
DRAFT

1

Portlet API (First DRAFT)

Please send technical comments to

Stephan Hesmer (stephan.hesmer@de.ibm.com)

Stefan Hepper (sthepper@de.ibm.com)

Thomas Schaeck (schaeck@de.ibm.com)

Status

This document is not yet complete. It covers some important aspects of portlets, but
major parts of the document are still missing.

DRAFT

2

Table of Contents

1 Overview ..5

1.1 What is a Portlet ? ..5

1.2 Definitions..6

1.2.1.1 Portlet Class ...6

1.2.1.2 Portlet Class Instance ...6

1.2.1.3 Concrete Portlet ..7

1.2.1.4 Concrete Portlet Instances..7

1.3 Entities and Relations in Portals ..7

1.4 What is a Portlet Container? ..9

1.5 An Example..9

1.6 Comparing Portlets with Other Technologies..9

2 The PortletAdapter Class ...10

2.1 Request Handling Methods ..10

2.1.1 Conditional Rendering Support ...10

2.2 Number of Instances ..10

2.3 Portlet Life Cycle...10

2.3.1 Loading and Instantiation...11

2.3.2 Initialization ...11

2.3.2.1 Error Conditions on Initialization ..11

2.3.2.2 Tool Considerations ...11

2.3.3 Request Handling...12

2.3.3.1 Multithreading Issues ...12

2.3.3.2 Exceptions During Request Handling ..12

2.3.3.3 Thread Safety ...13

2.3.4 End of Service ..13

2.4 Portlet Modes ...13

2.4.1 View Mode...13

2.4.2 Edit Mode...14

2.4.3 Config Mode ..14

2.4.4 Help Mode..14

3 Portlet Context ...14

DRAFT

3

3.1 Scope of a PortletContext ..14

3.2 Initialization Parameters ..14

3.3 Context Attributes..15

3.3.1 Context Attributes in a Distributed Container ...15

3.4 Resources ...15

3.5 Container Information..15

3.6 Logging..16

3.7 Access to Portlet Services..16

3.8 National Language Support ...16

3.9 Sending Events...16

3.10 Including Servlet URIs...16

4 The Portlet Request ..16

5 The Portlet Response ...17

6 The User ...17

7 Portlet Events ...17

7.1 Action events..18

7.2 Message events ..18

7.3 Window events...18

7.4 Portlet Settings Attributes events...18

7.5 Portlet Application Settings Attributes events ...19

7.6 Page Events..19

8 Portlet Window ..19

9 Portlet Applications ..19

9.1 Relationship to PortletContext...19

9.2 Elements of a Portlet Application..19

9.3 Web Application Archive File for Portlet Applications20

10 Tag Library Support...20

10.1 The User Tag..20

10.2 The PortletData Tag...20

10.3 The PortletSettings Tag..20

10.4 The Encode Namespace Tag..20

11 Portlet Services ..20

DRAFT

4

DRAFT

5

1 Overview
This chapter provides an overview of the Portlet API. It introduces the concept of
portlets, gives some definitions and introduces certain entities related to portlets that are
usually present in portals.

1.1 What is a Portlet ?
A portlet is a web component managed by a container, that generates dynamic content.
Portlets are platform independent Java classes compiled to an architecture neutral
bytecode that can be loaded dynamically into and run by a web server. While servlets
usually interact directly with web clients, portlets interact with web clients indirectly
through portals, via a request response paradigm implemented by the portlet container.
This request-response model is based on the behavior of the Hypertext Transfer Protocol
(HTTP).

Portlets are specialized servlets that plug into and run in portals. Portlets are designed to
be aggregatable in the larger context of a portal page. They rely on the portal
infrastructure to function, e.g. access to user profile information for the current user,
access to the window object that represents the window in which the portlet is displayed,
participation in the portal window and action event model, access to web client
information, inter-portlet messaging and a standard way of storing and retrieving per-user
or per-instance data persistently.

Controller

Command

ViewsViewView

Controller
Controller

Content

e.g. JSPs, Stylesheets,
...

Local
Apps

Web
Services

or

or

or

...

Portlet

User
Info

Resource
Access

Persistence ...

