
TS-2007

Improving Software Quality
with Static Analysis

and Annotations for Software
Defect Detection

William Pugh
Professor, Univ. of Maryland

http://www.cs.umd.edu/~pugh

2

• Professor at Univ. of Maryland since 1988, doing
research in programming languages, algorithms,
software engineering

• Technical Lead on JSR-133 (Memory model),
JSR-305 (Annotations for Software Defect Detection)

• Founder of the FindBugs™ project

• Open source static analysis tool for defect
detection in the Java™ Programming Language

• Technical advisory board of

About Me

3

4

Static Analysis
• Analyzes your program without executing it

• Doesn’t depend on having good test cases

• or even any test cases

• Generally, doesn’t know what your software is supposed to
do

• Looks for violations of reasonable programming

• Shouldn’t throw NPE

• Shouldn’t allow SQL injection

• Not a replacement for testing

• Very good at finding problems on untested paths

• But many defects can’t be found with static analysis

4

Common Wisdom about Bugs
and Static Analysis

• Programmers are smart

• Smart people don’t make dumb mistakes

• We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs
early

• So, bugs remaining in production code must be
subtle, and finding them must require
sophisticated static analysis techniques

• I tried lint and it sucked: lots of warnings, few
real issues

5

Can You Find The Bug?

5

Can You Find The Bug?

 if (listeners == null)

 listeners.remove(listener);

• JDK1.6.0, b105, sun.awt.x11.XMSelection

• lines 243-244

5

Can You Find The Bug?

 if (listeners == null)

 listeners.remove(listener);

• JDK1.6.0, b105, sun.awt.x11.XMSelection

• lines 243-244

5

Can You Find The Bug?

 if (listeners == null)

 listeners.remove(listener);

• JDK1.6.0, b105, sun.awt.x11.XMSelection

• lines 243-244

Why Do Bugs Occur?

• Nobody is perfect
• Common types of errors:
• Misunderstood language features, API methods
• Typos (using wrong boolean operator, forgetting

parentheses or brackets, etc.)
• Misunderstood class or method invariants

• Everyone makes syntax errors, but the compiler
catches them
• What about bugs one step removed from a

syntax error?

7

Who Uses Static Analysis?
• Lots and lots of projects and companies

• Among many others, Glassfish and Google use FindBugs

• Many companies are weird about letting you say they use your
open source tool

• Lots of open source tools: PMD, CheckStyle, etc.

• IDEs include some: Eclipse, IntelliJ, Netbeans

• Commercial tools available from Fortify Software, KlocWork,
Coverity, Parasoft, SureLogic

• Static analysis used even more widely/intensely for C/C++

• More bugs to find

• Bugs a lot scarier

• Free tools not as good

8

FindBugs

• I'm mostly going to be talking about FindBugs

• I know it best

• Some things will be specific to FindBugs

• What we classify as a "correctness" issue

• Which potential null pointer issues we report

• But most of the concepts apply to other tools

9

Bug Categories

• Correctness - the code seems to be clearly doing
something the developer did not intend

• Bad practice - the code violates good practice

Selected categories for today's discussion

10

Bug Patterns

• Some big, broad and common patterns
• Dereferencing a null pointer
• An impossible checked cast
• Methods whose return value should not be

ignored
• Lots of small, specific bug patterns, that together

find lots of bugs
• Every Programming Puzzler
• Every chapter in Effective Java
• Many postings to http://thedailywtf.com/

11

Analysis Techniques

• Local pattern matching
• If you invoke String.toLowerCase(), don’t

ignore the return value
• Intraprocedural dataflow analysis
• Null pointer, type cast errors

• Interprocedural method summaries
• This method always dereferences its parameter

• Context sensitive interprocedural analysis
• Interprocedural flow of untrusted data
• SQL injection, cross site scripting

Whatever you need to find the bugs

12

Categories, ranking, use
cases

• Every tool has categories, rules/patterns, priorities

• You can generally customize what you want to look
at

• Sometimes, you want to do a code audit of a newly
written module with 1,000 lines of code

• and sometimes you want to scan 1,000,000 lines
of code that has been in production for a year

• Different use cases require different tunings,
different tools

13

Stuff you really want to look at
Correctness issues

• In FindBugs, we reserve the Correctness category
for issues we are most confident are wrong

• code does something the developer didn’t intend

• Many of the other categories reflect correctness
issues

• But correctness issues are the things we think you
should look at when scanning that million line code
base

