Improving Software Quality
with Static Analysis
and Annotations for Software
Defect Detection

William Pugh

Professor, Univ. of Maryland
http://www.cs.umd.edu/~pugh e,
O

N\
X
18

/56
Lo P S
4RYLP‘é

About Me

Professor at Univ. of Maryland since 1988, doing
research in programming languages, algorithms,
software engineering

Technical Lead on JSR-133 (Memory model),
JSR-305 (Annotations for Software Defect Detection)

Founder of the FindBugs™ project

e Open source static analysis tool for defect
detection in the Java™ Programming Language

Technical advisory board of FORTIFY

Static Analysis

Analyzes your program without executing it
Doesn’t depend on having good test cases
e Or even any test cases

Generally, doesn’t know what your software is supposed to
do

e Looks for violations of reasonable programming
e Shouldn’t throw NPE
e Shouldn’t allow SQL injection

Not a replacement for testing

e Very good at finding problems on untested Paths

o But many defects can’t be found with static analysis

Common Wisdom about Bugs
and Static Analysis

Programmers are smart
Smart people don’'t make dumb mistakes

We have good techniques (e.g., unit testing, pair
programming, code inspections) for finding bugs
early

S0, bugs remaining in production code must be
subtle, and finding them must require
sophisticated static analysis techniques

e | tried lint and it sucked: lots of warnings, few
real issues

Can You Find The Bug?

Can You Find The Bug?

1f (listeners == null)

listeners.remove (listener) ;

JDK1.6.0, b105, sun.awt.x11.XMSelection
o lines 243-244

Can You Find The Bug?

1f (listeners == null)

listeners.remove (listener) ;

JDK1.6.0, b105, sun.awt.x11.XMSelection
o lines 243-244

Can You Find The Bug?

1f (listeners == null)

listeners.remove (listener) ;

JDK1.6.0, b105, sun.awt.x11.XMSelection
o lines 243-244

Why Do Bugs Occur?

Nobody is perfect
Common types of errors:
o Misunderstood language features, APl methods

e Typos (using wrong boolean operator, forgetting
parentheses or brackets, etc.)

e Misunderstood class or method invariants

Everyone makes syntax errors, but the compiler
catches them

o What about bugs one step removed from a
syntax error?

Who Uses Static Analysis?

Lots and lots of projects and comp

anies

Among many others, Glassfish and Google use FindBugs

e Many companies are weird about letting you say they use your

open source tool

_ots of open source tools: PMD, C

neckStyle, etc.

DEs include some: Eclipse, IntelliJ, Netbeans

Commercial tools available from Fortify Software, KlocWork,

Coverity, Parasoft, SurelLogic

Static analysis used even more widely/intensely for C/C++

e More bugs to find
e Bugs a lot scarier

e Free tools not as good

FiInaBugs)
oA

I'm mostly going to be talking about FindBugs

e | know It best

Some things will be specific to FindBugs

o \What we classify as a "correctness” issue

e Which potential null pointer issues we report

But most of the concepts apply to other tools

Bug Categories

Selected categories for today's discussion

Correctness - the code seems to be clearly doing
something the developer did not intend

Bad practice - the code violates good practice

Bug Patterns

Some big, broad and common patterns
e Dereferencing a null pointer
e An impossible checked cast

e Methods whose return value should not be
ignored

Lots of small, specific bug patterns, that together
find lots of bugs

o Every Programming Puzzler
o Every chapter in Effective Java
e Many postings to http://thedailywtf.com/

|10

Analysis Techniques

Local pattern matching

o If you invoke String.toLowerCase (), don't
ignore the return value

Intraprocedural dataflow analysis
o Null pointer, type cast errors
Interprocedural method summaries
o This method always dereferences its parameter
Context sensitive interprocedural analysis
e Interprocedural flow of untrusted data
e SQL injection, cross site scripting

Categories, ranking, use
cases

Every tool has categories, rules/patterns, priorities

You can generally customize what you want to look
at

Sometimes, you want to do a code audit of a newly
written module with 1,000 lines of code

e and sometimes you want to scan 1,000,000 lines
of code that has been in production for a year

Different use cases require different tunings,
different tools

12

Correctness issues

In FindBugs, we reserve the Correctness category
for issues we are most confident are wrong

e code does something the developer didn't intend

Many of the other categories reflect correctness
ISsues

But correctness issues are the things we think you
should look at when scanning that million line code

base
low false positive rate, few low impact bugs

13

Student came to office hours, was having trouble
with his constructor:

/** Construct a WebSpider */

public WebSpider () {
WebSpider w = new WebSpider() ;

}
A second student had the same bug

Wrote a detector, found 3 other students with same
bug

|4

Infinite recursive loop

Student came to office hours, was having trouble
with his constructor:

/** Construct a WebSpider */

public WebSpider () {
WebSpider w = new WebSpider() ;

}
A second student had the same bug

Wrote a detector, found 3 other students with same
bug

|4

Double Check Against
JDK1.6.0-b13

Found 5 infinite recursive loops
Including one written by Joshua Bloch
public String foundType() {

return this.foundType () ;
}

Smart people make dumb mistakes

e 27 across all versions of JDK, 40+ in Google's
Java code

Embrace and fix your dumb mistakes

|5

Finding Null Pointer Bugs
with FindBuas

FindBugs looks for a statement or branch that, if executed,
guarantees a null pointer exception

Either a null pointer exception could be thrown, or the
program contains a statement/branch that can’t be
executed

Could look for exceptions that only occur on a path

e@e.g., if the condition on line 29 is true and the condition
on line 38 is false, then a NPE will be thrown

e but would need to worry about whether that path is
feasible

|6

Null Pointer Bugs Found by
FiIndBuas

109 statements/branches that, if executed,
guarantee NPE

e We judge at least 54 of them to be serious bugs
that could generate a NPE on valid input

Most of the others were deemed to be unreachable
branches or statements, or reachable only with

erroneous input
e Only one case where the analysis was wrong

|7

Examples of null pointer bugs

//lcom.sun.corba.se.impl.naming.cosnaming.NamingContextimpl
if (name !'= null || name.length > 0)

//lcom.sun.xml.internal.ws.wsdl.parser.RuntimeWSDLParser
if (part == null | part.equals(""))

// sun.awt.x11.ScrollPanePeer

if (g '= null)
paintScrollBars (g,colors) ;

g.dispose() ;

18

Redundant Check For Null

Checking a value to see if it is null
e When it can't possibly be null

/[java.awt.image.LoopupOp, lines 236-247

public final WritableRaster filter(
Raster src, WritableRaster dst) {

int dstLength = dst.getNumBands () ;

// Create a new destination Raster,
// if needed

if (dst == null)
dst = createCompatibleDestRaster (src) ;

19

Redundant Check For Null

Check the JavaDoc for the method

Performs a lookup operation on a Raster.
o If the destination Raster IS null,
o a new Raster will be created.

Is this case, a bug

o particularly look for those cases where we know it
can't be null because there would have been a
NPE if it were null

20

Bad Method Invocation

Methods whose return value shouldn't be ignored

o Strings are immutable, so functions like trim ()
and toLowerCase () return new String

Dumb/useless methods
o Invoking toString or equals on an array

Lots of specific rules about particular APl methods

e Hard to memorize, easy to get wrong

21

Examples of bad method
calls

// com.sun.rowset.CachedRowSetimpl
if (type == Types.DECIMAL || type == Types.NUMERIC)
((jJava.math.BigDecimal) x) .setScale(scale);

[/ com.sun.xml.internal.txw2.output. XMLWriter

try { ... }
catch (IOException e) {

new SAXException ("Server side Exception:" + e);

}

22

Type Analysis

Impossible checked casts
Useless calls
o equals takes an Object as a parameter

e but comparing a String to StringBuffer
with equals (.. .) Is pointless, and almost
certainly not what was intended

e Map<K,V>.get also takes an Object as a
parameter

e supplying an object with the wrong type as a
parameter to get doesn't generate a compile

time error
e Just @ get that always returns null

23

| ots of Little Bug Patterns

checking if d ==Double.NaN

Bit shifting an int by a value greater than 31
bits
Every Puzzler this year

e more than half for most years

24

When Bad Code Isn't A Bug

Static analysis tools will sometimes find ugly,
nasty code

o that can't cause your application to misbehave
Cleaning this up is a good thing

e makes the code easier to understand and
maintain

But for ugly code already in production
e sometimes you just don't want to touch it

We've found more cases like this than we
expected

25

When Bad Code Isn't A Bug

bad code that does what it was intended to do

// com.sun.jndi.dns.DnsName, lines 345-347
if (n instanceof CompositeName) {
// force ClassCastException

n = (DnsName) n;

