Pig Latin Reference Manual 1

Table of contents

@Y VT 2
2 PIg Latin SEAEMENTS.......coiiiieiee ettt a et aeesbeeneesreeneeeneens 2
3 DYNAMIC INVOKENS......ciiitieiieeciie ettt et et e st e e sbe e eb e e s seeeabeesreeenneesneeenreens 6
4 MEMOTY MaNAGEIMENT........eiiiiiie it riee e e s b e e s be e e ssbe e s nsreeensseesseeesnnes 6
5 MUItE-QUENY EXECULION.......ceiueeiiieieiieesieeeestees e seesteeae e e seeaesseesseesesseesseensesneesseensesneensens 7
6 OPLIMIZALION RUIES........cceiieiieiiee et 12
7 PIg PrOPEITIES. ...ttt bbbttt n e e e s 15
S o IS = 1 L oL TSRS 15
9 SPECIAIZEU JOINS.....c..eeeieee ettt ettt et e e et e e st e e be e saeeebeesseeeteesaeeeneenneas 19

IOIZA= o = W 101 =0 (o) o TSSOSO 22

Pig Latin Reference Manual 1

1. Overview
Use this manual together with Pig Latin Reference Manual 2.

Also, be sure to review the information in the Pig Cookbook.

2. Pig Latin Statements

A Pig Latin statement is an operator that takes arelation as input and produces another
relation as output. (This definition appliesto al Pig Latin operators except LOAD and
STORE which read data from and write data to the file system.) Pig Latin statements can
span multiple lines and must end with a semi-colon (;). Pig Latin statements are generally
organized in the following manner:

1. A LOAD statement reads data from the file system.
2. A seriesof "transformation” statements process the data.
3. A STORE statement writes output to the file system; or, a DUMP statement displays

output to the screen.
2.1. Running Pig Latin

Y ou can execute Pig Latin statements:

» Using grunt shell or command line
¢ In mapreduce mode or local mode
» Either interactively or in batch

Note that Pig now uses Hadoop's local mode (rather than Pig's native local mode).

A few run examples are shown here; see Pig Setup for more examples.

Grunt Shell - interactive, mapreduce mode (because mapreduce mode is the default you do
not need to specify)

$ pig :

... - Connecting to ...
grunt> A = |oad 'data';
grunt> B = . ;

Grunt Shell - batch, local mode (see the exec and run commands)

$ pig -x local
grunt > exec nyscript. pig;
or

Page 2

piglatin_ref2.html
cookbook.html
piglatin_ref2.html#Relations%2C+Bags%2C+Tuples%2C+Fields
setup.html
piglatin_ref2.html#exec
piglatin_ref2.html#run

Pig Latin Reference Manual 1

Command Line - batch, mapreduce mode

Command Line - batch, local mode mode

In general, Pig processes Pig Latin statements as follows:
1. First, Pig validates the syntax and semantics of all statements.
2. Next, if Pig encountersa DUMP or STORE, Pig will execute the statements.

In this example Pig will validate, but not execute, the LOAD and FOREACH statements.

In this example, Pig will validate and then execute the LOAD, FOREACH, and DUMP
statements.

See Multi-Query Execution for more information on how Pig Latin statements are processed.

2.2. Pig Latin Scripts

See the following:

« Running the Pig Scriptsin Local Mode
Running the Pig Scripts in MapReduce Mode
o Multi-Query Execution

Pig supports running scripts that are stored in HDFS, Amazon S3, or other distributed file
systems (also see REGISTER for information about Jar files). The script's full location URI
isrequired. For example, to run a Pig script on HDFS, do the following:

Page 3

tutorial.html#Running+the+Pig+Scripts+in+Local+Mode
tutorial.html#Running+the+Pig+Scripts+in+Mapreduce+Mode
piglatin_ref2.html#REGISTER

Pig Latin Reference Manual 1

java -cp pig.jar org.apache. pi g. Mai n
hdf s: // nn. nydonai n. com 9020/ nyscri pts/script.pig

2.3. Using Commentsin Pig Latin Scripts

If you place Pig Latin statements in a script, the script can include comments.
1. For multi-line commentsuse /* */
2. For single line comments use --

/* nyscript.pig
My script includes three sinple Pig Latin Statenents.
*/

A = LOAD 'student' USING PigStorage() AS (nane:chararray, age:int,

gpa:float); -- |load statenent
B = FOREACH A GENERATE name; -- foreach statenent
DUWP B; --dunp statenent

2.4. Retrieving Pig Latin Results

Pig Latin includes operators you can use to retrieve the results of your Pig Latin statements:
1. Usethe DUMP operator to display resultsto a screen.
2. Usethe STORE operator to write results to afile on the file system.

