for
example) if could look something like qpidMyApp.log

Including the PID

Setting either of these variables to the special value PID will introduce the process id of the java process into the file name as a prefix or
suffix as specified**

cloak: Missing opening cloak.

My client application appears to have hung

The client code currently has various timeouts scattered throughout the code. These can cause your client to appear like it has hung when it
is actually waiting for the timeout ot compelete. One example is when the broker becomes non-responsive, the client code has a hard coded
2 minute timeout that it will wait when closing a connection. These timeouts need to be consolidated and exposed. see QPID-429

How do I contact the Qpid team

For general questions, please subscribe to the users@qpid.apache.org mailing list ().archive

For development questions, please subscribe to the dev@qpid.apache.org mailing list ().archive

More details on these lists are available on our page.Mailing Lists

How can I change a user's password while the broker is up

You can do this via the . To do this simply log in to the management console as an admin user (you need toQpid JMX Management Console
have created an admin account in the jmxremote.access file first) and then select the 'UserManagement' mbean. Select the user in the table
and click the Set Password button. Alternatively, update the password file and use the management console to reload the file with the button
at the bottom of the 'UserManagement' view. In both cases, this will take effect when the user next logs in i.e. will not cause them to be
disconnected if they are already connected.

For more information on the Management Console please see our Qpid JMX Management Console User Guide

How do I know if there is a consumer for a message I am going to send

Knowing that there is a consumer for a message is quite tricky. That said using the qpid.jms.Session#createProducer with immediate and
mandatory set to true will get you part of the way there.

If you are publishing to a well known queue then immediate will let you know if there is any consumer able to pre-fetch that message at the
time you send it. If not it will be returned to you on your connection listener.

If you are sending to a queue that the consumer creates then the mandatory flag will let you know if they have not yet created that queue.

These flags will not be able to tell you if the consuming application has received the message and is able to process it.

How do I use an InVM Broker for my own tests

I would take a look at the testPassiveTTL in TimeToLiveTest

The setUp and tearDown methods show how to correctly start up a broker for InVM testing. If you write your tests using a file for the JNDI
you can then very easily swap between running your tests InVM and against a real broker.

See our on how to confgure itJNDI How to page

Basically though you just need to set two System Properites:

java.naming.factory.initial = org.apache.qpid.jndi.PropertiesFileInitialContextFactory
java.naming.provider.url = <your JNDI file>

and call getInitialContext() in your code.

You will of course need to have the broker libraries on your class path for this to run.

How can I inspect the contents of my MessageStore

There are two possibilities here:

1) The management console can be used to interogate an active broker and browse the contents of a queue.See the Qpid JMX Management
 page for further details.Console

https://issues.apache.org/jira/browse/QPID-429
http://mail-archives.apache.org/mod_mbox/qpid-users/
http://mail-archives.apache.org/mod_mbox/qpid-dev/
https://svn.apache.org/viewvc/incubator/qpid/trunk/qpid/java/systests/src/main/java/org/apache/qpid/server/queue/TimeToLiveTest.java?revision=683950&view=markup

2) The can be used to inspect the contents of a persistent message store. Note: this can currently only be used when theMessageStore Tool
broker is offline.

Why are my transient messages slower than expected

You should check that you aren't sending persistent messages, this is the default. If you want to send transient messages you must explicitly
set this option when instantiating your MessageProducer or on the send() method.

Why does my producer fill up the broker with messages

The Java broker does not currently implement producer flow control. Publishes are currently asynchronous, so there is no ability to rate limit
this automatically. While this is something which will be addressed in the future, it is currently up to applications to ensure that they do not
publish faster than the messages are being consumed for signifcant periods of time.

The broker keeps throwing an OutOfMemory exception

The broker can no longer store any more messages in memory. This is particular evident if you are using the MemoryMessageStore. To
alleviate this issue you should ensure that your clients are consuming all the messages from the broker.

You may also want to increase the memory allowance to the broker though this will only delay the exception if you are publishing messages
faster than you are consuming. See for details of changing the memory settings.Java Environment Variables

Why am I getting a broker side exception when I try to publish to a queue or a topic

If you get a stack trace like this when you try to publish, then you may have typo'd the exchange type in your queue or topic declaration.
Open your virtualhosts.xml and check that the

<exchange>amq.direct</exchange>

is set to amq.direct for the <queue/> element you're trying to publish to.

2009-01-12 15:26:27,957 ERROR [pool-11-thread-2] protocol.AMQMinaProtocolSession
(AMQMinaProtocolSession.java:365) - Unexpected exception while processing frame. Closing
connection.
java.lang.NullPointerException
 at
org.apache.qpid.server.security.access.PrincipalPermissions.authorise(PrincipalPermissions.java:398)

 at org.apache.qpid.server.security.access.plugins.SimpleXML.authorise(SimpleXML.java:302)
 at
org.apache.qpid.server.handler.QueueBindHandler.methodReceived(QueueBindHandler.java:111)
 at
org.apache.qpid.server.handler.ServerMethodDispatcherImpl.dispatchQueueBind(ServerMethodDispatcherImpl.java:498)

 at org.apache.qpid.framing.amqp_8_0.QueueBindBodyImpl.execute(QueueBindBodyImpl.java:167)
 at org.apache.qpid.server.state.AMQStateManager.methodReceived(AMQStateManager.java:204)
 at
org.apache.qpid.server.protocol.AMQMinaProtocolSession.methodFrameReceived(AMQMinaProtocolSession.java:295)

 at org.apache.qpid.framing.AMQMethodBodyImpl.handle(AMQMethodBodyImpl.java:93)
 at
org.apache.qpid.server.protocol.AMQMinaProtocolSession.frameReceived(AMQMinaProtocolSession.java:235)

 at
org.apache.qpid.server.protocol.AMQMinaProtocolSession.dataBlockReceived(AMQMinaProtocolSession.java:191)

 at
org.apache.qpid.server.protocol.AMQPFastProtocolHandler.messageReceived(AMQPFastProtocolHandler.java:244)

 at
org.apache.mina.common.support.AbstractIoFilterChain$TailFilter.messageReceived(AbstractIoFilterChain.java:703)

 at
org.apache.mina.common.support.AbstractIoFilterChain.callNextMessageReceived(AbstractIoFilterChain.java:362)

 at
org.apache.mina.common.support.AbstractIoFilterChain.access$1200(AbstractIoFilterChain.java:54)
 at
org.apache.mina.common.support.AbstractIoFilterChain$EntryImpl$1.messageReceived(AbstractIoFilterChain.java:800)

 at org.apache.qpid.pool.PoolingFilter.messageReceived(PoolingFilter.java:371)
 at
org.apache.mina.filter.ReferenceCountingIoFilter.messageReceived(ReferenceCountingIoFilter.java:96)

 at
org.apache.mina.common.support.AbstractIoFilterChain.callNextMessageReceived(AbstractIoFilterChain.java:362)

 at
org.apache.mina.common.support.AbstractIoFilterChain.access$1200(AbstractIoFilterChain.java:54)
 at
org.apache.mina.common.support.AbstractIoFilterChain$EntryImpl$1.messageReceived(AbstractIoFilterChain.java:800)

 at
org.apache.mina.filter.codec.support.SimpleProtocolDecoderOutput.flush(SimpleProtocolDecoderOutput.java:60)

 at
org.apache.mina.filter.codec.QpidProtocolCodecFilter.messageReceived(QpidProtocolCodecFilter.java:174)

 at
org.apache.mina.common.support.AbstractIoFilterChain.callNextMessageReceived(AbstractIoFilterChain.java:362)

 at
org.apache.mina.common.support.AbstractIoFilterChain.access$1200(AbstractIoFilterChain.java:54)
 at
org.apache.mina.common.support.AbstractIoFilterChain$EntryImpl$1.messageReceived(AbstractIoFilterChain.java:800)

 at org.apache.qpid.pool.Event$ReceivedEvent.process(Event.java:86)
 at org.apache.qpid.pool.Job.processAll(Job.java:110)
 at org.apache.qpid.pool.Job.run(Job.java:149)
 at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:885)
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907)
 at java.lang.Thread.run(Thread.java:619)

Why is there a lot of AnonymousIoService threads

These threads are part of the thread pool used by Mina to process the socket. In the future we may provide tuning guidelines but at this point
we have seen no performance implications from the current configuration. As the threads are part of a pool they should remain inactive until
required.

"unable to certify the provided SSL certificate using the current SSL trust store" when connecting the Management
Console to the broker.

You have not configured the console's SSL trust store properly, see for more details.Management Console Security

Client keeps throwing 'Server did not respond in a timely fashion' [error code 408: Request Timeout].

Certain operations wait for a response from the Server. One such operations is commit. If the server does not respond to the commit request
within a set time a Request Timeout [error code: 408] exception is thrown (Server did not respond in a timely fashion). This is to ensure that a
server that has hung does not cause the client process to be come unresponsive.

However, it is possible that the server just needs a long time to process a give request. For example, sending a large persistent message
when using a persistent store will take some time to a) Transfer accross the network and b) to be fully written to disk.

These situations require that the default timeout value be increased. A cilent 'amqj.default_syncwrite_timeout' can be setSystem Properties
on the client to increase the wait time. The default in 0.5 is 30000 (30s).

Can a use TCP_KEEPALIVE or AMQP heartbeating to keep my connection open

See Configure Broker and Client Heartbeating

Qpid Java How To

Collection of How Tos

Add New Users
Configure ACLs
Configure Broker and Client Heartbeating
Configure Java Qpid to use a SSL connection.
Configure Log4j CompositeRolling Appender
Configure Operational Status Logging
Configure the Broker via config.xml
Configure the Virtual Hosts via virtualhosts.xml
Debug using log4j
Firewall Configuration
How to Tune M3 Java Broker Performance
How to Use JNDI
Interact with a JMX MBean
Qpid Java Build How To
Split configuration files
Tune Broker and Client Memory Usage
Use Last Value Queues (LVQ)
Use Priority Queues
Use Producer Flow Control

Add New Users
The Qpid Java Broker has a single reference source () that defines all the users in the system.PrincipalDatabase

To add a new user to the broker the password file must be updated. The details about adding entries and when these updates take effect are
dependent on the file format each of which are described below.

Available Password file formats

There are currently two different file formats available for use depending on the PrincipalDatabase that is desired. In all cases the clients
need not be aware of the type of PrincipalDatabase in use they only need support the SASL mechanisms they provide.

Plain
Base64MD5

Plain

The plain file has the following format:

todo://api/PrincipalDatabase

1.

2.

Plain password authentication file.
default name : passwd
Format <username>:<password>
#e.g.
martin:password

As the contents of the file are plain text and the password is taken to be everything to the right of the ':'(colon). The password, therefore,
cannot contain a ':' colon, but this can be used to delimit the password.

Lines starting with a '#' are treated as comments.

Where is the password file for my broker ?

The location of the password file in use for your broker is as configured in your config.xml file.

<principal-databases>
 <principal-database>
 passwordfile<name> </name>
 <class>
org.apache.qpid.server.security.auth.database.PlainPasswordFilePrincipalDatabase</class>
 <attributes>
 <attribute>
 passwordFile<name> </name>
 ${conf}/passwd<value> </value>
 </attribute>
 </attributes>
 </principal-database>
 </principal-databases>

So in the example config.xml file this password file lives in the directory specified as the conf directory (at the top of your config.xml file).

If you wish to use Base64 encoding for your password file, then in the <class> element above you should specify
org.apache.qpid.server.security.auth.database.Base64MD5PasswordFilePrincipalDatabase

The default is:

 ${prefix}/etc<conf> </conf>

Base64MD5 Password File Format

This format can be used to ensure that SAs cannot read the plain text password values from your password file on disk.

The Base64MD5 file uses the following format:

Base64MD5 password authentication file
default name : qpid.passwd
Format <username>:<Base64 Encoded MD5 hash of the users password>
#e.g.
martin:X03MO1qnZdYdgyfeuILPmQ==

As with the Plain format the line is delimited by a ':'(colon). The password field contains the MD5 Hash of the users password encoded in
Base64.

This file is read on broker start-up and is not re-read.

How can I update a Base64MD5 password file ?

To update the file there are two options:

Edit the file by hand using the tool that will generate the required lines. The output from the tool is the text that needs toqpid-passwd
be copied in to your active password file. This tool is located in the broker bin directory.
Eventually it is planned for this tool to emulate the functionality of for qpid passwd files.htpasswd

 For the changes to be seen by the broker you must either restart the broker or reload the data with the management toolsNOTE:
(see)Qpid JMX Management Console User Guide
Use the management tools to create a new user. The changes will be made by the broker to the password file and the new user will
be immediately available to the system (see).Qpid JMX Management Console User Guide

Dynamic changes to password files.

http://httpd.apache.org/docs/2.0/programs/htpasswd.html

1.
2.

The Plain password file and the Base64MD5 format file are both only read once on start up.

To make changes dynamically there are two options, both require administrator access via the Management Console (see Qpid JMX
)Management Console User Guide

You can replace the file and use the console to reload its contents.
The management console provides an interface to create, delete and amend the users. These changes are written back to the active
password file.

How password files and PrincipalDatabases relate to authentication mechanisms

For each type of password file a PrincipalDatabase exists that parses the contents. These PrincipalDatabases load various SASL mechanism
based on their supportability. e.g. the Base64MD5 file format can't support Plain authentication as the plain password is not available. Any
client connecting need only be concerned about the SASL module they support and not the type of PrincipalDatabase. So I client that
understands CRAM-MD5 will work correctly with a Plain and Base64MD5 PrincipalDatabase.

FileFormat/PrincipalDatabase SASL

Plain AMQPLAIN PLAIN CRAM-MD5

Base64MD5 CRAM-MD5 CRAM-MD5-HASHED

For details of SASL support see Qpid Interoperability Documentation

Configure ACLs

Configure ACLs

Specification

Version 1
Version 2

C++ Broker

The C++ broker supports of the ACLsVersion 2

Java Broker

Configuration Guide for Version 1 ACLs
Support for Version 2 specification is in progress.

Java XML ACLs

Java XML ACLs

This page documents version 1 of Qpid ACLs that was implemented only in the Java broker.

Java XML ACLs
Specification

XML Format
User Guide (SimpleXML)

Permission Limitations
Enabling XML ACLs
ACL Configuration

Background
ACCESS_CONTROL_LIST Section
PUBLISH Section
CONSUME Section
CREATE Section
ACCESS Section (since Qpid 0.6)

Durable topic subscriptions
Known Issues

Granting temporary queue and named queue consume rights

Specification

The XML ACL focus was to take to business style focus to access rather than the individual AMQP method level.
As a result we have the following permissions:

CONSUME
PUBLISH
CREATE
ACCESS

BIND
UNBIND
DELETE
PURGE

XML Format

DTD TBC

User Guide (SimpleXML)

The XML ACLs have been implemented as per the design, . Currently this class is only configurable via the main[ACLPlugin] SimpleXML
broker configuration file, this means that all the ACL configuration must be included in the main configuration file.

Permission Limitations

Only the first four permissions, CONSUME, PUBLISH, CREATE and ACCESS (since Qpid 0.6) have been implemented. An oversight in the
original design resulted in the inability to specify negative permissions. As a result permission can only be granted to users and not taken
away.

Enabling XML ACLs

To enable the ACLs the security access class in the main broker configuration needs to be updated as follows:

...
<security>
 <access>
 <class>org.apache.qpid.server.security.access.plugins.SimpleXML</class>
 </access>
...

This tells the broker that it should use the class to perform access control. When the broker starts up the class willSimpleXML SimpleXML
look in the the subsection for each virtualhost for the required ACLs.<security>

ACL Configuration

Background

The configuration is described in reference to an example configuration used in a request/response application. In this example the 'client'
creates a temporary queue and sends a request to a known queue which the 'server' application is processing. The 'server' then sends a
response to the specified temporary queue which the 'client' can read. The ACLs have been configured such that the 'server' cannot create
additional queues other than it's process queue and the 'client' is only allowed to create temporary queues.

ACCESS_CONTROL_LIST Section

The ACL configuration lives inside the section, inside the subsection of each virtualhost configuration.<access_control_list> <security>

...
<security>
 <access_control_list>
 <!-- This section grants virtualhost-level access to the specified users, giving
 giving them full permissions to all artifacts in the containing virtualhost -->
 <access>...</access>

 <!-- This section grants publish rights to an exchange + routing key pair -->
 <publish>...</publish>

 <!-- This section grants users the ability to consume from the broker -->
 <consume>...</consume>

 <!-- This section grants clients the ability to create queues and exchanges -->
 <create>...</create>
 </access_control_list>
...

This gives the basic structure for the configuration the contents of each section naturally depend on what permissions are needed.

PUBLISH Section

This section allows the granting of permission for to send messages. Controls have been implemented to allow the publication ofPublishers
messages limited by Exchange to:

specified routing keys.
partial matching routing keys. Using to match the end of a routing key.*

Here the 'client' users is only give rights to PUBLISH messages using the key 'example.RequestQueue'.
The 'server' user is allowed to publish to 'tmp_*' and 'TempQueue*' keys. The reason there are two values here is due to changes in the
naming of temporary queues during the example's development. However, what occurs here is that the 'server' is granted permission to
publish messages to any routing key that begins with 'tmp_' or 'TempQueue', the '*' matching is only completed at the end of the key so
entries such as 'Special*Key' are not allowed.

Whilst not shown here multiple values can be specified in the section.<user> <users>

Remember that the value in the Java broker is the same as the queue name (correct at release of M4) for the amq.directrouting_key
exchange. For topic exchanges the is the topic name that a uses to send messages.routing_key Publisher

<publish>
 <exchanges>
 <exchange>
 <!-- This is the name of the exchange to limit publication to. -->
 <name>amq.direct</name>
 <routing_keys>

 <!-- Allow clients to publish requests -->
 <routing_key>
 <value>example.RequestQueue</value>
 <users>
 <user>client</user>
 </users>
 </routing_key>

 <!-- Allow the processor to respond to a client on their Temporary Topic -->
 <routing_key>
 <value>tmp_*</value>
 <users>
 <user>server</user>
 </users>
 </routing_key>
 <routing_key>
 <value>TempQueue*</value>
 <users>
 <user>server</user>
 </users>
 </routing_key>
 </routing_keys>

 </exchange>
 </exchanges>
</publish>

CONSUME Section

This section allows the granting of permissions to . There are two formats the entry can take:Consumers <queue>

Users can be granted permission to a named queue by the use of the field.<name>
Users can be granted permission to temporary queues with the addition of the key.ALL <temporary/>

These two formats can be combined to allow the consumption from a named queue and temporary queues. However, care must be taken if
using multiple entries as access to temporary queues will be defined by the last definition. <queue> <queue> This is a known .issue

<!-- This section grants users the ability to consume from the broker -->
<consume>
 <queues>

 <!-- Allow the clients to consume from their temporary queues-->
 <queue>
 <temporary/>
 <users>
 <user>client</user>
 </users>
 </queue>

 <!-- Only allow the server to consume from the Request Queue-->
 <queue>
 <name>example.RequestQueue</name>
 <users>
 <user>server</user>
 </users>
 </queue>

 </queues>
</consume>

CREATE Section

This section allows the granting of permissions to create new queues as used by . When a consumer is created it makes aConsumers
request to create the queue for the consumer. This means that all your consumers must also be allowed to create the queue they are going
to consume from or they will fail to create.

The section contains a number of fields that can be present:<create>

<temporary/>
<name>
<users>
<exchanges>

The first three behave as in limiting the list of users to a named queue or all temporary queues. The additional <consume> <exchanges>
element contains a number of entries, this entry contains a list of users that are limited to using only that exchange for the given<exchange>
queue. This is used in the example below to limit the user 'client' to only be able to create temporary queues on the 'amq.direct' exchange.

NOTE: This section also suffers from the same issue as with regard to the keyword. See the known for more<consume> <temporary/> issue
details.

<!-- This section grants clients the ability to create queues and exchanges -->
<create>
 <queues>
 <!-- Allow clients to create temporary queues-->
 <queue>
 <temporary/>
 <exchanges>
 <exchange>
 <name>amq.direct</name>
 <users>
 <user>client</user>
 </users>
 </exchange>
 </exchanges>
 </queue>
 <!-- Allow the server to create the Request Queue-->
 <queue>
 <name>example.RequestQueue</name>
 <users>
 <user>server</user>
 </users>
 </queue>

 </queues>
</create>

ACCESS Section (since Qpid 0.6)

This section allows granting virtualhost-level access permissions to specific users, giving them full permissions to all artifacts within the
virtualhost irrespective of any rights assigned in the CREATE, CONSUME, and PUBLISH sections outlined above. This allows granting only
certain users full access to certain virtualhosts.

The section contains a subsection, with a list of indivual elements:<access> <users> <user>

<!-- This section grants virtualhost-level access to the specified users, giving
 giving them full permissions to all artifacts in the containing virtualhost -->
<access>
 <users>
 <user>admin</user>
 </users>
</access>

Durable topic subscriptions

Qpid implements durable topic subscriptions as a persistent queue bound to the topic exchange. This queue is named
<clientid>:<subscriptionname>. To allow a JMS durable topic subscription it's necessary to allow queue creation and consumption for the
user. eg:

<consume>
 <queues>
 <queue>
 <name>clientid:subscriptionName</name>
 <users>
 <user>testuser</user>
 </users>
 </queue>
 </queues>
</consume>

<create>
 <queues>
 <queue>
 <name>clientid:subscriptionName</name>
 <users>
 <user>testuser</user>
 </users>
 </queue>
 </queues>
</create>

Known Issues

Granting temporary queue and named queue consume rights

When defining a entry the existence of the key grants access to temporary queues. However, the lack of the key<queue> <temporary/>
denies access to temporary queues. As a result if there are multiple entries the last entry will specify the value for access to<queue>
temporary queues. i.e. In this example it is expected that 'client' can consume from temporary queues and named queue 'exampleQueue2'.
Infact what will happen is that the user will only have access to 'exampleQueue2'.

<queue>
 <temporary/>
 <users>
 <user>client</user>
 </users>
 </queue>
 <queue>
 <name>exampleQueue2</name>
 <users>
 <user>client</user>
 </users>
 </queue>

To work around this issue the correct definition would be:

<queue>
 <name>exampleQueue2</name>
 <users>
 <user>client</user>
 </users>
 </queue>

 <queue>
 <temporary/>
 <users>
 <user>client</user>
 </users>
 </queue>

Configure Broker and Client Heartbeating

AMQP Heartbeating

Heartbeating at the AMQP protocol level works by sending a small "heartbeat" frame whenever the (half-)connection is idle... That it each
peer is responsible for sending a heartbeat frame if it has not sent other data for a given period of time.

Qpid allows for the heartbeat interval to be set on a per client basis, and set to broker configured default if a client does not explicitly set the
heartbeat interval.

The successful receipt of a heartbeat message from a broker/client does not imply that it is able to send or receive messages - it is merely
indicative that the TCP connection is alive and the broker/client is minimally operational. Higher level application heartbeats are required to
test the full functional operability of the client/broker.

To set the heartbeat interval on the client, the system property "amqj.heartbeat.delay" needs to be set to an integer number representing the
desired interval in seconds (for example by passing -Damqj.heartbeat.delay=30 on the JVM command-line to get a 30 second interval).

If the heartbeat interval is not explicitly set on the client then the default interval from the broker is taken, this is set in the config.xml file, e.g.
in the default config:

<heartbeat>
<delay>0</delay>
...
</heartbeat>

A <delay> of zero means "no heartbeating".

The client or broker will detect a connectivity problem when it has received no heartbeat, or other data, from its peer for delay * timeoutFactor
seconds. The timeoutFactor is set separately for client and broker - the client does not default to using the broker value if it is not set. The
timeoutFactor is set on the client by setting the system property "amqj.heartbeat.timeoutFactor" to a valid floating point number. The client
and broker default timeoutFactors are (independently) set at 2.0.

If heartbeating is activated, and a client does not receive a heartbeat from the server for delay * (client)timeoutFactor seconds then it closes
the TCP connection and activates the failover logic.

If heartbeating is activated, and a broker does not receive a heartbeat from the server for delay * (server)timeoutFactor seconds then it logs
this event but does not take any further action (i.e. the connection is not closed, and processing of incoming data/sending outgoing data still
occurs.

TCP SO_KEEPALIVE

Neither the client nor the broker (to version 0.5) set SO_KEEPALIVE on the TCP connection, nor is there are way to request them to do so
using configuration.

Configure Java Qpid to use a SSL connection.

Using SSL connection with Qpid Java.

This section will show how to use SSL to enable secure connections between a Java client and broker.

Setup

Broker Setup

The broker configuration file (config.xml) needs to be updated to include the SSL keystore location details.

Additions required to Connector Section

<ssl>
 <enabled> </enabled>true
 <sslOnly> </sslOnly>true
 <keystorePath>/path/to/keystore.ks</keystorePath>
 <keystorePassword>keystorepass</keystorePassword>
</ssl>

The sslOnly option is included here for completeness however this will disable the unencrypted port and leave only the SSL port listening for
connections.

Client Setup

The best place to start looking is class this is provided to the connection during creation however there is currently noSSLConfiguration
example that demonstrates its use.

Performing the connection.

Configure Log4j CompositeRolling Appender

How to configure the CompositeRolling log4j Appender

There are several sections of our default log4j file that will need your attention if you wish to fully use this Appender.

1 Enable the Appender

The default log4j.xml file uses the FileAppender, swapp this for the ArchivingFileAppender as follows:

<!-- Log all info events to file -->
 <root>
 <priority value="info"/>

 <appender-ref ref="ArchivingFileAppender"/>
 </root>

2 Configure the Appender

The Appender has a number of parameters that can be adjusted depending on what you are trying to achieve. For clarity lets take a quick
look at the complete default appender:

<appender name="ArchivingFileAppender" class="org.apache.log4j.QpidCompositeRollingAppender">
 <!-- Ensure that logs allways have the dateFormat set-->
 <param name="StaticLogFileName" value="false"/>
 <param name="File" value="${QPID_WORK}/log/${logprefix}qpid${logsuffix}.log"/>
 <param name="Append" value="false"/>
 <!-- Change the direction so newer files have bigger numbers -->
 <!-- So log.1 is written then log.2 etc This prevents a lot of file renames at log
rollover -->
 <param name="CountDirection" value="1"/>
 <!-- Use default 10MB -->
 <!--param name="MaxFileSize" value="100000"/-->
 <param name="DatePattern" value="'.'yyyy-MM-dd-HH-mm"/>
 <!-- Unlimited number of backups -->
 <param name="MaxSizeRollBackups" value="-1"/>
 <!-- Compress(gzip) the backup files-->
 <param name="CompressBackupFiles" value="true"/>
 <!-- Compress the backup files using a second thread -->
 <param name="CompressAsync" value="true"/>
 <!-- Start at zero numbered files-->
 <param name="ZeroBased" value="true"/>
 <!-- Backup Location -->
 <param name="backupFilesToPath" value="${QPID_WORK}/backup/log"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>
 </layout>
 </appender>

The appender configuration has three groups of parameter configuration.

The first group is for configuration of the file name. The default is to write a log file to QPID_WORK/log/qpid.log (Remembering you can use
the logprefix and logsuffix values to modify the file name, see).[Property Config]

<!-- Ensure that logs always have the dateFormat set-->
 <param name="StaticLogFileName" value="false"/>
 <param name="File" value="${QPID_WORK}/log/${logprefix}qpid${logsuffix}.log"/>
 <param name="Append" value="false"/>

The second section allows the specification of a Maximum File Size and a DatePattern that will be used to move on to the next file.

When MaxFileSize is reached a new log file will be created
The DataPattern is used to decide when to create a new log file, so here a new file will be created for every minute and every 10Meg of data.
So if 15MB of data is made every minute then there will be two log files created each minute. One at the start of the minute and a second
when the file hit 10MB. When the next minute arrives a new file will be made even though it only has 5MB of content. For a production
system it would be expected to be changed to something like 'yyyy-MM-dd' which would make a new log file each day and keep the files to a
max of 10MB.

The final MaxSizeRollBackups allows you to limit the amount of disk you are using by only keeping the last n backups.

<!-- Change the direction so newer files have bigger numbers -->
 <!-- So log.1 is written then log.2 etc This prevents a lot of file renames at log
rollover -->
 <param name="CountDirection" value="1"/>
 <!-- Use default 10MB -->
 <!--param name="MaxFileSize" value="100000"/-->
 <param name="DatePattern" value="'.'yyyy-MM-dd-HH-mm"/>
 <!-- Unlimited number of backups -->
 <param name="MaxSizeRollBackups" value="-1"/>

The final section allows the old log files to be compressed and copied to a new location.

<!-- Compress(gzip) the backup files-->
 <param name="CompressBackupFiles" value="true"/>
 <!-- Compress the backup files using a second thread -->
 <param name="CompressAsync" value="true"/>
 <!-- Start at zero numbered files-->
 <param name="ZeroBased" value="true"/>
 <!-- Backup Location -->
 <param name="backupFilesToPath" value="${QPID_WORK}/backup/log"/>

Configure Operational Status Logging

How to Configure Operational Status Logging

New in Apache Qpid 0.6 Java Broker is Operational Status Logging. The design overview can be found which details all the proposedhere
new logging features.

The Status Logging allows for a range of new log statements which provide details about the various state changes that occur within the
broker.

Enabling Status Updates

The new status updates are controlled by the following new configuration entry.

<broker>
 ...
 <status-updates>ON</status-updates>
 ...
</broker>

If the 'status-updates' entry is missing then Apache Qpid Java broker will default logging on. The value of 'on' is not case sensitive but any
other string will disable updates.

Broker Locale

The addition of the new logging format also provided the opportunity to allow localisation of the log messages. Currently we have only
completed the mapping US English, which therefore is the default.

As the broker starts up a number of standard messages are logged. These messages will be logged in the VM's default locale, if a mapping
is available. Once the broker configuration file is read then any locale specified in the configuration file will enabled and adjust the future log
statements.

<broker>
 ...
 <advanced>
 ...
 <locale>en_US</locale>
 </advanced>
 ...
</broker>

New Log Messages

There are a number of new log messages generated when status logging is enabled they are broken down in to 10 categories. Each of the
messages are detailed below in the Section.Message

Log Format

Currently the messages are logged as part of the default log4j configuration. The default broker log4j configuration will produce messages in
this format.

2009-08-13 12:40:35,192 INFO [qpid.message] MESSAGE [Broker] BRK-1002 : Starting : Listening on
TCP port 5672

The message is composed in the following way:

<date-time> INFO [qpid.message] MESSAGE <Actor> [<subject>] <MessageID> : <Message>

The display of the first three entries '<date-time> INFO [qpid.message]' depend on your particular log4j configuration however you will always
get the final message section:

MESSAGE <Actor> [<Subject>] <MessageID> : <Message>

Actor

There are a number of Actors that can perform loggging, each has a different format which gives additional information about the thread that
is performing the logging.

Broker

Actor format:

[Broker]

Used:
On broker startup and shutdown messages logged about the state of the broker will use the Broker actor.

Management

Actor format:

[mng:1(169.24.29.116)]

Used:
When an operation is performed via the JMX interfaces the connection Actor will provide details of the connection that performed the action.

Queue

Actor format:

[vh(/test)/qu(example.queue)]

Used:
This is used when the queue is processing the messages on the queue. Currently only SUB-1003 messages will be logged by this actor

Subscription

Actor format:

[sub:6(vh(test)/qu(example.queue))]

Used:
When a subscription is acting on the broker then it will log messages. Currently SUB-1003 suspend and SUB-1002 messages are the only
one that this actor will provide

Channel/Connection

Actor format:

[con:1(/127.0.0.1:59556)]
[con:1(guest@/127.0.0.1:59556/test)]
[con:1(guest@/127.0.0.1:59556/test)/ch:1]

Used:
There are a number of formats that this actor will present depending on the information available. On initial connection open only the remote
ip is available. After authentication the username and vhost are available.
Most logging will be of the latter type were the channel id is also present.

Subject

Binding

Subject format:

[vh(/test)/ex(direct/<<default>>)/qu(testQueue)/rk(testQueue)]

Channel\Connection

Subject format:

[con:1(/127.0.0.1:59556)]
[con:1(guest@/127.0.0.1:59556/test)]
[con:1(guest@/127.0.0.1:59556/test)/ch:1]

Exchange

Subject format:

[vh(/test)/ex(direct/testName)]

MessageStore

Subject format:

[vh(/localhost)/ms(DerbyMessageStore)]

Queue

Subject format:

[vh(/test)/qu(testQueue)]

Subscription

Subject format:

[sub:0(qu(testQueue))]

Message List

The definitive list of messages is the property file found . For readability the list as been reproduced here with additional detail about thehere
various parameterised values, shown like this '<value>', and optional values, shown like '[optional]'.

Broker

http://svn.apache.org/viewvc/qpid/trunk/qpid/java/broker/src/main/java/org/apache/qpid/server/logging/messages/LogMessages.properties?view=co

BRK-1001 : Startup : Version: <Version> Build: <Build>
BRK-1002 : Starting : Listening on <Transport: TCP|TCP/SSL> port <Port>
BRK-1003 : Shuting down : <Transport: TCP|TCP/SSL> port <Port>
BRK-1004 : Ready
BRK-1005 : Stopped
BRK-1006 : Using configuration : <path>
BRK-1007 : Using logging configuration : <path>

JMX Management

MNG-1001 : Startup
MNG-1002 : Starting : <service> : Listening on port <Port>
MNG-1003 : Shuting down : <service> : port <Port>
MNG-1004 : Ready
MNG-1005 : Stopped
MNG-1006 : Using SSL Keystore : <path>
MNG-1007 : Open : User <username>
MNG-1008 : Close

VirtualHost

VHT-1001 : Created : <name>
VHT-1002 : Closed

DerbyMessageStore/MemoryMessageStore

MST-1001 : Created : <full classname>
MST-1002 : Store location : <path>
MST-1003 : Closed
MST-1004 : Recovery Start [: <queue.name>]
MST-1005 : Recovered <count> messages for queue <queue.name>
MST-1006 : Recovery Complete [: <queue.name>]

Connections

CON-1001 : Open : Client ID <id> : Protocol Version : <version>
CON-1002 : Close

AMQChannel

CHN-1001 : Create : Prefetch <count>
CHN-1002 : Flow <value: Started|Stopped>
CHN-1003 : Close
CHN-1004 : Prefetch Size (bytes) <bytes> : Count <message count>

Queue

QUE-1001 : Create : [AutoDelete] [Durable|Transient] [Priority:<levels>] Owner:<name>
QUE-1002 : Deleted

Exchange

EXH-1001 : Create : [Durable] Type:<value> Name:<value>
EXH-1002 : Deleted

Bindings

BND-1001 : Create [: Arguments : <key=value>]
BND-1002 : Deleted

Subscription

SUB-1001 : Create[: Durable][: Arguments : {0}]
SUB-1002 : Close
SUB-1003 : State : <state: ACTIVE|SUSPENDED>

Configure the Broker via config.xml

Broker config.xml Overview

The broker config.xml file which is shipped in the etc directory of any Qpid binary distribution details various options and configuration for the
Java Qpid broker implementation.

In tandem with the virtualhosts.xml file, the config.xml file allows you to control much of the deployment detail for your Qpid broker in a
flexible fashion.

Note that you can pass the config.xml you wish to use for your broker instance to the broker using the -c command line option. In turn, you
can specify the paths for the broker password file and virtualhosts.xml files in your config.xml for simplicity.

For more information about command line configuration options please see .Qpid Design - Configuration

Qpid Version

The config format has changed between versions here you can find the configuration details on a per version basis.

M2 - config.xml
M2.1 - config.xml

M2.1 - config.xml

M2.1 Broker config.xml details

Qpid Upgrade steps from M2

Here are the manual changes required to config.xml for M2.1:

1. Remove use of old password format

Replace line '<class>org.apache.qpid.server.security.auth.database.PlainPasswordVHostFilePrincipalDatabase</class>'
With '<class>org.apache.qpid.server.security.auth.database.PlainPasswordFilePrincipalDatabase</class>'
Change format of the password file '${conf}/passwdVhost' to be username:password
Rename file on disk '${conf}/passwdVhost' to '${conf}/passwd'
Replace config line '<value>${conf}/passwdVhost</value>' with '<value>${conf}/passwd</value>'
For details on how to configure the new ACLs to restore the per VirtualHost Access rights see Configure ACLs

2. Update package of AllowAll

Replace line '<class>org.apache.qpid.server.security.access.AllowAll</class>'
With '<class>org.apache.qpid.server.security.access.plugins.AllowAll</class>'

3. Remove all Security sections from virtualhosts

Changes from M2 configuration

There are a four sections with changes that have occurred since M2. Taking them in order as they appear in the file the first change is in the
 section. The feature is new its purpose is to limit the underlying send and receive buffers so that they do not growconnector protectio

unbounded. Testing has shown this feature to affect performance so further work is required to fully understand the impact.

The section now includes a boolean which causes the broker to stamp every message with the UserID of theadvanced enableJMSXUserID
producing connection. This has an impact on performance so will be improved in a later release with client side setting of JMSXUserID and
broker side verification, which is a low overhead.

The section has had a couple of changes. The was an early attempt to show how ACLssecurity PlainPasswordVHostFilePrincipalDatabase
could be performed. The introduction of a more comprehensive ACL package now removes the need for that class and so the use of

 would be recommended instead. The change to ACLs also included the repackaging of the PlainPasswordFilePrincipalDatabase AllowAll
ACL class to be in a package.pluings

The sections now have new security sections based on the type of ACL being used. The documentation of which will occur on thevirtualhost
a different page.

File Format

This is an overview of the top level of the config file. Description of each section is embedded below. Each section is then described in detail
in their own section. Each section that has changes from M2 is highlighted.

<broker>
 <connector>
<!-- Type of connections and properties --> <!-- Additional features in M2.1
-->
 <management>
<!-- Enablement of management functionality -->
 <advanced>
<!-- Various advanced flags --> <!-- Additional features in M2.1
-->
 <security>
<!-- Definition of available security options --> <!-- M2 Incompatible changes in
M2.1 -->
 <virtualhosts>
<!-- Definition of available virtual hosts --> <!-- M2 Incompatible changes in
M2.1 -->
 <heartbeat>
<!-- Heartbeat configuration -->
 <queue>
<!-- General queue configuration options-->
 <virtualhosts>
<!-- Configuration of various virtual hosts. -->
</broker>

Configuration Sections - Detailed Information

The following sections provide an element by element overview of the config.xml.

Broker

The setting of the prefixes for QPID_HOME and QPID_WORK allows environment variables to be used throughout the config.xml and
removes the need for hard coding of paths in this file.

See the section of the for more information on these variables.Environment Variables Getting Started Guide

<broker>
 <prefix>${QPID_HOME}</prefix>
 <work>${QPID_WORK}</work>
 <conf>${prefix}/etc</conf>

Connector

The connector section allows configuration of SSL and related keystore settings. By default this section is commented out and thus SSL is
not enabled.

<connector>
 <!-- Uncomment out this block and edit the keystorePath and keystorePassword
 to enable SSL support
 <ssl>
 <enabled>true</enabled>
 <sslOnly>true</sslOnly>
 <keystorePath>/path/to/keystore.ks</keystorePath>
 <keystorePassword>keystorepass</keystorePassword>
 </ssl>-->
 <qpidnio>false</qpidnio>
 <protectio> <!-- New Feature in M2.1 -->
 <enabled>false</enabled>
 <readBufferLimitSize>262144</readBufferLimitSize>
 <writeBufferLimitSize>262144</writeBufferLimitSize>
 </protectio>
 <transport>nio</transport>
 <port>5672</port>
 <sslport>8672</sslport>
 <socketReceiveBuffer>32768</socketReceiveBuffer>
 <socketSendBuffer>32768</socketSendBuffer>
</connector>

Management

This element allows the user to switch the connectivity of the management console on/off i.e. if the enabled tag is set to false you will not be
able to connect a management console to this broker instance. The JMX Management port is set to 8999 by default but it can be changed
here in the XML or on the . The management console has the ability to utilise some additional Sun Binary Code License codecommand line
to improve the security of JMX Connections. Full details of this can be found .here

<management>
 <enabled>true</enabled>
 <jmxport>8999</jmxport>
 <security-enabled>false</security-enabled>
</management>

Advanced

The elements in this section are used under the covers in the broker. At present, we do not recommend any changes to these settings.