}

// sun.jdbc.odbc.JdbcOdbcObject, lines 85-91
1f ((b[offset] < 32) || (b[offset] > 128)) {
asciiline += ".";

}

26

When Bad Code Isn't A Bug

// com.sun.corba.se.impl.dynamicany.DynAnyCompleximpl
null;

String expectedMemberName

try {

expectedMemberName
= expectedTypeCode.member name (i) ;

} catch (BadKind badKind) { // impossible
} catch (Bounds bounds) { // impossible
}

if (! (expectedMemberName.equals (memberName) ...))
{

27

When Bad Code Isn't A Bug

When you are already doomed

// com.sun.org.apache.xml.internal.security.encryption. XMLCiper
[/ lines 2224-2228

if (null == element) {
//complain
}
String algorithm = element.getAttributeNS(...);

28

Overall Correctness Results
From FindBugs

Evaluating Static Analysis Defect Warnings On Production Software, ACM
2007 Workshop on Program Analysis for Software Tools and Engineering

JDK1.6.0-b105

e 379 correctness warnings

e We judge that at least 213 of these are serious issues
that should be fixed

Google's Java codebase

e over a 6 month period, using various versions of FindBugs
e 1,127 warnings

e 807 filed as bugs

o 518 fixed in code

29

Results on openjpa nightly
build

39 correctness issues

35 of which | marked as must/should fix
2 doomed casts

1 uninitialized reads

6 null pointer issues

26 comparing Boolean objects using ==

o feel free to argue with me on this one

30

Bad Practice

A class that defines an equals method but
inherits hashCode from Object

e Violates contract that any two equal objects
have the same hash code

equals method doesn't handle null argument
Serializable class without a serialVersionUID

Exception caught and ignored

Broken out from the correctness category

31

Fixing hashCode

What if you want to define equals, but don't

think your objects will ever get put into a
HashMap?

Suggestion:
public int hashCode() {
assert false

"hashCode method not designed”;

return 42;

J

32

Use of Unhashable Classes

FindBugs previously reported all classes that
defined equals but not hashCode as a
correctness problem

e but some developers didn’t care
Now reported as bad practice

e but separately report use of such a class in a
HashMap/HashTable as a correctness
warning

33

Integrating Static Analysis

Want to make it part of your development process
e Just like running unit tests

Have to tune the tool to report what you are
interested In

o Different situations have different needs
Need a workflow for issues

o Almost all tools will report some issues that,
after reviewing, you decide not to fix

e Need to have a way to manage such issues

34

Running Static Analysis

"We've got it in our IDE, so we're done, right?”

e NO, It really needs to also be done
automatically as part of your build
process

Are you scanning 2 million lines of code?

e You probably don't want 20,000 issues to
examine

35

Defect/Issue Workflow

How do issues get reviewed/audited?
Can you do team auditing and assign issues?

Once you've reviewed an issue, does the system
remember your evaluation when it analyzes that

code again?
e even if it is now reported on a different line
number?

Can you identify new issues
e since last build?
e since last release to customer/production?

36

Learning from mistakes

With FindBugs, we've always started from bugs
We need API experts to feed us API-specific bugs
e Swing, EJB, J2ME, localization, Hibernate, ...
When you get bit by a bug

o writing a test case is good

e considering whether it can be generalized into a bug
pattern is better

e You'd be surprised at the number of times you make a
mistake so stupid “no one else could possible make the
same mistake”

e but they do

37

JSR-305: Annotations for
Software Defect Detection

Status
Report

William Pugh

Professor

Univ. of Maryland
vwRST
pugh@cs.umd.edu 5 T

http://www.cs.umd.edu/~pugh/ 18 56

COR)
{YRYLP‘é

38

mailto:pugh@cs.umd.edu
mailto:pugh@cs.umd.edu
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net

Why annotations?

