AMQP Java Client API Architecture

The following diagram provides a high level overview of the architecture from a call flow perspective.
(A) to (I) describes message flows. An important point to note is that there is an instance of a pipe per
physical connection. So all interactions are scoped by a connection. In summary the client consists of a
well defined pipeline of phases and an API layer closely modeled on the AMQP client API.

(E)
() (B} (C) (D) Event
— — ™ —» —» Manager }
, Transport Execution Model APl
A tipe Phase Phase Phase Layer
€< <— < (F)
(1) (H) (G) -«
Phase pipe

The phase pipe is introduced to archive a clear separation of concerns and consist of an arbitrary number
of Phase objects. There is a clear contract between each phase, and changes within each phase is
insulated so that it doesnt affect any other phase.

e Currently there are 3 phases and they correspond directly to each layer in the AMQP protocol.
e The Transport phase deals with AMQFrames and deals with MINA layer for NIO.
e The Execution phase dealswith the request/response paradigm.
e The Model Phase works at the AMQPMethodBody level.
Call flow

(A) The MINA layerhands over an AMQFrame to the Transport phase
(B) The Transport phasehands over the AMQPFrame to the Execution phase
The execution phase handles the request or response logic
(C) The Execution phase hands over one or more AMQMethodEvents to the Model phase
(D) & (E) The Model phase didributes these events to the API layervia the Event Manager
(F) The API layer hands over AMQMethodEvents to the Model phase
(G) The Model Phasehands over to the Execution phase
(H) The Execution phase handles the correlation,creates AMQFrames and hands it overto Transport
phase.
(I) The Transport phase hands over AMQFrames to the MINA layer.



API Layer

The API layer is modeled on the AMQP protocd classes, which provides amore natural programming
model. All state transitions are driven by the client API orby broker events. Users will programed to
interfaces and not the concrete implementations. Abstract AMQPClassFactorywill provide a concrete
implementation of the AMQPClassFactory.

AMQPConnection

AMQPChannel

AMQPQueue

AMQPClassFactory AMQPExchange

(@]

AMQPCallBack

| AMQPMessage

AMQPMessagecCallBack

QpidAMQPConnection

QpidAMQPChannel

QpidAMQPQueue

QpidAMQPClassFactory QpidAMQPExchange

QpidAMQPCalliBack

QpidAMQPMessage

| QpidAMQPMessagecCallBack




State Transitions
e AMQPChannel and AMQPConnection class implementations are finite state machines
e State change events are notified to listeners via the AMQPStateLstener interface.
e All state transitions are verified and method invocations on AMQPConnection and
AMOQPChannel areonly allowed in the sequencedefined by the AMQP protocol.
e Listeners can register based on the type of events (Ex either channel, or connection)

| AMQPStateListener

fifes

AMQPStateManager |0

AMQPStateChangedEvent

: | L
¢ {

AMQPStateType AMQPState

i)
QpidAMQPStateManager

Extensibility
The API provides several ways to extend the programming model.
e The phase pipe is configurable
e Can provide a different implementation of the o.a.q.amqp package.
e Can register for protocol events viathe AMQPMethodListener interface.
e Can register for state change events viathe AMQPStateListener interface.