<advanced>
 <filterchain enableExecutorPool="true"/>
 <enablePooledAllocator>false</enablePooledAllocator>
 <enableDirectBuffers>false</enableDirectBuffers>
 <framesize>65535</framesize>
 <compressBufferOnQueue>false</compressBufferOnQueue>
 <enableJMSXUserID>false</enableJMSXUserID> <!-- Additional features in M2.1 -->
</advanced>

Security

This section lists all the principal databases that are available for authentication and the default access control. The databases understand
what SASL mechanisms can be used against their data and so are responsible for registering these SASL mechanisms. Currently we do not
provide means of limiting these mechanisms.

<security>
 <principal-databases>
 <principal-database>
 <!-- A name for referencing this database-->
 <name>passwordfile</name>
 <!-- The type of principal database -->

<class>org.apache.qpid.server.security.auth.database.PlainPasswordFilePrincipalDatabase</class>
 <!-- Any attributes associated with the database. Here it is a password file to load.
-->
 <attributes>
 <attribute>
 <name>passwordFile</name>
 <value>${conf}/passwd</value>
 </attribute>
 </attributes>
 </principal-database>
 </principal-databases>
 <!-- This access value can be any access manager. The built in defaults are AllowAll and
DenyAll -->
 <access>
 <class>org.apache.qpid.server.security.access.plugin.AllowAll</class> <!-- NOTE class
change in M2.1 -->
 </access>
 <!-- Properties required when running the JMX Management console. -->
 <jmx>
 <!-- Access file that allows users rights to access the management console. -->
 <access>${conf}/jmxremote.access</access>
 <!-- The principal database to use to authenticate users. -->
 <principal-database>passwordfile</principal-database>
 </jmx>
</security>

Virtualhosts

This section allows you to define the set of virtual hosts which will be contained in your broker instance, and the message store & location for
each. NB: The commented out section referencing BDBMessageStore should be used for all applications wishing to use persistence to disk.

If you are using transient messaging you can use the MemoryMessageStore, with the caveat that scalability for transient use is limited by
heap size.

In our example config.xml, we define three virtual hosts which we commonly use for development (development), system testing (test) and
integration testing (localhost). In the config.xml the per virtual host sections define both the Message Store in use (MemoryMessageStore for
non-persistent applications or BDBMessageStore for persistent application usage) and the security for each virtual host. The security settings
are under currently development so subject to changes.

The default virtual host for connections which do not specify a host on the url is 'test' in the example config.xml.

<virtualhost>
 <name>localhost</name>
 <localhost>
 <store>
 <!-- <class>org.apache.qpid.server.store.berkeleydb.BDBMessageStore</class>
 <environment-path>${work}/localhost-store</environment-path> -->

 <class>org.apache.qpid.server.store.MemoryMessageStore</class>
 </store>
 </localhost>
 </virtualhost>

Heartbeat

The Qpid broker sends an internal (only) heartbeat. This element allows configuration of the frequency of this heartbeat. At present, we
recommend that you leave this section unchanged !

<heartbeat>
 <delay>0</delay>
 <timeoutFactor>2.0</timeoutFactor>
</heartbeat>

Queue

This should NOT be changed lightly as it sets the broker up to automatically bind queues to exchanges.

It could theoretically be used to prevent users creating new queues at runtime, assuming that you have created all queues/topics etc at
broker startup. However, best advice is to leave unchanged for now.

<queue>
 <auto_register>true</auto_register>
</queue>

Virtualhosts

This element allows you to specify a location for the virtualhosts.xml file that you wish to use. If you are not using a subdirectory under
$QPID_HOME you can provide a fully qualified path instead. For more information on the content of the virtualhosts.xml file please see
Configure the Virtual Hosts via virtualhosts.xml

<virtualhosts>${conf}/virtualhosts.xml</virtualhosts>

M2 - config.xml

M2 Broker config.xml details

Changes from M1 configuration

File Format

This is an overview of the top level of the config file. Description of each section is embedded below. Each section is then described in detail
in their own section.

<broker>
<!-- Various initial global definitions -->
 <connector>
<!-- Various connection information about the type connections the broker should listen for-->
 <management>
<!-- Enablement of management functionality -->
 <advanced>
<!-- Various advanced flags -->
 <security>
<!-- Definition of available security options -->
 <virtualhosts>
<!-- Definition of available virtual hosts -->
 <heartbeat>
<!-- Heartbeat configuration -->
 <queue>
<!-- General queue configuration options-->
 <virtualhosts>
<!-- Configuration of various virtual hosts. -->
</broker>

Configuration Sections - Detailed Information

The following sections provide an element by element overview of the config.xml.

Broker

The setting of the prefixes for QPID_HOME and QPID_WORK allows environment variables to be used throughout the config.xml and
removes the need for hard coding of paths in this file.

See the for more information on these variables.Getting Started Guide

<broker>
 <prefix>${QPID_HOME}</prefix>
 <work>${QPID_WORK}</work>
 <conf>${prefix}/etc</conf>

Connector

The connector section allows configuration of SSL and related keystore settings. By default this section is commented out and thus SSL is
not enabled.

<connector>
 <!-- Uncomment out this block and edit the keystorePath and keystorePassword
 to enable SSL support
 <ssl>
 <enabled>true</enabled>
 <sslOnly>true</sslOnly>
 <keystorePath>/path/to/keystore.ks</keystorePath>
 <keystorePassword>keystorepass</keystorePassword>
 </ssl>-->
 <qpidnio>true</qpidnio>
 <transport>nio</transport>
 <port>5672</port>
 <sslport>8672</sslport>
 <socketReceiveBuffer>32768</socketReceiveBuffer>
 <socketSendBuffer>32768</socketSendBuffer>
</connector>

Management

This element allows the user to switch the connectivity of the management console on/off i.e. if the enabled tag is set to false you will not be
able to connect a management console to this broker instance.

<management>
 <enabled>true</enabled>
</management>

Advanced

The elements in this section are used under the covers in the broker. At present, we do not recommend any changes to these settings.

<advanced>
 <filterchain enableExecutorPool="true"/>
 <enablePooledAllocator>false</enablePooledAllocator>
 <enableDirectBuffers>false</enableDirectBuffers>
 <framesize>65535</framesize>
 <compressBufferOnQueue>false</compressBufferOnQueue>
</advanced>

Security

This section lists all the principal databases that are available for authentication and the default access control. The databases understand
what SASL mechanisms can be used against their data and so are responsible for registering these SASL mechanisms. Currently we do not
provide means of limiting these mechanisms.

<security>
 <principal-databases>
 <principal-database>
 <!-- A name for referencing this database-->
 <name>passwordfile</name>
 <!-- The type of principal database -->

<class>org.apache.qpid.server.security.auth.database.PlainPasswordVhostFilePrincipalDatabase</class>
<!-- Any attributes associated with the database. Here it is a password file to load. -->
 <attributes>
 <attribute>
 <name>passwordFile</name>
 <value>${conf}/passwdVhost</value>
 </attribute>
 </attributes>
 </principal-database>
 </principal-databases>
 <!-- This access value can be any access manager. The built in defaults are AllowAll and
DenyAll -->
 <access>
 <class>org.apache.qpid.server.security.access.AllowAll</class>
 </access>
 <!-- Properties required when running the JMX Management console. -->
 <jmx>
 <!-- Access file that allows users rights to access the management console. -->
 <access>${conf}/jmxremote.access</access>
 <!-- The principal database to use to authenticate users. -->
 <principal-database>passwordfile</principal-database>
 </jmx>
</security>

Virtualhosts

This section allows you to define the set of virtual hosts which will be contained in your broker instance, and the message store & location for
each. NB: The commented out section referencing BDBMessageStore should be used for all applications wishing to use persistence to disk.

If you are using transient messaging you can use the MemoryMessageStore, with the caveat that scalability for transient use is limited by
heap size.

In our example config.xml, we define three virtual hosts which we commonly use for development (development), system testing (test) and
integration testing (localhost). In the config.xml the per virtual host sections define both the Message Store in use (MemoryMessageStore for
non-persistent applications or BDBMessageStore for persistent application usage) and the security for each virtual host. The security settings
are under currently development so subject to changes.

The default virtual host for connections which do not specify a host on the url is 'test' in the example config.xml.

<virtualhost>
 <name>localhost</name>
 <localhost>
 <store>
 <!-- <class>org.apache.qpid.server.store.berkeleydb.BDBMessageStore</class>
 <environment-path>${work}/localhost-store</environment-path> -->

 <class>org.apache.qpid.server.store.MemoryMessageStore</class>
 </store>

 <security>
 <!-- Need protocol changes to allow this-->
 <authentication>
 <name>passwordfile</name>
 <!-- Currently this can't be used as Vhost isn't specified at connection
start only connection open -->
 <mechanism>PLAIN</mechanism>
 </authentication>
 <access>

<class>org.apache.qpid.server.security.access.PrincipalDatabaseAccessManager</class>
 <attributes>
 <attribute>
 <name>principalDatabase</name>
 <value>passwordfile</value>
 </attribute>
 <attribute>
 <name>defaultAccessManager</name>
 <value>DenyAll</value>
 </attribute>
 </attributes>
 </access>
 </security>
 </localhost>
 </virtualhost>

Heartbeat

The Qpid broker sends an internal (only) heartbeat. This element allows configuration of the frequency of this heartbeat. At present, we
recommend that you leave this section unchanged !

<heartbeat>
 <delay>0</delay>
 <timeoutFactor>2.0</timeoutFactor>
</heartbeat>

Queue

This should NOT be changed lightly as it sets the broker up to automatically bind queues to exchanges.

It could theoretically be used to prevent users creating new queues at runtime, assuming that you have created all queues/topics etc at
broker startup. However, best advice is to leave unchanged for now.

<queue>
 <auto_register>true</auto_register>
</queue>

Virtualhosts

This element allows you to specify a location for the virtualhosts.xml file that you wish to use. If you are not using a subdirectory under
$QPID_HOME you can provide a fully qualified path instead. For more information on the content of the virtualhosts.xml file please see
Configure the Virtual Hosts via virtualhosts.xml

<virtualhosts>${conf}/virtualhosts.xml</virtualhosts>

Configure the Virtual Hosts via virtualhosts.xml

virtualhosts.xml Overview

This configuration file contains details of all queues and topics, and associated properties, to be created on broker startup. These details are
configured on a per virtual host basis.

Note that if you do not add details of a queue or topic you intend to use to this file, you must first create a consumer on a queue/topic before
you can publish to it using Qpid.

Thus most application deployments need a virtualhosts.xml file with at least some minimal detail.

XML Format with Comments

The virtualhosts.xml which currently ships as part of the Qpid distribution is really targeted at development use, and supports various artifacts
commonly used by the Qpid development team.

As a result, it is reasonably complex. In the example XML below, I have tried to simplify one example virtual host setup which is possibly
more useful for new users of Qpid or development teams looking to simply make use of the Qpid broker in their deployment.

I have also added some inline comments on each section, which should give some extra information on the purpose of the various elements.

<virtualhosts>
 <!-- Sets the default virtual host for connections which do not specify a vh -->
 <default>localhost</default>
 <!-- Define a virtual host and all it's config -->
 <virtualhost>
 <name>localhost</name>
 <localhost>
 <!-- Define the types of additional AMQP exchange available for this vh -->
 <!-- Always get amq.direct (for queues) and amq.topic (for topics) by default -->
 <exchanges>
 <!-- Example of declaring an additional exchanges type for developer use only -->
 <exchange>
 <type>direct</type>
 <name>test.direct</name>
 <durable>true</durable>
 </exchange>
 </exchanges>

 <!-- Define the set of queues to be created at broker startup -->
 <queues>
 <!-- The properties configured here will be applied as defaults to all -->
 <!-- queues subsequently defined unless explicitly overridden -->
 <exchange>amq.direct</exchange>
 <!-- Set threshold values for queue monitor alerting to log -->
 <maximumQueueDepth>4235264</maximumQueueDepth> <!-- 4Mb -->
 <maximumMessageSize>2117632</maximumMessageSize> <!-- 2Mb -->
 <maximumMessageAge>600000</maximumMessageAge> <!-- 10 mins -->

 <!-- Define a queue with all default settings -->
 <queue>
 <name>ping</name>
 </queue>
 <!-- Example definitions of queues with overriden settings -->
 <queue>
 <name>test-queue</name>
 <test-queue>
 <exchange>test.direct</exchange>
 <durable>true</durable>
 </test-queue>
 </queue>
 <queue>
 <name>test-ping</name>
 <test-ping>
 <exchange>test.direct</exchange>
 </test-ping>
 </queue>
 </queues>
 </localhost>
 </virtualhost>
</virtualhosts>

Using your own virtualhosts.xml

Note that the config.xml file shipped as an example (or developer default) in the Qpid distribution contains an element which defines the path
to the virtualhosts.xml.

When using your own virtualhosts.xml you must edit this path to point at the location of your file.

Debug using log4j

Debugging with log4j configurations

Unfortunately setting of logging in the Java Broker is not simply a matter of setting one of WARN,INFO,DEBUG. At some point in the future
we may have more BAU logging that falls in to that category but more likely is that we will have a varioius config files that can be swapped in
(dynamically) to understand what is going on.

This page will be host to a variety of useful configuration setups that will allow a user or developer to extract only the information they are
interested in logging. Each section will be targeted at logging in a particular area and will include a full log4j file that can be used. In addition
the logging elements will be presented and discussed so that the user can create their own file.category

Currently the configuration that is available has not been fully documented and as such there are gaps in what is desired and what is
available. Some times this is due to the desire to reduce the overhead in message processing, but sometimes it is simply an oversight.
Hopefully in future releases the latter will be addressed but care needs to be taken when adding logging to the 'Message Flow' path as this
will have performance implications.

Logging Connection State *Deprecated*

deprecation notice Version 0.6 of the Java broker includes functionality which improves upon these messagesOperational Status Logging
and as such enabling status logging would be more beneficial.
The configuration file has been left here for assistence with broker versions prior to 0.6.

The goals of this configuration are to record:

New Connections
New Consumers
Identify slow consumers
Closing of Consumers
Closing of Connections

An additional goal of this configuration is to minimise any impact to the 'message flow' path. So it should not adversely affect production
systems.

application-connections.xml

Debugging My Application

This is the most often asked for set of configuration. The goals of this configuration are to record:

New Connections
New Consumers
Message Publications
Message Consumption
Identify slow consumers
Closing of Consumers
Closing of Connections

NOTE: This configuration enables message logging on the 'message flow' path so should only be used were message volume is low.
Every message that is sent to the broker will generate at least four logging statements
application-debug.xml

Firewall Configuration

Configuration

The access restrictions apply either to the server as a whole or too a particular virtualhost. Rules are evaluated in the virtualhost first, then
the server as a whole (most-specific to least-specific). This allows whole netblocks to be restricted from all but one virtualhost. A <firewall>
element would appear in either the <broker><security> section or inside the equivalent <virtualhost><security> element.

Elements inside <firewall> would be <rule> or <xml fileName=" /> which can be used to include further rules at that point in the rule[path"]
chain.

<rule> must have action and either hostname or network attributes. The action attribute must be either allow or deny. Host contains a comma
seperated list of against which it would match the reverse dns lookup of the connecting IP. Network contains a comma seperated listregexps
of of CIDR networks against which the IP would be matched.

The first <rule> which matched the connection would apply. If no rules applied, the default-action would apply.

For example, the following could appear in config.xml:

http://cwiki.apache.org/confluence/download/attachments/109886/application-connections.xml?version=2&modificationDate=1234361382000
http://cwiki.apache.org/confluence/download/attachments/109886/application-debug.xml?version=2&modificationDate=1234361382000
http://java.sun.com/docs/books/tutorial/essential/regex/

<broker>
 <security>
 <firewall -action= >default "deny"
 <rule access= hostname= />"allow" "*.qpid.apache.org"
 <xml fileName= />"/path/to/file"
 <rule access= network= />"allow" "192.168.1.0/24"
 <rule access= network= />"allow" "10.0.0.0/8"
 </firewall >
 </security>
</broker>

[...]
<virtualhosts>
 <virtualhost>
 <name>prod</name>
 <prod>
 <security>
 <firewall>
 <rule access= network= />"deny" "192.168.1.0/24"
 </firewall>
 </security>
 </prod>
 </virtualhost>
</virtualhosts>

Any machine in the 192.168.1.0/24 network would be allowed access to any virtualhost other than prod
Any machine in the qpid.apache.org domain would be allowed access to any virtualhost
Any machine in the 10.0.0.0/8 network would be allowed access to any virtual host
Any other machine would be denied access.

Changes would be possible while broker was running via commons-configuration magic when the file is editted. Existing connections would
be unaffected by a new rule.

Examples

Denying everybody but foo.bar.com:

<firewall -action= >default "deny"
 <rule access= hostname= />"allow" "foo.bar.com"
</firewall>

Denying everybody outside of bar.com:

<firewall -action= >default "deny"
 <rule access= hostname= />"allow" ".*bar.com"
</firewall>

Allowing everybody except Baxcorp:

<firewall -action= >default "allow"
 <rule access= hostname= />"deny" ".*baxcorp.*"
</firewall>

Deny everybody except one machine:

<firewall -action= >default "deny"
 <rule access= network= />"allow" "192.168.1.2"
</firewall>

Allow everybody except one machine:

<firewall -action= >default "allow"
 <rule access= network= />"deny" "192.168.1.2"
</firewall>

Deny everybody except machines in the range 192.168.1.0-192.168.1.255

<firewall -action= >default "deny"
 <rule access= network= />"allow" "192.168.1.0/24"
</firewall>

Allow everybody except machines in the range 192.168.1.0-192.168.1.255

<firewall -action= >default "allow"
 <rule access= network= />"deny" "192.168.1.0/24"
</firewall>

Allow everybody except machines in the range 192.168.0.0-192.168.255.255 unless it's 192.168.1.2, has the magic word in the hostname or
is in the IP range 192.168.23.0-192.168.23.255

<firewall -action= >default "allow"
 <rule access= network= />"allow" "192.168.1.2"
 <rule access= hostname= />"allow" ".*please.*"
 <rule access= network= />"allow" "192.168.23.0/24"
 <rule access= network= />"deny" "192.168.0.0/16"
</firewall>

Complete example configuration files are attached to this page:

Name Size Creator Creation Date Comment

 firewall-test-4-allow-ip-deny-defau... 3 kB Aidan Skinner Apr 22, 2009 07:11

 firewall-test-5-deny-ip-allow-defau... 3 kB Aidan Skinner Apr 22, 2009 07:11

 firewall-test-3-deny-hostname-allow... 3 kB Aidan Skinner Apr 22, 2009 07:11

 firewall-test-2-allow-client-deny-d... 3 kB Aidan Skinner Apr 22, 2009 07:11

 firewall-test-1-no-restrictions.xml 3 kB Aidan Skinner Apr 22, 2009 07:11

 firewall-test-7-deny-cidr-allow-def... 3 kB Aidan Skinner Apr 22, 2009 07:12

 firewall-test-6-allow-cidr-deny-def... 3 kB Aidan Skinner Apr 22, 2009 07:12

How to Tune M3 Java Broker Performance

Problem Statement

During destructive testing of the Qpid M3 Java Broker, we tested some tuning techniques and deployment changes to improve the Qpid M3
Java Broker's capacity to maintain high levels of throughput, particularly in the case of a slower consumer than produceer (i.e. a growing
backlog).

The focus of this page is to detail the results of tuning & deployment changes trialled.

The successful tuning changes are applicable for any deployment expecting to see bursts of high volume throughput (1000s of persistent
messages in large batches). Any user wishing to use these options must test them thoroughly in their own environment with

.representative volumes

Successful Tuning Options

The key scenario being taregetted by these changes is a broker under heavy load (processing a large batch of persistent messages)can be
seen to perform slowly when filling up with an influx of high volume transient messages which are queued behind the persistent backlog.

http://cwiki.apache.org/confluence/download/attachments/115461/firewall-test-4-allow-ip-deny-default.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115461/firewall-test-5-deny-ip-allow-default.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115461/firewall-test-3-deny-hostname-allow-default.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115461/firewall-test-2-allow-client-deny-default.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115461/firewall-test-1-no-restrictions.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115461/firewall-test-7-deny-cidr-allow-default.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115461/firewall-test-6-allow-cidr-deny-default.xml
http://cwiki.apache.org/confluence/display/~aidan

However, the changes suggested will be equally applicable to general heavy load scenarios.

The easiest way to address this is to separate streams of messages. Thus allowing the separate streams of messages to be processed, and
preventing a backlog behind a particular slow consumer.

These strategies have been successfully tested to mitigate this problem:

Strategy Result

Seperate connections to one broker for separate streams of messages. Messages processed successfully, no problems experienced

Seperate brokers for transient and persistent messages. Messages processed successfully, no problems experienced

Separate Connections
Using separate connections effectively means that the two streams of data are not being processed via the same buffer, and thus the broker
gets & processes the transient messages while processing the persistent messages. Thus any build up of unprocessed data is minimal and
transitory.

Separate Brokers
Using separate brokers may mean more work in terms of client connection details being changed, and from an operational perspective.
However, it is certainly the most clear cut way of isolating the two streams of messages and the heaps impacted.

Additional tuning

It is worth testing if changing the size of the Qpid read/write thread pool improves performance (eg. by setting
JAVA_OPTS="-Damqj.read_write_pool_size=32" before running qpid-server). By default this is equal to the number of CPU cores, but a
higher number may show better performance with some work loads.

It is also important to note that you should give the Qpid broker plenty of memory - for any serious application at least a -Xmx of 3Gb. If you
are deploying on a 64 bit platform, a larger heap is definitely worth testing with. We will be testing tuning options around a larger heap shortly.

Next Steps

These two options have been testing using a Qpid test case, and demonstrated that for a test case with a profile of persistent heavy load
following by constant transient high load traffic they provide significant improvment.

However, the deploying project complete their own testing, using the same destructive test cases, representative message paradigmsmust
& volumes, in order to verify the proposed mitigation options.

The using programme should then choose the option most applicable for their deployment and perform BAU testing before any
implementation into a production or pilot environment.

How to Use JNDI

How to use the PropertiesFileInitialContextFactory

This ContextFactory uses a java properties formatted file to setup initial values.

JNDI Property setup

By setting the JNDI Initial Context Factory and URL as below it is possible to load any File from the locally mounted file system to use for
JNDI purposes. The format of the file is described in the next section.

java.naming.factory.initial = org.apache.qpid.jndi.PropertiesFileInitialContextFactory
java.naming.provider.url = <path to JNDI File>

By simply setting these two system properties you can jump straight to the InitialContext creation in your code.

Example properties file

This is the example properties file.

register some connection factories
connectionfactory.[jndiname] = [ConnectionURL]
connectionfactory.local = amqp://guest:guest@clientid/testpath?brokerlist='vm://:1'

register some queues in JNDI using the form
queue.[jndiName] = [physicalName]
queue.MyQueue = example.MyQueue

register some topics in JNDI using the form
topic.[jndiName] = [physicalName]
topic.ibmStocks = stocks.nyse.ibm

Register an AMQP destination in JNDI
NOTE: Qpid currently only supports direct,topics and headers
destination.[jniName] = [BindingURL]
destination.direct = direct://amq.direct//directQueue

The property file allows a number of queues to be defined that can then be discovered via JNDI. There are four properties used by the
PFICFactory.

 this is the that the connection factory will use to perform connections.connectionfactory.<jndiname> Connection URL
 this defines a jms queue or in amqp a amq.direct exchangequeue.<jndiname>

 this defines a jms topic or in amqp a amq.topic exchangetopic.<jndiname>
 this takes a and so can be used for defining all amq destinations, queues, topics and header matching.destination.<jndiname> Binding URL

In all of these properties the is the string value that would be given when performing a lookup.<jndiname>

NOTE: This does not create the queue on the broker. You should ensure that you have created the queue before publishing to it. Queues
can be declared in the virtualhosts.xml file so that they are created on broker startup, or created dynamically by consuming clients. Topics
and other destinations that use temporary queues cannot be created in this way, so a consumer must be created first before publishing
messages with mandatory routing.

Example lookup code

The is the String that would be placed in above.bindingValue <jndiname>

Simple JNDI lookup using files

//Ensure you have your system properties set
 INITIAL_CONTEXT_FACTORY = ;final String "org.apache.qpid.jndi.PropertiesFileInitialContextFactory"

.setProperty(Context.INITIAL_CONTEXT_FACTORY, INITIAL_CONTEXT_FACTORY);System

.setProperty(Context.PROVIDER_URL, _JNDIFile);System

// Create the initial context
Context ctx = InitialContext();new

// Perform the binds
object = ctx.lookup(bindingValue);

// Close the context when we're done
ctx.close();

Simple JNDI lookup using properties

 INITIAL_CONTEXT_FACTORY = ;final String "org.apache.qpid.jndi.PropertiesFileInitialContextFactory"

 CONNECTION_JNDI_NAME = ;final String "local"
 CONNECTION_NAME = final String "amqp: ;//guest:guest@clientid/testpath?brokerlist='vm://:1'"

 QUEUE_JNDI_NAME = ;final String "queue"
 QUEUE_NAME = ;final String "example.MyQueue"

// Set the properties ...
Properties properties = Properties();new
properties.put(Context.INITIAL_CONTEXT_FACTORY, INITIAL_CONTEXT_FACTORY);
properties.put(+CONNECTION_JNDI_NAME , CONNECTION_NAME);"connectionfactory."
properties.put(+QUEUE_JNDI_NAME , QUEUE_NAME);"queue."

// Create the initial context
Context ctx = InitialContext(properties);new

// Perform the lookups
ConnectionFactory factory = (ConnectionFactory)ctx.lookup(CONNECTION_JNDI_NAME);
Queue queue = (Queue)ctx.lookup(QUEUE_JNDI_NAME);

// Close the context when we're done
ctx.close();

Using Qpid with other JNDI Providers

Using Qpid with other JNDI Providers

How to use a JNDI Provider

Qpid will work with any JNDI provider capable of storing Java objects. We have a task to add our own initial context factory, but until that's
available

First you must select a JNDI provider to use. If you aren't already using an application server (i.e. Tomcat ?) which provides JNDI support
you could consider using either:

Apache's which provides an LDAP JNDI implementationDirectory

OR the SUN JNDI SPI for the FileSystem which can be downloaded from http://java.sun.com/products/jndi/downloads/index.html

Click : Download JNDI 1.2.1 & More button
Download: File System Service Provider, 1.2 Beta 3
and then add the two jars in the lib dir to your class path.

There are two steps to using JNDI objects.

Bind : Which stores a reference to a JMS Object in the provider.
Lookup : Which tries to retrieve the reference and create the JMS Object.

There are two objects that would normally be stored in JNDI.

A ConnectionFactory
A Destination (Queue or Topic)

Binding

Then you need to setup the values that the JNDI provider will used to bind your references, something like this:

Setup JNDI

Hashtable env = Hashtable(11);new
 env.put(Context.INITIAL_CONTEXT_FACTORY,);"com.sun.jndi.fscontext.RefFSContextFactory"
 env.put(Context.PROVIDER_URL,LOCAL_FILE_PATH_FOR_STORING_BINDS_PATH_MUST_EXIST);

These values are then used to create a context to bind your references.

http://directory.apache.org/subprojects/apacheds/index.html
http://java.sun.com/products/jndi/downloads/index.html

Perform Binding of ConnectionFactory

try
{
 Context ctx = InitialContext(env);new

 // Create the object to be bound in a ConnectionFactorythis case
ConnectionFactory factory = ;null

 try
 {
 factory = AMQConnectionFactory(CONNECTION_URL);new
 try
 {
 ctx.bind(binding, factory);
 }
 (NamingException e)catch
 {
 //Handle problems with binding. Such as the binding already exists.
}
 }
 (URLSyntaxException amqe)catch
 {
 //Handle any exception with creating ConnnectionFactory
}
}

 (NamingException e)catch
{
 //Handle problem creating the Context.
}

To bind a queue instead simply create a AMQQueue object and use that in the binding call.

Bind a AMQQueue

AMQQueue queue = AMQQueue(QUEUE_URL);new
ctx.bind(binding, queue);

Lookup

You can then get a queue connection factory from the JNDI context.

Perform Binding of ConnectionFactory

ConnectionFactory factory;
try
{
 factory= (ConnectionFactory)ctx.lookup(binding);
}

 (NamingException e)catch
{
 //Handle problems with lookup. Such as binding does not exist.
}

Note that you need not cast the bound object back to an so all your current JMS apps that use JNDI can startAMQConnectionFactory
using Qpid straight away.

How to create a TopicConnectionFactory and QueueConnectionFactory

AMQConnectionFactory implements TopicConnectionFactory and QueueConnectionFactory as well as the ConnectionFactory.

Interact with a JMX MBean

Interact with a JMX MBean

In order to call a method on an JMX MBean you must know its ObjectName on the server. This can be identified in advance and the exact
ObjectName hardcoded/generated in your application, however any evolution of the MBeans ObjectName on the server in future versions
would cause such implementation to fail when the ObjectNames no longer exactly match. This will not be identified until an opertion is

attempted, as the code does not check that the MBean defined by the ObjectName actually exists before using the ObjectName and would
only fail when calling a method and the target is not found by the MbeanServer.

Instead, the suggested route would be to use an ObjectName Pattern along with the queryNames method from the MBeanServerConnection
class. You can then define a pattern of key-value pairs that the server will use to find all matching MBean ObjectNames and return these in a
Set. By using property name-value pairs that uniquely identify an MBean, it is thus possible to locate the exact ObjectName of the MBean
you wish to use without knowing every property name and value in its ObjectName in advance. In doing so you also validate the MBeans
existence before using them via an MBean Proxy.

To create an ObjectName pattern for a Qpid JMX MBean, you define the ObjectName with the domain org.apache.qpid, and specify any
name-value pairs that identify the MBean(s) you wish to gather the ObjectNames for, followed by ",*" That would define that the server return
the ObjectNames of any MBean posessing the specific properties names and values you specify as well as 0 or more other properties of any
value.

For example, to identify the VirtualHostManager MBean for a given VirtualHost (VHOST-NAME), you would construct an ObjectName which
uniquely identified it by including the MBean type and the containing VirtualHost as below:

ObjectName hostManagerObjectName =
 ObjectName()new "org.apache.qpid:type=VirtualHost.VirtualHostManager,VirtualHost=VHOST-NAME,*"

This pattern will find the MBean we are interested in, regardless whether it has additional properties or not. Using this pattern, you would
query the MBeanServer for all names that match, using the queryNames method from the MBeanServerConnection instance (mbsc) for your
JMX connection to the server:

Set<ObjectName> objectInstances = mbsc.queryNames(hostManagerObjectName,);null

Checking that the returned set is of size 1 will ensure you have matched the specific MBean you wished, otherwise it either did not exist (size
0) or the properties specified were not enough to uniquely identify it and multiple mbeans matched your query (this is unlikely unless actually
desired, as the VirtualHost, Exchange, Queue etc properties makes it straightforward to uniquely identify Qpid JMX objects)

The ObjectName(s) returned can then be retrieved from the Set and used as the target ObjectName for invoking operations via the
MBeanServerConnection. One way of doing so is to use the ObjectName and the Interface for the MBean in question to create an MBean
Proxy object, which can be used as if it were a normal local java object:

Java 6+:

ManagedBroker hostManagerProxy = JMX.newMBeanProxy(mbsc, objectName, ManagedBroker.class);

Java5+:

ManagedBroker hostManagerProxy = (ManagedBroker)
 MBeanServerInvocationHandler.newProxyInstance(mbsc, objectName, ManagedBroker.class,);false

You may then call methods on the proxy object as if it were a local object:

hostManagerProxy.createNewQueue(queueName, ,);null true

Qpid Java Build How To

Build Instructions - General

Check out the source

Firstly, check the source for Qpid out of our subversion repository:

https://svn.apache.org/repos/asf/qpid/trunk

Prerequisites

For the broker code you need JDK 1.5.0_15 or later. You should set JAVA_HOME and include the bin directory in your PATH.

Check it's ok by executing java -v !

If you are wanting to run the python tests against the broker you will of course need a version of python.

Build Instructions - Trunk

https://svn.apache.org/repos/asf/qpid/trunk

Our build system has reverted to ant as of May 2008.

The ant target 'help' will tell you what you need to know about the build system.

Ant Build Scripts

Currently the Qpid java project builds using ant.

The ant build system is set up in a modular way, with a top level build script and template for module builds and then a module level build
script which inherits from the template.

So, at the top level there are:

File Description

build.xml Top level build file for the project which defines all the build targets

common.xml Common properties used throughout the build system

module.xml Template used by all modules which sets up properties for module builds

Then, in each module subdirectory there is:

File Description

build.xml Defines all the module values for template properties

Build targets

The main build targets you are probably interested in are:

Target Description

build Builds all source code for Qpid

test Runs the testsuite for Qpid

So, if you just want to compile everything you should run the build target in the top level build.xml file.

If you want to build an installable version of Qpid, run the archive task from the top level build.xml file.

If you want to compile an individual module, simply run the build target from the appropriate module e.g. to compile the broker source

Configuring Eclipse

1. Run the ant build from the root directory of Java trunk.
2. New project -> create from existing file system for broker, common, client, junit-toolkit, perftests, systests and each directory under
management
4. Add the contents of lib/ to the build path
5. Setup Generated Code
6. Setup Dependencies

Generated Code

The Broker and Common packages both depend on generated code. After running 'ant' the build/scratch directory will contain this generated
code.
For the broker module add build/scratch/broker/src
For the common module add build/scratch/common/src

Dependencies

These dependencies are correct at the time of writting however, if things are not working you can check the dependencies by looking in the
modules build.xml file:

for i in `find . -name build.xml` ; do echo "$i:"; grep module.depends $i ; done

The value will detail which other modules are dependencies.module.depend

broker

common
management/common

client

Common

systest

client
management/common
broker
broker/test
common
junit-toolkit
management/tools/qpid-cli

perftests

systests
client
broker
common
junit-toolkit

management/eclipse-plugin

broker
common
management/common

management/console

common
client

management/agent

common
client

management/tools/qpid-cli

common
management/common

management/client

common
client

integrationtests

systests
client
common
junit-toolkit

testkit

client
broker
common

tools

client
common

client/examples

common
client

broker-plugins

client
management/common
broker
common
junit-toolkit

What next ?

If you want to run your built Qpid package, see our for details of how to do that.Getting Started Guide

If you want to run our tests, you can use the ant test or testreport (produces a useful report) targets.

Building

Java Building Pages

Developer Information

Build How To
CruiseControl
Qpid Developer Documentation
Coding Standards
AMQP Version Handling
URL format for Connections and Binding
Creating Java unit tests with InVM broker

Performance Testing

IBM JMS Performance Test Results

Management Interfaces

Management Features
Management Console

C++ Building Pages

Developer Information

Build How To get it going
The Pyhton test suite
C++ Coding Standard, Design notes etc

Performance Testing

Performance Testing for C++

Management Interfaces

Running & Administration and getting started for the C++ Broker
Managing the C++ Broker

Python and Ruby obviously don't need building.

.NET Building Pages

.NET can be built under MONO, or on a Windows .NET platform

CruiseControl

Prerequisites

Check out the source

see http://cwiki.apache.org/qpid/building.html

Install CruiseControl

Download CruiseControl from: http://cruisecontrol.sourceforge.net/

Unzip the release to a directory, for example ~/cruisecontrol-bin-2.7.2
Check that the scripts cruisecontrol-bin-2.7.2/cruisecontrol.sh and cruisecontrol-bin-2.7.2/apache-ant-1.7.0/bin/ant have execution
permission.
Make sure your directory ~/.ant/lib contains the following jars:

The ant jar files that can be found in cruisecontrol-bin-2.7.2/apache-ant-1.7.0/lib/
xalan-2.7.0.jar

Set system variables

Prior to use CruiseControl you'll need to set two system variables:

Variable Value

CC_HOME path to your qpid project, for example /home/foo/projects/qpid

CPPSTORE_HOME path to your C++ store, for example /home/foo/projects/bdbstore-cpp

Note: the cpp store can be checked out from: https://svn.jboss.org/repos/rhmessaging/store/trunk/cpp

http://cwiki.apache.org/confluence/display/qpid/Qpid+IBM+JMS+Performance+Test+Results
http://cwiki.apache.org/qpid/building.html
http://cruisecontrol.sourceforge.net/
https://svn.jboss.org/repos/rhmessaging/store/trunk/cpp

Notes

Only unix scrips are currently provided

Running CruiseControl

Run cruisecontrol-bin-2.7.2/cruisecontrol.sh from CC_HOME/cc

Projects

Project Description

qpid-cpp-trunk Builds and tests the C++ broker

qpid-cpp-trunk-perftests Runs the C++ performance tests

qpid-java-trunk Builds and runs the Java tests with an 0.8 inVM broker, a c++ broker without prefetch and a c++ broker with
pre-fetch

bdbstore-cpp-trunk Builds the C++ store (required for the Java tests)

example-automation Runs all the example combinations for python, C++ and java

Performance Testing for C++

How to measure performance of my hardware

Overview

Brief page on how to get perf data for your configuration. Note that per data is affected greatly by hardware, and OS tuning. So tune your OS
and baseline your hardware. You should be able to get perftest 'below' to within 5%-8% of the max for the baseline of a well setup config. If
you can't - welcome to mail the list.

Basic tuning

Tuning will increase your throughput and increase your determinism. The simple things are turn off cpuspeed, irqbalance etc and set timer
resolution for the processors you use.... All the standard stuff.

Sample Data

Some sample results running on the out of date lump in the corner, running on current hardware you should easily beat these.

1K block Size

clients pubs/sec subs/sec transfers/sec Mbytes/sec

..

more data. to illustrate point TODO

...

Note that there will be two limits, one is the size of the pipe, the other will be how many IO's per-second the hardware can do. On small
messages 64bytes or less you will hit the IO limit, on larger messages you will hit the network bandwidth, then scale with more NICs. You
can get more 'batch' if you like to get the number up when you hit the IO's per second limit with AMQP-0-10 sync points etc... play with
perftest + baseline tools like netperf.

The following tool is including, or can be located in 'cpp/src/tests/' Run with --help to check the options on the latest version.

$./perftest --help

N4qpid7Options9ExceptionE: Test Options:
 -h [--host] HOST (localhost) Broker host to connect to
 -b [--broker] HOST (localhost) Broker host to connect to
 -p [--port] PORT (5672) Broker port to connect to
 -v [--virtualhost] VHOST virtual host
 -n [--clientname] ID (cpp) unique client identifier
 --username USER (guest) user name broker log in.for
 --password USER (guest) password broker log in.for
 --help print usage statementthis
 --setup Create shared queues.
 --control Run test, print report.

 --publish Publish messages.
 --subscribe Subscribe messages.for
 --mode shared|fanout|topic (shared) Test mode.
 shared: --qt queues, --npubs publishers
 and --nsubs subscribers per queue.

 fanout: --npubs publishers, --nsubs subs
 cribers, fanout exchange.
 topic: --qt topics, --npubs publishers a
 nd --nsubs subscribers per topic.

