DRAFT

Portlet APl (First DRAFT)

Please send technical comments to
Stephan Hesmer (stephan.hesmer @de.ibm.com)

Stefan Hepper (sthepper@de.ibm.com)
Thomas Schaeck (schaeck@de.ibm.com)

Status

This document is not yet complete. It covers some important aspects of portlets, but
major parts of the document are still missing.

DRAFT

Table of Contents

1

2

(@ 4T T RSP SSR 5
11 What iS@POMIEL 2.t et ettt nn 5
B I T T a1 o] 6

1211 POIIEL ClaSS ... 6
1212 Portlet Class INSNCEcoueiririerierieeeere e 6
1213 CONCIrete POITIEL.......cccveceeeieeeesieciet e e 7
1.2.1.4 Concrete Portlet INStANCES..........cccoeeeereeieseeit e e 7
1.3 Entitiesand REations in POralSccccocveiieveciecece e 7
1.4 What isaPortlet CONtAINES?.......ccooeieirieieireeet e e 9
15 ANEXAMPIE..eiiiiiee e e et 9
1.6 Comparing Portlets with Other TeChnolOgI€s.........cccvevviceiiiiiecececeee e 9

The POrtletAdapter ClaSS.........ccooiiirieieeeeee e 10
2.1 Request Handling MethodS.........ccooeieriiiieniereniee e e 10

21.1 Conditional Rendering SUPPOITcveveierenerieere e 10
2.2 NUMDEr OF INSIANCEScueiviriiieeeese e 10
2.3 POIIEt LifE CYClB.i ittt e 10

2.3.1 Loading and INStantiation............cceeiveieeiieeiie e 11

2.3.2 LTz 74 1 o o S 11

2.3.21 Error Conditions on INitialiZationcccceverineeeneneneneeesese e 1
2.32.2 TOOI CONSIAEIBLIONS.......coueiueriiriieiinierieeieesi et 1
2.3.3 Request HandliNg.......cooveiiiiiececsec et 12
2331 Multithreading ISSUEScccuiiieieeciesece et 12
2.3.3.2 Exceptions During Request HaNdliNg.........ccccoviiereriininenereseeieens 12
2.3.3.3 Thread SAELYcocoviieeeese e 13

234 ENG OF SEIVICE ...ttt 13
2.4 POIIEE MOOES ...ttt 13

24.1 VIBW MOGE.... ..ottt r e neente e ennas 13

24.2 o 11V o =PSRRI 14

24.3 CONFIg MOGE.....ceiiiieeiecieeeeeet e e st a s 14

244 HEID MOGE......co et 14

01 a1 = ST R 14

3.1 Scope of aPOrtletCONLEXLccereeierereeee e s 14
3.2 INtiaiZation PAramELErSccceeiiieiiseeesie e 14
3.3 Context AttHDULES........ccoiiieeeeet e e 15
331 Context Attributes in a Distributed Containercccooeverieeienenenieennns 15

34 RESOUICESeiieeieetee ettt b et e bt e e e e e eae e e neeenneeanas 15
3.5 Container INfOrMELION.coeiiiiirieeeeee e e 15
138 ST o o (1 oo T SRR 16
3.7 ACCESS 10 POrtlEt SEIVICES......ooveeeiirierieieeese e 16
3.8 National Language SUPPOITcueiieiiereriiesimeessesseessessseessesssessssesnssessssesssns 16
I IS < 0 [gTo T V< o1 TSRS 16
310 INClUdiNg SErVIELURIS.......ooiiiiieieeeeee e e 16

4 The Portlet REQUESL........ccooeeieseeee ettt et 16
5 The Portlet RESPONSEcccoiiiiieieiesie sttt st be e nnesre e 17
B TREUSE .t e e b e r e ne e 17
T POMIEE EVENES ...ttt e e sb e sa e ne b e e 17
7.1 ACHON BVENES.....ceiiieeeeee et ettt es ettt e e e e e e e s s ennas 18
7.2 MESSAE BVENLSeeeiieieeiee ittt st sttt sttt sb e be b e et e b e e nneas 18
7.3 WINOOW BVENES. ..ottt sttt 18
7.4 Portlet Settings AttrDULES BVENTS.........coiiiiieieee e s 18
7.5 Portlet Application Settings AttribUuteS events.........ccccceveeveevieececceccie e 19
7.6 PagB EVENIS.....ooiiieeee e e 19

