
Bibliographic Project’s Developer Page

Last Modified
2005-December-4

A printer friendly PDF version of this page is available
developer1.pdf (36Kb)

Contents

Project Overview
1st Stage, Bibliographic Facility Redevelopment

Modify the Writer document-read and document-save modules to support the new
OpenDocument enhanced citation format.
Modify the writer code to insert and display the new format citations.
Add support in the OOo save file package for storage of document bibliographic data an the
code changes necessary to read and save that bibliographic data.4. Modify the Writer
save-file read and save modules to support the new the bibliographic data file in the
document save package.

2nd Stage, Bibliographic Facility Redevelopment
Add Backwards and Forwards Compatability Logic to Writer
Add Z39.50 and SRU/W support for the Bibliographic modules.
Design and Build a basic Graphical User Interface (GUI)

How to get started
Sample code
Contacts

Project Overview
The role of the Bibliographic Project (OOoBib) is to support the OpenOffice.org Writer
(wordprocessing) application by enhancing the bibliographic facility. See our Vision statement for
details. Our current objection to to design and build OOoBib version 0.1, which will contain the most
basic functions for an usable bibligraphic facility.

For an overview of the Bibliographic project’s major components and a context diagram see
components.html. There is information about the current OpenOffice Bibliographic implementation.

A start has been made to the Specification for this work (see the Projects Specifications folder on the
Documents and Files page). Also see a attempt at an analysis of the proposed Bibliographic
enhancement components and their relationships.

The best place to start for finding out about development in OpenOffice is the OpenOffice.org For
Developers page. An important resource is the Developer’s guide which is part of the SDK (software
development kit) or available online on at
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html

The OOo API is based on UNO (Universal Network Objects) is the interface-based component model
of OpenOffice.org. UNO offers interpretability between different programming languages, different
object models, different machine architectures and different processes; either in a local network or
even via the Internet. UNO components can be implemented in and accessed from any programming

1

http://bibliographic.openoffice.org/servlets/ProjectDocumentList?folderID=266
http://development.openoffice.org/index.html
http://development.openoffice.org/index.html
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
http://api.openoffice.org/
http://udk.openoffice.org/

language for which a UNO language binding exists. We currently provide several language bindings
for UNO which allows to use the API from Java, C++, OpenOffice.org Basic, Python and Common
Language Infrastructure (CLI).

1st Stage, Bibliographic Facility Redevelopment top of page

Summary

As a first step we are plan to implement the most simple changes to the OOo core code (the API basic
code, and UNO mappings, but not yet the user interface code) necessary to implement basic support
for -

As a first step we will implement the most simple changes to the OOo core code (the API basic code,
and UNO mappings, but not yet the user interface code) necessary to implement basic support for:

1. Support saving and reading enhanced citation support in OpenDocument
2. Ability to insert and display citations in OpenOffice Writer using the new format. (Note this task

does not include the GUI interface to insert the citation in the new format, only the UNO interface
to provide the basic function.

3. Storage of document bibliographic data in the OOo document save package and the code changes
necessary to read and save that bibliographic data.

When these basic functions are built into OOo and are made assessable via the UNO, we can then use
rapid prototyping development methods to design and build prototype GUI interfaces and
bibliographic formatting engines. We will be able to use any of the programming languages which
have OpenOffice bindings: C++, Java, Python and, of course, OpenOffice Basic. We believe that we
will find more developers who can work in these languages than by insisting on C++ code from the
start. Also it is much easier to build prototypes using Java, Python and OpenOffice Basic than in C++.

NB. When we have designed, built and tested the prototypes and they have been accepted by the OOo
community we intend to rebuild them in C++ and to have them made part of the core OpenOffice
application.

Skills required - good C++ programming and some XML skills with knowledge of, or willingness to
learn, the OpenOffice UNO (see the Openoffice Developer’s Guide)

1. Modify the Writer document-read and document-save modules to support the
new OpenDocument enhanced citation format.

Implement the citation and bibliography changes to the OOo Writer save file (in Open Document
format) accepted by the OpenDocument Technical Committee. The changes to the document schema
are detailed in our OpenDocument XML Citation Proposal.pdf

Implementing the new citation element in xmloff (the XmlOffice module) is a routine task. The Sun
developers want to do it together with our programmer, so that he/she can learn how xmloff works.