Static analysis can do a lot
e can even analyze interprocedural paths
Why do we need annotations?

e they express design decisions that may be
implicit, or described in documentation, but
not easily available to tools

39

Where is the bug?

class Foo {
int value;
public boolean equals (Object obj) {
if (this.getClass()
'= obj.getClass())
return false;
Foo that = (Foo) obj;
return this.value == that.value;

}

40

Where is the bug?

if (spec != null) fFragments.add(spec);

if (isComplete(spec)) fPreferences.add(spec);

41

Where is the bug?

if (spec != null) fFragments.add(spec);

if (isComplete(spec)) fPreferences.add(spec);

boolean isComplete(AnnotationPreference spec) {
return spec.getColorPreferenceKey() != null
&& spec.getColorPreferenceValue() = null
&& spec.getTextPreferenceKey() = null

&& spec.getOverviewRulerPreferenceKey() = null;

)

41

Finding the bug

Many bugs can only be identified, or only
localized, if you know something about what

the code is supposed to do
Annotations are well suited to this...

42

JSR-305

At least two tools already have defined their
own annotations:

e FindBugs and IntelliJ

No one wants to have to apply two sets of
annotations to their code

e come up with a common set of annotations
that can be understood by multiple tools

43

JSR-305 target

JSR-305 is intended to be compatible with
JSE 5.0+ Java

Hope to have usable drafts and preliminary
tool support out by the end of the summer

44

JSR-308

Annotations on Java Types

Designed to allow annotations to occur In
many more places than they can occur now

o ArrayList<@Nonnull String>a = ...

Targets JSE 7.0

Will add value to JSR-305, but JSR-305
cannot depend upon JSR-308

45

Nullness

Nullness is a great motivating example

Most method parameters are expected to
always be nonnull

e SOme research papers support this

Not always documented in JavaDoc

46

Documenting nullness

Want to document parameters, return values,
fields that should always be nonnull

And which should not be presumed nonnull
o argument to equals(Object)

Should warn if null passed where nonnull
value required

Should warn if argument to equals is
immediately dereferenced

47

Only two cases?

What about Map.gef(...)?

Return nulls if key not found

e even if all values in Map are nonnull
So the return value can’t be @Nonnull

But lots of places where you “know” that the
value will be nonnull

e you know key is in table

e you know value is nonnull

48

more examples

Object.equals(Object obj)
o must handle a null value for obj

Method.invoke(Obiject obj, Obj.. args)

e obj should be null if method is a static
method, nonnull if an instance method

ConcurrentHashMap.get(K k)

e k must not be null

49

3 cases”?

May need to have 3 cases for nullness
e @Nonnull

e @CheckForNull
e @UnknownNullness
e Same as no annotation

Names in flux, might use Nullable for one of
these (but which one?)

50

@Nonnull

Should not be null

e For fields, should be interpreted as should
be nonnull after object is initialized

Tools will try to generate a warning if they see

a possibly null value being used where a
nonnull value Is required

e same as Iif they see a dereference of a
possibly null value

51

@CheckForNull

Code should always worry that this value
might be null

e €.9., argument to equals

52

@UnknownNullness

Same as no annotation

e Needed because we are going to introduce
default and inherited annotations

e Need to be able to get back to unannotated
state

Null under some circumstances

e might vary in subtypes

53

@CheckForNull
reauires work

If you mark a return value as @CheckForNull,
you will likely have to go make a bunch of

changes
e kind of like const in C++

My experience has been that there are lots of
methods that could return null

e but that in a particular calling context, you
might know that it can't

54

Nullness annotations

Tools that try to prove absence of NPE might
treat @CheckForNull and @UnknownNullness
the same

This 3-way logic might reappear for some
other annotations

55

Type Qualifiers

Many of the JSR-305 annotations will be type
qualifiers: additional type constraints on top of
the existing Java type system

56

@Untainted / @ Tainted

Needed for security analysis

Information derived directly from web form
parameters is tainted

e can be arbitrary content

Strings used to form SQL queries or HTML
responses must be untainted

o otherwise get SQL Injection or XSS

57

@Syntax

Used to indicate String values with particular
syntaxes

e @Syntax("RegEXx”)
e @Syntax("Java”)
e @Syntax(“SQL")

Allows for error checking and used by IDE’s in
refactoring

58

@Pattern

Provides a regular expression that describes
the legal String values

o @Pattern("™\\d+")

59

@Nonnegative and friends

Fairly clear motivation for @Nonnegative
More?

o @Positive

Where do we stop?

e @NonZero

e @PowerOfTwo

e @Prime

60

Three-way logic again

If we have @Nonnegative, do we also need.:
e @Signed

e similar to check for null
e @UnknownSign

e similar to unknown nullness

61

User defined type qualifiers

In (too many) places, Java APls use integer

values or Strings where enumerations would
have been better

o except that they weren't around at the time

Lots of potential errors, uncaught by compiler

62

Example in java.sgl.Connection

createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

Creates a Statement object that will generate ResultSet objects with the given
type, concurrency, and holdability.