 --npubs N (1) Create N publishers.
 --count N (500000) Each publisher sends N messages.
 --size BYTES (1024) Size of messages in bytes.
 --pub-confirm yes|no (1) Publisher use confirm-mode.
 --durable yes|no (0) Publish messages as durable.
 --unique-data yes|no (0) Make data each message unique.for
 --nsubs N (1) Create N subscribers.
 --sub-ack N (0) N>0: Subscriber acks batches of N.
 N==0: Subscriber uses unconfirmed mode
 --qt N (1) Create N queues or topics.
 --iterations N (1) Desired number of iterations of the test
 .
 -s [--summary] Summary output: pubs/sec subs/sec transf
 ers/sec Mbytes/sec
 --queue_max_count N (0) queue policy: count to trigger 'flow to
 disk'
 --queue_max_size N (0) queue policy: accumulated size to trigge
 r 'flow to disk'
 --interval_sub ms (0) >=0 delay between msg consume
 --interval_pub ms (0) >=0 delay between msg publish

Logging options:
 --log-output FILE (stderr) Send log output to FILE. FILE can be a file name
 or one of the special values:
 stderr, stdout, syslog
 -t [--trace] Enables all logging
 --log-enable RULE (error+) Enables logging selected levels and componentfor
 s. RULE is in the form 'LEVEL[+][:PATTERN]'
 Levels are one of:
 trace debug info notice warning error critical
 For example:
 '--log-enable warning+' logs all warning, error
 and critical messages.
 '--log-enable debug:framing' logs debug messages
 from the framing namespace. This option can be
 used multiple times
 --log-time yes|no (1) Include time in log messages
 --log-level yes|no (1) Include severity level in log messages
 --log-source yes|no (0) Include source file:line in log messages
 --log-thread yes|no (0) Include thread ID in log messages
 --log-function yes|no (0) Include function signature in log messages

There are two ways to use perftest: single process or multi-process.

If none of the --setup, --publish, --subscribe or --control options
are given perftest will run a single-process test.
For a multi-process test first run:
 perftest --setup <other options>
and wait it to complete. The remaining process should run concurrently::for
Run --npubs times: perftest --publish <other options>
Run --nsubs times: perftest --subscribe <other options>

Run once: perftest --control <other options>
Note the <other options> must be identical all processes.for

Qpid Cpp Build How To

Note: for building on windows, see QpidCppWindowsBuild

Qpid SVN Trunk Build Instructions

Prerequisites

Some of the source is auto-generated from the AMQP spec file. This generator is written in Ruby. Auto-generation is performed by running
make (see below); no special steps are required.

Ensure you have the latest devel versions of the following packages installed:

boost < > (>=1.33) *http://www.boost.org
e2fsprogs < >http://e2fsprogs.sourceforge.net/

* There is a patch to get v.1.32 working in the svn tree though that is only recommended as a last resort.

To build directly from the SVN repository you will need all of the above plus the following development tools:

pkgconfig < >http://pkgconfig.freedesktop.org/wiki/
gcc < >http://gcc.gnu.org/
GNU make < >http://www.gnu.org/software/make/
autoconf < >http://www.gnu.org/software/autoconf/
automake < >http://www.gnu.org/software/automake/
help2man < >http://www.gnu.org/software/help2man/
libtool < >http://www.gnu.org/software/libtool/
doxygen < >ftp://ftp.stack.nl/pub/users/dimitri/
graphviz < >http://www.graphviz.org/
ruby < >http://www.ruby-lang.org

 Hint: To check and install all of the above, use (as root):

yum install boost-devel e2fsprogs-devel pkgconfig gcc-c++ make autoconf automake help2man libtool
doxygen graphviz ruby

Optional cluster functionality requires:

openais < >http://openais.org/

Optional XML exchange requires:

xqilla < >http://xqilla.sourceforge.net/HomePage
xerces-c < >http://xerces.apache.org/xerces-c/

Optional SSL support requires:

nss < >http://www.mozilla.org/projects/security/pki/nss/
nspr < >http://www.mozilla.org/projects/nspr/

Check out the source

Check the source for Qpid java out of our subversion repository: https://svn.apache.org/repos/asf/qpid/trunk/qpid/

svn co https://svn.apache.org/repos/asf/qpid/trunk/qpid

Automake vs CMake

Currently we have 2 parallel build systems one using automake the other using cmake.

We are moving towards cmake and will eventually get rid of automake, but for the moment the cmake system is not complete and we have to
live with both.

That means if you add a file to the build, you must update Makefile.am and CMakeLists.txt and check that you can build with bothboth
systems as described below.

Build with automake

First you need to initialize the autotools:

http://www.boost.org
http://e2fsprogs.sourceforge.net/
http://pkgconfig.freedesktop.org/wiki/
http://gcc.gnu.org/
http://www.gnu.org/software/make/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/help2man/
http://www.gnu.org/software/libtool/
ftp://ftp.stack.nl/pub/users/dimitri/
http://www.graphviz.org/
http://www.ruby-lang.org
http://openais.org/
http://xqilla.sourceforge.net/HomePage
http://xerces.apache.org/xerces-c/
http://www.mozilla.org/projects/security/pki/nss/
http://www.mozilla.org/projects/nspr/
https://svn.apache.org/repos/asf/qpid/trunk/qpid/

./bootstrap

To build Qpid, run

./configure
make

By default, configure will enable the options for which it finds the installed packages. However, to override this behavior, use parameters with
configure to disable unwanted options.

 Hint: To see all the configure options, run

./configure --help

Finally, to make sure all the test pass both C++ and Pyhton run

make check

As a convenient shortcut you can do all of the above steps in one command with:

./bootstrap -build

Build with cmake

mkdir builddir
cd buildir
cmake <path to checkout>/cpp/CMakeLists.txt
make # Build
make test # Run tests

You can also use the interactive ccmake on linux and the GUI on windows to modify the configuration.

QpidCppWindowsBuild

These notes were contributed by Vince Seavello and include details of getting a build from the svn repository to work on:

Windows:

Windows Vista (64 bit)
Windows Server 2008 (64 bit).
Windows XP (32 bit)

Visual Studio:

Visual Studio 2008 Express (32 bit C++ package)
Visual Studio Team Suite 2008 (32 bit and 64 bit C++ packages)
Visual Studio 2008 Professional (32 bit and 64 bit C++ packages)

Note: Step 2.5.1 (nmake /f protocol_gen.mak) is not needed for the M4-release build. It's only needed when checking sources out of svn.

1) Introduction

The following are notes for building and testing QPID M4 on Windows.

This document is split into 4 sections:

setup for building QPID M4 on Windows. This includes
obtaining sources, supporting technologies, installation
and configuration of the build environment.

building QPID M4 on Windows.

running the Linux test suites against the Windows QPID
broker.

building the tests on a Windows system.

These notes are intended to highlight issues discovered during the build and
testing of QPID on Windows. It's a work in progress.

Comments welcome.

2) Setup of QPID M4 on Windows

2.1) Obtaining the sources

M4 C++ broker and client source archive is available on the QPID web site.

http://www.apache.org/dist/qpid/M4/qpid-cpp-M4.tar.gz

The sources contained here will build a Static_Debug version of the broker
and client libraries. To be able to build a Static_Release version, replace
the file cpp/src/qpid/InlineAllocator.h with the M5 version of the file:

https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/src/qpid/InlineAllocator.h

2.2) Setting up for the build

Builds have been taking place using a variety of platforms and versions
of Visual Studio. Platforms include:

Windows:

Windows Vista (64 bit)
Windows Server 2008 (64 bit).
Windows XP (32 bit)

Visual Studio:

Visual Studio 2008 Express (32 bit C++ package)
Visual Studio Team Suite 2008 (32 bit and 64 bit C++ packages)
Visual Studio 2008 Professional (32 bit and 64 bit C++ packages)

2.3) Technologies Dependencies

2.3.1) boost

The stated requirement is boost 1.35.0. 1.36.0 is also being tested in
our labs. There are only a few version compatibility issues detected.

You can find install images for boost at:

http://www.boostpro.com/boost_1_35_0_setup.exe http://www.boostpro.com/boost_1_36_0_setup.exe

Once you've installed one of these, set your environment variables:

for 1.35.0:
BOOST_ROOT = C:\Program Files (x86)\boost\boost_1_35_0
BOOST_VERSION = 103500

for 1.36.0:
BOOST_ROOT = C:\Program Files (x86)\boost\boost_1_36_0
BOOST_VERSION = 103600

Note: "Program Files (x86)" is "Program Files" on the 32 bit system.
The boost libs are 32 bit. When building on a 64 bit system the 32
bit boost libs are installed in "Program Files (x86)". 64 bit boost
build is being looked into.

2.3.2) python

Use Python 2.6, which is the stated requirement for the QPID build.
Pick up a copy at:

http://www.python.org/ftp/python/2.6/python-2.6.msi

You must include the python directory in the environment variable PATH.
Typically, python is installed in:

C:\python26

test to see that python is installed correctly and that you have the
correct version:

C:\>python --version
Python 2.6.1

2.3.3) ruby

Use Ruby 1.8.6, which is the required version. Pick up a copy at:

http://www.apache.org/dist/qpid/M4/qpid-cpp-M4.tar.gz
https://svn.apache.org/repos/asf/qpid/trunk/qpid/cpp/src/qpid/InlineAllocator.h
http://www.boostpro.com/boost_1_35_0_setup.exe
http://www.boostpro.com/boost_1_36_0_setup.exe
http://www.python.org/ftp/python/2.6/python-2.6.msi

http://rubyforge.org/frs/?group_id=167

You must include the ruby directory in the environment variable PATH.
Typically, ruby is installed in:

C:\ruby\bin

test to see that ruby is installed correctly and that you have the
correct version:

C:\>ruby -v
ruby 1.8.6 (2007-09-24 patchlevel 111) [i386-mswin32]

2.4) Build tools

The QPID build environment on Windows are centered around Visual Studio C++
Development tools. There is an effort to reduce the overhead of the QPID
build so developers who are unfamiliar with the Visual Studio IDE can build
and test on Windows with as minimal an effort as possible.

2.4.1) Visual Studio

Microsoft makes Visual Studio Express available at no charge. You can find
it online at the following location:

http://www.microsoft.com/downloads/details.aspx?FamilyID=3254c868-bcb9-412c-95c6-d100c872ec60&DisplayLang=en

2.5) M4 preparation

2.5.1) Initial environment configuration

Most of the prep is in the installation of the helper apps, Visual Studio,
source extraction and patching. When that's all done, there is one more step
you still need to do before you can build anything.

Using the Visual Studio's Command Prompt, change directory to qpid/cpp/src and run:

nmake protocol_gen.mak

2.5.2) source changes

The described source fix needed to be able to get a clean Static_Release build
from M4 is listed above. This fix wasn't available before M4 was finalized, so
it was added in M5.

Other fixes may be available in M5 to address other issues, but haven't been
tried in this environment.

Any changes made to source files during this investigation haven't been submitted.
They are presented here for what they're worth. Diffs of source changes are appended
at the end of this document.

2.5.3) Debug vs Release

When building QPID, you may want to change from building static debug to
static release. There are several ways to do this. Look in the tool bar
at the top of the Visual Studio window. Locate the pulldown selection box
that contains the value "Debug" or "Release". Change the value to whichever
active solution configuration you would like to produce. All built
objects/executables will be found in the subdirectories Static_Debug or
Static_Release, depending on your active solution configuration.

3) Building QPID M4 on Windows

3.1) QPID Project Files

Visual Studio uses special configuration files to identify the "solution" and
"project" parameters. These are made available in .sln and .vcproj files.
There are a smattering of these files in the M4 source tree, and more are being
added to the M5 tree as time goes on.

For QPID, look for the following:

qpid/cpp/src/qpid.sln
qpid/cpp/src/broker.vcproj
qpid/cpp/src/client.vcproj
qpid/cpp/src/common.vcproj
qpid/cpp/src/MaxMethodBodySize.vcproj

When you open the solution, you can choose to build the entire solution, or
just a project within. The executables and objects will be in Static_Release

http://rubyforge.org/frs/?group_id=167
http://www.microsoft.com/downloads/details.aspx?FamilyID=3254c868-bcb9-412c-95c6-d100c872ec60&DisplayLang=en

or Static_Debug, depending on your build settings.

Select the solution in the solution explorer pane. Right mouse click and
choose "Build Solution". When complete, you should have built the libraries
and qpidbroker.exe.

3.2) Libraries

The Windows QPID M4 build will produce 2 libraries:

qpidclients.lib
qpidcommons.lib

The Linux build will also produce a broker library. The Windows build
links the broker source objects directly into the broker, but doesn't
add them to a library. A broker library will be needed for the building
of some tests.

The build of the broker will have compiled all the source objects which
are to live in the broker library. By creating a library by hand we will
be able to link the tests that require the broker library. See libs.mk
later in this document (section 5.4.1).

Libraries are placed in cpp/src.

Our efforts don't include building the qmfconsole library yet, so no
status on that.

4) Testing AMQP from a Linux system

There isn't a "push button" build and test for Windows. In fact, in M4
there are relatively few tests that build for Windows. However, the
tests do run on Linux. The Windows broker can be tested by running the
test suites from a Linux platform.

4.1) localhost vs distributed

The test suites as they are built and run on Linux assume brokers and
tests are running on the localhost. There are a few that try to use ssh
to start and stop processes on a remote host. But, the majority of the
tests start brokers locally, look for PID files and run the tests against
the local brokers.

In order to use these tests against a remote Windows broker, some
modifications will be necessary. These changes are outlined later
in this document.

4.2) test harnesses

QPID makes use of the boost test framework for some of it's tests,
but there are a number of different tools and programming methods
used. These are:

make - Building and running the tests from the makefile.
Provides a convenient way to produce a push button QPID.
The makefiles allow selection of subsets of tests and
provide some command parameters to the test framework.

boost - Boost provides libraries and header files for
putting together test cases, test suites and overall
test execution control.

/bin/sh shell - the "bridge" between make and the test
cases is handled through shell scripts and other tools,
like valgrind and libtool. There are makefile variables
that can control how some of these tools are utilized.

python - There is a separate python directory with test
cases and test suites. These tests are initiated from
the makefile by calling a wrapper boost test case called
python_tests.

C++ - The .cpp source files in the tests directory are
the main consumers of the boost framework. They typically
provide a common command line interface that every test
shares, as well as additional options specific to the
test itself. Many of these tests have multiple test cases
within and are controlled, to some fashion, by the command
line options.

At the top level is the make file. To initiate the tests, type the

following:

make check

This will build all the QPID sources and tests. After all has been
built, the test suites are run. There are several options you can
use when using make to narrow down the running of the tests.

You can select a specific list of test suites by setting the variable
TESTS:

make check TESTS=perftest

These command line options have been helpful in isolating the various
test suites.

The makefile uses the script run_test to initiate the indicated
test. In most cases, the test being requested is front-ended by a
shell script generated during the make process.

The run_test script can pass command line options through to the
called program, but the makefile isn't set up to send much in the
way of options. Many of the lower level test programs have an option
that accepts a broker address on the command line. In some cases,
the intermediate scripts have a broker option, too.

In order to use the Linux tests against the Windows broker, the
tests have to be redirected to the remote broker address. Rather
than modify the structure of the Makefile.am file used to generate
the final makefile, the broker address can be passed to the tests
in the execution environment. The modified command line invocation
then looks like this:

BROKER="IP_Address" make check TESTS="fanout_perftest"

The run_test script can be modified to look for a broker address
environment variable. Because run_test is used to start many of
the test programs, sometimes the broker address should not to be
passed through. In particular, the broker address is not necessary
when starting and stopping localhost brokers. The run_test script
determines when to pass the broker address by looking at the program
name.

Alternatively, tests can be run directly. The fanout perftest
example can be run like this:

./perftest --summary --count 30000 --broker IP_Address \
--mode fanout --npubs 16 --nsubs 16 --size 64

The python tests can be run by changing directory to the python
test dir and using one of the following command lines:

./run-tests --skip-self-test -v -s 0-10-errata \
-I cpp_failing_0-10.txt \
-b 10.197.62.244:5672
./run-tests -v -s 0-10-errata -I cpp_failing_0-10.txt \
-b 10.197.62.244:5672
./run-tests -v -s 0-10-errata -b 10.197.62.244:5672

4.3) Changes to Linux tests

Some of the tests, or scripts that initiate the tests, have the
localhost address hardcoded, or look for a broker PID in a local
file. A majority of the changes made to allow the tests to be run
from a Linux system to a Wondows broker deal with this limitation.

The tests that were run successfully against the Windows broker
from a Linux system are:

client_test
quick_perftest
quick_topictest
python_tests
run_federation_tests
fanout_perftest
shared_perftest
multiq_perftest
topic_perftest
txtest

latencytest
echotest
benchmark

5) Building tests on Windows

The Linux test environment makes use of tools, scripts and methods
that don't work on a Windows platform. These issues will have to be
addressed before a "push button" test can be accomplished similar
to that on the Linux system.

In the mean time, the test programs can be built on a Windows platform
and run by hand. The following sections talk about this.

5.1) quick and dirty modifications

The modifications described here do not represent "best practice"
coding methodologies. They are presented for information sake.

The following files required some sort of modification to build on
Windows. A diff listing will be added to the end of this document.

cpp/src/tests/ClientSessionTest.cpp
cpp/src/tests/FieldTable.cpp
cpp/src/tests/MessageBuilderTest.cpp
cpp/src/tests/MessageTest.cpp
cpp/src/tests/QueueOptionsTest.cpp
cpp/src/tests/TimerTest.cpp
cpp/src/tests/Uuid.cpp
cpp/src/tests/logging.cpp
cpp/src/tests/perftest.cpp
cpp/src/tests/topic_listener.cpp
cpp/src/tests/topic_publisher.cpp
cpp/src/tests/unit_test.h

While the following needed modification, the have been excluded
from the build due to larger porting issues.

cpp/src/tests/ForkedBroker.h
cpp/src/tests/failover_soak.cpp
cpp/src/tests/ConsoleTest.cpp

5.2) nmake environment

A small handful of make files have been created to use on a Windows
platform to build the various test programs. The nmake utility is used
with these files to perform the compilation.

tests/libs.mk
tests/tests.mk

5.3) diff listings

==

cpp/src/tests/ClientSessionTest.cpp
38a39,44
> #if defined(_WIN32)
> # include <windows.h>
> # include <winbase.h>
> #endif
>
>
225a232,234
> #if defined(_WIN32)
> Sleep(1000);
> #else
226a236
> #endif
277a288,290
> #if defined(_WIN32)
> Sleep(2000);
> #else
278a292
> #endif
291a306,308
> #if defined(_WIN32)
> ::Sleep(300* 1);
> #else
292a310
> #endif

==

cpp/src/tests/FieldTable.cpp
25c25,27
< #include <alloca.h>
—
> #if !defined (_WIN32)
> # include <alloca.h>
> #endif

==

cpp/src/tests/MessageBuilderTest.cpp
39c39
< uint64_t id;
—
> boost::uint64_t id;
215c215
< BOOST_CHECK_EQUAL((uint64_t) 1, builder.getMessage()->getPersistenceId());
—
> BOOST_CHECK_EQUAL((boost::uint64_t) 1, builder.getMessage()->getPersistenceId());

==

cpp/src/tests/MessageTest.cpp
31c31,33
< #include <alloca.h>
—
> #if !defined (_WIN32)
> # include <alloca.h>
> #endif
81,82c83,84
< BOOST_CHECK_EQUAL((uint64_t) data1.size() + data2.size(), msg->contentSize());
< BOOST_CHECK_EQUAL((uint64_t) data1.size() + data2.size(), msg->getProperties<MessageProperties>()->getContentLength());
—
> BOOST_CHECK_EQUAL((boost::uint64_t) data1.size() + data2.size(), msg->contentSize());
> BOOST_CHECK_EQUAL((boost::uint64_t) data1.size() + data2.size(), msg->getProperties<MessageProperties>()->getContentLength());
85c87
< BOOST_CHECK_EQUAL((uint8_t) PERSISTENT, msg->getProperties<DeliveryProperties>()->getDeliveryMode());
—
> BOOST_CHECK_EQUAL((boost::uint8_t) PERSISTENT, msg->getProperties<DeliveryProperties>()->getDeliveryMode());

==

cpp/src/tests/QueueOptionsTest.cpp
24c24,26
< #include <alloca.h>
—
> #if !defined(_WIN32)
> # include <alloca.h>
> #endif

==

cpp/src/tests/TimerTest.cpp
78c78
< uint64_t difference = abs(expected - actual);
—
> uint64_t difference = abs((long)(expected - actual));

==

cpp/src/tests/Uuid.cpp
25c25,27
< #include <alloca.h>
—
> #if !defined(_WIN32)
> # include <alloca.h>
> #endif

==

cpp/src/tests/logging.cpp
25a26
> # include "qpid/log/windows/SinkOptions.h"
272a274,276
> #if defined(_WIN32)
> qpid::log::windows::SinkOptions sinks("test");
> #else
273a278

> #endif
288a294,296
> #if defined(_WIN32)
> qpid::log::windows::SinkOptions sinks("test");
> #else
289a298
> #endif
347a357,360
> #if defined(_WIN32)
> qpid::log::windows::SinkOptions *sinks =
> dynamic_cast<qpid::log::windows::SinkOptions *>(opts.sinkOptions.get());
> #else
349a363
> #endif

==

cpp/src/tests/perftest.cpp
41c41,43
< #include <unistd.h>
—
> #if !defined(_WIN32)
> # include <unistd.h>
> #endif

==

cpp/src/tests/topic_listener.cpp
43a44,46
> #if defined(_WIN32)
> # include <process.h>
> #endif

==

cpp/src/tests/topic_publisher.cpp
43c43,45
< #include <unistd.h>
—
> #if !defined(_WIN32)
> # include <unistd.h>
> #endif

==

cpp/src/tests/unit_test.h
56c56
< #if (BOOST_VERSION < 103600)
—
> #if (BOOST_VERSION <= 103600)

5.4) make files

Once the Visual Studio build has been run, the objects for the
broker are available and can be combined into a broker library.
This nmake file can be used in the tests directory to create the
library. This will be necessary to build the unit_test test suite.

From the tests directory you can run nmake with the tests.mk file
listed below to build the tests. This build file does not build
the files:

ConsoleTest.cpp
failover_soak.cpp

5.4.1) lib.mk

C89_COMPILER=C:/Program Files (x86)/Microsoft Visual Studio 9.0/VC/bin/cl.exe
C89_LINKER=C:/Program Files (x86)/Microsoft Visual Studio 9.0/VC/bin/link.exe
LINK="link.exe"

OBJEXT=.obj

INCLUDES=/I "C:/Program Files (x86)/boost/boost_1_36_0/include/103600" /I "C:/Program Files (x86)/boost/boost_1_36_0/." /I "." /I ".." /I
"../gen"
FLAGS=/D "NDEBUG" /D "WIN32" /D "_CONSOLE" /D "_CRT_NONSTDC_NO_WARNINGS" /D "NOMINMAX" /D
"WIN32_LEAN_AND_MEAN" /D "_SCL_SECURE_NO_WARNINGS" /D "_CRT_SECURE_NO_WARNINGS" /FD /EHsc /MT /W3 /c /TP
/wd4244 /wd4800 /wd4290 /wd4355

LIBS=ws2_32.lib secur32.lib rpcrt4.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib
uuid.lib odbc32.lib odbccp32.lib

LDFLAGS=/INCREMENTAL:NO /LIBPATH:"." /LIBPATH:"C:\Program Files (x86)\boost\boost_1_36_0\lib" /DEBUG
/SUBSYSTEM:CONSOLE /OPT:REF /OPT:ICF /DYNAMICBASE /NXCOMPAT /MACHINE:X86 /nologo /errorReport:prompt

RELDIR=Static_Release
ROOTDIR=C:\Users\v-vinsea\Dev\AMQP\qpid-M4\cpp\src\tests

check_PROGRAMS=
check_LTLIBRARIES=
TESTS=
EXTRA_DIST=
CLEANFILES=

.cpp$(OBJEXT):
echo $(CC) /O2 $(INCLUDES) $(FLAGS) /Fo"..\Static_Release\qmfconsole/I386//" /Fd"..\Static_Release\qmfconsole/I386/vc90.pdb" $<

broker_OBJECTS=../Static_Release/broker/I386/Acl.obj \
../Static_Release/broker/I386/Agent.obj \
../Static_Release/broker/I386/Binding.obj \
../Static_Release/broker/I386/Bridge.obj \
../Static_Release/broker/I386/Bridge2.obj \
../Static_Release/broker/I386/Broker.obj \
../Static_Release/broker/I386/Broker2.obj \
../Static_Release/broker/I386/BrokerDefaults.obj \
../Static_Release/broker/I386/BrokerSingleton.obj \
../Static_Release/broker/I386/Connection.obj \
../Static_Release/broker/I386/Connection2.obj \
../Static_Release/broker/I386/Connection3.obj \
../Static_Release/broker/I386/ConnectionFactory.obj \
../Static_Release/broker/I386/ConnectionHandler.obj \
../Static_Release/broker/I386/DeliverableMessage.obj \
../Static_Release/broker/I386/DeliveryRecord.obj \
../Static_Release/broker/I386/DirectExchange.obj \
../Static_Release/broker/I386/DtxAck.obj \
../Static_Release/broker/I386/DtxBuffer.obj \
../Static_Release/broker/I386/DtxManager.obj \
../Static_Release/broker/I386/DtxTimeout.obj \
../Static_Release/broker/I386/DtxWorkRecord.obj \
../Static_Release/broker/I386/EventAllow.obj \
../Static_Release/broker/I386/EventBind.obj \
../Static_Release/broker/I386/EventBrokerLinkDown.obj \
../Static_Release/broker/I386/EventBrokerLinkUp.obj \
../Static_Release/broker/I386/EventClientConnect.obj \
../Static_Release/broker/I386/EventClientConnectFail.obj \
../Static_Release/broker/I386/EventClientDisconnect.obj \
../Static_Release/broker/I386/EventDeny.obj \
../Static_Release/broker/I386/EventExchangeDeclare.obj \
../Static_Release/broker/I386/EventExchangeDelete.obj \
../Static_Release/broker/I386/EventFileLoadFailed.obj \
../Static_Release/broker/I386/EventFileLoaded.obj \
../Static_Release/broker/I386/EventQueueDeclare.obj \
../Static_Release/broker/I386/EventQueueDelete.obj \
../Static_Release/broker/I386/EventSubscribe.obj \
../Static_Release/broker/I386/EventUnbind.obj \
../Static_Release/broker/I386/EventUnsubscribe.obj \
../Static_Release/broker/I386/Exchange.obj \
../Static_Release/broker/I386/Exchange2.obj \
../Static_Release/broker/I386/ExchangeRegistry.obj \
../Static_Release/broker/I386/FanOutExchange.obj \
../Static_Release/broker/I386/HeadersExchange.obj \
../Static_Release/broker/I386/IncompleteMessageList.obj \
../Static_Release/broker/I386/Link.obj \
../Static_Release/broker/I386/Link2.obj \
../Static_Release/broker/I386/LinkRegistry.obj \
../Static_Release/broker/I386/ManagementBroker.obj \
../Static_Release/broker/I386/ManagementExchange.obj \
../Static_Release/broker/I386/Message.obj \
../Static_Release/broker/I386/MessageAdapter.obj \
../Static_Release/broker/I386/MessageBuilder.obj \
../Static_Release/broker/I386/MessageStoreModule.obj \
../Static_Release/broker/I386/NameGenerator.obj \
../Static_Release/broker/I386/NullMessageStore.obj \
../Static_Release/broker/I386/Package.obj \
../Static_Release/broker/I386/Package2.obj \
../Static_Release/broker/I386/PersistableMessage.obj \
../Static_Release/broker/I386/QpiddBroker.obj \
../Static_Release/broker/I386/Queue.obj \
../Static_Release/broker/I386/Queue2.obj \
../Static_Release/broker/I386/QueueBindings.obj \
../Static_Release/broker/I386/QueueCleaner.obj \
../Static_Release/broker/I386/QueueListeners.obj \

../Static_Release/broker/I386/QueuePolicy.obj \

../Static_Release/broker/I386/QueueRegistry.obj \

../Static_Release/broker/I386/RateTracker.obj \

../Static_Release/broker/I386/RecoveredDequeue.obj \

../Static_Release/broker/I386/RecoveredEnqueue.obj \

../Static_Release/broker/I386/RecoveryManagerImpl.obj \

../Static_Release/broker/I386/SaslAuthenticator.obj \

../Static_Release/broker/I386/SemanticState.obj \

../Static_Release/broker/I386/Session.obj \

../Static_Release/broker/I386/SessionAdapter.obj \

../Static_Release/broker/I386/SessionHandler.obj \

../Static_Release/broker/I386/SessionManager.obj \

../Static_Release/broker/I386/SessionState.obj \

../Static_Release/broker/I386/System.obj \

../Static_Release/broker/I386/System2.obj \

../Static_Release/broker/I386/TCPIOPlugin.obj \

../Static_Release/broker/I386/Timer.obj \

../Static_Release/broker/I386/TopicExchange.obj \

../Static_Release/broker/I386/TxAccept.obj \

../Static_Release/broker/I386/TxBuffer.obj \

../Static_Release/broker/I386/TxPublish.obj \

../Static_Release/broker/I386/Vhost.obj \

../Static_Release/broker/I386/Vhost2.obj \

../Static_Release/broker/I386/qpidd.obj

qmfconsole_OBJECTS=../Static_Release/qmfconsole/I386/ClassKey.obj

lib:
lib.exe /OUT:"../qpidbrokers.lib" $(broker_OBJECTS)

5.4.2) tests.mk
C89_COMPILER=C:/Program Files (x86)/Microsoft Visual Studio 9.0/VC/bin/cl.exe
C89_LINKER=C:/Program Files (x86)/Microsoft Visual Studio 9.0/VC/bin/link.exe
LINK="link.exe"

OBJEXT=.obj
EXEEXT=.exe

INCLUDES=/I "C:/Program Files (x86)/boost/boost_1_36_0/include/103600" /I "C:/Program Files (x86)/boost/boost_1_36_0/." /I "." /I ".." /I
"../gen"
FLAGS=/D "NDEBUG" /D "WIN32" /D "_CONSOLE" /D "_CRT_NONSTDC_NO_WARNINGS" /D "NOMINMAX" /D
"WIN32_LEAN_AND_MEAN" /D "_SCL_SECURE_NO_WARNINGS" /D "_CRT_SECURE_NO_WARNINGS" /FD /EHsc /MT /W3 /c /TP
/wd4244 /wd4800 /wd4290 /wd4355

lib_client=..\qpidclients.lib
lib_common=..\qpidcommons.lib
lib_broker=..\qpidbrokers.lib
#lib_console=..\qmfconsoles.lib
LDLIBS=..\qpidclients.lib ..\qpidcommons.lib ..\qpidbrokers.lib
LIBS=ws2_32.lib secur32.lib rpcrt4.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib
uuid.lib odbc32.lib odbccp32.lib
LDFLAGS=/INCREMENTAL:NO /LIBPATH:"." /LIBPATH:"C:\Program Files (x86)\boost\boost_1_36_0\lib" /DEBUG
/SUBSYSTEM:CONSOLE /OPT:REF /OPT:ICF /DYNAMICBASE /NXCOMPAT /MACHINE:X86 /nologo /errorReport:prompt

RELDIR=Static_Release
OBJDIR=$(RELDIR)/tests/I386
#UNIT_TEST_OBJDIR=$(RELDIR)/unit_test/I386
ROOTDIR=C:\Users\v-vinsea\Dev\AMQP\qpid-M4\cpp\src\tests

check_PROGRAMS=
check_LTLIBRARIES=
TESTS=
EXTRA_DIST=
CLEANFILES=

SOURCES=
UNIT_TEST_OBJECTS=

unit_test_SOURCES= \
ConsoleTest.cpp \
unit_test.cpp \
exception_test.cpp \
RefCounted.cpp \
SessionState.cpp Blob.cpp logging.cpp \
AsyncCompletion.cpp \
Url.cpp Uuid.cpp \
Shlib.cpp FieldValue.cpp FieldTable.cpp Array.cpp \
QueueOptionsTest.cpp \
InlineAllocator.cpp \
InlineVector.cpp \
ClientSessionTest.cpp \

SequenceSet.cpp \
StringUtils.cpp \
IncompleteMessageList.cpp \
RangeSet.cpp \
AtomicValue.cpp \
QueueTest.cpp \
AccumulatedAckTest.cpp \
DtxWorkRecordTest.cpp \
DeliveryRecordTest.cpp \
ExchangeTest.cpp \
HeadersExchangeTest.cpp \
MessageTest.cpp \
QueueRegistryTest.cpp \
QueuePolicyTest.cpp \
FramingTest.cpp \
HeaderTest.cpp \
SequenceNumberTest.cpp \
TimerTest.cpp \
TopicExchangeTest.cpp \
TxBufferTest.cpp \
TxPublishTest.cpp \
MessageBuilderTest.cpp \
ManagementTest.cpp \
MessageReplayTracker.cpp

perftest_SOURCES=perftest.cpp
txtest_SOURCES=txtest.cpp
latencytest_SOURCES=latencytest.cpp
echotest_SOURCES=echotest.cpp
client_test_SOURCES=client_test.cpp
topic_listener_SOURCES=topic_listener.cpp
topic_publisher_SOURCES=topic_publisher.cpp
publish_SOURCES=publish.cpp
consume_SOURCES=consume.cpp
header_test_SOURCES=header_test.cpp
failover_soak_SOURCES=failover_soak.cpp
declare_queues_SOURCES=declare_queues.cpp
replaying_sender_SOURCES=replaying_sender.cpp
resuming_receiver_SOURCES=resuming_receiver.cpp
txshift_SOURCES=txshift.cpp
txjob_SOURCES=txjob.cpp
receiver_SOURCES=receiver.cpp
sender_SOURCES=sender.cpp

SOURCES=$(SOURCES) $(unit_test_SOURCES)
SOURCES=$(SOURCES) $(perftest_SOURCES)
SOURCES=$(SOURCES) $(txtest_SOURCES)
SOURCES=$(SOURCES) $(latencytest_SOURCES)
SOURCES=$(SOURCES) $(echotest_SOURCES)
SOURCES=$(SOURCES) $(client_test_SOURCES)
SOURCES=$(SOURCES) $(topic_listener_SOURCES)
SOURCES=$(SOURCES) $(topic_publisher_SOURCES)
SOURCES=$(SOURCES) $(publish_SOURCES)
SOURCES=$(SOURCES) $(consume_SOURCES)
SOURCES=$(SOURCES) $(header_test_SOURCES)
#SOURCES=$(SOURCES) $(failover_soak_SOURCES)
SOURCES=$(SOURCES) $(declare_queues_SOURCES)
SOURCES=$(SOURCES) $(replaying_sender_SOURCES)
SOURCES=$(SOURCES) $(resuming_receiver_SOURCES)
SOURCES=$(SOURCES) $(txshift_SOURCES)
SOURCES=$(SOURCES) $(txjob_SOURCES)
SOURCES=$(SOURCES) $(receiver_SOURCES)
SOURCES=$(SOURCES) $(sender_SOURCES)

UNIT_TEST_OBJECTS= \
$(OBJDIR)/unit_test$(OBJEXT) \
$(OBJDIR)/exception_test$(OBJEXT) \
$(OBJDIR)/RefCounted$(OBJEXT) \
$(OBJDIR)/SessionState$(OBJEXT) \
$(OBJDIR)/Blob$(OBJEXT) \
$(OBJDIR)/logging$(OBJEXT) \
$(OBJDIR)/AsyncCompletion$(OBJEXT) \
$(OBJDIR)/Url$(OBJEXT) \
$(OBJDIR)/Uuid$(OBJEXT) \
$(OBJDIR)/Shlib$(OBJEXT) \
$(OBJDIR)/FieldValue$(OBJEXT) \
$(OBJDIR)/FieldTable$(OBJEXT) \
$(OBJDIR)/Array$(OBJEXT) \
$(OBJDIR)/QueueOptionsTest$(OBJEXT) \
$(OBJDIR)/InlineAllocator$(OBJEXT) \

1.

$(OBJDIR)/InlineVector$(OBJEXT) \
$(OBJDIR)/ClientSessionTest$(OBJEXT) \
$(OBJDIR)/SequenceSet$(OBJEXT) \
$(OBJDIR)/StringUtils$(OBJEXT) \
$(OBJDIR)/IncompleteMessageList$(OBJEXT) \
$(OBJDIR)/RangeSet$(OBJEXT) \
$(OBJDIR)/AtomicValue$(OBJEXT) \
$(OBJDIR)/QueueTest$(OBJEXT) \
$(OBJDIR)/AccumulatedAckTest$(OBJEXT) \
$(OBJDIR)/DtxWorkRecordTest$(OBJEXT) \
$(OBJDIR)/DeliveryRecordTest$(OBJEXT) \
$(OBJDIR)/ExchangeTest$(OBJEXT) \
$(OBJDIR)/HeadersExchangeTest$(OBJEXT) \
$(OBJDIR)/MessageTest$(OBJEXT) \
$(OBJDIR)/QueueRegistryTest$(OBJEXT) \
$(OBJDIR)/QueuePolicyTest$(OBJEXT) \
$(OBJDIR)/FramingTest$(OBJEXT) \
$(OBJDIR)/HeaderTest$(OBJEXT) \
$(OBJDIR)/SequenceNumberTest$(OBJEXT) \
$(OBJDIR)/TimerTest$(OBJEXT) \
$(OBJDIR)/TopicExchangeTest$(OBJEXT) \
$(OBJDIR)/TxBufferTest$(OBJEXT) \
$(OBJDIR)/TxPublishTest$(OBJEXT) \
$(OBJDIR)/MessageBuilderTest$(OBJEXT) \
$(OBJDIR)/ManagementTest$(OBJEXT) \
$(OBJDIR)/MessageReplayTracker$(OBJEXT)

$(OBJDIR)/ConsoleTest$(OBJEXT) \

TESTS=$(TESTS) $(RELDIR)/unit_test$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/perftest$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/txtest$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/latencytest$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/echotest$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/client_test$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/topic_listener$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/topic_publisher$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/publish$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/consume$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/header_test$(EXEEXT)
#TESTS=$(TESTS) $(RELDIR)/failover_soak$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/declare_queues$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/replaying_sender$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/resuming_receiver$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/txshift$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/txjob$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/receiver$(EXEEXT)
TESTS=$(TESTS) $(RELDIR)/sender$(EXEEXT)

.cpp.obj:
@mkdir -p $(RELDIR)
@mkdir -p $(OBJDIR)
$(CC) /O2 $(INCLUDES) $(FLAGS) /Fo"$(OBJDIR)//" /Fd"$(OBJDIR)/vc90.pdb" $**

all: $(SOURCES:.cpp=.obj) $(TESTS)

$(RELDIR)/perftest$(EXEEXT): {$(OBJDIR)}$(perftest_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/txtest$(EXEEXT): {$(OBJDIR)}$(txtest_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/latencytest$(EXEEXT): {$(OBJDIR)}$(latencytest_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/echotest$(EXEEXT): {$(OBJDIR)}$(echotest_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/client_test$(EXEEXT): {$(OBJDIR)}$(client_test_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/topic_listener$(EXEEXT): {$(OBJDIR)}$(topic_listener_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/topic_publisher$(EXEEXT): {$(OBJDIR)}$(topic_publisher_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/publish$(EXEEXT): {$(OBJDIR)}$(publish_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/consume$(EXEEXT): {$(OBJDIR)}$(consume_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/header_test$(EXEEXT): {$(OBJDIR)}$(header_test_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/failover_soak$(EXEEXT): {$(OBJDIR)}$(failover_soak_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/declare_queues$(EXEEXT): {$(OBJDIR)}$(declare_queues_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/replaying_sender$(EXEEXT): {$(OBJDIR)}$(replaying_sender_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/resuming_receiver$(EXEEXT): {$(OBJDIR)}$(resuming_receiver_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/txshift$(EXEEXT): {$(OBJDIR)}$(txshift_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/txjob$(EXEEXT): {$(OBJDIR)}$(txjob_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/receiver$(EXEEXT): {$(OBJDIR)}$(receiver_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/sender$(EXEEXT): {$(OBJDIR)}$(sender_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) %|pfF$(OBJEXT)

$(RELDIR)/unit_test$(EXEEXT): {$(OBJDIR)}$(unit_test_SOURCES:.cpp=.obj)
$(LINK) /OUT:$(RELDIR)/%|fF$(EXEEXT) /PDB:$(ROOTDIR)/$(RELDIR)/%|fF.pdb /MANIFEST
/MANIFESTFILE:"$(OBJDIR)%|fF$(EXEEXT).intermediate.manifest" /MANIFESTUAC:"level='asInvoker' uiAccess='false'" $(LDFLAGS)
$(LDLIBS) $(LIBS) $(UNIT_TEST_OBJECTS)

Split configuration files
Qpid 0.5 and later supports using multiple configuration files. This is useful for seperating server-wide and instance-specific configuration
settings.

