
CLEANING UP OOo
MULTI-THREADING

Kay Ramme
Senior Technical Architect
StarOffice/OpenOffice.org UDK Project
Lead
Sun Microsystems

2

Agenda

• Current Use of Multi-Threading ...
• Opportunities for Improvement ...
• In an Ideal World ...
• Proposed Solution ...
• Current Implementations ...
• The Plan ...
• Q&A ...
• May be some Deep Diving ...

3

Current Use of Multi-Threading
• Basically single threaded, some

dedicated threads:
> Windows clipboard
> Windows drag&drop
> VOS timer
> UCB-helper background loader
> Acceptor thread(s)
> Configuration flasher
> ICE thread
> ...

• Uno request threads.
• Everything implemented thread-safe.

4

Opportunities for Improvement
(see http://wiki.services.openoffice.org/wiki/Analysis/Multi-Threading for details)

• Does not scale with multiple clients, CPUs,
...
• No documentation regarding threading-

model or -architecture.
• It is not (really) thread-safe.
• Fragile / no systematic approach to

thread-safeness.
• Every developer has to take care of multi-

threading.
• Hard to implement OLE/COM based

components:
> Thread-affinity has to be encapsulated.
> All OSL threads are OLE/COM MTA.

5

Opportunities for Improvement (continued)
(see http://wiki.services.openoffice.org/wiki/Analysis/Multi-Threading for details)

• Subtle dependencies against the “main-
thread“,
> because VCL being thread-affine.

• Performance penalties because of much
locking etc. (e.g. Interlock counters).
• Increased code size and complexity

because of multi-thread constraints
(locking).
• Long lasting (slow) operations blocking

the GUI (partly addressed with polling).
• Competing threading models, Uno <->

VCL .

6

In an Ideal World
(see http://wiki.services.openoffice.org/wiki/Architecture/Goals_for_OOo_Threading-Model%26-Architecture for details)

• Always Responsive GUI ...
• Scales with multiple clients, CPUs, ...
• Systematic approach to concurrency ...
• Simple to implement and use ...
• Exactly one threading-model
• Good Documentation ...

7

Always Responsive GUI

• GUI is soft real time.
• Long lasting (slow) operations, e.g.
> loading,
> printing,
> saving, respectively
> I/O in general

 need to be offloaded.
• Want to use dedicated threads for this.
• Need to ensure scalable I/O (UCB).

8

Scales with Multiple Clients, CPUs

• Scalability basically is about parallelism.
• OOo could scale on a ...
> application level – documents of different

applications can be manipulated in parallel,
> document level – multiple documents can be

manipulated in parallel,
> window level – every window can process

events in parallel,
> ...

• Need to identify scaling sensitive code.

9

Systematic Approach to Concurrency
(See http://wiki.services.openoffice.org/wiki/Uno/Binary/Spec/Threading-Architecture for details)

• Automatic External locking.
• Only few thread-aware code.
• Only well tested thread-aware code.
• Support for encapsulating thread-affinity.
• Defined scalability.

10

Simple to Implement and Use

• In clients and services code.
• Be conservative, only require thread

related programming where actually
necessary.
• No surprise (thread-transparent):
> No call back by another thread.
> No asynchronous call backs.
> Every activity is triggered by the client.

• Code can just marked to be either
> thread-safe,
> thread-unsafe, or
> thread-affine.

11

Documentation

• Have specifications.
• Have implementation Descriptions.
• Have Tutorials / Best Practices.
• Publicly provide implementation status.
• Document everything in the wiki.

12

Proposed Solution
(See http://wiki.services.openoffice.org/wiki/Uno/Binary/Spec/Threading-Architecture for details)

• Drop VCL threading-model.
• Extend Unos threading-model .
• Switch all code to be thread-unsafe,

except scaling sensitive parts (UCB,
Config Manager).
• Fix thread-affinity.
• Introduce I/O threads.
• Enhance scalability step-wise, as needed

only.

13

Current State

• Proof of Concept in CWS UTF2.
• Asynchronous Dialogs ~80% (Intel,

CH2000, Sun).
• Uno threading-model extension nearly

ready - 90%.
• Thread-Affinity fix is on the way – about

80%.
• Switch to thread-unsafe is ongoing -

about 85%.
• Introducing I/O threads – open.
• Enhance scalability – open.
• Document in the wiki – about 85%.

