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Let us examine the space  MACROBUTTON MTEditEquationSection2 Equation Chapter 1 Section 1. (The number of components differs from the definition of L() above, hence the primed notation; the TV part of 
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 should be considered “extra” and we will see at the end of the section why its presence is not needed to discuss the Donaldson invariants.) We will install on this space the vector field
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We will construct a special function L on this space as follows. We will then integrate the exponential of the function QL over the E and  variables, and we shall point out that the remaining function is Mathai and Quillen’s element of the Cartan algebra. Let us proceed. We set
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and then obtain
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(remembering to pick up a minus sign when we move Q past the  in the second term). Now we compute
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We now use the fact that Gaussian integration gives
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and obtain
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To obtain an element of the Cartan algebra, we use the fact that L is a linear function of  and so can be identified with a 1-form on V. If we now choose a connection a on A then we can construct the map 
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 by sending 
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Fa. This is the Weil homomorphism. It is an equivariant map because Fa transforms in the adjoint representation, and so descends to a map on G-invariant forms
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