• low false positive rate, few low impact bugs

14

• Student came to office hours, was having trouble
with his constructor:

/** Construct a WebSpider */
public WebSpider() {
 WebSpider w = new WebSpider();

 }
• A second student had the same bug
• Wrote a detector, found 3 other students with same

bug

... Students are good bug generators

14

Infinite recursive loop

• Student came to office hours, was having trouble
with his constructor:

/** Construct a WebSpider */
public WebSpider() {
 WebSpider w = new WebSpider();

 }
• A second student had the same bug
• Wrote a detector, found 3 other students with same

bug

... Students are good bug generators

15

Double Check Against
JDK1.6.0-b13

• Found 5 infinite recursive loops
• Including one written by Joshua Bloch
 public String foundType() {
 return this.foundType();
 }
• Smart people make dumb mistakes
• 27 across all versions of JDK, 40+ in Google’s

Java code
• Embrace and fix your dumb mistakes

16

Finding Null Pointer Bugs
with FindBugs

•FindBugs looks for a statement or branch that, if executed,
guarantees a null pointer exception

•Either a null pointer exception could be thrown, or the
program contains a statement/branch that can’t be
executed

•Could look for exceptions that only occur on a path
•e.g., if the condition on line 29 is true and the condition

on line 38 is false, then a NPE will be thrown
•but would need to worry about whether that path is

feasible

17

Null Pointer Bugs Found by
FindBugs

• 109 statements/branches that, if executed,
guarantee NPE

• We judge at least 54 of them to be serious bugs
that could generate a NPE on valid input

• Most of the others were deemed to be unreachable
branches or statements, or reachable only with
erroneous input

• Only one case where the analysis was wrong

JDK1.6.0-b105

18

Examples of null pointer bugs

//com.sun.corba.se.impl.naming.cosnaming.NamingContextImpl
if (name != null || name.length > 0)

//com.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser
if (part == null | part.equals(""))

// sun.awt.x11.ScrollPanePeer
if (g != null)
 paintScrollBars(g,colors);

g.dispose();

simple ones

19

Redundant Check For Null

•Checking a value to see if it is null
•When it can't possibly be null

 // java.awt.image.LoopupOp, lines 236-247

public final WritableRaster filter(
 Raster src, WritableRaster dst) {

 int dstLength = dst.getNumBands();
 // Create a new destination Raster,
 // if needed

 if (dst == null)
 dst = createCompatibleDestRaster(src);

Also known as a reverse null dereference error

20

Redundant Check For Null

• Check the JavaDoc for the method

• Performs a lookup operation on a Raster.
• If the destination Raster is null,
• a new Raster will be created.

• Is this case, a bug
• particularly look for those cases where we know it

can't be null because there would have been a
NPE if it were null

Is it a bug or a redundant check?

21

Bad Method Invocation

• Methods whose return value shouldn't be ignored

• Strings are immutable, so functions like trim()
and toLowerCase() return new String

• Dumb/useless methods

• Invoking toString or equals on an array

• Lots of specific rules about particular API methods

• Hard to memorize, easy to get wrong

22

Examples of bad method
calls

// com.sun.rowset.CachedRowSetImpl
if (type == Types.DECIMAL || type == Types.NUMERIC)
 ((java.math.BigDecimal)x).setScale(scale);

// com.sun.xml.internal.txw2.output.XMLWriter
try { ... }
catch (IOException e) {
 new SAXException("Server side Exception:" + e);
 }

23

Type Analysis
• Impossible checked casts
• Useless calls
• equals takes an Object as a parameter
• but comparing a String to StringBuffer

with equals(...) is pointless, and almost
certainly not what was intended

• Map<K,V>.get also takes an Object as a
parameter
• supplying an object with the wrong type as a

parameter to get doesn't generate a compile
time error

• just a get that always returns null

24

Lots of Little Bug Patterns

• checking if d == Double.NaN

• Bit shifting an int by a value greater than 31
bits

• Every Puzzler this year

• more than half for most years

25

When Bad Code Isn't A Bug
• Static analysis tools will sometimes find ugly,

nasty code

• that can't cause your application to misbehave

• Cleaning this up is a good thing

• makes the code easier to understand and
maintain

• But for ugly code already in production

• sometimes you just don't want to touch it

• We've found more cases like this than we
expected

26

When Bad Code Isn't A Bug

// com.sun.jndi.dns.DnsName, lines 345-347
 if (n instanceof CompositeName) {
 // force ClassCastException
 n = (DnsName) n;
 }