XML Descriptor

Portlet Archive
(WAR File)

D
i
s
p
a
t
c
h
e
r

Portal
Engine

Servlet
Request

Servlet
Response

Portlet
Request

Portlet
Response

Model

Portlet API (Services)

P
or

tle
t

A
P

I (
In

vo
ca

tio
n)

Figure 1: Portlet Principle

DRAFT

6

Usually, many portlets are invoked in the course of handling a single request, aggregating
their respective produced content in one page by appending each individual portlet’s
output to the page. Portlets generate markup fragments that can be aggregated in the
scope of a portal, containing links, actions and content suitable for aggregation within a
portal. URL rewriting methods are provided that allow portlets to transparently create
links, without needing to know how URLs are structured in the particular portal.

Portlets can have different modes. All portlets must implement a view mode that is
responsible for displaying the portlets view, e.g. a list of stock symbols and their prices in
a stocks quotes portlet. Optionally, portlets may implement edit, config and help modes
in addition. A typically way how portals make the available modes of portlets accessible
by displaying buttons for accessing those modes is in the title bars of portlets on a portal
page.

In many aspects, the Portlet API is an extension of the Servlet API, while in other
aspects, it restricts function provided by the Servlet API to the subset that is allowed for
portlets running in the context of a portal. For example, the Portlet API’s PortletContext
does not allow portlets to obtain a request dispatcher to perform forward calls, it only
provides portlets with an include call, the PortletResponse does not allow portlets to
invoke the sendRedirect or sendError methods as these things may only be done by the
portal that contains the portlets.

1.2 Definitions
In the rest of this paper we’ll use the terms portlet class, portlet class instance, concrete
portlet, and concrete portlet instance as defined below:

1.2.1.1 Portlet Class
The term portlet class denotes the code of a portlet. Portlet classes are derived from the
the PortletAdapter base class. A portlet class is an implementation aspect that will
never be visible to administrators or users.

Example: A class sample.portlet.StockQuotePortlet that is the implementation of a
stock quote portlet.

1.2.1.2 Portlet Class Instance
A portlet class instance is an instance of a portlet class, parameterized by a
PortletConfig object. One PortletConfig exists per portlet class instance. Portlet
class instances are created when an administrator deploys a new Portlet Application
WAR file or when the server restarts. Portlet class instances are never visible to
administrators or users.

Example: An portlet class instance defined in a WAR file, named “StockQuotePortlet”
of the class sample.portlet.StockQuotePortlet. Might have init parameters like JSPs
to use for dispaying stock quotes set by the portlet provider.

DRAFT

7

1.2.1.3 Concrete Portlet
Concrete portlets are what is typically visible to administrators and users as “Portlets” in
portal UIs. They usually are administrable in admin UIs, e.g. to associate access rights or
change settings and they typically can be selected by users in page customizers and be
put on pages which creates a concrete portlet instance.

A concrete portlet is a portlet instance parametrized with individual PortletSettings
on a per-request basis. For each single portlet instance, there may be many concrete
portlets resulting from different parametrizations. There is one PortletSettings object
per concrete portlet. Concrete portlets are created when an administrator deploys a new
portlet application WAR file that has definitions of concrete portlets in it or when an
administrator uses the admin UI of the portal to create new concrete portlets. The same
concrete portlet can be shared across many users.

Example: Concrete portlet named “XYZ Stock Quotes” of the stocks portlet instance
named “StockQuotePortlet” that is parametrized with a unique source URL provided by a
stock quote service to obtain stock quotes.

1.2.1.4 Concrete Portlet Instances
Concrete Portlet Instances are what is visible as a portlet on a user’s page. They are
concrete portlets, additionally parameterized by a PortletData object on a per-request
basis. There can be many concrete portlet instances per concrete portlet.

Example: A user selects a concrete portlet named “XYZ Stock Quotes” of the portlet
instance “StockQuotePortlet” of the class sample.portlet.StockQuotePortlet and
puts it on a personal page, creating a concrete portlet instance and a reference from the
page to the new concrete portlet instance. The concrete portlet instance can be
parametrized by the user via the edit mode, defining the particular stocks to track.

1.3 Entities and Relations in Portals
Figure 2 shows an example of how these entities can be related to each other. We assume
that the portal implementation has the notion of users and groups, where a user can be in
0..n groups. Users and groups have access to 0..n pages, e.g. determined by a
combination of access rights and explicit selection of the desired subset of accessible
pages. The relations between users, pages, page groups etc are irrelevant for a portlet
container, they can be different in different portals.