14

The Plan

• Finish&Integrate new threading-model /
-architecture.
• Remove outdated thread related

constructs.
• Introduce I/O threads.
• And finally, switch to an event driven

architecture ...

15

Questions & Answers

16

Deep Diving

• Outlook ...
• How Uno is going to support thread

related code ...
• Making VCL Thread-Transparent ...
• Switching OOo to thread-unsafe ...
• History ...

17

Outlook

• Use a running office process not only for
GUI, but also for other services (3rd party
integrations).
• This would be a push for more scalability

/ parallelism.

18

Unos Extended Threading-Model
(See http://wiki.services.openoffice.org/wiki/Uno/Effort/Binary/Extend_Threading-Model for details)

• Background
> Environments – to manage objects of same

OBI (and purposes)
> Mappings – to map from one environment to

another
> Objects – the actual functionality

• Concrete
> Map thread-unsafe objects to become thread-

safe
> Map thread-affine objects to become thread-

safe

• Tutorials
> Working with Environments, Mappings &

Objects
http://wiki.services.openoffice.org/wiki/Uno/Article/Multi-Thread_Programming

> Multi-Thread Programming
http://wiki.services.openoffice.org/wiki/Uno/Article/Working_with_Environments%2C_Mappings_%26_Objects

http://wiki.services.openoffice.org/wiki/Uno/Article/Multi-Thread_Programming
http://wiki.services.openoffice.org/wiki/Uno/Article/Working_with_Environments%2C_Mappings_%26_Objects

19

Unos Extended Threading-Model
(See http://wiki.services.openoffice.org/wiki/Uno/Effort/Binary/Extend_Threading-Model for details)

• Purpose Environments:
“<OBI>[:purpose]*”
• Environment Stacking
• Cascaded Mappings
> “<OBI>[:purpose]*” <-> “<OBI>[:purpose]*”

• Two new, thread related purposes:
> “:unsafe”
> “:affine”

• Bootstrapping support

20

Make VCL Thread-Transparent
(see http://wiki.services.openoffice.org/wiki/Effort/Make_VCL_Thread-Transparent for details)

• Problem:
> VCL inherits Windows thread-affinity.
> VCL provides the Solar-Mutex.
> The solar mutex becomes released wrongly,

in some situations. Fixing this introduces
regressions because of “Dialog::execute”.

> DDE depends on the “main” thread ...

• Tasks:
> Encapsulate thread-affinity by using a

dedicated thread.
> Remove the Solar-Mutex.
> Replace “Dialog::execute” where necessary

(Intel - D.Keskar).

21

Switching OOo to Thread-Unsafe

• Find Uno components a mark them as
thread-unsafe.
• Find threads, make them use Unos

extending threading-model.
• Take a look at the libraries / private APIs,

mark them as thread-unsafe.
• FIND all EXCEPTIONS.

22

History

• ~1997: “Horst” introduced multi-
threading.
• ~1998: “Horst” and Markus introduced

the beloved Solar-Mutex.
• 2000: Markus asked me briefly, to spend

some thoughts on this and to (just) solve
it.
• 2002: I heard the same from Jörg (Heilig).
• 2002: Kai (Sommerfeld) and I started our

journey to finally solve this.
• 2005: Intel / Dhananjay (Keskar) jumped

on.
• 2006: Still on my way ... but seem to be

close.

23

Some Links

• http://wiki.services.openoffice.org/wiki/Architecture
• .../wiki/Uno
• .../wiki/Effort/Revise_OOo_Multi-Threading
• .../wiki/Effort/Make_VCL_Thread-

Transparent
• .../wiki/Effort/Make_Dialogs_Asynchronous
• .../wiki/Effort/Encapsulate_the_Win32_thr

ead_affinity
• .../wiki/Spec/Threading-Model
• .../wiki/Spec/Threading-Architecture

http://wiki.services.openoffice.org/wiki/Architecture

CLEANING UP OOo
MULTI-THREADING

Kay Ramme
Kay.Ramme@sun.com

