
Pig Latin Reference Manual 2

by

Table of contents

1 Overview..2

2 Data Types and More...4

3 Arithmetic Operators and More... 30

4 Relational Operators.. 47

5 Diagnostic Operators..84

6 UDF Statements... 91

7 Eval Functions... 98

8 Load/Store Functions... 110

9 Math Functions.. 114

10 String Functions... 124

11 Bag and Tuple Functions..131

12 File Commands.. 133

13 Shell Commands.. 141

14 Utility Commands.. 142

Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. Overview

Use this manual together with Pig Latin Reference Manual 1.

Also, be sure to review the information in the Pig Cookbook.

1.1. Conventions

Conventions for the syntax and code examples in the Pig Latin Reference Manual are
described here.

Convention Description Example

() Parentheses enclose one or more
items.

Parentheses are also used to
indicate the tuple data type.

Multiple items:

(1, abc, (2,4,6))

[] Straight brackets enclose one or
more optional items.

Straight brackets are also used to
indicate the map data type. In this
case <> is used to indicate optional
items.

Optional items:

[INNER | OUTER]

{ } Curly brackets enclose two or
more items, one of which is
required.

Curly brackets also used to
indicate the bag data type. In this
case <> is used to indicate
required items.

Two items, one required:

{ gen_blk | nested_gen_blk }

… Horizontal ellipsis points indicate
that you can repeat a portion of the
code.

Pig Latin syntax statement:

cat path [path …]

UPPERCASE

lowercase

In general, uppercase type
indicates elements the system
supplies.

In general, lowercase type

Pig Latin statement:

A = LOAD 'data' AS (f1:int);

• LOAD, AS supplied BY

Pig Latin Reference Manual 2

Page 2
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html
cookbook.html

indicates elements that you supply.

Note: The names (aliases) of
relations and fields are case
sensitive. The names of Pig Latin
functions are case sensitive. All
other Pig Latin keywords are case
insensitive.

system

• A, f1 are names (aliases)

• data supplied by you

italics Italic type indicates placeholders
or variables for which you must
supply values.

Pig Latin syntax:

alias = LIMIT alias n;

You supply the values for
placeholder alias and variable n.

1.2. Reserved Keywords

Pig reserved keywords are listed here.

-- A and, any, all, arrange, as, asc, AVG

-- B bag, BinStorage, by, bytearray

-- C cache, cat, cd, chararray, cogroup, CONCAT,
copyFromLocal, copyToLocal, COUNT, cp, cross

-- D %declare, %default, define, desc, describe, DIFF,
distinct, double, du, dump

-- E e, E, eval, exec, explain

-- F f, F, filter, flatten, float, foreach, full

-- G generate, group

-- H help

-- I if, illustrate, inner, input, int, into, is

-- J join

Pig Latin Reference Manual 2

Page 3
Copyright © 2007 The Apache Software Foundation. All rights reserved.

-- K kill

-- L l, L, left, limit, load, long, ls

-- M map, matches, MAX, MIN, mkdir, mv

-- N not, null

-- O onschema, or, order, outer, output

-- P parallel, pig, PigDump, PigStorage, pwd

-- Q quit

-- R register, right, rm, rmf, run

-- S sample, set, ship, SIZE, split, stderr, stdin, stdout,
store, stream, SUM

-- T TextLoader, TOKENIZE, through, tuple

-- U union, using

-- V, W, X, Y, Z

-- Symbols = = != < > <= >= + - * / % ? $. # :: () [] { }

2. Data Types and More

2.1. Relations, Bags, Tuples, Fields

Pig Latin statements work with relations. A relation can be defined as follows:

• A relation is a bag (more specifically, an outer bag).

• A bag is a collection of tuples.

• A tuple is an ordered set of fields.

• A field is a piece of data.

Pig Latin Reference Manual 2

Page 4
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Pig+Latin+Statements

A Pig relation is a bag of tuples. A Pig relation is similar to a table in a relational database,
where the tuples in the bag correspond to the rows in a table. Unlike a relational table,
however, Pig relations don't require that every tuple contain the same number of fields or that
the fields in the same position (column) have the same type.

Also note that relations are unordered which means there is no guarantee that tuples are
processed in any particular order. Furthermore, processing may be parallelized in which case
tuples are not processed according to any total ordering.

2.1.1. Referencing Relations

Relations are referred to by name (or alias). Names are assigned by you as part of the Pig
Latin statement. In this example the name (alias) of the relation is A.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int,
gpa:float);
DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Bill,20,3.9F)
(Joe,18,3.8F)

2.1.2. Referencing Fields

Fields are referred to by positional notation or by name (alias).

• Positional notation is generated by the system. Positional notation is indicated with the
dollar sign ($) and begins with zero (0); for example, $0, $1, $2.

• Names are assigned by you using schemas (or, in the case of the GROUP operator and
some functions, by the system). You can use any name that is not a Pig keyword; for
example, f1, f2, f3 or a, b, c or name, age, gpa.

Given relation A above, the three fields are separated out in this table.

First Field Second Field Third Field

Data type chararray int float

Positional notation
(generated by system)

$0 $1 $2

Possible name (assigned
by you using a schema)

name age gpa

Pig Latin Reference Manual 2

Page 5
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Field value (for the first
tuple)

John 18 4.0

As shown in this example when you assign names to fields you can still refer to the fields
using positional notation. However, for debugging purposes and ease of comprehension, it is
better to use names.

A = LOAD 'student' USING PigStorage() AS (name:chararray, age:int,
gpa:float);
X = FOREACH A GENERATE name,$2;
DUMP X;
(John,4.0F)
(Mary,3.8F)
(Bill,3.9F)
(Joe,3.8F)

In this example an error is generated because the requested column ($3) is outside of the
declared schema (positional notation begins with $0). Note that the error is caught before the
statements are executed.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);
B = FOREACH A GENERATE $3;
DUMP B;
2009-01-21 23:03:46,715 [main] ERROR org.apache.pig.tools.grunt.GruntParser
- java.io.IOException:
Out of bound access. Trying to access non-existent : 3. Schema {f1:
bytearray,f2: bytearray,f3: bytearray} has 3 column(s).
etc ...

2.1.3. Referencing Fields that are Complex Data Types

As noted, the fields in a tuple can be any data type, including the complex data types: bags,
tuples, and maps.

• Use the schemas for complex data types to name fields that are complex data types.

• Use the dereference operators to reference and work with fields that are complex data
types.

In this example the data file contains tuples. A schema for complex data types (in this case,
tuples) is used to load the data. Then, dereference operators (the dot in t1.t1a and t2.$0) are
used to access the fields in the tuples. Note that when you assign names to fields you can still
refer to these fields using positional notation.

cat data;
(3,8,9) (4,5,6)

Pig Latin Reference Manual 2

Page 6
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(1,4,7) (3,7,5)
(2,5,8) (9,5,8)

A = LOAD 'data' AS (t1:tuple(t1a:int,
t1b:int,t1c:int),t2:tuple(t2a:int,t2b:int,t2c:int));

DUMP A;
((3,8,9),(4,5,6))
((1,4,7),(3,7,5))
((2,5,8),(9,5,8))

X = FOREACH A GENERATE t1.t1a,t2.$0;

DUMP X;
(3,4)
(1,3)
(2,9)

2.2. Data Types

2.2.1. Simple and Complex

Simple Data Types Description Example

Scalars

int Signed 32-bit integer 10

long Signed 64-bit integer Data: 10L or 10l

Display: 10L

float 32-bit floating point Data: 10.5F or 10.5f or 10.5e2f
or 10.5E2F

Display: 10.5F or 1050.0F

double 64-bit floating point Data: 10.5 or 10.5e2 or 10.5E2

Display: 10.5 or 1050.0

Arrays

chararray Character array (string) in Unicode
UTF-8 format

hello world

Pig Latin Reference Manual 2

Page 7
Copyright © 2007 The Apache Software Foundation. All rights reserved.

bytearray Byte array (blob)

Complex Data Types

tuple An ordered set of fields. (19,2)

bag An collection of tuples. {(19,2), (18,1)}

map A set of key value pairs. [open#apache]

Note the following general observations about data types:

• Use schemas to assign types to fields. If you don't assign types, fields default to type
bytearray and implicit conversions are applied to the data depending on the context in
which that data is used. For example, in relation B, f1 is converted to integer because 5 is
integer. In relation C, f1 and f2 are converted to double because we don't know the type
of either f1 or f2.

A = LOAD 'data' AS (f1,f2,f3);
B = FOREACH A GENERATE f1 + 5;
C = FOREACH A generate f1 + f2;

• If a schema is defined as part of a load statement, the load function will attempt to
enforce the schema. If the data does not conform to the schema, the loader will generate a
null value or an error.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

• If an explicit cast is not supported, an error will occur. For example, you cannot cast a
chararray to int.

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE (int)name;

This will cause an error …

• If Pig cannot resolve incompatible types through implicit casts, an error will occur. For
example, you cannot add chararray and float (see the Types Table for addition and
subtraction).

A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE name + gpa;

Pig Latin Reference Manual 2

Page 8
Copyright © 2007 The Apache Software Foundation. All rights reserved.

This will cause an error …

2.2.2. Tuple

A tuple is an ordered set of fields.

2.2.2.1. Syntax

(field [, field …])

2.2.2.2. Terms

() A tuple is enclosed in parentheses ().

field A piece of data. A field can be any data type
(including tuple and bag).

2.2.2.3. Usage

You can think of a tuple as a row with one or more fields, where each field can be any data
type and any field may or may not have data. If a field has no data, then the following
happens:

• In a load statement, the loader will inject null into the tuple. The actual value that is
substituted for null is loader specific; for example, PigStorage substitutes an empty field
for null.

• In a non-load statement, if a requested field is missing from a tuple, Pig will inject null.

2.2.2.4. Example

In this example the tuple contains three fields.
(John,18,4.0F)

2.2.3. Bag

A bag is a collection of tuples.

2.2.3.1. Syntax: Inner bag

{ tuple [, tuple …] }

Pig Latin Reference Manual 2

Page 9
Copyright © 2007 The Apache Software Foundation. All rights reserved.

2.2.3.2. Terms

{ } An inner bag is enclosed in curly brackets { }.

tuple A tuple.

2.2.3.3. Usage

Note the following about bags:

• A bag can have duplicate tuples.

• A bag can have tuples with differing numbers of fields. However, if Pig tries to access a
field that does not exist, a null value is substituted.

• A bag can have tuples with fields that have different data types. However, for Pig to
effectively process bags, the schemas of the tuples within those bags should be the same.
For example, if half of the tuples include chararray fields and while the other half include
float fields, only half of the tuples will participate in any kind of computation because the
chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.

2.2.3.4. Example: Outer Bag

In this example A is a relation or bag of tuples. You can think of this bag as an outer bag.

A = LOAD 'data' as (f1:int, f2:int, f3;int);
DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)

2.2.3.5. Example: Inner Bag

Now, suppose we group relation A by the first field to form relation X.

In this example X is a relation or bag of tuples. The tuples in relation X have two fields. The
first field is type int. The second field is type bag; you can think of this bag as an inner bag.

X = GROUP A BY f1;
DUMP X;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})

Pig Latin Reference Manual 2

Page 10
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(8,{(8,3,4)})

2.2.4. Map

A map is a set of key value pairs.

2.2.4.1. Syntax (<> denotes optional)

[key#value <, key#value …>]

2.2.4.2. Terms

[] Maps are enclosed in straight brackets [].

Key value pairs are separated by the pound sign #.

key Must be chararray data type. Must be a unique value.

value Any data type.

2.2.4.3. Usage

Key values within a relation must be unique.

2.2.4.4. Example

In this example the map includes two key value pairs.
[name#John,phone#5551212]

2.3. Nulls

In Pig Latin, nulls are implemented using the SQL definition of null as unknown or
non-existent. Nulls can occur naturally in data or can be the result of an operation.

2.3.1. Nulls, Operators, and Functions

Pig Latin operators and functions interact with nulls as shown in this table.

Operator Interaction

Comparison operators: If either subexpression is null, the result is null.

Pig Latin Reference Manual 2

Page 11
Copyright © 2007 The Apache Software Foundation. All rights reserved.

==, !=

>, <

>=, <=

Comparison operator:

matches

If either the string being matched against or the string
defining the match is null, the result is null.

Arithmetic operators:

+ , -, *, /

% modulo

? bincond

If either subexpression is null, the resulting
expression is null.

Null operator:

is null

If the tested value is null, returns true; otherwise,
returns false (see Null Operators).

Null operator:

is not null

If the tested value is not null, returns true; otherwise,
returns false (see Null Operators).

Dereference operators:

tuple (.) or map (#)

If the de-referenced tuple or map is null, returns null.

Operators:

COGROUP, GROUP, JOIN

These operators handle nulls differently (see
examples below).

Function:

COUNT_STAR

This function counts all values, including nulls.

Cast operator Casting a null from one type to another type results in
a null.

Functions:

AVG, MIN, MAX, SUM, COUNT

These functions ignore nulls.

Function: If either subexpression is null, the resulting

Pig Latin Reference Manual 2

Page 12
Copyright © 2007 The Apache Software Foundation. All rights reserved.

CONCAT expression is null.

Function:

SIZE

If the tested object is null, returns null.

For Boolean subexpressions, note the results when nulls are used with these operators:

• FILTER operator – If a filter expression results in null value, the filter does not pass them
through (if X is null, !X is also null, and the filter will reject both).

• Bincond operator – If a Boolean subexpression results in null value, the resulting
expression is null (see the interactions above for Arithmetic operators)

2.3.2. Nulls and Constants

Nulls can be used as constant expressions in place of expressions of any type.

In this example a and null are projected.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a, null;

In this example of an outer join, if the join key is missing from a table it is replaced by null.

A = LOAD 'student' AS (name: chararray, age: int, gpa: float);
B = LOAD 'votertab10k' AS (name: chararray, age: int, registration:
chararray, donation: float);
C = COGROUP A BY name, B BY name;
D = FOREACH C GENERATE FLATTEN((IsEmpty(A) ? null : A)),
FLATTEN((IsEmpty(B) ? null : B));

Like any other expression, null constants can be implicitly or explicitly cast.

In this example both a and null will be implicitly cast to double.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a + null;

In this example both a and null will be cast to int, a implicitly, and null explicitly.

A = LOAD 'data' AS (a, b, c).
B = FOREACH A GENERATE a + (int)null;

2.3.3. Operations That Produce Nulls

As noted, nulls can be the result of an operation. These operations can produce null values:

Pig Latin Reference Manual 2

Page 13
Copyright © 2007 The Apache Software Foundation. All rights reserved.

• Division by zero

• Returns from user defined functions (UDFs)

• Dereferencing a field that does not exist.

• Dereferencing a key that does not exist in a map. For example, given a map, info,
containing [name#john, phone#5551212] if a user tries to use info#address a null is
returned.

• Accessing a field that does not exist in a tuple.

2.3.3.1. Example: Accessing a field that does not exist in a tuple

In this example nulls are injected if fields do not have data.

cat data;
2 3

4
7 8 9

A = LOAD 'data' AS (f1:int,f2:int,f3:int)

DUMP A;
(,2,3)
(4,,)
(7,8,9)

B = FOREACH A GENERATE f1,f2;

DUMP B;
(,2)
(4,)
(7,8)

2.3.4. Nulls and Load Functions

As noted, nulls can occur naturally in the data. If nulls are part of the data, it is the
responsibility of the load function to handle them correctly. Keep in mind that what is
considered a null value is loader-specific; however, the load function should always
communicate null values to Pig by producing Java nulls.

The Pig Latin load functions (for example, PigStorage and TextLoader) produce null values
wherever data is missing. For example, empty strings (chararrays) are not loaded; instead,
they are replaced by nulls.

PigStorage is the default load function for the LOAD operator. In this example the is not null
operator is used to filter names with null values.

Pig Latin Reference Manual 2

Page 14
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'student' AS (name, age, gpa);
B = FILTER A BY name is not null;

2.3.5. Nulls and GROUP/COGROUP Operators

When using the GROUP operator with a single relation, records with a null group key are
grouped together.

A = load 'student' as (name:chararray, age:int, gpa:float);
dump A;
(joe,18,2.5)
(sam,,3.0)
(bob,,3.5)

X = group A by age;
dump X;
(18,{(joe,18,2.5)})
(,{(sam,,3.0),(bob,,3.5)})

When using the GROUP (COGROUP) operator with multiple relations, records with a null
group key are considered different and are grouped separately. In the example below note
that there are two tuples in the output corresponding to the null group key: one that contains
tuples from relation A (but not relation B) and one that contains tuples from relation B (but
not relation A).

A = load 'student' as (name:chararray, age:int, gpa:float);
B = load 'student' as (name:chararray, age:int, gpa:float);
dump B;
(joe,18,2.5)
(sam,,3.0)
(bob,,3.5)

X = cogroup A by age, B by age;
dump X;
(18,{(joe,18,2.5)},{(joe,18,2.5)})
(,{(sam,,3.0),(bob,,3.5)},{})
(,{},{(sam,,3.0),(bob,,3.5)})

2.3.6. Nulls and JOIN Operator

The JOIN operator - when performing inner joins - adheres to the SQL standard and
disregards (filters out) null values. (See also Drop Nulls Before a Join.)

A = load 'student' as (name:chararray, age:int, gpa:float);
B = load 'student' as (name:chararray, age:int, gpa:float);
dump B;
(joe,18,2.5)
(sam,,3.0)

Pig Latin Reference Manual 2

Page 15
Copyright © 2007 The Apache Software Foundation. All rights reserved.

cookbook.html#Drop+Nulls+Before+a+Join

(bob,,3.5)

X = join A by age, B by age;
dump X;
(joe,18,2.5,joe,18,2.5)

2.4. Constants

Pig provides constant representations for all data types except bytearrays.

Constant Example Notes

Simple Data Types

Scalars

int 19

long 19L

float 19.2F or 1.92e2f

double 19.2 or 1.92e2

Arrays

chararray 'hello world'

bytearray Not applicable.

Complex Data Types

tuple (19, 2, 1) A constant in this form creates a
tuple.

bag { (19, 2), (1, 2) } A constant in this form creates a
bag.

map ['name' # 'John', 'ext' # 5555] A constant in this form creates a
map.

Pig Latin Reference Manual 2

Page 16
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Please note the following:

• On UTF-8 systems you can specify string constants consisting of printable ASCII
characters such as 'abc'; you can specify control characters such as '\t'; and, you can
specify a character in Unicode by starting it with '\u', for instance, '\u0001' represents
Ctrl-A in hexadecimal (see Wikipedia ASCII, Unicode, and UTF-8). In theory, you
should be able to specify non-UTF-8 constants on non-UTF-8 systems but as far as we
know this has not been tested.

• To specify a long constant, l or L must be appended to the number (for example,
12345678L). If the l or L is not specified, but the number is too large to fit into an int, the
problem will be detected at parse time and the processing is terminated.

• Any numeric constant with decimal point (for example, 1.5) and/or exponent (for
example, 5e+1) is treated as double unless it ends with f or F in which case it is assigned
type float (for example, 1.5f).

The data type definitions for tuples, bags, and maps apply to constants:

• A tuple can contain fields of any data type

• A bag is a collection of tuples

• A map key must be a scalar; a map value can be any data type

Complex constants (either with or without values) can be used in the same places scalar
constants can be used; that is, in FILTER and GENERATE statements.

A = LOAD 'data' USING MyStorage() AS (T: tuple(name:chararray, age: int));
B = FILTER A BY T == ('john', 25);
D = FOREACH B GENERATE T.name, [25#5.6], {(1, 5, 18)};

2.5. Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH,
GROUP, and SPLIT operators as well as the eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the
UTF-8 character set. Depending on the context, expressions can include:

• Any Pig data type (simple data types, complex data types)

• Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)

• Any Pig built-in function.

• Any user-defined function (UDF) written in Java.

Pig Latin Reference Manual 2

Page 17
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-8

In Pig Latin,

• An arithmetic expression could look like this:

X = GROUP A BY f2*f3;
•

A string expression could look like this, where a and b are both chararrays:

X = FOREACH A GENERATE CONCAT(a,b);
•

A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

2.5.1. Field expressions

Field expressions represent a field or a dereference operator applied to a field. See
Dereference Operators for more details.

2.5.2. Star expression

The star symbol, *, can be used to represent all the fields of a tuple. It is equivalent to writing
out the fields explicitly. In the following example the definition of B and C are exactly the
same, and MyUDF will be invoked with exactly the same arguments in both cases.

A = LOAD 'data' USING MyStorage() AS (name:chararray, age: int);
B = FOREACH A GENERATE *, MyUDF(name, age);
C = FOREACH A GENERATE name, age, MyUDF(*);

A common error when using the star expression is the following:

G = GROUP A BY $0;
C = FOREACH G GENERATE COUNT(*)

In this example, the programmer really wants to count the number of elements in the bag in
the second field: COUNT($1).

2.5.3. Boolean expressions

Boolean expressions can be made up of UDFs that return a boolean value or boolean
operators (see Boolean Operators).

Pig Latin Reference Manual 2

Page 18
Copyright © 2007 The Apache Software Foundation. All rights reserved.

2.5.4. Tuple expressions

Tuple expressions form subexpressions into tuples. The tuple expression has the form
(expression [, expression …]), where expression is a general expression. The simplest tuple
expression is the star expression, which represents all fields.

2.5.5. General expressions

General expressions can be made up of UDFs and almost any operator. Since Pig does not
consider boolean a base type, the result of a general expression cannot be a boolean. Field
expressions are the simpliest general expressions.

2.6. Schemas

Schemas enable you to assign names to and declare types for fields. Schemas are optional but
we encourage you to use them whenever possible; type declarations result in better
parse-time error checking and more efficient code execution.

Schemas are defined using the AS keyword with the LOAD, STREAM, and FOREACH
operators. If you define a schema using the LOAD operator, then it is the load function that
enforces the schema (see the LOAD operator and the Pig UDF Manual for more
information).

Note the following:

• You can define a schema that includes both the field name and field type.

• You can define a schema that includes the field name only; in this case, the field type
defaults to bytearray.

• You can choose not to define a schema; in this case, the field is un-named and the field
type defaults to bytearray.

If you assign a name to a field, you can refer to that field using the name or by positional
notation. If you don't assign a name to a field (the field is un-named) you can only refer to
the field using positional notation.

If you assign a type to a field, you can subsequently change the type using the cast operators.
If you don't assign a type to a field, the field defaults to bytearray; you can change the default
type using the cast operators.