The changes to the document schema need to be supported by the document save and load modules.
The API module(s) concerned are:

2

http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html
http://lists.oasis-open.org/archives/office/200409/msg00023.html
http://bibliographic.openoffice.org/XML-bibliography-proposal.pdf

interface XComponentLoader "This is a simple interface to load components by an URL into a frame
environment."

which supports loadComponentFromURL and storeAsURL

See the Development Guide explanation for - 6.1.5 Handling Documents

??? is this correct and what else.

2. Modify the writer code to insert and display the new format citations

The bibliographic modules in OOo Writer need to modified to support the new schema. The modules
that need to be modified are

Bibliography
textfield/Bibliography
FieldMaster/Bibliography
BibliographyDataField

3. Add support in the OOo save file package for storage of document
bibliographic data.

Currently the Writer saves a complete copy of the bibliographic data associated with a citation, with
each ciation. We propose to separate the citation and the bibliographic data, by leaving just the citation
details in the document save file and place the detailed bibliographic data in a seperate bibliographic
data file the OOo save file package.

The task is to complete the design of the bibliographic data file and add support for it in the OOo save
file package.There is description of the XML Package, and is a FAQ about it.

4. Modify the Writer save-file read and save modules to support the new the
bibliographic data file in the document save package.

The relevant component is "interface XComponentLoader" which supports loadComponentFromURL
and storeAsURL.

5. Refine and Improve the CITEPROC bibliographic formating engine.

Experience XSLT programers are needed to work on this core component of the Bibliographic facility.
It is functioning and a book has been published which used it to format the bibliographic table and
citations.

We propose to build Bibliographic table and citation formating using XSLT style-sheets with a
process called CiteProc. Also see BiblioX for technical discusion of this approach.

2nd Stage, Bibliographic Facility Redevelopment top of page

3

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.xhtml#1_1_5_Handling_Documents
http://xml.openoffice.org/package.html
http://xml.openoffice.org/faq.html#4
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://bibliographic.openoffice.org/citeproc/index.html
http://www.silmaril.ie/bibliox/biblioxdoc.html

1. Add Backwards and Forwards Compatability Logic to Writer

An important object of Bibliographic Enhancement project is to maintain document file backwards
compatibility with older versions of OpenOffice. To achieve this when Bibliographic Entries are
inserted into a Document they are stored with the same format as is currently the case. A new
bibliographic entry tag will be will be added with the enhanced citation functions. Also a copy of the
bibliographic data will be saved in the document save package. Older version of OpenOffice will read
the old format of the bibliographic citations and ignore the bibliographic data file in the save package.
The proposed enhanced OpenOffice will function as illustrated below

When a major revision of the save package format is introduced the support of the older bibliographic
representations can be dropped.

4

The API module(s) concerned are:

interface XComponentLoader "This is a simple interface to load components by an URL into a frame
environment."

5

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html

which supports loadComponentFromURL and storeAsURL

See the Development Guide explanation for - 6.1.5 Handling Documents

2. Add Z39.50 and SRU/W support for the Bibliographic modules.

Build Z39.50 and SRU/W based internet searching facility using the YAZ toolkit (C & C++). This
would enable searching for and retrieving bibliographic data from internet sources and storing them in
a document or bibliographic database.

There is also a demonstration client program - IRTCL (requires YAZ and Tcl/Tk libraries be installed)
that can perform the reference searches. It does everything but save or export the results ! However it
is good model of how to use the toolkit and could be used as the basis for or model of a prototype
internet searching facility. Screen pic, screen pic2.

A demonstration internet searching facility that writes selected bibliographic records back to the OOo
bibliographic database has been written in Python - PyOOBib. Also instructions are available. Various
problems with OOo Python have lead to us concluding that YAZ would be a better foundation than the
Python code.

