Apache Mahout - Taste Documentation

Sean Owen
Table of contents

L OVEIVIBW. ..ttt sttt ettt bbbt st ae et e b e b e b e s b e bt e bt e st e e et e b e saenbenbennenneenean 2
2 ATCRITECIUNE. ... ettt e sttt e s s e te e s e saeesteeneesseenseeneesreeseenee e 2
2 (= o0 101001 0 L= O S 2
22 DABMOEL ..ottt aenaenbenrennennens 2
2.3 UserSimilarity, IteMSIMIArity.........ccoooieiiiieceee e 3
2.4 USerNeighborNOOU.ccoiieie et 3
K (S o U110 00T] £ 3
BLREQUITEM. ...ttt bbbttt e e r e e ns 3
B2 OPLIONGL......cceeeeeteeteee ettt e e bbbt e e n e n b nneenenneas 3
A DBIMO.....eeeeee ettt bt a e b e e ae e e EeeaRe e e Re e e ae e e reeaneenareenaeeennin 3
= 1.1 0] =SS SSRPROSN 4
5.1 User-based RECOMMENAEYccuiiiiiiiieriie s 4
5.2 Item-based RECOMMENTET........cc.oiiiiiiire e 5
5.3 SIOPE-ONE RECOMMIENUES ..ottt sr b 6
6 Integration With Your appPliCaIION..........c.uiireeieeee e 6
(S L o O RORURSRN 6
6.2 SLANABIONE SEIVE ...ttt sttt ne e bt ne e 6
7 PEITOMMEAINCE. ...ttt bbbttt e bbb be b e s enes 7
7.1 RUNEIME PEITOMMANCE.cviiiiiiieeee et 7
7.2 Algorithm Performance: Which One ISBeSt?........ccooeeiiiinenieeeeeee e 7

Apache Mahout - Taste Documentation

1. Overview

Tasteis aflexible, fast collaborative filtering engine for Java. The engine takes users
preferences for items ("tastes") and returns estimated preferences for other items. For
example, asite that sells books or CDs could easily use Taste to figure out, from past
purchase data, which CDs a customer might be interested in listening to.

Taste provides arich set of components from which you can construct a customized
recommender system from a selection of algorithms. Taste is designed to be enterprise-ready;
it's designed for performance, scalability and flexibility. Taste is not just for Java; it can be
run as an external server which exposes recommendation logic to your application viaweb
servicesand HTTP.

Top-level packages define the Taste interfaces to these key abstractions:

Dat aMobdel
UserSimlarityandltenSimlarity
User Nei ghbor hood

Reconmender

Subpackages of or g. apache. mahout . cf . t ast e. i npl hold implementations of these
interfaces. These are the pieces from which you will build your own recommendation engine.
That'sit! For the academically inclined, Taste supports both memory-based and item-based
recommender systems, slope one recommenders, and a couple other experimental
implementations. It does not currently support model-based recommenders.

2. Architecture

This diagram shows the relationship between various Taste components in a user-based
recommender. An item-based recommender system is similar except that there are no
Preferencel nferrers or Neighborhood algorithms involved.

2.1. Recommender

A Recomender isthe core abstraction in Taste. Given a Dat aMbdel , it can produce
recommendations. Applications will most likely use the

Generi cUser BasedReconmender implementation or

Generi cl t emBasedReconmender , possibly decorated by Cachi ngReconmender .

2.2. DataM odel

Page 2

Apache Mahout - Taste Documentation

A Dat aMbdel istheinterface to information about user preferences. An implementation
might draw this data from any source, but a database is the most likely source. Taste provides
My SQLJDBCDat abdel to access preference data from a database via JDBC, though

many applications will want to write their own. Taste also providesaFi | eDat aModel .

Along with Dat aMbdel , Taste usesthe User , | t emand Pr ef er ence abstractions to
represent the users, items, and preferences for those items in the recommendation engine.
Custom Dat aMbdel implementations would return implementations of these interfaces that
are appropriate to the application - maybe an Onl i neUser implementation that represents
an online store user, and a Book| t emimplementation representing a book.