2.5. Storing Intermediate Data

Pig stores the intermediate data generated between MapReduce jobs in atemporary location
on HDFS. Thislocation must already exist on HDFS prior to use. This location can be
configured using the pig.temp.dir property. The property's default value is"/tmp" which is
the same as the hardcoded location in Pig 0.7.0 and earlier versions.

2.6. Debugging Pig Latin

Pig Latin includes operators that can help you debug your Pig Latin statements:
1. Usethe DESCRIBE operator to review the schema of arelation.

2. Usethe EXPLAIN operator to view thelogical, physical, or map reduce execution plans
to compute arelation.

3. UsetheLLUSTRATE operator to view the step-by-step execution of a series of
statements.

Complex Pig scripts often generate many MapReduce jobs. To help you debug a script, Pig

Page 4

Pig Latin Reference Manual 1

prints asummary of the execution that shows which relations (aliases) are mapped to each
MapReduce job.

Jobl d Maps Reduces MaxMapTi me M nMapTI ne AvgMapTi ne MaxReduceTi nme
M nReduceTi ne AvgReduceTi Ali as Feature Qutputs
job_201004271216_12712 1 1 3 3 3 12 12 12 B, C GROUP_BY, COVBI NER
j ob_201004271216_12713 1 1 3 3 3 12 12 12 D SAMPLER
133
p

] ob_201004271216_12714 1 3 12 12 12 D ORDER_BY, COMBI NER
hdf s: //wi | bur 20. | abs. corp. spl. yahoo. com 9020/t np/ t enp743703298/ t np- 2019944040,

2.7. Working with Data

Pig Latin allows you to work with datain many ways. In general, and as a starting point:

1. Usethe FILTER operator to work with tuples or rows of data. Use the FOREACH
operator to work with columns of data.

2. Usethe GROUP operator to group datain asingle relation. Use the COGROUP and
JOIN operatorsto group or join data in two or more relations.

3. Usethe UNION operator to merge the contents of two or more relations. Use the SPLIT
operator to partition the contents of arelation into multiple relations.

2.8. Case Sengitivity

The names (aliases) of relations and fields are case sensitive. The names of Pig Latin
functions are case sensitive. The names of parameters (see Parameter Substitution) and all
other Pig Latin keywords are case insensitive.

In the example below, note the following:

1. Thenames (aliases) of relations A, B, and C are case sensitive.

2. Thenames (aliases) of fieldsf1, f2, and f3 are case sensitive.

3. Function names PigStorage and COUNT are case sensitive.
4

. Keywords LOAD, USING, AS, GROUP, BY, FOREACH, GENERATE, and DUMP are
case insensitive. They can aso be written asload, using, as, group, by, etc.

5. Inthe FOREACH statement, thefield in relation B is referred to by positional notation
($0).

grunt> A = LOAD 'data' USING PigStorage() AS (fl:int, f2:int, f3:int);
grunt> B = GROUP A BY f1;
grunt> C = FOREACH B GENERATE COUNT ($0);

grunt > DUMP C;

Page 5

Pig Latin Reference Manual 1

3. Dynamic Invokers

Often you may need to use asimple function that is already provided by standard Java
libraries, but for which a UDF has not been written. Dynamic Invokers allow you to refer to
Java functions without having to wrap them in custom Pig UDFs, at the cost of doing some
Java reflection on every function call.