2.6.1. Schemas with LOAD and STREAM Statements

With LOAD and STREAM statements, the schema following the AS keyword must be

Pig Latin Reference Manual 2

Page 19
Copyright © 2007 The Apache Software Foundation. All rights reserved.

udf.html

enclosed in parentheses.

In this example the LOAD statement includes a schema definition for simple data types.

A = LOAD 'data' AS (f1:int, f2:int);

2.6.2. Schemas with FOREACH Statements

With FOREACH statements, the schema following the AS keyword must be enclosed in
parentheses when the FLATTEN operator is used. Otherwise, the schema should not be
enclosed in parentheses.

In this example the FOREACH statement includes FLATTEN and a schema for simple data
types.

X = FOREACH C GENERATE FLATTEN(B) AS (f1:int, f2:int, f3:int), group;

In this example the FOREACH statement includes a schema for simple expression.

X = FOREACH A GENERATE f1+f2 AS x1:int;

In this example the FOREACH statement includes a schemas for multiple fields.

X = FOREACH A GENERATE f1 as user, f2 as age, f3 as gpa;

2.6.3. Schemas for Simple Data Types

Simple data types include int, long, float, double, chararray, and bytearray.

2.6.3.1. Syntax

(alias[:type]) [, (alias[:type]) …])

2.6.3.2. Terms

alias The name assigned to the field.

type (Optional) The simple data type assigned to the field.

The alias and type are separated by a colon (:).

If the type is omitted, the field defaults to type
bytearray.

(,) Multiple fields are enclosed in parentheses and

Pig Latin Reference Manual 2

Page 20
Copyright © 2007 The Apache Software Foundation. All rights reserved.

separated by commas.

2.6.3.3. Examples

In this example the schema defines multiple types.

cat student;
John 18 4.0
Mary 19 3.8
Bill 20 3.9
Joe 18 3.8

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

DESCRIBE A;
A: {name: chararray,age: int,gpa: float}

DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Bill,20,3.9F)
(Joe,18,3.8F)

In this example field "gpa" will default to bytearray because no type is declared.

cat student;
John 18 4.0
Mary 19 3.8
Bill 20 3.9
Joe 18 3.8

A = LOAD 'data' AS (name:chararray, age:int, gpa);

DESCRIBE A;
A: {name: chararray,age: int,gpa: bytearray}

DUMP A;
(John,18,4.0)
(Mary,19,3.8)
(Bill,20,3.9)
(Joe,18,3.8)

2.6.4. Schemas for Complex Data Types

Complex data types include tuples, bags, and maps.

2.6.5. Tuple Schema

A tuple is an ordered set of fields.

Pig Latin Reference Manual 2

Page 21
Copyright © 2007 The Apache Software Foundation. All rights reserved.

2.6.5.1. Syntax

alias[:tuple] (alias[:type]) [, (alias[:type]) …])

2.6.5.2. Terms

alias The name assigned to the tuple.

:tuple (Optional) The data type, tuple (case insensitive).

() The designation for a tuple, a set of parentheses.

alias[:type] The constituents of the tuple, where the schema
definition rules for the corresponding type applies to
the constituents of the tuple:

• alias – the name assigned to the field

• type (optional) – the simple or complex data type
assigned to the field

2.6.5.3. Examples

In this example the schema defines one tuple. The load statements are equivalent.

cat data;
(3,8,9)
(1,4,7)
(2,5,8)

A = LOAD 'data' AS (T: tuple (f1:int, f2:int, f3:int));
A = LOAD 'data' AS (T: (f1:int, f2:int, f3:int));

DESCRIBE A;
A: {T: (f1: int,f2: int,f3: int)}

DUMP A;
((3,8,9))
((1,4,7))
((2,5,8))

In this example the schema defines two tuples.

cat data;
(3,8,9) (mary,19)
(1,4,7) (john,18)

Pig Latin Reference Manual 2

Page 22
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(2,5,8) (joe,18)

A = LOAD data AS
(F:tuple(f1:int,f2:int,f3:int),T:tuple(t1:chararray,t2:int));

DESCRIBE A;
A: {F: (f1: int,f2: int,f3: int),T: (t1: chararray,t2: int)}

DUMP A;
((3,8,9),(mary,19))
((1,4,7),(john,18))
((2,5,8),(joe,18))

2.6.6. Bag Schema

A bag is a collection of tuples.

2.6.6.1. Syntax

alias[:bag] {tuple}

2.6.6.2. Terms

alias The name assigned to the bag.

:bag (Optional) The data type, bag (case insensitive).

{ } The designation for a bag, a set of curly brackets.

tuple A tuple (see Tuple Schema).

2.6.6.3. Examples

In this example the schema defines a bag. The two load statements are equivalent.

cat data;
{(3,8,9)}
{(1,4,7)}
{(2,5,8)}

A = LOAD 'data' AS (B: bag {T: tuple(t1:int, t2:int, t3:int)});
A = LOAD 'data' AS (B: {T: (t1:int, t2:int, t3:int)});

DESCRIBE A:
A: {B: {T: (t1: int,t2: int,t3: int)}}

Pig Latin Reference Manual 2

Page 23
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP A;
({(3,8,9)})
({(1,4,7)})
({(2,5,8)})

2.6.7. Map Schema

A map is a set of key value pairs.

2.6.7.1. Syntax (where <> means optional)

alias<:map> []

2.6.7.2. Terms

alias The name assigned to the map.

:map (Optional) The data type, map (case insensitive).

[] The designation for a map, a set of straight brackets [
].

2.6.7.3. Example

In this example the schema defines a map. The load statements are equivalent.

cat data;
[open#apache]
[apache#hadoop]

A = LOAD 'data' AS (M:map []);
A = LOAD 'data' AS (M:[]);

DESCRIBE A;
a: {M: map[]}

DUMP A;
([open#apache])
([apache#hadoop])

2.6.8. Schemas for Multiple Types

You can define schemas for data that includes multiple types.

2.6.8.1. Example

Pig Latin Reference Manual 2

Page 24
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example the schema defines a tuple, bag, and map.

A = LOAD 'mydata' AS (T1:tuple(f1:int, f2:int),
B:bag{T2:tuple(t1:float,t2:float)}, M:map[]);

A = LOAD 'mydata' AS (T1:(f1:int, f2:int), B:{T2:(t1:float,t2:float)}, M:[]
);

2.7. Parameter Substitution

2.7.1. Description

Substitute values for parameters at run time.

2.7.1.1. Syntax: Specifying parameters using the Pig command line

pig {–param param_name = param_value | –param_file file_name} [-debug | -dryrun] script

2.7.1.2. Syntax: Specifying parameters using preprocessor statements in a Pig script

{%declare | %default} param_name param_value

2.7.1.3. Terms

pig Keyword

Note: exec, run, and explain also support parameter
substitution.

–param Flag. Use this option when the parameter is included
in the command line.

Multiple parameters can be specified. If the same
parameter is specified multiple times, the last value
will be used and a warning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

param_name The name of the parameter.

The parameter name has the structure of a standard
language identifier: it must start with a letter or
underscore followed by any number of letters, digits,

Pig Latin Reference Manual 2

Page 25
Copyright © 2007 The Apache Software Foundation. All rights reserved.

and underscores.

Parameter names are case insensitive.

If you pass a parameter to a script that the script does
not use, this parameter is silently ignored. If the script
has a parameter and no value is supplied or
substituted, an error will result.

param_value The value of the parameter.

A parameter value can take two forms:

• A sequence of characters enclosed in single or
double quotes. In this case the unquoted version
of the value is used during substitution. Quotes
within the value can be escaped with the
backslash character (\). Single word values that
don't use special characters such as % or = don't
have to be quoted.

• A command enclosed in back ticks.

The value of a parameter, in either form, can be
expressed in terms of other parameters as long as the
values of the dependent parameters are already
defined.

There are no hard limits on the size except that
parameters need to fit into memory.

–param_file Flag. Use this option when the parameter is included
in a file.

Multiple files can be specified. If the same parameter
is present multiple times in the file, the last value will
be used and a warning will be generated. If a
parameter present in multiple files, the value from the
last file will be used and a warning will be generated.

Command line parameters and parameter files can be
combined with command line parameters taking
precedence.

file_name The name of a file containing one or more
parameters.

A parameter file will contain one line per parameter.
Empty lines are allowed. Perl-style (#) comment lines

Pig Latin Reference Manual 2

Page 26
Copyright © 2007 The Apache Software Foundation. All rights reserved.

are also allowed. Comments must take a full line and
must be the first character on the line. Each
parameter line will be of the form: param_name =
param_value. White spaces around = are allowed but
are optional.

–debug Flag. With this option, the script is run and a fully
substituted Pig script produced in the current working
directory named original_script_name.substituted

–dryrun Flag. With this option, the script is not run and a fully
substituted Pig script produced in the current working
directory named original_script_name.substituted

script A pig script. The pig script must be the last element
in the Pig command line.

• If parameters are specified in the Pig command
line or in a parameter file, the script should
include a $param_name for each para_name
included in the command line or parameter file.

• If parameters are specified using the
preprocessor statements, the script should
include either %declare or %default.

• In the script, parameter names can be escaped
with the backslash character (\) in which case
substitution does not take place.

%declare Preprocessor statement included in a Pig script.

Use to describe one parameter in terms of other
parameters.

The declare statement is processed prior to running
the Pig script.

The scope of a parameter value defined using declare
is all the lines following the declare statement until
the next declare statement that defines the same
parameter is encountered.

%default Preprocessor statement included in a Pig script.

Use to provide a default value for a parameter. The
default value has the lowest priority and is used if a
parameter value has not been defined by other means.

Pig Latin Reference Manual 2

Page 27
Copyright © 2007 The Apache Software Foundation. All rights reserved.

The default statement is processed prior to running
the Pig script.

The scope is the same as for %declare.

2.7.1.4. Usage

Parameter substitution enables you to write Pig scripts that include parameters and to supply
values for these parameters at run time. For instance, suppose you have a job that needs to
run every day using the current day's data. You can create a Pig script that includes a
parameter for the date. Then, when you run this script you can specify or supply a value for
the date parameter using one of the supported methods.

Specifying Parameters

You can specify parameter names and parameter values as follows:

• As part of a command line.

• In parameter file, as part of a command line.

• With the declare statement, as part of Pig script.

• With default statement, as part of a Pig script.

Precedence

Precedence for parameters is as follows:

• Highest - parameters defined using the declare statement

• Next - parameters defined in the command line

• Lowest - parameters defined in a script

Processing Order and Precedence

Parameters are processed as follows:

• Command line parameters are scanned in the order they are specified on the command
line.

• Parameter files are scanned in the order they are specified on the command line. Within
each file, the parameters are processed in the order they are listed.

• Declare and default preprocessors statements are processed in the order they appear in the
Pig script.

Pig Latin Reference Manual 2

Page 28
Copyright © 2007 The Apache Software Foundation. All rights reserved.

2.7.1.5. Example: Specifying parameters in the command line

Suppose we have a data file called 'mydata' and a pig script called 'myscript.pig'.

mydata

1 2 3
4 2 1
8 3 4

myscript.pig

A = LOAD '$data' USING PigStorage() AS (f1:int, f2:int, f3:int);
DUMP A;

In this example the parameter (data) and the parameter value (mydata) are specified in the
command line. If the parameter name in the command line (data) and the parameter name in
the script ($data) do not match, the script will not run. If the value for the parameter (mydata)
is not found, an error is generated.

$ pig –param data=mydata myscript.pig

(1,2,3)
(4,2,1)
(8,3,4)

2.7.1.6. Example: Specifying parameters using a parameter file

Suppose we have a parameter file called 'myparams.'

my parameters
data1 = mydata1
cmd = `generate_name`

In this example the parameters and values are passed to the script using the parameter file.

$ pig –param_file myparams script2.pig

2.7.1.7. Example: Specifying parameters using the declare statement

In this example the command is executed and its stdout is used as the parameter value.

%declare CMD 'generate_date';
A = LOAD '/data/mydata/$CMD';
B = FILTER A BY $0>'5';

etc...

Pig Latin Reference Manual 2

Page 29
Copyright © 2007 The Apache Software Foundation. All rights reserved.

2.7.1.8. Example: Specifying parameters using the default statement

In this example the parameter (DATE) and value ('20090101') are specified in the Pig script
using the default statement. If a value for DATE is not specified elsewhere, the default value
20090101 is used.

%default DATE '20090101';
A = load '/data/mydata/$DATE';

etc...

2.7.1.9. Examples: Specifying parameter values as a sequence of characters

In this example the characters (in this case, Joe's URL) can be enclosed in single or double
quotes, and quotes within the sequence of characters can be escaped.

%declare DES 'Joe\'s URL';
A = LOAD 'data' AS (name, description, url);
B = FILTER A BY description == '$DES';

etc...

In this example single word values that don't use special characters (in this case, mydata)
don't have to be enclosed in quotes.

$ pig –param data=mydata myscript.pig

2.7.1.10. Example: Specifying parameter values as a command

In this example the command is enclosed in back ticks. First, the parameters mycmd and date
are substituted when the declare statement is encountered. Then the resulting command is
executed and its stdout is placed in the path before the load statement is run.

%declare CMD '$mycmd $date';
A = LOAD '/data/mydata/$CMD';
B = FILTER A BY $0>'5';

etc...

3. Arithmetic Operators and More

3.1. Arithmetic Operators

3.1.1. Description

Pig Latin Reference Manual 2

Page 30
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Operator Symbol Notes

addition +

subtraction -

multiplication *

division /

modulo % Returns the remainder of a divided
by b (a%b).

Works with integral numbers (int,
long).

bincond ? : (condition ? value_if_true :
value_if_false)

The bincond should be enclosed in
parenthesis.

The schemas for the two
conditional outputs of the bincond
should match.

Use expressions only (relational
operators are not allowed).

3.1.1.1. Examples

Suppose we have relation A.

A = LOAD 'data' AS (f1:int, f2:int, B:bag{T:tuple(t1:int,t2:int)});

DUMP A;
(10,1,{(2,3),(4,6)})
(10,3,{(2,3),(4,6)})
(10,6,{(2,3),(4,6),(5,7)})

In this example the modulo operator is used with fields f1 and f2.

X = FOREACH A GENERATE f1, f2, f1%f2;

DUMP X;
(10,1,0)

Pig Latin Reference Manual 2

Page 31
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(10,3,1)
(10,6,4)

In this example the bincond operator is used with fields f2 and B. The condition is "f2 equals
1"; if the condition is true, return 1; if the condition is false, return the count of the number of
tuples in B.

X = FOREACH A GENERATE f2, (f2==1?1:COUNT(B));

DUMP X;
(1,1L)
(3,2L)
(6,3L)

3.1.1.2. Types Table: addition (+) and subtraction (-) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

bag error error error error error error error error error

tuple not yet error error error error error error error

map error error error error error error error

int int long float double error cast as
int

long long float double error cast as
long

float float double error cast as
float

double double error cast as
double

chararray error error

bytearray cast as
double

Pig Latin Reference Manual 2

Page 32
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.1.1.3. Types Table: multiplication (*) and division (/) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

bag error error error not yet not yet not yet not yet error error

tuple error error not yet not yet not yet not yet error error

map error error error error error error error

int int long float double error cast as
int

long long float double error cast as
long

float float double error cast as
float

double double error cast as
double

chararray error error

bytearray cast as
double

3.1.1.4. Types Table: modulo (%) operator

int long bytearray

int int long cast as int

long long cast as long

bytearray error

Pig Latin Reference Manual 2

Page 33
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.2. Comparison Operators

3.2.1. Description

Operator Symbol Notes

equal ==

not equal !=

less than <

greater than >

less than or equal to <=

greater than or equal to >=

pattern matching matches Regular expression matching. Use
the Java format for regular
expressions.

Use the comparison operators with numeric and string data.

3.2.1.1. Example: numeric

X = FILTER A BY (f1 == 8);

3.2.1.2. Example: string

X = FILTER A BY (f2 == 'apache');

3.2.1.3. Example: matches

X = FILTER A BY (f1 matches '.*apache.*');

3.2.1.4. Types Table: equal (==) and not equal (!=) operators

* bytearray cast as this data type

bag tuple map int long float double chararray bytearray

Pig Latin Reference Manual 2

Page 34
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

bag error error error error error error error error error

tuple boolean
(see
Note 1)

error error error error error error error

map boolean

(see
Note 2)

error error error error error error

int boolean boolean boolean boolean error cast as
boolean

long boolean boolean boolean error cast as
boolean

float boolean boolean error cast as
boolean

double boolean error cast as
boolean

chararray boolean cast as
boolean

bytearray boolean

Note 1: boolean (Tuple A is equal to tuple B if they have the same size s, and for all 0 <= i <
s A[i] = = B[i])

Note 2: boolean (Map A is equal to map B if A and B have the same number of entries, and
for every key k1 in A with a value of v1, there is a key k2 in B with a value of v2, such that
k1 = = k2 and v1 = = v2)

3.2.1.5.

bag tuple map int long float double chararray bytearray

Pig Latin Reference Manual 2

Page 35
Copyright © 2007 The Apache Software Foundation. All rights reserved.

bag error error error error error error error error error

tuple error error error error error error error error

map error error error error error error error

int boolean boolean boolean boolean error boolean
(bytearray
cast as
int)

long boolean boolean boolean error boolean
(bytearray
cast as
long)

float boolean boolean error boolean
(bytearray
cast as
float)

double boolean error boolean
(bytearray
cast as
double)

chararray boolean boolean
(bytearray
cast as
chararray)

bytearray boolean

3.2.1.6. Types Table: matches operator

*Cast as chararray (the second argument must be chararray)

chararray bytearray*

chararray boolean boolean

bytearray boolean boolean

Pig Latin Reference Manual 2

Page 36
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.3. Null Operators

3.3.1. Description

Operator Symbol Notes

is null is null

is not null is not null

3.3.1.1. Example

X = FILTER A BY f1 is not null;

3.3.2. Types Table

The null operators can be applied to all data types (see Nulls).

3.4. Boolean Operators

3.4.1. Description

Operator Symbol Notes

AND and

OR or

NOT not

Pig does not support a boolean data type. However, the result of a boolean expression (an
expression that includes boolean and comparison operators) is always of type boolean (true
or false).

3.4.1.1. Example

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

Pig Latin Reference Manual 2

Page 37
Copyright © 2007 The Apache Software Foundation. All rights reserved.

3.5. Dereference Operators

3.5.1. Description

Operator Symbol Notes

tuple dereference tuple.id or tuple.(id,…) Tuple dereferencing can be done
by name (tuple.field_name) or
position (mytuple.$0). If a set of
fields are dereferenced
(tuple.(name1, name2) or
tuple.($0, $1)), the expression
represents a tuple composed of the
specified fields. Note that if the
dot operator is applied to a
bytearray, the bytearray will be
assumed to be a tuple.

bag dereference bag.id or bag.(id,…) Bag dereferencing can be done by
name (bag.field_name) or position
(bag.$0). If a set of fields are
dereferenced (bag.(name1, name2)
or bag.($0, $1)), the expression
represents a bag composed of the
specified fields.

map dereference map#'key' Map dereferencing must be done
by key (field_name#key or
$0#key). If the pound operator is
applied to a bytearray, the
bytearray is assumed to be a map.
If the key does not exist, the empty
string is returned.

3.5.1.1. Example: Tuple

Suppose we have relation A.

LOAD 'data' as (f1:int, f2:tuple(t1:int,t2:int,t3:int));

DUMP A;
(1,(1,2,3))
(2,(4,5,6))
(3,(7,8,9))

Pig Latin Reference Manual 2

Page 38
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(4,(1,4,7))
(5,(2,5,8))

In this example dereferencing is used to retrieve two fields from tuple f2.

X = FOREACH A GENERATE f2.t1,f2.t3;

DUMP X;
(1,3)
(4,6)
(7,9)
(1,7)
(2,8)

3.5.1.2. Example: Bag

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

A = LOAD 'data' AS (f1:int, f2:int,f3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = GROUP A BY f1;

DUMP B;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})
(7,{(7,2,5)})
(8,{(8,3,4),(8,4,3)})

ILLUSTRATE B;
etc …
--
| b | group: int | a: bag({f1: int,f2: int,f3: int}) |
--

In this example dereferencing is used with relation X to project the first field (f1) of each
tuple in the bag (a).

X = FOREACH B GENERATE a.f1;

DUMP X;
({(1)})
({(4),(4)})
({(7)})

Pig Latin Reference Manual 2

Page 39
Copyright © 2007 The Apache Software Foundation. All rights reserved.

({(8),(8)})

3.5.1.3. Example: Tuple and Bag

Suppose we have relation B, formed by grouping relation A (see the GROUP operator for
information about the field names in relation B).

A = LOAD 'data' AS (f1:int, f2:int, f3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = GROUP A BY (f1,f2);

DUMP B;
((1,2),{(1,2,3)})
((4,2),{(4,2,1)})
((4,3),{(4,3,3)})
((7,2),{(7,2,5)})
((8,3),{(8,3,4)})
((8,4),{(8,4,3)})

ILLUSTRATE B;
etc …

| b | group: tuple({f1: int,f2: int}) | a: bag({f1: int,f2: int,f3:
int})

In this example dereferencing is used to project a field (f1) from a tuple (group) and a field
(f1) from a bag (a).

X = FOREACH B GENERATE group.f1, a.f1;

DUMP X;
(1,{(1)})
(4,{(4)})
(4,{(4)})
(7,{(7)})
(8,{(8)})
(8,{(8)})

3.5.1.4. Example: Map

Suppose we have relation A.

Pig Latin Reference Manual 2

Page 40
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data' AS (f1:int, f2:map[]);

DUMP A;
(1,[open#apache])
(2,[apache#hadoop])
(3,[hadoop#pig])
(4,[pig#grunt])

In this example dereferencing is used to look up the value of key 'open'.

X = FOREACH A GENERATE f2#'open';

DUMP X;
(apache)
()
()
()

3.6. Sign Operators

3.6.1. Description

Operator Symbol Notes

positive + Has no effect.

negative (negation) - Changes the sign of a positive or
negative number.

3.6.1.1. Example

A = LOAD 'data' as (x, y, z);

B = FOREACH A GENERATE -x, y;

3.6.1.2. Types Table: negation (-) operator

bag error

tuple error

map error

int int

Pig Latin Reference Manual 2

Page 41
Copyright © 2007 The Apache Software Foundation. All rights reserved.

long long

float float

double double

chararray error

bytearray double (as double)

3.7. Flatten Operator

The FLATTEN operator looks like a UDF syntactically, but it is actually an operator that
changes the structure of tuples and bags in a way that a UDF cannot. Flatten un-nests tuples
as well as bags. The idea is the same, but the operation and result is different for each type of
structure.