8 POIIE WINCOW ...ttt bttt 19
LS B = o1 L= AN oo o= (o 03P 19
9.1 Relationship to POrtletCONEXL.........ccoiveiiriiiiieie et 19
9.2 Elements of aPortlet AppliCatioN.........cccevevieieiieiee e e 19
9.3 Web Application Archive File for Portlet Applicationscoceeeeveeienenennne. 20
10 Tag Library SUPPOIT.........coieiieeeieie sttt st s eesaeas 20
O I I S U 1o SR 20
10.2 The POrtIetDala Tag.......cccvreereeiiesieenieeiesiesesssee e sseesseseesaeses e sssesseesnnesnnens 20
10.3 The POrtIetSEttings TaGccceieeriereerieseest seesteseesteeseeseessesseesae seesnseesseesseessenas 20
10.4 The Encode NameSPaCe Tagccceererererierieries cereeseesie e s seesee i e e eeneesieesnes 20
11 POIIEE SEIVICES ..ot e ettt e 20

DRAFT

DRAFT

1 Oveview

This chapter provides an overview of the Portlet API. It introduces the concept of
portlets, gives some definitions and introduces certain entities related to portlets that are
usually present in portals.

1.1 WhatisaPortlet ?

A portlet is a web component managed by a container, that generates dynamic content.
Portlets are platform independent Java classes compiled to an architecture neutral
bytecode that can be loaded dynamically into and run by a web server. While servlets
usualy interact directly with web clients, portlets interact with web clients indirectly
through portals, via a request response paradigm implemented by the portlet container.
This request-response model is based on the behavior of the Hypertext Transfer Protocol
(HTTP).

Portlets are specialized servlets that plug into and run in portals. Portlets are designed to
be aggregatable in the larger context of a portal page. They rely on the porta
infrastructure to function, e.g. access to user profile information for the current user,
access to the window object that represents the window in which the portlet is displayed,
participation in the portal window and action event model, access to web client
information, inter-portlet messaging and a standard way of storing and retrieving per-user
or per-instance data persistently.

—— l
Portlet I"ml |

or

Command |—>| Model e

%

Controller

View

= o0 T 0 —O

or

e.g. JSPs, Stylesheets,

Figure 1. Portlet Principle

DRAFT

Usually, many portlets are invoked in the course of handling a single request, aggregating
their respective produced content in one page by appending each individual portlet’s
output to the page. Portlets generate markup fragments that can be aggregated in the
scope of a portal, containing links, actions and content suitable for aggregation within a
portal. URL rewriting methods are provided that allow portlets to transparently create
links, without needing to know how URLSs are structured in the particular portal.

Portlets can have different modes. All portlets must implement a view mode that is
responsible for displaying the portlets view, e.g. alist of stock symbols and their pricesin
a stocks quotes portlet. Optionally, portlets may implement edit, config and help modes
in addition. A typically way how portals make the available modes of portlets accessible
by displaying buttons for accessing those modes is in the title bars of portlets on a porta
page.

In many aspects, the Portlet APl is an extension of the Servlet API, while in other
aspects, it restricts function provided by the Serviet API to the subset that is allowed for
portlets running in the context of a portal. For example, the Portlet API’S Portl et Cont ext

does not alow portlets to obtain a request dispatcher to perform forward calls, it only
provides portlets with an include call, the Port| et Response does not alow portlets to
invoke the sendRedi rect or sendError methods as these things may only be done by the
portal that contains the portlets.

1.2 Definitions

In the rest of this paper we'll use the terms portlet class, portlet class instance, concrete
portlet, and concrete portlet instance as defined below:

1.2.1.1 Portlet Class

The term portlet class denotes the code of a portlet. Portlet classes are derived from the
the Port | et Adapt er base class. A portlet class is an implementation aspect that will
never be visible to administrators or users.

Example: A classsanpl e. portl et. St ockQuot ePort | et that is the implementation of a
stock quote portlet.