Portal pages have references to concrete portlets instances, more than one page may have
a reference to a particular concrete portlet instance. Many concrete portlet instances may
be instantiated from a single concrete portlet. Many concrete portlets may exist that are
based on the same portlet instance. Many portlet instances may be instantiated from a
single portlet class.

The relations that are important for the portlet container are those between concrete
portlet instances, concrete portlets, portlet (class) instances and portlet classes.

DRAFT

8

Portal
Page

Concrete Portlet
Instance

Concrete
Portlet

Concrete Portlet
Instance

Concrete Portlet
Instance

Concrete
Portlet

Portlet
Instance

Portal
Page

Concrete Portlet
Instance

Concrete Portlet
Instance

Portal
Page

Concrete Portlet
Instance

Concrete Portlet
Instance

User

Group

Concrete
Portlet

Concrete
Portlet

Group

Portlet
Instance

Portlet
Instance

Portlet
Class

Portlet
Class

Portlet
Config

Portlet
Settings

Portlet
Data

User-defined Administrator-defined Developer-defined

Portlet
Config
Portlet
Config

Portlet
Settings
Portlet

Settings
Portlet

Settings

Portlet
Data

Portlet
Data

Portlet
Data

Portlet
Data

Portlet
Data

Portlet
Data

Figure 2: Portlet related entities and their relations

A portlet can work with the following data:

Portlet Configuration – the unchangeable configuration of a portlet. The portlet
configuration is accessible through the PortletConfig object. The portlet configuration
is read only and persistent. Objects associated with data from the portlet configuration
may be held in portlet instance variables of portlets since there is one instance of a portlet
class per configuration. The portlet configuration data is defined by portlet developers at
design time and cannot be changed by portal administrators or user.

Portlet Settings – per-concrete portlet configuration settings that can be changed by
portal administrators at any time. Usually portlet settings are used by the portlet’s edit
and view modes and updated by the config mode. The portlet settings are accessible
through the PortletSettings object associated with the request. Portlet settings are
read/write accessible and persistent. Objects associated with data from portlet settings
may not be held in portlet instance variables, since the same instance is usually
parameterized with many different PortletSettings objects during its lifetime.

Portlet Data – per concrete portlet instance data, e.g. user preferences for the portlet that
usually are changed by the portlet’s edit mode. Portlet data are accessible through the
PortletData object associated with the request. Portlet data are read/writable and
persistent. Objects associated with data from portlet data may not be held in portlet
instance variables, since the same instance is usually parameterized with many different
PortletData objects during its lifetime.

User Profile – per user data shared across all portlet instances across all portlet
applications. The user profile is accessible via the User object read only.

DRAFT

9

Portlet Session – non-persistent session data scoped by portlet application. The portlet
session is read/writable and accessible via the PortletSession object.

1.4 What is a Portlet Container?
The portlet container, in conjunction with a portal server, provides the environment over
which requests and responses are set, decodes MIME based requests, and formats MIME
based responses. A portlet container also contains and manages portlets through their
lifecycle. A portlet container can be built based on an application server’s servlet
container.

1.5 An Example
A client program, such as a web browser, accesses a web server and makes an HTTP
request. This request is processed by the web server and is handed off to the servlet
container. The servlet container invokes the portal server servlet that in turn calls the
portlet container, most likely several times in order to aggregate multiple portlets on the
result page.

For each invocation, the portlet container determines which portlet to invoke based on a
passed ID and its internal configuration and calls it with objects representing the request
and response. The portlet container can be implemented as an extension of the servlet
container.

The portlet uses the request object to find out who the remote user is, what the attributes
of the remote user are, what kind of client the user has, what HTML form parameters
may have been sent as part of this request, the data associated with the user and invoked
concrete portlet instance, and other relevant data. The portlet can then perform whatever
logic it was programmed with and can generate data to send back to the portal server. It
sends this data back to the portal server via the response object. Once the por tlet is done
with the request, the portlet container ensures that the response is properly flushed and
returns control back to the portal server. The portal server usually aggregates output from
many portlets in composite pages.

1.6 Comparing Portlets with Other Technologies
Portlets are based on the Servlet technology, but are designed particularly for use in
portals. In many aspects, the Portlet API is an extension of the Servlet API, while in other
aspects, it restricts function provided by the Servlet API to the subset that is allowed and
appropriate for portlets running in the context of a portal.