For tuples, flatten substitutes the fields of a tuple in place of the tuple. For example, consider
a relation that has a tuple of the form (a, (b, c)). The expression GENERATE $0, flatten($1),
will cause that tuple to become (a, b, c).

For bags, the situation becomes more complicated. When we un-nest a bag, we create new
tuples. If we have a relation that is made up of tuples of the form ({(b,c),(d,e)}) and we apply
GENERATE flatten($0), we end up with two tuples (b,c) and (d,e). When we remove a level
of nesting in a bag, sometimes we cause a cross product to happen. For example, consider a
relation that has a tuple of the form (a, {(b,c), (d,e)}), commonly produced by the GROUP
operator. If we apply the expression GENERATE $0, flatten($1) to this tuple, we will create
new tuples: (a, b, c) and (a, d, e).

Also note that the flatten of empty bag will result in that row being discarded; no output is
generated. (See also Drop Nulls Before a Join.)

grunt> cat empty.bag
{} 1
grunt> A = LOAD 'empty.bag' AS (b : bag{}, i : int);
grunt> B = FOREACH A GENERATE flatten(b), i;
grunt> DUMP B;
grunt>

For examples using the FLATTEN operator, see FOREACH.

Pig Latin Reference Manual 2

Page 42
Copyright © 2007 The Apache Software Foundation. All rights reserved.

cookbook.html#Drop+Nulls+Before+a+Join

3.8. Cast Operators

3.8.1. Description

Pig Latin supports casts as shown in this table.

to

from bag tuple map int long float double chararray bytearray

bag error error error error error error error error

tuple error error error error error error error error

map error error error error error error error error

int error error error yes yes yes yes error

long error error error yes yes yes yes error

float error error error yes yes yes yes error

double error error error yes yes yes yes error

chararray error error error yes yes yes yes error

bytearray yes yes yes yes yes yes yes yes

3.8.1.1. Syntax

{(data_type) | (tuple(data_type)) | (bag{tuple(data_type)}) | (map[]) } field

3.8.1.2. Terms

(data_type) The data type you want to cast to, enclosed in
parentheses. You can cast to any data type except
bytearray (see the table above).

field The field whose type you want to change.

Pig Latin Reference Manual 2

Page 43
Copyright © 2007 The Apache Software Foundation. All rights reserved.

The field can be represented by positional notation or
by name (alias). For example, if f1 is the first field
and type int, you can cast to type long using (long)$0
or (long)f1.

3.8.1.3. Usage

Cast operators enable you to cast or convert data from one type to another, as long as
conversion is supported (see the table above). For example, suppose you have an integer
field, myint, which you want to convert to a string. You can cast this field from int to
chararray using (chararray)myint.

Please note the following:

• A field can be explicitly cast. Once cast, the field remains that type (it is not
automatically cast back). In this example $0 is explicitly cast to int.

B = FOREACH A GENERATE (int)$0 + 1;

• Where possible, Pig performs implicit casts. In this example $0 is cast to int (regardless
of underlying data) and $1 is cast to double.

B = FOREACH A GENERATE $0 + 1, $1 + 1.0

• When two bytearrays are used in arithmetic expressions or with built-in aggregate
functions (such as SUM) they are implicitly cast to double. If the underlying data is really
int or long, you’ll get better performance by declaring the type or explicitly casting the
data.

• Downcasts may cause loss of data. For example casting from long to int may drop bits.

3.8.1.4. Examples

In this example an int is cast to type chararray (see relation X).

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

Pig Latin Reference Manual 2

Page 44
Copyright © 2007 The Apache Software Foundation. All rights reserved.

B = GROUP A BY f1;

DUMP B;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})
(7,{(7,2,5)})
(8,{(8,3,4),(8,4,3)})

DESCRIBE B;
B: {group: int,A: {f1: int,f2: int,f3: int}}

X = FOREACH B GENERATE group, (chararray)COUNT(A) AS total;
(1,1)
(4,2)
(7,1)
(8,2)

DESCRIBE X;
X: {group: int,total: chararray}

In this example a bytearray (fld in relation A) is cast to type tuple.

cat data;
(1,2,3)
(4,2,1)
(8,3,4)

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;
a: {fld: bytearray}

DUMP A;
((1,2,3))
((4,2,1))
((8,3,4))

B = FOREACH A GENERATE (tuple(int,int,float))fld;

DESCRIBE B;
b: {(int,int,float)}

DUMP B;
((1,2,3))
((4,2,1))
((8,3,4))

In this example a bytearray (fld in relation A) is cast to type bag.

cat data;
{(4829090493980522200L)}
{(4893298569862837493L)}
{(1297789302897398783L)}

Pig Latin Reference Manual 2

Page 45
Copyright © 2007 The Apache Software Foundation. All rights reserved.

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;
A: {fld: bytearray}

DUMP A;
({(4829090493980522200L)})
({(4893298569862837493L)})
({(1297789302897398783L)})

B = FOREACH A GENERATE (bag{tuple(long)})fld;

DESCRIBE B;
B: {{(long)}}

DUMP B;
({(4829090493980522200L)})
({(4893298569862837493L)})
({(1297789302897398783L)})

In this example a bytearray (fld in relation A) is cast to type map.

cat data;
[open#apache]
[apache#hadoop]
[hadoop#pig]
[pig#grunt]

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;
A: {fld: bytearray}

DUMP A;
([open#apache])
([apache#hadoop])
([hadoop#pig])
([pig#grunt])

B = FOREACH A GENERATE ((map[])fld;

DESCRIBE B;
B: {map[]}

DUMP B;
([open#apache])
([apache#hadoop])
([hadoop#pig])
([pig#grunt])

3.9. Casting Relations to Scalars

Pig Latin Reference Manual 2

Page 46
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig allows you to cast the elements of a single-tuple relation into a scalar value. The tuple
can be a single-field or multi-field tulple. If the relation contains more than one tuple,
however, a runtime error is generated: "Scalar has more than one row in the output".

The cast relation can be used in any place where an expression of the type would make sense,
including FOREACH, FILTER, and SPLIT. Note that if an explicit cast is not used an
implict cast will be inserted according to Pig rules. Also, when the schema can't be inferred
bytearray is used.

The primary use case for casting relations to scalars is the ability to use the values of global
aggregates in follow up computations.

In this example the percentage of clicks belonging to a particular user are computed. For the
FOREACH statement, an explicit cast if used. If the SUM is not given a name, a position can
be used as well (userid, clicks/(double)C.$0).

A = load 'mydata' as (userid, clicks);
B = group A all;
C = foreach B genertate SUM(A.clicks) as total;
D = foreach A generate userid, clicks/(double)C.total;
dump D;

In this example a multi-field tuple is used. For the FILTER statement, Pig performs an
implicit cast. For the FOREACH statement, an explicit cast is used.

A = load 'mydata' as (userid, clicks);
B = group A all;
C = foreach B genertate SUM(A.clicks) as total, COUNT(A) as cnt;
D = FILTER A by clicks > C.total/3
E = foreach D generate userid, clicks/(double)C.total, cnt;
dump E;

4. Relational Operators

4.1. COGROUP

See the GROUP operator.

4.2. CROSS

Computes the cross product of two or more relations.

4.2.1. Syntax

alias = CROSS alias, alias [, alias …] [PARTITION BY partitioner] [PARALLEL n];

Pig Latin Reference Manual 2

Page 47
Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.2.2. Terms

alias The name of a relation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/Partitioner.html

• For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

4.2.3. Usage

Use the CROSS operator to compute the cross product (Cartesian product) of two or more
relations.

CROSS is an expensive operation and should be used sparingly.

4.2.4. Example

Suppose we have relations A and B.

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;
(2,4)
(8,9)
(1,3)

In this example the cross product of relation A and B is computed.

X = CROSS A, B;

Pig Latin Reference Manual 2

Page 48
Copyright © 2007 The Apache Software Foundation. All rights reserved.

cookbook.html#Use+the+Parallel+Features

DUMP X;
(1,2,3,2,4)
(1,2,3,8,9)
(1,2,3,1,3)
(4,2,1,2,4)
(4,2,1,8,9)
(4,2,1,1,3)

4.3. DISTINCT

Removes duplicate tuples in a relation.

4.3.1. Syntax

alias = DISTINCT alias [PARTITION BY partitioner] [PARALLEL n];

4.3.2. Terms

alias The name of the relation.

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/Partitioner.html

• For usage, see Example: PARTITION BY.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

4.3.3. Usage

Use the DISTINCT operator to remove duplicate tuples in a relation. DISTINCT does not
preserve the original order of the contents (to eliminate duplicates, Pig must first sort the
data). You cannot use DISTINCT on a subset of fields. To do this, use
FOREACH…GENERATE to select the fields, and then use DISTINCT (see Example:
Nested Block).

4.3.4. Example

Suppose we have relation A.

Pig Latin Reference Manual 2

Page 49
Copyright © 2007 The Apache Software Foundation. All rights reserved.

cookbook.html#Use+the+Parallel+Features

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(8,3,4)
(1,2,3)
(4,3,3)
(4,3,3)
(1,2,3)

In this example all duplicate tuples are removed.

X = DISTINCT A;

DUMP X;
(1,2,3)
(4,3,3)
(8,3,4)

4.4. FILTER

Selects tuples from a relation based on some condition.

4.4.1. Syntax

alias = FILTER alias BY expression;

4.4.2. Terms

alias The name of the relation.

BY Required keyword.

expression A boolean expression.

4.4.3. Usage

Use the FILTER operator to work with tuples or rows of data (if you want to work with
columns of data, use the FOREACH...GENERATE operation).

FILTER is commonly used to select the data that you want; or, conversely, to filter out
(remove) the data you don’t want.

4.4.4. Examples

Pig Latin Reference Manual 2

Page 50
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

In this example the condition states that if the third field equals 3, then include the tuple with
relation X.

X = FILTER A BY f3 == 3;

DUMP X;
(1,2,3)
(4,3,3)
(8,4,3)

In this example the condition states that if the first field equals 8 or if the sum of fields f2 and
f3 is not greater than first field, then include the tuple relation X.

X = FILTER A BY (f1 == 8) OR (NOT (f2+f3 > f1));

DUMP X;
(4,2,1)
(8,3,4)
(7,2,5)
(8,4,3)

4.5. FOREACH

Generates data transformations based on columns of data.

4.5.1. Syntax

alias = FOREACH { gen_blk | nested_gen_blk };

4.5.2. Terms

alias The name of relation (outer bag).

gen_blk FOREACH…GENERATE used with a relation
(outer bag). Use this syntax:

Pig Latin Reference Manual 2

Page 51
Copyright © 2007 The Apache Software Foundation. All rights reserved.

alias = FOREACH alias GENERATE expression [AS
schema] [expression [AS schema]….];

See Schemas with FOREACH Statements

nested_gen_blk FOREACH...GENERATE used with a inner bag. Use
this syntax:

alias = FOREACH nested_alias {

alias = nested_op; [alias = nested_op; …]

GENERATE expression [AS schema] [expression
[AS schema]….]

};

Where:

The nested block is enclosed in opening and closing
brackets { … }.

The GENERATE keyword must be the last statement
within the nested block.

See Schemas with FOREACH Statements

expression An expression.

nested_alias The name of the inner bag.

nested_op Allowed operations are DISTINCT, FILTER, LIMIT,
and ORDER BY.

The FOREACH…GENERATE operation itself is not
allowed since this could lead to an arbitrary number
of nesting levels.

You can also perform projections (see Example:
Nested Block).

AS Keyword

schema A schema using the AS keyword (see Schemas).

• If the FLATTEN operator is used, enclose the

Pig Latin Reference Manual 2

Page 52
Copyright © 2007 The Apache Software Foundation. All rights reserved.

schema in parentheses.

• If the FLATTEN operator is not used, don't
enclose the schema in parentheses.

4.5.3. Usage

Use the FOREACH…GENERATE operation to work with columns of data (if you want to
work with tuples or rows of data, use the FILTER operation).

FOREACH...GENERATE works with relations (outer bags) as well as inner bags:

• If A is a relation (outer bag), a FOREACH statement could look like this.

X = FOREACH A GENERATE f1;
• If A is an inner bag, a FOREACH statement could look like this.

X = FOREACH B {
S = FILTER A BY 'xyz';
GENERATE COUNT (S.$0);

}

4.5.4. Examples

Suppose we have relations A, B, and C (see the GROUP operator for information about the
field names in relation C).

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;
(2,4)
(8,9)
(1,3)
(2,7)
(2,9)
(4,6)
(4,9)

Pig Latin Reference Manual 2

Page 53
Copyright © 2007 The Apache Software Foundation. All rights reserved.

C = COGROUP A BY a1 inner, B BY b1 inner;

DUMP C;
(1,{(1,2,3)},{(1,3)})
(4,{(4,2,1),(4,3,3)},{(4,6),(4,9)})
(8,{(8,3,4),(8,4,3)},{(8,9)})

ILLUSTRATE C;
etc …
--
| c | group: int | a: bag({a1: int,a2: int,a3: int}) | B: bag({b1:
int,b2: int})

4.5.5. Example: Projection

In this example the asterisk (*) is used to project all tuples from relation A to relation X.
Relation A and X are identical.

X = FOREACH A GENERATE *;

DUMP X;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

In this example two fields from relation A are projected to form relation X.

X = FOREACH A GENERATE a1, a2;

DUMP X;
(1,2)
(4,2)
(8,3)
(4,3)
(7,2)
(8,4)

4.5.6. Example: Nested Projection

In this example if one of the fields in the input relation is a tuple, bag or map, we can perform
a projection on that field (using a deference operator).

X = FOREACH C GENERATE group, B.b2;

Pig Latin Reference Manual 2

Page 54
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP X;
(1,{(3)})
(4,{(6),(9)})
(8,{(9)})

In this example multiple nested columns are retained.

X = FOREACH C GENERATE group, A.(a1, a2);

DUMP X;
(1,{(1,2)})
(4,{(4,2),(4,3)})
(8,{(8,3),(8,4)})

4.5.7. Example: Schema

In this example two fields in relation A are summed to form relation X. A schema is defined
for the projected field.

X = FOREACH A GENERATE a1+a2 AS f1:int;

DESCRIBE X;
x: {f1: int}

DUMP X;
(3)
(6)
(11)
(7)
(9)
(12)

Y = FILTER X BY f1 > 10;

DUMP Y;
(11)
(12)

4.5.8. Example: Applying Functions

In this example the built-in function SUM() is used to sum a set of numbers in a bag.

X = FOREACH C GENERATE group, SUM (A.a1);

DUMP X;
(1,1)
(4,8)
(8,16)

4.5.9. Example: Flattening

Pig Latin Reference Manual 2

Page 55
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example the FLATTEN operator is used to eliminate nesting.

X = FOREACH C GENERATE group, FLATTEN(A);

DUMP X;
(1,1,2,3)
(4,4,2,1)
(4,4,3,3)
(8,8,3,4)
(8,8,4,3)

Another FLATTEN example.

X = FOREACH C GENERATE GROUP, FLATTEN(A.a3);

DUMP X;
(1,3)
(4,1)
(4,3)
(8,4)
(8,3)

Another FLATTEN example. Note that for the group '4' in C, there are two tuples in each
bag. Thus, when both bags are flattened, the cross product of these tuples is returned; that is,
tuples (4, 2, 6), (4, 3, 6), (4, 2, 9), and (4, 3, 9).

X = FOREACH C GENERATE FLATTEN(A.(a1, a2)), FLATTEN(B.$1);

DUMP X;
(1,2,3)
(4,2,6)
(4,2,9)
(4,3,6)
(4,3,9)
(8,3,9)
(8,4,9)

Another FLATTEN example. Here, relations A and B both have a column x. When forming
relation E, you need to use the :: operator to identify which column x to use - either relation
A column x (A::x) or relation B column x (B::x). This example uses relation A column x
(A::x).

A = LOAD 'data' AS (x, y);
B = LOAD 'data' AS (x, z);
C = COGROUP A BY x, B BY x;
D = FOREACH C GENERATE flatten(A), flatten(b);
E = GROUP D BY A::x;
……

4.5.10. Example: Nested Block

Pig Latin Reference Manual 2

Page 56
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Suppose we have relations A and B. Note that relation B contains an inner bag.

A = LOAD 'data' AS (url:chararray,outlink:chararray);

DUMP A;
(www.ccc.com,www.hjk.com)
(www.ddd.com,www.xyz.org)
(www.aaa.com,www.cvn.org)
(www.www.com,www.kpt.net)
(www.www.com,www.xyz.org)
(www.ddd.com,www.xyz.org)

B = GROUP A BY url;

DUMP B;
(www.aaa.com,{(www.aaa.com,www.cvn.org)})
(www.ccc.com,{(www.ccc.com,www.hjk.com)})
(www.ddd.com,{(www.ddd.com,www.xyz.org),(www.ddd.com,www.xyz.org)})
(www.www.com,{(www.www.com,www.kpt.net),(www.www.com,www.xyz.org)})

In this example we perform two of the operations allowed in a nested block, FILTER and
DISTINCT. Note that the last statement in the nested block must be GENERATE. Also, note
the use of projection (PA = FA.outlink;).

X = FOREACH B {
FA= FILTER A BY outlink == 'www.xyz.org';
PA = FA.outlink;
DA = DISTINCT PA;
GENERATE group, COUNT(DA);

}

DUMP X;
(www.aaa.com,0)
(www.ccc.com,0)
(www.ddd.com,1)
(www.www.com,1)

4.6. GROUP

Groups the data in one or more relations.

Note: The GROUP and COGROUP operators are identical. Both operators work with one or
more relations. For readability GROUP is used in statements involving one relation and
COGROUP is used in statements involving two or more relations.

4.6.1. Syntax

alias = GROUP alias { ALL | BY expression} [, alias ALL | BY expression …] [USING 'collected' | 'merge']
[PARTITION BY partitioner] [PARALLEL n];

Pig Latin Reference Manual 2

Page 57
Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.6.2. Terms

alias The name of a relation.

ALL Keyword. Use ALL if you want all tuples to go to a
single group; for example, when doing aggregates
across entire relations.

B = GROUP A ALL;

BY Keyword. Use this clause to group the relation by
field, tuple or expression.

B = GROUP A BY f1;

expression A tuple expression. This is the group key or key field.
If the result of the tuple expression is a single field,
the key will be the value of the first field rather than a
tuple with one field. To group using multiple keys,
enclose the keys in parentheses:

B = GROUP A BY (key1,key2);

USING Keyword

'collected' Use the ‘collected’ clause with the GROUP operation
(works with one relation only).

The following conditions apply:

• The loader must implement the
{CollectableLoader} interface.

• Data must be sorted on the group key.

If your data and loaders satisfy these conditions, use
the ‘collected’ clause to perform an optimized
version of GROUP; the operation will execute on the
map side and avoid running the reduce phase.

Note that the Zebra loader satisfies the conditions
(see Zebra and Pig).

'merge' Use the ‘merge’ clause with the COGROUP

Pig Latin Reference Manual 2

Page 58
Copyright © 2007 The Apache Software Foundation. All rights reserved.

zebra_pig.html

operation (works with two or more relations only).

The following conditions apply:

• No other operations can be done between the
LOAD and COGROUP statements.

• Data must be sorted on the cogroup key for all
tables in ascending (ASC) order.

• Nulls are considered smaller than evertyhing. If
data contains null keys, they should occur before
anything else.

• Left-most loader must implement the
{CollectableLoader} interface as well as
{OrderedLoadFunc} interface.

• All other loaders must implement
IndexableLoadFunc.

• Type information must be provided in the
schema for all the loaders.

If your data and loaders satisfy these conditions, the
‘merge’ clause to perform an optimized version of
COGROUP; the operation will execute on the map
side and avoid running the reduce phase.

Note that the Zebra loader satisfies the conditions
(see Zebra and Pig).

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/Partitioner.html

• For usage, see Example: PARTITION BY

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

4.6.3. Usage

The GROUP operator groups together tuples that have the same group key (key field). The
key field will be a tuple if the group key has more than one field, otherwise it will be the

Pig Latin Reference Manual 2

Page 59
Copyright © 2007 The Apache Software Foundation. All rights reserved.

zebra_pig.html
cookbook.html#Use+the+Parallel+Features

same type as that of the group key. The result of a GROUP operation is a relation that
includes one tuple per group. This tuple contains two fields:

• The first field is named "group" (do not confuse this with the GROUP operator) and is
the same type as the group key.

• The second field takes the name of the original relation and is type bag.

• The names of both fields are generated by the system as shown in the example below.

Note the following about the GROUP/COGROUP and JOIN operators:

• The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates a flat set of output tuples

• The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and GROUP/COGROUP Operators).

4.6.4. Example

Suppose we have relation A.

A = load 'student' AS (name:chararray,age:int,gpa:float);

DESCRIBE A;
A: {name: chararray,age: int,gpa: float}

DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Bill,20,3.9F)
(Joe,18,3.8F)

Now, suppose we group relation A on field "age" for form relation B. We can use the
DESCRIBE and ILLUSTRATE operators to examine the structure of relation B. Relation B
has two fields. The first field is named "group" and is type int, the same as field "age" in
relation A. The second field is name "A" after relation A and is type bag.

B = GROUP A BY age;

DESCRIBE B;
B: {group: int, A: {name: chararray,age: int,gpa: float}}

ILLUSTRATE B;
etc …
--
| B | group: int | A: bag({name: chararray,age: int,gpa: float}) |
--

Pig Latin Reference Manual 2

Page 60
Copyright © 2007 The Apache Software Foundation. All rights reserved.

| | 18 | {(John, 18, 4.0), (Joe, 18, 3.8)} |
| | 20 | {(Bill, 20, 3.9)} |
--

DUMP B;
(18,{(John,18,4.0F),(Joe,18,3.8F)})
(19,{(Mary,19,3.8F)})
(20,{(Bill,20,3.9F)})

Continuing on, as shown in these FOREACH statements, we can refer to the fields in relation
B by names "group" and "A" or by positional notation.

C = FOREACH B GENERATE group, COUNT(A);

DUMP C;
(18,2L)
(19,1L)
(20,1L)

C = FOREACH B GENERATE $0, $1.name;

DUMP C;
(18,{(John),(Joe)})
(19,{(Mary)})
(20,{(Bill)})

4.6.5. Example

Suppose we have relation A.

A = LOAD 'data' as (f1:chararray, f2:int, f3:int);

DUMP A;
(r1,1,2)
(r2,2,1)
(r3,2,8)
(r4,4,4)

In this example the tuples are grouped using an expression, f2*f3.