1.2.1.2 Portlet Class Instance

A portlet class instance is an instance of a portlet class, parameterized by a
Port| et Confi g object. One Portl et Config exists per portlet class instance. Portlet
class instances are created when an administrator deploys a new Portlet Application
WAR file or when the server restarts. Portlet class instances are never visible to
administrators or users.

Example: An portlet class instance defined in a WAR file, named “ StockQuotePortl et”
of the classsanpl e. port | et. St ockQuot ePor t | et . Might have init parameters like JSPs
to use for dispaying stock quotes set by the portlet provider.

DRAFT

1.2.1.3 Concrete Portlet

Concrete portlets are what is typically visible to administrators and users as “Portlets’ in
portal Uls. They usually are administrable in admin Uls, e.g. to associate access rights or
change settings and they typically can be selected by users in page customizers and be
put on pages which creates a concrete portlet instance.

A concrete portlet is a portlet instance parametrized with individua Portl et Set ti ngs
on a per-request basis. For each single portlet instance, there may be many concrete
portlets resulting from different parametrizations. There is one Port | et Set ti ngs object
per concrete portlet. Concrete portlets are created when an administrator deploys a new
portlet application WAR file that has definitions of concrete portlets in it or when an
administrator uses the admin Ul of the portal to create new concrete portlets. The same
concrete portlet can be shared across many users.

Example: Concrete portlet named “XYZ Stock Quotes’ of the stocks portlet instance
named “ StockQuotePortlet” that is parametrized with a unique source URL provided by a
stock quote service to obtain stock quotes.

1.2.1.4 Concrete Portlet Instances

Concrete Portlet Instances are what is visible as a portlet on a user’s page. They are
concrete portlets, additionally parameterized by a Port| et Dat a object on a per-request

basis. There can be many concrete portlet instances per concrete portlet.

Example: A user selects a concrete portlet named “XYZ Stock Quotes’ of the portlet
instance “StockQuotePortlet” of the class sanpl e. portlet. StockQuotePortlet and
puts it on a personal page, creating a concrete portlet instance and a reference from the
page to the new concrete portlet instance. The concrete portlet instance can be
parametrized by the user via the edit mode, defining the particular stocks to track.

1.3 Entities and Relations in Portals

Figure 2 shows an example of how these entities can be related to each other. We assume
that the portal implementation has the notion of users and groups, where a user can be in
0..n groups. Users and groups have access to 0..n pages, e.g. determined by a
combination of access rights and explicit selection of the desired subset of accessible
pages. The relations between users, pages, page groups etc are irrelevant for a portlet
container, they can be different in different portals.

Portal pages have references to concrete portlets instances, more than one page may have
a reference to a particular concrete portlet instance. Many concrete portlet instances may
be instantiated from a single concrete portlet. Many concrete portlets may exist that are
based on the same portlet instance. Many portlet instances may be instantiated from a
single portlet class.

The relations that are important for the portlet container are those between concrete
portlet instances, concrete portlets, portlet (class) instances and portlet classes.

DRAFT

User-defined Administrator-defined Developer-defined
|
Portlet
Portlet Porltlet Config
Data Settings
Group Concrete Portlet
Instance
Concrete Portlet Portlet
I Portlet Instance Class
Portal Concrete Portlet
Page Instance
I
Grou Concrete Portlet
P Instance
T Concrete
Portlet
Portal Concrete Portlet
Page Instance Portlet
T Instance
Concrete Portlet Concrete
Instance Portlet
User T Portlet
Class
Concrete Portlet
Instance
Portal I
FEER Concrete Portlet Concrete Portlet
Instance Portlet Instance

Figure 2. Portlet related entities and their relations

A portlet can work with the following data:

Portlet Configuration — the unchangeable configuration of a portlet. The portlet
configuration is accessible through the Port | et Confi g object. The portlet configuration
is read only and persistent. Objects associated with data from the portlet configuration
may be held in portlet instance variables of portlets since there is one instance of a portlet
class per configuration. The portlet configuration data is defined by portlet developers at
design time and cannot be changed by portal administrators or user.