2.3. User Similarity, ItemSimilarity

A User Si m | ari ty definesanotion of similarity between two User s. Thisisacrucial
part of arecommendation engine. These are attached to aNei ghbor hood implementation.
I tenSi m | arit ysareanalagous, but find similarity between | t ens.

2.4. User Neighbor hood

In a user-based recommender, recommendations are produced by finding a "neighborhood"
of similar users near agiven user. A User Nei ghbor hood defines a means of determining
that neighborhood — for example, nearest 10 users. Implementations typically need a

User Sim | arity to operate.

3. Requirements

3.1. Required
o Java/ 2SE5.0

3.2. Optional

e Apache Ant 1.5 or later, if you want to build from source or build examples.

« Taste web applications require a Servlet 2.3+ container, such as Jakarta Tomcat. It may in
fact work with older containers with slight modification.

« MSQLJIDBCDat abdel implementation requiresaMySQL 4.x (or later) database.
Again, it may be made to work with earlier versions or other databases with slight
changes.

4. Demo

Page 3

Apache Mahout - Taste Documentation

To build and run the demo, follow the instructions below, which are written for Unix-like

operating systems.

1. Download the "1 Million MovielLens Dataset” from http://www.grouplens.org/.

2. Unpack the archive and copy novi es. dat andr ati ngs. dat to
src/ mai n/ exanpl es/ or g/ apache/ mahout / cf/t ast e/ exanpl e/ gr oupl ens
under the Taste distribution directory.

3. Navigate to the directory where you unpacked the Mahout distribution, and navigate to
t runk/ core.

4. Build Mahout with ant .

5. Build the example web application withant -f taste-buil d. xm
bui | d- gr oupl ens- exanpl e.

6. Download and install Tomcat.

7. Copyt aste. war tothewebapps directory under the Tomcat installation directory.

8. Increase the heap space that is given to Tomcat by setting the JAVA_OPTS environment
variableto"- server -da -dsa - Xnms1024m - Xnmx1024nt, to allow 1024MB of
heap space and enable performance optimizations. Using bash, one can do thiswith the
command export JAVA OPTS="..."

9. Start Tomcat. Thisisusually done by running bi n/ st ar t up. sh from the Tomcat
installation directory. Y ou may get an error asking you to set JAVA HOVE; do so as
above.

10. Get recommendations by accessing the web application in your browser:
http://1 ocal host: 8080/t ast e/ Recomender Ser vl et ?user | D=1
Thiswill produce asimple preference-item 1D list which could be consumed by a client
application. Get more useful human-readabl e output with the debug parameter:
http://1 ocal host: 8080/t ast e/ Recomrender Ser vl et ?user | D=1&debug=t r ue

Incidentally, Taste's web service interface may then be found at:

http://1 ocal host: 8080/t ast e/ Recomrender Servi ce. jws

ItsWSDL filewill be here...

http://1 ocal host: 8080/t ast e/ Reconmender Ser vi ce. j ws?wsd|

... and you can even access it in your browser viaasimple HTTP request:

.../ Reconmender Ser vi ce. j ws?nmet hod=r ecommend&user | D=1&howivany=10

5. Examples

5.1. User-based Recommender

User-based recommenders are the "original", conventional style of recommender system.
They can produce good recommendations when tweaked properly; they are not necessarily
the fastest recommender systems and are thus suitable for small data sets (roughly, less than a

Page 4

Apache Mahout - Taste Documentation

million ratings). We'll start with an example of this.

First, create aDat aMbdel of somekind. Here, we'll use asimple on based on datain afile:
DataModel model = new FileDataModel(new File("data.txt"));

We'll use the PearsonCorrelationSimilarity implementation of User Sim | ari ty asour
user correlation algorithm, and add an optional preference inference algorithm:

UserSimilarity userSimilarity = new PearsonCorrelationSimilarity(model); // Optional:
userSimilarity.setPreferencelnferrer(new AveragingPreferencelnferrer());

Now we create aUser Nei ghbor hood algorithm. Here we use nearest-3:

UserNeighborhood neighborhood = new NearestNUserNeighborhood(3,
userSimilarity, model);

Now we can create our Reconmrender , and add a caching decorator:

Recommender recommender = new GenericUserBasedRecommender(model,
neighborhood, userSimilarity); Recommender cachingRecommender = new
CachingRecommender(recommender);

Now we can get 10 recommendations for user ID "1234" — done!