X = GROUP A BY f2*f3;

DUMP X;
(2,{(r1,1,2),(r2,2,1)})
(16,{(r3,2,8),(r4,4,4)})

4.6.6. Example

Suppose we have two relations, A and B.

A = LOAD 'data1' AS (owner:chararray,pet:chararray);

Pig Latin Reference Manual 2

Page 61
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP A;
(Alice,turtle)
(Alice,goldfish)
(Alice,cat)
(Bob,dog)
(Bob,cat)

B = LOAD 'data2' AS (friend1:chararray,friend2:chararray);

DUMP B;
(Cindy,Alice)
(Mark,Alice)
(Paul,Bob)
(Paul,Jane)

In this example tuples are co-grouped using field “owner” from relation A and field “friend2”
from relation B as the key fields. The DESCRIBE operator shows the schema for relation X,
which has two fields, "group" and "A" (see the GROUP operator for information about the
field names).

X = COGROUP A BY owner, B BY friend2;

DESCRIBE X;
X: {group: chararray,A: {owner: chararray,pet: chararray},b: {firend1:
chararray,friend2: chararray}}

Relation X looks like this. A tuple is created for each unique key field. The tuple includes the
key field and two bags. The first bag is the tuples from the first relation with the matching
key field. The second bag is the tuples from the second relation with the matching key field.
If no tuples match the key field, the bag is empty.

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})
(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})
(Jane,{},{(Paul,Jane)})

In this example tuples are co-grouped and the INNER keyword is used to ensure that only
bags with at least one tuple are returned.

X = COGROUP A BY owner INNER, B BY friend2 INNER;

DUMP X;
(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})
(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})

In this example tuples are co-grouped and the INNER keyword is used asymmetrically on
only one of the relations.

X = COGROUP A BY owner, B BY friend2 INNER;

DUMP X;

Pig Latin Reference Manual 2

Page 62
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})
(Jane,{},{(Paul,Jane)})
(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})

4.6.7. Example

This example shows how to compute the number of tuples in an inner join between two
relations.

A = LOAD …
B = LOAD …
C = COGROUP A BY f1 INNER, B BY f2 INNER;
D = FOREACH C GENERATE group, COUNT(A)*COUNT(B) AS count; -- cross
product in each co-group
E = GROUP D ALL;
F = FOREACH E GENERATE SUM(D.count) AS sum; -- sum of cross products
DUMP F;

4.6.8. Example

This example shows how to group using multiple keys.

A = LOAD 'allresults' USING PigStorage() AS (tcid:int, tpid:int,
date:chararray, result:chararray, tsid:int, tag:chararray);
B = GROUP A BY (tcid, tpid);

4.6.9. Example

This example shows how to group using the collected keyword.

register zebra.jar;
A = LOAD 'studentsortedtab' USING
org.apache.hadoop.zebra.pig.TableLoader('name, age, gpa', 'sorted');
B = GROUP A BY name USING 'collected';
C = FOREACH b GENERATE group, MAX(a.age), COUNT_STAR(a);

4.6.10. Example

This example shows how to cogroup using the merge keyword.

register zebra.jar;
A = LOAD 'data1' USING org.apahce.hadoop.zebra.pig.TableLoader('id:int',
'sorted');
B = LOAD 'data2' USING org.apahce.hadoop.zebra.pig.TableLoader('id:int',
'sorted');'
C = COGROUP A BY id, B BY id USING 'merge';

4.6.11. Example: PARTITION BY

Pig Latin Reference Manual 2

Page 63
Copyright © 2007 The Apache Software Foundation. All rights reserved.

To use the Hadoop Partitioner add PARTITION BY clause to the appropriate operator:

A = LOAD 'input_data';
B = GROUP A BY $0 PARTITION BY
org.apache.pig.test.utils.SimpleCustomPartitioner PARALLEL 2;

Here is the code for SimpleCustomPartitioner:

public class SimpleCustomPartitioner extends Partitioner
<PigNullableWritable, Writable> {

//@Override
public int getPartition(PigNullableWritable key, Writable value, int

numPartitions) {
if(key.getValueAsPigType() instanceof Integer) {

int ret = (((Integer)key.getValueAsPigType()).intValue() %
numPartitions);

return ret;
}
else {

return (key.hashCode()) % numPartitions;
}

}
}

4.7. JOIN (inner)

Performs an inner join of two or more relations based on common field values.

4.7.1. Syntax

alias = JOIN alias BY {expression|'('expression [, expression …]')'} (, alias BY {expression|'('expression [,
expression …]')'} …) [USING 'replicated' | 'skewed' | 'merge'] [PARTITION BY partitioner] [PARALLEL
n];

4.7.2. Terms

alias The name of a relation.

BY Keyword

expression A field expression.

Example: X = JOIN A BY fieldA, B BY fieldB, C
BY fieldC;

USING Keyword

Pig Latin Reference Manual 2

Page 64
Copyright © 2007 The Apache Software Foundation. All rights reserved.

'replicated' Use to perform replicated joins (see Replicated
Joins).

'skewed' Use to perform skewed joins (see Skewed Joins).

'merge' Use to perform merge joins (see Merge Joins).

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/Partitioner.html

• For usage, see Example: PARTITION BY

This feature CANNOT be used with skewed joins.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

4.7.3. Usage

Use the JOIN operator to perform an inner, equijoin join of two or more relations based on
common field values. The JOIN operator always performs an inner join. Inner joins ignore
null keys, so it makes sense to filter them out before the join.

Note the following about the GROUP/COGROUP and JOIN operators:

• The GROUP and JOIN operators perform similar functions. GROUP creates a nested set
of output tuples while JOIN creates a flat set of output tuples.

• The GROUP/COGROUP and JOIN operators handle null values differently (see Nulls
and JOIN Operator).

4.7.4. Example

Suppose we have relations A and B.

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

Pig Latin Reference Manual 2

Page 65
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Replicated+Joins
piglatin_ref1.html#Skewed+Joins
piglatin_ref1.html#Merge+Joins
cookbook.html#Use+the+Parallel+Features

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;
(2,4)
(8,9)
(1,3)
(2,7)
(2,9)
(4,6)
(4,9)

In this example relations A and B are joined by their first fields.

X = JOIN A BY a1, B BY b1;

DUMP X;
(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(4,2,1,4,9)
(4,3,3,4,9)
(8,3,4,8,9)
(8,4,3,8,9)

4.8. JOIN (outer)

Performs an outer join of two or more relations based on common field values.

4.8.1. Syntax

alias = JOIN left-alias BY left-alias-column [LEFT|RIGHT|FULL] [OUTER], right-alias BY
right-alias-column [USING 'replicated' | 'skewed' | 'merge'] [PARTITION BY partitioner] [PARALLEL n];

4.8.2. Terms

alias The name of a relation. Applies to alias, left-alias and
right-alias.

alias-column The name of the join column for the corresponding
relation. Applies to left-alias-column and
right-alias-column.

Pig Latin Reference Manual 2

Page 66
Copyright © 2007 The Apache Software Foundation. All rights reserved.

BY Keyword

LEFT Left outer join.

RIGHT Right outer join.

FULL Full outer join.

OUTER (Optional) Keyword

USING Keyword

'replicated' Use to perform replicated joins (see Replicated
Joins).

Only left outer join is supported for replicated joins.

'skewed' Use to perform skewed joins (see Skewed Joins).

'merge' Use to perform merge joins (see Merge Joins).

PARTITION BY partitioner Use this feature to specify the Hadoop Partitioner.
The partitioner controls the partitioning of the keys of
the intermediate map-outputs.

• For more details, see
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/mapred/Partitioner.html

• For usage, see Example: PARTITION BY

This feature CANNOT be used with skewed joins.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

4.8.3. Usage

Use the JOIN operator with the corresponding keywords to perform left, right, or full outer
joins. The keyword OUTER is optional for outer joins; the keywords LEFT, RIGHT and

Pig Latin Reference Manual 2

Page 67
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Replicated+Joins
piglatin_ref1.html#Skewed+Joins
piglatin_ref1.html#Merge+Joins
cookbook.html#Use+the+Parallel+Features

FULL will imply left outer, right outer and full outer joins respectively when OUTER is
omitted. The Pig Latin syntax closely adheres to the SQL standard.

Please note the following:

• Outer joins will only work provided the relations which need to produce nulls (in the case
of non-matching keys) have schemas.

• Outer joins will only work for two-way joins; to perform a multi-way outer join, you will
need to perform multiple two-way outer join statements.

4.8.4. Examples

This example shows a left outer join.

A = LOAD 'a.txt' AS (n:chararray, a:int);
B = LOAD 'b.txt' AS (n:chararray, m:chararray);
C = JOIN A by $0 LEFT OUTER, B BY $0;

This example shows a full outer join.

A = LOAD 'a.txt' AS (n:chararray, a:int);
B = LOAD 'b.txt' AS (n:chararray, m:chararray);
C = JOIN A BY $0 FULL, B BY $0;

This example shows a replicated left outer join.

A = LOAD 'large';
B = LOAD 'tiny';
C= JOIN A BY $0 LEFT, B BY $0 USING 'replicated';

This example shows a skewed full outer join.

A = LOAD 'studenttab' as (name, age, gpa);
B = LOAD 'votertab' as (name, age, registration, contribution);
C = JOIN A BY name FULL, B BY name USING 'skewed';

4.9. LIMIT

Limits the number of output tuples.

4.9.1. Syntax

alias = LIMIT alias n;

4.9.2. Terms

Pig Latin Reference Manual 2

Page 68
Copyright © 2007 The Apache Software Foundation. All rights reserved.

alias The name of a relation.

n The number of output tuples (a constant).

4.9.3. Usage

Use the LIMIT operator to limit the number of output tuples. If the specified number of
output tuples is equal to or exceeds the number of tuples in the relation, all tuples in the
relation are returned.

There is no guarantee which tuples will be returned, and the tuples that are returned can
change from one run to the next. A particular set of tuples can be requested using the
ORDER operator followed by LIMIT.

Note: The LIMIT operator allows Pig to avoid processing all tuples in a relation. In most
cases a query that uses LIMIT will run more efficiently than an identical query that does not
use LIMIT. It is always a good idea to use limit if you can.

4.9.4. Examples

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

In this example output is limited to 3 tuples. Note that there is no guarantee which three
tuples will be output.

X = LIMIT A 3;

DUMP X;
(1,2,3)
(4,3,3)
(7,2,5)

In this example the ORDER operator is used to order the tuples and the LIMIT operator is
used to output the first three tuples.

B = ORDER A BY f1 DESC, f2 ASC;

Pig Latin Reference Manual 2

Page 69
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP B;
(8,3,4)
(8,4,3)
(7,2,5)
(4,2,1)
(4,3,3)
(1,2,3)

X = LIMIT B 3;

DUMP X;
(8,3,4)
(8,4,3)
(7,2,5)

4.10. LOAD

Loads data from the file system.

4.10.1. Syntax

LOAD 'data' [USING function] [AS schema];

4.10.2. Terms

'data' The name of the file or directory, in single quotes.

If you specify a directory name, all the files in the
directory are loaded.

You can use Hadoop-supported globing to specify
files at the file system or directory levels (see Hadoop
gobStatus for details on globing syntax).

USING Keyword.

If the USING clause is omitted, the default load
function PigStorage is used.

function The load function.

• You can use a built-in function (see the
Load/Store Functions). PigStorage is the default
load function and does not need to be specified
(simply omit the USING clause).

• You can write your own load function if your
data is in a format that cannot be processed by

Pig Latin Reference Manual 2

Page 70
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)

the built-in functions (see the Pig UDF Manual).

AS Keyword.

schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

The loader produces the data of the type specified by
the schema. If the data does not conform to the
schema, depending on the loader, either a null value
or an error is generated.

Note: For performance reasons the loader may not
immediately convert the data to the specified format;
however, you can still operate on the data assuming
the specified type.

4.10.3. Usage

Use the LOAD operator to load data from the file system.

4.10.4. Examples

Suppose we have a data file called myfile.txt. The fields are tab-delimited. The records are
newline-separated.

1 2 3
4 2 1
8 3 4

In this example the default load function, PigStorage, loads data from myfile.txt to form
relation A. The two LOAD statements are equivalent. Note that, because no schema is
specified, the fields are not named and all fields default to type bytearray.

A = LOAD 'myfile.txt';

A = LOAD 'myfile.txt' USING PigStorage('\t');

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)

In this example a schema is specified using the AS keyword. The two LOAD statements are
equivalent. You can use the DESCRIBE and ILLUSTRATE operators to view the schema.

Pig Latin Reference Manual 2

Page 71
Copyright © 2007 The Apache Software Foundation. All rights reserved.

udf.html

A = LOAD 'myfile.txt' AS (f1:int, f2:int, f3:int);

A = LOAD 'myfile.txt' USING PigStorage(‘\t’) AS (f1:int, f2:int, f3:int);

DESCRIBE A;
a: {f1: int,f2: int,f3: int}

ILLUSTRATE A;

| a | f1: bytearray | f2: bytearray | f3: bytearray |

| | 4 | 2 | 1 |

| a | f1: int | f2: int | f3: int |

| | 4 | 2 | 1 |

For examples of how to specify more complex schemas for use with the LOAD operator, see
Schemas for Complex Data Types and Schemas for Multiple Types.

4.11. MAPREDUCE

Executes native MapReduce jobs inside a Pig script.

4.11.1. Syntax

alias1 = MAPREDUCE 'mr.jar' STORE alias2 INTO 'inputLocation' USING storeFunc LOAD
'outputLocation' USING loadFunc AS schema [`params, ... `];

4.11.2. Terms

alias The name of a relation.

mr.jar The MapReduce jar file (enclosed in single quotes).

You can specify nny MapReduce jar file that can be
run through the "hadoop jar mymr.jar params"
command.

The values for inputLocation and outputLocation can
be passed in the params.

STORE ... INTO ... USING See STORE

Store alias2 into the inputLocation using storeFunc,

Pig Latin Reference Manual 2

Page 72
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref2.html#STORE

which is then used by native mapreduce to read its
data.

LOAD ... USING ... AS See LOAD

After running mr.jar's mapreduce, load back the data
from outputLocation into alias1 using loadFunc as
schema

'params, ...' Extra parameters required for native MapReduce job
(enclosed in back tics).

4.11.3. Usage

Use the MAPREDUCE operator to run native MapReduce jobs from inside a Pig script.

The input and output locations for the MapReduce program are conveyed to Pig using the
STORE/LOAD clauses. Pig, however, does not pass this information (nor require that this
information be passed) to the MapReduce program. If you want to pass the input and output
locations to the MapReduce program you can use the params clause or you can hardcode the
locations in the MapReduce program.

4.11.4. Example

This example demonstrates how to run the wordcount MapReduce progam from Pig. Note
that the files specified as input and output locations in the MAPREDUCE statement will
NOT be deleted by Pig automatically. You will need to delete them manually.

A = LOAD 'WordcountInput.txt';
B = MAPREDUCE 'wordcount.jar' STOE A INTO 'inputDir' LOAD 'outputDir'

AS (word:chararray, count: int) `org.myorg.WordCount inputDir
outputDir`;

4.12. ORDER BY

Sorts a relation based on one or more fields.

4.12.1. Syntax

alias = ORDER alias BY { * [ASC|DESC] | field_alias [ASC|DESC] [, field_alias [ASC|DESC] …] }
[PARALLEL n];

Pig Latin Reference Manual 2

Page 73
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref2.html#LOAD

4.12.2. Terms

alias The name of a relation.

* The designator for a tuple.

field_alias A field in the relation. The field must be a simple
type.

ASC Sort in ascending order.

DESC Sort in descending order.

PARALLEL n Increase the parallelism of a job by specifying the
number of reduce tasks, n.

For more information, see Use the Parallel Features.

4.12.3. Usage

In Pig, relations are unordered (see Relations, Bags, Tuples, Fields):

• If you order relation A to produce relation X (X = ORDER A BY * DESC;) relations A
and X still contain the same data.

• If you retrieve relation X (DUMP X;) the data is guaranteed to be in the order you
specified (descending).

• However, if you further process relation X (Y = FILTER X BY $0 > 1;) there is no
guarantee that the data will be processed in the order you originally specified
(descending).

Pig currently supports ordering on fields with simple types or by tuple designator (*). You
cannot order on fields with complex types or by expressions.

A = LOAD 'mydata' AS (x: int, y: map[]);
B = ORDER A BY x; -- this is allowed because x is a simple type
B = ORDER A BY y; -- this is not allowed because y is a complex type
B = ORDER A BY y#'id'; -- this is not allowed because y#'id' is an
expression

4.12.4. Examples

Pig Latin Reference Manual 2

Page 74
Copyright © 2007 The Apache Software Foundation. All rights reserved.

cookbook.html#Use+the+Parallel+Features

Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

In this example relation A is sorted by the third field, f3 in descending order. Note that the
order of the three tuples ending in 3 can vary.

X = ORDER A BY a3 DESC;

DUMP X;
(7,2,5)
(8,3,4)
(1,2,3)
(4,3,3)
(8,4,3)
(4,2,1)

4.13. SAMPLE

Partitions a relation into two or more relations.

4.13.1. Syntax

SAMPLE alias size;

4.13.2. Terms

alias The name of a relation.

size Sample size, range 0 to 1 (for example, enter 0.1 for
10%).

4.13.3. Usage

Use the SAMPLE operator to select a random data sample with the stated sample size.
SAMPLE is a probabalistic operator; there is no guarantee that the exact same number of
tuples will be returned for a particular sample size each time the operator is used.

Pig Latin Reference Manual 2

Page 75
Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.13.4. Example

In this example relation X will contain 1% of the data in relation A.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

X = SAMPLE A 0.01;

4.14. SPLIT

Partitions a relation into two or more relations.

4.14.1. Syntax

SPLIT alias INTO alias IF expression, alias IF expression [, alias IF expression …];

4.14.2. Terms

alias The name of a relation.

INTO Required keyword.

IF Required keyword.

expression An expression.

4.14.3. Usage

Use the SPLIT operator to partition the contents of a relation into two or more relations based
on some expression. Depending on the conditions stated in the expression:

• A tuple may be assigned to more than one relation.

• A tuple may not be assigned to any relation.

4.14.4. Example

In this example relation A is split into three relations, X, Y, and Z.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

Pig Latin Reference Manual 2

Page 76
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP A;
(1,2,3)
(4,5,6)
(7,8,9)

SPLIT A INTO X IF f1<7, Y IF f2==5, Z IF (f3<6 OR f3>6);

DUMP X;
(1,2,3)
(4,5,6)

DUMP Y;
(4,5,6)

DUMP Z;
(1,2,3)
(7,8,9)

4.14.5. Example

In this example, the SPLIT and FILTER statements are essentially equivalent. However,
because SPLIT is implemented as "split the data stream and then apply filters" the SPLIT
statement is more expensive than the FILTER statement because Pig needs to filter and store
two data streams.

SPLIT input_var INTO output_var IF (field1 is not null), ignored_var IF
(field1 is null);
-- where ignored_var is not used elsewhere

output_var = FILTER input_var BY (field1 is not null);

4.15. STORE

Stores or saves results to the file system.

4.15.1. Syntax

STORE alias INTO 'directory' [USING function];

4.15.2. Terms

alias The name of a relation.

INTO Required keyword.

Pig Latin Reference Manual 2

Page 77
Copyright © 2007 The Apache Software Foundation. All rights reserved.

'directory' The name of the storage directory, in quotes. If the
directory already exists, the STORE operation will
fail.

The output data files, named part-nnnnn, are written
to this directory.

USING Keyword. Use this clause to name the store function.

If the USING clause is omitted, the default store
function PigStorage is used.

function The store function.

• You can use a built-in function (see the
Load/Store Functions). PigStorage is the default
store function and does not need to be specified
(simply omit the USING clause).

• You can write your own store function if your
data is in a format that cannot be processed by
the built-in functions (see the Pig UDF Manual).

4.15.3. Usage

Use the STORE operator to run (execute) Pig Latin statements and save (persist) results to
the file system. Use STORE for production scripts and batch mode processing.

Note: To debug scripts during development, you can use DUMP to check intermediate
results.

4.15.4. Examples

In this example data is stored using PigStorage and the asterisk character (*) as the field
delimiter.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

Pig Latin Reference Manual 2

Page 78
Copyright © 2007 The Apache Software Foundation. All rights reserved.

udf.html

STORE A INTO 'myoutput' USING PigStorage ('*');

CAT myoutput;
1*2*3
4*2*1
8*3*4
4*3*3
7*2*5
8*4*3

In this example, the CONCAT function is used to format the data before it is stored.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = FOREACH A GENERATE CONCAT('a:',(chararray)f1),
CONCAT('b:',(chararray)f2), CONCAT('c:',(chararray)f3);

DUMP B;
(a:1,b:2,c:3)
(a:4,b:2,c:1)
(a:8,b:3,c:4)
(a:4,b:3,c:3)
(a:7,b:2,c:5)
(a:8,b:4,c:3)

STORE B INTO 'myoutput' using PigStorage(',');

CAT myoutput;
a:1,b:2,c:3
a:4,b:2,c:1
a:8,b:3,c:4
a:4,b:3,c:3
a:7,b:2,c:5
a:8,b:4,c:3

4.16. STREAM

Sends data to an external script or program.

4.16.1. Syntax

alias = STREAM alias [, alias …] THROUGH {'command' | cmd_alias } [AS schema] ;

Pig Latin Reference Manual 2

Page 79
Copyright © 2007 The Apache Software Foundation. All rights reserved.

4.16.2. Terms

alias The name of a relation.

THROUGH Keyword.

'command' A command, including the arguments, enclosed in
back tics (where a command is anything that can be
executed).

cmd_alias The name of a command created using the DEFINE
operator (see the DEFINE operator for additional
streaming examples).

AS Keyword.

schema A schema using the AS keyword, enclosed in
parentheses (see Schemas).

4.16.3. Usage

Use the STREAM operator to send data through an external script or program. Multiple
stream operators can appear in the same Pig script. The stream operators can be adjacent to
each other or have other operations in between.

When used with a command, a stream statement could look like this:

A = LOAD 'data';

B = STREAM A THROUGH 'stream.pl -n 5';

When used with a cmd_alias, a stream statement could look like this, where mycmd is the
defined alias.

A = LOAD 'data';

DEFINE mycmd 'stream.pl –n 5';

B = STREAM A THROUGH mycmd;

4.16.4. About Data Guarantees

Data guarantees are determined based on the position of the streaming operator in the Pig

Pig Latin Reference Manual 2

Page 80
Copyright © 2007 The Apache Software Foundation. All rights reserved.

script.