DEFI NE Ur | Decode | nvokeFor Stri ng('j ava. net. URLDecoder. decode', 'String
String');
encoded_stri ngs
decoded_stri ngs
"UTF-8');

LOAD ' encoded_strings.txt' as (encoded: chararray);
FOREACH encoded_stri ngs GENERATE Url Decode(encoded,

Currently, Dynamic Invokers can be used for any static function that accepts no arguments or
some combination of strings, ints, longs, doubles, floats, or arrays of same, and returns a
string, an int, along, adouble, or afloat. Primitives only for the numbers, no capital-letter
numeric classes as arguments. Depending on the return type, a specific kind of Invoker must
be used: InvokeForString, InvokeForint, InvokeForL ong, InvokeForDouble, or
InvokeForFloat.

The DEFINE statement is used to bind a keyword to a Java method, as above. The first
argument to the InvokeFor* constructor isthe full path to the desired method. The second
argument is a space-delimited ordered list of the classes of the method arguments. This can
be omitted or an empty string if the method takes no arguments. Valid class names are string,
long, float, double, and int. Invokers can also work with array arguments, represented in Pig
as DataBags of single-tuple elements. Simply refer to string[], for example. Class names are
not case-sensitive.

The ability to use invokers on methods that take array arguments makes methods like those
in org.apache.commons.math.stat. StatUtils available (for processing the results of grouping
your datasets, for example). Thisis helpful, but aword of caution: the resulting UDF will not
be optimized for Hadoop, and the very significant benefits one gains from implementing the
Algebraic and Accumulative interfaces are lost here. Be careful if you use invokers this way.

4. Memory M anagement

Pig allocates afix amount of memory to store bags and spills to disk as soon as the memory
limit isreached. Thisisvery similar to how Hadoop decides when to spill data accumulated
by the combiner.

The amount of memory allocated to bags is determined by pig.cachedbag.memusage; the

Page 6

piglatin_ref2.html#define

Pig Latin Reference Manual 1

default is set to 10% of available memory. Note that this memory is shared across all large
bags used by the application.

5. Multi-Query Execution

With multi-query execution Pig processes an entire script or a batch of statements at once.

5.1. Turning it On or Off

Multi-query execution is turned on by default. To turn it off and revert to Pig's
"execute-on-dump/store” behavior, use the "-M" or "-no_multiquery" options.

To run script "myscript.pig" without the optimization, execute Pig as follows:

$ pig -Mnyscript.pig
or
$ pig -no_nultiquery mnyscript.pig

5.2. How it Works

Multi-query execution introduces some changes:

1. For batch mode execution, the entire script isfirst parsed to determineif intermediate
tasks can be combined to reduce the overall amount of work that needs to be done;
execution starts only after the parsing is completed (see the EXPLAIN operator and the
exec and run commands).

2. Two run scenarios are optimized, as explained below: explicit and implicit splits, and
storing intermediate results.

5.2.1. Explicit and Implicit Splits

There might be cases in which you want different processing on separate parts of the same
data stream.

Example 1:

A= LOAD ...

SPLITA INTOBIF ..., CIF ...
STORE B

STORE C

Example 2:

Page 7

piglatin_ref2.html#EXPLAIN
piglatin_ref2.html#exec
piglatin_ref2.html#run

Pig Latin Reference Manual 1

A = LOAD ...

o
C

FI LTER A
FI LTER A

STORE B'

STORE C

In prior Pig releases, Example 1 will dump A' to disk and then start jobs for B' and C'.
Example 2 will execute all the dependencies of B' and store it and then execute all the
dependencies of C' and store it. Both are equivalent, but the performance will be different.
Here's what the multi-query execution does to increase the performance:

1. For Example 2, adds an implicit split to transform the query to Example 1. This
eliminates the processing of A" multiple times.

2. Makes the split non-blocking and allows processing to continue. This helps reduce the
amount of data that has to be stored right at the split.

3. Allows multiple outputs from ajob. This way some results can be stored as a side-effect
of the main job. Thisis also necessary to make the previous item work.

4. Allows multiple split branches to be carried on to the combiner/reducer. This reduces the
amount of 10 again in the case where multiple branchesin the split can benefit from a
combiner run.

5.2.2. Storing Intermediate Results

Sometimes it is necessary to store intermediate results.