The top level combined configuration file might contain the following:

<configuration>
 <system/>
 <xml fileName= />"/path/to/config"
 <xml fileName= />"/path/to/local/config"
</configuration>

The <system/> element is important to ensure proper substitution of system properties.

The file referenced by "/path/to/config" might contain:

 <broker>
 <management>
 <enabled> </enabled>true
 <ssl>
 <enabled> </enabled>true
 <keyStorePath>${prefix}/../test_resources/ssl/keystore.jks</keyStorePath>
 <keyStorePassword>password</keyStorePassword>
 </ssl>
 </management>
 </broker>

and "/path/to/local/config":

 <broker>
 <management>
 <jmxport>8999</jmxport>
 </management>
 </broker>

The values from /path/to/config would override any set in /path/to/local/config since they are defined first, but this would result in all instances
using the same keyStore and keyStorePassword without running on the same jxmport (whether this is a good idea to follow or not obviously
depends on your environment).

A more complete example can be found attached to this page:

Name Size Creator Creation Date Comment

 split-config-part1.xml 3 kB Aidan Skinner Apr 24, 2009 03:47

 split-config-master.xml 1 kB Aidan Skinner Apr 24, 2009 03:47

 split-config-part2.xml 1 kB Aidan Skinner Apr 24, 2009 06:10

Tune Broker and Client Memory Usage

Tuning the broker for your message size.

The default buffer size used per message on the broker and client is 32kb if your message is significantly smaller you can improve your
memory usage by lowering this value.

What size to use

When selecting what size of buffer to include space for any JMS Headers that may be defined (key and value). You should also include 200
bytes for the AMQP routing details, if you have very long queue or topic names you may wish to increase this value further.

How to change the buffer sizes

Broker Buffers

In your broker configuration file the socketSend/ReceiveBuffer value of 32768 is where the buffer size is specified.
Currently your configuration file will contain the following two entries:

http://cwiki.apache.org/confluence/download/attachments/115465/split-config-part1.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115465/split-config-master.xml
http://cwiki.apache.org/confluence/display/~aidan
http://cwiki.apache.org/confluence/download/attachments/115465/split-config-part2.xml
http://cwiki.apache.org/confluence/display/~aidan

<connector>
 ...
 32768<socketReceiveBuffer> </socketReceiveBuffer>
 32768<socketSendBuffer> </socketSendBuffer>
</connector>

Modifying these will adjust the size of the ByteBuffers used in conjunction with the socket.

Client Buffers

Adjusting the client buffers can also assist your client heap management if you are prefetching a large number of messages.
However, adjusting this will not have any affect on the broker's memory usage.
If you also want to modify the client buffer size then there are two system properties that need set:

amqj.sendBufferSize
amqj.receiveBufferSize

These need to be set prior to making the initial connection.
For more details on these properties see: System Properties

Use Last Value Queues (LVQ)

General Information

The Qpid 0.7 release introduces Last Value Queues (LVQs) into the Java Messaging Broker. The LVQ implementation in the Java Broker
provides a superset of the behaviour of the LVQ in the C++ Broker. It is hoped that later revisions of the C++ Broker will adopt the same
enhanced semantics.

LVQ Semantics

In an LVQ messages in the queue are be "replaced" by newer messages having the same value for some specified header. An example of
an LVQ might be where a queue representing prices on a stock exchange: when you first consume from the queue you get the latest quote
for each stock, and then as new prices come in you are sent only these updates.

Like other queues, LVQs can either be browsed or consumed from. When browsing an individual subscriber does not remove the message
from the queue when receiving it. This allows for many subscriptions to browse the same LVQ (i.e. you do not need to create and bind a
separate LVQ for each subscriber who wishes to receive the contents of the LVQ).

Defining LVQs

You must define an LVQ specifically before you start to use it. You cannot subsequently change a queue to/from an LVQ (without deleting it
and re-creating). Also note that a queue cannot be both an LVQ and a Priority Queue. If a queue is defined with both LVQ and Priority Queue
attributes, it will only take on an LVQ nature.

You define a queue as an LVQ in the virtualhost configuration file, which the broker loads at startup. When defining the queue, add a
<lvq>true</lvq> element. Without any further configuration this will define an LVQ which uses the header "qpid.LVQ_key" as the key for
replacement. If you wish to define your own key then you can do so using the <lvqKey> element (e.g. <lvqKey>myKey</lvqKey> will use the
header "myKey" as the replacement key).

<queue>
 test<name> </name>
 <test>
 amq.direct<exchange> </exchange>
 true<lvq> </lvq>
 ISIN<lvqKey> </lvqKey>
 </test>
</queue>

LVQs can also be declared by setting arguments in the Queue.Declare AMQP command.

 Map< , > arguments = HashMap< , >();String Object new String Object
 arguments.put(,);"qpid.last_value_queue" true
 arguments.put(,);"qpid.last_value_queue_key" "key"
 ((AMQSession) session).createQueue(queueName, autoDelete, durable, exclusive, arguments);

Receiving messages from an LVQ

When receiving messages from an LVQ you may wish to change the default pre-fetch setting for your client. With a large pre-fetch value
message will be sent from the queue as soon as they arrive, and then be buffered on the client. This may lead to cases where newer
versions of messages are buffered behind older versions within the client. With a lower pre-fetch value the broker has an opportunity to
replace older versions of the message with newer versions before sending to the client.

Set low pre-fetch

Qpid clients receive buffered messages in batches, sized according to the pre-fetch value. The current default is 5000.

In order to set pre-fetch set the java system property max_prefetch on the client environment (using -D) before creating your consumer.

Setting the Qpid pre-fetch to 1 for your client means that message conflation will be honoured by the Qpid broker as it dispatches messages
to your client. A default for all client connections can be set via a system property:

-Dmax_prefetch=1

The prefetch can be also be adjusted on a per connection basis by adding a 'maxprefetch' value to the connection url

amqp://guest:guest@client1/development?maxprefetch='1'&brokerlist='tcp://localhost:5672'

There is a slight performance cost here if using the receive() method and you could test with a slightly higher pre-fetch (up to 10) if the
trade-off between throughput and conflation is weighted towards the former for your application. (If you're using OnMessage() then this is not
a concern.)

Implication of low pre-fetch

If you are using the receive() method to consume messages then you should also only use one consumer per session. If you're using
onMessage() then this is not a concern.

Browsing an LVQ from Java

One way to use an LVQ is to have a single queue which receives all updates, and many subscribers which only "browse" the queue without
actually consuming messages. Unfortunately the standard JMS MessageBrowser is not suitable for this use case as it closes at the point
where there are no more updates to be received. Instead we wish to use a browser more like a standard QueueReceiver, but with the caveat
that the receiver is not actually consuming messages from the queue.

To do this we can specify in the URL for a destination that any created consumer should be browse only, e.g.:

direct://amq.direct//myqueue?browse=' 'true

Note that browsing will only work on consumers in NO_ACKNOWLEDGE mode.

Browsing an LVQ from .net

To allow the creation of a "consumer" in browse-only mode from the AMQP 0-8 .net client the following method has been added to the API
for IChannel:

 IMessageConsumer CreateConsumer(string queueName,
 prefetchLow,int
 prefetchHigh,int
 bool noLocal,
 bool exclusive,
 bool browse);

where passing browse as true will get the desired behaviour.

Similarly the following method has been added to MessageConsumerBuilder:

 MessageConsumerBuilder WithBrowse(bool browse)public

Note that browsing will only work on consumers in NO_ACKNOWLEDGE mode.

Use Priority Queues

General Information

The Qpid M3 release introduces priority queues into the Java Messaging Broker, supporting JMS clients who wish to make use of priorities in
their messaging implementation.

There are some key points around the use of priority queues in Qpid, discussed in the sections below.

Defining Priority Queues

You must define a priority queue specifically before you start to use it. You cannot subsequently change a queue to/from a priority queue
(without deleting it and re-creating).

You define a queue as a priority queue in the virtualhost configuration file, which the broker loads at startup. When defining the queue, add a
<priority>true</priority> element. This will ensure that the queue has 10 distinct priorities, which is the number supported by JMS.

If you require fewer priorities, it is possible to specify a <priorities>int</priorities> element (where int is a valid integer value between 2 and 10
inclusive) which will give the queue that number of distinct priorities. When messages are sent to that queue, their effective priority will be
calculated by partitioning the priority space. If the number of effective priorities is 2, then messages with priority 0-4 are treated the same as
"lower priority" and messages with priority 5-9 are treated equivalently as "higher priority".

<queue>
 test<name> </name>
 <test>
 amq.direct<exchange> </exchange>
 true<priority> </priority>
 </test>
</queue>

Client configuration/messaging model for priority queues

There are some other configuration & paradigm changes which are required in order that priority queues work as expected.

Set low pre-fetch

Qpid clients receive buffered messages in batches, sized according to the pre-fetch value. The current default is 5000.

However, if you use the default value you will probably see desirable behaviour with messages of different priority. This is because anot
message arriving after the pre-fetch buffer has filled will not leap frog messages of lower priority. It will be delivered at the front of the next
batch of buffered messages (if that is appropriate), but this is most likely NOT what you need.

So, you need to set the prefetch values for your client (consumer) to make this sensible. To do this set the java system property
max_prefetch on the client environment (using -D) before creating your consumer.

Setting the Qpid pre-fetch to 1 for your client means that message priority will be honoured by the Qpid broker as it dispatches messages to
your client. A default for all client connections can be set via a system property:

-Dmax_prefetch=1

The prefetch can be also be adjusted on a per connection basis by adding a 'maxprefetch' value to the connection url

amqp://guest:guest@client1/development?maxprefetch='1'&brokerlist='tcp://localhost:5672'

There is a slight performance cost here if using the receive() method and you could test with a slightly higher pre-fetch (up to 10) if the
trade-off between throughput and prioritisation is weighted towards the former for your application. (If you're using OnMessage() then this is
not a concern.)

Single consumer per session

If you are using the receive() method to consume messages then you should also only use one consumer per session with priority queues. If
you're using OnMessage() then this is not a concern.

Use Producer Flow Control

General Information

The Qpid 0.6 release introduces a simplistic producer-side flow control mechanism into the Java Messaging Broker, causing producers to be
flow-controlled when they attempt to send messages to an overfull queue.

Configuring a Queue to use flow control

Flow control is enabled on a producer when it sends a message to a Queue which is "overfull". The producer flow control will be rescinded
when all Queues on which a producer is blocking become "underfull". A Queue is defined as overfull when the size (in bytes) of the

messages on the queue exceeds the "capacity" of the Queue. A Queue becomes "underfull" when its size becomes less than the
"flowResumeCapacity".

<queue>
 test<name> </name>
 <test>
 amq.direct<exchange> </exchange>
 10485760 <capacity> </capacity> <!-- set the queue capacity to 10Mb -->
 8388608 <flowResumeCapacity> </flowResumeCapacity> <!-- set the resume capacity to 8Mb -->
 </test>
</queue>

The default for all queues on a virtual host can also be set

<virtualhosts>
 <virtualhost>
 localhost<name> </name>
 <localhost>
 10485760 <capacity> </capacity> <!-- set the queue capacity to 10Mb
-->
 8388608 <flowResumeCapacity> </flowResumeCapacity> <!-- set the resume capacity to 8Mb
-->
 </localhost>
 </virtualhost>
</virtualhosts>

Where no flowResumeCapacity is set, the flowResumeCapacity is set to be equal to the capacity. Where no capacity is set, capacity is
defaulted to 0 meaning there is no capacity limit.

Client impact and configuration

If a producer sends to a queue which is overfull, the broker will respond by instructing the client not to send any more messages. The impact
of this is that any future attempts to send will block until the broker rescinds the flow control order.

While blocking the client will periodically log the fact that it is blocked waiting on flow control.

WARN AMQSession - Broker enforced flow control has been enforced
WARN AMQSession - Message send delayed by 5s due to broker enforced flow control
WARN AMQSession - Message send delayed by 10s due to broker enforced flow control

After a set period the send will timeout and throw a JMSException to the calling code.

ERROR AMQSession - Message send failed due to timeout waiting on broker enforced flow control

If such a JMSException is thrown, the message will not be sent to the broker, however the underlying Session may still be active - in
particular if the Session is transactional then the current transaction will not be automatically rolled back. Users may choose to either attempt
to resend the message, or to rollback any transactional work and close the Session.

Both the timeout delay, and the periodicity of the warning messages can be set using java system properties. The amount of time (in
milliseconds) to wait before timing out is controlled by the property qpid.flow_control_wait_failure (the default is 120000 - which is two
minutes), the frequency at which the log message informing that the producer is flow controlled is sent is controlled by the system property
qpid.flow_control_wait_notify_period: the default value is 5000 milliseconds (i.e. 5 seconds).

Adding the following to the command line to start the client would result in a timeout of one minute, with warning messages every ten
seconds:

-Dqpid.flow_control_wait_failure=60000
-Dqpid.flow_control_wait_notify_period=10000

Older Clients

This feature was added for the 0.6 releaase of the Java Broker. If an older client connects to the broker then the flow control commands will
be ignored and they will not be blocked. So to fully benefit from this new feature both Client and Broker need to be at least version 0.6.

Broker Log Messages

There are four new Broker log messages that may occur if flow control through queue capacity limits is enabled.

Firstly, when a capacity limited queue becomes overfull, a log message similar to the following is produced

MESSAGE [vh(/test)/qu(MyQueue)] [vh(/test)/qu(MyQueue)] QUE-1003 : Overfull : Size : 1,200 bytes,
Capacity : 1,000

Then for each channel which becomes blocked upon the overful queue a log message similar to the following is produced:

MESSAGE [con:2(guest@anonymous(713889609)/test)/ch:1]
[con:2(guest@anonymous(713889609)/test)/ch:1] CHN-1005 : Flow Control Enforced (Queue MyQueue)

When enough messages have been consumed from the queue that it becomes underfull, then the following log is generated:

MESSAGE [vh(/test)/qu(MyQueue)] [vh(/test)/qu(MyQueue)] QUE-1004 : Underfull : Size : 600 bytes,
Resume Capacity : 800

And for every channel which becomes unblocked you will see a message similar to:

MESSAGE [con:2(guest@anonymous(713889609)/test)/ch:1]
[con:2(guest@anonymous(713889609)/test)/ch:1] CHN-1006 : Flow Control Removed

Obviously the details of connection, virtual host, queue, size, capacity, etc would depend on the configuration in use.

Qpid Java Run Scripts

Qpid Java Broker Run Scripts
The following scripts are used to run the Qpid broker:

qpid-server
qpid-server.bat
qpid-run

These scripts are described in more detail below.

qpid-server

Overview

This script starts the Qpid Java Broker on Linux/Solaris/Cygwin platforms.

It is extremely simple, delegating the real work to the qpid-run script.

In fact, all it really provides is the main class to execute and passes through any command line arguments to qpid-run i.e.

. qpid-run org.apache.qpid.server.Main "$@"

qpid-server.bat

Overview

This script starts the Qpid Java Broker on Windows platforms. It provides a limited version of the qpid-run functionality, though is not nearly
as sophisticated i.e. does not support run arguments or the full set of argument variables.

However, it does support the following features:

validates that JAVA_HOME is set
validates that QPID_HOME is set
passes any command line arguments to the main broker class
supports the use of QPID_OPTS to pass through java system properties

Note that a JIRA exists for enhancing the features this script supports http://issues.apache.org/jira/browse/QPID-168

qpid-run

Overview

The qpid-run script allows the calling program to run any given command, and provides a flexible surround supporting configurable runtime
arguments for the script itself, the broker and java arguments.

Environment Variables and Defaulting

The variables noted below are used by the qpid-run script. Any default value used if not

specified is noted below.

Variable Description Default

QPID_HOME Used as root for installed application path. Mandatory that users set this None

QPID_WORK Used as root for any working directories to which the Qpid broker writes, for
logging and bdb etc

Current User's Homedir

AMQJ_LOGGING_LEVEL Logging level for broker code info

QPID_LOG_PREFIX Used as a prefix for qpid broker log, see FAQ for more details None

QPID_LOG_SUFFIX Used as a suffix for qpid broker log, see FAQ for more details None

JPDA_OPTS If set and -run:jpda argument provided used for debugging props, see below None

QPID_OPTS Use to pass custom system properties, including management console connection

info

None

JAVA_OPTS Use to pass custom Java options, for example gc options etc None

Run Arguments

You can provide run arguments to the qpid-run script using the syntax

-run:argument

The table below provides details of the available arguments.

Argument Description

debug Prints classpath and command before running it

jpda Adds remote debugging info using JPDA_OPTS. Use JPDA_TRANSPORT and JPDA_ADDRESS to

customize, JPDA_OPTS to override

external-classpath Valid values are: ignore, first, last and only. See below for more info

print-classpath Prints classpath before running command

help Prints Usage information

Qpid Troubleshooting Guide
Contents

I'm getting a java.lang.UnsupportedClassVersionError when I try to start the broker. What does this mean ?
I'm having a problem binding to the required host:port at broker startup ?
I'm having problems with my classpath. How can I ensure that my classpath is ok ?
I can't get the broker to start. How can I diagnose the problem ?
When I try to send messages to a queue I'm getting a error as the queue does not exist. What can I do ?

I'm getting a java.lang.UnsupportedClassVersionError when I try to start the broker. What does this
mean ?

The QPID broker requires JDK 1.5 or later. If you're seeing this exception you don't have that version in your path. Set JAVA_HOME to the
correct version and ensure the bin directory is on your path.

java.lang.UnsupportedClassVersionError: org/apache/qpid/server/Main (Unsupported major.minor version 49.0)

http://issues.apache.org/jira/browse/QPID-168

at java.lang.ClassLoader.defineClass(Ljava.lang.String;[BIILjava.security.ProtectionDomain;)Ljava.lang.Class;(Unknown Source)
at
java.security.SecureClassLoader.defineClass(Ljava.lang.String;[BIILjava.security.CodeSource;)Ljava.lang.Class;(SecureClassLoader.java:123)

at java.net.URLClassLoader.defineClass(Ljava.lang.String;Lsun.misc.Resource;)Ljava.lang.Class;(URLClassLoader.java:251)
at
java.net.URLClassLoader.access$100(Ljava.net.URLClassLoader;Ljava.lang.String;Lsun.misc.Resource;)Ljava.lang.Class;(URLClassLoader.java:55)

at java.net.URLClassLoader$1.run()Ljava.lang.Object;
(URLClassLoader.java:194)
at
jrockit.vm.AccessController.do_privileged_exc(Ljava.security.PrivilegedExceptionAction;Ljava.security.AccessControlContext;I)Ljava.lang.Object;(Unknown
Source)
at
jrockit.vm.AccessController.doPrivileged(Ljava.security.PrivilegedExceptionAction;Ljava.security.AccessControlContext;)Ljava.lang.Object;(Unknown
Source)
at java.net.URLClassLoader.findClass(Ljava.lang.String;)Ljava.lang.Class;(URLClassLoader.java:187)
at java.lang.ClassLoader.loadClass(Ljava.lang.String;Z)Ljava.lang.Class; (Unknown Source)
at sun.misc.Launcher$AppClassLoader.loadClass(Ljava.lang.String;Z)Ljava.lang.Class;(Launcher.java:274)
at java.lang.ClassLoader.loadClass(Ljava.lang.String;)Ljava.lang.Class;
(Unknown Source)
at java.lang.ClassLoader.loadClassFromNative(II)Ljava.lang.Class;
(Unknown Source)

I'm having a problem binding to the required host:port at broker startup ?

This error probably indicates that another process is using the port you the broker is trying to listen on. If you haven't amended the default
configuration this will be 5672. To check what process is using the port you can use 'netstat -an |grep 5672'.

To change the port your broker uses, either edit the config.xml you are using. You can specify an alternative config.xml from the one
provided in /etc by using the -c flag i.e. qpid-server -c <my config file path>.

You can also amend the port more simply using the -p option to qpid-server i.e. qpid-server -p <my port number'

I'm having problems with my classpath. How can I ensure that my classpath is ok ?

When you are running the broker the classpath is taken care of for you, via the manifest entries in the launch jars that the qpid-server
configuration file adds to the classpath.

However, if you are running your own client code and experiencing classspath errors you need to ensure that the client-launch.jar from the
installed Qpid lib directory is on your classpath. The manifest for this jar includes the common-launch.jar, and thus all the code you need to
run a client application.

I can't get the broker to start. How can I diagnose the problem ?

Firstly have a look at the broker log file - either on stdout or in $QPID_WORK/log/qpid.log or in $HOME/log/qpid.log if you haven't set
QPID_WORK.

You should see the problem logged in here via log4j and a stack trace. Have a look at the other entries on this page for common problems. If
the log file includes a line like:

"2006-10-13 09:58:14,672 INFO [main] server.Main (Main.java:343) - Qpid.AMQP listening on non-SSL address 0.0.0.0/0.0.0.0:5672"

... then you know the broker started up. If not, then it didn't.

When I try to send messages to a queue I'm getting a error as the queue does not exist. What can I
do ?

In Qpid queues need a consumer before they really exist, unless you have used the virtualhosts.xml file to specify queues which should
always be created at broker startup. If you don't want to use this config, then simply ensure that you consume first from queue before staring
to publish to it. See the entry on our for more details of using the virtualhosts.xml route.Qpid Java FAQ

Release Plans
Currently we have tentative plans for the following releases of the Qpid Java Broker & Client:

M1 - November 2006

The content for this release is available via our JIRA release notes:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12312115&styleName=Html&projectId=12310520

M2 - December 2006

Details of content tbc shortly.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12312115&styleName=Html&projectId=12310520

roadmap
looking to pitch in Note that this page only lists what has been added in each release

At some point we should get a full list of features published. If you don't see something, mail the list and ask. goodusers@qpid.apache.org

chance we can do it

M4 Adds the following Features - Current release

.NET, WCF and excel support for AMQP 0-10
SSL added for C++ broker and all clients
Windows port for C++ client & broker
Solaris port for C++ client & broker
C++ Broker

ACL
Active-Active clustering
Federation, push bridges & dynamic routes
RDMA for C++ broker & C++ client (70-80us, yes us max latency on a well setup machines)
support for message TTL
Queue options

added RING/ STRICT ring
LVQ

Exchange options
LVE
message sequencing

XQuery based XML Exchange now as plugin
Performance work
Management for AMQP 0-10

QMF C updates
Python
C++

QMF Agent
C++

QMan JMX bridge for QMF
Alerts/ logger for QMF events

JMSXUserId
Java broker

Message Priority
bug fixes
some prep work for AMQP 0-10

M3 This release implements the AMQP 0-9 & AMQP 0-10 protocol versions

Top level themes for this release:

C++ broker supporting AMQP 0-10
C++ client supporting AMQP 0-10
Java Client support AMQP 0-9 (M2.1) and AMQP 0-10
Python Client supporting AMQP 0-9 (M2.1) and AMQP 0-10 (in addition to older versions)
Landed the 0-10 infra for Java Broker
Federation static routes
Solaris Client C++ support
bug fixes
QMF for C++ / Python.

JIRA for M3:

http://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&sorter/order=DESC&sorter/field=priority&resolution=-1&pid=12310520&fixfor=12312117

M2.1

M2.1 is a maintainer release for the M2 code branch. The detailed breakdown of JIRA's for M2.1 can be found here:

This release implements the the AMQP 0-9 protocol version

http://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&sorter/order=DESC&sorter/field=priority&resolution=-1&pid=12310520&fixfor=12312720

looking to pitch in
Best way to get involved is mail and say, "want to help, and state your interests"dev@qpid.apache.org

Want needs to get done (the short term/ short list)

Theme Item component who

Performance

http://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&sorter/order=DESC&sorter/field=priority&resolution=-1&pid=12310520&fixfor=12312117
http://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&sorter/order=DESC&sorter/field=priority&resolution=-1&pid=12310520&fixfor=12312720

 increase fanout performance c++

 increase per-connection throughput c++

 Shared memory transport c++

Broker 'model'

 Selectors c++

 queue policies **1 c++

 Priorities c++

 PB exchange c++

Security

 SASL authentication (kerb) python

 SASL authentication (kerb) java

 SASL encryption (kerb) python

 SASL encryption (kerb) java

 SASL encryption (kerb) .net

 SASL encryption & authentication inter broker links

 Tests for federation and clustering with all transport and security options c++

 SELinux ACL delegation c++

Clustering

 Session resume across all client

 Processing updates to known broker urls python and ruby

 auto detect restart durable stores for cluster c++

Management

 more stats (e.g. avg/min/max queue 'latencies') c++

 configurable alerts for e.g. hitting preset queue limits c++

 more flexible logging (more useful to end user) c++

 QMF agents for missing clients java, python, .net

 QMF console API for .net

 JMX -> QMF bridge java

 qpid-queue-tool python

Builds

 c++ on windows (per steve) c++

 complete solaris c++

 default IO for other OS's ? c++

Future Proofing

 High level API design work All client

 ABI computability strategy c++

 .Net test coverage and API review (WCF/QMF) .net

Interop

 0-10 for Java broker java

 Updated IO layer for Java broker java

Miscellaneous

 test card iwarp support for RDMA c++

1.
2.

 ASL licensed RDMS DB store c++

**1

allow for killing (slow) consumer, rather than producer – python cmd line tool?
dequeue when all current browsers have received message (more efficient topic, also represents a step towards 1.0 model)

Target Features/work areas for Qpid 0.5

Kerberos Auth and encryption from all clients – in progress
A-A Cluster support from all clients
RT JVM Thread support for Java — done
DR links for stand-alone and clustered brokers — done
Producer side flow control — done
Updated IO layer for Java
Shared memory transport
.NET test coverage
Windows client build from cmd line.
AMQP-MGMT to WS-DM and JMX bridge committed (QMan) – mostly done
IP address /Hostname access control to virtualhosts (Java broker)

scratch list of stuff to help with

You can also look in JIRA under the starter section.

Here are some additional things... The following are nice task to pick up for new committers, (Please mail the list if you have interest in doing
any of these)

Creation of Perl Client — Nice task to start on
Integrating AMQP-MGMT into the Java broker
Writing examples and getting started pages — Nice task to start on

Help update this site — Nice task to start on
Profiling for performance improvements
Spring integration

JCA / App server integrations
C++ broker

Message Priority
Selectors
Lock Free queue implementation

Java broker
Transparent 0.8/0.9/.10 support in the Java broker
Add Flow To Disk
Message Federation for Java (Fan out & forward to remote queue) – look at C++ broker and impl in Java (might need to
wait for 0-10 (M4))
Flow control - throttling of overactive producers – might need 0-10 (M4)

Sustained Tests

Pub/Sub Sustained Tests

We currently have one sustained test for pub / sub messaging. The test is based on the interop testing framework and as such there are two
classes that are involve.

org.apache.qpid.sustained.TestClient
org.apache.qpid.sustained.TestCoordinator

As with the the Test Coordinator collects various clients to work on the specified test. The sustained test suit currently only[Interop Tests]
has one test which is the SustainedTestClient.

SustainedTestClient Test

This test is a pub/sub test. There is a single publisher that sends batches of messages to a known topic. The clients then receive these
messages and report the time required to retrive all of the batch. This reported time is sent to the publisher so that it can adjust its publication
rate to ensure that messages are sent at a rate that all clients can maintain.

Usage

The coordinator can take a number of parameters.

numReceives (Default : 2)
This is the number of receivers each client node should create
batchSize (Default : 1000)
This is the number of messages to send per batch
ackMode (Default : 1 - AUTO_ACK)
The acknowledgement mode to use. Currently No_ack (257) appears not to work correctly.

The client can take the following system parameters (set via -D properties)
(These values should be moved to the Coordinator so that you do not need to guess which client will become the sender as these values are
only of use to the sending client.)

sleepPerMessage (Default : false)
Divides the current _delay value into small sleeps between messages. Useful if your Thread.sleep implementation works at the
nanosecond level. Under windows the smallest sleep value is around 10ms.
warmUpBatches (Default : 10)
Adjusts the number of batches sent before resetting the delay calculations.
stableReportCount (Default : 5)
The number of reports that need to arrive without changing the delay before reporting the delay is stable.
batchVariance (Default : 3)
The difference between the batch number sent and the received batch number.

The client also has one additional parameter.

"-j" can be used to join an existing test run. Dispite there being only one test case at present this class must be provided as future
sustained test classes may be available.

java -cp <qpid.jar> org.apache.qpid.sustained.TestClient -n client2 -j
org.apache.qpid.performance.sustainedrate.SustainedTestClient

It is important to remember that each cilent must be uniquly named for the test to accurately work. This can be done by ensuring that all
clients specify a unique "-n" value. So running

java -cp <qpid.jar> org.apache.qpid.sustained.TestClient -n client2

Will correctly name the client 'client2' and attempt to joint the client to any running SustainedTestClient test. If there is no test running then
the client will simply wait for the test to start.

System Properties

Explanation of System properties used in Qpid

This page documents the various System Properties that are currently used in the Qpid Java code base.

Client Properties
STRICT_AMQP

Features disabled by STRICT_AMQP
STRICT_AMQP_FATAL
IMMEDIATE_PREFETCH
amqj.default_syncwrite_timeout
amq.dynamicsaslregistrar.properties
amqj.heartbeat.timeoutFactor
amqj.tcpNoDelay
amqj.sendBufferSize
amqj.receiveBufferSize
amqj.protocolprovider.class
amqj.protocol.logging.level
jboss.host
jboss.port
amqj.MaximumStateWait

Management Properties
security
jmxconnector
timeout

Properties used in Examples
archivepath

Client Properties

STRICT_AMQP

Type : boolean
Default : FALSE
This forces the client to only send AMQP compliant frames. This will disable a number of JMS features.

Features disabled by STRICT_AMQP

Queue Browser
Message Selectors
Durable Subscriptions

Session Recover may result in duplicate message delivery
Destination validation, so no InvalidDestinationException will be thrown

This is associated with property STRICT_AMQP_FATAL

STRICT_AMQP_FATAL

Type : boolean
Default : FALSE

This will cause any attempt to utilise an enhanced feature to throw and UnsupportedOperationException. When set to false then the
exception will not occur but the feature will be disabled.

e.g.
The Queue Browser will always show no messages.
Any message selector will be removed.

IMMEDIATE_PREFETCH

Type : boolean
Default : FALSE

The default with AMQP is to start prefetching messages. However, with certain 3rd party Java tools, such as Mule this can cause a problem.
Mule will create a consumer but never consume from it so any any prefetched messages will be stuck until that session is closed. This
property is used to re-instate the default AMQP behaviour. The default Qpid behaviour is to prevent prefetch occurring, by starting the
connection Flow Controlled, until a request for a message is made on the consumer either via a receive() or setting a message listener.

amqj.default_syncwrite_timeout

Type : long
Default: 30000
The number length of time in millisecond to wait for a synchronous write to complete.

amq.dynamicsaslregistrar.properties

Type : String
Default: org/apache/qpid/client/security/DynamicSaslRegistrar.properties
The name of the SASL configuration properties file.

amqj.heartbeat.timeoutFactor

Type : float
Default : 2.0
The factor used to get the timeout from the delay between heartbeats

amqj.tcpNoDelay

Type : boolean
Default : TRUE
Disable Nagle's algorithm on the TCP connection.

amqj.sendBufferSize

Type : integer
Default : 32768
This is the default buffer sized created by Mina.

amqj.receiveBufferSize

Type : integer
Default : 32768
This is the default buffer sized created by Mina.

amqj.protocolprovider.class

Type : String
Default : org.apache.qpid.server.protocol.AMQPFastProtocolHandler
This specifies the default IoHandlerAdapter that represents the InVM broker. The IoHandlerAdapter must have a constructor that takes a
single Integer that represents the InVM port number.

amqj.protocol.logging.level

Type : boolean
Default : null
If set this will turn on protocol logging on the client

jboss.host

Used by the JBossConnectionFactoryInitialiser to specify the host to connect to perform JNDI lookups.

jboss.port

Used by the JBossConnectionFactoryInitialiser to specify the port to connect to perform JNDI lookups.

amqj.MaximumStateWait

Default : 30000
Used to set the maximum time the State Manager should wait before timing out a frame wait.

Management Properties

security

Default: null
String representing the Security level to be used to on the connection to the broker. The null default results in no security or PLAIN. When
used with jmxconnector 'javax.management.remote.jmxmp.JMXMPConnector' a security value of 'CRAM-MD5' will result in all
communication to the broker being encrypted.

jmxconnector

Default: null
String representing the JMXConnector class used to perform the connection to the broker. The null default results in the standard JMX
connector. Utilising 'javax.management.remote.jmxmp.JMXMPConnector' and security 'CRAM-MD5' will result in all communication to the
broker being encrypted.

timeout

Default: 5000
Long value representing the milli seconds before connection to the broker should timeout.

Properties used in Examples

archivepath

Used in : FileMessageDispatcher
This properties specifies the directory to move payload file(s) to archive location as no error

URL Formats

URL Format for connections and binding

There are currently two formats implemented in the Java code base. One is for connection and the other is an exchange binding URL. The
URL formats have been designed around the Java URI format. This allows the parsing majority of the parsing work to be handled for us.

Connection URL Format - The format used to describe a connection.
BindingURLFormat - The format used for creating bindings within and to a broker.

The C++ broker uses a different connection URL format and has no binding URL format.

There is a new to define a single format for Qpid and also is being submitted to the AMQP working group forUrl Format Proposal
standardization.

0.10 Connection URL Format

qpid:[<property>=<value>[;<property>=<value>]]@<transport>:<host>[:<port>]

Currently handled properties

Option Default Description

virtualhost "" Set the virtual host to be used (this is currently not supported by the 0.10 c++ broker

username guest The user name for the client.

password guest The password used for creating a connection.

client_id auto-generated The client identifier used for creating a connection.

Currently handled transports

Currently only 'tcp' transport is supported. 'tls' will however be supported and additional properties like 'keystore' and 'keystorelocation' will be
added. The 'vm' transport should also be supported when a 0.10 Java broker will be available.

Option Default Description

tcp true Use a TCP connection

tls false Use a tls connection

Host port

The default host port used is 5672 for 'tcp'.

Failover

It is planned to introduce a failover property for controlling how failover occurs when presented with a list of brokers. This is however not yet
supported.

Sample URLs

qpid:@tcp:myHost
qpid:client_id=myClientIDpassword=myPassword;username=myUsername@tcp:myHost:5644

BindingURLFormat

<Exchange Class>://<Exchange
Name>/[<Destination>]/[<Queue>][?<option>='<value>'[&<option>='<value>']]

This URL format is used for two purposes in the code base. The broker uses this in the XML configuration file to create and bind queues at
broker startup. It is also used by the client as a destination.

This format was used because it allows an explicit description of exchange and queue relationship.

The Exchange Class is not normally required for client connection as clients only publish to a named exchange however if exchanges are
being dynamically instantiated it will be required. The class is required for the server to instantiate an exchange.

There are a number of options that are currently defined:

Option type Description

exclusive boolean Is this an exclusive connection

autodelete boolean Should this queue be deleted on client disconnection

durable boolean Create a durable queue

clientid string Use the following client id

subscription boolean Create a subscription to this destination

routingkey string Use this value as the routing key

Using these options in conjunction with the Binding URL format should allow future expansion as new and custom exchange types are
created.

The URL format requires Queue or routingkey option be present on the URL.that at least one

The routingkey would be used to encode a topic as shown in the examples section below.

Examples

Queues

A queue can be created in QPID using the following URL format.

direct://amq.direct//<Queue Name>

For example: direct://amq.direct//simpleQueue

Queue names may consist of any mixture of digits, letters, and underscores.

Topics

A topic can be created in QPID using the following URL format.

topic://amq.topic/<Topic Subscription>/

The topic subscription may only contain the letters A-Z and a-z and digits 0-9.

direct://amq.direct/SimpleQueue
direct://amq.direct/UnusuallyBoundQueue?routingkey='/queue'
topic://amq.topic?routingkey='stocks.#'
topic://amq.topic?routingkey='stocks.nyse.ibm'

Connection URL Format

Format

amqp://[<user>:<pass>@][<clientid>]<virtualhost>[?<option>='<value>'[&<option>='<value>']]

The connection url defines the values that are common across the cluster of brokers. The virtual host is second in the list as the AMQP
specification demands that it start with a '/' otherwise it be more readable to be swapped with clientid. There is currently only one required
option and that is the option. In addition the following options are recognised.brokerlist

Worked Example

You could use a URL which looks something like this:

amqp://guest:guest@client1/development?brokerlist='tcp://localhost:5672'

Breaking this example down, here's what it all means:

amqp = the protocol we're using

guest:guest@localhost = username:password@clientid where the clientid is the name of your server (used under the covers but don't worry
about this for now). Always use the guest:guest combination at the moment.

development = the name of the virtualhost, where the virtualhost is a path which acts as a namespace. You can effectively use any value
here so long as you're consistent throughout. The virtualhost must start with a slash "/" and continue with names separated by slashes. A
name consists of any combination of at least one of [A-Za-z0-9] plus zero or more of [.-_+!=:].

brokerlist = this is the host address and port for the broker you want to connect to. The connection factory will assume tcp if you don't specify
a transport protocol. The port also defaults to 5672. Naturally you have to put at least one broker in this list.

This example is not using failover so only provides one host for the broker. If you do wish to connect using failover you can provide two (or
more) brokers in the format:

brokerlist='tcp://host1&tcp://host2:5673'

The default failover setup will automatically retry each broker once after a failed connection. If the brokerlist contains more than one server
then these servers are tried in a round robin. Details on how to modifiy this behaviour will follow soon !

Options

Option Default Description

brokerlist see below The list of brokers to use for this connection

failover see below The type of failover method to use with the broker list.

maxprefetch 5000 The maximum number of messages to prefetch from the broker.

Brokerlist option

brokerlist='<broker url>[;<broker url>]'

The broker list defines the various brokers that can be used for this connection. A minimum of one broker url is required additional URLs are
semi-colon(';') delimited.

Broker URL format

<transport>://<host>[:<port>][?<option>='<value>'[&<option>='<value>']]

There are currently quite a few default values that can be assumed. This was done so that the current client examples would not have to be
re-written. The result is if there is no transport, 'tcp' is assumed and the default AMQP port of 5672 is used if no port is specified.

Transport

tcp

vm

Currently only 'tcp' and 'vm' transports are supported. Each broker can take have additional options that are specific to that broker. The
following are currently implemented options. To add support for further transports the ''client.transportTransportConnection'' class needs
updating along with the parsing to handle the transport.

Option Default Description

retries 1 The number of times to retry connection to this Broker

ssl false Use ssl on the connection

connecttimeout 30000 How long in (milliseconds) to wait for the connection to succeed

connectdelay none How long in (milliseconds) to wait before attempting to reconnect

Brokerlist failover option

failover='<method>[?<options>]'

This option controls how failover occurs when presented with a list of brokers. There are only two methods currently implemented but
interface can be used for defining further methods.qpid.jms.failover.FailoverMethod

Currently implemented failover methods.

Method Description

singlebroker This will only use the first broker in the list.

roundrobin This method tries each broker in turn.

nofailover [New in 0.5] This method disables all retry and failover logic.

The current defaults are naturally to use the 'singlebroker' when only one broker is present and the 'roundrobin' method with multiple brokers.
The '''method''' value in the URL may also be any valid class on the classpath that implements the interface.FailoverMethod

The 'nofailover' method is useful if you are using a 3rd party tool such as Mule that has its own reconnection strategy that you wish to use.

Options

Option Default Description

cyclecount 1 The number of times to loop through the list of available brokers before failure.

Note: Default was changed from 0 to 1 in Release 0.5

Sample URLs

amqp:///test?brokerlist='localhost'
amqp:///test?brokerlist='tcp://anotherhost:5684?retries='10''
amqp://guest:guest@/test?brokerlist='vm://:1;vm://:2'&failover='roundrobin'
amqp://guest:guest@/test?brokerlist='vm://:1;vm://:2'&failover='roundrobin?cyclecount='20''
amqp://guest:guest@client/test?brokerlist='tcp://localhost;tcp://redundant-server:5673?ssl='true''&failover='roundrobin'
amqp://guest:guest@/test?brokerlist='vm://:1'&failover='nofailover'

Url Format Proposal

New URL format for AMQP + Qpid

The Qpid M4 Java and C++ clients use different URL formats.