• Unordered data – No guarantee for the order in which the data is delivered to the
streaming application.

• Grouped data – The data for the same grouped key is guaranteed to be provided to the
streaming application contiguously

• Grouped and ordered data – The data for the same grouped key is guaranteed to be
provided to the streaming application contiguously. Additionally, the data within the
group is guaranteed to be sorted by the provided secondary key.

In addition to position, data grouping and ordering can be determined by the data itself.
However, you need to know the property of the data to be able to take advantage of its
structure.

4.16.5. Example: Data Guarantees

In this example the data is unordered.

A = LOAD 'data';

B = STREAM A THROUGH 'stream.pl';

In this example the data is grouped.

A = LOAD 'data';

B = GROUP A BY $1;

C = FOREACH B FLATTEN(A);

D = STREAM C THROUGH 'stream.pl';

In this example the data is grouped and ordered.

A = LOAD 'data';

B = GROUP A BY $1;

C = FOREACH B {
D = ORDER A BY ($3, $4);
GENERATE D;

}

E = STREAM C THROUGH 'stream.pl';

4.16.6. Example: Schemas

Pig Latin Reference Manual 2

Page 81
Copyright © 2007 The Apache Software Foundation. All rights reserved.

In this example a schema is specified as part of the STREAM statement.

X = STREAM A THROUGH 'stream.pl' as (f1:int, f2;int, f3:int);

4.17. UNION

Computes the union of two or more relations.

4.17.1. Syntax

alias = UNION [ONSCHEMA] alias, alias [, alias …];

4.17.2. Terms

alias The name of a relation.

ONSCHEMA Use the keyword ONSCHEMA with UNION so that
the union is based on column names of the input
relations, and not column position. If the following
requirements are not met, the statement will throw an
error:

• All inputs to the union should have a non null
schema.

• The data type for columns with same name in
different input schemas should be compatible.
Numeric types are compatible, and if column
having same name in different input schemas
have different numeric types , an implicit
conversion will happen. bytearray type is
considered compatible with all other types, a cast
will be added to convert to other type. Bags or
tuples having different inner schema are
considered incompatible.

4.17.3. Usage

Use the UNION operator to merge the contents of two or more relations. The UNION
operator:

• Does not preserve the order of tuples. Both the input and output relations are interpreted
as unordered bags of tuples.

• Does not ensure (as databases do) that all tuples adhere to the same schema or that they

Pig Latin Reference Manual 2

Page 82
Copyright © 2007 The Apache Software Foundation. All rights reserved.

have the same number of fields. In a typical scenario, however, this should be the case;
therefore, it is the user's responsibility to either (1) ensure that the tuples in the input
relations have the same schema or (2) be able to process varying tuples in the output
relation.

• Does not eliminate duplicate tuples.

4.17.4. Example

In this example the union of relation A and B is computed.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;
(1,2,3)
(4,2,1)

B = LOAD 'data' AS (b1:int,b2:int);

DUMP A;
(2,4)
(8,9)
(1,3)

X = UNION A, B;

DUMP X;
(1,2,3)
(4,2,1)
(2,4)
(8,9)
(1,3)

4.17.5. Example

This example shows the use of ONSCHEMA.

L1 = LOAD 'f1' USING (a : int, b : float);
DUMP L1;
(11,12.0)
(21,22.0)

L2 = LOAD 'f1' USING (a : long, c : chararray);
DUMP L2;
(11,a)
(12,b)
(13,c)

U = UNION ONSCHEMA L1, L2;
DESCRIBE U ;

Pig Latin Reference Manual 2

Page 83
Copyright © 2007 The Apache Software Foundation. All rights reserved.

U : {a : long, b : float, c : chararray}

DUMP U;
(11,12.0,)
(21,22.0,)
(11,,a)
(12,,b)
(13,,c)

5. Diagnostic Operators

5.1. DESCRIBE

Returns the schema of a relation.

5.1.1. Syntax

DESCRIBE alias;

5.1.2. Terms

alias The name of a relation.

5.1.3. Usage

Use the DESCRIBE operator to view the schema of a relation. You can view outer relations
as well as relations defined in a nested FOREACH statement.

See also: Debugging Pig Latin

5.1.4. Example

In this example a schema is specified using the AS clause. If all data conforms to the schema,
Pig will use the assigned types.

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

B = FILTER A BY name matches 'J.+';

C = GROUP B BY name;

D = FOREACH B GENERATE COUNT(B.age);

DESCRIBE A;
A: {group, B: (name: chararray,age: int,gpa: float}

Pig Latin Reference Manual 2

Page 84
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Debugging+Pig+Latin

DESCRIBE B;
B: {group, B: (name: chararray,age: int,gpa: float}

DESCRIBE C;
C: {group, chararry,B: (name: chararray,age: int,gpa: float}

DESCRIBE D;
D: {long}

In this example no schema is specified. All fields default to type bytearray or long (see Data
Types).

a = LOAD 'student';

b = FILTER a BY $0 matches 'J.+';

c = GROUP b BY $0;

d = FOREACH c GENERATE COUNT(b.$1);

DESCRIBE a;
Schema for a unknown.

DESCRIBE b;
2008-12-05 01:17:15,316 [main] WARN org.apache.pig.PigServer - bytearray
is implicitly cast to chararray under LORegexp Operator
Schema for b unknown.

DESCRIBE c;
2008-12-05 01:17:23,343 [main] WARN org.apache.pig.PigServer - bytearray
is implicitly caste to chararray under LORegexp Operator
c: {group: bytearray,b: {null}}

DESCRIBE d;
2008-12-05 03:04:30,076 [main] WARN org.apache.pig.PigServer - bytearray
is implicitly caste to chararray under LORegexp Operator
d: {long}

This example shows how to view the schema of a nested relation using the :: operator.

A = LOAD 'studentab10k' AS (name, age, gpa);
B = GROUP A BY name;
C = FOREACH B {

D = DISTINCT A.age;
GENERATE COUNT(D), group;}

DESCRIBE C::D;
D: {age: bytearray}

5.2. DUMP

Pig Latin Reference Manual 2

Page 85
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Dumps or displays results to screen.

5.2.1. Syntax

DUMP alias;

5.2.2. Terms

alias The name of a relation.

5.2.3. Usage

Use the DUMP operator to run (execute) Pig Latin statements and display the results to your
screen. DUMP is meant for interactive mode; statements are executed immediately and the
results are not saved (persisted). You can use DUMP as a debugging device to make sure that
the results you are expecting are actually generated.

Note that production scripts should not use DUMP as it will disable multi-query
optimizations and is likely to slow down execution (see Store vs. Dump).

See also: Debugging Pig Latin

5.2.4. Example

In this example a dump is performed after each statement.

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

DUMP A;
(John,18,4.0F)
(Mary,19,3.7F)
(Bill,20,3.9F)
(Joe,22,3.8F)
(Jill,20,4.0F)

B = FILTER A BY name matches 'J.+';

DUMP B;
(John,18,4.0F)
(Joe,22,3.8F)
(Jill,20,4.0F)

5.3. EXPLAIN

Displays execution plans.

Pig Latin Reference Manual 2

Page 86
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Store+vs.+Dump
piglatin_ref1.html#Debugging+Pig+Latin

5.3.1. Syntax

EXPLAIN [–script pigscript] [–out path] [–brief] [–dot] [–param param_name = param_value] [–param_file
file_name] alias;

5.3.2. Terms

–script Use to specify a pig script.

–out Use to specify the output path (directory).

Will generate a logical_plan[.txt|.dot],
physical_plan[.text|.dot], exec_plan[.text|.dot] file in
the specified path.

Default (no path specified): Stdout

–brief Does not expand nested plans (presenting a smaller
graph for overview).

–dot Text mode (default): multiple output (split) will be
broken out in sections.

Dot mode: outputs a format that can be passed to the
dot utility for graphical display – will generate a
directed-acyclic-graph (DAG) of the plans in any
supported format (.gif, .jpg ...).

–param param_name = param_value See Parameter Substitution.

–param_file file_name See Parameter Substitution.

alias The name of a relation.

5.3.3. Usage

Use the EXPLAIN operator to review the logical, physical, and map reduce execution plans
that are used to compute the specified relationship.

If no script is given:

• The logical plan shows a pipeline of operators to be executed to build the relation. Type
checking and backend-independent optimizations (such as applying filters early on) also

Pig Latin Reference Manual 2

Page 87
Copyright © 2007 The Apache Software Foundation. All rights reserved.

apply.

• The physical plan shows how the logical operators are translated to backend-specific
physical operators. Some backend optimizations also apply.

• The map reduce plan shows how the physical operators are grouped into map reduce
jobs.

If a script without an alias is specified, it will output the entire execution graph (logical,
physical, or map reduce).

If a script with a alias is specified, it will output the plan for the given alias.

See also: Debugging Pig Latin

5.3.4. Example

In this example the EXPLAIN operator produces all three plans. (Note that only a portion of
the output is shown in this example.)

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

B = GROUP A BY name;

C = FOREACH B GENERATE COUNT(A.age);

EXPLAIN C;

Logical Plan:

Store xxx-Fri Dec 05 19:42:29 UTC 2008-23 Schema: {long} Type: Unknown
|
|---ForEach xxx-Fri Dec 05 19:42:29 UTC 2008-15 Schema: {long} Type: bag
etc …

Physical Plan:

Store(fakefile:org.apache.pig.builtin.PigStorage) - xxx-Fri Dec 05 19:42:29
UTC 2008-40
|
|---New For Each(false)[bag] - xxx-Fri Dec 05 19:42:29 UTC 2008-39

| |
| POUserFunc(org.apache.pig.builtin.COUNT)[long] - xxx-Fri Dec 05

etc …

--
Map Reduce Plan

Pig Latin Reference Manual 2

Page 88
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Debugging+Pig+Latin

MapReduce node xxx-Fri Dec 05 19:42:29 UTC 2008-41
Map Plan
Local Rearrange[tuple]{chararray}(false) - xxx-Fri Dec 05 19:42:29 UTC
2008-34
| |
| Project[chararray][0] - xxx-Fri Dec 05 19:42:29 UTC 2008-35
etc …

5.4. ILLUSTRATE

(Note! This feature is NOT maintained at the moment. We are looking for someone to adopt
it.)

Displays a step-by-step execution of a sequence of statements.

5.4.1. Syntax

ILLUSTRATE alias;

5.4.2. Terms

alias The name of a relation.

5.4.3. Usage

Use the ILLUSTRATE operator to review how data is transformed through a sequence of Pig
Latin statements:

• The data load statement must include a schema.

• The Pig Latin statement used to form the relation that is used with the ILLUSTRATE
command cannot include the map data type, the LIMIT and SPLIT operators, or nested
FOREACH statements.

ILLUSTRATE accesses the ExampleGenerator algorithm which can select an appropriate
and concise set of example data automatically. It does a better job than random sampling
would do; for example, random sampling suffers from the drawback that selective operations
such as filters or joins can eliminate all the sampled data, giving you empty results which
will not help with debugging.

With the ILLUSTRATE operator you can test your programs on small datasets and get faster
turnaround times. The ExampleGenerator algorithm uses Pig's Local mode (rather than
Hadoop mode) which means that illustrative example data is generated in near real-time.

Relation X can be used with the ILLUSTRATE operator.

Pig Latin Reference Manual 2

Page 89
Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = FOREACH A GENERATE f1;

ILLUSTRATE X;

Relation Y cannot be used with the ILLUSTRATE operator.

Y = LIMIT A 3;

ILLUSTRATE Y;

5.4.4. Example

In this example we count the number of sites a user has visited since 12/1/08. The
ILLUSTRATE statement will show how the results for num_user_visits are derived.

visits = LOAD 'visits' AS (user:chararray, ulr:chararray,
timestamp:chararray);

DUMP visits;
(Amy,cnn.com,20080218)
(Fred,harvard.edu,20081204)
(Amy,bbc.com,20081205)
(Fred,stanford.edu,20081206)

recent_visits = FILTER visits BY timestamp >= '20081201';

user_visits = GROUP recent_visits BY user;

num_user_visits = FOREACH user_visits GENERATE COUNT(recent_visits);

DUMP num_user_visits;
(1L)
(2L)

ILLUSTRATE num_user_visits;
--
| visits | user: bytearray | ulr: bytearray | timestamp: bytearray |
--
	Amy	cnn.com	20080218
	Fred	harvard.edu	20081204
	Amy	bbc.com	20081205
	Fred	stanford.edu	20081206
--

--
| visits | user: chararray | ulr: chararray | timestamp: chararray |
--
	Amy	cnn.com	20080218
	Fred	harvard.edu	20081204
	Amy	bbc.com	20081205
	Fred	stanford.edu	20081206

Pig Latin Reference Manual 2

Page 90
Copyright © 2007 The Apache Software Foundation. All rights reserved.

--

| recent_visits | user: chararray | ulr: chararray | timestamp:
chararray

--
| user_visits | group: chararray | recent_visits: bag({user:
chararray,ulr: chararray,timestamp: chararray})
(Fred, stanford.edu, 20081206)} |
--

| num_user_visits | long |

| | 1 |
| | 2 |

6. UDF Statements

6.1. DEFINE

Assigns an alias to a UDF function or a streaming command.

6.1.1. Syntax

DEFINE alias {function | [`command` [input] [output] [ship] [cache]] };

6.1.2. Terms

alias The name for a UDF function or the name for a
streaming command (the cmd_alias for the STREAM
operator).

function For use with functions.

Pig Latin Reference Manual 2

Page 91
Copyright © 2007 The Apache Software Foundation. All rights reserved.

The name of a UDF function.

`command` For use with streaming.

A command, including the arguments, enclosed in
back tics (where a command is anything that can be
executed).

input For use with streaming.

INPUT ({stdin | 'path'} [USING serializer] [, {stdin |
'path'} [USING serializer] …])

Where:

• INPUT – Keyword.

• 'path' – A file path, enclosed in single quotes.

• USING – Keyword.

• serializer – PigStreaming is the default serializer.

output For use with streaming.

OUTPUT ({stdout | stderr | 'path'} [USING
deserializer] [, {stdout | stderr | 'path'} [USING
deserializer] …])

Where:

• OUTPUT – Keyword.

• 'path' – A file path, enclosed in single quotes.

• USING – Keyword.

• deserializer – PigStreaming is the default
deserializer.

ship For use with streaming.

SHIP('path' [, 'path' …])

Where:

• SHIP – Keyword.

• 'path' – A file path, enclosed in single quotes.

cache For use with streaming.

Pig Latin Reference Manual 2

Page 92
Copyright © 2007 The Apache Software Foundation. All rights reserved.

CACHE('dfs_path#dfs_file' [, 'dfs_path#dfs_file' …])

Where:

• CACHE – Keyword.

• 'dfs_path#dfs_file' – A file path/file name on the
distributed file system, enclosed in single quotes.
Example: '/mydir/mydata.txt#mydata.txt'

6.1.3. Usage

Use the DEFINE statement to assign a name (alias) to a UDF function or to a streaming
command.

Use DEFINE to specify a UDF function when:

• The function has a long package name that you don't want to include in a script,
especially if you call the function several times in that script.

• The constructor for the function takes string parameters. If you need to use different
constructor parameters for different calls to the function you will need to create multiple
defines – one for each parameter set.

Use DEFINE to specify a streaming command when:

• The streaming command specification is complex.

• The streaming command specification requires additional parameters (input, output, and
so on).

6.1.3.1. About Input and Output

Serialization is needed to convert data from tuples to a format that can be processed by the
streaming application. Deserialization is needed to convert the output from the streaming
application back into tuples. PigStreaming is the default serialization/deserialization function.

Streaming uses the same default format as PigStorage to serialize/deserialize the data. If you
want to explicitly specify a format, you can do it as show below (see more examples in the
Examples: Input/Output section).

DEFINE CMD 'perl PigStreaming.pl - nameMap' input(stdin using
PigStreaming(',')) output(stdout using PigStreaming(','));
A = LOAD 'file';
B = STREAM B THROUGH CMD;

If you need an alternative format, you will need to create a custom serializer/deserializer by

Pig Latin Reference Manual 2

Page 93
Copyright © 2007 The Apache Software Foundation. All rights reserved.

implementing the following interfaces.

interface PigToStream {

/**
* Given a tuple, produce an array of bytes to be passed to the

streaming
* executable.
*/
public byte[] serialize(Tuple t) throws IOException;

}

interface StreamToPig {

/**
* Given a byte array from a streaming executable, produce a

tuple.
*/
public Tuple deserialize(byte[]) throws IOException;

/**
* This will be called on the front end during planning and not on

the back
* end during execution.
*
* @return the {@link LoadCaster} associated with this object.
* @throws IOException if there is an exception during LoadCaster
*/
public LoadCaster getLoadCaster() throws IOException;

}

6.1.3.2. About Ship

Use the ship option to send streaming binary and supporting files, if any, from the client node
to the compute nodes. Pig does not automatically ship dependencies; it is your responsibility
to explicitly specify all the dependencies and to make sure that the software the processing
relies on (for instance, perl or python) is installed on the cluster. Supporting files are shipped
to the task's current working directory and only relative paths should be specified. Any
pre-installed binaries should be specified in the PATH.

Only files, not directories, can be specified with the ship option. One way to work around
this limitation is to tar all the dependencies into a tar file that accurately reflects the structure
needed on the compute nodes, then have a wrapper for your script that un-tars the
dependencies prior to execution.

Note that the ship option has two components: the source specification, provided in the ship(
) clause, is the view of your machine; the command specification is the view of the actual
cluster. The only guarantee is that the shipped files are available in the current working

Pig Latin Reference Manual 2

Page 94
Copyright © 2007 The Apache Software Foundation. All rights reserved.

directory of the launched job and that your current working directory is also on the PATH
environment variable.

Shipping files to relative paths or absolute paths is not supported since you might not have
permission to read/write/execute from arbitrary paths on the clusters.

Note the following:

1. It is safe only to ship files to be executed from the current working directory on the task
on the cluster.

OP = stream IP through 'script';
or
DEFINE CMD 'script' ship('/a/b/script');
OP = stream IP through 'CMD';

2. Shipping files to relative paths or absolute paths is undefined and mostly will fail since
you may not have permissions to read/write/execute from arbitraty paths on the actual
clusters.

6.1.3.3. About Cache

The ship option works with binaries, jars, and small datasets. However, loading larger
datasets at run time for every execution can severely impact performance. Instead, use the
cache option to access large files already moved to and available on the compute nodes. Only
files, not directories, can be specified with the cache option.

6.1.3.4. About Auto-Ship

If the ship and cache options are not specified, Pig will attempt to auto-ship the binary in the
following way:

• If the first word on the streaming command is perl or python, Pig assumes that the binary
is the first non-quoted string it encounters that does not start with dash.

• Otherwise, Pig will attempt to ship the first string from the command line as long as it
does not come from /bin, /usr/bin, /usr/local/bin. Pig will determine this
by scanning the path if an absolute path is provided or by executing which. The paths
can be made configurable using the set stream.skippath option (you can use multiple set
commands to specify more than one path to skip).

If you don't supply a DEFINE for a given streaming command, then auto-shipping is turned
off.

Note the following:

Pig Latin Reference Manual 2

Page 95
Copyright © 2007 The Apache Software Foundation. All rights reserved.

1. If Pig determines that it needs to auto-ship an absolute path it will not ship it at all since
there is no way to ship files to the necessary location (lack of permissions and so on).

OP = stream IP through '/a/b/c/script';
or
OP = stream IP through 'perl /a/b/c/script.pl';

2. Pig will not auto-ship files in the following system directories (this is determined by
executing 'which <file>' command).

/bin /usr/bin /usr/local/bin /sbin /usr/sbin /usr/local/sbin
3. To auto-ship, the file in question should be present in the PATH. So if the file is in the

current working directory then the current working directory should be in the PATH.

6.1.4. Examples: Input/Output

In this example PigStreaming is the default serialization/deserialization function. The tuples
from relation A are converted to tab-delimited lines that are passed to the script.

X = STREAM A THROUGH 'stream.pl';

In this example PigStreaming is used as the serialization/deserialization function, but a
comma is used as the delimiter.

DEFINE Y 'stream.pl' INPUT(stdin USING PigStreaming(',')) OUTPUT (stdout
USING PigStreaming(','));

X = STREAM A THROUGH Y;

In this example user-defined serialization/deserialization functions are used with the script.

DEFINE Y 'stream.pl' INPUT(stdin USING MySerializer) OUTPUT (stdout USING
MyDeserializer);

X = STREAM A THROUGH Y;

6.1.5. Examples: Ship/Cache

In this example ship is used to send the script to the cluster compute nodes.

DEFINE Y 'stream.pl' SHIP('/work/stream.pl');

X = STREAM A THROUGH Y;

In this example cache is used to specify a file located on the cluster compute nodes.

DEFINE Y 'stream.pl data.gz' SHIP('/work/stream.pl')
CACHE('/input/data.gz#data.gz');

Pig Latin Reference Manual 2

Page 96
Copyright © 2007 The Apache Software Foundation. All rights reserved.

X = STREAM A THROUGH Y;

6.1.6. Example: DEFINE with STREAM

In this example a command is defined for use with the STREAM operator.

A = LOAD 'data';

DEFINE mycmd 'stream_cmd –input file.dat';

B = STREAM A through mycmd;

6.1.7. Examples: Logging

In this example the streaming stderr is stored in the _logs/<dir> directory of the job's output
directory. Because the job can have multiple streaming applications associated with it, you
need to ensure that different directory names are used to avoid conflicts. Pig stores up to 100
tasks per streaming job.

DEFINE Y 'stream.pl' stderr('<dir>' limit 100);

X = STREAM A THROUGH Y;

In this example a function is defined for use with the FOREACH …GENERATE operator.

REGISTER /src/myfunc.jar

DEFINE myFunc myfunc.MyEvalfunc('foo');

A = LOAD 'students';

B = FOREACH A GENERATE myFunc($0);

6.2. REGISTER

Registers a JAR file so that the UDFs in the file can be used.

6.2.1. Syntax

REGISTER alias;

6.2.2. Terms

alias The path to the JAR file (the full location URI is
required). Do not place the name in quotes.

Pig Latin Reference Manual 2

Page 97
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig supports functions written in Java only.

Pig supports JAR files stored in HDFS, Amazon S3,
and other distributed files systems (see also Pig Latin
Scripts).

6.2.3. Usage

Use the REGISTER statement inside a Pig script to specify the path of the JAR file
containing UDFs.