Portlet Settings — per-concrete portlet configuration settings that can be changed by
portal administrators at any time. Usually portlet settings are used by the portlet’s edit
and view modes and updated by the config mode. The portlet settings are accessible
through the Portl et Settings object associated with the request. Portlet settings are
read/write accessible and persistent. Objects associated with data from portlet settings
may not be held in portlet instance variables, since the same instance is usually
parameterized with many different Por t | et Set t i ngs objects during its lifetime.

Portlet Data— per concrete portlet instance data, e.g. user preferences for the portlet that
usually are changed by the portlet’s edit mode. Portlet data are accessible through the
Portl et Data object associated with the request. Portlet data are read/writable and
persistent. Objects associated with data from portlet data may not be held in portlet
instance variables, since the same instance is usually parameterized with many different
Port | et Dat a objects during its lifetime.

User Profile — per user data shared across all portlet instances across al portlet
applications. The user profile is accessible viathe User object read only.

DRAFT

Portlet Session — non-persistent session data scoped by portlet application. The portlet
session is read/writable and accessible viathe Por t | et Sessi on object.

1.4 What is aPortlet Container?

The portlet container, in conjunction with a portal server, provides the environment over
which requests and responses are set, decodes MIME based requests, and formats MIME
based responses. A portlet container also contains and manages portlets through their
lifecycle. A portlet container can be built based on an application server's servlet
container.

1.5 AnExample

A client program, such as a web browser, accesses a web server and makes an HTTP
request. This request is processed by the web server and is handed off to the serviet
container. The servlet container invokes the portal server servlet that in turn cals the
portlet container, most likely several times in order to aggregate multiple portlets on the
result page.

For each invocation, the portlet container determines which portlet to invoke based on a
passed ID and its internal configuration and calls it with objects representing the request
and response. The portlet container can be implemented as an extension of the servlet
container.

The portlet uses the request object to find out who the remote user is, what the attributes
of the remote user are, what kind of client the user has, what HTML form parameters
may have been sent as part of this request, the data associated with the user and invoked
concrete portlet instance, and other relevant data. The portlet can then perform whatever
logic it was programmed with and can generate data to send back to the portal server. It
sends this data back to the portal server via the response object. Once the por tlet is done
with the request, the portlet container ensures that the response is properly flushed and
returns control back to the portal server. The portal server usually aggregates output from
many portlets in composite pages.

1.6 Comparing Portlets with Other Technologies

Portlets are based on the Servlet technology, but are designed particularly for use in
portals. In many aspects, the Portlet APl is an extension of the Servlet API, while in other
aspects, it restricts function provided by the Servliet API to the subset that is allowed and
appropriate for portlets running in the context of a portal.

For use in portals, Portlets have the following advantages over servlets:

Portlets can exploit an event mechanism for window events, action events and
message events

Portlets are invoked with portlet request, portlet response and portlet session
objects wrapping the original servlet request, servlet response and HTTP session

DRAFT

to prevent portlets from disturbing the portal and that provide access to portlet or
user related objects.

Portlets can exist multiple times on a single page, i.e. there can me more than one
concrete portlet instance of the same portlet on a single portal page which can be
invoked with a single request.

2 The PortletAdapter Class

Portlets are designed to run in a portal environment, producing markup fragments that
can be aggregated in pages and reacting on certain portal-related events. All portlets must
inherit from the Portl et base class directly of indirectly. The recommended way of
writing portletsisto inherit from the Por t | et Adapt er class.

2.1 Request Handling Methods

The servi ce method of a portlet is called for each request that the portlet container
routes to an instance of a portlet. The container invokes the portlet’s service method with
Portl et Request (See Chapter 0) and Portl et Response (See Chapter 5) objects as
arguments.

As portlets are specialized serviets, multiple request threads may be executing within the
service method of a portlet a any time. Therefore, a portlet may not use instance
variables to store any information associated with incoming requests.

211 Conditiona Rendering Support

The Portlet class defines the get Last Modi fi ed method to support conditional get
operations. A conditiona get operation is one in which the portal requests portlet content
indicating that the content body should only be sent if it has been modified since a
specified time.

Portlets that implement the servi ce method and that provide content that does not

necessarily change from request to request should implement this method to aid in
efficient utilization of server resources.