A = LOAD ...

STORE A

STORE A"

If the script doesn't re-load A’ for the processing of A the steps above A’ will be duplicated.

Thisisaspecia case of Example 2 above, so the same steps are recommended. With
multi-query execution, the script will process A and dump A' as a side-effect.

5.3. Storevs. Dump

With multi-query exection, you want to use STORE to save (persist) your results. Y ou do not
want to use DUMP as it will disable multi-query execution and is likely to slow down
execution. (If you have included DUMP statements in your scripts for debugging purposes,
you should remove them.)

DUMP Example: In this script, because the DUMP command is interactive, the multi-query

Page 8

piglatin_ref2.html#STORE
piglatin_ref2.html#DUMP

Pig Latin Reference Manual 1

execution will be disabled and two separate jobs will be created to execute this script. The
first job will execute A > B > DUMP while the second job will execute A > B > C > STORE.

A
B
DUMP B;

C = FOREACH B GENERATE y, z;
STORE C | NTO ' out put ' ;

STORE Example: In this script, multi-query optimization will kick in allowing the entire
script to be executed as asingle job. Two outputs are produced: outputl and output2.

LOAD '"input' AS (x, Yy, 2);
FI LTER A BY x > b5;

A = LOAD '"input' AS (X, Yy, 2);
B = FILTER A BY x > 5;

STORE B | NTO ' out put 1' ;

C = FOREACH B GENERATE y, z;
STORE C | NTO ' out put 2' ;

5.4. Error Handling

With multi-query execution Pig processes an entire script or a batch of statements at once. By
default Pig triesto run all the jobs that result from that, regardless of whether some jobs fail
during execution. To check which jobs have succeeded or failed use one of these options.

First, Pig logs al successful and failed store commands. Store commands are identified by
output path. At the end of execution a summary line indicates success, partial failure or
failure of al store commands.

Second, Pig returns different code upon completion for these scenarios:

1. Return code O: All jobs succeeded

2. Return code 1: Used for retrievable errors

3. Return code 2: All jobs have failed

4. Return code 3: Some jobs have failed

In some cases it might be desirable to fail the entire script upon detecting the first failed job.
This can be achieved with the "-F" or "-stop_on_failure" command line flag. If used, Pig will
stop execution when thefirst failed job is detected and discontinue further processing. This
also means that file commands that come after afailed store in the script will not be executed
(this can be used to create "done" files).

Thisishow theflag is used:

$ pig -F nyscript.pig
or

Page 9

Pig Latin Reference Manual 1

$ pig -stop_on failure myscript.pig
5.5. Backward Compatibility

Most existing Pig scripts will produce the same result with or without the multi-query
execution. There are cases though where thisis not true. Path names and schemes are
discussed here.

Any script isparsed in it's entirety beforeit is sent to execution. Since the current directory
can change throughout the script any path used in LOAD or STORE statement is trandated
to afully qualified and absolute path.

In map-reduce mode, the following script will load from "hdfs.//<host>:<port>/datal” and
store into "hdfs://<host>:<port>/tmp/out1”.

cd /;

A = LOAD 'datal';
cd tnp;

STORE A I NTO 'out1';

These expanded paths will be passed to any LoadFunc or Slicer implementation. In some
cases this can cause problems, especially when a LoadFunc/Slicer is not used to read from a
dfsfile or path (for example, loading from an SQL database).

Solutions are to either:
1. Specify "-M" or "-no_multiquery" to revert to the old names
2. Specify acustom scheme for the LoadFunc/Slicer

Arguments used in aLOAD statement that have a scheme other than "hdfs" or "file" will not
be expanded and passed to the L oadFunc/Slicer unchanged.

In the SQL case, the SQL L oader function isinvoked with 'sgl://mytable’.
A = LOAD 'sql ://nytable' USING SQ.Loader ();

5.6. Implicit Dependencies

If a script has dependencies on the execution order outside of what Pig knows about,
execution may fail.

5.6.1. Example

In this script, MY UDF might try to read from outl, afile that A wasjust stored into.
However, Pig does not know that MY UDF depends on the outl file and might submit the
jobs producing the out2 and out1 files at the same time.