You can register additional files (to use with your Pig script) via the command line using the
-Dpig.additional.jars option.

For more information see the Pig UDF Manual.

6.2.4. Examples

In this example REGISTER states that myfunc.jar is located in the /src directory.

/src $ java -jar pig.jar –

REGISTER /src/myfunc.jar;
A = LOAD 'students';
B = FOREACH A GENERATE myfunc.MyEvalFunc($0);

In this example additional jar files are registered via the command line.

pig -Dpig.additional.jars=my.jar:your.jar script.pig

In this example a jar file stored in HDFS is registered

java -cp pig.jar org.apache.pig.Main
hdfs://nn.mydomain.com:9020/myscripts/script.pig

7. Eval Functions

7.1. AVG

Computes the average of the numeric values in a single-column bag.

7.1.1. Syntax

AVG(expression)

Pig Latin Reference Manual 2

Page 98
Copyright © 2007 The Apache Software Foundation. All rights reserved.

piglatin_ref1.html#Pig+Latin+Scripts
piglatin_ref1.html#Pig+Latin+Scripts
udf.html

7.1.2. Terms

expression Any expression whose result is a bag. The elements
of the bag should be data type int, long, float, or
double.

7.1.3. Usage

Use the AVG function to compute the average of the numeric values in a single-column bag.
AVG requires a preceding GROUP ALL statement for global averages and a GROUP BY
statement for group averages.

The AVG function now ignores NULL values.

7.1.4. Example

In this example the average GPA for each student is computed (see the GROUP operators for
information about the field names in relation B).

A = LOAD 'student.txt' AS (name:chararray, term:chararray, gpa:float);

DUMP A;
(John,fl,3.9F)
(John,wt,3.7F)
(John,sp,4.0F)
(John,sm,3.8F)
(Mary,fl,3.8F)
(Mary,wt,3.9F)
(Mary,sp,4.0F)
(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;
(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})
(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

C = FOREACH B GENERATE A.name, AVG(A.gpa);

DUMP C;
({(John),(John),(John),(John)},3.850000023841858)
({(Mary),(Mary),(Mary),(Mary)},3.925000011920929)

7.1.5. Types Tables

int long float double chararray bytearray

Pig Latin Reference Manual 2

Page 99
Copyright © 2007 The Apache Software Foundation. All rights reserved.

AVG long long double double error cast as
double

7.2. CONCAT

Concatenates two expressions of identical type.

7.2.1. Syntax

CONCAT (expression, expression)

7.2.2. Terms

expression Any expression.

7.2.3. Usage

Use the CONCAT function to concatenate two expressions. The result values of the two
expressions must have identical types.

7.3. Example

In this example fields f2 and f3 are concatenated.

A = LOAD 'data' as (f1:chararray, f2:chararray, f3:chararray);

DUMP A;
(apache,open,source)
(hadoop,map,reduce)
(pig,pig,latin)

X = FOREACH A GENERATE CONCAT(f2,f3);

DUMP X;
(opensource)
(mapreduce)
(piglatin)

7.4. COUNT

Computes the number of elements in a bag.

7.4.1. Syntax

Pig Latin Reference Manual 2

Page 100
Copyright © 2007 The Apache Software Foundation. All rights reserved.

COUNT(expression)

7.4.2. Terms

expression An expression with data type bag.

7.4.3. Usage

Use the COUNT function to compute the number of elements in a bag. COUNT requires a
preceding GROUP ALL statement for global counts and a GROUP BY statement for group
counts.

The COUNT function follows syntax semantics and ignores nulls. What this means is that a
tuple in the bag will not be counted if the first field in this tuple is NULL. If you want to
include NULL values in the count computation, use COUNT_STAR.

Note: You cannot use the tuple designator (*) with COUNT; that is, COUNT(*) will not
work.

7.4.4. Example

In this example the tuples in the bag are counted (see the GROUP operator for information
about the field names in relation B).

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)

B = GROUP A BY f1;

DUMP B;
(1,{(1,2,3)})
(4,{(4,2,1),(4,3,3)})
(7,{(7,2,5)})
(8,{(8,3,4),(8,4,3)})

X = FOREACH B GENERATE COUNT(A);

DUMP X;
(1L)

Pig Latin Reference Manual 2

Page 101
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(2L)
(1L)
(2L)

7.4.5. Types Tables

int long float double chararray bytearray

COUNT long long long long long long

7.5. COUNT_STAR

Computes the number of elements in a bag.

7.5.1. Syntax

COUNT_STAR(expression)

7.5.2. Terms

expression An expression with data type bag.

7.5.3. Usage

Use the COUNT_STAR function to compute the number of elements in a bag.
COUNT_STAR requires a preceding GROUP ALL statement for global counts and a
GROUP BY statement for group counts.

COUNT_STAR includes NULL values in the count computation (unlike COUNT, which
ignores NULL values).

7.5.4. Example

In this example COUNT_STAR is used the count the tuples in a bag.

X = FOREACH B GENERATE COUNT_STAR(A);

7.6. DIFF

Compares two fields in a tuple.

7.6.1. Syntax

Pig Latin Reference Manual 2

Page 102
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DIFF (expression, expression)

7.6.2. Terms

expression An expression with any data type.

7.6.3. Usage

The DIFF function takes two bags as arguments and compares them. Any tuples that are in
one bag but not the other are returned in a bag. If the bags match, an empty bag is returned. If
the fields are not bags then they will be wrapped in tuples and returned in a bag if they do not
match, or an empty bag will be returned if the two records match. The implementation
assumes that both bags being passed to the DIFF function will fit entirely into memory
simultaneously. If this is not the case the UDF will still function but it will be VERY slow.

7.6.4. Example

In this example DIFF compares the tuples in two bags.

A = LOAD 'bag_data' AS
(B1:bag{T1:tuple(t1:int,t2:int)},B2:bag{T2:tuple(f1:int,f2:int)});

DUMP A;
({(8,9),(0,1)},{(8,9),(1,1)})
({(2,3),(4,5)},{(2,3),(4,5)})
({(6,7),(3,7)},{(2,2),(3,7)})

DESCRIBE A;
a: {B1: {T1: (t1: int,t2: int)},B2: {T2: (f1: int,f2: int)}}

X = FOREACH A DIFF(B1,B2);

grunt> dump x;
({(0,1),(1,1)})
({})
({(6,7),(2,2)})

7.7. IsEmpty

Checks if a bag or map is empty.

7.7.1. Syntax

IsEmpty(expression)

Pig Latin Reference Manual 2

Page 103
Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.7.2. Terms

expression An expression with any data type.

7.7.3. Usage

The IsEmpty function checks if a bag or map is empty (has no data). The function can be
used to filter data.

7.7.4. Example

In this example all students with an SSN but no name are located.

SSN = load 'ssn.txt' using PigStorage() as (ssn:long);

SSN_NAME = load 'students.txt' using PigStorage() as (ssn:long,
name:chararray);

-- do a left out join of SSN with SSN_Name
X = cogroup SSN by ssn inner, SSN_NAME by ssn;

-- only keep those ssn's for which there is no name
Y = filter X by IsEmpty(SSN_NAME);

7.8. MAX

Computes the maximum of the numeric values or chararrays in a single-column bag. MAX
requires a preceding GROUP ALL statement for global maximums and a GROUP BY
statement for group maximums.

7.8.1. Syntax

MAX(expression)

7.8.2. Terms

expression An expression with data types int, long, float, double,
or chararray.

7.8.3. Usage

Use the MAX function to compute the maximum of the numeric values or chararrays in a

Pig Latin Reference Manual 2

Page 104
Copyright © 2007 The Apache Software Foundation. All rights reserved.

single-column bag.

7.8.4. Example

In this example the maximum GPA for all terms is computed for each student (see the
GROUP operator for information about the field names in relation B).

A = LOAD 'student' AS (name:chararray, session:chararray, gpa:float);

DUMP A;
(John,fl,3.9F)
(John,wt,3.7F)
(John,sp,4.0F)
(John,sm,3.8F)
(Mary,fl,3.8F)
(Mary,wt,3.9F)
(Mary,sp,4.0F)
(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;
(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})
(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

X = FOREACH B GENERATE group, MAX(A.gpa);

DUMP X;
(John,4.0F)
(Mary,4.0F)

7.8.5. Types Tables

int long float double chararray bytearray

MAX int long float double chararray cast as
double

7.9. MIN

Computes the minimum of the numeric values or chararrays in a single-column bag. MIN
requires a preceding GROUP… ALL statement for global minimums and a GROUP … BY
statement for group minimums.

7.9.1. Syntax

MIN(expression)

Pig Latin Reference Manual 2

Page 105
Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.9.2. Terms

expression An expression with data types int, long, float, double,
or chararray.

7.9.3. Usage

Use the MIN function to compute the minimum of a set of numeric values or chararrays in a
single-column bag.

7.9.4. Example

In this example the minimum GPA for all terms is computed for each student (see the
GROUP operator for information about the field names in relation B).

A = LOAD 'student' AS (name:chararray, session:chararray, gpa:float);

DUMP A;
(John,fl,3.9F)
(John,wt,3.7F)
(John,sp,4.0F)
(John,sm,3.8F)
(Mary,fl,3.8F)
(Mary,wt,3.9F)
(Mary,sp,4.0F)
(Mary,sm,4.0F)

B = GROUP A BY name;

DUMP B;
(John,{(John,fl,3.9F),(John,wt,3.7F),(John,sp,4.0F),(John,sm,3.8F)})
(Mary,{(Mary,fl,3.8F),(Mary,wt,3.9F),(Mary,sp,4.0F),(Mary,sm,4.0F)})

X = FOREACH B GENERATE group, MIN(A.gpa);

DUMP X;
(John,3.7F)
(Mary,3.8F)

7.9.5. Types Tables

int long float double chararray bytearray

MIN int long float double chararray cast as
double

Pig Latin Reference Manual 2

Page 106
Copyright © 2007 The Apache Software Foundation. All rights reserved.

7.10. SIZE

Computes the number of elements based on any Pig data type.

7.10.1. Syntax

SIZE(expression)

7.10.2. Terms

expression An expression with any data type.

7.10.3. Usage

Use the SIZE function to compute the number of elements based on the data type (see the
Types Tables below). SIZE includes NULL values in the size computation. SIZE is not
algebraic.

7.10.4. Example

In this example the number of characters in the first field is computed.

A = LOAD 'data' as (f1:chararray, f2:chararray, f3:chararray);
(apache,open,source)
(hadoop,map,reduce)
(pig,pig,latin)

X = FOREACH A GENERATE SIZE(f1);

DUMP X;
(6L)
(6L)
(3L)

7.10.5. Types Tables

int returns 1

long returns 1

float returns 1

double returns 1

Pig Latin Reference Manual 2

Page 107
Copyright © 2007 The Apache Software Foundation. All rights reserved.

chararray returns number of characters in the array

bytearray returns number of bytes in the array

tuple returns number of fields in the tuple

bag returns number of tuples in bag

map returns number of key/value pairs in map

7.11. SUM

Computes the sum of the numeric values in a single-column bag. SUM requires a preceding
GROUP ALL statement for global sums and a GROUP BY statement for group sums.

7.11.1. Syntax

SUM(expression)

7.11.2. Terms

expression An expression with data types int, long, float, double,
or bytearray cast as double.

7.11.3. Usage

Use the SUM function to compute the sum of a set of numeric values in a single-column bag.

7.11.4. Example

In this example the number of pets is computed. (see the GROUP operator for information
about the field names in relation B).

A = LOAD 'data' AS (owner:chararray, pet_type:chararray, pet_num:int);

DUMP A;
(Alice,turtle,1)
(Alice,goldfish,5)
(Alice,cat,2)
(Bob,dog,2)

Pig Latin Reference Manual 2

Page 108
Copyright © 2007 The Apache Software Foundation. All rights reserved.

(Bob,cat,2)

B = GROUP A BY owner;

DUMP B;
(Alice,{(Alice,turtle,1),(Alice,goldfish,5),(Alice,cat,2)})
(Bob,{(Bob,dog,2),(Bob,cat,2)})

X = FOREACH B GENERATE group, SUM(A.pet_num);
DUMP X;
(Alice,8L)
(Bob,4L)

7.11.5. Types Tables

int long float double chararray bytearray

SUM long long double double error cast as
double

7.12. TOKENIZE

Splits a string and outputs a bag of words.

7.12.1. Syntax

TOKENIZE(expression)

7.12.2. Terms

expression An expression with data type chararray.

7.12.3. Usage

Use the TOKENIZE function to split a string of words (all words in a single tuple) into a bag
of words (each word in a single tuple). The following characters are considered to be word
separators: space, double quote("), coma(,) parenthesis(()), star(*).

7.12.4. Example

In this example the strings in each row are split.

A = LOAD 'data' AS (f1:chararray);

Pig Latin Reference Manual 2

Page 109
Copyright © 2007 The Apache Software Foundation. All rights reserved.

DUMP A;
(Here is the first string.)
(Here is the second string.)
(Here is the third string.)

X = FOREACH A GENERATE TOKENIZE(f1);

DUMP X;
({(Here),(is),(the),(first),(string.)})
({(Here),(is),(the),(second),(string.)})
({(Here),(is),(the),(third),(string.)})

8. Load/Store Functions

Load/Store functions determine how data goes into Pig and comes out of Pig. Pig provides a
set of built-in load/store functions, described in the sections below. You can also write your
own load/store functions (see the Pig UDF Manual).

8.1. Handling Compression

Support for compression is determined by the load/store function. PigStorage and
TextLoader support gzip and bzip compression for both read (load) and write (store).
BinStorage does not support compression.

To work with gzip compressed files, input/output files need to have a .gz extension. Gzipped
files cannot be split across multiple maps; this means that the number of maps created is
equal to the number of part files in the input location.

A = load ‘myinput.gz’;
store A into ‘myoutput.gz’;

To work with bzip compressed files, the input/output files need to have a .bz or .bz2
extension. Because the compression is block-oriented, bzipped files can be split across
multiple maps.

A = load ‘myinput.bz’;
store A into ‘myoutput.bz’;

Note: PigStorage and TextLoader correctly read compressed files as long as they are NOT
CONCATENATED FILES generated in this manner:

• cat *.gz > text/concat.gz

• cat *.bz > text/concat.bz

• cat *.bz2 > text/concat.bz2

If you use concatenated gzip or bzip files with your Pig jobs, you will NOT see a failure but

Pig Latin Reference Manual 2

Page 110
Copyright © 2007 The Apache Software Foundation. All rights reserved.

udf.html#Load%2FStore+Functions

the results will be INCORRECT.

8.2. BinStorage

Loads and stores data in machine-readable format.

8.2.1. Syntax

BinStorage()

8.2.2. Terms

none no parameters

8.2.3. Usage

BinStorage works with data that is represented on disk in machine-readable format.
BinStorage does NOT support compression.

BinStorage is used internally by Pig to store the temporary data that is created between
multiple map/reduce jobs.

BinStorage supports multiple locations (files, directories, globs) as input.

8.2.4. Example

In this example BinStorage is used with the LOAD and STORE functions.

A = LOAD 'data' USING BinStorage();

STORE X into 'output' USING BinStorage();

In this example BinStorage is used to load multiple locations.

A = LOAD 'input1.bin, input2.bin' USING BinStorage();

8.3. PigStorage

Loads and stores data in UTF-8 format.

8.3.1. Syntax

Pig Latin Reference Manual 2

Page 111
Copyright © 2007 The Apache Software Foundation. All rights reserved.

PigStorage(field_delimiter)

8.3.2. Terms

field_delimiter Parameter.

The default field delimiter is tab ('\t').

You can specify other characters as field delimiters;
however, be sure to encase the characters in single
quotes.

8.3.3. Usage

PigStorage is the default function for the LOAD and STORE operators and works with both
simple and complex data types.

PigStorage supports structured text files (in human-readable UTF-8 format). PigStorage also
supports compression.

PigStorage supports multiple locations (files, directories, globs) as input.

Load statements – PigStorage expects data to be formatted using field delimiters, either the
tab character ('\t') or other specified character.

Store statements – PigStorage outputs data using field deliminters, either the tab character
('\t') or other specified character, and the line feed record delimiter ('\n').

Field Delimiters – For load and store statements the default field delimiter is the tab character
('\t'). You can use other characters as field delimiters, but separators such as ^A or Ctrl-A
should be represented in Unicode (\u0001) using UTF-16 encoding (see Wikipedia ASCII,
Unicode, and UTF-16).

Record Deliminters – For load statements Pig interprets the line feed ('\n'), carriage return (
'\r' or CTRL-M) and combined CR + LF ('\r\n') characters as record delimiters (do not use
these characters as field delimiters). For store statements Pig uses the line feed ('\n') character
as the record delimiter.

8.3.4. Example

In this example PigStorage expects input.txt to contain tab-separated fields and
newline-separated records. The statements are equivalent.

A = LOAD 'student' USING PigStorage('\t') AS (name: chararray, age:int,

Pig Latin Reference Manual 2

Page 112
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-16

gpa: float);

A = LOAD 'student' AS (name: chararray, age:int, gpa: float);

In this example PigStorage stores the contents of X into files with fields that are delimited
with an asterisk (*). The STORE function specifies that the files will be located in a
directory named output and that the files will be named part-nnnnn (for example,
part-00000).

STORE X INTO 'output' USING PigStorage('*');

8.4. PigDump

Stores data in UTF-8 format.

8.4.1. Syntax

PigDump()

8.4.2. Terms

none no parameters

8.4.3. Usage

PigDump stores data as tuples in human-readable UTF-8 format.

8.4.4. Example

In this example PigDump is used with the STORE function.

STORE X INTO 'output' USING PigDump();

8.5. TextLoader

Loads unstructured data in UTF-8 format.

8.5.1. Syntax

TextLoader()

8.5.2. Terms

Pig Latin Reference Manual 2

Page 113
Copyright © 2007 The Apache Software Foundation. All rights reserved.

none no parameters

8.5.3. Usage

TextLoader works with unstructured data in UTF8 format. Each resulting tuple contains a
single field with one line of input text. TextLoader also supports compression.

Currently, TextLoader support for compression is limited.

TextLoader cannot be used to store data.

8.5.4. Example

In this example TextLoader is used with the LOAD function.

A = LOAD 'data' USING TextLoader();

9. Math Functions

For general information about these functions, see the Java API Specification, Class Math.
Note the following:

• Pig function names are case sensitive and UPPER CASE.

• Pig may process results differently than as stated in the Java API Specification:

• If the result value is null or empty, Pig returns null.

• If the result value is not a number (NaN), Pig returns null.

• If Pig is unable to process the expression, Pig returns an exception.

9.1. ABS

Returns the absolute value of an expression.

9.1.1. Syntax

ABS(expression)

9.1.2. Terms

expression Any expression whose result is type int, long, float,
or double.

Pig Latin Reference Manual 2

Page 114
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/java/lang/Math.html

9.1.3. Usage

Use the ABS function to return the absolute value of an expression. If the result is not
negative (x # 0), the result is returned. If the result is negative (x < 0), the negation of the
result is returned.

9.2. ACOS

Returns the arc cosine of an expression.

9.2.1. Syntax

ACOS(expression)

9.2.2. Terms

expression An expression whose result is type double.

9.2.3. Usage

Use the ACOS function to return the arc cosine of an expression.

9.3. ASIN

Returns the arc sine of an expression.

9.3.1. Syntax

ASIN(expression)

9.3.2. Terms

expression An expression whose result is type double.

9.3.3. Usage

Use the ASIN function to return the arc sine of an expression.

Pig Latin Reference Manual 2

Page 115
Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.4. ATAN

Returns the arc tangent of an expression.

9.4.1. Syntax

ATAN(expression)

9.4.2. Terms

expression An expression whose result is type double.

9.4.3. Usage

Use the ATAN function to return the arc tangent of an expression.

9.5. CBRT

Returns the cube root of an expression.

9.5.1. Syntax

CBRT(expression)

9.5.2. Terms

expression An expression whose result is type double.

9.5.3. Usage

Use the CBRT function to return the cube root of an expression.

9.6. CEIL

Returns the value of an expression rounded up to the nearest integer.

9.6.1. Syntax

CEIL(expression)

Pig Latin Reference Manual 2

Page 116
Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.6.2. Terms

expression An expression whose result is type double.

9.6.3. Usage

Use the CEIL function to return the value of an expression rounded up to the nearest integer.
This function never decreases the result value.

x CEIL(x)

4.6 5

3.5 4

2.4 3

1.0 1

-1.0 -1

-2.4 -2

-3.5 -3

-4.6 -4

9.7. COSH

Returns the hyperbolic cosine of an expression.

9.7.1. Syntax

COSH(expression)

9.7.2. Terms

expression An expression whose result is type double.

Pig Latin Reference Manual 2

Page 117
Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.7.3. Usage

Use the COSH function to return the hyperbolic cosine of an expression.

9.8. COS

Returns the trigonometric cosine of an expression.

9.8.1. Syntax

COS(expression)

9.8.2. Terms

expression An expression (angle) whose result is type double.

9.8.3. Usage

Use the COS function to return the trigonometric cosine of an expression.

9.9. EXP

Returns Euler's number e raised to the power of x.

9.9.1. Syntax

EXP(expression)

9.9.2. Terms

expression An expression whose result is type double.

9.9.3. Usage

Use the EXP function to return the value of Euler's number e raised to the power of x (where
x is the result value of the expression).

9.10. FLOOR

Pig Latin Reference Manual 2

Page 118
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Returns the value of an expression rounded down to the nearest integer.

9.10.1. Syntax

FLOOR(expression)

9.10.2. Terms

expression An expression whose result is type double.

9.10.3. Usage

Use the FLOOR function to return the value of an expression rounded down to the nearest
integer. This function never increases the result value.

x CEIL(x)

4.6 4

3.5 3

2.4 2

1.0 1

-1.0 -1

-2.4 -3

-3.5 -4

-4.6 -5

9.11. LOG

Returns the natural logarithm (base e) of an expression.

9.11.1. Syntax

Pig Latin Reference Manual 2

Page 119
Copyright © 2007 The Apache Software Foundation. All rights reserved.

LOG(expression)

9.11.2. Terms

expression An expression whose result is type double.

9.11.3. Usage

Use the LOG function to return the natural logarithm (base e) of an expression.

9.12. LOG10

Returns the base 10 logarithm of an expression.

9.12.1. Syntax

LOG10(expression)

9.12.2. Terms

expression An expression whose result is type double.

9.12.3. Usage

Use the LOG10 function to return the base 10 logarithm of an expression.

9.13. RANDOM

Returns a pseudo random number.