// sun.jdbc.odbc.JdbcOdbcObject, lines 85-91
if ((b[offset] < 32) || (b[offset] > 128)) {
 asciiLine += ".";
}

bad code that does what it was intended to do

27

When Bad Code Isn't A Bug

// com.sun.corba.se.impl.dynamicany.DynAnyComplexImpl
String expectedMemberName = null;
try {
 expectedMemberName
 = expectedTypeCode.member_name(i);

} catch (BadKind badKind) { // impossible
} catch (Bounds bounds) { // impossible
}
if (!(expectedMemberName.equals(memberName) ...))
{

Code that shouldn't go wrong

28

When Bad Code Isn't A Bug

// com.sun.org.apache.xml.internal.security.encryption.XMLCiper
// lines 2224-2228

if (null == element) {
 //complain
}
String algorithm = element.getAttributeNS(...);

When you are already doomed

29

Overall Correctness Results
From FindBugs

• JDK1.6.0-b105

• 379 correctness warnings

• we judge that at least 213 of these are serious issues
that should be fixed

• Google's Java codebase

• over a 6 month period, using various versions of FindBugs

• 1,127 warnings

• 807 filed as bugs

• 518 fixed in code

Evaluating Static Analysis Defect Warnings On Production Software, ACM
2007 Workshop on Program Analysis for Software Tools and Engineering

Results on openjpa nightly
build

• 39 correctness issues

• 35 of which I marked as must/should fix

• 2 doomed casts

• 1 uninitialized reads

• 6 null pointer issues

• 26 comparing Boolean objects using ==

• feel free to argue with me on this one

30

31

Bad Practice
• A class that defines an equals method but

inherits hashCode from Object

• Violates contract that any two equal objects
have the same hash code

• equals method doesn't handle null argument

• Serializable class without a serialVersionUID

• Exception caught and ignored

• Broken out from the correctness category

32

Fixing hashCode
• What if you want to define equals, but don't

think your objects will ever get put into a
HashMap?

• Suggestion:
public int hashCode() {
 assert false
 : "hashCode method not designed";
 return 42;
 }

33

Use of Unhashable Classes
• FindBugs previously reported all classes that

defined equals but not hashCode as a
correctness problem

• but some developers didn’t care

• Now reported as bad practice

• but separately report use of such a class in a
HashMap/HashTable as a correctness
warning

34

Integrating Static Analysis
• Want to make it part of your development process

• Just like running unit tests

• Have to tune the tool to report what you are
interested in

• Different situations have different needs

• Need a workflow for issues

• Almost all tools will report some issues that,
after reviewing, you decide not to fix

• Need to have a way to manage such issues

35

Running Static Analysis
• "We've got it in our IDE, so we're done, right?"

• no, it really needs to also be done
automatically as part of your build
process

• Are you scanning 2 million lines of code?

• You probably don't want 20,000 issues to
examine

36

Defect/Issue Workflow

• How do issues get reviewed/audited?
• Can you do team auditing and assign issues?
• Once you've reviewed an issue, does the system

remember your evaluation when it analyzes that
code again?
• even if it is now reported on a different line

number?
• Can you identify new issues
• since last build?
• since last release to customer/production?

37

Learning from mistakes
• With FindBugs, we've always started from bugs

• We need API experts to feed us API-specific bugs

• Swing, EJB, J2ME, localization, Hibernate, ...

• When you get bit by a bug

• writing a test case is good

• considering whether it can be generalized into a bug
pattern is better

• You'd be surprised at the number of times you make a
mistake so stupid “no one else could possible make the
same mistake”

• but they do

38

JSR-305: Annotations for
Software Defect Detection

William Pugh
Professor
Univ. of Maryland
pugh@cs.umd.edu
http://www.cs.umd.edu/~pugh/

Status
Report

mailto:pugh@cs.umd.edu
mailto:pugh@cs.umd.edu
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

39

Why annotations?

• Static analysis can do a lot

• can even analyze interprocedural paths

• Why do we need annotations?

