
Introduction to Introduction to
OpenOffice.org OpenOffice.org
scripting featuresscripting features

Laurent Godard

Laurent Godard - lgodard@indesko.com

Agenda

• Context
● What is scripting ?

• Tools
● What does OpenOffice.org provide ?

• Scripting OpenOffice.org
● Presentation
● Basic
● Python

Laurent Godard - lgodard@indesko.com

Scripting
• Possibility to pilot OpenOffice.org elements for our

own needs

• Access its API/features by code

• This can be done
● From a code inside OpenOffice.org : macros
● From outside OpenOffice.org : connection line

● ooffice "-accept=socket,host=localhost,port=2002;urp;"

● setup.xcu <prop oor:name="ooSetupConnectionURL">

● Network connection on localhost and even network

● From components deployed at OOo level : Add-ons

• Once a connection is set up, scripting is almost
the same

Laurent Godard - lgodard@indesko.com

Context and definitions
• Many languages

● Java, C++, COM (VB, delphi), .Net, ...

• Language uses OOo API via UNO bridges

Java

C++

Python

A
P
I

UNO

UNO

UNO

OpenOffice.org
core

...
UNO

Laurent Godard - lgodard@indesko.com

Definitions

• API : Application Programming Interface
● Access to objects, properties and methods of OOo core
● No need to know OOo source code but only the API it

exposes

• SDK : Software Development Kit
● Toolbox dedicated to developers to use OpenOffice.org

API and build their programs

• UNO : Universal Network Object
● Description of objects that allow to communicate with API

no matter the localization of objects
● The bridges for different languages allow its use in

heterogeneous environments

Laurent Godard - lgodard@indesko.com

Tools

• IDE
● Integrated development environment
● OOo dialog builder graphical tool

• SDK
● What does it contains as documentation ?
● How to browse it ?

• Helpers
● What are the coding facilities introduced in scripting

languages ?
● Useful developments by community

Laurent Godard - lgodard@indesko.com

Macro management

• Hierarchical organization

Laurent Godard - lgodard@indesko.com

The basic IDE – code

• Syntax
coloration

• Step by step
debugging tool

• Call stack

• Variable values
and object
explorer

Laurent Godard - lgodard@indesko.com

The basic IDE – dialogs

• Build your own dialogs with integrated tools

Laurent Godard - lgodard@indesko.com

Complex dialogs

Paolo Mantovani

Laurent Godard - lgodard@indesko.com

IDE for other languages

• Javascript

• Beanshell

• Nothing for Python, we have to use an external IDE
and import the code into OOo

Laurent Godard - lgodard@indesko.com

First Macro

• Hello Message

• No OOo interaction

• Basic language compliant

sub HelloMessage
aName = inputBox("What is your name ?")
msgbox "Hello " + aName

end sub

Laurent Godard - lgodard@indesko.com

Going deeper

• Need to access OOo objects to create business
helpers inside the office suite

• Where to find them ?
● The SDK provides many documentation on the API
● Developers guide

• Related OpenOffice.org projects
● http://extensions.openoffice.org
● http://api.openoffice.org
● http://udk.openoffice.org
● http://framework.openoffice.org

Laurent Godard - lgodard@indesko.com

The SDK (OOoBasic Use)
• A deployable archive

● http://api.openoffice.org
● around 30 Mb (100 Mb installed)
● In english
● IDL reference
● Developers guide
● Examples
● OpenDocument and OpenOffice.org 1.x file specification
● Building tools and Java/C++ reference (not needed for

basic)
● ...

Laurent Godard - lgodard@indesko.com

IDL Reference

• Synthetic information
● For a given service and interface, enumerates all

properties and methods it offers
● Some comment lines on each
● Hyperlink navigation allowing exploration of returned

types

• Index and navigation pages
● Alphabetical
● Hyperlink navigation allowing deep exploration
● Hyperlinks between IDL reference ans developers guide

• Ideal for finding its way in the API

Laurent Godard - lgodard@indesko.com

IDL Reference (II)

Laurent Godard - lgodard@indesko.com

Developers Guide
● Full documentation on UNO and API

● more than 1000 pages
● HTML or PDF

● Cross hyperlink reference to IDL
● Numerous code examples (Java) and UML diagrams