2.2 Number of Instances

The portlet container must use only one instance of a portlet class per portlet definition.

2.3 Portlet Life Cycle

A portlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, handles requests from portals, and how it is taken out of
service. This life cycle is expressed in the APl by the init, service, and destr oy
methods.

10

DRAFT

2.3.1 Loading and Instantiation

The portlet container is responsible for loading and instantiating a portlet. The
instantiation and loading can occur when the engine is started or it can be delayed until
the container determines that it needs the portlet to service a request.

First, a class of the portlet’s type must be located by the portlet container. If needed, the
portlet container loads a portlet using normal Java class loading facilities from alocal file
system, a remote file system, or aher network services.

After the container has loaded the portlet class, it instantiates an object instance of that
class for use. It is important to note that there can be more than one instance of a given
portlet class in the portlet container. For example, this can occur where there was more
than one portlet definition that utilized a specific portlet class with different initialization
parameters.

2.3.2 Initialization

After the portlet object is loaded and instantiated, the container must initialize the portlet
before it can handle requests from the portal. Initiaization is provided so that a portlet
can read any persistent configuration data, initialize costly resources (such as JDBC™
based connection), and perform any other one-time activities. The container initializes the
portlet by calling the i nit (Portl et Config) method with an object implementing the
Port | et Config interface. This configuration object allows the portlet to access name-
value initialization parameters from the portlet container’s configuration information. The
configuration object also gives the portlet access to an object implementing the
Port| et Cont ext interface which describes the runtime environment that the portlet is
running within. See Chapter 3, “Portlet Context” for more information about the
Port | et Cont ext interface.

2.3.2.1 Error Conditions on Initialization

During initialization, the portlet instance can signal that it is not to be placed into active
service by throwing an Unavai | abl eException Or Portl et Exception. If a portlet
instance throws an exception of this type, it must not be placed into active service and the
instance must be immediately released by the portlet container. The destroy method is
not called in this case as initialization was not considered to be successful.

After the instance of the failed portlet is released, a new instance may be instantiated and
initialized by the container a any time. The only exception to this rule is if the
Unavai | abl eExcepti on thrown by the failed portlet which indicates the minimum time
of unavailability. In this case, the container must wait for the minimum time of
unavailability to pass before creating and initializing a new portlet instance.

2.3.2.2 Tool Consderations

When a tool loads and introspects a portlet application, it may load and introspect
member classes of the web application. This will trigger static initialization methods to be
executed.

11

DRAFT

Because of this behavior, a Developer should not assume that a portlet is in an active
container runtime unless the init method of the Portlet interface is called. For
example, this means that a portlet should not try to establish connections to databases or
Enterprise JavaBeans™ compenent architecture containers when its static (class)
initialization methods are invoked.

2.3.3 Request Handling

After the portlet is properly initialized, the portlet container may use it to handle requests.
Each request is represented by a request object of type Port | et Request and the portlet
can create a response to the request by using the provided object of type
Port| et Response. These objects are passed as parameters to the servi ce method
portlets. The default implementation of the service method provided in the
Port | et Adapt er base class detects the requested mode and dispatches the request to the
doVi ew,doEdi t , doHel p, oF doConf i g methods.

It is important to note that a portlet instance may be created and placed into service by a
portlet container but may handle no requests during its lifetime.

2.3.3.1 Multithreading Issues

During the course of servicing requests from clients, a portlet container may send
multiple requests from multiple clients through the ser vi ce method of the portlet at any
one time. This means that the Developer must take care to make sure that the portlet is
properly programmed for concurrency.

If a Developer definesa servi ce method with the synchr oni zed keyword, the portlet
container will, by necessity of the underlying Java runtime, serialize requests through it.
It is strongly recommended that devel opers not synchronize the ser vi ce method nor any
of the doVi ew, doEdi t ,doConfi g, Or doHel p methods.

2.3.3.2 Exceptions During Request Handling

A portlet may throw either a Port| et Excepti on Or an Unavai | abl eExcepti on during
the service of a request. A Portl et Excepti on signals that some error occurred during
the processing of the request and that the container should take appropriate measures to
clean up the request. An Unavai | abl eExcepti on signals that the portlet is unable to
handle requests either temporarily or permanently.