Java uses: http://cwiki.apache.org/qpid/connection-url-format.html

C++ uses the AMQP 0-10 format: section 9.1.2

The AMQP 0-10 format only provides protocol address information for a (list of) brokers. The Qpid M4 Java format provides additional
options for connection options (user, password, vhost etc.)

This is a proposal for the AMQP working group to extend the 0-10 URL format to have the flexibility of the Qpid format.

Proposed URL syntax

This proposal extends the AMQP 0-10 URL syntax to include user:pass@ style authentication information, virtual host and extensible
name/value options. It also makes the implied extension points of the original grammer more explicit.

Note: terms not defined below (userinfo, host, port, pchar, scheme) are taken from

amqp_url = "amqp: [userinfo] addr_list [vhost]//" "@"
addr_list = addr *(addr)","
addr = prot_addr [options]
prot_addr = tcp_prot_addr | other_prot_addr
vhost = *pchar [options]"/"

tcp_prot_addr = tcp_id tcp_addr
tcp_id = / "" ; tcp is the "tcp:" default
tcp_addr = [host [port]]":"

other_prot_addr= other_prot_id *pchar":"
other_prot_id = scheme

options = option *(option)"?" ";"
option = name value"="
name = *pchar
value = *pchar

Rationale

Multiple addresses vs. single address.

The URL provides a standard way to group multiple addresses that belong to "the same broker". As well as being used in the AMQP protocol
handshake, a URL is a convenient format to "bootstrap" the initial client-broker connection. It can be easily stored in a file, regsitered in a
directory service passed as an argument to a program etc.

A clustered broker can advertise addresses of multiple nodes for fault tolerant connection by clients.

A broker that is connected to multiple networks or via multiple protocols can advertize addresses for each protocol.

Clients can select an address randomly, round robin or based on preference for a particular network or protocol.

Multiple addresses in a single URL should only be used for a set addresses belonging to "the same broker", with equivalent service at each
address.

Options

Options can be set for the entire connection or for a specific protocol addresses, providing a flexible way to extend the URL syntax. The
AMQP standard will define some options, implementations may define proprietary options. Implementations should ignore any option they do
not recognize.

TODO: standard options.

Reserved characters in option names and values must be percent-encoded as per .

Userinfo

Putting security credentials in a URL is generally bad practice in a deployed system but useful in development and testing, so supported
here.

The meaning of the userpass information depends on the security mechanism in use. Eg. for SASL authentication with the PLAIN
mechanism, the userinfo would be username:password.

TODO need to define:

http://cwiki.apache.org/qpid/connection-url-format.html

1.

protocol address formats and options for other transports - ssl/tsl, infiniband, vm...
standard options for values in the standard connection negotiation.
qpid proprietary options (e.g. JMS clientid?)

Incompatibility with AMQP 0-10 format

This syntax is backward compatible with AMQP 0-10 with one exception: AMQP 0-10 did not have an initial // after amqp: The justification
was that that the // form is only used for URIs with hierarchical structure as per

However it's been pointed out that in fact the URL does already specify a 1-level hierarchy of address / vhost. In the future the hierarchy
could be extended to address objects within a vhost such as queues, exchanges etc. So this proposal adopts amqp:// syntax.

Its easy to write a backward-compatible parser by relaxing the grammer as follows:

amqp_url = "amqp:" ["//"] [userinfo "@"] addr_list [vhost]

Examples

TCP connection to host1 on port 1234, virtual host passing username ,"vhost" "foo"
password authentication, and specifying a Qpid JMS client-id."bar" for
amqp://foo:bar@host1:1234/vhost?clientid=baz

TCP connection to standard port 5672 on localhost
amqp://localhsot

Choice of infiniband or tcp connections to host foo on different ports.
TODO: merits of ib vs. rdma as a prefix?
amqp://ib:foo:1234,tcp:foo:5678/

Connect to the first of host1,host2,host3 that succeeds, retry each twice.
retry property at connection level is applied to all addresses.
amqp://host1,host2,host3/?retry=2

Connect to the first of host1, host2, host3 that succeeds, retry host2 twice.
amqp://host1,host2?retry=2,host3

TODO: retry example above is a bit forced - better example address options vs. url options.for

Connect to vhost over imaginary protocol grok: which has a bunch of optional parameters
parameters to connect.
amqp://grok:hostname?flavour=strawberry;frobnication=on/vhost

Connect using SSL (taken from qpid) see discussion below.
amqp://host?ssl=true

Protocols and security

tcp: is the only protcol in AMQP 0-10. Possible additional protocols: sctp, ib (infiniband), ssl, tls.

There are 3 possible ways to indicate a secure connection:

Change the URL scheme: amqps://host # Change the protocol: amqp://ssl:host # Use a property: amqp://host?ssl=true

1. the problem here is AMQP supports non-TCP protocols. It's not so clear what amqps://ib:host means.

2. and 3. are more flexible. We can easily add a new protocol identifiers or options for secure variants of any protocol. We can't easily use an
open-ended set of URL schemes.

TODO: what's the best thing here?

Differences from Qpid Java format

Addresses are at the start of the URL rather than in the "brokerlist" option.

Option format is ?foo=bar;x=y rather than ?foo='bar'&x='y'. The use of "'" quotes is not common for URI query strings, see . The use of "&" as
a separator creates problems, see

user, pass and clientid are options rather than having a special place at the front of the URL. clientid is a Qpid proprietary property and
user/pass are not relevant in all authentication schemes.

Qpid M4 Java URLs requires the brokerlist option, so this is an easy way to detect a Qpid M4 URL vs. a URL as defined here and parse
accordingly.

This proposal only covers connection URLs. A fully-qualified binding URL could be represented as amqp://<addrs>/<vhost>/<binding_url>

Qpid Java Broker Management CLI

How to build Apache Qpid CLI

Build Instructions - General

At the very beginning please build Apache Qpid by refering this installation guide from here
.http://cwiki.apache.org/qpid/qpid-java-build-how-to.html

After successfully build Apache Qpid you'll be able to start Apache Qpid Java broker,then only you are in a position to use Qpid CLI.

Check out the Source

First check out the source from subversion repository. Please visit the following link for more information about different versions of Qpid CLI.

http://code.google.com/p/lahirugsoc2008/downloads/list

Prerequisites

For the broker code you need JDK 1.5.0_15 or later. You should set JAVA_HOME and include the bin directory in your PATH.

Check it's ok by executing java -v !

Building Apache Qpid CLI

This project is currently having only an ant build system.Please install ant build system before trying to install Qpid CLI.

Compiling

To compile the source please run following command

ant compile

To compile the test source run the following command

ant compile-tests

Running CLI

After successful compilation set QPID_CLI environment variable to the main source directory.(set the environment variable to the directory
where ant build script stored in the SVN checkout).Please check whether the Qpid Java broker is up an running in the appropriate location
and run the following command to start the Qpid CLI by running the qpid-cli script in the bin directory.

$QPID_CLI/bin/qpid-cli -h <hostname of the broker> -p <broker running port>
For more details please have a look in to README file which ships with source package of Qpid CLI.

Other ant targets

ant clean Clean the complete build including CLI build and test build.
ant jar Create the jar file for the project without test cases.
ant init Create the directory structure for build.
ant compile-tests This compiles all the test source
ant test Run all the test cases
For now we are supporting those ant targets.

Qpid Design - Access Control Lists

Overview

The AMQ Protocol specification has not yet formally specified how access control lists should be specified or implemented as a result this is
subject to change

The Java Qpid Broker provides an authentication framework based on SASL, that provides the ability to plug in arbitrary user (or more strictly
) databases and different SASL-compliant mechanisms.principal

SASL/Authentication Design

Qpid Interoperability Documentation : For details on the SASL mechanimsm.
 : The Interface for adding new authentication sources[Qpid Design - PrincipalDatabase]

 : How SASL mechanisms are incorporated in the Java broker[Qpid Design - Dynamic SASL Mechanisms#server]
 : How AMQPLAIN other Qpid specific SASL mechanisms are added to the Java Client.[Qpid Design - Dynamic SASL Mechanisms#client]

ACL Plugin Design Details

[java ACLPlugin]

http://cwiki.apache.org/qpid/qpid-java-build-how-to.html
http://code.google.com/p/lahirugsoc2008/downloads/list

Continuing work on this design can be found here

ACL Formats

The Qpid project has two ACL implementations. An initial version of ACLs was added to the Java Broker for M2.1 that uses XML
configuration. For M4 a new format was designed to be implemented by both C++ and Java brokers. M4 release includes the initial C++
implementation and M5 is expected to include the Java implementation.

Specifications

The specifications for each of the ACL formats are linked here:

v1 XML ACLs (Java Broker Only)
v2 All brokers

User Guides

To aid users in defining their ACLs we have a user guide for each of the ACL formats.

v1 XML ACLs (Java Broker Only)
v2 All brokers

Qpid Design - Authentication

Overview

The AMQ Protocol specifies that SASL is used to exchange authentication information. However, SASL on its own is only a small part of any
authentication solution.

QPID provides an authentication framework based on SASL, that provides the ability to plug in arbitrary user (or more strictly)principal
databases and different SASL-compliant mechanisms. This section describes how to configure both the client and broker and how to add
new providers.

It is strongly recommended that any developer who needs to write a security provider or understand this in depth reads the thatSASL Guide
is included with the JDK documentation.

Principal Databases

NEEDS REVISION
NOTE : This documentation is outdated as of M2.

Classes

Ignoring the exchange of credentials, a key thing that needs to be done is validate that the credentials are valid. The simple example is
checking the username and password match those in a password file.

The interface must be implemented by any "user database". Itorg.apache.qpid.server.security.auth.PrincipalDatabase
contains a single method, which takes the and the that wants toPrincipal javax.security.auth.callback.PasswordCallback
receive the password. This might seem odd, since the obvious approach would be a store that took a principal and some credentials and
returned a true or false indicating whether the credentials are valid. However, this approach is required to fit in with the SASL APIs which use
callbacks exclusively.

The only implementation currently provided is . This expects to read password from a file which is inPasswordFilePrincipalDatabase
the format username:password where the password is in plaintext and a carriage return separates each username and password pair.

Configuration

Clearly different databases will potentially require different configuration options. For example the PasswordFilePrincipalDatabase
needs to be configured with the location of a password file whereas a Kerberos realm database would need to know the location of a keytab
file (for example).

Configuration is specified in the configuration file like this:

http://java.sun.com/j2se/1.5.0/docs/guide/security/sasl/sasl-refguide.html

1.
2.
3.

config.xml

<security>
 <principal-databases>
 <principal-database>
 passwordfile<name> </name>
 org.apache.qpid.server.security.auth.PasswordFilePrincipalDatabase<class> </class>
 <attributes>
 <attribute>
 passwordFile<name> </name>
 broker/etc/passwd<value> </value>
 </attribute>
 </attributes>
 </principal-database>
 </principal-databases>
</security>

After instantiating the class specified by the element, for each an attempt is made to invoke a setter method with valueclass attribute
passed in as an argument. In the above example, the method with signature void is invoked.setPasswordFile(String arg)

The name element is significant and must be unique. The name is passed as an argument to the SASL provider implementations (described
below).

Authentication Providers

The authentication process as described in the AMQ protocol specification is as follows:

Broker sends list of authentication mechanisms to the client, in order of preference
Client responds with chosen mechanism plus any initial response
Broker evaluates response and determines whether authentication has succeeded. If authentication is not yet complete, another set
of challenge/responses takes place until authentication is completed (with either success or failure).

The broker configuration allows the administrator to configure the set of supported authentication mechanisms and the principal database
used by each mechanism. It also allows the dynamic registration of additional SASL providers (this avoids the need to modify the JRE
configuration).

AuthenticationProviderInitialiser

The interface must be implemented fororg.apache.qpid.server.security.auth.sasl.AuthenticationProviderInitialiser
each mechanism. Note this includes the SASL mechanisms that are supported by default by the JRE (e.g. CRAM-MD5). In particular, the
interface allows arbitrary configuration (since each provider may have its own specialised configuration requirements), the specification of a
callback handler and a factory class for JCA registration.

Configuration

The following example section from the configuration file illustrates how it might be used:

config.xml

<sasl>
 <mechanisms>
 <mechanism>
 <initialiser>
 org.apache.qpid.server.security.auth.CRAMMD5Initialiser<class> </class>
 passwordfile<principal-database> </principal-database>
 </initialiser>
 </mechanism>
 <mechanism>
 <initialiser>
 org.apache.qpid.server.security.auth.amqplain.AmqPlainInitialiser<class> </class>
 passwordfile<principal-database> </principal-database>
 </initialiser>
 </mechanism>
 </mechanisms>
</sasl>

The above section defines two authentication mechanisms: CRAM-MD5 and AMQPLAIN. Since CRAM-MD5 appears first it will appear on
the list of mechanisms offered to the client first. Both mechanisms are configured to use the principal database named "passwordfile" which
must be defined in the appropriate section in the config file.

CallbackHandlers

Each SASL provider works with CallbackHandlers. This enables the provider to obtain information (e.g. the password) from the application as
well as set the result of authentication (such as the canonical name of the principal just authenticed). The particular CallbackHandlers vary

1.
2.

1.
2.

depending on the mechanism being used. The method in the classgetCallbackHandler AuthenticationProviderInitialiser
must return the appropriate handler for the mechanism.

AuthenticationProviderInitialiser Configuration

Since the initialisation of an authentication provider will require potentially arbitrary configuration, the interface supplies to the initialiser the
Configuration object as well as the base path into the configuration file so that the initialiser can look for arbitrary configuration elements.

Client Authentication

Client authentication is similar although it is made simpler by the fact that there is no need for a . Since we do not usePrincipalDatabase
any heavyweight configuration mechanism (such as the Apache Commons Configuration used by the broker) on the client side, we also need
an alternative way to configure providers.

CallbackHandlerRegistry

The most important things needed on the client are:

a way to specify which SASL mechanisms we want to use, in order of preference
a way to associate a callback handler with a mechanism (remember that different mechanisms require or support different callbacks)

The provides a way to do this. Using a properties file to provide the configuration information, it maps fromCallbackHandlerRegistry
mechanisms to instances.AMQCallbackHandler

AMQCallbackHandler extends and only adds one method, which associates a protocoljavax.security.auth.CallbackHandler
session with a callback handler. This enables the callback handler to retrieve any specific information from the andAMQProtocolSession
by extension from the . The obvious example is the username and password.javax.jms.Connection

To specify callback handlers a property file is used. The default property contains this:

CallbackHandler.CRAM-MD5=org.apache.qpid.client.security.UsernamePasswordCallbackHandler
CallbackHandler.AMQPLAIN=org.apache.qpid.client.security.UsernamePasswordCallbackHandler

The default callbackhandler registry initialises handlers for CRAM-MD5 and AMQPLAIN. To specify your own propertyfile use the java
system property .amq.callbackhandler.properties

DynamicSaslRegistrar

For SASL providers that are part of the JRE or have been added manually to the JRE security configuration all that is required is the creation
of an . However, if you need to use a custom SASL provider it needs to be registered with JCA. Rather than placeAMQCallbackHandler
the burden for doing this on the application developer, we provide a which does this.DynamicSaslRegistrar

To configure Sasl providers, you need to create a properties file in this format:

AMQPLAIN=org.apache.qpid.client.security.amqplain.AmqPlainSaslClientFactory

The key is the mechanism name and the value is the Sasl client factory (which must implement
).javax.security.sasl.SaslClientFactory

The default properties file registers only the AMQPLAIN mechanism; you can specify a custom property file using the system property
.amq.dynamicsaslregistrar.properties

Qpid Design - Configuration

Configuration Methods

QPID supports two methods of configuration:

command line switches (e.g. passing a -p flag on startup to specify the port)
configuration file

It is intended that the configuration file will be used for nearly all configuration but that some very common or useful options are exposed
using command line switches.

CLI

QPID uses to parse command line arguments. It provides the following features:Commons CLI

Ability to parse both short and long flags (e.g. -p and --port) and treat them as the same logical option
Generation of well formatted usage messages
Ability to specify configuration options in different ways, such as from files or from system properties, which can help when writing
unit tests

The result of parsing options, however they are specified, is a CommandLine object which can then be queried to find out specific values.
Currently this is done in org.apache.qpid.server.Main and the CommandLine object is not exposed elsewhere but if it does require to be more
widely used it could be added to the ApplicationRegistry. However it is strongly recommended that the configuration approach in the follow

http://jakarta.apache.org/commons/cli

section is used where possible.

Configuration File

QPID uses to handle all configuration. It provides methods that allow parsing of options from a range of sources,Commons Configuration
including configuration files, system properties or simply hard coded classes of values (which is very useful in unit test cases).

Broker configuration is accessed through the class in the org.apache.qpid.server.configuration, primarily starting at ServerConfiguration and
retrieving values or other Configuration classes from there.

Command Line Options

The following options are available:

Option Long Option Description

b bind Bind to the specified address overriding any value in the config file

c config Use the given configuration file

h help Prints list of options

l logconfig Use the specified log4j.xml file rather than that in the etc directory

m mport Specify port to listen on for the JMX Management. Overrides value in config file

p port Specify port to listen on. Overrides value in config file

v version Print version information and exit

w logwatch Specify interval for checking for logging config changes. Zero means no checking

Logging

Logging is handled slightly differently. The main reason for this is that logging is something we want configured before the main configuration
file is processed.

The broker uses log4j as the logging implementation, and configuration must be done using the more expressive XML format. A couple of
command line switches are used to configure logging:

-l, --logconfig specifies the log configuration file to use. By default it looks for a file called log4j.xml located in the same directory as
the config.xml file
-w, --logwatch the interval in seconds to poll the log configuration file for changes. The default is 60 seconds and zero means do not
poll for changes.

By using the logwatch option it is possible to make changes to the logging configuration at runtime without restarting the broker. (For
example, enabling more logging on certain packages in order to diagnose a problem).

QpidBrokerCommandLineOptions

Command Line Options

The following options are available:

Option Long Option Description

b bind Bind to the specified address overriding any value in the config file

c config Use the given configuration file

h help Prints list of options

l logconfig Use the specified log4j.xml file rather than that in the etc directory

m mport Specify port to listen on for the JMX Management. Overrides value in config file

p port Specify port to listen on. Overrides value in config file

v version Print version information and exit

w logwatch Specify interval for checking for logging config changes. Zero means no checking

Prefetch

AMQP supports prefetch which specifies how many messages the client wishes to cache for delivery. The method
Session.setDefaultPrefetch(int) allows a default value to be configured at the session level and extra varients of the createConsumer()
method exist allowing it to be specified at the point of consumer construction. It can also be specified as part of the . It canConnection URL
be configured with the IMMEDIATE_PREFETCH System property

By default, the number of messages which will be filled by the broker on any particular client is 5000.

http://jakarta.apache.org/commons/configuration

It is important to consider the implications of prefetch if you wish to .Use Priority Queues

Qpid Meetup at ApacheCon 2009

Qpid Meetup at ApacheCon, Tuesday @ 8 PM
There will be a free Qpid Meetup at on Tuesday night, 3 November 2009, at 8 PM. This event is open to anyone who wantsApacheCon 2009
to come, even if you are not registered for the conference.

Attendees
If you plan to attend, please let us know by signing up . We're using a form so that people without editing rights on this Wiki can sign up.here

Jonathan Robie (committer)
David Ingham
Esteve Fernandez (committer)
(list is not complete)

Program
If you have something you would like to present, please let us know by signing up .here

The program will be finalized at the beginning of the session. Presentations should be no longer than 15 minutes.

Apache Qpid Overview - Jonathan Robie
Qpid on Windows - David Ingham
(list is not complete)

Suggested topics:

A talk on any Qpid feature
Programming Qpid using the Java JMS API, C++ API, or Python API
Requirements for messaging in some system - we can try to brainstorm a design for the system on the fly
Comparisons of Qpid to other messaging systems
Qpid implementation

Qpid Release Page

Qpid Release Page

General Information
This page contains details about the Qpid release process.

QpidReleaseProcess
Release guidlines for Incubator projects

http://incubator.apache.org/incubation/Incubation_Policy.html
http://incubator.apache.org/guides/releasemanagement.html
http://incubator.apache.org/guides/sites.html

Qpid Release Pages
These pages capture the requirments/feature list for each release.

0.6 Release
M2 Release
M1 Release
RC Multi-Platform Testing
M4 Release Process Notes

0.6 Release

Supported Components and Platforms:
Note that the official Qpid release is a source release. The entire source tree will be released. In addition the source for various individual
Qpid components will also be released separately.

http://www.us.apachecon.com/c/acus2009/
http://spreadsheets.google.com/viewform?formkey=dGUzNnA1OERaa3lnX2xvbW9LZWY3Zmc6MA
http://spreadsheets.google.com/viewform?formkey=dEZzUGRNZHVpdHhHUWlLY1A3TVYtaUE6MA
http://incubator.apache.org/incubation/Incubation_Policy.html
http://incubator.apache.org/guides/releasemanagement.html
http://incubator.apache.org/guides/sites.html

The released source will build and have been tested under the following platforms.

C++ Broker
Linux
Fedora 11 (gcc 4.4, boost 1.37)
Windows XP, Vista (32 and 64 bit) (Visual Studio 2008, Boost 1.35, 1.41)

Java Broker
??

C++ Client
JMS Client (Java)
Python client
Ruby client
WCF client (.NET)

There may also be binary packages for various platforms available for download, but they are not the primary Qpid release and they are
provided entirely for user convenience.

Checklist of items for the Release:

Ensure licensing files are correct
Release notes/Readmes
Ensure svn revision targeted for release builds succeed (or are reported to succeed) for the necessary platforms. Including the build
time tests.
Tag candidate release
Run build script to build and sign release artifacts
Upload to people.apache.org
Move to release area.
Announce

Release Notes:
Please add release note items here:

Greatly improved cluster stability and performance.
Persistent cluster automatically restarts from clean database
C++ broker on Windows now has a persistence module; requires Microsoft SQL Express or higher.

Jiras to be closed:
Below are all the Blocker and critical Qpid Jiras that are targeted for 0.6.

Most of these jira's look like they just need to be reviewed. I assume this means that really they just have to be closed at this stage.

 (1 issues)JIRA Issues

Type Key Summary Assignee Reporter Priority Status Resolution Created Updated Due

QPID-2096
ExchangeRegistration shoud NOT
automatically add durable
Exchanges to messageStore

Robbie
Gemmell

Martin
Ritchie

Ready
To
Review

Unresolved Sep 11,
2009

Jan 04,
2010

Below are all other unresolved JIRAs tagged Fix for 0.6 which we should either close or move to 'Affects 0.6' and clear the fix for value.

 (30 issues)JIRA Issues

Type Key Summary Assignee Reporter Priority Status Resolution Created

QPID-2543 Change uint to standard type Unassigned
Bruno
Matos Open Unresolved

Apr 23,
2010

QPID-2449
bindings are not removed from the persistent
store when a durable queue bound to a durable
exchange is deleted

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Mar 16,
2010

QPID-2292 the Message class is missing some properties,
e.g. the redelivered flag

Rafael H.
Schloming

Rafael H.
Schloming Open Unresolved Dec 17,

2009

QPID-2285 doc generation picks up installed package instead
of source package

Rafael H.
Schloming

Rafael H.
Schloming Open Unresolved Dec 16,

2009

QPID-2275 Time based roll over with DatePattern can result
in log loss.

Martin
Ritchie

Martin
Ritchie

Ready
To
Review

Unresolved Dec 15,
2009

QPID-2274 Async compression will result in log file deletion
when used in conjunction with staticFileName

Martin
Ritchie

Martin
Ritchie

Ready
To
Review

Unresolved Dec 15,
2009

QPID-2257 Tests for Transactional WCF channel Unassigned Devang
Gandhi Open Unresolved Dec 09,

2009

http://issues.apache.org/jira/secure/IssueNavigator.jspa?requestId=12313629&tempMax=1000
http://issues.apache.org/jira/browse/QPID-2096
http://issues.apache.org/jira/browse/QPID-2096
http://issues.apache.org/jira/browse/QPID-2096
http://issues.apache.org/jira/browse/QPID-2096
https://issues.apache.org/jira/secure/IssueNavigator.jspa?requestId=12313643&tempMax=1000
http://issues.apache.org/jira/browse/QPID-2543
http://issues.apache.org/jira/browse/QPID-2543
http://issues.apache.org/jira/browse/QPID-2449
http://issues.apache.org/jira/browse/QPID-2449
http://issues.apache.org/jira/browse/QPID-2449
http://issues.apache.org/jira/browse/QPID-2449
http://issues.apache.org/jira/browse/QPID-2292
http://issues.apache.org/jira/browse/QPID-2292
http://issues.apache.org/jira/browse/QPID-2292
http://issues.apache.org/jira/browse/QPID-2285
http://issues.apache.org/jira/browse/QPID-2285
http://issues.apache.org/jira/browse/QPID-2285
http://issues.apache.org/jira/browse/QPID-2275
http://issues.apache.org/jira/browse/QPID-2275
http://issues.apache.org/jira/browse/QPID-2275
http://issues.apache.org/jira/browse/QPID-2274
http://issues.apache.org/jira/browse/QPID-2274
http://issues.apache.org/jira/browse/QPID-2274
http://issues.apache.org/jira/browse/QPID-2257
http://issues.apache.org/jira/browse/QPID-2257

QPID-2250
copying messages to a new queue only works
with a persistent message and a durable queue

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved
Dec 07,
2009

QPID-2242 JMS_QPID_DESTTYPE is not set making
getJMSDestination unusable.

Martin
Ritchie

Martin
Ritchie

Ready
To
Review

Unresolved Dec 04,
2009

QPID-2232 rename the JMX Management Console release
artifacts

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Dec 03,
2009

QPID-2209 FailedDequeueException whilst clearing queue of
messages moved/copied from another queue

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Nov 17,
2009

QPID-2196

JMX Management Console may try to
auto-refresh between recieving notification of
JMXConnector failure/closure and the server view
actually being closed

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Nov 10,
2009

QPID-2195
disable moving messages using JMX
Management Console for older brokers with
known defects

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Nov 10,
2009

QPID-2193
Allow deleting the first message on a queue
through the JMX Management Console when
connected to older brokers

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Nov 10,
2009

QPID-2190
enable the updated jmx management console to
connect to very old brokers

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved
Nov 06,
2009

QPID-2189
only admin level users can complete connection
to 2.5.0.0 or below (when configured to use
<security-enabled> / JMXMP)

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Nov 06,
2009

QPID-2178 Allow viewing of channel flow control status via
JMX Management Console

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Oct 30,
2009

QPID-2177 Allow for configuration of producer flow control
queue properties through Management Console

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Oct 30,
2009

QPID-2155 QpidRollingFileAppender has no tests and does
not appear to work.

Martin
Ritchie

Martin
Ritchie

Ready
To
Review

Unresolved Oct 20,
2009

QPID-2152

qPID JMX Management Console does not
connect to qpid java broker on Windows. Server
Connection Failed. Reason: An unknown error
has occurred.

Robbie
Gemmell

Ignacio
Ybarra

Ready
To
Review

Unresolved
Oct 17,
2009

QPID-2059 SubscriptionLoggingTest fails intermittently Martin
Ritchie

Aidan
Skinner

In
Progress Unresolved Aug 19,

2009

QPID-2024 Add MINANetworkDriver Rob
Godfrey

Aidan
Skinner

Ready
To
Review

Unresolved Aug 04,
2009

QPID-2019 Exclude lists are unable to exclude packages Rafael H.
Schloming

Martin
Ritchie

Ready
To
Review

Unresolved Aug 03,
2009

QPID-2011 AlertingTest.testAlertingReallyWorksWithChanges
does not test desired functionality.

Martin
Ritchie

Martin
Ritchie

Ready
To
Review

Unresolved Jul 29,
2009

QPID-1992 [Logging] Create Operational logging framework
Martin
Ritchie

Martin
Ritchie Open Unresolved

Jul 17,
2009

QPID-1978 New list views in MC should allow multiple
selection

Martin
Ritchie

Martin
Ritchie

Ready
To
Review

Unresolved Jul 09,
2009

QPID-1907
[Java Broker] Improve INFO and above broker log
messages to make them more useful in a
production environment

Martin
Ritchie

Rob
Godfrey

Ready
To
Review

Unresolved Jun 17,
2009

QPID-1802

[Java broker] failure to startup when recovering
persistent messages from store for a queue in the
configuration file which was not previously added
to the store

Robbie
Gemmell

Robbie
Gemmell

Ready
To
Review

Unresolved Apr 10,
2009

QPID-1753 Create QMan / WsDmAdapter package Robbie
Gemmell

Martin
Ritchie

Ready
To
Review

Unresolved Mar 17,
2009

Ready

http://issues.apache.org/jira/browse/QPID-2250
http://issues.apache.org/jira/browse/QPID-2250
http://issues.apache.org/jira/browse/QPID-2250
http://issues.apache.org/jira/browse/QPID-2242
http://issues.apache.org/jira/browse/QPID-2242
http://issues.apache.org/jira/browse/QPID-2242
http://issues.apache.org/jira/browse/QPID-2232
http://issues.apache.org/jira/browse/QPID-2232
http://issues.apache.org/jira/browse/QPID-2232
http://issues.apache.org/jira/browse/QPID-2209
http://issues.apache.org/jira/browse/QPID-2209
http://issues.apache.org/jira/browse/QPID-2209
http://issues.apache.org/jira/browse/QPID-2196
http://issues.apache.org/jira/browse/QPID-2196
http://issues.apache.org/jira/browse/QPID-2196
http://issues.apache.org/jira/browse/QPID-2196
http://issues.apache.org/jira/browse/QPID-2196
http://issues.apache.org/jira/browse/QPID-2195
http://issues.apache.org/jira/browse/QPID-2195
http://issues.apache.org/jira/browse/QPID-2195
http://issues.apache.org/jira/browse/QPID-2195
http://issues.apache.org/jira/browse/QPID-2193
http://issues.apache.org/jira/browse/QPID-2193
http://issues.apache.org/jira/browse/QPID-2193
http://issues.apache.org/jira/browse/QPID-2193
http://issues.apache.org/jira/browse/QPID-2190
http://issues.apache.org/jira/browse/QPID-2190
http://issues.apache.org/jira/browse/QPID-2190
http://issues.apache.org/jira/browse/QPID-2189
http://issues.apache.org/jira/browse/QPID-2189
http://issues.apache.org/jira/browse/QPID-2189
http://issues.apache.org/jira/browse/QPID-2189
http://issues.apache.org/jira/browse/QPID-2178
http://issues.apache.org/jira/browse/QPID-2178
http://issues.apache.org/jira/browse/QPID-2178
http://issues.apache.org/jira/browse/QPID-2177
http://issues.apache.org/jira/browse/QPID-2177
http://issues.apache.org/jira/browse/QPID-2177
http://issues.apache.org/jira/browse/QPID-2155
http://issues.apache.org/jira/browse/QPID-2155
http://issues.apache.org/jira/browse/QPID-2155
http://issues.apache.org/jira/browse/QPID-2152
http://issues.apache.org/jira/browse/QPID-2152
http://issues.apache.org/jira/browse/QPID-2152
http://issues.apache.org/jira/browse/QPID-2152
http://issues.apache.org/jira/browse/QPID-2152
http://issues.apache.org/jira/browse/QPID-2059
http://issues.apache.org/jira/browse/QPID-2059
http://issues.apache.org/jira/browse/QPID-2024
http://issues.apache.org/jira/browse/QPID-2024
http://issues.apache.org/jira/browse/QPID-2019
http://issues.apache.org/jira/browse/QPID-2019
http://issues.apache.org/jira/browse/QPID-2011
http://issues.apache.org/jira/browse/QPID-2011
http://issues.apache.org/jira/browse/QPID-2011
http://issues.apache.org/jira/browse/QPID-1992
http://issues.apache.org/jira/browse/QPID-1992
http://issues.apache.org/jira/browse/QPID-1978
http://issues.apache.org/jira/browse/QPID-1978
http://issues.apache.org/jira/browse/QPID-1978
http://issues.apache.org/jira/browse/QPID-1907
http://issues.apache.org/jira/browse/QPID-1907
http://issues.apache.org/jira/browse/QPID-1907
http://issues.apache.org/jira/browse/QPID-1907
http://issues.apache.org/jira/browse/QPID-1802
http://issues.apache.org/jira/browse/QPID-1802
http://issues.apache.org/jira/browse/QPID-1802
http://issues.apache.org/jira/browse/QPID-1802
http://issues.apache.org/jira/browse/QPID-1802
http://issues.apache.org/jira/browse/QPID-1753
http://issues.apache.org/jira/browse/QPID-1753

QPID-1440 [Java Client] - Tidy up tasks from QPID-1289 Rob
Godfrey

Rob
Godfrey

To
Review

Unresolved Nov 07,
2008

M1 Release

M1 Release - COMPLETED 14th Dec 2006
Target Date - November 2006 (tbc)

Release Manager - Rajith Attapattu

Release Notes

You can view our release notes for M1 at:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12312115&styleName=Html&projectId=12310520

Release Check list

M1 Release Check list

Supported Feature List

M1 Release Check list

Item Description Status

Check license for dependencies Complete MM 10 Nov, required licenses added

Create NOTICE.txt and LICENSE.txt in the root folder Complete QPID-74, QPID-79

Add all attributions to NOTICE.txt Complete MM 10 Nov, required attributions added

Task to create source distribution Complete QPID-74 ant target 'std-src-release'

Task to create binary distribution Complete QPID-73 ant target 'std-bin-release'

Proper naming of release artifacts Complete QPID-77

Check if all release jars containing a LICENSE.txt and NOTICE.txt Complete QPID-78

Proper versioning (adding the correct version numbers to the jar/src files) QPID-73 & QPID-74 ?

Check if Subversion tag is created for release Rajith to action please

Release Notes Complete QPID-79

README doc in the root folder Complete QPID-79

Basic documentation Complete and ref'd in release notes and readme

Keys ready for singing the release Rajith/Gordon to action please QPID-82 pending

Adding minimum JDK version for the client/common (1.4) and broker (1.5) Complete QPID-83

M2 Release

M2 Release - Overview

The Qpid project voted to make an M2 release (see this) which will include:thread

Java Broker (with a caveat on the clustered broker code)
Java Client
C++ Broker
C++ Client
.NET Client
Python Client
Ruby Client

This will be a significant step up from the M1 Release, which only included the Java components.

M2 Release Tasks

http://issues.apache.org/jira/browse/QPID-1440
http://issues.apache.org/jira/browse/QPID-1440
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12312115&styleName=Html&projectId=12310520
http://mail-archives.apache.org/mod_mbox/incubator-qpid-dev/200703.mbox/%3cb9472b590703060341j5221bd9et1102f5782070e576@mail.gmail.com%3e

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

Task Status Owner Notes

Identify Release Manager Complete Marnie
McCormack

Rajith Attapattu volunteered

Identify JIRAs for inclusion in
M2

In
Progress

Marnie
McCormack

Tidying up M2 tasks to leave only open tasks for release + showstoppers

Define minimal interop
requirements for M2

Complete Rupert
Smith

Interop test suites now exist in Java/C++/.Net. Covers fairly minimal use-cases
of basic p2p and pub/sub messaging.

Identify License Issues Not
Started

? Aware that there are probably license tidy ups for Java and need to review
license list for C++ etc

c++ broker and client owner In
progress

Rajith Alan volunteered to handle the c++ broker and client release

Python and Ruby client
owner

In
progress

Rajith Rafi volunteered to handle the Ruby and Python client release

java broker and client owner In
progress

Rajith Martin volunteered to handle the Java broker and client release

C++ Client/Broker Action - Items for M2 release

C++ JIRAs for M2

Python & Ruby Clients - Action Items for M2 release

Java Client/Broker - Action Items for M2 release

Java JIRAs for M2

M4 Release Process Notes

Release notes generated from Jira are incomplete/inaccurate
Release note text files are included in the artifacts, so can only contain things which are known in advanced
Releases shouldn't be scheduled right before the holiday break
Trunk was closed for a long time
Was difficult to know what the status of the release was due to Jira inaccuracies
Lack of clear documentation about release artifacts
Lack of interest in fixing problems with some artifacts
Many java commits unreviewed: jiras randomly set to resolved, sat in in-progress for ages etc.
Addition of GPL library as dependency
branching and tagging conventions are inconsistent across releases
windows build files require manual updates was a problem
We should be time boxed or scope bound
Test profiles needs to be ok against defined set before RC spun (inc TCK)
System testing & smoke testing (cross-platform) needs to be defined and signed up too/off before RC vote
Criteria should be defined for RC sign off thus making the signing off more useful for the RM
JIRAs for a release should be scoped in as work starts on the task, scoped out as they get dropped

Qpid Release Notes
Qpid Java M1 Release Notes

Qpid Java M1 Release Notes
This is the list of JIRA tasks completed for M1

Bugs
 - Remove '/' and ':' from generated queue namesQPID-4
 - Occasionally messages are ack'd more than onceQPID-7
- Broker throughput falls off with transactionsQPID-10
 - AMQQueueMBean - MessageCount on the management interface is not correct.QPID-56
 - Creating a QueueReceiver results in ClassCastExceptionQPID-58
 - AMQSession implementation of TopicSession and QueueSession interfaces not JMS compliantQPID-66
 - Ant build system fails if the project path contains a spaceQPID-68
 - Race condition in Delivery ManagerQPID-69

Improvements
 - Add high and low watermark to flow controlQPID-36
 - Add high and low watermark to flow controlQPID-44
 - AMQQueueMBean - Message header attributes should be sent along with message content.QPID-57

https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&&pid=12310520&component=12311395&component=12311396&fixfor=12312116&sorter/field=issuekey&sorter/order=DESC
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&&pid=12310520&status=1&status=3&status=4&component=12311388&component=12311389&component=12311585&component=12311490&component=12311630&component=12311614&component=12311501&component=12311489&fixfor=12312116&sorter/field=issuekey&sorter/order=DESC
http://issues.apache.org/jira/browse/QPID-4
http://issues.apache.org/jira/browse/QPID-7
http://issues.apache.org/jira/browse/QPID-10
http://issues.apache.org/jira/browse/QPID-56
http://issues.apache.org/jira/browse/QPID-58
http://issues.apache.org/jira/browse/QPID-66
http://issues.apache.org/jira/browse/QPID-68
http://issues.apache.org/jira/browse/QPID-69
http://issues.apache.org/jira/browse/QPID-36
http://issues.apache.org/jira/browse/QPID-44
http://issues.apache.org/jira/browse/QPID-57

New Features
 - Add option to include prefix and suffix in log file name for brokerQPID-13
 - Extend JNDI support provided to include initial context factoryQPID-23
 - Provide support for using Qpid JMX with Tivoli for application monitoringQPID-29
 - Allow configuration of working/log directories written to by brokerQPID-30
 - Implement tx.select, tx.commit & tx.rollback from AMQPQPID-40

Tasks
 - Update Java client and broker to MINA 1.0 releaseQPID-18
 - Create Build Artifacts for release process using ant/mavenQPID-73
 - Create source distribtuion using build systemQPID-74
 - Create Standard Binary distribution using build systemQPID-75

QpidReleaseProcess

Qpid Release Process - Background

Qpid Pre Release Steps

1. Create a wiki page and start capturing the feature/bug fix list for the release
2. We can start a discussion thread and then come to a concensus on the final list
3. These items should be tracked by jira or other means (jira is preffered)
4. We can start a parallel thread on the release dates.

Detailed Qpid Release Process

1. We should do a code freeze and put out a release candidate (ex RC1)
2. We should allow a minimum of one week for people to test/check out the RC
3. If there are major issues maybe do a RC2 and follow the same process
4. If a majority is happy then we can do a code freeze and cut out a release.
5. We should provide a 1.4 build of the java client (only) with each release we makeretrotranslator

Qpid Release Process - Our Process Definition

Introduction

This document describes the general release policies used by the Apache Qpid Project to create releases of the Qpid components. As
described herein, this policy is not set in stone and may be adjusted by the Release Manager. We'd like to credit the Apache HTTPD project
as our heavily borrowed from template for this document - thanks !