Page 10

Pig Latin Reference Manual 1

To make the script work (to ensure that the right execution order is enforced) add the exec
statement. The exec statement will trigger the execution of the statements that produce the
outl file.

5.6.2. Example

In this script, the STORE/LOAD operators have different file paths, however, the LOAD
operator depends on the STORE operator.

To make the script works, add the exec statement.

Page 11

Pig Latin Reference Manual 1

6. Optimization Rules

Pig supports various optimization rules. By default optimization, and all optimization rules,
are turned on. To turn off optimiztion, use:

Note that some rules are mandatory and cannot be turned off.

6.1. ImplicitSplitl nserter
Status. Mandatory

SPLIT isthe only operator that models multiple outputsin Pig. To ease the process of
building logical plans, al operators are allowed to have multiple outputs. As part of the
optimization, al non-split operators that have multiple outputs are atered to have aSPLIT
operator as the output and the outputs of the operator are then made outputs of the SPLIT
operator. An example will illustrate the point. Here, a split will be inserted after the LOAD
and the split outputs will be connected to the FILTER (b) and the COGROUP (c).

6.2. LogicalExpressionSimplifier

Thisrule contains severa types of simplifications.

Page 12

piglatin_ref2.html#SPLIT

Pig Latin Reference Manual 1

6.3. MergeFor Each

The objective of thisruleisto merge together two feach statements, if these preconditions are
met:

The foreach statements are consecutive.
e Thefirst foreach statement does not contain flatten.
The second foreach is not nested.

Page 13
Copyright © 2007 The Apache Software Foundation. All rights reserved.

Pig Latin Reference Manual 1

A
C

LOAD 'file.txt' AS (a, b, c);
FOREACH A GENERATE a+b+5, c-b;

6.4. OpLimitOptimizer

The objective of thisruleisto push the LIMIT operator up the data flow graph (or down the
tree for database folks). In addition, for top-k (ORDER BY followed by aLIMIT) the LIMIT
is pushed into the ORDER BY .

A = LOAD '"input"';
B = ORDER A BY $0;
C=LIMT B 10;

6.5. PushUpFilters

The objective of thisruleisto push the FILTER operators up the data flow graph. Asaresult,
the number of records that flow through the pipeline is reduced.

A = LOAD 'input"';
B = GROUP A BY $0;
C = FILTER B BY $0 < 10;

6.6. PushDownExplodes

The objective of thisruleisto reduce the number of records that flow through the pipeline by
moving FOREACH operators with a ELATTEN down the data flow graph. In the example
shown below, it would be more efficient to move the foreach after the join to reduce the cost
of the join operation.

LOAD 'input' AS (a, b, c);

LOAD '"input2' AS (x, YV,)

FOREACH A GENERATE FLATTEN($0), B, G
JON C BY $1, B BY $1;

o0 w>

6.7. StreamOptimizer

Optimize when LOAD precedes STREAM and the loader class is the same as the serializer
for the stream. Similarly, optimize when STREAM isfollowed by STORE and the
deserializer classis same as the storage class. For both of these cases the optimization isto
replace the loader/serializer with BinaryStorage which just moves bytes around and to
replace the storer/deserializer with BinaryStorage.

6.8. TypeCastinserter
Status. Mandatory

Page 14

piglatin_ref2.html#LIMIT
piglatin_ref2.html#FILTER
piglatin_ref2.html#FOREACH
piglatin_ref2.html#Flatten+Operator
piglatin_ref2.html#LOAD
piglatin_ref2.html#STREAM
piglatin_ref2.html#STORE

Pig Latin Reference Manual 1

If you specify a schema with the LOAD statement, the optimizer will perform a pre-fix
projection of the columns and cast the columns to the appropriate types. An example will
illustrate the point. The LOAD statement (a) has a schema associated with it. The optimizer
will insert a FOREACH operator that will project columns 0, 1 and 2 and also cast them to
chararray, int and float respectively.