• they express design decisions that may be
implicit, or described in documentation, but
not easily available to tools

40

Where is the bug?
class Foo {
 int value;
 public boolean equals(Object obj) {
 if (this.getClass()
 != obj.getClass())
 return false;
 Foo that = (Foo) obj;
 return this.value == that.value;
 }
 ...
 }

41

Where is the bug?

if (spec != null) fFragments.add(spec);

if (isComplete(spec)) fPreferences.add(spec);

41

Where is the bug?

if (spec != null) fFragments.add(spec);

if (isComplete(spec)) fPreferences.add(spec);

boolean isComplete(AnnotationPreference spec) {

 return spec.getColorPreferenceKey() != null

 && spec.getColorPreferenceValue() != null

 && spec.getTextPreferenceKey() != null

 && spec.getOverviewRulerPreferenceKey() != null;
 }

42

Finding the bug

• Many bugs can only be identified, or only
localized, if you know something about what
the code is supposed to do

• Annotations are well suited to this...

43

JSR-305

• At least two tools already have defined their
own annotations:

• FindBugs and IntelliJ

• No one wants to have to apply two sets of
annotations to their code

• come up with a common set of annotations
that can be understood by multiple tools

44

JSR-305 target

• JSR-305 is intended to be compatible with
JSE 5.0+ Java

• Hope to have usable drafts and preliminary
tool support out by the end of the summer

45

JSR-308

• Annotations on Java Types

• Designed to allow annotations to occur in
many more places than they can occur now

• ArrayList<@Nonnull String> a = ...

• Targets JSE 7.0

• Will add value to JSR-305, but JSR-305
cannot depend upon JSR-308

46

Nullness

• Nullness is a great motivating example

• Most method parameters are expected to
always be nonnull

• some research papers support this

• Not always documented in JavaDoc

47

Documenting nullness
• Want to document parameters, return values,

fields that should always be nonnull

• And which should not be presumed nonnull

• argument to equals(Object)

• Should warn if null passed where nonnull
value required

• Should warn if argument to equals is
immediately dereferenced

48

Only two cases?
• What about Map.get(...)?

• Return nulls if key not found

• even if all values in Map are nonnull

• So the return value can’t be @Nonnull

• But lots of places where you “know” that the
value will be nonnull

• you know key is in table

• you know value is nonnull

49

more examples

• Object.equals(Object obj)

• must handle a null value for obj

• Method.invoke(Object obj, Obj.. args)

• obj should be null if method is a static
method, nonnull if an instance method

• ConcurrentHashMap.get(K k)

• k must not be null

50

3 cases?

• May need to have 3 cases for nullness

• @Nonnull

• @CheckForNull

• @UnknownNullness

• same as no annotation

• Names in flux, might use Nullable for one of
these (but which one?)

51

@Nonnull
• Should not be null

• For fields, should be interpreted as should
be nonnull after object is initialized

• Tools will try to generate a warning if they see
a possibly null value being used where a
nonnull value is required

• same as if they see a dereference of a
possibly null value

52

@CheckForNull

• Code should always worry that this value
might be null

• e.g., argument to equals

53

@UnknownNullness

• Same as no annotation

• Needed because we are going to introduce
default and inherited annotations

• Need to be able to get back to unannotated
state

• Null under some circumstances

• might vary in subtypes

54

@CheckForNull
requires work

• If you mark a return value as @CheckForNull,
you will likely have to go make a bunch of
changes

• kind of like const in C++

• My experience has been that there are lots of
methods that could return null

• but that in a particular calling context, you
might know that it can’t

55

Nullness annotations

• Tools that try to prove absence of NPE might
treat @CheckForNull and @UnknownNullness
the same

• This 3-way logic might reappear for some
other annotations

56

Type Qualifiers

• Many of the JSR-305 annotations will be type
qualifiers: additional type constraints on top of
the existing Java type system

57

@Untainted / @Tainted

• Needed for security analysis

• Information derived directly from web form
parameters is tainted

• can be arbitrary content

• Strings used to form SQL queries or HTML
responses must be untainted

• otherwise get SQL Injection or XSS

58

@Syntax

• Used to indicate String values with particular
syntaxes

• @Syntax(“RegEx”)

• @Syntax(“Java”)

• @Syntax(“SQL”)

• Allows for error checking and used by IDE’s in
refactoring

59

@Pattern

• Provides a regular expression that describes
the legal String values

• @Pattern(“\\d+”)

60

@Nonnegative and friends

• Fairly clear motivation for @Nonnegative

• More?

• @Positive

• Where do we stop?