Who can make a release?

Technically, any one can make a release of the source code due to the Apache Software License. However, only members of the Apache
Qpid Project (committers) can make a release designated with Apache. Other people must call their release something other than "Apache"
unless they obtain written permission from the Apache Software Foundation.

Following our official release policies, we will only accept release binaries from members of the Apache Qpid Project for inclusion on our
website. This ensures that our binaries can be supported by members of the project. Other people are free to make binaries, but we will not
post them on our website.

Who is in charge of a release?

The release is coordinated by the Release Manager (hereafter, abbreviated as RM). Since this job requires coordination of the development
community (and access to SVN), only committers to the project can be RM. However, there is no set RM. Any committer may perform a
release at any time. In order to facilitate communication, it is deemed nice to alert the community with your planned release schedule before
executing the release. A release should only be made when there is a plan to publicly release it. (A release should not be made only for
private distribution. A private release is more suitable for that.)

Who may make a good candidate for an RM?

Someone with lots of time to kill. Being an RM is a very important job in our community because it takes a fair amount of time to produce a
stable release.

If you feel lucky, a release could be distributed without testing, but our experience has shown that this leads to a higher number of dud
releases. In general, our experience has shown that a well-coordinated release fares better than non-coordinated releases. For Qpid, we are
yet to establish a quality bar for releases but it's on our list of things to do !

When do I know if it is a good time to release?

In the case of Qpid, we have identified (thus far) release cutoffs when we know that a) our codebase is fairly stable, b) we have made
substantial improvements or additions since any previous release and c) we have significant change coming which would preclude a release
for a significant period. M2 will be our second release from Qpid so this process is evolving.

http://issues.apache.org/jira/browse/QPID-13
http://issues.apache.org/jira/browse/QPID-23
http://issues.apache.org/jira/browse/QPID-29
http://issues.apache.org/jira/browse/QPID-30
http://issues.apache.org/jira/browse/QPID-40
http://issues.apache.org/jira/browse/QPID-18
http://issues.apache.org/jira/browse/QPID-73
http://issues.apache.org/jira/browse/QPID-74
http://issues.apache.org/jira/browse/QPID-75
http://retrotranslator.sourceforge.net/

What power does the RM yield?

Regarding what makes it into a release, the RM is the unquestioned authority. No one can contest what makes it into the release. The
community will judge the release's quality after it has been issued, but the community can not force the RM to include a feature that they feel
uncomfortable adding. Remember that

this document is only a guideline to the community and future RMs - each RM may run a release in a different way. If you don't like what an
RM is doing, start preparing for your own competing release. Note that for Qpid we do tend to take votes for such items and follow the
consensus.

How does an impending release affect development?

It can not. Let's repeat that: an impending release can not affect development of the project. It is the RM's responsibility to identify what
changes should make it into the release. The RM may have an intermediate tag, so the RM can merge in or reject changes as they are
committed to the repository's HEAD. For Qpid, we manage our releases using svn branches.

Committers may voluntarily refrain from committing patches if they wish to ease the burden on the RM, but they are under no obligation to do
so. This is one reason why we recommend that the RMs have plenty of time on their hands - they may have to deal with a rapidly changing
target. It's not an easy job.

How can an RM be confident in a release?

The RM may perform sanity checks on release candidates and should always ensure that (at least) the Qpid brokers being released can be
started and connected to using test clients, before distributing. All maven available test classes should be run before releasing a distribution.
The release candidate should pass all of the relevant tests before making it official. Note that we are currently in the process of defining a
simple set of interop tests which ensure that our client/broker combinations can talk to one another.

How to do a release?

Once the tree has been suitably tested by the RM and any other interested parties, they should "roll" the release.

Key points:

Ensure that the RM's PGP/GPG key ?? - How do we do the key bit for Qpid ??
Create an official tag based on the candidate tree
Run the tools to build the appropriate binaries/source dists - details tbc
Copy the generated release tarballs and signatures to - ?
Email qpid-dev mailing list to inform them of the release

What can I call this release?

At this point, the release is an alpha. The Qpid Project has three classifications for its releases:

Should we adopt this ??
Alpha
Beta
General Availability (GA)

Alpha indicates that the release is not meant for mainstream usage or may have serious problems that prohibits its use. When a release is
initially created, it automatically becomes alpha quality.

Beta indicates that at least three committers have voted positively for beta status and there were more positive than negative votes for beta
designation.

This indicates that it is expected to compile and perform basic tasks. However, there may be problems with this release that prohibit its
widespread adoption.

General Availability (GA) indicates that at least three committers have voted positively for GA status and that there were more positive than
negative votes for GA designation. This release is recommended for production usage.

Who can vote?

Non-committers may cast a vote for a release's quality. In fact, this is extremely encouraged as it provides much-needed feedback to the
community about the release's quality. However, only binding votes casted by committers count towards the designation.

Note that no one may veto a release. Releases may not receive a designation level if a problem is found that inhibits proper functionality. The
group may (implicitly or explicitly) revoke all votes on a release if there is a problem. However, if there is a -1 vote for a particular designation
and there are greater than 3 positive votes and more positive than negative votes (i.e. majority consensus), the appropriate designation is
conferred upon the release.

How do we make it public?

Once the release has reached the highest-available designation (as deemed by the RM), the release can be moved to the Qpid distribution
directory on apache.org. Approximately 24 to 48 hours after the files have been moved, a public announcement can be made. We wait this
period so that the mirrors can

receive the new release before the announcement. An email can then be sent to the announcements lists (announce@apache.org,
announce@httpd.apache.org). Drafts of the announcement are usually posted on the development list before sending the announcement to

let the community clarify any issues that we feel should be addressed in the announcement.

Should the announcement wait for binaries?

In short, no. The only files that are required for a public release are the source tarballs (.tar.Z, .tar.gz). Volunteers can provide the Win32
source distribution and binaries, and other esoteric binaries.

Note that the typical Win32 source distribution differs from the original tarball in that it has generated project files as well as the CRLF line
endings required for that platform.

Oops. We found a problem.

At this point, the release has been created. No code changes can be made in this release. If a problem is found, it will have to be addressed
in the next release or a patch can be made available. No changes can be made between alpha, beta, and GA status. The only difference is
the file name that is downloaded

by the users. If an alpha tarball is created, but there was an error that can be resolved by re-rolling the tarball, it may be permissible to re-roll
the release. But, the code itself may not change from designation to designation.

There are two courses of action:

Revoke the release and immediately create another one that has a fix to this problem. You can take the old release, apply the single patch,
and start the voting process again. This is only recommended for critical problems found early on in the release cycle.

If the problem is less severe, place the patch to the problem in the Qpid patches directory . A link to this directory should be included inTBC
the release notes with descriptions as to what problem each patch addresses.

Suggestions?

As always, if you have any suggestions or comments on our process, please feel free to email our developer mailing list
(qpid-dev@incubator.apache.com) with your comments. We hope you found this document useful.

M2.1 Release process

This is what I (aidan) ran to make the Qpid release artifacts:

aidan@contemplation:~/hacking/qpid$ mkdir RC5-artifacts
aidan@contemplation:~/hacking/qpid$ svn co qpid-M2.1-RC5https://svn.apache.org/repos/asf/incubator/qpid/tags/M2.1/RC5/
aidan@contemplation:~/hacking/qpid$ ln -s qpid-M2.1-RC5 qpid-1.0-incubating-M2.1
aidan@contemplation:~/hacking/qpid$ tar -hzcf RC5-artifacts/qpid-1.0-incubating-M2.1.tar.gz --exclude=.svn qpid-1.0-incubating-M2.1
aidan@contemplation:~/hacking/qpid$ rm qpid-1.0-incubating-M2.1
aidan@contemplation:~/hacking/qpid$ tar -zxf RC5-artifacts/qpid-1.0-incubating-M2.1.tar.gz
aidan@contemplation:~/hacking/qpid$ cd qpid-1.0-incubating-M2.1/cpp
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/cpp$./bootstrap && ./configure && make dist
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/cpp$ cp qpidc-M2.1.tar.gz ../../RC5-artifacts/
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/cpp$ cd ../java
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/java$ mvn -Pfastinstall && cd distribution/ && mvn assembly:assembly
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/java/distribution$ cp target/ .zip ../../../RC5-artifacts/.gz target/
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/java/distribution$ cd ../../dotnet/
aidan@contemplation:/hacking/qpid/qpid-1.0-incubating-M2.1/dotnet$ sh ./build-framing && ./release mono-2.0 aidan@contemplation:
/hacking/qpid/qpid-1.0-incubating-M2.1/dotnet$ cp bin/mono-2.0/release/Qpid.NET-mono-2.0-2008414.zip ../../RC5-artifacts/
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/dotnet$ cd ../../
aidan@contemplation:~/hacking/qpid$ tar -zcf RC5-artifacts/qpid-1.0-incubating-M2.1-python-src.tar.gz qpid-1.0-incubating-M2.1/LICENSE
qpid-1.0-incubating-M2.1/NOTICE qpid-1.0-incubating-M2.1/python qpid-1.0-incubating-M2.1/specs
aidan@contemplation:~/hacking/qpid$ tar -zcf RC5-artifacts/qpid-1.0-incubating-M2.1-ruby-src.tar.gz qpid-1.0-incubating-M2.1/LICENSE
qpid-1.0-incubating-M2.1/NOTICE qpid-1.0-incubating-M2.1/ruby qpid-1.0-incubating-M2.1/specs
aidan@contemplation:~/hacking/qpid$ cd qpid-1.0-incubating-M2.1/java/
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/java$ mvn deploy -DaltDeploymentRepository=incubator::default::

 -Pfastinstallfile:///home/aidan/hacking/qpid/RC5-artifacts/maven
aidan@contemplation:~/hacking/qpid/qpid-1.0-incubating-M2.1/java$ cd ../../RC5-artifacts/
aidan@contemplation:~/hacking/qpid/RC5-artifacts$ rm java-src console-unix
aidan@contemplation:~/hacking/qpid/RC5-artifacts$ sha1sum *.zip *.gz > SHA1SUM
aidan@contemplation:~/hacking/qpid/RC5-artifacts$ for i in `find . | egrep 'jar$|pom$|gz$|zip$|SHA1SUM'`; do gpg --sign --armor --detach $i;
done;

and then rsync it up people.apache.org

0.5 Release process

The above steps performed by Aidan have been bundled up and provided as a release script.

Located in the script should make the RM's job easier.trunk/qpid/bin release.sh

https://svn.apache.org/repos/asf/incubator/qpid/tags/M2.1/RC5/
file:///home/aidan/hacking/qpid/RC5-artifacts/maven

$./release.sh --help
Usage: release.sh <svn-path> <svn-revision> <version> [options]

Options: Default : --prepare -all --sign
--help |-h : Show this help
--prepare : Download speficied tree from svn
--clean-all : Remove build artefacts and downloaded svn tree
--clean : Remove built artefacts
--all |-a : Generate all artefacts
--source|-e : Generate the source artefact
--cpp |-c : Generate the CPP artefacts
--dotnet|-d : Generate the dotnet artefacts
--java |-j : Generate the java artefacts
--ruby |-r : Generate the ruby artefacts
--python|-p : Generate the python artefacts
--source|-e : Generate the source artefact
--sign |-s : Sign generated artefacts
--upload|-u : Upload the artifacts directory to people.apache.org as qpid-$VER

--

Copyright © 1999-2007, The Apache Software Foundation

RC Multi-Platform Testing
Any QPID release candidate should be tested on the following supported platforms:

Linux 2.6+
Windows XP 5+
Solaris 8 (SunOS 5.8)+
Cygwin v?

It shall be a quality gateway for any RC that it must run successfully (define tests here ?) on all platforms supported. All scripts will run
successfully on these platforms (*.sh on all unix/linux style OSs and *.bat on Windows).

Multi-platform operability is a key attribute for QPID users and thus we must ensure that changes applied do not compromise this.

Qpid Ruby Documentation
Qpid supplies a ruby client for making AMQP connections to a compliant broker, require qpid.rb to get everything you need. tests/basic.rb
has a simple example.

Qpid Testing

Testing Pages

Interop Testing Specification
Java Unit Tests with InVM Broker
Performance, Reliability and Scaling
Qpid JMX Management Console Testing Guide
Testing Design - Java Broker CPU GC Monitoring

Interop Testing Specification

Qpid Interop Testing Spec. Working Copy.

Draft. Rupert
Smith.

22nd Feb
2007

Document started.

Working Copy. Rupert
Smith.

6th Mar
2007

Document updated from feedback to draft on qpid-dev list. Last requirement # used: 47

Working Copy. Rupert
Smith.

7th Mar
2007

Senders and receivers to send reports to coordinator. Reply-to added to broadcast
messages. Last requirement # used: 49

Working Copy. Rupert
Smith.

13th Mar
2007

Added test case names. Last requirement # used: 52

Working Copy. Rupert
Smith.

25th Sept
2007

Added test cases for message size variation. Last requirement # used: 60

Version 2 Work in
Progress.

Rupert
Smith

22nd Nov
2007

Test framework being expanded to cover functional and perforance tests and a much
wider variety of testing possibilities.

Introduction:

The requirements in this specification use a common format, an example of which is given below:

RE-1. Sample Requirement. A brief descritpion of the requirement.

The requirements are numbered from 1.

Purpose:

Test sending from and receiving by each of the clients in Qpid over both of the broker implementations.

Enable testing of any JMS compliant product, by keeping a pure JMS sub-set of the testing framework seperate. This only applies to
Java messaging client implementations.

Provide a parameter driven test framework, that can be used to generate many testing scenarios for different messaging modes.

Allow functional testing of messaging at the product surface, through the standard interfaces/protocols (JMS, AMQP), so that the
same test suite may be applied over different implementations.

Allow tests to be posed in terms of abstract asynchronous messaging concepts that AMQP and JMS support, rather than at the level
of direct interfaces. This allows the same tests to carry forward as standards and products evolve.

Enable interopability testing between any AMQP compliant components, not just those in Qpid.

Allow performance testing to be carried out accross a distributed set of edge nodes connected to a messaging broker.

Make tests robust enough to run as part of an automated build. The scripts should pass or fail, not hang, wait forever, run out of
memory or otherwise cause an automated build process to fail to complete.

Be capable of running the full test suite on several machines in a hands free way. In particular C++ tests need to run on unix and
.Net on windows, necessitating a multi-box solution for full interop testing.

Be capable of running the same test cases accross message topologies ranging from a single test node running in the same process
as a broker, to many test nodes running on different machines, remotely connected to a broker.

Constraints:

IOP-1. Operating
System.

The test client scripts must run on Unix and Windows. If a test client implementation is only available on one of
these platforms it only needs to run on its supported platform.

IOP-2. Scripting
Language.

Each test client must be startable from a Unix shell script. Tests run on Windows will use Cygwin to run these
scripts. There is no need to support Windows .bat scripts.

Functional Requirements:

Introduction.

These requirements describe the behaviour of test clients for testing between different client implementations of AMQP. Each client is
expected to be a single program that is capable of sending test messages to other clients and receiving and responding to test messages
received from other test clients. The clients are not to be run as seperate programs for the sending and receiving parts for the sake of
convenience in being able to run the clients as part of an automated build. The clients will listen for control messages broadcast by a master
coordinator, to enlist them in tests, tell them which test to run, when to begin their tests, where to submit reports about the tests and when to
shut down.

A centralized approach has been chosen, using a single coordinator, as test framework code which would otherwise have to be duplicated
amongst all the clients will generally be put in the coordinator. The idea is to place as much logic as possible in the coordinator and as little
as possible in the clients which means that code will only have to be written and maintained in one place. This code will include code for
enlisting clients for tests, deciding which test case to run, and formatting and logging out the results. The alternative would be to have a
de-centralized approach, where each client broadcasts the test enlist messages, finds out what other clients are available to talk to, choses
which tests to run and outputs the test results. One advantage of the centralized approach, is that the coordinator should know which clients
are available, and therefore which clients cannot run particular tests, or fail completely to run particular tests, and should therefore be able to
log out failures for clients that fail tests in a more reliable way, than if it were up to the clients to log their own failures and ommissions.

Build tests out of a standardized construction block.

Diagram: The test circuit.

Publisher/Receiver pair.

1.
2.
3.
4.
5.
6.
7.

Each end of which is a Producer/Consumer unit.
M producers, N consumers, talking over Z destinations.

One of the stated aima of this specificiation is to "Allow tests to be posed in terms of abstract asynchronous messaging concepts that AMQP
and JMS support, rather than at the level of direct interfaces". For example, we know that messages sent in a transaction, must not be
delivered until the transaction is committed. This is true of AMQP as it is of JMS; as AMQP is intended to provide similar messaging
semantics to JMS. The statement is also true, whether the messages are broadcast to many receivers or sent to just one.

The standard consruction block for a test, is a test circuit. This consists of a publisher, and a receiver. The publisher and receiver may reside
on the same machine, or may be distributed. Will use a standard set of properties to define the desired circuit topology.

Tests are always to be controlled from the publishing side only. The receiving end of the circuit is to be exposed to the test code through an
interface, that abstracts as much as possible the receiving end of the test. The interface exposes a set of 'assertions' that may be applied to
the receiving end of the test circuit.

In the case where the receiving end of the circuit resides on the same JVM, the assertions will call the receivers code locally. Where the
receiving end is distributed accross one or more machines, the assertions will be applied to a test report gethered from all of the receivers.
Test code will be written to the assertions making as few assumptions as possible about the exact test topology.

A test circuit defines a test topology, M producers, N consumers, Z outgoing routes between them.
The publishing end of each test circuit always resides on a single JVM, even if M > 1. If publishers are to be distributed accross many
machines, the test framework itself provides the scaling by running the same test circuit many times in parallel. This means that it is possible
to have an arbitrary number of message publishers accross one or many machines, determined by the test setup.
The receiving half of the circuit may be local, in which case all messages come back to the same machine, or distributed in which case they
may be received by many machines.
There are therefore two ways in which tests may be distributed accross multiple nodes in a network; many test circuits may be distributed
and run in parallel and/or the receiving ends of those circuits may be distributed or local.
Each node in the network can play up to 2 roles in any given test; publisher or receiver. It is possible to play both roles at once, but would like
to have a 'single_role' flag, that can be set to ensure that test nodes taking one role, will not participate in the other for the duration of a test.
For example, in the pub/sub test want one publisher and the remaining nodes to distribute the receiver role amongst themselves.

Probing for the available test topology.

Diagram: The available topology.

When the test distribution framework starts up, it should broadcast an 'enlist' request on a known topic. All available nodes in the network to
reply in order to make it known that they are available to carry out tests. For the requested test case, C test circuits are to be run in parallel.
Each test defines its desired M by N topology for each circuit. The entire network may be available to run both roles, or the test case may
have specified a limit on the number of publishing nodes and set the 'single_role' flag. If the number of publishing nodes exhausts the
available network and the single role flag is on, then there are no nodes available to run the receiver roles, the test will fail with an error at
this point. Suppose there are P nodes available to run the publisher roles, and R nodes available to run the receiver roles. The C test circuits
will be divided up as evenly as possible amongst the P nodes. The C * N receivers will be divided up as evenly as possible amongst the R
nodes.

A more concrete example. There are 10 test machines available. Want to run a pub/sub test with 2 publishers, publishing to 50 topics, with
250 subscribers, measuring total throughput. The distribution framework probes to find the ten machines. The test parameters specify a
concurrency level of 2 circuits, limited to 2 nodes, with the single role flag set, which leaves 8 nodes to play the receiver role. The test
parameters specify each circuit as having 25 topics, unique to the circuit, and 125 receivers. The total of 250 receivers are distributed
amongst the 8 available nodes, 31 each, except for two of them which get 32. The test specifies a duration of 10 minutes, sending messages
500 bytes in size using test batches of 10000 messages, as fast as possible. The distribution framework sends a start signal to each of the
publishers. The publishers run for 10000 messages. The publishers request a report from each receiver on their cicruit. The receivers send
back to the publishers a report on the number of messages received in the batch. The publishers assert that the correct number for the batch
were indeed received, and log a time sample for the batch. This continues for 10 minutes. At the end of the 10 minutes, the publishers collate
all of their timings, failures, errors into a log message. The distribution framework requests the test report from each publishing nodes, and
these logs are combined together to produce a single log for the entire run. Some stats, such as total time taken, total messages through the
system, total throughput are calculated and added as a summary to the log, along with a record of the requested and actual topology used to
run the test.

Diagram: The requested test applied onto the available topology.

Test Procedures.

A variety of different tests can be written against a standard test circuit, many of these will follow a common pattern. One of the aims of using
a common test circuit configured by a number of test parameters, is to be able to automate the generation of all possible test cases that can
be produced from the circuit combined with the common testing pattern, and an outline of a procedure for doing this is described here. The
typical test sequence is described below:

A typical test sequence.

Initialize the test circuit from the default parameters, plus specific settings for the test.
Create the test circuit. The requested test parameters are applied to the available topology to produce a live circuit.
Send messages.
Request a status report.
Assert conditions on the publishing end of the circuit.
Assert conditions on the receiving end of the circuit.
Pass or fail the test.

The thorough test procedure.

The thorough test procedure uses the typical test sequence described above, but generates all of combinations of test parameters and
corresponding assertions against the results.

The all_combinations function produces all combinations of test parameters described in Appendix A.

all_combinations : List<Properties>

The expected_results function, produces a list of assertions, given a set of test parameters. For example, mandatory && no_route ->
assertions.add(producer.assertMessageReturned), assertions.add(receiver.assertMessageNotReceived).

expected_results: Properties -> List<Assertions>

For parameters : all_combinations
test_circuit = new TestCircuit(parameters).
test_circuit.start.

Send mesages.
Request status.

For assertion : exected_results(parameters)
Assert(assertion).

Common Requirements.

IOP-3. Directory
Structure.

All scripts to start and stop brokers and run test clients will be placed in a directory structure underneath a
top-level directory called 'interop' that sits at the top level of the Qpid project.

IOP-4. Test Output
Format.

Output in junit xml format (because a lot of automated build software understands this format). There doesn't
seem to be a schema or DTD for this format but it is simple enough. See Appendix B for an example.

IOP-5. Terminate
On Timeout.

Each client will keep a timeout count. Every time it gets a message it will reset this count. If it does not hear from
the broker at all for 60 seconds then it will assume that the broker has died or that the other test clients are
failing to communicate with it, and will terminate. Test clients will only wait on this timeout when they are actually
expecting messages, for example after enlisting to a test and expecting a role assignment message, or during a
test when they are expecting to be sent a test message. If neccessary, this timeout can be extended to a longer
time period than 60 secods, its purpose is to ensure eventual termination of all clients during a fully automated
build.

IOP-6. Default
Virtual Host.

All test clients will use the default virtual host (no name) for all tests, unless overriden by test parameters for a
particular test case, or by command line options when starting the client.

IOP-7. Broadcast
Control
Topic.

All test clients will listen to control messages broadcast on the routing key 'iop.control' on the default virtual host
on the default topic exchange. This control topic is used for communicating with the test coordinator client.

IOP-48. Control
Message
Replies.

All control messages broadcast by the coordinator will include a reply to field. The coordinator will listen on the
reply address for responses to its control messages.

IOP-8. No
Environment
for Scripts.

In general, start up scripts should be intelligent enough to configure the environment variables that they need in
order to run. It should be sufficient to have a path configured for the neccessary run time tools (such as Java)
when calling scripts. Environment variables, such as QPID_HOME, should be set by startup scripts themselves,
figured out from their installation locations.

IOP-9. Wait Until
Background
Process
Started.

Scripts that start processes running in the background should not terminate until the process they are starting
has succesfully started. This is neccessary for reliable testing, to ensure that subsequent scripts can be run,
knowing that previous scripts have completed, with dependant proccesses in a known state. For example, it is
important to start all test clients prior to starting the coordinator.

Use Case 1. Starting a Broker.

Run the broker start script.
The script starts a broker running and tries to connect to it (or otherwise ping it) until it is verified to be running.
Once the broker is verified to be running the script terminates with no error code.

 The broker fails to start or does not appear to be running after a timeout has passed. The script fails with an error code.Failure path:

IOP-10. Broker
Start
Script.

The Java and C++ brokers will define scripts that can start the broker running on the local machine, and these
scripts will be located at interop/java/broker/start and interop/cpp/broker/start. The Java and C++ build processes
will generate these scripts (or copy pre-defined ones to the output location) as part of their build processes.

IOP-11. Broker
Start
Failure.

If a broker fails to start within 60 seconds its start script will timeout. Script will terminate with error code 1.

IOP-12. Broker
Start
Succesfull.

When the broker starts succesfully the script will terminate with error code 0.

Use Case 2. Stopping a Broker.

Run the broker stop script.
The script terminates the broker that was started with the start script if it is still running.

 The broker won't terminate. The script fails with an error code.Failure path:

IOP-13. Broker
Stop
Script.

The Java and C++ brokers will define scripts that can stop the broker running on the local machine, and these
scripts will be located at interop/java/broker/stop and interop/cpp/broker/stop. The Java and C++ build processes
will generate these scripts (or copy pre-defined ones to the output location) as part of their build processes.

IOP-14. Broker
Stop
Timeout.

If a broker fails to terminate within 60 seconds its stop script will timeout. Script will terminate with error code 1.

IOP-15. Broker
Stop
Succesfull.

When the broker stops succesfully the script will terminate with error code 0.

Use Case 3. Starting a Test Client.

Run the client start script. The caller will pass in the address of the broker to connect to.
The script starts a client running.
The client starts running but waits for further instruction before running its tests.
The start script will terminate but leave the client running as a forked process.

 The client will not start, or fails to connect to the specified broker. The script will terminate with error code 1.Failure path:

IOP-16. Client Start
Scripts.

For each client implementation, <client>, there will be a start script located at interop/<client>/client/start. The
build processes for each client will generate these scripts and output them to this location as part of their build
process.

IOP-17. Client Start
Timeout.

If the client fails to start and connect to the specified broker within 60 seconds the script will terminate with
error code 1.

IOP-18. Client Start
Succesfull.

When the client starts successfully its script will terminate with error code 0.

IOP-19. Client Start
Broker and
Port.

The -b <hostname> option will be used to instruct the start script to connect to the specified hostname. The -p
<port> option will similarly allow the port to be specified.

IOP-20. Client Virtual
Host.

The default virtual host to connect to, may be overridden with the -v <virtual_host> command line option, which
will be accepted by all test clients.

IOP-21. Client Start
General
Parameters.

General parameters may be passed to the client start scripts using the synax name=value. These name/value
pairs may be used by specific test cases to override default test parameters. See Appendix C for a list of test
parameters.

Use Case 4. Starting the Coordinator.

The requirements defined for Use Case 3, also apply to this use case.

Run the testall start script. The caller will pass in the address of the broker to connect to.
The script starts the coordinator client running.
The coordinator will manage the test procedure.
The scipt will terminate when the coordinator has completed.

 The coordinator will not start, or fails to connect to the broker. The script will terminate with error code 1.Failure path:

IOP-22. Coordinator
Test Script.

There will be a coordinator test script that kicks off the testing process once all clients have been started. It is to
be located at interop/testall. It will start a coordinator test client that issues test invites, assigns roles, collects
results and terminates test clients when all tests have been run.

Use Case 5. Overall Test Procedure.

Start a broker running using its start script as described by Use Case 1.
Call the start all clients script on each of the machines where there are clients that are to be tested. The caller will pass in address of the
broker to connect to, and any additional parameters.
The start all script will scan for all start scripts located under interop/<client>/client/start and call each of them forwarding its command line
arguments on the call. This performs Use Case 3 for each client.
Call the coordinator test client script. This is described as Use Case 4.

The coordinator test script will broadcast an invite message, with no test name on the control topic. The lack of a test name indicates that this
is a compulsory invite, to which all clients must enlist.

Each client will respond with an enlist message. This message will contain the routing key on the default topic exchange to which the client
has bound its private control queue.
The coordinator retains the list of available clients, and the addresses of their control queues.

The coordinator will broadcast an invite to a named test. This invite may also contain any parameters needed to configure the test, that are
relevant to a clients choice to accept the invite or not.
All clients that are able to participate in this test will reply to the invite with enlist messages. Clients may opt to participate in the test
depending on the test parameters, if desired.
The coordinator will send messages to assign roles to the sender and receivers private control topics. These messages will contain the test
parameters and roles. The test parameters may also include additional parameters not in the original invite, for test parameters that are to be
set on a per test instance basis.
The clients will respond with accept role messages.
The coordinator will wait until it has received acceptances from both roles.
The coordinator will issue a start message to the client with the sender role.
The sender client will send its test messages. Once the test has completed the sender will send a report message to the coordinator, giving
details about the message that it sent.
The coordinator will wait until it receives a report message from the sender.
The coordinator will issue a status request message to the reciever role.
The receiver will reply with a report, giving details about the messages it has received.
The coordinator will wait until it receives a report message from the receiver.
The coordinator will compare the sender and receiver reports in order to decide whether the test passed or failed.
The coordinator will check its list of available clients and log out failures for any combinations of clients that were not tested because they did
not enlist for the test.

Once all test cases are complete, the coordinator will broadcast a shutdown message.
All clients will terminate on receipt of the shutdown message.
The coordinator will terminate.
Terminate the broker using its stop script.

IOP-23. Start All
Script.

There will be a start all clients script, located at interop/startall. The startall script finds all client starts scripts
under interop/<client>/client/start and calls them.

IOP-24. Start All
Script
Options
Forwarding.

The start all script will take the same command line options as the client start scripts and will pass these
command line options on to them.

IOP-25. Invite
Message.

For every test case the coordinator will broadcast an invite message on the control topic. This message will be
identified by the header field, "CONTROL_TYPE", having the value, "INVITE". This message will also include the
name of the test case and may also include some test parameters. (See IOP-48, for the reply to address.)

"CONTROL_TYPE", "INVITE"
 "TEST_NAME", "<test_case>"
 ... optional test parameters.

IOP-26. Initial
Invite.

At the start of the test procedure the coordinator will broadcast a compulsory invite, to which all available clients
must enlist, in order to declare their availability and to enable the coordinator to detect when there are clients that
did not participate in some tests. The compulsory invite will be differentiated form an ordinatory invite because it
will have no "TEST_NAME" header field.

IOP-27. Enlist
Message.

Every test client that receives an invite message will respond by declaring its availability to run interop tests. The
client will send an enlist message by replying to the invite message. The enlist message will be identified by the
header field, "CONTROL_TYPE", having the value, "ENLIST". The client will declare the routing key on which it
expects to be sent private control messages. The client will also declare a unique name by which it can be
identified (see IOP-35). The declare available message will contain the following header fields with this
information:

"CONTROL_TYPE", "ENLIST"
 "CLIENT_NAME", "<client_name>" (see
IOP-35 for rules about the client name).
 "CLIENT_PRIVATE_CONTROL_KEY", "iop.control.<client_name>" (see
IOP-36)

IOP-28. Assign
Role
Message.

Having selected clients to participate in a particular test case, the coordinator will send those clients messages to
assign the roles they will play in the test case, on the clients private control topics. Each test case has sender and
receiver roles. This message will be identified by the header field, "CONTROL_TYPE", having the value,
"ASSIGN_ROLE". The full test parameters will be included in this message, allowing tests to be configured on a
per test instance basis.

"CONTROL_TYPE", "ASSIGN_ROLE"
 ... full test parameters.

IOP-29. Accept
Role
Message.

A client receiving an assign role message, will reply to it with an accept role message. This message also
indicates that the client is ready to start the test. This message will be identifier by the header field,
"CONTROL_TYPE", having the value, "ACCEPT_ROLE".

"CONTROL_TYPE", "ACCEPT_ROLE"

IOP-30. Start
Message.

The coordinator will send a start message to begin the test procedure. All test clients will listen for this message
on their private control topics. The start message will be identified by the header field, "CONTROL_TYPE",
having the value, "START".

"CONTROL_TYPE", "START"

IOP-31. Report
Message.

Once the test clients have completed a test case, they will send the coordinator a report about the actions they
have performed. In the case of senders, this report will be sent once they have finished sending test messages.
In the case of receiver, this report will be sent in response to a status request from the coordinator (see IOP-49).
The report message will be identified by the header field, "CONTROL_TYPE", having the value, "REPORT". Its
message body, or additional header fields will contain the report, specific to the test case being run.

"CONTROL_TYPE", "REPORT"
 ... test specific parameters.
 Message body, Test case specific report.

IOP-49. Status
Request
Message.

Once the coordinator has received the senders report, it will send a status request to the receiver, to request the
receivers report. This message will be identified by the header field, "CONTROL_TYPE", having the value,
"STATUS_REQUEST".

"CONTROL_TYPE", "STATUS_REQUEST"

IOP-34. Terminate
Message.

The coordinator will wait for all test clients to complete their tests for all test cases at which time it will broadcast a
terminate message to the control topic. The terminate message will be identified by the header field,
"CONTROL_TOPIC", having the value, "TERMINATE". Upon receipt of this message the test clients will
terminate.

"CONTROL_TYPE", "TERMINATE"

IOP-35. Client
Name.

Each test client will provide a unique name for itself that reflects its implementation language and distinguishes it
from the other clients. Clients may append an environment identifier onto this name to cater for the case where
the same client is used multiple times in an interop test. For example, the same client might be run on two
different operating systems, in order to check that it works correctly on both. Example names in this case might
be "java-win" and "java-linux".

IOP-36. Private
Client
Control
Topic.

Each test client will listen for test control messages directed specifically to it on the default topic exchange. The
routing key for these messages will consist of "iop.control." followed by the client name (see IOP-35). A topic
exchange is used, rather than a direct exchange, to cater for the situation where multiple instances of a client are
run in parallel and tests are to be scaled accross many clients (not currently in scope, see Waiting Room). It also
allows a listener to be attached to the default topic exchange to listen to all control messages using a wildcard
selector.

IOP-37. Seperate
Connection
for Control
Topic.

Test clients should create open a seperate connection to communicate with the control topics on the default topic
exchange, to that which they use to perform tests. This is so that a channel level error that results in the closing
of a connection during a test, may still allow a client to succesfully send a failure report to the coordinator.

Common Requirements for Test Cases.

Test cases that use these requirements mention them in the description of the test case.

IOP-38. Message
Counts.

Whenever a test client recieves a message from another test client it will increment the total count of messages
received from that client. Test messages will contain the name of the sending client in the header field
"CLIENT_NAME", and the count will be held against a combination of that name and the messages correlation
id (see IOP-42).

IOP-39. Message
Count Reset.

Whenever a test client is begining a new test case (when it accepts a role) it will reset its message counts to
zero.

IOP-41. Message
Count
Report
Message.

Upon receipt of a status request message, a test client will reply with a report message. The report message will
be identified by the header field "CONTROL_TYPE", having the value, "REPORT" (as described by IOP-31). In
addition to this, the header field, "MESSAGE_COUNT" will contain the count of messages received since the
last reset as a signed 32-bit integer.

"CONTROL_TYPE", "REPORT"
 "MESSAGE_COUNT", <count> (signed 32 bit
integer)

IOP-42. Correlation
Id.

When sending test messages, clients will identify all messages using a unique correlation id for the test case
instance. This will differentiate test messages in a situation where the same client is scaled up to run a test case
many times in parallel (not in scope, see Waiting Room).

IOP-43. Test
Connections.

Test clients will create connections to send test messages on when they are assigned roles. In many cases this
will consist of creating a single connection, and a producer or consumer for the test routing key or queue. In
some tests, which simulate the activity of many message receivers, multiple connections may be opened.

Test Case 1. Dummy Run.

The sending client will not send any test messages at all. It will send a report message on the control topic, declaring that the test has
passed.

The purpose of this test case is to check that clients can interoperate succesfully with the test coordinator and participate in the sequencing
of the tests.

IOP-50. Test Case 1 Name. The "TEST_NAME" field in the test invite (IOP-25) will be "TC1_DummyRun" for this test.

Test Case 2. Basic P2P Test.

This test case uses requirements IOP-38 to 43 inclusive.

The sending client creates a fresh correlation id, and the entire test case conversation uses this id.
The sending client will send the required number of test messages to the test routing key on the default direct exchange.
The sending client will send a message count report to the coordinator.
In response to a status request from the coordinator, the receiving client will reply with a message count report.
The coordinator will compare the messages received to the messages sent and pass or fail the test accordingly.

IOP-44. Basic P2P Setup. Prior to assigning roles, the coordinator will bind a queue to the default direct exchange with a routing key,
the same as the queue name. It will create a fresh queue and key for every test case instance.

IOP-45. Basic P2P Assign
Role Parameters.

In addition to the invite message format defined in IOP-26, the basic p2p test invite will also include the
following parameters.

"P2P_QUEUE_AND_KEY_NAME", "<name>"
 "P2P_NUM_MESSAGES", <count> (signed 32 bit int),
P2P_NUM_MESSAGES property.

IOP-51. Test Case 2
Name.

The "TEST_NAME" field in the test invite (IOP-25) will be "TC2_BasicP2P" for this test.

Test Case 3. Basic Pub/Sub Test.

This test case uses requirements IOP-38 to 43 inclusive.

The sending client creates a fresh correlation id, and the entire test case conversation uses this id.
The sending client will send the required number of test messages to the test routing key on the default topic exchange.
The sending client will send a message count report to the coordinator.
In response to a status request from the coordinator, the receiving client will reply with a message count report. This number will be the

number of messages sent multiplied by the number of receivers being simulated by the receiving client.
The coordinator will compare the messages received to the messages sent and pass or fail the test accordingly.

IOP-46. Basic Pub/Sub Setup. Prior to assigning roles, the coordinator will choose a routing key for the test. If will create a fresh
key for every test case instance.

IOP-47. Basic Pub/Sub Invite
Parameters.

In addition to the invite message format defined in IOP-26, the basic pub/sub test invite will also
include the following parameters.

"PUBSUB_KEY", "<key>"
 "PUBSUB_NUM_RECEIVERS", <count> (signed 32 bit
int), PUBSUB_NUM_RECEIVERS property.
 "PUBSUB_NUM_MESSAGES", <count> (signed 32 bit
int), PUBSUB_NUM_MESSAGES property.

IOP-52. Test Case 3 Name. The "TEST_NAME" field in the test invite (IOP-25) will be "TC3_BasicPubSub" for this test.

Test Case 4. P2P Test with Different Message Sizes.

This test case uses requirements IOP-38 to 43 inclusive.

The sending client creates a fresh correlation id, and the entire test case conversation uses this id.
The sending client will send the required number of test messages to the test routing key on the default direct exchange.
The sending client will send a message count report to the coordinator.
In response to a status request from the coordinator, the receiving client will reply with a message count report.
The coordinator will compare the messages received to the messages sent and pass or fail the test accordingly.
The above test cycle will be repeated for each message size to test.

IOP-53. P2P Message Size Test
Setup.

Prior to assigning roles, the coordinator will bind a queue to the default direct exchange with a
routing key, the same as the queue name. It will create a fresh queue and key for every test case
instance.

IOP-54. P2P Message Size Test
Assign Role
Parameters.

In addition to the invite message format defined in IOP-26, the basic p2p test invite will also include
the following parameters.

"P2P_QUEUE_AND_KEY_NAME", "<name>"
 "P2P_NUM_MESSAGES", <count> (signed 32 bit
int), P2P_NUM_MESSAGES property.
 "messageSize", <count> (signed 32-bit
int).

IOP-55. P2P Message Size Test
Sizes

The following values for the message size parameter will be tested: 0K, 63K, 64K, 65K, 127K, 128K,
129K, 255K, 256K, 257K.

IOP-56. Test Case 4 Name. The "TEST_NAME" field in the test invite (IOP-25) will be "TC4_P2PMessageSize" for this test.

Test Case 5. Pub/Sub Test with Different Message Sizes.

This test case uses requirements IOP-38 to 43 inclusive.

The sending client creates a fresh correlation id, and the entire test case conversation uses this id.
The sending client will send the required number of test messages to the test routing key on the default topic exchange.
The sending client will send a message count report to the coordinator.
In response to a status request from the coordinator, the receiving client will reply with a message count report. This number will be the
number of messages sent multiplied by the number of receivers being simulated by the receiving client.
The coordinator will compare the messages received to the messages sent and pass or fail the test accordingly.
The above test cycle will be repeated for each message size to test.

