
Apache Mahout 0.13.0 Release Notes

The Apache Mahout PMC is pleased to announce the release of Mahout 0.13.0. Mahout's goal
is to create an environment for quickly creating machine-learning applications that scale and run
on the highest-performance parallel computation engines available. Mahout comprises an
interactive environment and library that support generalized scalable linear algebra and include
many modern machine-learning algorithms. This release ships some major changes from 0.12.2
including computation on GPUs and a simplified framework for building new algorithms.

To get started with Apache Mahout 0.13.0, download the release artifacts and signatures from
http://www.apache.org/dist/mahout/0.13.0/.

Many thanks to the contributors and committers who were part of this release.

RELEASE HIGHLIGHTS

Mahout-Samsara has implementations for these generalized concepts:

● In-core matrices backed by ViennaCL [3] providing in some cases speedups of an order
of magnitude.

● A JavaCPP bridge to native/GPU operations in ViennaCL
● Distributed GPU Matrix-Matrix and Matrix-Vector multiplication on Spark
● Distributed OpenMP Matrix-Matrix and Matrix-Vector multiplication on Spark
● Sparse and dense matrix GPU-backed support.
● Fault tolerance by falling back to Mahout JVM counterpart of new solvers in the case of

failure on GPU or OpenMP
● A new scikit-learn-like framework for algorithms with the goal for creating a consistent

API for various machine-learning algorithms and an orderly package structure for
grouping regression, classification, clustering, and pre-processing algorithms together

● New DRM wrappers in Spark Bindings making it more convenient to create DRMs from
MLLib RDDs and DataFrames

● MahoutConversions adds Scala-like compatibility to Vectors introducing methods such
as toArray() and toMap()

Mahout has historically focused on highly scalable algorithms, and since moving on from
MapReduce-based jobs, Mahout now includes some Mahout-Samsara based implementations:

● Distributed and in-core Stochastic Singular Value Decomposition (SSVD)
● Distributed Principal Component Analysis (PCA)
● Distributed and in-core QR Reduction (QR)
● Distributed Alternating Least Squares (ALS)
● Collaborative Filtering: Item and Row Similarity based on cooccurrence and supporting

multimodal user actions
● Distributed Naive Bayes Training and Classification

RELATION TO MACHINE LEARNING LIBRARIES

Library Similar with Mahout Difference with Mahout

R Mathematically expressive
language for implementing
statistical and machine
learning algorithms

Mahout runs on distributed
engines- R is designed for in
memory on single machine.

Scikit-learn (sklearn) Fit/Model framework,
consistent API, and robust
functionality for many popular
ML methods (Mahout seeks
to add this capability by
0.14.0)

Python / sklearn library also
are single machine- Mahout
is designed for distributed
engines

Spark MLLib Statistics/Machine Learning
on distributed engines

Mahout makes it extremely
easy for end users to
compose new algorithms.
MLLib has very limited
functionality, and is not easily
extensible.

TensorFlow Linear Algebra focused math
in a GPU accelerated
distributed environment

TensorFlow will work with
Spark, but prefers to manage
its own cluster. Mahout is
designed to modularly work
on any distributed engine if a
user writes bindings (which
includes defining a
Distributed Row Matrix
structure and implementing a
handful of BLAS operations
on that structure in a way
native to said engine).

STATS

A total of 62 separate JIRA issues are addressed in this release [1].

GETTING STARTED

Download the release artifacts and signatures at
https://mahout.apache.org/general/downloads.html The examples directory contains several
working examples of the core functionality available in Mahout. These can be run via scripts in

the examples/bin directory. Most examples do not need a Hadoop cluster in order to run.

FUTURE PLANS

0.13.1

As the project moves towards a 0.13.1 release, we are working on the following:

● Further Native Integration for increased speedups
● JCuda backing for In-core Matrices and CUDA solvers
● Enumeration across multiple GPUs per JVM instance on a given instance
● GPU/OpenMP Acceleration for linear solvers
● Further integration with other libraries such as MLLib and SparkML
● Scala 2.11 Support
● Spark 2.x Support
● Incorporate more statistical operations
● Runtime probing and optimization of available hardware for caching of correct/most

optimal solver

Post-0.13.1

We already see the need for work in these areas:

● Support for native iterative solvers
● A more robust algorithm library
● Smarter probing and optimization of multiplications

ACKNOWLEDGMENTS

Many thanks to Karl Rupp of the ViennaCL [3] project for his help pushing the bindings through
with his many email exchanges; we greatly appreciate his involvement. Many thanks as well to
Samuel Audet of the JavaCPP [4] project for his help with the team’s usage of JavaCPP to
produce the JNI layer to produce the native bindings for GPU and OpenMP, which was also key
to this major release.

CONTRIBUTING

If you are interested in contributing, please see our How to Contribute [2] page or contact us via
email at dev@mahout.apache.org.

CREDITS

http://mahout.apache.org/developers/how-to-contribute.html

As with every release, we wish to thank all of the users and contributors to Mahout. Please see
the and JIRA Release Notes [1] for individual credits, as there are too many to list here.

KNOWN ISSUES:

1. The classify-wikipedia.sh example has an outdated link to the data files. A workaround is
to change the download section of the script to: `curl
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles10.xml-p002336425
p003046511.bz2 -o ${WORK_DIR}/wikixml/enwiki-latest-pages-articles.xml.bz2`

2. Currently GPU acceleration for supported operations is limited to a single JVM instance
3. Occasional segfault with certain GPU models and computations
4. On older GPUs some tests fail when building ViennaCL due to card limitations
5. Currently automatic probing of a system’s hardware happens at each supported

operation, adding some overhead

[1]https://issues.apache.org/jira/issues/?jql=project%20%3D%20MAHOUT%20AND%20issuety
pe%20in%20(standardIssueTypes()%2C%20subTaskIssueTypes())%20AND%20status%20%3
D%20Resolved%20AND%20fixVersion%20in%20(0.13.0%2C%200.13.1%2C%201.0.0)
[2]http://mahout.apache.org/developers/how-to-contribute.html
[3]http://viennacl.sourceforge.net/
[4]https://github.com/bytedeco/javacpp

http://mahout.apache.org/developers/how-to-contribute.html
http://viennacl.sourceforge.net/
https://github.com/bytedeco/javacpp