A = LOAD 'input' AS (nanme: chararray, age: int, gpa: float);
B = FILER A BY $1 == 1;
C = GROUP A By $0;

7. Pig Properties

The Pig "-propertyfile " option enables you to pass a set of Pig or Hadoop propertiesto aPig
job. If the value is present in both the property file passed from the command line aswell as
in default property file bundled into pig.jar, the properties passed from command line take
precedence. This property, as well as all other properties defined in Pig, are available to your
UDFs via UDFContext.getClientSystemProps()API call (see the Pig UDF Manual.)

You can retrieve alist of all properties using the help properties command.

Y ou can set properties using the set command.

8. Pig Statistics

Pig Statisticsis aframework for collecting and storing script-level statisticsfor Pig Latin.
Characteristics of Pig Latin scripts and the resulting MapReduce jobs are collected while the
script is executed. These statistics are then available for Pig users and tools using Pig (such
as Oozie) to retrieve after the job is done.

The new Pig statistics and the existing Hadoop statistics can aso be accessed via the Hadoop
job history file (and job xml file). Piggybank has a HadoopJobHistoryL oader which acts as
an example of using Pig itself to query these statistics (the loader can be used as areference
implementation but is NOT supported for production use).

8.1. Java API

Several new public classes make it easier for external tools such as Oozie to integrate with
Pig statistics.

The Pig statistics are available here: http://pig.apache.org/docs/r0.8.1/api/

The stats classes are in the package: org.apache.pig.tools.pigstats
« PigStats

Page 15

piglatin_ref2.html#Schemas
piglatin_ref2.html#LOAD
piglatin_ref2.html#Cast+Operators
udf.html
piglatin_ref2.html#help
piglatin_ref2.html#set
http://pig.apache.org/docs/r0.8.1/api/

Pig Latin Reference Manual 1

+ JobStats
e OutputStats
e InputStats

The PigRunner class mimics the behavior of the Main class but gives users a statistics object
back. Optionally, you can call the API with an implementation of progress listener which will
be invoked by Pig runtime during the execution.

8.2. Job XML

The following entries are included in job conf:

Pig Statistic Description

pig.script.id The UUID for the script. All jobs spawned by the
script have the same script ID.

pig.script The base64 encoded script text.

pig.command.line The command line used to invoke the script.

Page 16

Pig Latin Reference Manual 1

pig.hadoop.version The Hadoop version installed.

pig.version The Pig version used.

pig.input.dirs A comma-separated list of input directories for the
job.

pig.map.output.dirs A comma-separated list of output directoriesin the

map phase of the job.

pig.reduce.output.dirs A comma-separated list of output directoriesin the
reduce phase of the joh.

pig.parent.jobid A comma-separated list of parent job ids.
pig.script.features A list of Pig features used in the script.
pig.job.feature A list of Pig features used in the job.
pig.aias The alias associated with the job.

8.3. Hadoop Job History L oader

The HadoopJobHistoryL oader in Piggybank loads Hadoop job history files and job xml files

from file system. For each MapReduce job, the loader produces a tuple with schema (j:map([],
m:map|[], r:map[]). The first map in the schema contains job-related entries. Here are some of
important key names in the map:

PIG_SCRIPT_ID USER SUBMIT_TIME
CLUSTER HADOOP_VERSION LAUNCH_TIME
QUEUE_NAME PIG_VERSION FINISH_TIME
JOBID PIG_JOB_FEATURE TOTAL_MAPS
JOBNAME PIG_JOB_ALIAS TOTAL_REDUCES
STATUS PIG_JOB_PARENTS

Examples that use the loader to query Pig statistics are shown below.

Page 17

Pig Latin Reference Manual 1

8.4. Examples

Find scripts that generate more then three MapReduce jobs:

Find the running time of each script (in seconds):

Find the number of scripts run by user and queue on a cluster:

Find scripts that have failed jobs:

Find scripts that use only the default parallelism:

Page 18

Pig Latin Reference Manual 1

e =filter d by max_reduces == 1;
dunp e;

9. Specialized Joins

In certain cases, the performance of inner joins and outer joins can be optimized using
replicated, skewed, or mergejoins.