If a permanent unavailability is indicated by the Unavai | abl eExcepti on, the portlet
container must remove the portlet from service, call its destroy method, and release the
portlet instance.

If temporary unavailability is indicated by the Unavail abl eException, then the
container may choose to not route any requests through the portlet during the time period
of the temporary unavailability. The portlet container may choose to ignore the
digtinction between a permanent and temporary unavailability and treat all
Unavai | abl eExceptions as permanent, thereby removing a portlet that throws any
Unavai | abl eExcepti on from service.

12

DRAFT

2333 Thread Safety

A Developer should note that implementations of the request and response objects are not
guaranteed to be thread safe. This means that they should only be used in the scope of the
request handling thread. References to the request and response objects should not be
given to objects executing in other threads as the behavior may be nondeterministic.

2.34 End of Service

The portlet container is not required to keep a portlet loaded for any period of time. A
portlet instance may be kept active in a portlet container for a period of only
milliseconds, for the lifetime of the portlet container (which could be measured in days,
months, or years), or any amount of time in between.

When the portlet container determines that a portlet should be removed from service (for
example, when a container wants to conserve memory resources, or when it itself is being
shut down), it must allow the portlet to release any resources it is using and save ary
persistent state. To do this the portlet container calls the dest r oy method of the Port | et
interface.

Before the portlet container can call the destroy(Portl et Config) method, it must
alow any threads that are currently running in the service method of the portlet to
either complete, or exceed a server defined time limit, before the container can proceed
with calling the dest r oy method.

Oncethedest roy method is called on a portlet instance, the container may not route any
more requests to that particular instance of the portlet. If the container needs to enable the
portlet again, it must do so with a new instance of the portlet’s class.

After the destroy method completes, the portlet container must release the portlet
instance so that it is eligible for garbage collection.

2.4 Portlet Modes

The portlet APl defines four portlet modes. view, edit, configure, and help. The
Port| et Adapt er class defines a default implementation of the servi ce method for
handling client requests that dispatches requests to the doVi ew, doEdit , doHel p, and
doConf i gur e methods which correspond to the four modes.

241 View Mode

The view mode displays the normal view of a portlet, eg. a list of stock symbols and
current prices for a stock quote portlet. The view mode may include one or more views
between which the user can navigate or it may just consist of one single view without any
user interaction. The view mode of a portlet must be implemented within the dovi ew
method.

13

DRAFT

24.2 Edit Mode

The edit mode of a portlet displays one or more edit views that let the user change portlet
data, e.g. the list of stock symbols he is interested in for the example of a stock quote
portlet. Typcally, the edit mode will update attributes of the Port | et Dat a that belongs to
the current concrete portlet instance to meke changes persistent. If present, the edit mode
of a portlet must be implemented in the doEdi t method of a portlet.

24.3 Config Mode

The config mode of a portlet displays one or more configuration views that let
administrators configure portlet settings, e.g. the source for stock quotes to use in the
example of a stock quote portlet. Typicaly, the config mode will update attributes of the
Port | et Settings that belong to the current concrete portlet. If present, the config mode
must be implemented in thedoConf i g method of a portlet.

244 HepMode

The help mode of a portlet displays one or more help views that help users or
administrators to understand how the portlet works. Portlets may provide simple help
views that explain the entire portlet in coherent text or povide context-sensitive help. If
present, the help mode of a portlet must be implemented in thedoHel p method.

3 Portlet Context

ThePort | et Cont ext defines a portlet’s view of the portlet application within which the
portlet is running. The PortletContext also alows a portlet to access resources
available to it. Using such an object, a portlet can log events, obtain URL references to
resources, and set and store attributes that other portlets in the context can use. The
Container Provider is responsble for providing an implementation of the
Port| et Cont ext interface in the portlet container.

3.1 Scope of aPortletContext

There is one instance of the Portl et Context interface associated with each portlet
application deployed into a container. In cases where the cantainer is distributed over
many virtual machines, there is one instance per portlet application per VM.

3.2 Initialization Parameters

A set of context initialization parameters can be associated with a portlet application and
are made available by the following methods of the Por t | et Cont ext interface:

getlnit Paranet er
get I ni t Par amet er Nanes

14

DRAFT

Initialization parameters can be used by an application developer to convey setup
information, such as a webmaster’s email address or the name of a system that holds

critical data.