Laurent Godard - lgodard@indesko.com

OOoBasic coding simplifications

• ThisComponent, StarDesktop

• CreateUNOService, CreateUNOStruct

• ConvertToURL, convertFromURL

• Get and set methods are binded to properties in
read and write mode

● setString, getString methods to String property

• Collections are translated to arrays
● getByIndex method calls not needed anymore

• Structures and named constant recognized
● com.sun.star.beans.PropertyValue

• Introspection : dbg_methods, dbg_properties

Laurent Godard - lgodard@indesko.com

Xray - OOoBasic
• Navigate recursively into the API, plugged to the

IDL

B. Marcelly

Laurent Godard - lgodard@indesko.com

XRay – SDK binding

http://www.ooomacros.org/dev.php#101416

Laurent Godard - lgodard@indesko.com

First OOo API use

• Convert a document to PDF
sub launchMacro()

call DocumentToPDF("test.odt","test.pdf")
end sub

sub DocumentToPDF(source, destination)

sourceURL = convertToURL(source)
sourceDoc = StarDesktop.loadComponentFromURL(sourceURL, "_blank", _

 0, Array())

destinationURL = convertToURL(destination)
dim args(0) as new com.sun.star.beans.PropertyValue
args(0).Name = "FilterName"
args(0).Value = "writer_pdf_export"

sourceDoc.storeToURL(destinationURL,args())

sourceDoc.close(False)
end sub

Laurent Godard - lgodard@indesko.com

Packaging as addon

• Can be distributed inside a document but then not
integrated to OOo

• Definition of an addon
● A deployable set of code containing information on its

availability and access in OpenOffice.org in a standalone
file

● Compressed file containing code, resources and
configuration – a new filename extension defined : oxt
(OOo 2.0.4)

● Developers guide chapter 4

• Paolo's previous year presentation
● http://marketing.openoffice.org/ooocon2005/presentations/thursday_d4.pdf

Laurent Godard - lgodard@indesko.com

addons.xcu
• OOo GUI integration

• XML file containing the toolbar and menu layout of
the packaged code

• Defines icons resources

• Titles and Translations

• Associates code to be launched to each interface
elements

● Toolbar
● Main menu and submenus
● Tools > Addons submenu
● Help menu

• Addon tool http://www.ooomacros.org/dev.php#101618

Laurent Godard - lgodard@indesko.com

Addon tool
B. Marcelly

Laurent Godard - lgodard@indesko.com

Deploy to user

• Using command line tool unopkg (OOo closed)
● <ooo>/program/unopkg

• Package manager
● Tools > Package manager

• To all users in share directory or only at user level
● OOo installation directory share/uno_packages

● OpenOffice.org Packages

● OOo user directory user/uno_packages
● My Packages

Laurent Godard - lgodard@indesko.com

Deploy to user

Laurent Godard - lgodard@indesko.com

Access with command lines

• Macros can be accessed by launching a
command line

• Example : automatically export a file to PDF

soffice 'macro:///myLibrary.module.DocumentToPDF
("/home/lgodard/source.odt" ,
"/home/lgodard/result.pdf")'

Laurent Godard - lgodard@indesko.com

PyUNO
• Python bridge to OOo API

● Use for macros
● Use for external/remote scripting
● Deployable as addons

• Code simplifications similar to OOoBasic ones

• Object oriented so that we can create our own
services

● By overloading existing ones
● Creating a totally new (defining a new IDL)

• Simple as OOoBasic, powerful as Java ;)

• See Paolo's Mantovani examples
● http://www.paolo-mantovani.org/

Laurent Godard - lgodard@indesko.com

Python example
• HelloWorld python script as a macro

def HelloWorldPython():
 """Prints the string 'Hello World(in Python)' into the current document"""
#get the doc from the scripting context which is made available to all scripts
 model = XSCRIPTCONTEXT.getDocument()
#get the XText interface
 text = model.Text
#create an XTextRange at the end of the document
 tRange = text.End
#and set the string
 tRange.String = "Hello World (in Python)"
 return None