List<Recommendedltem> recommendations =
cachingRecommender.recommend("1234", 10);

5.2. Item-based Recommender

We could have created an item-based recommender instead. Item-based recommender base
recommendation not on user similarity, but on item similarity. In theory these are about the
same approach to the problem, just from different angles. However the similarity of two
itemsisrelatively fixed, more so than the similarity of two users. So, item-based
recommenders can use pre-computed similarity values in the computations, which make
them much faster. For large data sets, item-based recommenders are more appropriate.

Let's start over, again with aFi | eDat aMbdel to start:
DataModel model = new FileDataModel(new File("data.txt"));

WEell alsoneedan| tenSi m | ari ty. Wecould use

Pear sonCorrel ati onSi m | arity, which computesitem similarity in reatime, but,
thisis generally too slow to be useful. Instead, in areal application, you would feed alist of
pre-computed correlationstoaCGenericltenSiml arity:

/I Construct the list of pre-compted correlations
Collection<GenericltemSimilarity.ltemltemSimilarity> correlations = ...; ltemSimilarity
itemSimilarity = new GenericltemSimilarity(correlations);

Page 5

Apache Mahout - Taste Documentation

Then we can finish as before to produce recommendations:

Recommender recommender = new GenericltemBasedRecommender(model,
itemSimilarity); Recommender cachingRecommender = new
CachingRecommender(recommender); ... List<RecommendedIltem>
recommendations = cachingRecommender.recommend("1234", 10);

5.3. Slope-One Recommender

Thisisasimple yet effective Recommender and we present another example to round out
thelist:

DataModel model = new FileDataModel(new File("data.txt")); / Make a weighted
slope one recommender Recommender recommender = new
SlopeOneRecommender(model); Recommender cachingRecommender = new
CachingRecommender(recommender);

6. I ntegration with your application

6.1. Direct

Y ou can create a Recomrmender , as shown above, wherever you like in your Java
application, and use it. Thisincludes ssmple Java applications or GUI applications, server
applications, and J2EE web applications.

6.2. Standalone server

Taste can also be run as an external server, which may be the only option for non-Java
applications. A Taste Recommender can be exposed as aweb application via

or g. apach. mahout . cf . t ast e. web. Reconmender Ser vl et , and your
application can then access recommendations via simple HT TP requests and response, or as a
full-fledged SOAP web service. See above, and seet he j avadoc for details.

To deploy your Recomrender asan external server:

1. Create an implementation of
or g. apache. mahout . cf. taste. recommender. Recommender .
2. Compileit and create a JAR file containing your implementation.
3. Build aWAR filethat will run your Recommender as a web application:
ant -Dny-recomrender.jar=yourJARfile.]ar
- Dny-recommender - cl ass=com f 0o. Your Reconmender bui | d- server
4. Follow from the "Install Tomcat" step above under Demo.

Page 6

Apache Mahout - Taste Documentation

7. Performance

7.1. Runtime Perfor mance

The more data you give Taste, the better. Though Taste is designed for performance, you will
undoubtedly run into performance issues at some point. For best results, consider using the
following commad-line flags to your JVM:

- ser ver : Enablesthe server VM, which is generally appropriate for long-running,
computation-intensive applications.

- Xms1024m - Xnx1024m Make the heap as big as possible -- a gigabyte doesn't hurt
when dealing with millions of preferences. Taste will generally use as much memory as
you giveit for caching, which helps performance. Set the initial and max size to the same
value to avoid wasting time growing the heap, and to avoid having the VM run minor
collections to avoid growing the heap, which will clear cached values.

-da -dsa: Disableall assertions.

- XX: +UsePar al | el GC (multi-processor machines only): Use a GC agorithm
designed to take advantage of multiple processors, and designed for throughput. Thisisa
default in J2SE 5.0.

- XX: - Di sabl eExpl i cit GC: Disablecallsto Syst em gc() . These calls can only
hurt in the presence of modern GC algorithms; they may force Taste to remove cached
data needlessly. Thisflag isn't needed if you're sure your code and third-party code you
use doesn't call this method.