For use in portals, Portlets have the following advantages over servlets:

• Portlets can exploit an event mechanism for window events, action events and
message eve nts

• Portlets are invoked with portlet request, portlet response and portlet session
objects wrapping the original servlet request, servlet response and HTTP session

DRAFT

10

to prevent portlets from disturbing the portal and that provide access to portlet or
user related objects.

• Portlets can exist multiple times on a single page, i.e. there can me more than one
concrete portlet instance of the same portlet on a single portal page which can be
invoked with a single request.

2 The PortletAdapter Class
Portlets are designed to run in a portal environment, producing markup fragments that
can be aggregated in pages and reacting on certain portal-related events. All portlets must
inherit from the Portlet base class directly of indirectly. The recommended way of
writing portlets is to inherit from the PortletAdapter class.

2.1 Request Handling Methods
The service method of a portlet is called for each request that the portlet container
routes to an instance of a portlet. The container invokes the portlet’s service method with
PortletRequest (see Chapter 0) and PortletResponse (see Chapter 5) objects as
arguments.

As portlets are specialized servlets, multiple request threads may be executing within the
service method of a portlet at any time. Therefore, a portlet may not use instance
variables to store any information associated with incoming requests.

2.1.1 Conditional Rendering Support
The Portlet class defines the getLastModified method to support conditional get
operations. A conditional get operation is one in which the portal requests portlet content
indicating that the content body should only be sent if it has been modified since a
specified time.

Portlets that implement the service method and that provide content that does not
necessarily change from request to request should implement this method to aid in
efficient utilization of server resources.

2.2 Number of Instances
The portlet container must use only one instance of a portlet class per portlet definition.

2.3 Portlet Life Cycle
A portlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, handles requests from portals, and how it is taken out of
service. This life cycle is expressed in the API by the init , service , and destroy
methods.

DRAFT

11

2.3.1 Loading and Instantiation
The portlet container is responsible for loading and instantiating a portlet. The
instantiation and loading can occur when the engine is started or it can be delayed until
the container determines that it needs the portlet to service a request.

First, a class of the portlet’s type must be located by the portlet container. If needed, the
portlet container loads a portlet using normal Java class loading facilities from a local file
system, a remote file system, or other network services.

After the container has loaded the portlet class, it instantiates an object instance of that
class for use. It is important to note that there can be more than one instance of a given
portlet class in the portlet container. For example, this can occur where there was more
than one portlet definition that utilized a specific portlet class with different initialization
parameters.

2.3.2 Initialization
After the portlet object is loaded and instantiated, the container must initialize the portlet
before it can handle requests from the portal. Initialization is provided so that a portlet
can read any persistent configuration data, initialize costly resources (such as JDBC™
based connection), and perform any other one -time activities. The container initializes the
portlet by calling the init(PortletConfig) method with an object implementing the
PortletConfig interface. This configuration object allows the portlet to access name-
value initialization parameters from the portlet container’s configurat ion information. The
configuration object also gives the portlet access to an object implementing the
PortletContext interface which describes the runtime environment that the portlet is
running within. See Chapter 3, “Portlet Context” for more information about the
PortletContext interface.

2.3.2.1 Error Conditions on Initialization
During initialization, the portlet instance can signal that it is not to be placed into active
service by throwing an UnavailableException or PortletException. If a portlet
instance throws an exception of this type, it must not be placed into active service and the
instance must be immediately released by the portlet container. The destroy method is
not called in this case as initialization was not considered to be successful.

After the instance of the failed portlet is released, a new instance may be instantiated and
initialized by the container at any time. The only exception to this rule is if the
UnavailableException thrown by the failed portlet which indicates the minimum time
of unavailability. In this case, the container must wait for the minimum time of
unavailability to pass before creating and initializing a new portlet instance.

2.3.2.2 Tool Considerations
When a tool loads and introspects a portlet application, it may load and introspect
member classes of the web application. This will trigger static initialization methods to be
executed.

DRAFT

12

Because of this behavior, a Developer should not assume that a portlet is in an active
container runtime unless the init method of the Portlet interface is called. For
example, this means that a portlet should not try to establish connections to databases or
Enterprise JavaBeans™ compenent architecture containers when its static (class)
initialization methods are invoked.