resultSetType: one of the following ResultSet constants:
ResultSet. TYPE_ FORWARD_ONLY,

ResultSet. TYPE_SCROLL_INSENSITIVE, or

ResultSet. TYPE _SCROLL_SENSITIVE

resultSetConcurrency: one of the following ResultSet constants:
ResultSet. CONCUR_READ ONLY or ResultSet. CONCUR UPDATABLE

resultSetHoldability: one of the following ResultSet constants:
ResultSet. HOLD CURSORS_OVER _COMMIT or

The fix

Declare

e public @ TypeQualifier @interface
ResultSetType {}

e public @ TypeQualifier @interface
ResultSetConcurrency {}

e public @ TypeQualifier @interface
ResultSetHoldability {}

Annotate static constants and method

64

User defined Type Qualifiers

JSR-305 won't define @ResultSetType

Rather JSR-305 will define the meta-
annotations

o that allow any developer to define their own
type qualifier annotations

e Which they can apply and will be interpreted
by defect detection tools

65

Other ideas

Validators

Subtypes

exclusive type qualifiers (e.g., it can't be both
A and B)

66

CreditCard example

@Documented @TypeQualifier @Retention(RetentionPolicy.RUNTIME)
@Pattern("[0-9]{16}™)

public @interface CreditCardNumber {

class Validator implements TypeQualifierValidator<CreditCardNumber> {

public boolean forConstantValue(CreditCardNumber annotation, Object v) {
1f (v instanceof String) {
String s = (String) v;
1f (java.util.regex.Pattern.matches("[0-9]{16}", s)
&& LuhnVerification.checkNumber(s))

return true;

}

return false;

133,

67

Default and Inherited
Annotations

Most parameters are nonnull

Most references parameters are intended to
be non-null

e many return values and fields as well

Adding a @Nonnull annotation to a majority
of parameters won't sell

Treating all non-annotated parameters as
nonnull also won't sell

69

Default annotations

Can mark a method, class or package as having
nonnull parameters by default

e If a parameter doesn’'t have a nullness annotation

e climb outwards, looking at method, class, outer
class, and then package, to find a default
annotation

Can mark a package as nonnull parameters by
default, and change that on a class or parameter
basis as needed

70

Inherited Annotations

We want to inherit annotations

e Object.equals(@CheckForNull Object obj)
e Int compareTo(@Nonnull E e)

e @Nonnull Object clone()

71

Do defaults apply to most
JSR-305 annotations?

Case for default and inherited nullness
annotations is very compelling

Should it be general mechanism?

72

Thread/Concurrency
Annotations

Annotations to denote how locks are used to
guard against data races

Annotations about which threads should
Invoke which methods

See annotations from Java Concurrency In
Practice as a starting point

73

What is wrong with this
code?

Properties getProps (File file)

throws ... {
Properties props = new Properties();
props.load(new FileInputStream(file));
return props;

}

74

What is wrong with this
code?

Properties getProps (File file)

throws ... {
Properties props = new Properties();
props.load(new FileInputStream(file));
return props;

} Doesn’t close file

74

Resource Closure
@WilINotClose

e this method will not close the resource
@WilIClose

e this method will close the resource
@WillCloseWhenClosed

e Usable only in constructors: constructed object
decorates the parameter, and will close it when
the constructed object is closed

75

Miscellaneous

@CheckReturnValue

@InjectionAnnotation

76

@CheckReturnValue

Indicates a method that should always be
invoked as a function, not a procedure.

Example:
e String.toLowerCase()
e Biginteger.add(Biglnteger val)

Anywhere you have an immutable object and
methods that might be thought of a a mutating
method return the new value

77

@InjectionAnnotation

Static analyzers get confused if there is a field
or method that is accessed via reflection/
injection, and they don't understand it

Many frameworks have their own annotations
for injection

Using @InjectionAnnotation on an annotation
@X tells static analysis tools that @X denotes
an injection annotation

78

Wrap up

Static analysis is effective at finding bad code

e Is bad code found by static analysis an
important problem??

Getting static analysis into the software
development process can’t be taken for

granted
Annotations will be helpful
e If we can get developers to use them

79