Also consider the following tips:

Use Cachi ngRecomrender on top of your custom Recomrmmender implementation.
When using JDBCDat aMbdel , make sure you've taken basic steps to optimize the table
storing preference data. Create a primary key on the user ID and item ID columns, and an
index on them. Set them to be non-null. And so on. Tune your database for lots of
concurrent reads! When using JDBC, the database is almost always the bottleneck. Plenty
of memory and caching are even more important.

Also, pooling database connections is essential to performance. If using a J2EE container,
it probably provides away to configure connection pools. If you are creating your own
Dat aSour ce directly, try wrapping it in

or g. apache. mahout . cf.taste. i npl. nodel.jdbc. Connecti onPool Dat aSour ce

See MySQL -specific notes on performance in the javadoc for My SQLJ DBCDat aModel .

7.2. Algorithm Performance: Which OnelsBest?

Thereis no right answer; it depends on your data, your application, environment, and

Page 7

Apache Mahout - Taste Documentation

performance needs. Taste provides the building blocks from which you can construct the best
Recomrender for your application. The links below provide research on thistopic. You
will probably need a bit of trial-and-error to find a setup that works best. The code sample
above provides a good starting point.

Fortunately, Taste provides away to evaluate the accuracy of your Recommender on your
owndata, inor g. apache. mahout . cf . t aste. eval :

DataModel myModel = ...; RecommenderBuilder builder = new
RecommenderBuilder() { public Recommender buildRecommender(DataModel
model) { // build and return the Recommender to evaluate here } };
RecommenderEvaluator evaluator = new
AverageAbsoluteDifferenceRecommenderEvaluator(); double evaluation =
evaluator.evaluate(builder, myModel, 0.9, 1.0);

8. Useful Links

You'll want to look at these packages too, which offer more algorithms and approaches that
you may find useful:

» Cofi: A Java-Based Collaborative Filtering Library
+ CoFE

Here's a handful of research papersthat I've read and found particularly useful:

J.S. Breese, D. Heckerman and C. Kadie, "Empirical Analysis of Predictive Algorithms for
Collaborative Filtering," in Proceedings of the Fourteenth Conference on Uncertainity in
Artificial Intelligence (UAI 1998), 1998.

B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-based collaborative filtering
recommendation algorithms," in Proceedings of the Tenth International Conference on the
World Wide Web (WWW 10), pp. 285-295, 2001.

P. Resnick, N. lacovou, M. Suchak, P. Bergstrom and J. Riedl, "GroupLens. an open
architecture for collaborative filtering of netnews," in Proceedings of the 1994 ACM
conference on Computer Supported Cooperative Work (CSCW 1994), pp. 175-186, 1994.

J.L. Herlocker, JA. Konstan, A. Borchersand J. Riedl, "An algorithmic framework for
performing collaborative filtering," in Proceedings of the 22nd annual international ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 99), pp.
230-237, 1999.

Clifford Lyon, "Movie Recommender," CSCI E-280 final project, Harvard University, 2004.
Daniel Lemire, Anna Maclachlan, "Slope One Predictors for Online Rating-Based

Page 8

Apache Mahout - Taste Documentation

Collaborative Filtering," Proceedings of SIAM Data Mining (SDM '05), 2005.

Michelle Anderson, Marcel Ball, Harold Boley, Stephen Greene, Nancy Howse, Daniel
Lemire and Sean McGrath, "RACOFI: A Rule-Applying Collaborative Filtering System,"
Proceedings of COLA '03, 2003.

These links will take you to all the collaborative filtering reading you could ever want!

» Paul Perry's notes
» James Thornton's collaborative filtering resources
« Daniel Lemire's blog which frequently covers collaborative filtering topics

Page 9

	1 Overview
	2 Architecture
	2.1 Recommender
	2.2 DataModel
	2.3 UserSimilarity, ItemSimilarity
	2.4 UserNeighborhood

	3 Requirements
	3.1 Required
	3.2 Optional

	4 Demo
	5 Examples
	5.1 User-based Recommender
	5.2 Item-based Recommender
	5.3 Slope-One Recommender

	6 Integration with your application
	6.1 Direct
	6.2 Standalone server

	7 Performance
	7.1 Runtime Performance
	7.2 Algorithm Performance: Which One Is Best?

	8 Useful Links