IOP-57. Pub/Sub Message Size Test
Setup.

Prior to assigning roles, the coordinator will choose a routing key for the test. If will create a
fresh key for every test case instance.

IOP-58. Pub/Sub Message Size Test
Invite Parameters.

In addition to the invite message format defined in IOP-26, the basic pub/sub test invite will
also include the following parameters.

"PUBSUB_KEY", "<key>"
 "PUBSUB_NUM_RECEIVERS", <count> (signed 32
bit int), PUBSUB_NUM_RECEIVERS property.
 "PUBSUB_NUM_MESSAGES", <count> (signed 32
bit int), PUBSUB_NUM_MESSAGES property.
 "messageSize", <count> (signed
32-bit int).

IOP-59. P2P Message Size Test Sizes The following values for the message size parameter will be tested: 0K, 63K, 64K, 65K,
127K, 128K, 129K, 255K, 256K, 257K.

IOP-60. Test Case 5 Name. The "TEST_NAME" field in the test invite (IOP-25) will be "TC5_PubSubMessageSize" for
this test.

Waiting Room:

Contains ideas for possible future directions relating to this spec.

 Test cases to be written using a command language (perhaps in XML) on top of a common client API. Interpreter forCommand processor.
this to be implemented using each client library. Test cases need only be written once and can be run by the interpreters. Command
language rich enough to exercise the whole AMQP protocol. May not handle client specific edge cases. Good for ensuring test consistency,
but may take a fair amount of time to do.

 Will try to get a free licence for Anthill Pro 3 as they offer free licences forHow I anticipate this being run as part of a fully automated build.
open source projects. Viewtier Parabuild is another possibility. Anthill Pro runs a central build server that does all its work through build
agents that can run on many boxes. It also lets you define build workflows. I imagine running a Unix agent to build the c++, java and python
stuff, and a Windows agent for the .net stuff. Will define a workflow that starts a broker on the unix box, then starts all clients built on the unix
and windows boxes in parallel, then runs the entire test procedure across all clients, then terminates the broker on the unix box. The agents
send back the test results to the central server.

 Make sure that every possible data type is tested and confirmed to encode and decode correctly between all clientFull testing of field tables.
implementations.

 Add tests to more fully exercise the complete AMQP protocol.Testing more of the protocol.

 Each test client should only be run once (in each environment) and they create unique names for themselves.Allow scaling of test clients.
Tests are only run between pairs of single clients, with a single sender and number of receivers defined by the test case (often 1). Clients
listen for control messages on topics, and use correlation id's in all tests messages to differentiate themselves, were multiple senders to be
active. This has been done deliberately to allow for future expansion of the test framework to allow scaling up of the tests by starting more
clients in parallel on the same environment. To do this each client might also create a sequence number, to unqiuely identify itself, as the
client names will no longer be unique. Reports from senders will include client name, sequence number and correlation id. Status requests to
receivers may specify client name, sequence number and correlation id to get specific reports, or ommit correlation id or sequence number to
get a bulk report of all messages with a particular client.

 Message count reports are fairly minimal. Might also put an entire list of messages send/recieved in a report, inMore sophisticated reporting.
order to check that there were no ommissions or duplicates.

Appendix A, General Notes:

Brokers that need to be interop tested: C++ and Java

Clients that need to be interop tested: C++ , Java, Java 1.4 retrotranslation, C++, .Net 2.0, .Net 1.1, (Mono?), Python, Ruby.

Appendix B, Example of XML Format for Test Ouput:

I don't think there is a DTD or schema for this but the XML output from JUnit looks like the example below. This is a convenient choice for the
output format from these test results even if the code does not actually use JUnit (or cppunit or nunit) iternally, because automated build
servers generally understand and are able to produce test reports from it.

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<testsuite errors="0" skipped="0" tests="18" time="0.02" failures="0"
name="org.apache.qpid.framing.BasicContentHeaderPropertiesTest">
 <properties>
 <property value="Java(TM) 2 Runtime Environment, Standard Edition" name="java.runtime.name"/>
 ... (there were lots of properties).
 </properties>
 <testcase time="0.02" name="testRejectedExecution"/>
 ... (there were lots of test cases).
</testsuite>

Appendix C, Test Parameters.

 Possible Values Default Value

Connection properties.

broker tcp, vm tcp://localhost

vhost <empty>

username guest

password guest

Topology properties.

max_publishing_node 1

single_role true, false true

Circuit properties. Total: 2^2 = 4 combinations.

num_publishers 1

num_consumers 1

num_destinations 1

base_out_route_name ping

base_in_route_name pong

bind_out_route true, false true

bind_in_route true, false false

consumer_out_active true, false true

consumer_in_active true, false false

JMS flags and options. Total: 2 * 2 * 2 * 6 = 48 combinations.

transactional true, false false

persistent true, false false

no_local true, false false

ack_mode tx, auto, client, dups_ok, no_ack, pre_ack auto

AMQP/Qpid flags and options. Total: 2^4 = 16 combinations.

exclusive true, false false

immediate true, false false

mandatory true, false false

durable true, false false

prefetch_size

header_fields

Standard test parameters. Total: 3 combinations.

message_size no_body, one_body, multi_body one_body

1.
2.
3.
4.

5.
6.
7.

8.

1.
2.

num_messages 100

outgoing_rate

inbound_rate

timeout 30 seconds

tx_batch_size 100

max_pending_data

Total combinations over all test parameters: 4 * 48 * 16 * 3 = 9216 combinations.

Defaults give an in-VM broker, 1:1 P2P topology, no tx, auto ack, no flags, publisher -> receiver route configured, no return route.

Appendix D, Command line options.

IOP-21 states that general parameters can be passed on the command line using name=value syntax. The coordinator understands the
following parameters, and will use them to override the default values for the tests. Individual test cases refer to the command line parameter
that they take their test parameters from.

Parameter Default

P2P_NUM_MESSAGES 50

PUBSUB_NUM_RECEIVERS 5

PUBSUB_NUM_MESSAGES 10

Appendix E, Clock Synchronization Algorithm.

On connection/initialization of the framework, synch clocks between all nodes in the available toplogy. For in vm tests, the clock delta and
error will automatically be zero. For throughput measurements, the overall test times will be long enough that the error does not need to be
particularly small. For latency measurements, want to get accurate clock synchronization. This should not be too hard to achieve over a quiet
local network.

After determining the list of clients available to conduct tests against, the Coordinator synchronizes the clocks of each in turn. The
synchronization is done against one client at a time, at a fairly low messaging rate over the Qpid broker. If needed, a more accurate
mechanism, using something like NTP over UDP could be used. Ensure the clock synchronization is captured by an interface, to allow better
solutions to be added at a later date. Here is a simple algorithm to get started with:

Coordinator tells client to synchronize its clock with the coordinators time.
Client stamps current local time on a "time request" message and sends to Coordinator.
Upon receipt by Coordinator, Coordinator stamps Coordinator-time and returns.
Upon receipt by Client, Client subtracts current time from sent time and divides by two to compute latency. It subtracts current time
from Coordinator time to determine Client-Coordinator time delta and adds in the half-latency to get the correct clock delta.
The first result should immediately be used to update the clock since it will get the local clock into at least the right ballpark.
The Client repeats steps 1 through 3, 25 or more times, pausing a few tens of milliseconds each time.
The results of the packet receipts are accumulated and sorted in lowest-latency to highest-latency order. The median latency is
determined by picking the mid-point sample from this ordered list.
All samples above approximately 1 standard-deviation from the median are discarded and the remaining samples are averaged
using an arithmetic mean.

The above algorithm includes broker latency, two network hops each way, plus possible effects of buffering/resends on the TCP protocol. A
fairly easy improvement on it might be:

Coordinator tells client to synchronize its clock with the coordinators time, provides a port/address to synchronize against.
Clients sends UDP packets to the Coordinators address and performs the same procedure as outlined above.

Appendix F, Deleted Requirements:

Put deleted requirements here, in case they can be re-used.

IOP. Client Start
Messages Per
Test.

The -m <num_messages> option will be used to tell the client how many messages to send per test.

IOP. Client Number of
Receivers.

For topic testing each client will simulate the behaviour of many clients listening to the same topic. The
number of receivers per test client for topic tests will be sepcified by the -r <num_receivers> command line
option.

IOP. Client Default P2P
Test Direct Key.

Each test client will listen for test messages on the default direct exchange. The routing key for these
messages will consist of the client name (see IOP-35) followed by ".direct".

IOP. Client Default
Pub/Sub Test
Direct Key.

Each test client will listen for test messages on the default topic exchange. The routing key for these
messages will consist of the client name (see IOP-35) followed by ".topic".

IOP. Test Done
Message.

Once a test client has completed its role, it will send the coordinator a test done message on the control
topic. This message will be identified by the header field, "CONTROL_TYPE", having the value,
"TEST_DONE". The client will also post its name in the "CLIENT_NAME" header field.

"CONTROL_TYPE", "TEST_DONE"

IOP. End Role
Message.

Once the coordinator receives a report for a test case, it will send end role messages to the private control
topics of all clients participating in the test case. This message will be identified by the header field,
"CONTROL_TYPE", having the value, "END_ROLE".

"CONTROL_TYPE", "END_ROLE"

IOP. Client Status
Request Message.

When a test client has completed sending test messages it may request the count of actual messages
receieved from the test client to which it sent the messages. The status request message will be send to the
receving test clients individual control topic. This message will be identified by the header field,
"CONTROL_TYPE", having the value, "STATUS_REQUEST", and will contain the name of the sending client
in the header field "CLIENT_NAME".

"CONTROL_TYPE", "STATUS_REQUEST"
 "CLIENT_NAME", "<client_name>"

Java Unit Tests with InVM Broker

Sample Code

Here is a template for correctly creating a unit test that will use the InVM Broker.

 @Before
 public void initialSetup() throws Exception
 {
 createVMBroker();

 //Any other setup code

 }

 public void createVMBroker()
 {
 try
 {
 TransportConnection.createVMBroker(1);
 // Multiple Brokers can be created by passing in a different port. The above is
connected to with the url vm://:1
 }
 catch (AMQVMBrokerCreationException e)
 {
 Assert.fail("Unable to create broker: " + e);
 }
 }

 @After
 public void stopVmBroker()
 {
 // If you created a connection in the @Before be sure to close it before you kill the
broker or
 // it will attempt failover, and recreate the broker.
 TransportConnection.killVMBroker(1);
 //Remember to kill any other brokers you create
 }

 @Test
 public void yourTest code() throws Exception
 {
 //If you do your connection setup here
 Connection con = new AMQConnection("vm://:1", "guest", "guest", "consumer1", "test");

 // Be sure to close it before you end the test
 con.close();
 }

Performance, Reliability and Scaling
Qpid has a substantial server performance test suite based around the library.junit-toolkit

The test cases fall into the following categories:

Throughput - straight line 0-600,000 messages/second in how long?
 - how quickly can I get a few messages?Latency

 - burn in, stress and soak testsReliability

Building and running the tests

The performance tests live in qpid/java/perftests. When they are built the scripts are generated and placed into qpid/java/build/bin/perftests.
These are detailed in the relevant list of test cases above. There are 3 convinience scripts which correspond to the categories to run all the
throughput, latency or reliability tests.

Test case implementation

All test cases utilise one of a couple of test classes, with a different set of command line parameters.

The following parameters may be passed to the test runner to control its operation:

Parameter Meaning

-c pattern The number of tests to run concurrently.

http://sourceforge.net/projects/junit-toolkit/

-r num The number of times to repeat each test.

-d duration The length of time to run the tests for.

-t name The name of the test case to execute.

-s pattern The size parameter to run tests with.

-o dir The name of the directory to output test timings to.

--csv Output test results in CSV format.

--xml Output test results in XML format.

-v Verbose mode.

Here are some examples:

-c [10:20:30:40:50] Runs the test with 10,20,...,50 threads.

-s [1:100]:samples=10 Runs the test with ten different size parameters evenly spaced between 1 and 100.

-s
[1:1000000]:samples=10:exp

Runs the test with ten different size parameters exponentially spaced between 1 and 1000000.

-r 10 Runs each test ten times.

-d 10H Runs the test repeatedly for 10 hours.

-d 1M, -r 10 Runs the test repeatedly for 1 minute but only takes a timing sample every 10 test runs.

-r 10, -c [1:5:10:50], -s
[100:1000:10000]

Runs 12 test cycles (4 concurrency samples * 3 size sample), with 10 repeats each. In total the test will be
run 199 times (3 + 15 + 30 + 150)

The test runner also accepts name=value properties on the end of the command line, and these are passed to the test code as parameters to
control the operation of the test. The following properties may be set:

Parameter Default Comments

messageSize 0 Message size in bytes. Not including any headers.

destinationName ping The root name to use to generate destination names to ping.

persistent false Determines whether peristent delivery is used.

transacted false Determines whether messages are sent/received in transactions.

broker tcp://localhost:5672 Determines the broker to connect to.

virtualHost test Determines the virtual host to send all ping over.

rate 0 The maximum rate (in hertz) to send messages at. 0 means no limit.

verbose false The verbose flag for debugging. Prints to console on every message.

pubsub false Whether to ping topics or queues. Uses p2p by default.

failAfterCommit false Whether to prompt user to kill broker after a commit batch.

failBeforeCommit false Whether to prompt user to kill broker before a commit batch.

failAfterSend false Whether to prompt user to kill broker after a send.

failBeforeSend false Whether to prompt user to kill broker before a send.

failOnce true Whether to prompt for failover only once.

username guest The username to access the broker with.

password guest The password to access the broker with.

selector null Not used. Defines a message selector to filter pings with.

destinationCount 1 The number of destinations to send pings to.

numConsumers 1 The number of consumers on each destination.

timeout 30000 In milliseconds. The timeout to stop waiting for replies.

commitBatchSize 1 The number of messages per transaction in transactional mode.

uniqueDests true Whether each receivers only listens to one ping destination or all.

durableDests false Whether or not durable destinations are used.

ackMode AUTO_ACK The message acknowledgement mode. Possible values are:

0 - SESSION_TRANSACTED
 1 - AUTO_ACKNOWLEDGE
 2 - CLIENT_ACKNOWLEDGE
 3 - DUPS_OK_ACKNOWLEDGE
 257 - NO_ACKNOWLEDGE
 258 - PRE_ACKNOWLEDGE

consTransacted false Whether or not consumers use transactions. Defaults to the same
value
as the 'transacted' option if not seperately defined.

consAckMode AUTO_ACK The message acknowledgement mode for consumers. Defaults to
the same
value as 'ackMode' if not seperately defined.

maxPending 0 The maximum size in bytes, of messages sent but not yet received.
Limits the volume of messages currently buffered on the client
or broker. Can help scale test clients by limiting amount of buffered
data to avoid out of memory errors.

Added for 0.7

Parameter Default Comments

numConsumers <int> Allow a value of 0, meaning no consumers.Augmented

consumeOnly boolean Disable all message sending. Message counts are used by consumers as validation.

preFill int Message count to preFill the destination with before the test start.

delayBeforeConsume int Delay in ms to wait after the preFill has occured before the test starts.

Test case output

Test cases output data in csv format. The extratThroughputResults.sh script can be used to interpret the data and output the average
throughput rate.

Latency

Job Queueing 1:10, medium sized messages
Low volume, small messages auto-ack
Medium volume, small messages, no-ack
Scaling tests

Job Queueing 1:10, medium sized messages

The first set of benchmark tests, TQBL-AA-Qpid-02*.sh and PQBL-AA-Qpid-02*.sh, set up 10 consumers and send 1000 messages of 5120
bytes at a capped rate limit. The final number in the test name is the rate cap, divided by 1000.

Low volume, small messages auto-ack

The second set of benchmark tests, TTBL-AA-Qpid-03* and PTBL-AA-*.sh, set up 50 consumers and send 1000 messages of 256 bytes at a
capped rate. The Rate is the final number in the test name, multipled by 1000. The [PT]TBL-AA-Qpid-04*.sh scripts are identical except that
they send messages of 5120 bytes.

Medium volume, small messages, no-ack

The [PT]TBL-NA-Qpid-05*.sh and [PT]TBL-NA-Qpid-05*.sh scripts are identical to the second case above, but use No-Ack and send
messages at a rate of the last number in the test name multipled by 400.

Scaling tests

PQCL-Qpid-01 and PQCL-Qpid-02 set up an increasing number of consumers (between 1 and 30) and send messages of 256 bytes at a rate
of 600 (PQCL-Qpid-01) or 100 messages (PQCL-Qpid-02) per second.

PTCL-Qpid-01 (consumed in a transaction) and PTCL-Qpid-02 (consumed with AutoAck) set up an increasing number of consumers

(between 1 and 30) and send messages of 256 bytes at a rate of 1 message per second.

Reliability

Short running timing tests
Longer running tests

Short running timing tests

[PT][QT]R-Qpid-01 (Transactions) and [PT][QT]R-Qpid-02 (AutoAck) send messages of 256 bytes for 1 minute to 16 consumers

Longer running tests

[PT][QT]R-Qpid-0 *.sh send messages of 256 bytes to 16 consumers using the specified Acknowledgement mode for an hour.[3-8]

Throughput

Consumer scaling tests
Message size scaling tests
Sustained throughput tests for different acknowledgement modes

Consumer scaling tests

[PT][TQ]CT-Qpid-01 (transacted consumer) and [PT][TQ]CT-Qpid-02 (AutoAck consumer) send messages of 256 bytes to destinations which
have between 1 and 30 consumers subscribed.

Message size scaling tests

The [PT][TQ]M-Qpid-*.sh and [PT][TQ]M-Qpid-* tests send messages of varying size from 8 producers to 8 consumers. In
[PT][TQ]M-Qpid-01, the consumer uses a transaction. In [PT][TQ]M-Qpid-02, it uses autoack. Messages vary in size from 512 bytes to 1MiB.

Sustained throughput tests for different acknowledgement modes

The [PT][TQ]BT-* tests send messages of 256 bytes to 16 consumers using AutoAck, transactions or NoAck (NoAck is not tested for
persistent messages) as fast as possible.

Qpid JMX Management Console Testing Guide
The guide can be found below in wiki form, or downloaded as a file: (DOC) (PDF)

Introduction
General Test Configuration & Startup
Server configuration
Console configuration
SSL configuration
JMXMP configuration
Console Startup
Server Management Connections
ConfigurationManagement MBean
LoggingManagement MBean
ServerInformation MBean
UserManagement MBean
VirtualHostManager MBean
Queue Management
Notifications
Exchange Management
Connection Management

Introduction

The Qpid JMX Management Console is a standalone Eclipse RCP application for managing and monitoring the Qpid Java server utilising its
JMX management interfaces.
This guide details procedures and expected outcomes for performing functional testing of the console.

General Test Configuration & Startup

http://cwiki.apache.org/confluence/download/attachments/2852470/Qpid_JMX_MC_Testing_Guide.doc?version=1&modificationDate=1251303122000
http://cwiki.apache.org/confluence/download/attachments/2852470/Qpid_JMX_MC_Testing_Guide.pdf?version=1&modificationDate=1251303122000

Server configuration

For the purposes of the console testing, the server should initially be configured as detailed below. To assist, example server configuration
files are provided (these serve as example and may need updated when testing a different version of server). The can be downloaded along
with a message sending utility here

VirtualHosts: 'localhost', 'development', and 'test'
 in VirtualHostminimumAlertRepeatGap = 30sec, maximumMessageCount = 89, & maximumMessageAge = 10sec 'test'

 ping, queue, ping_1Queues in 'test' VirtualHost, bound to 'amq.direct' Exchange:
 admin:adminUsername & Passwords:

 admin=admin Management access rights:

Console configuration

When the console is started for the first time on a machine, it creates the file in the . subfolder of the current 'qpidmc_navigation.ini qpidmc
 directory. This file stores the Qpid server addresses and MBean Favourites which are added to the consoles connection tree, in orderhome'

that they may be persisted between sessions.

When Queue attributes are selected in the Queues selection screen these are also saved in this folder, in the file
 Ideally, these files and the containing folder should be removed before testing begins to ensure this functionalityqpidmc_queue_attributes.ini.

still works fully.

Typical ' directories are C:\Documents and Settings\<userid> for Windows XP, C:\Users\<userid> for Windows Vista + 7, andhome'
/home/<userid>/on Linux.

SSL configuration

Newer Qpid Java servers can protect their JMX connections with SSL, and this is enabled by default. When attempting to connect to a server
with this enabled, the console must be able to verify the SSL certificate presented to it by the server or the connection will fail.

If the server makes use of an SSL certificate signed by a known Signing CA (Certification Authority) then the console needs no extra
configuration, and will make use of Java's default system-wide CA TrustStore for certificate verification (you may however have to update the
system-wide default CA TrustStore if your certified is signed by a less common CA that is not already present in it).
If however the server is equipped with a self-signed SSL certificate, then the management console must be provided with an appropriate SSL
TrustStore containing the public key for the SSL certificate, so that it is able to validate it when presented by the server. The server ships with
a script to create an example self-signed SSL certificate, and store the relevant entries in a KeyStore and matching TrustStore. This script
can serve as a guide on how to use the Java Keytool security utility to manipulate your own stores, and more information can be found in the
JSSE Reference Guide: http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

Supplying the necessary details to the console is performed by setting the and javax.net.ssl.trustStore javax.net.ssl.trustStorePassword
environment variables when starting it. This can be done at the command line, but the preferred option is to set the configuration within the

 launcher configuration file for repeated usage. This file is equipped with a template to ease configuration, this should beqpidmc.ini
uncommented and edited to suit your needs. It can be found in the root of the console releases for Windows, and Linux. For Mac OS X the
file is located within the consoles application bundle, and to locate and edit it you must select when accessing.app 'Show Package Contents'
the context menu of the application, then browse to the sub folder to locate the file. Contents/MacOS

JMXMP configuration

Older releases of the Qpid Java server can make use of the Java Management Extensions Messaging Protocol (JMXMP) to provide
protection for their JMX connections. This occurs when the server has its main configuration set with the management 'security-enabled'
property set to true. In order to connect to this configuration of server, the console needs an additional library that is not included within the
Java SE platform and cannot be distributed with the console due to licensing restrictions.

You can download the JMX Remote API 1.0.1_04 Reference Implementation from the Sun website . The included here
 file must be added to the folder of the console release (again,jmxremote-1_0_1-bin/lib/jmxremote_optional.jar plugins/jmxremote.sasl_1.0.1

in Mac OS X you will need to select from the context menu whilst selecting the management console bundle in'Show package contents'
order to reveal the inner file tree). Following this the console will automatically load the JMX Remote Optional classes and negotiate the
SASL authentication profile type when encountering a JMXMP enabled Qpid Java server.

Console Startup

The console can be started in the following way, depending on platform:

Windows: by running the executable file.qpidmc.exe
Linux: by running the executable.qpidmc
Mac OS X: by launching the application bundle.Qpid Management Console.app

Server Management Connections

http://cwiki.apache.org/confluence/download/attachments/2852470/jmx_mc_testing_files.zip?version=1&modificationDate=1251305255000
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/download.jsp

Test ID Test Steps Expected Result

LOGIN-0 Start the console (described
above)

The GUI opens

LOGIN-1 Click the New Connection
icon

The dialog opensNew Connection

LOGIN-1.1 Enter hostname=<hostname>,
port= 8999,
Username=admin,
Password=admin and then
click Connect.

The node <hostname>:8999 will be added in the Qpid Connections pane at the left-hand
side of the console window, and expanded to show the ConfigurationManagement,

 MBeans as well as aUserManagement, ServerInformation, and LoggingManagement
VirtualHosts folder containing child folders and .development, localhost, test

LOGIN-2 Select the <hostname>:8999
node in the Qpid Connections
tree and then click the
Disconnect button in the
toolbar

The connection is closed and the <hostname>:8999 tree node collapses to a single entry.

-LOGIN 3 Select the <hostname>:8999
node in the Qpid Connections
tree and then click the
"Reconnect" icon

The dialog opensReconnect

LOGIN-3.1 Enter Username=admin,
Password=admin and then
click Connect.

The server node will be expanded to show the ConfigurationManagement,
 MBeans as well as aUserManagement, ServerInformation, and LoggingManagement

VirtualHosts folder containing child folders .development, localhost, and test

ConfigurationManagement MBean

Pre-Requisite: Connect to a server as described in test LOGIN -0 or LOGIN -3 above.

Test ID Test Steps Expected Result

CONF-0 Select the node for the server in the QpidConfigurationManagement
Connections tree.

The MBean is opened inConfigurationManagement
the MBean view, showing the

 operation.reloadSecurityConfiguration

CONF-1 Modify the server configuration file, updating a VirtualHost security
sub-section, adding a configuration entry to deny AMQP accessfirewall
from a certain IP address.

N/A

CONF-1.1 Press the Execute button and confirm the prompt to carry out the
 operationreloadSecurityConfiguration

The updated security behaviour is applied and an
Operation Successful dialog is shown.

CONF-1.2 Attempt an AMQP connection from the blocked IP address The connection fails.

LoggingManagement MBean

Pre-Requisite: Connect to a server as described in test LOGIN -0 or LOGIN -3 above.

Test ID Test Steps Expected Result

LOG-0 Select the node forLoggingManagement
the server in the Qpid Connections tree.

The MBean is opened in the MBean view, showing the LoggingManagement
 tab.Runtime Options

LOG-1 Double click the org.apache.qpid
LoggerName

The dialog opens.Set Runtime Logger Level

LOG-1.1 Select a Level of ERROR from the
combo box and click ok.

The Logger and all those below it beginning with oorg.apache.qpid rg.apache.qpid
(except) are now shown atorg.apache.qpid.server.queue.AMQQueueMBean
ERROR Level in the table.

LOG-2 Press the button in the Edit Runtime
 area.RootLogger Level

The dialog opens.Set Runtime RootLogger Level

LOG-2.1 Select a Level of WARN from the combo
box and click ok.

The Level is updated to WARN, plus any Logger (except) without aqpid.message
highlighted blue Logger as a prefix inherits from the RootLogger and will also
change to WARN Level in the table.

LOG-3 Select the org.apache.qpid.server.Main
LoggerName and press the Edit

 button.Selected Logger

The dialog opens.Set Runtime Logger Level

LOG-3.1 Select a Level of WARN from the combo
box and click ok.

The Logger is now shown at WARN Level in the table,org.apache.qpid.server.Main
all others remain unchanged.

LOG-4 Select the tab in the ConfigurationFile Options
 MBean view.LoggingManagement

The tab opens to show the Loggers definedConfigurationFile Options
in the configuration file and their Level

LOG-5 Double click the LoggerNameorg.apache.qpid The dialog opens.Set ConfigFile Logger Level

LOG-5.1 Select a Level of INFO from the combo box and click
ok.

The Logger is now shown at INFO Level in the tableorg.apache.qpid

The following tests are not supported by the original version of the LoggingManagement MBean.

Test ID Test Steps Expected Result

LOG-6 Press the button andReload Config File
confirm the prompt to carry out the action.

The configuration file should be reloaded (success is indicated by lack of error
prompts, and a note in the status bar at lower left).

LOG-6.1 Select the tab in the Runtime Options
 MBean view.LoggingManagement

The tab opens to show the effective Levels of all active Loggers.Runtime Options

The Logger and all its children are set to INFO Level, except org.apache.qpid
 which has retained the previously set Runtime Levelorg.apache.qpid.server.Main

of WARN.
The has returned to INFO, as has the level of all theRuntime RootLogger Level
children Loggers inheriting from it.

LOG-7 Select the org.apache.qpid.server.Main
LoggerName and press the Edit Selected

 button.Logger

The dialog opens.Set Runtime Logger Level

LOG-7.1 Select a Level of INHERITED from the
combo box and click ok.

The Logger is now shown at INFO Level in the tableorg.apache.qpid.server.Main
like its parent as it once again inherits its Level instead of havingorg.apache.qpid
its own defined.

ServerInformation MBean

Pre-Requisite: Connect to a server as described in test LOGIN -0 or LOGIN -3 above.

Test
ID

Test Steps Expected Result

INFO-0 Select the node for theServerInformation
server in the Qpid Connections tree.

The MBean is opened in the MBean view, showing theServerInformation
Attributes tab, displaying version information about the server

UserManagement MBean

Pre-Requisite: Connect to a server as described in test LOGIN -0 or LOGIN -3 above.

Test ID Test Steps Expected Result

USER-0 Select the node in the QpidUserManagement
Connections tree.

The MBean is opened in the MBean viewLoggingManagement

USER-1 Click the buttonAdd New User The dialog opensAdd New User

USER-1.1 Enter Username=guest1, Password=guest1 and select
Read Only access rights, then click ok.

 will be added to the password and management rights filesguest1
with indicated password and rights, and be added to the table with

 access rights. Read Only
NOTE: Verify that the password file and access rights files
configured in the server configuration were updated.

USER-2 Select guest1 in the Users table and click the Set
Rights button,

The dialog opensSet Rights

USER-2.1 Select Admin rights and press ok. rights in the management rights files will be changed toguest1
admin, and it will be displayed in the table with rights. Admin
NOTE: Verify that the access rights file configured in the server
configuration was updated.

USER-3 Select guest1 in the Users table and click the Set
Password button,

The dialog opensSet Password

USER-3.1 Enter Password=newpass and press ok. will altered to have password in the password file.guest1 newpass
There will be no visible change in the table.
NOTE: Verify that the password file configured in the server
configuration was updated.

USER-4 Select guest1 in the Users table and click the Delete
Users(S) button, then validate the operation when
prompted for confirmation.

 will be removed from the password file and rights file andguest1
disappear from the table.
NOTE: Verify that the password file and access rights files
configured in the server configuration were updated.

USER-5 Repeat USER-1 &1.1 As USER-1.1

USER-6 Repeat USER-1 & 1.1 with Username=client1,
Password=client1 and select No Access rights.

As USER-1.1 but with the new credentials, and the rights file will not
be modified.

USER-7 Alter the password file on disk to add user1:user1, and
alter the access rights file on disk to add
user1=readwrite.

No change. The password and rights files are only read once at
startup by the server, until instructed to reload them via JMX.

USER-8.1 Press the buttonReload User Data will be added to the server and shown in the table with user1 Read &
 access rights. Write

(Older servers only reload the rights file, and so no change in the
table will be visible in this case)

USER-8 Select the <hostname>:8999 node in the Qpid
Connections tree and then click the Disconnect button
in the toolbar

The connection is closed and the <hostname>:8999 tree node
collapses to a single entry.

USER-8.1 Select the <hostname>:8999 node in the Qpid
Connections tree and then click the "Reconnect" icon

The dialog opensReconnect

USER-8.2 Enter Username=user1, Password=user1 and then
click Connect.

The server node will be expanded to show the ServerInformation
MBean as well as a VirtualHosts folder containing child folders

 and . development, localhost, test
The , and ConfigurationManagement, LoggingManagement

 MBeans will not be shown as only admin-levelUserManagement
users have access to these.

USER-9 Select the <hostname>:8999 node in the Qpid
Connections tree and then click the Disconnect button
in the toolbar

The connection is closed and the <hostname>:8999 tree node
collapses to a single entry.

USER-9.1 Select the <hostname>:8999 node in the Qpid
Connections tree and then click the "Reconnect" icon

The dialog opensReconnect

USER-9.2 Enter Username=client1, Password=client1 and click
Connect.

The connection attempt fails, as user has no managementclient1
access rights.

VirtualHostManager MBean

Pre-Requisite: Connect to a server as described in test LOGIN -0 or LOGIN -3 above.

Test ID Test Steps Expected Result

VHOST-0 Select the node for the VirtualHost in the QpidVirtualHostManager test
Connections tree.

The MBean is opened in theVirtualHostManager
MBean view

VHOST-1 Double-click ping_1 in the Queues table. The mbean is opened in the MBean view.ping_1

VHOST-1.1 Press the back arrow button at the top right corner of the view. The VirtualHostManager MBean is opened in the
MBean view

The following tests are based on the use of user with or management access rights. level managementAdmin Read & Write Read Only
rights do not permit a user to perform actions that modify the server state, such as creating or deleting Queues and Exchanges. Attempting
such operations will be met by an Access Denied security warning at the point of remote execution.

VHOST-2 Press the button in the Queues groupCreate The dialog opensCreate Queue

VHOST-2.1 Enter Name=newQueue and then press OK. is created and shown in the Queues table.newQueue

VHOST-3 Select newQueue in the Queues table and press the Delete
button in the Queues group.

The dialog opens, listing toDelete Queue(s) newQueue
be deleted.

VHOST-3.1 Press the OK button. is removed from the server and disappearsnewQueue
from the Queues table.

VHOST-4 Press the Create button in the Exchange group The dialog opensCreate Exchange

VHOST-4.1 Enter Name=newExchange and select type=directthen press
OK.

 is created and shown in the ExchangesnewExchange
table.

VHOST-5 Select newExchange in the Exchange table and press the
Delete button in the Exchanges group.

The dialog opens, listing Delete Exchange(s)
 to be deleted.newExchange

VHOST-5.1 Press the OK button. is removed from the server and disappearsnewExchange
from the Exchanges table_._

Queue Management

Pre-Requisite: Connect to a server as described in test LOGIN -0 or LOGIN -3 above. Delete the console qpidmc_queue_attributes.ini
settings file as directed in the initial Console Configuration sub-section.

Test ID Test Steps Expected Result

QUEUE-0 Select the node for the VirtualHostQueues test
in the Qpid Connections tree.

The selection screen is opened in the MBean view, listing QueuesQueue
ping,ping_1, and queue in the table.

QUEUE-1 Press the SelectAttributes button. The dialog opens.Select Attributes

QUEUE-1.1 Ensure the following attributes re
ConsumerCount, Durable, MessageCount,

 and then press OK.QueueDepth

The table updates to show additional columns for the new Attributes. All
queues have additional attribute values of 0, false, 0, and 0bytes.

QUEUE-2 Run the utility script, but do notping_sender.sh
press a key to exit the script when the sending
is complete.

100 messages of size 512bytes are sent to the queue. After aping_1
refresh interval elapses, the table updates to show having ping_1 100
messages and a queue depth of , as well as a new queue50.000 KB
named TempQueue<etc>.

QUEUE-2.1 Press a key in the script shell to make it exit. After another refresh interval elapses, the table will update to show the
TempQueue has been deleted.

QUEUE-3 Select queue ping_1 in the table and click the
 button, then clickAdd Queue(s) to favourites

the + icon at the Queues node to expand the
Queues node.

 has been added as a child node of Queues.ping_1

QUEUE-3.1 Select the new ping_1 node in the Qpid
Connections tree.

The ping_1 queue MBean opens in the MBean View, showing the
 tab.Attributes

QUEUE-3.2 Select the tab in the ping_1 MBeanOperations
view.

The tab opens, with the details of the first 50 messages onOperations
ping_1 visible in the table.

QUEUE-4 Select the message with
AMQ ID 4 in the table.

The message will be highlighted, and its Header details and Redelivered status shown in the
lower sections.

QUEUE-4.1 Press the View Message
 button (orContent

double-click the entry in the
table)

The result window opens, showing the AMQ Message ID, Content (repeated -message
 statements), Encoding, and MimeType.payload

QUEUE-4.2 Close the result dialog. The result window closes.

QUEUE-5 Press the buttonNext 50 >
to advance the viewed
message positions.

The range will change to 51 - 100 and the table will update to show messages in positions
51-100 (which at this time possess AMQ IDs 51-100)

QUEUE-5.1 Press the buttonNext 50 >
to advance the viewed
message positions.

The range will change to 101 - 150 and the table will update to show messages in positions
101 - 150, which do not exist at this time (only 100 messages were placed on the queue) and
so the table is now empty.

QUEUE-6 Enter 11 in the left Queue
 box, and 20 in the rightPos

 box, then pressQueue Pos
the buttonSet

The table will update to show messages in positions 11-20 (which at this time possess AMQ
IDs 11-20). The and buttons have updated to have 10 as their step size.< Prev 50 Next 50 >

QUEUE-7 Select the tabNotifications
in the ping_1 MBean view.

The tab opens.Notifications

QUEUE-7.1 Press the buttonSubscribe The button becomes disabled, and the button becomes enabled. Subscribe Unsubscribe
After at most 30seconds, Notifications should start being received asserting that hasping_1
exceeded its (89 allowed, 100 present) and contains messages overMaximumMessageCount
the (10sec allowed, arbitrary actual age over 10sec depending on timeMaximumMessageAge
taken to execute previous tests)

QUEUE-7.2 Select the tab inOperations
the ping_1 MBean view.

The tab opens, with the details of message positions 11-20 on ping_1 in the table.Operations

The following tests are based on the use of user with or management access rights. level managementAdmin Read & Write Read Only
rights do not permit a user to perform actions that modify the server state, such as moving, deleting, or copying messages and clearing the
queue. Attempting such operations will be met by an Access Denied security warning at the point of remote execution. NOTE: Copying and
deleting messages is only supported on newer servers. If testing older servers, substitute the Copy test (QUEUE-9) with another
Move and then skip the Delete test (QUEUE-10).

Test ID Test Steps Expected Result

QUEUE-8 Select the messages with AMQ IDs 11,13-14,19-20 (Note that
since 0.6 the IDs now start at 2 and so the IDs here will be
n+1.)and press the button_._Move Message(s)

The dialog opens, requestingMove Messages
destination queue and confirmation of moving messages
with AMQ ID 11,13-14,19-20.

QUEUE-8.1 Press OK (using the destination already selected).ping The messages with AMQ IDs 11,13-14,19-20 are moved
and disappear from the table, which now shows
messages AMQ ID 12,15-18, and 21-25.

QUEUE-9 Select the messages with AMQ IDs 12,15-18 and press the
 button_._Copy Message(s)

The dialog opens, requestingCopy Messages
destination queue and confirmation of moving messages
with AMQ IDs 12,15-18.

QUEUE-9.1 Select the as the destination queue Press OK.queue The messages are copied, as indicated in the status bar
at the bottom left of the application, and they continue to
be present on the queue.ping_1

QUEUE-10 The messages with AMQ IDs 12,15-18 are still selected. Press
the button and confirm the prompt_._Delete Message(s)

The messages with AMQ IDs 12,15-18 are deleted and
disappear from the table, which now shows messages
with AMQ ID 21-30 in positions 11-20.

QUEUE-11 Press the button and confirm the prompt.Clear Queue The queue is cleared of the 90 remaining (and
unacquired) messages and the table becomes empty.
Note: The number of deleted unacquired messages is
reported in the status bar only for newer brokers

The following test sequence can be undertaken with a user of any level of management access rights, but depend on completing the
previous tests that required or management access rights.Admin Read & Write

QUEUE-12 Select the node forQueues
the VirtualHost in thetest
Qpid Connections tree.

The selection screen is opened in the MBean view, listing Queues , and Queue ping, ping_1
 in the table with the attributes queue ConsumerCount, Durable, MessageCount,_and

 _QueueDepth.
These have values for and : ping, ping_1, queue
0, false, 5, 2.500 KB
0, false, 0, 0 bytes
0, false, 5, 2.500 KB

QUEUE-12.1 Double-click the entry in the
table for the queueping

The queue MBean opens in the MBean View, showing the Attributes tab. ping
The MessageCount should be 5, the QueueDepth 2560(bytes), MaximumMessageAge
10000 (ms), and MaximumMessageCount 89.

QUEUE-12.2 Select the tab inOperations
the MBean view.ping

The tab opens, the table shows the 5 messages on the queue that we movedOperations
across in QUEUE-8, AMQ IDs 11,13-14,19-20

QUEUE-12.3 Press the back arrow button
at the top right corner of the
view.

The selection screen is opened in the MBean view.Queue

QUEUE-13 Double-click the entry in the
table for the queuequeue

The queue MBean opens in the MBean View, showing the Attributes tab. queue
The MessageCount should be 5, the QueueDepth 2560(bytes), MaximumMessageAge
10000 (ms), and MaximumMessageCount 89.

QUEUE-13.1 Select the tab inOperations
the MBean view.queue

The tab opens, the table shows the 5 messages on the queue that we copiedOperations
across in QUEUE-9, AMQ IDs 12,15-18.