2.3.3 Request Handling
After the portlet is properly initialized, the portlet container may use it to handle requests.
Each request is represented by a request object of type PortletRequest and the portlet
can create a response to the request by using the provided object of type
PortletResponse. These objects are passed as parameters to the service method
portlets. The default implementation of the service method provided in the
PortletAdapter base class detects the requested mode and dispatches the request to the
doView, doEdit , doHelp , or doConfig methods.

It is important to note that a portlet instance may be created and placed into service by a
portlet container but may handle no requests during its lifetime.

2.3.3.1 Multithreading Issues
During the course of servicing requests from clients, a portlet container may send
multiple requests from multiple clients through the service method of the portlet at any
one time. This means that the Developer must take care to make sure that the portlet is
properly programmed for concurrency.

If a Developer def ines a service method with the synchronized keyword, the portlet
container will, by necessity of the underlying Java runtime, serialize requests through it.
It is strongly recommended that developers not synchronize the service method nor any
of the doView, doEdit , doConfig, or doHelp methods.

2.3.3.2 Exceptions During Request Handling
A portlet may throw either a PortletException or an UnavailableException during
the service of a request. A PortletException signals that some error occurred during
the processing of the request and that the container should take appropriate measures to
clean up the request. An UnavailableException signals that the portlet is unable to
handle requests either temporarily or permanently.

If a permanent unavailability is indicated by the UnavailableException , the portlet
container must remove the portlet from service, call its destroy method, and release the
portlet instance.

If temporary unavailability is indicated by the UnavailableException, then the
container may choose to not route any requests through the portlet during the time period
of the temporary unavailability. The portlet container may choose to ignore the
distinction between a permanent and temporary unavailability and treat all
UnavailableExceptions as permanent, thereby removing a portlet that throws any
UnavailableException from service.

DRAFT

13

2.3.3.3 Thread Safety
A Developer should note that implementations of the request and response objects are not
guaranteed to be thread safe. This means that they should only be used in the scope of the
request handling thread. References to the request and response objects should not be
given to objects executing in other threads as the behavior may be nondeterministic.

2.3.4 End of Service
The portlet container is not required to keep a portlet loaded for any period of time. A
portlet instance may be kept active in a portlet container for a period of only
milliseconds, for the lifetime of the portlet container (which could be measured in days,
months, or years), or any amount of time in between.

When the portlet container determines that a portlet should be removed from service (for
example, when a container wants to conserve memory resources, or when it itself is being
shut down), it must allow the portlet to release any resources it is using and save any
persistent state. To do this the portlet container calls the destroy method of the Portlet
interface.

Before the portlet container can call the destroy(PortletConfig) method, it must
allow any threads that are currently running in the service method of the portlet to
either complete, or exceed a server defined time limit, before the container can proceed
with calling the destroy method.

Once the destroy method is called on a portlet instance, the container may not route any
more requests to that particula r instance of the portlet. If the container needs to enable the
portlet again, it must do so with a new instance of the portlet’s class.

After the destroy method completes, the portlet container must release the portlet
instance so that it is eligible for garbage collection.

2.4 Portlet Modes
The portlet API defines four portlet modes: view, edit, configure, and help. The
PortletAdapter class defines a default implementation of the service method for
handling client requests that dispatches requests to the doView , doEdit , doHelp , and
doConfigure methods which correspond to the four modes.

2.4.1 View Mode
The view mode displays the normal view of a portlet, e.g. a list of stock symbols and
current prices for a stock quote portlet. The view mode may include one or more views
between which the user can navigate or it may just consist of one single view without any
user interaction. The view mode of a portlet must be implemented within the doView
method.

DRAFT

14

2.4.2 Edit Mode
The edit mode of a portlet displays one or more edit views that let the user change portlet
data, e.g. the list of stock symbols he is interested in for the example of a stock quote
portlet. Typcally, the edit mode will update attributes of the PortletData that belongs to
the current concrete portlet instance to make changes persistent. If present, the edit mode
of a portlet must be implemented in the doEdit method of a portlet.

2.4.3 Config Mode
The config mode of a portlet displays one or more configuration views that let
administrators configure portlet settings, e.g. the source for stock quotes to use in the
example of a stock quote portlet. Typically, the config mode will update attributes of the
PortletSettings that belong to the current concrete portlet. If present, the config mode
must be implemented in the doConfig method of a portlet.

2.4.4 Help Mode
The help mode of a portlet displays one or more help views that help users or
administrators to understand how the portlet works. Portlets may provide simple help
views that explain the entire portlet in coherent text or provide context-sensitive help. If
present, the help mode of a portlet must be implemented in the doHelp method.