Also build Z39.50 and SRU/W server capability into OOo to enable users to share their bibliographic
(and other) databases over the internet. One of the Indexdata toolkits could probably used as a basis.

The modules that may need to be modified are:

Bibliography
textfield/Bibliography
FieldMaster/Bibliography
BibliographyDataField

NB: We are considering using SWU/W as the standard method for OOo retrieving bibliographic data
from any source. So that even a local Bibliographic database would also be accessed through SWU/W
methods. The user would just select a local or remote source and the same access mechanism would be
used.

3. Design and Build a basic Graphical User Interface (GUI). To provide -

Basic citation insertion
Basic bibliographic data entry
Citation and bibliographic table formating using Citeproc.
Basic Bibliographic database access
Basic bibliographic internet search and database storage.

How to get started top of page

Access to the source code for this project is available for download via CVS. A child work space has
been created for us called "metabib" which contains a copy of the xmloff(OpenOffice.org XML File
Format Definition) and sw (the word processor application component and the WYSIWYG HTML
editor component) code.

6

http://api.openoffice.org/docs/DevelopersGuide/OfficeDev/OfficeDev.xhtml#1_1_5_Handling_Documents
http://www.indexdata.dk/yaz/
http://www.indexdata.dk/irtcl/
http://bibliographic.openoffice.org/irclient.jpeg
http://bibliographic.openoffice.org/files/documents/124/1675/PyOOBib-02.zip
http://bibliographic.openoffice.org/files/documents/124/2446/file_2446.dat?file
http://www.indexdata.dk/
http://xml.openoffice.org/source/browse/xml/xmloff
http://sw.openoffice.org/source/browse/sw/

The down load size will be about 1GB(?). And you will need about 2GB of disk space to compile the
metabib CWS (Child-Work-Space). (Web access to CWS). If you can not handle that size download
then ask us about sending it to you on cdroms.

Administration process - you first need to sign the JCA and then obtain the ssh key. After that we will
show you how you can access the ’CWS’. It’s basically a CVS branch. The most complicated thing is
the setup of your tools, such that you can participate in the OOo development --- but, when you have
got the ssh key we will show you.

See OpenOffice.org For Developers for general development information.

Sample Code top of page

Sample python code that reads and outputs some of the fields of the records in the bibliographic
database. biblioacess.py
Sample OpenOffice Basic program to write records to the bibliographic database bibwrite.html
Henrik Just’s LaTeX and BibTeX export filter http://www.hj-gym.dk/~hj/writer2latex/
Applications which interact with Openoffice- Bibus (WxPython) and B3 (Java).
A Perl module OpenOffice::OODoc provides a simple way to access document elements in the
(closed i.e. not interactive with OOo) document save file. An example which retrieves
bibliographic details is provided.

Contacts

Question or comments can be put to the Bibliographic Project development list
dev@bibliographic.openoffice.org or to the project co-leader David Wilson.

7

http://eis.services.openoffice.org/EIS2/servlet/cws.ShowCWS?Id=3272&Path=SRC680%2Fmetabib
http://development.openoffice.org/index.html
http://udk.openoffice.org/python/samples/biblioaccess.py
http://www.hj-gym.dk/~hj/writer2latex/
http://search.cpan.org/~jmgdoc/OpenOffice-OODoc/OODoc/Intro.pod

	
	Bibliographic Project's Developer Page
	Contents
	Project Overview
	Summary
	1. Modify the Writer document-read and document-save modules to support the new OpenDocument enhanced citation format.
	2. Modify the writer code to insert and display the new format citations
	3. Add support in the OOo save file package for storage of document bibliographic data.
	4. Modify the Writer save-file read and save modules to support the new the bibliographic data file in the document save package.
	5. Refine and Improve the CITEPROC bibliographic formating engine.
	1. Add Backwards and Forwards Compatability Logic to Writer
	2. Add Z39.50 and SRU/W support for the Bibliographic modules.
	3. Design and Build a basic Graphical User Interface (GUI). To provide -

	Contacts