9.1. Replicated Joins

Fragment replicate join is a special type of join that works well if one or more relations are
small enough to fit into main memory. In such cases, Pig can perform avery efficient join
because al of the hadoop work is done on the map side. In this type of join the large relation
isfollowed by one or more small relations. The small relations must be small enough to fit
into main memory; if they don't, the process fails and an error is generated.

9.1.1. Usage

Perform areplicated join with the USING clause (see inner joins and outer joins). In this
example, alargerelation isjoined with two smaller relations. Note that the large relation
comes first followed by the smaller relations; and, all small relations together must fit into
main memory, otherwise an error is generated.

big = LOAD 'big _data' AS (bi, b2, b3);

tiny LOAD 'tiny data' AS (t1,t2,t3);
mni = LOAD 'nini_data' AS (nil, n2, nB);
C=JAONDbig BY bl, tiny BY t1, mni BY mlL USING 'replicated;

9.1.2. Conditions

Fragment replicate joins are experimental; we don't have a strong sense of how small the
small relation must be to fit into memory. In our tests with a simple query that involves just a
JOIN, arelation of up to 100 M can be used if the process overall gets 1 GB of memory.
Please share your observations and experience with us.

9.2. Skewed Joins

Parallel joins are vulnerable to the presence of skew in the underlying data. If the underlying
datais sufficiently skewed, load imbalances will swamp any of the parallelism gains. In order
to counteract this problem, skewed join computes a histogram of the key space and uses this
datato allocate reducers for a given key. Skewed join does not place arestriction on the size

Page 19

piglatin_ref2.html#JOIN+%28inner%29
piglatin_ref2.html#JOIN+%28outer%29
piglatin_ref2.html#JOIN+%28inner%29
piglatin_ref2.html#JOIN+%28outer%29

Pig Latin Reference Manual 1

of the input keys. It accomplishes this by splitting the left input on the join predicate and
streaming the right input. The left input is sampled to create the histogram.

Skewed join can be used when the underlying data is sufficiently skewed and you need a
finer control over the allocation of reducers to counteract the skew. It should also be used
when the data associated with a given key istoo large to fit in memory.

9.2.1. Usage

Perform a skewed join with the USING clause (see inner joins and outer joins).

big = LOAD 'big_data' AS (bil, b2, b3);
massi ve = LOAD ' massi ve_data' AS (ni, n2, nB);
C = JON big BY bl, nassive BY mL USING ' skewed' ;

9.2.2. Conditions

Skewed join will only work under these conditions:

» Skewed join works with two-table inner join. Currently we do not support more than two
tables for skewed join. Specifying three-way (or more) joinswill fail validation. For such
joins, werely on you to break them up into two-way joins.

» The pig.skewedjoin.reduce.memusage Java parameter specifies the fraction of heap
available for the reducer to perform the join. A low fraction forces pig to use more
reducers but increases copying cost. We have seen good performance when we set this
valuein therange 0.1 - 0.4. However, note that thisis hardly an accurate range. Its value
depends on the amount of heap available for the operation, the number of columnsin the
input and the skew. An appropriate value is best obtained by conducting experimentsto
achieve agood performance. The default valueis 0.5.

» Skewed join does not address (balance) uneven data distribution across reducers.
However, in most cases, skewed join ensures that the join will finish (however slowly)
rather than fail.

9.3. Merge Joins

Often user datais stored such that both inputs are already sorted on the join key. In this case,
it is possible to join the data in the map phase of a MapReduce job. This provides a
significant performance improvement compared to passing all of the data through unneeded
sort and shuffle phases.

Pig has implemented a merge join algorithm, or sort-merge join, although in this case the sort
is already assumed to have been done (see the Conditions, below). Pig implements the merge
join algorithm by selecting the left input of the join to be the input file for the map phase, and

Page 20

piglatin_ref2.html#JOIN+%28inner%29
piglatin_ref2.html#JOIN+%28outer%29

Pig Latin Reference Manual 1

the right input of the join to be the sidefile. It then samples records from the right input to
build an index that contains, for each sampled record, the key(s) the filename and the offset
into the file the record begins at. This sampling is done in the first MapReduce job. A second
MapReduce job is then initiated, with the left input as itsinput. Each map uses the index to
seek to the appropriate record in the right input and begin doing the join.