3.3 Context Attributes

A portlet can bind an object attribute into the context by name. Any object bound into a
context is available to any other portlet that is part of the same portlet application. The
following methods of Port | et Cont ext interface allow access to this functionality:

setAttribute

getAttribute
get Attri but eNanes
removeAttribute

331 Context Attributes in a Distributed Container

Context attributes exist locally to the VM in which they were created and placed. This
prevents the Por t | et Cont ext from being used as a distributed shared memory store. If

information needs to be shared between portlets running in a distributed environment,
that information should be placed into a session (See Chapter 8, “Sessions’), a database
or set in an Enterprise JavaBean.

34 Resources

The Port 1 et Cont ext interface alows direct access to the static document hierarchy of
content documents, such as HTML, GIF, and JPEG files that are part of the web
application via the following methods of the Port | et Cont ext interface:

get Resour ceAsSt ream

The get Resour ceAsSt ream methods either takes just a String argument giving the
path of the resource relative to the root of the context or additionally a dient and
Local e object. It is important to note that these methods give access to static resources
from whatever repository the server uses. This hierarchy of documents may exist in afile

system, in a web application archive file, on a remote server, or some other location.
These methods are not used to obtain dynamic content.

3.5 Container Information

ThePort | et Cont ext interface provides these methods to obtain information about the
portlet container:

get Cont ai nerlnfo
get Maj or Ver si on

get M nor Ver si on

15

DRAFT

3.6 Logging

To alow portlets to log messages, the Por t | et Cont ext interface provides the method
get Log.

3.7 Accessto Portlet Services

To alow portlets to discover and use portlet services, the Portl et Cont ext interface
provides the get Ser vi ce method.

3.8 National Language Support

Theget Text method of the Port | et Cont ext returns the localized text resource with the
given key and using the given locale.

3.9 Sending Events

Portlets can send messages to other portlets in the same portlet application using the send
method of the Por t | et Cont ext .

3.10 Including Servlet URIs

Portlets can include servlets or JSPs in the rendering process by calling the i ncl ude
method of the Por t | et Cont ext .

4 The Portlet Request

The Portl et Request interface extends the HttpServl et Request interface and adds
portal-specific methods:

- getClient:retunsa dient object that encapsulates information about
the client.

- getData: returnsa Portl et Dat a object that provides access to the per-

concrete portlet instance data, typically user preferences in the form of
name-value pairs.

- getSettings:returnsa Portl et Settings object that provides access to

the per-concrete portlet data, typically settings defined by administrators
or defaults provided by developers in the form of name vaue pairs.

- get Mode: returns the current mode of concrete portlet instance. Possible
modes are Portl et. Mode. VI EW, Portlet.Mode. EDI T,
Portlet. Mbde. HELP, and Port | et . Mode. CONFI GURE.

- get User: returns the user who originated the request

16

DRAFT

- get W ndow: returnsaPpor t | et W ndow object that represents the window in
which the concrete portlet instance is displayed

- getPortletSession: returns a Portl et Sessi on object that represents
session state scoped to the portlet application instance to which the portlet
belongs.

5 The Portlet Response

The PortletResponse interface extends the HttpServl et Response interface. It
provides namespacing functionality in order to establish isolation between multiple
concrete portlet instances.

The following methods can be used to create URIs to be embedded in the generated
portlet markup so that clicking on the links associated with these URIs will result in
action events being sent to the portlet in the context of the correct concrete portlet
instance.

The cr eat eURI method creates a Por t | et URI object to which Portl et Acti ons may be
attached. It can ether be called with no parameter or with the desired new window date.

As portlets must create markup fragments rather than entire pages like servlets, the portlet
container imposes restrictions on the usage of certain methods that the Por t | et Response
inherits from the Ht t pSer vl et Response.

For example, certain types of headers may not be set by portlets, portlets may not send
HTTP errors, etc.

6 TheUsar

The User interface gives access to information about the current user that portlets may
use for persondization purposes. A User object can be obtained from the
Port | et Request by calling the get User method.