9.13.1. Syntax

RANDOM()

9.13.2. Terms

N/A No terms.

Pig Latin Reference Manual 2

Page 120
Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.13.3. Usage

Use the RANDOM function to return a pseudo random number (type double) greater than or
equal to 0.0 and less than 1.0.

9.14. ROUND

Returns the value of an expression rounded to an integer.

9.14.1. Syntax

ROUND(expression)

9.14.2. Terms

expression An expression whose result is type float or double.

9.14.3. Usage

Use the ROUND function to return the value of an expression rounded to an integer (if the
result type is float) or rounded to a long (if the result type is double).

x CEIL(x)

4.6 5

3.5 4

2.4 2

1.0 1

-1.0 -1

-2.4 -2

-3.5 -3

-4.6 -5

Pig Latin Reference Manual 2

Page 121
Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.15. SIN

Returns the sine of an expression.

9.15.1. Syntax

SIN(expression)

9.15.2. Terms

expression An expression whose result is double.

9.15.3. Usage

Use the SIN function to return the sine of an expession.

9.16. SINH

Returns the hyperbolic sine of an expression.

9.16.1. Syntax

SINH(expression)

9.16.2. Terms

expression An expression whose result is double.

9.16.3. Usage

Use the SINH function to return the hyperbolic sine of an expression.

9.17. SQRT

Returns the positive square root of an expression.

9.17.1. Syntax

SQRT(expression)

Pig Latin Reference Manual 2

Page 122
Copyright © 2007 The Apache Software Foundation. All rights reserved.

9.17.2. Terms

expression An expression whose result is double.

9.17.3. Usage

Use the SQRT function to return the positive square root of an expression.

9.18. TAN

Returns the trignometric tangent of an angle.

9.18.1. Syntax

TAN(expression)

9.18.2. Terms

expression An expression (angle) whose result is double.

9.18.3. Usage

Use the TAN function to return the trignometric tangent of an angle.

9.19. TANH

Returns the hyperbolic tangent of an expression.

9.19.1. Syntax

TANH(expression)

9.19.2. Terms

expression An expression whose result is double.

9.19.3. Usage

Pig Latin Reference Manual 2

Page 123
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Use the TANH function to return the hyperbolic tangent of an expression.

10. String Functions

For general information about these functions, see the Java API Specification, Class String.
Note the following:

• Pig function names are case sensitive and UPPER CASE.

• Pig string functions have an extra, first parameter: the string to which all the operations
are applied.

• Pig may process results differently than as stated in the Java API Specification. If any of
the input parameters are null or if an insufficient number of parameters are supplied,
NULL is returned.

10.1. INDEXOF

Returns the index of the first occurrence of a character in a string, searching forward from a
start index.

10.1.1. Syntax

INDEXOF(string, 'character', startIndex)

10.1.2. Terms

string The string to be searched.

'character' The character being searched for, in quotes.

startIndex The index from which to begin the forward search.

The string index begins with zero (0).

10.1.3. Usage

Use the INDEXOF function to determine the index of the first occurrence of a character in a
string. The forward search for the character begins at the designated start index.

10.2. LAST_INDEX_OF

Pig Latin Reference Manual 2

Page 124
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Returns the index of the last occurrence of a character in a string, searching backward from a
start index.

10.2.1. Syntax

LAST_INDEX_OF(expression)

10.2.2. Terms

string The string to be searched.

'character' The character being searched for, in quotes.

startIndex The index from which to begin the backward search.

The string index begins with zero (0).

10.2.3. Usage

Use the LAST_INDEX_OF function to determine the index of the last occurrence of a
character in a string. The backward search for the character begins at the designated start
index.

10.3. LCFIRST

Converts the first character in a string to lower case.

10.3.1. Syntax

LCFIRST(expression)

10.3.2. Terms

expression An expression whose result type is chararray.

10.3.3. Usage

Use the LCFIRST function to convert only the first character in a string to lower case.

Pig Latin Reference Manual 2

Page 125
Copyright © 2007 The Apache Software Foundation. All rights reserved.

10.4. LOWER

Converts all characters in a string to lower case.

10.4.1. Syntax

LOWER(expression)

10.4.2. Terms

expression An expression whose result type is chararray.

10.4.3. Usage

Use the LOWER function to convert all characters in a string to lower case.

10.5. REGEX_EXTRACT

Performs regular expression matching and extracts the matched group defined by an index
parameter.

10.5.1. Syntax

REGEX_EXTRACT (string, regex, index)

10.5.2. Terms

string The string in which to perform the match.

regex The regular expression.

index The index of the matched group to return.

10.5.3. Usage

Use the REGEX_EXTRACT function to perform regular expression matching and to extract
the matched group defined by the index parameter (where the index is a 1-based parameter.)
The function uses Java regular expression form.

Pig Latin Reference Manual 2

Page 126
Copyright © 2007 The Apache Software Foundation. All rights reserved.

The function returns a string that corresponds to the matched group in the position specified
by the index. If there is no matched expression at that position, NULL is returned.

10.5.4. Example

This example will return the string '192.168.1.5'.

REGEX_EXTRACT('192.168.1.5:8020', '(.*)\:(.*)', 1);

10.6. REGEX_EXTRACT_ALL

Performs regular expression matching and extracts all matched groups.

10.6.1. Syntax

REGEX_EXTRACT (string, regex)

10.6.2. Terms

string The string in which to perform the match.

regex The regular expression.

10.6.3. Usage

Use the REGEX_EXTRACT_ALL function to perform regular expression matching and to
extract all matched groups. The function uses Java regular expression form.

The function returns a tuple where each field represents a matched expression. If there is no
match, an empty tuple is returned.

10.6.4. Example

This example will return the tuple (192.168.1.5,8020).

REGEX_EXTRACT_ALL('192.168.1.5:8020', '(.*)\:(.*)');

10.7. REPLACE

Replaces existing characters in a string with new characters.

Pig Latin Reference Manual 2

Page 127
Copyright © 2007 The Apache Software Foundation. All rights reserved.

10.7.1. Syntax

REPLACE(string, 'oldChar', 'newChar');

10.7.2. Terms

string The string to be updated.

'oldChar' The existing characters being replaced, in quotes.

'newChar' The new characters replacing the existing characters,
in quotes.

10.7.3. Usage

Use the REPLACE function to replace existing characters in a string with new characters.

For example, to change "open source software" to "open source wiki" use this statement:
REPLACE(string,'software','wiki');

10.8. STRSPLIT

Splits a string around matches of a given regular expression.

10.8.1. Syntax

STRSPLIT(string, regex, limit)

10.8.2. Terms

string The string to be split.

regex The regular expression.

Limit The number of times the pattern (the compiled
representation of the regular expression) is applied.

10.8.3. Usage

Pig Latin Reference Manual 2

Page 128
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Use the STRSPLIT function to split a string around matches of a given regular expression.

For example, given the string (open:source:software), STRSPLIT (string, ':',2) will return
((open,source:software)) and STRSPLIT (string, ':',3) will return ((open,source,software)).

10.9. SUBSTRING

Returns a substring from a given string.

10.9.1. Syntax

SUBSTRING(string, startIndex, stopIndex)

10.9.2. Terms

string The string from which a substring will be extracted.

startIndex The index (type integer) of the first character of the
substring.

The index of a string begins with zero (0).

stopIndex The index (type integer) of the character following
the last character of the substring.

10.9.3. Usage

Use the SUBSTRING function to return a substring from a given string.

Given a field named alpha whose value is ABCDEF, to return substring BCD use this
statement: SUBSTRING(alpha,1,4). Note that 1 is the index of B (the first character of the
substring) and 4 is the index of E (the character following the last character of the substring).

10.10. TRIM

Returns a copy of a string with leading and trailing white space removed.

10.10.1. Syntax

TRIM(expression)

Pig Latin Reference Manual 2

Page 129
Copyright © 2007 The Apache Software Foundation. All rights reserved.

10.10.2. Terms

expression An expression whose result is chararray.

10.10.3. Usage

Use the TRIM function to remove leading and trailing white space from a string.

10.11. UCFIRST

Returns a string with the first character converted to upper case.

10.11.1. Syntax

UCFIRST(expression)

10.11.2. Terms

expression An expression whose result type is chararray.

10.11.3. Usage

Use the UCFIRST function to convert only the first character in a string to upper case.

10.12. UPPER

Returns a string converted to upper case.

10.12.1. Syntax

UPPER(expression)

10.12.2. Terms

expression An expression whose result type is chararray.

10.12.3. Usage

Use the UPPER function to convert all characters in a string to upper case.

Pig Latin Reference Manual 2

Page 130
Copyright © 2007 The Apache Software Foundation. All rights reserved.

11. Bag and Tuple Functions

11.1. TOBAG

Converts one or more expressions to type bag.

11.1.1. Syntax

TOBAG(expression [, expression ...])

11.1.2. Terms

expression An expression with any data type.

11.1.3. Usage

Use the TOBAG function to convert one or more expressions to individual tuples which are
then placed in a bag.

11.1.4. Example

In this example, fields f1 and f3 are converted to tuples that are then placed in a bag.

a = LOAD 'student' AS (f1:chararray, f2:int, f3:float);
DUMP a;

(John,18,4.0)
(Mary,19,3.8)
(Bill,20,3.9)
(Joe,18,3.8)

b = FOREACH a GENERATE TOBAG(f1,f3);
DUMP b;

({(John),(4.0)})
({(Mary),(3.8)})
({(Bill),(3.9)})
({(Joe),(3.8)})

11.2. TOP

Returns the top-n tuples from a bag of tuples.

Pig Latin Reference Manual 2

Page 131
Copyright © 2007 The Apache Software Foundation. All rights reserved.

11.2.1. Syntax

TOP(topN,column,relation)

11.2.2. Terms

topN The number of top tuples to return (type integer).

column The tuple column whose values are being compared.

relation The relation (bag of tuples) containing the tuple
column.

11.2.3. Usage

TOP function returns a bag containing top N tuples from the input bag where N is controlled
by the first parameter to the function. The tuple comparison is performed based on a single
column from the tuple. The column position is determined by the second parameter to the
function. The function assumes that all tuples in the bag contain an element of the same type
in the compared column

11.2.4. Example

In this example the top 10 occurrences are returned.

A = LOAD 'data' as (first: chararray, second: chararray);
B = GROUP A BY (first, second);
C = FOREACH B generate FLATTEN(group), COUNT(*) as count;
D = GROUP C BY first; // again group by first
topResults = FOREACH D {

result = TOP(10, 2, C); // and retain top 10 occurrences of 'second' in
first

GENERATE FLATTEN(result);
}

11.3. TOTUPLE

Converts one or more expressions to type tuple.

11.3.1. Syntax

TOTUPLE(expression [, expression ...])

Pig Latin Reference Manual 2

Page 132
Copyright © 2007 The Apache Software Foundation. All rights reserved.

11.3.2. Terms

expression An expression of any datatype.

11.3.3. Usage

Use the TOTUPLE function to convert one or more expressions to a tuple.

11.3.4. Example

In this example, fields f1, f2 and f3 are converted to a tuple.

a = LOAD 'student' AS (f1:chararray, f2:int, f3:float);
DUMP a;

(John,18,4.0)
(Mary,19,3.8)
(Bill,20,3.9)
(Joe,18,3.8)

b = FOREACH a GENERATE TOTUPLE(f1,f2,f3);
DUMP b;

((John,18,4.0))
((Mary,19,3.8))
((Bill,20,3.9))
((Joe,18,3.8))

12. File Commands

Note: Beginning with Pig 0.6.0, the file commands are now deprecated and will be removed
in a future release. Start using Pig's -fs command to invoke the shell commands shell
commands.

12.1. cat

Prints the content of one or more files to the screen.

12.1.1. Syntax

cat path [path …]

12.1.2. Terms

Pig Latin Reference Manual 2

Page 133
Copyright © 2007 The Apache Software Foundation. All rights reserved.

path The location of a file or directory.

12.1.3. Usage

The cat command is similar to the Unix cat command. If multiple files are specified, content
from all files is concatenated together. If multiple directories are specified, content from all
files in all directories is concatenated together.

12.1.4. Example

In this example the students file in the data directory is printed.

grunt> cat data/students;
joe smith
john adams
anne white

12.2. cd

Changes the current directory to another directory.

12.2.1. Syntax

cd [dir]

12.2.2. Terms

dir The name of the directory you want to navigate to.

12.2.3. Usage

The cd command is similar to the Unix cd command and can be used to navigate the file
system. If a directory is specified, this directory is made your current working directory and
all other operations happen relatively to this directory. If no directory is specified, your home
directory (/user/NAME) becomes the current working directory.

12.2.4. Example

In this example we move to the /data directory.

grunt> cd /data

Pig Latin Reference Manual 2

Page 134
Copyright © 2007 The Apache Software Foundation. All rights reserved.

12.3. copyFromLocal

Copies a file or directory from the local file system to HDFS.

12.3.1. Syntax

copyFromLocal src_path dst_path

12.3.2. Terms

src_path The path on the local file system for a file or
directory

dst_path The path on HDFS.

12.3.3. Usage

The copyFromLocal command enables you to copy a file or a director from the local file
system to the Hadoop Distributed File System (HDFS). If a directory is specified, it is
recursively copied over. Dot "." can be used to specify that the new file/directory should be
created in the current working directory and retain the name of the source file/directory.

12.3.4. Example

In this example a file (students) and a directory (/data/tests) are copied from the local file
system to HDFS.

grunt> copyFromLocal /data/students students

grunt> ls students
/data/students <r 3> 8270

grunt> copyFromLocal /data/tests new_tests

grunt> ls new_test
/data/new_test/test1.data <r 3> 664
/data/new_test/test2.data <r 3> 344
/data/new_test/more_data

12.4. copyToLocal

Copies a file or directory from HDFS to a local file system.

Pig Latin Reference Manual 2

Page 135
Copyright © 2007 The Apache Software Foundation. All rights reserved.

12.4.1. Syntax

copyToLocal src_path dst_path

12.4.2. Terms

src_path The path on HDFS.

dst_path The path on the local file system for a file or
directory.

12.4.3. Usage

The copyToLocal command enables you to copy a file or a director from Hadoop Distributed
File System (HDFS) to a local file system. If a directory is specified, it is recursively copied
over. Dot "." can be used to specify that the new file/directory should be created in the
current working directory (directory from which the script was executed or grunt shell
started) and retain the name of the source file/directory.

12.4.4. Example

In this example two files are copied from HDFS to the local file system.

grunt> copyToLocal students /data
grunt> copyToLocal data /data/mydata

12.5. cp

Copies a file or directory within HDFS.

12.5.1. Syntax

cp src_path dst_path

12.5.2. Terms

src_path The path on HDFS.

dst_path The path on HDFS.

Pig Latin Reference Manual 2

Page 136
Copyright © 2007 The Apache Software Foundation. All rights reserved.

12.5.3. Usage

The cp command is similar to the Unix cp command and enables you to copy files or
directories within DFS. If a directory is specified, it is recursively copied over. Dot "." can be
used to specify that the new file/directory should be created in the current working directory
and retain the name of the source file/directory.

12.5.4. Example

In this example a file (students) is copied to another file (students_save).

grunt> cp students students_save

12.6. ls

Lists the contents of a directory.

12.6.1. Syntax

ls [path]

12.6.2. Terms

path The name of the path/directory.

12.6.3. Usage

The ls command is similar to the Unix ls command and enables you to list the contents of a
directory. If DIR is specified, the command lists the content of the specified directory.
Otherwise, the content of the current working directory is listed.

12.6.4. Example

In this example the contents of the data directory are listed.

grunt> ls /data
/data/DDLs <dir>
/data/count <dir>
/data/data <dir>
/data/schema <dir>

12.7. mkdir

Pig Latin Reference Manual 2

Page 137
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Creates a new directory.

12.7.1. Syntax

mkdir path

12.7.2. Terms

path The name of the path/directory.

12.7.3. Usage

The mkdir command is similar to the Unix mkdir command and enables you to create a new
directory. If you specify a directory or path that does not exist, it will be created.

12.7.4. Example

In this example a directory and subdirectory are created.

grunt> mkdir data/20070905

12.8. mv

Moves a file or directory within the Hadoop Distributed File System (HDFS).

12.8.1. Syntax

mv src_path dst_path

12.8.2. Terms

src_path The path on HDFS.

dst_path The path on HDFS.

12.8.3. Usage

The mv command is identical to the Unix mv command (which copies files or directories
within DFS) except that it deletes the source file or directory as soon as it is copied.

Pig Latin Reference Manual 2

Page 138
Copyright © 2007 The Apache Software Foundation. All rights reserved.

If a directory is specified, it is recursively moved. Dot "." can be used to specify that the new
file/directory should be created in the current working directory and retain the name of the
source file/directory.

12.8.4. Example

In this example the output directory is copied to output2 and then deleted.

grunt> mv output output2

grunt> ls output
File or directory output does not exist.

grunt> ls output2
/data/output2/map-000000<r 3> 508844
/data/output2/output3 <dir>
/data/output2/part-00000<r 3> 0

12.9. pwd

Prints the name of the current working directory.

12.9.1. Syntax

pwd

12.9.2. Terms

none no parameters

12.9.3. Usage

The pwd command is identical to Unix pwd command and it prints the name of the current
working directory.

12.9.4. Example

In this example the name of the current working directory is /data.

grunt> pwd
/data

Pig Latin Reference Manual 2

Page 139
Copyright © 2007 The Apache Software Foundation. All rights reserved.

12.10. rm

Removes one or more files or directories.

12.10.1. Syntax

rm path [path…]

12.10.2. Terms

path The name of the path/directory/file.

12.10.3. Usage

The rm command is similar to the Unix rm command and enables you to remove one or more
files or directories.

Note: This command recursively removes a directory even if it is not empty and it does not
confirm remove and the removed data is not recoverable.

12.10.4. Example

In this example files are removed.

grunt> rm /data/students
grunt> rm students students_sav

12.11. rmf

Forcibly removes one or more files or directories.

12.11.1. Syntax

rmf path [path …]

12.11.2. Terms

path The name of the path/directory/file.

12.11.3. Usage

Pig Latin Reference Manual 2

Page 140
Copyright © 2007 The Apache Software Foundation. All rights reserved.

The rmf command is similar to the Unix rm -f command and enables you to forcibly remove
one or more files or directories.

Note: This command recursively removes a directory even if it is not empty and it does not
confirm remove and the removed data is not recoverable.

12.11.4. Example

In this example files are forcibly removed.

grunt> rmf /data/students
grunt> rmf students students_sav

13. Shell Commands

13.1. fs

Invokes any FSShell command from within a Pig script or the Grunt shell.

13.1.1. Syntax

fs subcommand subcommand_parameters

13.1.2. Terms

subcommand The FSShell command.

subcommand_parameters The FSShell command parameters.

13.1.3. Usage

Use the fs command to invoke any FSShell command from within a Pig script or Grunt shell.
The fs command greatly extends the set of supported file system commands and the
capabilities supported for existing commands such as ls that will now support globing. For a
complete list of FSShell commands, see File System Shell Guide

13.1.4. Examples

In these examples a directory is created, a file is copied, a file is listed.

fs -mkdir /tmp

Pig Latin Reference Manual 2

Page 141
Copyright © 2007 The Apache Software Foundation. All rights reserved.

http://hadoop.apache.org/common/docs/current/file_system_shell.html

fs -copyFromLocal file-x file-y
fs -ls file-y

13.2. sh

Invokes any sh shell command from within a Pig script or the Grunt shell.

13.2.1. Syntax

sh subcommand subcommand_parameters

13.2.2. Terms

subcommand The sh shell command.

subcommand_parameters The sh shell command parameters.

13.2.3. Usage

Use the sh command to invoke any sh shell command from within a Pig script or Grunt shell.

Note that only real programs can be run form the sh command. Commands such as cd are not
programs but part of the shell environment and as such cannot be executed unless the user
invokes the shell explicitly, like "bash cd".

13.2.4. Example

In this example the ls command is invoked.

grunt> sh ls
bigdata.conf
nightly.conf
.....
grunt>

14. Utility Commands

14.1. exec

Run a Pig script.

14.1.1. Syntax

Pig Latin Reference Manual 2

Page 142
Copyright © 2007 The Apache Software Foundation. All rights reserved.

exec [–param param_name = param_value] [–param_file file_name] script

14.1.2. Terms

–param param_name = param_value See Parameter Substitution.

–param_file file_name See Parameter Substitution.

script The name of a Pig script.

14.1.3. Usage

Use the exec command to run a Pig script with no interaction between the script and the
Grunt shell (batch mode). Aliases defined in the script are not available to the shell; however,
the files produced as the output of the script and stored on the system are visible after the
script is run. Aliases defined via the shell are not available to the script.

With the exec command, store statements will not trigger execution; rather, the entire script
is parsed before execution starts. Unlike the run command, exec does not change the
command history or remembers the handles used inside the script. Exec without any
parameters can be used in scripts to force execution up to the point in the script where the
exec occurs.

For comparison, see the run command. Both the exec and run commands are useful for
debugging because you can modify a Pig script in an editor and then rerun the script in the
Grunt shell without leaving the shell. Also, both commands promote Pig script modularity as
they allow you to reuse existing components.

14.1.4. Examples

In this example the script is displayed and run.

grunt> cat myscript.pig
a = LOAD 'student' AS (name, age, gpa);
b = LIMIT a 3;
DUMP b;

grunt> exec myscript.pig
(alice,20,2.47)
(luke,18,4.00)
(holly,24,3.27)

In this example parameter substitution is used with the exec command.

Pig Latin Reference Manual 2

Page 143
Copyright © 2007 The Apache Software Foundation. All rights reserved.

grunt> cat myscript.pig
a = LOAD 'student' AS (name, age, gpa);
b = ORDER a BY name;

STORE b into '$out';

grunt> exec –param out=myoutput myscript.pig

In this example multiple parameters are specified.

grunt> exec –param p1=myparam1 –param p2=myparam2 myscript.pig

14.2. help

Prints a list of Pig commands or properties.

14.2.1. Syntax

-help [properties]

14.2.2. Terms

properties List Pig properties.

14.2.3. Usage

The help command prints a list of Pig commands or properties.

14.2.4. Example

Use "help" to get a list of commands.

$ pig -help

Apache Pig version 0.8.1-dev (r1094835)
compiled Apr 18 2011, 19:26:53

USAGE: Pig [options] [-] : Run interactively in grunt shell.
Pig [options] -e[xecute] cmd [cmd ...] : Run cmd(s).
Pig [options] [-f[ile]] file : Run cmds found in file.

options include:
-4, -log4jconf - Log4j configuration file, overrides log conf
-b, -brief - Brief logging (no timestamps)
-c, -check - Syntax check

etc …

Pig Latin Reference Manual 2

Page 144
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Use "-help properties" to get a list of properties.