3 Portlet Context
The PortletContext defines a portlet’s view of the portlet application within which the
portlet is running. The PortletContext also allows a portlet to access resources
available to it. Using such an object, a portlet can log events, obtain URL references to
resources, and set and store attributes that other portlets in the context can use. The
Container Provider is responsible for providing an implementation of the
PortletContext interface in the portlet container.

3.1 Scope of a PortletContext
There is one instance of the PortletContext interface associated with each portlet
application deployed into a container. In cases where the container is distributed over
many virtual machines, there is one instance per portlet application per VM.

3.2 Initialization Parameters
A set of context initialization parameters can be associated with a portlet application and
are made available by the following methods of the PortletContext interface:

• getInitParameter
• getInitParameterNames

DRAFT

15

Initialization parameters can be used by an application developer to convey setup
information, such as a webmaster’s e-mail address or the name of a system that holds
critical data.

3.3 Context Attributes
A portlet can bind an object attribute into the context by name. Any object bound into a
context is available to any other portlet that is part of the same portlet application. The
following methods of PortletContext interface allow access to this functionality:

• setAttribute
• getAttribute
• getAttributeNames
• removeAttribute

3.3.1 Context Attributes in a Distributed Container
Context attributes exist locally to the VM in which they were created and placed. This
prevents the PortletContext from being used as a distributed shared memory store. If
information needs to be shared between portlets running in a distributed environment,
that information should be placed into a session (See Chapter 8, “Sessions”), a database
or set in an Enterprise JavaBean.

3.4 Resources
The PortletContext interface allows direct access to the static document hierarchy of
content documents, such as HTML, GIF, and JPEG files that are part of the web
application via the following methods of the PortletContext interface:

• getResourceAsStream

The getResourceAsStream methods either takes just a String argument giving the
path of the resource relative to the root of the context or additionally a Client and
Locale object. It is important to note that these methods give access to static resources
from whatever repository the server uses. This hierarchy of documents may exist in a file
system, in a web application archive file, on a remote server, or some other location.
These methods are not used to obtain dynamic content.

3.5 Container Information
The PortletContext interface provides these methods to obtain information about the
portlet container:

• getContainerInfo

• getMajorVersion

• getMinorVersion

DRAFT

16

3.6 Logging
To allow portlets to log messages, the PortletContext interface provides the method
getLog.

3.7 Access to Portlet Services
To allow portlets to discover and use portlet services, the PortletContext interface
provides the getService method.

3.8 National Language Support
The getText method of the PortletContext returns the localized text resource with the
given key and using the given locale.

3.9 Sending Events
Portlets can send messages to other portlets in the same portlet application using the send
method of the PortletContext.

3.10 Including Servlet URIs
Portlets can include servlets or JSPs in the rendering process by calling the include
method of the PortletContext.

4 The Portlet Request
The PortletRequest interface extends the HttpServletRequest interface and adds
portal-specific methods:

- getClient: returns a Client object that encapsulates information about
the client.

- getData: returns a PortletData object that provides access to the per-
concrete portlet instance data, typically user preferences in the form of
name-value pairs.

- getSettings: returns a PortletSettings object that provides access to
the per-concrete portlet data, typically settings defined by administrators
or defaults provided by developers in the form of name value pairs.

- getMode: returns the current mode of concrete portlet instance. Possible
modes are Portlet.Mode.VIEW , Portlet.Mode.EDIT ,
Portlet.Mode.HELP, and Portlet.Mode.CONFIGURE.

- getUser: returns the user who originated the request

DRAFT

17

- getWindow: returns a PortletWindow object that represents the window in
which the concrete portlet instance is displayed

- getPortletSession: returns a PortletSession object that represents
session state scoped to the portlet application instance to which the portlet
belongs.

5 The Portlet Response
The PortletResponse interface extends the HttpServletResponse interface. It
provides namespacing functionality in order to establish isolation between multiple
concrete portlet instances.

The following methods can be used to create URIs to be embedded in the generated
portlet markup so that clicking on the links associated with these URIs will result in
action events being sent to the portlet in the context of the correct concrete portlet
instance.

The createURI method creates a PortletURI object to which PortletActions may be
attached. It can either be called with no parameter or with the desired new window state.