Laurent Godard - lgodard@indesko.com

PyXRAY

• All written in pyUNo using OOo graphical toolkit

• Points to the SDK offline and online
• http://www.indesko.com/sites/en/downloads/pyxray___a_tool_for/view

• Under development, need feed back

from pyXray import XrayBox

...
desktop = smgr.createInstanceWithContext("com.sun.star.frame.Desktop",ctx)
XrayBox(ctx,desktop)

access the current writer document
model = desktop.getCurrentComponent()
XrayBox(ctx,model)

Laurent Godard - lgodard@indesko.com

pyXRAY

Laurent Godard - lgodard@indesko.com

Python for remotely driving OOo
• Open OOo in listen mode

● Command line
● <OOo>/program/soffice "-accept=socket,host=localhost,port=2002;urp;"

● Every time
● Configuration file <Ooo>/share/registry/data/org/openoffice/Setup.xcu

<prop oor:name="ooSetupConnectionURL" oor:type="xs:string">

 <value>socket,host=localhost,port=2002;urp;</value>

</prop>

● Host & port allow remote scripting

• eg : oooconv
● A converter farm on an intranet (XML-RPC and

asynchronous using twisted framework)
● http://svn.nuxeo.org/trac/pub/browser/OOo/oooconv

Laurent Godard - lgodard@indesko.com

Example : doctests
• http://blogs.nuxeo.com/sections/blogs/laurent_godard/2006_04_13_testing-pyuno-programs-with-doctests

import doctest
import sys

def oooTesting():
 r""" Let's define the listening host we have to reach and the port ...

 >>> HOST = 'localhost'
 >>> PORT = 11111

 We now call out helper connecting class:

 >>> ooo = OOoTools(HOST, PORT)
 >>> ctx = ooo.ctx
 >>> desktop = ooo.desktop

 So, we are now connected to the listen OpenOffice.org instance

 We now start with Calc manipulations by creating a blank spreadsheet file

 >>> doc = desktop.loadComponentFromURL("private:factory/scalc",'_blank',0,())

 We can verfiy that this new document is really a spreadsheet by checking
 the supported OOo service:

 >>> doc.supportsService("com.sun.star.sheet.SpreadsheetDocument")
 True

 The new Calc documents opens on a new blank activesheet we retreive
 We also verify that this objetc is really a spreadsheet by checking
 the relevant supported services.

 >>> sheet = doc.CurrentController.ActiveSheet
 >>> sheet.supportsService("com.sun.star.sheet.Spreadsheet")
 True

Laurent Godard - lgodard@indesko.com

Using UNO services
• Overload existing services

• Creating your own IDL
● Define your own service and callable methods
● More advanced use but powerful
import uno
import unohelper

class EtatSyntheseJob(unohelper.Base, XJobExecutor):

 def __init__(self, ctx):

 def trigger(self, args):

pythonloader looks for a static g_ImplementationHelper variable
g_ImplementationHelper = unohelper.ImplementationHelper()
g_ImplementationHelper.addImplementation(EtatSyntheseJob, # UNO object class
 "myownname.EtatSynthese", # implemenation name
 ("org.openoffice.pyuno.myownname.EtatSynthese",),) # list of implemented services

Laurent Godard - lgodard@indesko.com

PyUNO needs you

• Version 2.3.5
● Following python versions would be great

• Need an editor or at least a binding

• Enhance addon management allowing several .py
files in the extension file

• Use pyUNO to create more and more Extensions

• Extension project
● http://wiki.services.openoffice.org/wiki/Extensions_development_python

● More helpers
● More documentation & feedback

Laurent Godard - lgodard@indesko.com

Conclusion
• Create your daily business programs or helpers by

implementing scripting Extensions

• A lot of tools and documentation available

• Extensions project and scripting framework
● Helps you starting

http://wiki.services.openoffice.org/wiki/Extensions
● Distribute your useful tools, feel free to contribute

● dev@extensions.openoffice.org

● A download site is being setup (any help ?)

• Tracks to follow at OOoCon 2006
● Eg: Development track on wednesday afternoon (Juergen

Schmidt about extensions infrastructure and Cedric
Bosdonnat about URE for going further)

Laurent Godard - lgodard@indesko.com

Thanks
Illustra

tions from
 B

en B
ois