$ pig -help properties

The following properties are supported:
Logging:

verbose=true|false; default is false. This property is the same as
-v switch

brief=true|false; default is false. This property is the same as -b
switch

debug=OFF|ERROR|WARN|INFO|DEBUG; default is INFO. This property is
the same as -d switch

aggregate.warning=true|false; default is true. If true, prints
count of warnings

of each type rather than logging each warning.
etc …

14.3. kill

Kills a job.

14.3.1. Syntax

kill jobid

14.3.2. Terms

jobid The job id.

14.3.3. Usage

The kill command enables you to kill a job based on a job id.

14.3.4. Example

In this example the job with id job_0001 is killed.

grunt> kill job_0001

14.4. quit

Quits from the Pig grunt shell.

14.4.1. Syntax

Pig Latin Reference Manual 2

Page 145
Copyright © 2007 The Apache Software Foundation. All rights reserved.

exit

14.4.2. Terms

none no parameters

14.4.3. Usage

The quit command enables you to quit or exit the Pig grunt shell.

14.4.4. Example

In this example the quit command exits the Pig grunt shall.

grunt> quit

14.5. run

Run a Pig script.

14.5.1. Syntax

run [–param param_name = param_value] [–param_file file_name] script

14.5.2. Terms

–param param_name = param_value See Parameter Substitution.

–param_file file_name See Parameter Substitution.

script The name of a Pig script.

14.5.3. Usage

Use the run command to run a Pig script that can interact with the Grunt shell (interactive
mode). The script has access to aliases defined externally via the Grunt shell. The Grunt shell
has access to aliases defined within the script. All commands from the script are visible in the
command history.

With the run command, every store triggers execution. The statements from the script are put

Pig Latin Reference Manual 2

Page 146
Copyright © 2007 The Apache Software Foundation. All rights reserved.

into the command history and all the aliases defined in the script can be referenced in
subsequent statements after the run command has completed. Issuing a run command on the
grunt command line has basically the same effect as typing the statements manually.

For comparison, see the exec command. Both the run and exec commands are useful for
debugging because you can modify a Pig script in an editor and then rerun the script in the
Grunt shell without leaving the shell. Also, both commands promote Pig script modularity as
they allow you to reuse existing components.

14.5.4. Example

In this example the script interacts with the results of commands issued via the Grunt shell.

grunt> cat myscript.pig
b = ORDER a BY name;
c = LIMIT b 10;

grunt> a = LOAD 'student' AS (name, age, gpa);

grunt> run myscript.pig

grunt> d = LIMIT c 3;

grunt> DUMP d;
(alice,20,2.47)
(alice,27,1.95)
(alice,36,2.27)

In this example parameter substitution is used with the run command.

grunt> a = LOAD 'student' AS (name, age, gpa);

grunt> cat myscript.pig
b = ORDER a BY name;
STORE b into '$out';

grunt> run –param out=myoutput myscript.pig

14.6. set

Assigns values to keys used in Pig.

14.6.1. Syntax

set key 'value'

Pig Latin Reference Manual 2

Page 147
Copyright © 2007 The Apache Software Foundation. All rights reserved.

14.6.2. Terms

key Key (see table). Case sensitive.

value Value for key (see table). Case sensitive.

14.6.3. Usage

Use the set command to assign values to keys, as shown in the table. All keys and their
corresponding values (for Pig and Hadoop) are case sensitive.

Key Value Description

default_parallel a whole number Sets the number of reducers for all
MapReduce jobs generated by Pig
(see Use the Parallel Features).

debug on/off Turns debug-level logging on or
off.

job.name Single-quoted string that contains
the job name.

Sets user-specified name for the
job

job.priority Acceptable values (case
insensitive): very_low, low,
normal, high, very_high

Sets the priority of a Pig job.

stream.skippath String that contains the path. For streaming, sets the path from
which not to ship data (see
DEFINE and About Auto-Ship).

All Pig and Hadoop properties can be set, either in the Pig script or via the Grunt command
line.

14.6.4. Examples

In this example key value pairs are set at the command line.

grunt> SET debug 'on'
grunt> SET job.name 'my job'
grunt> SET default_parallel 100

Pig Latin Reference Manual 2

Page 148
Copyright © 2007 The Apache Software Foundation. All rights reserved.

cookbook.html#Use+the+Parallel+Features

In this example default_parallel is set in the Pig script; all MapReduce jobs that get launched
will use 20 reducers.

SET default_parallel 20;
A = LOAD 'myfile.txt' USING PigStorage() AS (t, u, v);
B = GROUP A BY t;
C = FOREACH B GENERATE group, COUNT(A.t) as mycount;
D = ORDER C BY mycount;
STORE D INTO 'mysortedcount' USING PigStorage();

In this example multiple key value pairs are set in the Pig script. These key value pairs are
put in job-conf by Pig (making the pairs available to Pig and Hadoop). This is a script-wide
setting; if a key value is defined multiple times in the script the last value will take effect and
will be set for all jobs generated by the script.

...
SET mapred.map.tasks.speculative.execution false;
SET pig.logfile mylogfile.log;
SET my.arbitrary.key my.arbitary.value;
...

Pig Latin Reference Manual 2

Page 149
Copyright © 2007 The Apache Software Foundation. All rights reserved.

	1 Overview
	1.1 Conventions
	1.2 Reserved Keywords

	2 Data Types and More
	2.1 Relations, Bags, Tuples, Fields
	2.1.1 Referencing Relations
	2.1.2 Referencing Fields
	2.1.3 Referencing Fields that are Complex Data Types

	2.2 Data Types
	2.2.1 Simple and Complex
	2.2.2 Tuple
	2.2.2.1 Syntax
	2.2.2.2 Terms
	2.2.2.3 Usage
	2.2.2.4 Example

	2.2.3 Bag
	2.2.3.1 Syntax: Inner bag
	2.2.3.2 Terms
	2.2.3.3 Usage
	2.2.3.4 Example: Outer Bag
	2.2.3.5 Example: Inner Bag

	2.2.4 Map
	2.2.4.1 Syntax (<> denotes optional)
	2.2.4.2 Terms
	2.2.4.3 Usage
	2.2.4.4 Example

	2.3 Nulls
	2.3.1 Nulls, Operators, and Functions
	2.3.2 Nulls and Constants
	2.3.3 Operations That Produce Nulls
	2.3.3.1 Example: Accessing a field that does not exist in a tuple

	2.3.4 Nulls and Load Functions
	2.3.5 Nulls and GROUP/COGROUP Operators
	2.3.6 Nulls and JOIN Operator

	2.4 Constants
	2.5 Expressions
	2.5.1 Field expressions
	2.5.2 Star expression
	2.5.3 Boolean expressions
	2.5.4 Tuple expressions
	2.5.5 General expressions

	2.6 Schemas
	2.6.1 Schemas with LOAD and STREAM Statements
	2.6.2 Schemas with FOREACH Statements
	2.6.3 Schemas for Simple Data Types
	2.6.3.1 Syntax
	2.6.3.2 Terms
	2.6.3.3 Examples

	2.6.4 Schemas for Complex Data Types
	2.6.5 Tuple Schema
	2.6.5.1 Syntax
	2.6.5.2 Terms
	2.6.5.3 Examples

	2.6.6 Bag Schema
	2.6.6.1 Syntax
	2.6.6.2 Terms
	2.6.6.3 Examples

	2.6.7 Map Schema
	2.6.7.1 Syntax (where <> means optional)
	2.6.7.2 Terms
	2.6.7.3 Example

	2.6.8 Schemas for Multiple Types
	2.6.8.1 Example

	2.7 Parameter Substitution
	2.7.1 Description
	2.7.1.1 Syntax: Specifying parameters using the Pig command line
	2.7.1.2 Syntax: Specifying parameters using preprocessor statements in a Pig script
	2.7.1.3 Terms
	2.7.1.4 Usage
	2.7.1.4.1 Specifying Parameters
	2.7.1.4.2 Precedence
	2.7.1.4.3 Processing Order and Precedence

	2.7.1.5 Example: Specifying parameters in the command line
	2.7.1.6 Example: Specifying parameters using a parameter file
	2.7.1.7 Example: Specifying parameters using the declare statement
	2.7.1.8 Example: Specifying parameters using the default statement
	2.7.1.9 Examples: Specifying parameter values as a sequence of characters
	2.7.1.10 Example: Specifying parameter values as a command

	3 Arithmetic Operators and More
	3.1 Arithmetic Operators
	3.1.1 Description
	3.1.1.1 Examples
	3.1.1.2 Types Table: addition (+) and subtraction (-) operators
	3.1.1.3 Types Table: multiplication (*) and division (/) operators
	3.1.1.4 Types Table: modulo (%) operator

	3.2 Comparison Operators
	3.2.1 Description
	3.2.1.1 Example: numeric
	3.2.1.2 Example: string
	3.2.1.3 Example: matches
	3.2.1.4 Types Table: equal (==) and not equal (!=) operators
	3.2.1.5
	3.2.1.6 Types Table: matches operator

	3.3 Null Operators
	3.3.1 Description
	3.3.1.1 Example

	3.3.2 Types Table

	3.4 Boolean Operators
	3.4.1 Description
	3.4.1.1 Example

	3.5 Dereference Operators
	3.5.1 Description
	3.5.1.1 Example: Tuple
	3.5.1.2 Example: Bag
	3.5.1.3 Example: Tuple and Bag
	3.5.1.4 Example: Map

	3.6 Sign Operators
	3.6.1 Description
	3.6.1.1 Example
	3.6.1.2 Types Table: negation (-) operator

	3.7 Flatten Operator
	3.8 Cast Operators
	3.8.1 Description
	3.8.1.1 Syntax
	3.8.1.2 Terms
	3.8.1.3 Usage
	3.8.1.4 Examples

	3.9 Casting Relations to Scalars

	4 Relational Operators
	4.1 COGROUP
	4.2 CROSS
	4.2.1 Syntax
	4.2.2 Terms
	4.2.3 Usage
	4.2.4 Example

	4.3 DISTINCT
	4.3.1 Syntax
	4.3.2 Terms
	4.3.3 Usage
	4.3.4 Example

	4.4 FILTER
	4.4.1 Syntax
	4.4.2 Terms
	4.4.3 Usage
	4.4.4 Examples

	4.5 FOREACH
	4.5.1 Syntax
	4.5.2 Terms
	4.5.3 Usage
	4.5.4 Examples
	4.5.5 Example: Projection
	4.5.6 Example: Nested Projection
	4.5.7 Example: Schema
	4.5.8 Example: Applying Functions
	4.5.9 Example: Flattening
	4.5.10 Example: Nested Block

	4.6 GROUP
	4.6.1 Syntax
	4.6.2 Terms
	4.6.3 Usage
	4.6.4 Example
	4.6.5 Example
	4.6.6 Example
	4.6.7 Example
	4.6.8 Example
	4.6.9 Example
	4.6.10 Example
	4.6.11 Example: PARTITION BY

	4.7 JOIN (inner)
	4.7.1 Syntax
	4.7.2 Terms
	4.7.3 Usage
	4.7.4 Example

	4.8 JOIN (outer)
	4.8.1 Syntax
	4.8.2 Terms
	4.8.3 Usage
	4.8.4 Examples

	4.9 LIMIT
	4.9.1 Syntax
	4.9.2 Terms
	4.9.3 Usage
	4.9.4 Examples

	4.10 LOAD
	4.10.1 Syntax
	4.10.2 Terms
	4.10.3 Usage
	4.10.4 Examples

	4.11 MAPREDUCE
	4.11.1 Syntax
	4.11.2 Terms
	4.11.3 Usage
	4.11.4 Example

	4.12 ORDER BY
	4.12.1 Syntax
	4.12.2 Terms
	4.12.3 Usage
	4.12.4 Examples

	4.13 SAMPLE
	4.13.1 Syntax
	4.13.2 Terms
	4.13.3 Usage
	4.13.4 Example

	4.14 SPLIT
	4.14.1 Syntax
	4.14.2 Terms
	4.14.3 Usage
	4.14.4 Example
	4.14.5 Example

	4.15 STORE
	4.15.1 Syntax
	4.15.2 Terms
	4.15.3 Usage
	4.15.4 Examples

	4.16 STREAM
	4.16.1 Syntax
	4.16.2 Terms
	4.16.3 Usage
	4.16.4 About Data Guarantees
	4.16.5 Example: Data Guarantees
	4.16.6 Example: Schemas

	4.17 UNION
	4.17.1 Syntax
	4.17.2 Terms
	4.17.3 Usage
	4.17.4 Example
	4.17.5 Example

	5 Diagnostic Operators
	5.1 DESCRIBE
	5.1.1 Syntax
	5.1.2 Terms
	5.1.3 Usage
	5.1.4 Example

	5.2 DUMP
	5.2.1 Syntax
	5.2.2 Terms
	5.2.3 Usage
	5.2.4 Example

	5.3 EXPLAIN
	5.3.1 Syntax
	5.3.2 Terms
	5.3.3 Usage
	5.3.4 Example

	5.4 ILLUSTRATE
	5.4.1 Syntax
	5.4.2 Terms
	5.4.3 Usage
	5.4.4 Example

	6 UDF Statements
	6.1 DEFINE
	6.1.1 Syntax
	6.1.2 Terms
	6.1.3 Usage
	6.1.3.1 About Input and Output
	6.1.3.2 About Ship
	6.1.3.3 About Cache
	6.1.3.4 About Auto-Ship

	6.1.4 Examples: Input/Output
	6.1.5 Examples: Ship/Cache
	6.1.6 Example: DEFINE with STREAM
	6.1.7 Examples: Logging

	6.2 REGISTER
	6.2.1 Syntax
	6.2.2 Terms
	6.2.3 Usage
	6.2.4 Examples

	7 Eval Functions
	7.1 AVG
	7.1.1 Syntax
	7.1.2 Terms
	7.1.3 Usage
	7.1.4 Example
	7.1.5 Types Tables

	7.2 CONCAT
	7.2.1 Syntax
	7.2.2 Terms
	7.2.3 Usage

	7.3 Example
	7.4 COUNT
	7.4.1 Syntax
	7.4.2 Terms
	7.4.3 Usage
	7.4.4 Example
	7.4.5 Types Tables

	7.5 COUNT_STAR
	7.5.1 Syntax
	7.5.2 Terms
	7.5.3 Usage
	7.5.4 Example

	7.6 DIFF
	7.6.1 Syntax
	7.6.2 Terms
	7.6.3 Usage
	7.6.4 Example

	7.7 IsEmpty
	7.7.1 Syntax
	7.7.2 Terms
	7.7.3 Usage
	7.7.4 Example

	7.8 MAX
	7.8.1 Syntax
	7.8.2 Terms
	7.8.3 Usage
	7.8.4 Example
	7.8.5 Types Tables

	7.9 MIN
	7.9.1 Syntax
	7.9.2 Terms
	7.9.3 Usage
	7.9.4 Example
	7.9.5 Types Tables

	7.10 SIZE
	7.10.1 Syntax
	7.10.2 Terms
	7.10.3 Usage
	7.10.4 Example
	7.10.5 Types Tables

	7.11 SUM
	7.11.1 Syntax
	7.11.2 Terms
	7.11.3 Usage
	7.11.4 Example
	7.11.5 Types Tables

	7.12 TOKENIZE
	7.12.1 Syntax
	7.12.2 Terms
	7.12.3 Usage
	7.12.4 Example

	8 Load/Store Functions
	8.1 Handling Compression
	8.2 BinStorage
	8.2.1 Syntax
	8.2.2 Terms
	8.2.3 Usage
	8.2.4 Example

	8.3 PigStorage
	8.3.1 Syntax
	8.3.2 Terms
	8.3.3 Usage
	8.3.4 Example

	8.4 PigDump
	8.4.1 Syntax
	8.4.2 Terms
	8.4.3 Usage
	8.4.4 Example

	8.5 TextLoader
	8.5.1 Syntax
	8.5.2 Terms
	8.5.3 Usage
	8.5.4 Example

	9 Math Functions
	9.1 ABS
	9.1.1 Syntax
	9.1.2 Terms
	9.1.3 Usage

	9.2 ACOS
	9.2.1 Syntax
	9.2.2 Terms
	9.2.3 Usage

	9.3 ASIN
	9.3.1 Syntax
	9.3.2 Terms
	9.3.3 Usage

	9.4 ATAN
	9.4.1 Syntax
	9.4.2 Terms
	9.4.3 Usage

	9.5 CBRT
	9.5.1 Syntax
	9.5.2 Terms
	9.5.3 Usage

	9.6 CEIL
	9.6.1 Syntax
	9.6.2 Terms
	9.6.3 Usage

	9.7 COSH
	9.7.1 Syntax
	9.7.2 Terms
	9.7.3 Usage

	9.8 COS
	9.8.1 Syntax
	9.8.2 Terms
	9.8.3 Usage

	9.9 EXP
	9.9.1 Syntax
	9.9.2 Terms
	9.9.3 Usage

	9.10 FLOOR
	9.10.1 Syntax
	9.10.2 Terms
	9.10.3 Usage

	9.11 LOG
	9.11.1 Syntax
	9.11.2 Terms
	9.11.3 Usage

	9.12 LOG10
	9.12.1 Syntax
	9.12.2 Terms
	9.12.3 Usage

	9.13 RANDOM
	9.13.1 Syntax
	9.13.2 Terms
	9.13.3 Usage

	9.14 ROUND
	9.14.1 Syntax
	9.14.2 Terms
	9.14.3 Usage

	9.15 SIN
	9.15.1 Syntax
	9.15.2 Terms
	9.15.3 Usage

	9.16 SINH
	9.16.1 Syntax
	9.16.2 Terms
	9.16.3 Usage

	9.17 SQRT
	9.17.1 Syntax
	9.17.2 Terms
	9.17.3 Usage

	9.18 TAN
	9.18.1 Syntax
	9.18.2 Terms
	9.18.3 Usage

	9.19 TANH
	9.19.1 Syntax
	9.19.2 Terms
	9.19.3 Usage

	10 String Functions
	10.1 INDEXOF
	10.1.1 Syntax
	10.1.2 Terms
	10.1.3 Usage

	10.2 LAST_INDEX_OF
	10.2.1 Syntax
	10.2.2 Terms
	10.2.3 Usage

	10.3 LCFIRST
	10.3.1 Syntax
	10.3.2 Terms
	10.3.3 Usage

	10.4 LOWER
	10.4.1 Syntax
	10.4.2 Terms
	10.4.3 Usage

	10.5 REGEX_EXTRACT
	10.5.1 Syntax
	10.5.2 Terms
	10.5.3 Usage
	10.5.4 Example

	10.6 REGEX_EXTRACT_ALL
	10.6.1 Syntax
	10.6.2 Terms
	10.6.3 Usage
	10.6.4 Example

	10.7 REPLACE
	10.7.1 Syntax
	10.7.2 Terms
	10.7.3 Usage

	10.8 STRSPLIT
	10.8.1 Syntax
	10.8.2 Terms
	10.8.3 Usage

	10.9 SUBSTRING
	10.9.1 Syntax
	10.9.2 Terms
	10.9.3 Usage

	10.10 TRIM
	10.10.1 Syntax
	10.10.2 Terms
	10.10.3 Usage

	10.11 UCFIRST
	10.11.1 Syntax
	10.11.2 Terms
	10.11.3 Usage

	10.12 UPPER
	10.12.1 Syntax
	10.12.2 Terms
	10.12.3 Usage

	11 Bag and Tuple Functions
	11.1 TOBAG
	11.1.1 Syntax
	11.1.2 Terms
	11.1.3 Usage
	11.1.4 Example

	11.2 TOP
	11.2.1 Syntax
	11.2.2 Terms
	11.2.3 Usage
	11.2.4 Example

	11.3 TOTUPLE
	11.3.1 Syntax
	11.3.2 Terms
	11.3.3 Usage
	11.3.4 Example

	12 File Commands
	12.1 cat
	12.1.1 Syntax
	12.1.2 Terms
	12.1.3 Usage
	12.1.4 Example

	12.2 cd
	12.2.1 Syntax
	12.2.2 Terms
	12.2.3 Usage
	12.2.4 Example

	12.3 copyFromLocal
	12.3.1 Syntax
	12.3.2 Terms
	12.3.3 Usage
	12.3.4 Example

	12.4 copyToLocal
	12.4.1 Syntax
	12.4.2 Terms
	12.4.3 Usage
	12.4.4 Example

	12.5 cp
	12.5.1 Syntax
	12.5.2 Terms
	12.5.3 Usage
	12.5.4 Example

	12.6 ls
	12.6.1 Syntax
	12.6.2 Terms
	12.6.3 Usage
	12.6.4 Example

	12.7 mkdir
	12.7.1 Syntax
	12.7.2 Terms
	12.7.3 Usage
	12.7.4 Example

	12.8 mv
	12.8.1 Syntax
	12.8.2 Terms
	12.8.3 Usage
	12.8.4 Example

	12.9 pwd
	12.9.1 Syntax
	12.9.2 Terms
	12.9.3 Usage
	12.9.4 Example

	12.10 rm
	12.10.1 Syntax
	12.10.2 Terms
	12.10.3 Usage
	12.10.4 Example

	12.11 rmf
	12.11.1 Syntax
	12.11.2 Terms
	12.11.3 Usage
	12.11.4 Example

	13 Shell Commands
	13.1 fs
	13.1.1 Syntax
	13.1.2 Terms
	13.1.3 Usage
	13.1.4 Examples

	13.2 sh
	13.2.1 Syntax
	13.2.2 Terms
	13.2.3 Usage
	13.2.4 Example

	14 Utility Commands
	14.1 exec
	14.1.1 Syntax
	14.1.2 Terms
	14.1.3 Usage
	14.1.4 Examples

	14.2 help
	14.2.1 Syntax
	14.2.2 Terms
	14.2.3 Usage
	14.2.4 Example

	14.3 kill
	14.3.1 Syntax
	14.3.2 Terms
	14.3.3 Usage
	14.3.4 Example

	14.4 quit
	14.4.1 Syntax
	14.4.2 Terms
	14.4.3 Usage
	14.4.4 Example

	14.5 run
	14.5.1 Syntax
	14.5.2 Terms
	14.5.3 Usage
	14.5.4 Example

	14.6 set
	14.6.1 Syntax
	14.6.2 Terms
	14.6.3 Usage
	14.6.4 Examples