As portlets must create markup fragments rather than entire pages like servlets, the portlet
container imposes restrictions on the usage of certain methods that the PortletResponse
inherits from the HttpServletResponse.

For example, certain types of headers may not be set by portlets, portlets may not send
HTTP errors, etc.

6 The User
The User interface gives access to information about the current user that portlets may
use for personalization purposes. A User object can be obtained from the
PortletRequest by calling the getUser method.

The User interface gives read-only access to user attributes through the
getAttributeNames and getAttribute methods.

7 Portlet Events
The Portlet API supports action events, message events, window events, and page events.

DRAFT

18

7.1 Action events
Action events are triggered by the portlet container when a user clicks on an action
reference embedded in markup previously created by the listening portlet using the
encodeURL method.

Portlets that want to receive action events must implement the ActionListener interface
which defines the method actionPerformed(ActionEvent).

The ActionEvent interface defines the methods getAction, getPortlet, and
getRequest to obtain the PortletAction object, the target portlet and the
PortletRequest object respectively.

Action listeners may use the PortletRequest object to access any form parameters
associated with the action event.

7.2 Message events
Message events are triggered by the portlet container when another portlet sends a
message to the listening portlet.

Portlets that want to receive message events must implement the MessageListener
interface which defines the method messageReceived(MessageEvent).

The MessageEvent interface defines the methods getMessage , getPortlet, and
getRequest. The getMessage method returns the PortletMessage object that
represents the received message.

7.3 Window events
Window events are triggered by the portlet container when the window that displays the
portlet is modified (e.g. maximized, minimized, detached, …).

Portlets that want to receive window events must implement the WindowListener
interface that defines the getPortlet and getRequest methods.

7.4 Portlet Settings Attributes events
Portlet settings attribute events are triggered by the portlet container when attributes of a
PortletSettings object associated with a portlet change.

Portlets that want to receive such events must implements the
PortletSettingsAttributesListener interface that defines the methods
attributeAdded, attributeReplaced , and attributeRemoved. When the portlet
container invokes these methods, it provides an object that implements the
PortletSettingsAttributeEvent interface which provides the methods getName ,
getValue, and getPortletSettings. The getName method returns the name of the
affected attribute, the getValue method returns its value and the getPortletSettings
method returns all current settings.

DRAFT

19

7.5 Portlet Application Settings Attributes events
Portlet application settings attribute events are triggered by the portlet container when
attributes of a PortletApplicationSettings object associated with a portlet change.

Portlets that want to receive such events must implements the
PortletApplicationSettingsAttributesListener interface that defines the methods
attributeAdded, attributeReplaced , and attributeRemoved. When the portlet
container invokes these methods, it provides an object that implements the
PortletApplicationSettingsAttributeEvent interface which provides the methods
getName, getValue , and getPortletApplicationSettings . The getName method
returns the name of the affected attribute, the getValue method returns its value and the
getPortletApplicationSettings method returns all current settings.

7.6 Page Events
Page events are triggered by the portlet container when a page referencing a portlet that
implements the PortletPageListener interface. The page listener interface defines the
methods beginPage and endPage. In these methods, the portlet can do things that need to
happen before or after page aggregation, e.g. set cookies on the response.

8 Portlet Window
The PortletWindow interface defines an abstraction for windows in which portlets are
displayed. A portlet can obtain a PortletWindow object with information about the
current portlet window from the PortletRequest.

9 Portlet Applications
Tbd

9.1 Relationshi p to PortletContext
Tbd

9.2 Elements of a Portlet Application
• Portlets

• JavaServer Pages

• Utility Classes

• Static documents (html, images, sounds, etc.)

DRAFT

20

• Client side applets, beans, and classes

• Descriptive meta information which ties all of the above elements together.

9.3 Web Application Archive File for Portlet Applications
Web Application Archive Files are WAR files as described in the Servlet Specification
with additional portlet-related information in the portlet.xml file.

10 Tag Library Support
In order to allow JSPs invoked by portlets to access portal related data, several JSP tags
are defined that give access to the User object, the PortletData object, and the
PortletSettings object as well as for URL encoding.

The request, response, and session can be accessed through the <jsp:useBean> and
related tags.

10.1 The User Tag
Tbd

10.2 The PortletData Tag
Tbd

10.3 The PortletSettings Tag
Tbd

10.4 The Encode Namespace Tag
Tbd

11 Portlet Services
Tbd