9.3.1. Usage

Perform amerge join with the USING clause (see inner joins and outer joins).

C =JAONA BY al, B BY bl, C BY cl USING 'nerge';

9.3.2. Conditions
Condition A

Inner merge join (between two tables) will only work under these conditions:

« Between the load of the sorted input and the merge join statement there can only be filter
statements and foreach statement where the foreach statement should meet the following
conditions:

* There should be no UDFsin the foreach statement.
» Theforeach statement should not change the position of the join keys.
» There should be no transformation on the join keys which will change the sort order.

« Datamust be sorted on join keys in ascending (A SC) order on both sides.

+ Right-side loader must implement either the { OrderedL oadFunc} interface or
{IndexableL oadFunc} interface.

« Typeinformation must be provided for the join key in the schema

The Zebra and PigStorage loaders satisfy al of these conditions.

Condition B

Outer merge join (between two tables) and inner merge join (between three or more tables)
will only work under these conditions:

« No other operations can be done between the load and join statements.

« Datamust be sorted on join keys in ascending (ASC) order on both sides.

« Left-most loader must implement { Collectableloader} interface aswell as
{ OrderedL oadFunc} .

« All other loaders must implement { Indexabl el oadFunc} .

« Typeinformation must be provided for the join key in the schema.

Page 21

piglatin_ref2.html#JOIN+%28inner%29
piglatin_ref2.html#JOIN+%28outer%29

Pig Latin Reference Manual 1

The Zebraloader satisfies all of these conditions.

An example of aleft outer merge join using the Zebraloader:

A = load 'datal' using org.apache. hadoop. zebra. pi g. Tabl eLoader ('id:int",
"sorted');

B = | oad 'data2' using org.apache. hadoop. zebr a. pi g. Tabl eLoader ("id:int',
‘sorted');
C=join Aby id left, B by id using 'nerge'

Both Conditions

For optimal performance, each part file of the left (sorted) input of the join should have asize
of at least 1 hdfs block size (for example if the hdfs block sizeis 128 MB, each part file
should be less than 128 MB). If the total input size (including all part files) is greater than
blocksize, then the part files should be uniform in size (without large skewsin sizes). The
main ideais to eliminate skew in the amount of input the final map job performing the
merge-join will process.

10. Zebra Integration
For information about how to integrate Zebra with your Pig scripts, see Zebra and Pig.

Page 22

zebra_pig.html

	1 Overview
	2 Pig Latin Statements
	2.1 Running Pig Latin
	2.2 Pig Latin Scripts
	2.3 Using Comments in Pig Latin Scripts
	2.4 Retrieving Pig Latin Results
	2.5 Storing Intermediate Data
	2.6 Debugging Pig Latin
	2.7 Working with Data
	2.8 Case Sensitivity

	3 Dynamic Invokers
	4 Memory Management
	5 Multi-Query Execution
	5.1 Turning it On or Off
	5.2 How it Works
	5.2.1 Explicit and Implicit Splits
	5.2.2 Storing Intermediate Results

	5.3 Store vs. Dump
	5.4 Error Handling
	5.5 Backward Compatibility
	5.6 Implicit Dependencies
	5.6.1 Example
	5.6.2 Example

	6 Optimization Rules
	6.1 ImplicitSplitInserter
	6.2 LogicalExpressionSimplifier
	6.3 MergeForEach
	6.4 OpLimitOptimizer
	6.5 PushUpFilters
	6.6 PushDownExplodes
	6.7 StreamOptimizer
	6.8 TypeCastInserter

	7 Pig Properties
	8 Pig Statistics
	8.1 Java API
	8.2 Job XML
	8.3 Hadoop Job History Loader
	8.4 Examples

	9 Specialized Joins
	9.1 Replicated Joins
	9.1.1 Usage
	9.1.2 Conditions

	9.2 Skewed Joins
	9.2.1 Usage
	9.2.2 Conditions

	9.3 Merge Joins
	9.3.1 Usage
	9.3.2 Conditions

	10 Zebra Integration