The uUser interface gives readonly access to user attributes through the
get Attri but eNanes and get At t ri but e methods.

7 Portlet Events

The Portlet API supports action events, message events, window events, and page events.

17

DRAFT

7.1 Action events

Action events are triggered by the portlet container when a user clicks on an action
reference embedded in markup previoudy created by the listening portlet using the
encodeURL method.

Portlets that want to receive action events must implement the Act i onLi st ener interface
which defines the method act i onPer f or med(Act i onEvent).

The ActionEvent interface defines the methods get Action, getPortlet, and
get Request to obtain the PortletAction object, the target portlet and the
Port | et Request object respectively.

Action listeners may use the Portl et Request Object to access any form parameters
associated with the action event.

7.2 Message events

Message events are triggered by the portlet container when another portlet sends a
message to the listening portlet.

Portlets that want to receive message events must implement the Messageli st ener
interface which defines the method messageRecei ved(MessageEvent).

The MessageEvent interface defines the methods get Message, getPortlet, and
get Request. The get Message method returns the Portl et Message object that

represents the received message.

7.3 Window events

Window events are triggered by the portlet container when the window that displays the
portlet is modified (e.g. maximized, minimized, detached, ...).

Portlets that want to receive window events must implement the W ndowLi st ener
interface that defines the get Port | et and get Request methods.

7.4 Portlet Settings Attributes events

Portlet settings attribute events are triggered by the portlet container when attributes of a
Portl et Setti ngs object associated with a portlet change.

Portlets that want to receive such events must implements the
PortletSettingsAttributesListener interface that defines the methods
attributeAdded, attributeRepl aced, and attributeRemoved. When the portlet
container invokes these methods, it provides an object that implements the
Portl et SettingsAttributeEvent interface which provides the methods get Nane,
get Val ue, and get Portl et Settings. The get Name method returns the name of the
affected attribute, the get val ue method returns its value and the get Port | et Set ti ngs
method returns all current settings.

18

DRAFT

7.5 Portlet Application Settings Attributes events

Portlet application settings attribute events are triggered by the portlet container when
attributes of a Port | et Appl i cati onSetti ngs object associated with a portlet change.

Portlets that want to receive such events must implements the
Portl et ApplicationSettingsAttributesListener interface that defines the methods
attributeAdded, attributeRepl aced, and attributeRemoved. When the portlet
container invokes these methods, it provides an object that implements the
Portl et ApplicationSettingsAttributeEvent interface which provides the methods
get Name, getVal ue, and get Portl et ApplicationSettings. The get Nane method

returrs the name of the affected attribute, the get val ue method returns its value and the
get Port | et Appl i cati onSet ti ngs method returns al current settings.

7.6 Page Events

Page events are triggered by the portlet container when a page referencing a portlet that
implements the Por t | et PageLi st ener interface. The page listener interface defines the

methods begi nPage and endPage. In these methods, the portlet can do things that need to
happen before or after page aggregation, e.g. set cookies on the response.

8 Portlet Window

The Por t | et W ndow interface defines an abstraction for windows in which portlets are
displayed. A portlet can obtain a Portl et W ndow object with information about the
current portlet window from the Por t | et Request .

9 Portlet Applications

Thd

9.1 Reationshi p to PortletContext
Thd

9.2 Elements of a Portlet Application
Portlets
JavaServer Pages
Utility Classes
Static documents (html, images, sounds, etc.)

19

DRAFT

Client side applets, beans, and classes

Descriptive meta information which ties all of the above elements together.

9.3 Web Application Archive File for Portlet Applications

Web Application Archive Files are WAR files as described in the Servlet Specification
with additional portlet-related information in the portlet.xml file.

10 Tag Library Support
In order to allow Js invoked by portlets to access portal related data, several JSP tags

are defined that give access to the User object, the Portl et Data object, and the
Port | et Settings object aswell asfor URL encoding.

The request, response, and session can be accessed trough the <j sp: useBean> and
related tags.

10.1 The User Tag
Thd

10.2 The PortletData Tag
Thd

10.3 The PortletSettings Tag
Thd

10.4 The Encode Namespace Tag
Thd

11 Portlet Services

Thd

20