• @NonZero

• @PowerOfTwo

• @Prime

61

Three-way logic again

• If we have @Nonnegative, do we also need:

• @Signed

• similar to check for null

• @UnknownSign

• similar to unknown nullness

62

User defined type qualifiers

• In (too many) places, Java APIs use integer
values or Strings where enumerations would
have been better

• except that they weren’t around at the time

• Lots of potential errors, uncaught by compiler

63

Example in java.sql.Connection
createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

Creates a Statement object that will generate ResultSet objects with the given
type, concurrency, and holdability.

resultSetType: one of the following ResultSet constants:
ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_INSENSITIVE, or
ResultSet.TYPE_SCROLL_SENSITIVE

resultSetConcurrency: one of the following ResultSet constants:
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE

resultSetHoldability: one of the following ResultSet constants:
ResultSet.HOLD_CURSORS_OVER_COMMIT or

64

The fix
• Declare

• public @TypeQualifier @interface
ResultSetType {}

• public @TypeQualifier @interface
ResultSetConcurrency {}

• public @TypeQualifier @interface
ResultSetHoldability {}

• Annotate static constants and method

65

User defined Type Qualifiers

• JSR-305 won’t define @ResultSetType

• Rather JSR-305 will define the meta-
annotations

• that allow any developer to define their own
type qualifier annotations

• which they can apply and will be interpreted
by defect detection tools

66

Other ideas

• Validators

• Subtypes

• exclusive type qualifiers (e.g., it can't be both
A and B)

67

CreditCard example

@Documented @TypeQualifier @Retention(RetentionPolicy.RUNTIME)
@Pattern("[0-9]{16}")

public @interface CreditCardNumber {

 class Validator implements TypeQualifierValidator<CreditCardNumber> {
 public boolean forConstantValue(CreditCardNumber annotation, Object v) {

 if (v instanceof String) {

 String s = (String) v;
 if (java.util.regex.Pattern.matches("[0-9]{16}", s)

 && LuhnVerification.checkNumber(s))

 return true;
 }

 return false;

 }}}

Default and Inherited
Annotations

69

Most parameters are nonnull

•Most references parameters are intended to
be non-null

•many return values and fields as well

•Adding a @Nonnull annotation to a majority
of parameters won’t sell

•Treating all non-annotated parameters as
nonnull also won’t sell

70

Default annotations
•Can mark a method, class or package as having

nonnull parameters by default

• If a parameter doesn’t have a nullness annotation

• climb outwards, looking at method, class, outer
class, and then package, to find a default
annotation

•Can mark a package as nonnull parameters by
default, and change that on a class or parameter
basis as needed

71

Inherited Annotations

•We want to inherit annotations

•Object.equals(@CheckForNull Object obj)

• int compareTo(@Nonnull E e)

•@Nonnull Object clone()

72

Do defaults apply to most
JSR-305 annotations?

•Case for default and inherited nullness
annotations is very compelling

•Should it be general mechanism?

73

Thread/Concurrency
Annotations

•Annotations to denote how locks are used to
guard against data races

•Annotations about which threads should
invoke which methods

•See annotations from Java Concurrency In
Practice as a starting point

74

What is wrong with this
code?

Properties getProps(File file)
throws ... {
 Properties props = new Properties();
 props.load(new FileInputStream(file));
 return props;
 }

74

What is wrong with this
code?

Properties getProps(File file)
throws ... {
 Properties props = new Properties();
 props.load(new FileInputStream(file));
 return props;
 } Doesn’t close file

75

Resource Closure
•@WillNotClose

• this method will not close the resource

•@WillClose

• this method will close the resource

•@WillCloseWhenClosed

• Usable only in constructors: constructed object
decorates the parameter, and will close it when
the constructed object is closed

76

Miscellaneous

•@CheckReturnValue

•@InjectionAnnotation

77

@CheckReturnValue

•Indicates a method that should always be
invoked as a function, not a procedure.

•Example:

• String.toLowerCase()

• BigInteger.add(BigInteger val)

•Anywhere you have an immutable object and
methods that might be thought of a a mutating
method return the new value

78

@InjectionAnnotation

•Static analyzers get confused if there is a field
or method that is accessed via reflection/
injection, and they don’t understand it

•Many frameworks have their own annotations
for injection

•Using @InjectionAnnotation on an annotation
@X tells static analysis tools that @X denotes
an injection annotation

Wrap up
• Static analysis is effective at finding bad code

• Is bad code found by static analysis an
important problem?

• Getting static analysis into the software
development process can’t be taken for
granted

• Annotations will be helpful

• If we can get developers to use them

79