QUEUE-14 Select the Notifications tab
in the MBean view.queue

The Notifications tab opens.

QUEUE-14.1 Press the Subscribe button The Subscribe button becomes disabled, and the Unsubscribe button becomes enabled.
After at most 30seconds, Notifications should start being received asserting that queue
contains messages older than the MaximumMessageAge (10sec allowed, arbitrary actual
age over 10sec depending on time taken to execute previous tests)

Notifications

Pre-Requisites: Connect to a server as described in test LOGIN -0 or LOGIN -3 above. Complete the Queue Management testing.

The following test sequence can be undertaken with a user of any level of management access rights, but depend on completing the
previous Queue Management tests that at certain points required or management access rights.Admin Read & Write

Test ID Test Steps Expected Result

NOTIF-0 Select the node for the Notifications
 VirtualHost in the Qpidtest

Connections tree.

The VirtualHost screen is opened. Notifications
Notifications received for ping_1 are present indicating it holds messages over the
MaximumMessageAge of 10sec, and is over MaximumMessageCount (initially at 100,
then possibly at 95 if an alert interval fell between the completion of tests QUEUE-8 and
QUEUE-9, then possibly at 90 if an alert interval fell between the completion of tests
QUEUE-9 and QUEUE-10, all versus an allowed 89 messages).
There will also be Notifications received at the end for indicating it hasqueue,
messages over the MaximumMessageAge of 10 seconds.

NOTIF-1 Select a group (any, but not all) of
the Notifications and press the Clear
button.

The selected Notifications are removed from the table and no further Notifications are
selected in the table.

NOTIF-2 Ensuring no notifications are
selected in the table, press the Clear
button, then validate the confirmation
to proceed with clearing all
Notifications from MBeans in the
VirtualHost

All remaining Notifications from MBeans in the VirtualHost are removed from the table.

NOTIF-3 Wait at most 30 seconds Additional Notifications should be recieved for indicating it has messages overqueue,
the MaximumMessageAge of 10 seconds.

Exchange Management

Pre-Requisites: Connect to a server as described in test LOGIN -0 or LOGIN -3 above.

Test ID Test Steps Expected Result

EXCH-0 Select the node for the VirtualHost in the QpidExchanges test
Connections tree.

The selection screen is opened in theExchanges
MBean view, listing Exchanges <<default>>, amq.direct,

 and in the table.amq.fanout, amq.match, amq.topic

EXCH-0.1 Select exchanges and in the table and clickamq.direct amq.match
the button, then click the + icon atAdd Exchanges(s) to favourites
the Exchanges node to expand the Exchanges node.

 and have been added as a childamq.direct amq.match
nodes of Exchanges.

EXCH-1 Select the new node in the Qpid Connections tree.amq.direct The exchange MBean opens in the MBeanamq.direct
View, showing the tab.Attributes

EXCH-1.1 Select the tab in the MBean view.Operations amq.direct The tab opensOperations

EXCH-2 Select the entry in the Binding Key table.ping The table updates and shows the Queue Names ping
queue is associated with the selected binding.

The following tests are based on the use of user with or management access rights. level managementAdmin Read & Write Read Only
rights do not permit a user to perform actions that modify the server state, such as creating bindings. Attempting such operations will be met
by an Access Denied security warning at the point of remote execution.

EXCH-3 Press the button at the right hand side of the Bindings group.Create The dialog opens.Create New Binding

EXCH-3.1 enter Binding= and press OK.newKey The new binding is created and appears innewKey
the Binding Key table.

EXCH-3.2 Select the new entry in the Binding Key table.newKey The table updates and shows the Queue Names ping
queue is associated with the binding.newKey

EXCH-3.3 Press the button at the right hand side of the Bindings group.Create
When the dialog loads, enter Binding= and select queuenewKey
ping_1 then press OK.

The new binding is created, and the selection in the
table is cleared.

EXCH-3.4 Select the entry in the Binding Key table.newKey The table updates and shows the Queue Names ping
and queues are now both associated with the ping_1

 binding.newKey

EXCH-4 Select the node in the Qpid Connections tree.amq.match The exchangeamq.match
MBean opens in the MBean
View, showing the tab.Attributes

EXCH-4.1 Select the tab in the MBean view.Operations amq.match The tab opens. The Operations
Binding Number and

 table is empty.QueueName

EXCH -5 Press the button at the right hand side of the Bindings group.Create The dialogCreate New Binding
opens.

EXCH-5.1 Select a value of 'all' for the x-match key. Then enter a new key called key1, with a value of
value1, and a new key called key2 with a value of value2. Press the Add additional field
button, and a new empty row should be added at the bottom, giving 3 empty rows. Press
OK.

The binding is created and an
entry added to the table with

 1 and Binding Number Queue
 ping.Name

EXCH-5.2 Select the binding entry in the table. The Header Bindings table
should update to list the keys
and values entered in the dialog:

 key1=value1
 key2=value2

x-match=any

Connection Management

Pre-Requisites: Connect to a server as described in test LOGIN-0 or LOGIN -3 above.

1.
2.
3.
4.
5.

Test ID Test Steps Expected Result

CONN-0 Select the node for the VirtualHostConnections test
in the Qpid Connections tree.

The selection screen is opened in the MBean view, withConnections
no entries in the table.

CONN-0.1 Run the utility script, but do notping_sender.sh
press a key to exit the script when the sending is
complete.

After a refresh interval, two connections from the IP address of the
machine was run will appear in the tableping_sender.sh

CONN-1 Double-click the first connection entry in the table. The connection MBean opens in the MBean View, showing the
 tab.Attributes

CONN-1.1 Select the tab in the connection MBeanOperations
view.

The tab opens, listing channel 1 in the table, which isOperations
Transactional, has 0 unacked messages, and no (null) default queue.

CONN-2 Select the channel entry in the table. The and buttons activate as theCommit Rollback Transactions
selected channel is transactional.

CONN-3 Press the button and confirm theClose Connection
action.

The connection is closed, the main view is cleared and a dialog opens
to inform the user that the open MBean was unregistered from the
server.

Qpid Management Console Testing (Old UI)

Background
Test Platforms
Introduction
Installation and Testing
General Test and Setup Information
Administration
Virtual Host Management
Connections Management
Queue Management
Exchange Management
Trouble Shooting

Background

The Qpid Management Console is user graphical interface for managing and monitoring the Qpid remotely.

This specification is primarily concerned with detailing the functional specifications for Management Console. The tests cover all the
functionalities supported by the console.

Test Platforms

The management console currently supports Windows, Linux, Solaris and Mac OS X.

Introduction

This Management Console functional test specifications are categorized into following categories:

Administration
Virtual Host Management
Connections Management
Queue Management
Exchange Management

Installation and Testing

To install the management console, it can be [] or []

There are three config files that should be used in this test which are attached to this page along with the sendAndWaitClient script.

General Test and Setup Information

When the Qpid Management Console is started for the first time on a machine, it creates a configuration file (qpidManagementConsole.ini) in
user home directory (C:\Documents and Settings\<userid> for windows). This ini file stores the Qpid server address, which are added to the
console.

Following setup is needed for Qpid Management Console test
1. Start the Qpid Broker with following configuration.
a. Virtual Host "Development" and "test"
b. Virtual Host "test" having following Queues - ping, queue, ping_1
c. Virtual Host "test" having following Exchanges - amq.direct (type=direct), amq.topic(type=topic), amq.headers(type=headers) and
amq.fanout(type=fanout)

2. Qpid has following user configuration

a. Username=admin, Password=admin (Admin permissions)

User permissions are set in the jmxremote.access file.

Administration

This section details the test cases for administration of management console users. The setup described in the set up information section is
required for these tests.

Test
ID

Test steps Expected result

AD-0 Start the Qpid Management Console with script qpidmc.sh The GUI starts up with "Qpid Connections" on left hand
side.

AD-1 Click the "New Connection" icon. New Connection details pop up opens

AD-1.1 Enter the host=<hostname>, port= 8999
Username=admin, Password=admin and click Connect.

The Qpid Connections node "<hostname>:8999" will be
added.

AD-2 Expand all the child node of "<hostname>:8999" Following child nodes should be listed.
org.apache.qpid ->
UserManagements->UserManagement

AD-3 Select the UserManagement Following admin operations are listed as tabs on "Qpid
Management" page-
View Users
Set Rights
Reload Data
Set Password
Delete user
Create User

View Users tab will be selected and following users will
be listed, which can be browsed using
first/next/previous/last buttons

AD-4 Select the tab "Create User" and enter the user details-
Username=user
Password=password
Read and Write access.
Click Execute.

Operation successful dialog pops up.

AD-4.1 Select the tab "Create User" and enter the user details-
Username=guest
Password=password
Read access.
Click Execute.

Operation successful dialog pops up.

AD-4.2 Select the tab "Create User" and enter the user details-
Username=newuser
Password=password
Read access.
Click Execute.

Operation successful dialog pops up.

AD-4.3 Select the "Reload Data" tab and execute. Operation successful dialog pops up.

AD-4.4 Select the "View Users" tab and check if the following users are listed
- user, guest, newuser.

Users are listed with same permissions as assigned
while creating users.

AD-5 Select "Delete User" tab and enter username=newuser. Click execute Operation successful dialog pops up.

AD-5.1 Select the "Reload Data" tab and execute. Operation successful dialog pops up.

AD-5.2 Select the "View Users" tab and check if the user "newuser" is listed User "newuser" is not listed.

AD-6 Select the "Set Rights" tab, enter the username=user and select the
"Read" access. Click Execute

Operation successful dialog pops up.

AD-6.1 Select the "Set Password" tab, enter the username=user and
password=newpassword.
Click execute.

Operation successful dialog pops up.

AD-6.2 Start another session of Management Console using qpidmc.sh and
connect to <hostname>:8999 using username=user and
password=newpassword

User logs in.

AD-6.3 Select the VirtualHosts->test->VirtualHostManager. Now enter details
on the "Create New Queue" tab and click execute.

"Access Denied" message popsup.

AD-6.4 Select the UserManagements->UserManagement "Access Denied" error pops up.

AD-6.5 Disconnect this new session of Management Console. NA

Virtual Host Management

This section details the test cases for managing and monitoring a Virtual Host. The setup described in the setup information section is
required for these tests.

Test
Id

Test Steps Expected Result

VH-0 Start the Qpid Management Console with
script qpidmc.sh

The GUI starts up with "Qpid Connections" on left hand side.

VH-1 Click the "New Connection" icon. New Connection details pop up opens

VH-1.1 Enter the host="<hostname>", port= 8999
Username=user, Password=password and
click Connect.

The Qpid Connections node "<hostname>:8999" will be added.

VH-2 Expand all the child node of
"<hostname>:8999"

Following child nodes should be listed.
org.apache.qpid -> VirtualHosts -> test and development
test->VirtualHostManager, Connections, Exchanges and Queues
development-> VirtualHostManager, Connections, Exchanges and Queues

VH-2 Click on test->VirtualHostManager Qpid Management view on right hand side displays following operations as tabs-
Create New Queue
Create New Exchange
Delete Queue
Unregister Exchange

VH-4 On the "Create New Queue" tab enter
Queue Name=newQueue and click
Execute

A confirmation dialog pops up.

VH-4.1 Click yes on the confirmation box A pop up displays that the operation is successful.

VH-4.2 Click on the test->Queues Qpid Management page displays the "Queue" tab and following queues will be
listed- ping, queue and newQueue

VH-5 Click on test->VirtualHostManager and
then select the "Create New Exchange" tab

The "Qpid Management" page displays following the data fields – Name, Type and
Durable.

VH-5.1 Enter the Exchange Name=newExchange,
select the Exchange Type as "direct" and
click Execute.

A confirmation dialog pops up.

VH-5.2 Click yes on the confirmation box A pop up displays that the operation is successful.

VH-5.3 Click on the test->Exchanges Qpid Management page displays the "Exchange" tab and following exchange will
be listed- amq.direct, amq.fanout, amq.match, amq.topic and newExchange

VH-6 Click on test->VirtualHostManager and
then select the "Delete Queue" tab

The "Qpid Management" page displayed following Queues in the list- queue, ping,
newQueue

VH-6.1 Select the newQueue from the list and click
Execute

A confirmation dialog pops up.

VH-6.2 Click yes on the confirmation box A pop up displays that the operation is successful.

VH-6.3 Click on the test->Queues Qpid Management page displays the "Queue" tab and following queues will be
listed- ping and queue. The newQueue should not be in the list.

VH-7 Click on test->VirtualHostManager and
then select the "Unregister Exchange" tab

The "Qpid Management" page displayed following Exchange in the list- amq.direct,
amq.fanout, amq.topic, amq.headers and newExchange

VH-7.1 Select the "newExchange" from the list and
click Execute

A confirmation dialog pops up.

VH-7.2 Click yes on the confirmation box A pop up displays that the operation is successful.

VH-7.3 Click on the test->Exchanges Qpid Management page displays the "Exchange" tab and following exchange will
be listed- amq.direct, amq.fanout, amq.match and amq.topic. The newExchange
should not be in the list.

VH-8 Select the Qpid server node
<hostname>:8999 and click the
"Disconnect" icon from the tool bar.

The Qpid connection is disconnected and the server nodes disappear.

Connections Management

This section details the test cases for managing and monitoring a Qpid connection. The setup described in Setup information section is
required for these tests.

Precondition: A Qpid server (e.g. <hostname>:8999) is added to the Management Console as described in the "Virtual Host Management"
section.

Test Id Test Steps Expected Result

CM-0 Select the Qpid Server node "<hostname>:8999" on the Qpid
Connections page and click the icon for reconnect from the tool bar.

The GUI starts up with "Qpid Connections" on left hand
side.

CM-1 Start a consumer application and select the test->Connections node. On the right hand page the connection will appear in the
list.

CM-2 Select the connection and "Add to Navigation" The connection node is added to the left hand side page.

CM-3 Select the connection node. The Qpid Management page displays following
connection attributes-
Authorized Id, Client Id, Last IO Time, Maximum Number
of Channels, Remote Address and Version

Also following tabs are displayed-
Rollback Transactions
Commit Transactions
Close Connection
Channels

CM-4 Select Channels tab Qpid Management page displays channel details.

CM-5 Select Close Connection tab A confirmation dialog pops up.

CM-5.1 Click yes on the confirmation box A pop up displays that the operation is successful and
the connection node from left hand side disappears.

CM-6 Select the Qpid server node <hostname>:8999 and click the
"Disconnect" icon from the tool bar.

The Qpid connection is disconnected and the server
nodes disappear.

Queue Management

This section details the test cases for managing and monitoring a Qpid Queue. The setup described in Setup information section is required
for these tests.

Precondition: A Qpid server (e.g. <hostname>:8999) is added to the Management Console as described in the "Virtual Host Management"
section.

Test Id Test Steps Expected Result

QM-0 Select the Qpid Server node "<hostname>:8999" on the Qpid Connections
page and click the icon for reconnect from the tool bar.

The GUI starts up with "Qpid Connections" on left
hand side.

QM-1 Select test->Queues and add Queue ping_1 to the navigation Queue ping_1 gets added under test-Queues

QM-2 Select ping_1 node on left hand side Following Queue properties are displayed in a
table on "Qpid Management" page-
Active Consumer Count
Auto Delete
Consumer Count
Durable
Maximum Message Age
Maximum Message Count
Maximum Message Size
Maximum Queue Depth
Message Count
Name
Owner
Queue Depth
Received Message Count

Following operations will be displayed as tabs-
Clear Queue
Delete Message From Top
View Messages
View Message Content
Move Messages

QM-3 Run a client application to send 100 messages of size 512bytes each to
queue "ping_1" and refresh the attributes tab on management console

Following attributes value will be updated.
Message Count=100
Queue Depth=50 (in kb)
Received Message Count=100

QM-4 Select the "Maximum Message Count" attribute and click "Edit Attribute" Attribute window pops up with Attribute Name,
Description and value.

QM-4.1 Update the value to 100 The attribute value gets updated.

QM-5 Select the Notifications tab and select the notification type and subscribe. Subscribe button gets disabled.

QM-6 Run the same client application again and sent 100 messages of size 512
bytes to the "ping_1" " and refresh the attributes tab on management
console

Following attributes value will be updated.
Message Count=200
Queue Depth=100 (in kb)
Received Message Count=200

QM-6.1 Select the Notifications tab. One MESSAGE_COUNT_ALERT will be listed.

QM-6.2 Clear the notifications. Click the Clear button The notifications list will be empty.

QM-6.3 Select the notifications type and Unsubscribe. Subscribe button will be enabled and
Unsubscribe button will be disabled.

QM-7 Select the "Delete Message From Top" tab. Click Execute and confirm. Operation successful dialog will popup.

QM-8 Select Attributes tab. Following attributes value will be updated.
Message Count=199
Queue Depth=99 (in kb)

QM-9 Select the "Clear Queue" tab. Click Execute and confirm. Operation successful dialog will popup.

QM-10 Select Attributes tab. Following attributes value will be updated.
Message Count=0
Queue Depth=0 (in kb)

QM-11 Run the same client application again and sent 100 messages of size 512
bytes to the "ping_1" " and refresh the attributes tab on management
console.

Following attributes value will be updated.
Message Count=100
Queue Depth=50 (in kb)
Received Message Count=300

QM-12 Select the "View Messages" tab and enter this data-
from Index=1
to index=100 and Execute

The results window pops up with message
header attributes details of 100 messages on the
Queue.

QM-13 Close the results window and select "View Message Content" tab. Enter the
message id =250 and Execute.

The results window pops up with following fields-
Message Id
Content
Encoding
Mime Type

QM-14 Select "Move Messages" tab. The Qpid Management page shows these fields-
From Message Id
To Message Id
Queue (with list of all other queues)

QM-14.1 Enter the following data-
From Message Id = 200
To Message Id = 150 and Select Queue="queue". Now Execute and
confirm.

Operation successful dialog will popup.

QM-14.2 Select test-Queues and add queue to the navigation and select "queue" The queue attributes will be displayed with these
values-
Queue depth=25
Message Count=50
Received Message Count=50

Exchange Management

This section details the test cases for managing and monitoring a Qpid Exchanges. The setup described in Setup information section is
required for these tests.

Precondition: A Qpid server (e.g. <hostname>:8999) is added to the Management Console as described in the "Virtual Host Management"
section.

Test Id Test Steps Expected Result

EM-0 Select the Qpid Server node "<hostname>:8999" on the Qpid
Connections page and click the icon for reconnect from the tool bar.

The GUI starts up with "Qpid Connections" on left hand
side.

EM-1 Select test->Exchanges and add these exchanges to the Navigation
page-
 amq.direct
 amq.fanout
 amq.topic
 amq.match

Those exchanges get listed under the node
test->Exchanges

EM-2 Select "amq.direct" node The exchange attributes get displayed on "Qpid
Management" page and following tabs-
Create New Binding
Bindings

EM-3 Select the "Create New Bindings" tab The available queues (ping, queue) will be listed.

EM-3.1 Select the Queue "ping" and enter a binding "newBinding". Click
"Execute" and confirm the operation.

Operation successful dialog will popup.

EM-3.2 Select the "Bindings" tab Queue "ping" with binding "newBinding" will be listed on
"Queue Management" page.

EM-4 Select the node "amq.match", which is headers exchange Result same as in step EM-2

EM-4.1 Select the "Create New Binding" tab The available queues (ping, queue) will be listed and
there will be text fields to enter binding as key=value pair

EM-4.2 Select a Queue "ping" and enter these bindings-
Name=key1 value=value1
Name=key2 value=value2

Now click "Execute" and confirm the operation.

Operation successful dialog will popup.

EM-4.3 Select the "Bindings" tab Queue "ping" with bindings "key1=value1" and
"key2=value2" will be listed on "Queue Management"
page.

Trouble Shooting

Q. Why the text fields are not visible on my machine but are visible on other machine?
A. Please check if the windows theme being used in Control Panel->Display is not the default one.

Q. How can I get the exception stack trace for sending to development team for debugging?
A. In start-up scripts qpidmc.sh or qpidmc.bat, update the parameter value:

 -Declipse.consoleLog=true

Testing Design - Java Broker CPU GC Monitoring

Java Broker CPU/GC Monitoring

When testing the Java broker with the perftest suite of tests one of the problems is that we only gather the result of the tests. If the numbers
are better than last time great. However, investigating how the broker handled the load is probably a good thing to do. If CPU usage jumped
100% for only 10% performance benefit we should look at why. Similarly if we spend a lot of time in GC we should check what extra garbage
we have started creating.

So as a starter lets enable verbose:gc on the tests runs and monitor the CPU usage additional monitoring can be added to the suite but the
first step is to have the ability to gather the data.

Data collection
JVM GC Logging
CPU Monitoring

Test Execution
Broker Monitoring Setup

GC Gathering
CPU Usage Gathering

Log Data Processing
GC
CPU

Result Presentation

Data collection

Current goals are to focus on the Java broker by collecting CPU usage (measured via top -p), and GC data as written by the JVM with
verbose gc logging. This same information could be gathered for the client JVM however it would require modification to the existing scripts
to log the data.

This data can then be graphed for later review. Eventually some form of automated analysis could be performed from an automated testing
platform which could identify problematic commits earlier in our release cycle.

JVM GC Logging

Start the vm with verbose gc being logged to its own file. The file contains log entries in seconds since VM start up, this makes correlating
that time with other output, such as CPU, difficult. As The gc file is created very close to the VM startup the file access time can be taken as
its creation time. This time can then be used as a start point for the offsets of each log entry. On a linux box the access time can be seen via
'ls -tu' and is shown in minutes or 'stat' which shows the additional seconds field.

CPU Monitoring

Running 'top' in batch mode and fixed on the JVM process with -p will provide a sample of the CPU usage of the process which can then be
aligned to the GC data using the same file creation time method. If more data points are required the frequency of top updates can be
modified on the command line. An initial period of 0.5 seconds should give good coverage when compared to the GC output.

Test Execution

Integrating with our existing test cases rather than requiring a rewrite of the tests is desirable as we can focus on the collection of data rather
than updating the existing test cases.

Broker Monitoring Setup

This section details how we can go about gathering GC and CPU data.

GC Gathering

The JVM has a number of extra GC options which allow us to gather the data very easily.
Setting QPID_OPTS to the following value will create a gc.log file with GC details.

export QPID_OPTS="-Xloggc:gc.log -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"

CPU Usage Gathering

Gathering CPU usage statistics can be done via 'top' running in batch mode. A simple script can be created to provide the a monitoring rate
and a PID to monitor.

top -d <CPU_MONITOR_RATE> -Sbcp <PID> > broker_cpu.log

This script will create entries in the broker_cpu.log of the following format:

top - 05:16:32 up 24 days, 1:04, 6 users, load average: 0.08, 0.03, 0.31
Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.8% us, 0.3% sy, 0.0% ni, 98.8% id, 0.0% wa, 0.0% hi, 0.1% si
Mem: 4040220k total, 2814272k used, 1225948k free, 194860k buffers
Swap: 16386292k total, 0k used, 16386292k free, 2270140k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
27774 ritchiem 16 0 1254m 64m 8564 S 0 1.6 0:01.17 java -server -DPNAM

Log Data Processing

GC

The GC log file has a number of types of entries:

Successful Full GC

0.503: [Full GC (System) 0.503: [CMS: 0K->1454K(63872K), 0.0617910 secs] 8321K->1454K(83008K),
[CMS Perm : 10933K->10925K(21248K)], 0.0619320 secs]

ParNew run

9.351: [GC 9.351: [ParNew: 19119K->2112K(19136K), 0.0141410 secs] 50757K->42135K(83008K),
0.0142560 secs]

The CMS phases

9.366: [GC [1 CMS-initial-mark: 40023K(63872K)] 42272K(83008K), 0.0016310 secs]
9.367: [CMS-concurrent-mark-start]
9.407: [CMS-concurrent-mark: 0.040/0.040 secs]
9.407: [CMS-concurrent-preclean-start]
9.408: [CMS-concurrent-preclean: 0.001/0.001 secs]
9.408: [CMS-concurrent-abortable-preclean-start]
10.495: [CMS-concurrent-abortable-preclean: 0.113/1.088 secs]
10.498: [CMS-concurrent-sweep-start]
10.508: [CMS-concurrent-sweep: 0.010/0.010 secs]
10.509: [CMS-concurrent-reset-start]
10.517: [CMS-concurrent-reset: 0.008/0.008 secs]

Failed Full GC

357.779: [Full GC 357.779: [CMS357.885: [CMS-concurrent-abortable-preclean: 0.199/0.990 secs]
 (concurrent mode failure): 961425K->13192K(962444K), 0.2641230 secs] 963545K->13192K(981580K),
[CMS Perm : 17808K->17777K(29804K)], 0.2649910 secs]

YG Rescan

10.496: [GC[YG occupancy: 2151 K (19136 K)]10.496: [Rescan (parallel) , 0.0016840 secs]10.497:
[weak refs processing, 0.0007330 secs] [1 CMS-remark: 259108K(260864K)] 261259K(280000K),
0.0025130 secs]

These entries can allow us to generate a graph of memory usage as the application runs. At a first approach using the 'ParNew run' entry we
can graph the heap usage (50757K->42135K) and the current maximum heap size (83008K).

Timing

As the log entries are timestamped in seconds since VM startup if we want to correlate these values with the CPU or client log then we must
convert them to real times. This can be done by looking at the 'Access' time of the gc.log. When retriving the log file (or after starting the
JVM) we can gather this information using 'stat':

Output from stat

File: `2009-05-22-1016/broker-results/logging/gc.log'
 Size: 1183063 Blocks: 2320 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 363245 Links: 1
Access: (0644/-rw-r--r--) Uid: (500/ritchiem) Gid: (500/ritchiem)
Access: 2009-05-29 11:24:00.000000000 +0100
Modify: 2009-05-22 13:42:22.000000000 +0100
Change: 2009-05-22 13:42:22.000000000 +0100

As long as the file as not been opened for reading then the 'Access' time will be the time that the file was created. We can then use this as
the base for the offsets in the log file.

CPU

Processing the CPU data can be done in a similar way to the GC log file. As we know how often the top command will run we can use the
stat output to give us a base entry for the log and then increment each log entry by the logging interval.

There is a risk here that top does not accurately log at the specified rate. However if logging is performed at sub second intervals the effort in
extracting the time data from top and calculating the millisecond value for the log entry is not believed to be worth the effort.

Result Presentation

The results of the GC and CPU can be put through gnuplot and graphed here is an example of what it might look like:

http://cwiki.apache.org/confluence/download/attachments/118853/0.5-queue-12b-0r-CPU.png
http://cwiki.apache.org/confluence/download/attachments/118853/0.5-queue-12b-0r-GCDuration.png
http://cwiki.apache.org/confluence/download/attachments/118853/0.5-queue-12b-0r-Heap.png

Source Repository

Web Browsing of SVN
To browse via the web use the ViewVC interface:

http://svn.apache.org/viewvc/qpid/trunk/qpid

Or to browse the source tree directly:

https://svn.apache.org/repos/asf/qpid/trunk/qpid

Checking out from SVN

The source code can be checked out anonymous over HTTP by doign:

svn co http://svn.apache.org/repos/asf/qpid/trunk

Committers can check out the code over HTTPS:

svn co https://svn.apache.org/repos/asf/qpid/trunk

Read only GIT repo
A read only GIT repo is available:

It can be cloned with

git clone git://git.apache.org/qpid.git qpid

or

git clone http://git.apache.org/qpid.git qpid

and then git pull will fetch updates.

If you have commit access it is also possible to commit back with git svn dcommit by following the instructions on the page.GitAtApache

Setting up your subversion client
When adding files to subversion, it's important that your subversion client is properly setup to the appropriate subversion properties are set.
The client can do it automatically by modifying the auto-props section of the subversion config file. Use the contents of:

http://svn.apache.org/repos/asf/qpid/trunk/etc/svn-auto-props

Mailing Lists

Qpid Mailing lists

There are a number of lists listed below. Note when sening subscription emails it is best to have a value in the subjsct and body even if it is
only 'subscribe'. This will help the ensure the email get past the spam filters.

Qpid User List

The user's list is for discussions that relate to use or questions on Qpid. If you have questions about how a feature works, suggestions on
additional requirements, or general questions about Qpid please use this list

To subscribe to the user's list send an e-mail with subject 'subscribe' to users-subscribe@qpid.apache.org

http://svn.apache.org/viewvc/qpid/trunk/qpid
https://svn.apache.org/repos/asf/qpid/trunk/qpid
http://wiki.apache.org/general/GitAtApache

To remove yourself from the user's list send an e-mail with subject 'unsubscribe' to users-unsubscribe@qpid.apache.org
The user's mailing list is archived. You can view the archive at http://mail-archives.apache.org/mod_mbox/qpid-users/
Nabble achieve http://n2.nabble.com/Apache-Qpid-users-f2158936.html

Qpid Developer List

The developer's list is for discussions that relate to the on going development of Qpid. If you have questions about how a feature is being
developed, suggestions on how to implement a new feature, or requests for a new feature this is the list to use.

To subscribe to the developer's list send an e-mail with subject 'subscribe' to dev-subscribe@qpid.apache.org
To remove yourself from the developer's list send an e-mail with subject 'unsubscribe' to dev-unsubscribe@qpid.apache.org
The developer's mailing list is archived. You can view the archive at http://mail-archives.apache.org/mod_mbox/qpid-dev/
Nabble achieve http://www.nabble.com/Qpid-Developers-f16694.html
http://n2.nabble.com/Apache-Qpid-developers-f2158895.html

Qpid Commits List

The commits list is for recieving notifications about code being committed to the Qpid repository. The trafic on this list is automatically
generated by Subversion. You should not post messages to this list.

To subscribe to the commits list send an e-mail with subject 'subscribe' to commits-subscribe@qpid.apache.org
To remove yourself from the commits list send an e-mail with subject 'unsubscribe' to commits-unsubscribe@qpid.apache.org
The commits mailing list is archived. You can view the archive at http://mail-archives.apache.org/mod_mbox/qpid-commits/

Useful Links

Purpose
Links to related projects/useful stuff for developers

http://mail-archives.apache.org/mod_mbox/qpid-users/
http://n2.nabble.com/Apache-Qpid-users-f2158936.html
http://mail-archives.apache.org/mod_mbox/qpid-dev/
http://www.nabble.com/Qpid-Developers-f16694.html
http://n2.nabble.com/Apache-Qpid-developers-f2158895.html
http://mail-archives.apache.org/mod_mbox/qpid-commits/

	CppTips
	BewareOfStringPromotion
	BewareStdStringLiterals
	NeverUseStaticLocalVariables
	NoUsingNamespaceInHeaders
	PrivateLocking
	ReturnStdStringByValue
	ScopedLocking
	SharedPtr
	ValgrindBadSuppressions

	Index
	0.6 Feature Matrix
	0.6 Feature Descriptions
	0.6 Interoperability Matrix

	AMQP0-9-DesignNotes
	AMQP (Advanced Message Queueing Protocol)
	AMQP Brokers
	AMQP Messaging Broker (implemented in C++)
	AMQP Messaging Broker (implemented in Java)

	AMQP Messaging Clients
	AMQP .NET Messaging Client
	AMQP C++ Messaging Client
	Client configuration

	AMQP Java JMS Messaging Client
	AMQP Python Messaging Client
	AMQP Ruby Messaging Client

	AMQP Test Suites for Apache Qpid
	C++ vs. Python API Discrepancies
	ClusteringHA
	AMQP breakdown for clustering
	Cluster Design Note
	Cluster Failover Modes
	ClusteringAndFederation
	Federation Design Note
	Java Federation Design Proposal
	Old Clustering Design Note
	Persistent Cluster Restart Design Note
	Reliability Requirements

	Declarative System Testing
	Developer Pages
	Java Coding Standards
	Cpp Client Java Interop Issues
	Java Broker Design
	Qpid Design - Framing
	Qpid Design - Management
	Qpid Design - Threading
	Qpid Design - Message Acknowledgement
	Java Broker Design - MessageStore
	BDBMessageStore (3rd Party)
	JDBCStore
	MemoryMessageStore

	Restructuring Java Broker and Client Design
	Message API Design
	Java Architecture Overview
	Producer flow control
	Java Broker - AMQP0-9 Tactical Producer Flow Control

	Java Broker Refactor (QPID-950)
	Java Broker Modularisation
	Java Broker Configuration Design
	Java Broker Design - Flow to Disk
	FtD Code Review Notes

	Java Broker Design - High Level Overview of Refactoring
	Java Broker Design - Message Representation
	Network IO Interface
	Network IO Interface discussion points
	New common network and protocol interfaces
	Current and proposed network interfaces notes

	Port server to new interface
	Port server to new interface notes
	Port server to new interface tests

	Java Broker Design - Operational Logging
	Existing Logging Analysis
	Logging Format Design
	Status Update Design
	Operational Logging - Status Update - Functional Specification
	Operational Logging - Status Update - Technical Specification
	Operational Logging - Status Update - Test Plan
	Operational Logging - Status Update - Test Specification

	Status Update Design - Logging Configuration

	Qpid Design - Queue Implementation
	Qpid Design - Message Delivery
	Java authorization plugins
	0.6 Broker BasicFlow Synchronisation Design
	Slow Consumer Disconnect
	Topic Configuration Design

	Qpid Java Client refactoring
	Distributed Testing
	Low-Level API Diagram
	Weekly QPID Developer Meetings
	Qpid Java Meeting Minutes 04-04-2008
	Qpid Java Meeting Minutes 11-04-2008
	Qpid Java Meeting Minutes 28-03-2008
	Qpid Java Meeting Minutes 2008 05 02
	Qpid Java Meeting Minutes 2008-04-18
	Qpid Java Meeting Minutes 2008-05-09
	Qpid Java Meeting Minutes 2008-05-16
	Qpid Java Meeting Minutes 2008-05-23
	Qpid Java Meeting Minutes 2008-05-30
	Qpid Java Meeting Minutes 2008-06-20
	Qpid Java Meeting Minutes 2008-06-27
	Qpid Java Meeting Minutes 2008-07-11
	Qpid Java Meeting Minutes 2008-07-25
	Qpid Java Meeting Minutes 2008-08-01
	Qpid Java Meeting Minutes 2008-08-08
	Qpid Java Meeting Minutes 2008-08-15
	Qpid Java Meeting Minutes 2008-08-22

	Documentation
	Build Creator
	Cheat Sheet for configuring Exchange Options
	Cheat Sheet for configuring Queue Options
	LVQ Example
	queue state replication

	Documentation2
	DocumentationB
	.NET Client
	C++ Broker
	Management Tools Overview

	C++ Client
	Example guide
	Java Broker
	IP Whitelisting
	Java Broker Feature Guide

	JMS Client
	Python Client
	Ruby Client

	Java Broker Analysis Tools
	LVQ
	QMan - Qpid Management bridge
	Get me up and running
	JMX Interface Specification
	Event MBean
	Object MBean
	QMan MBean

	QMan Components View
	QMan Messages Catalogue
	QMan System Overview
	QMan User Guide
	QMan Admin Console
	QMan Debug Messages
	QMan Error Messages
	QMan Informational Messages
	QMan Warning Messages

	WS-DM Interface Specification
	Connect
	GetCurrentMessage
	GetMultipleResourceProperties
	GetResourceMembers
	GetResourceProperty
	GetResourcePropertyDocument
	MetadataExchange
	OperationInvocation
	PauseSubscription
	PutResourcePropertyDocument
	QueryResourceProperties
	ResumeSubscription
	SetResourceProperties
	Subscribe

	Qpid ACLs
	Qpid Interoperability Documentation
	SSL
	Starting a cluster
	Use of Get()
	Using Broker Federation

	ACL
	FileACL Design

	Qpid Management Framework
	QMan
	QMF Map Message Protocol
	QMF Protocol
	QMF Python Console Tutorial
	QMFv2 Project Page
	QMFv2 APIs
	QMFv2 API Proposal

	QMFv2 Architecture

	Broker job queue limits
	JMX Console Use Cases
	Current Architecture
	MessageProducer.send() behaviour
	Multiple Java Brokers - Use Cases
	Java Client Test Coverage
	ACL Design
	andrew acl proposal
	Method Considered Harmful
	Method Considered Harmful Redux

	AMQP Distributed Transaction Classes (C++)
	API Error Conditions
	Broker Management QMF Coverage
	Java Client Design
	0.6 Java Client Dispatcher Changes
	0.6 Java Client Dispatcher Changes - Details

	Qpid extensions to AMQP
	Qpid Java Broker - Guidance for 64Bit VM

	Download
	The AMQP Distributed Transaction Classes (Java)
	AMQP compatibility
	Queue Replay

	Getting Involved
	GSoC
	OSVC
	Qpid Project Etiquette Guide

	HermesJMS
	Informal M2.1 code review 2008-03-18
	Navigation
	Acknowledgments
	FAQ
	License
	Project Status

	People
	MartinRitchie
	Robbie Gemmell

	Proposal for a new JMS Destination configuration
	Proposal for a new JMS Destination configuration2

	Qpid .Net Documentation
	.NET User Guide
	Excel AddIn
	Qpid .Net How To
	Build .NET Client
	Releasing
	Run tests
	Setup .Net Client on Windows

	WCF

	Qpid 'C++' Documentation
	CppApiGuide
	CppBrokerStartPlugins
	CppEventChannelIo
	CppHandlerChains
	CppStyleGuide
	Persistent Message Store Module
	PythonBrokerTest

	Qpid Integrations
	Qpid Java Documentation
	3rd Party Libraries
	3rd Party Tools
	Mule

	AMQP Error Codes
	Example Classes
	Getting Started
	MgmtC++
	RAJB
	RASC

	Getting Started Guide
	Java broker log monitoring
	Java Environment Variables
	JMS Compliance
	Management Design notes
	JMX Gateway
	qmf_architecture

	Management Tools
	JConsole
	MessageStore Tool
	Qpid JMX Management Console
	Configuring Management Users
	Configuring Qpid JMX Management Console
	Management Console Security

	Qpid JMX Management Console FAQ
	Qpid JMX Management Console User Guide
	Qpid Management Features

	Multiple AMQP Version Support
	AMQPVersion.1

	Qpid Java FAQ
	Qpid Java How To
	Add New Users
	Configure ACLs
	Java XML ACLs

	Configure Broker and Client Heartbeating
	Configure Java Qpid to use a SSL connection.
	Configure Log4j CompositeRolling Appender
	Configure Operational Status Logging
	Configure the Broker via config.xml
	M2.1 - config.xml
	M2 - config.xml

	Configure the Virtual Hosts via virtualhosts.xml
	Debug using log4j
	Firewall Configuration
	How to Tune M3 Java Broker Performance
	How to Use JNDI
	Using Qpid with other JNDI Providers

	Interact with a JMX MBean
	Qpid Java Build How To
	Building
	CruiseControl
	Performance Testing for C++
	Qpid Cpp Build How To
	QpidCppWindowsBuild

	Split configuration files
	Tune Broker and Client Memory Usage
	Use Last Value Queues (LVQ)
	Use Priority Queues
	Use Producer Flow Control

	Qpid Java Run Scripts
	Qpid Troubleshooting Guide
	Release Plans
	roadmap
	looking to pitch in

	Sustained Tests
	System Properties
	URL Formats
	0.10 Connection URL Format
	BindingURLFormat
	Connection URL Format
	Url Format Proposal
	Qpid Java Broker Management CLI
	Qpid Design - Access Control Lists
	Qpid Design - Authentication
	Qpid Design - Configuration
	QpidBrokerCommandLineOptions
	Prefetch

	Qpid Meetup at ApacheCon 2009
	Qpid Release Page
	0.6 Release
	M1 Release
	M1 Release Check list

	M2 Release
	M4 Release Process Notes
	Qpid Release Notes
	Qpid Java M1 Release Notes

	QpidReleaseProcess
	RC Multi-Platform Testing

	Qpid Ruby Documentation
	Qpid Testing
	Interop Testing Specification
	Java Unit Tests with InVM Broker
	Performance, Reliability and Scaling
	Latency
	Reliability
	Throughput

	Qpid JMX Management Console Testing Guide
	Qpid Management Console Testing (Old UI)

	Testing Design - Java Broker CPU GC Monitoring

	Source Repository
	Mailing Lists

	Useful Links

