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1. Overview

Taste is a flexible, fast collaborative filtering engine for Java. The engine takes users'
preferences for items ("tastes") and returns estimated preferences for other items. For
example, a site that sells books or CDs could easily use Taste to figure out, from past
purchase data, which CDs a customer might be interested in listening to.

Taste provides a rich set of components from which you can construct a customized
recommender system from a selection of algorithms. Taste is designed to be enterprise-ready;
it's designed for performance, scalability and flexibility. Taste is not just for Java; it can be
run as an external server which exposes recommendation logic to your application via web
services and HTTP.

Top-level packages define the Taste interfaces to these key abstractions:

• DataModel
• UserSimilarity and ItemSimilarity
• UserNeighborhood
• Recommender

Subpackages of org.apache.mahout.cf.taste.impl hold implementations of these
interfaces. These are the pieces from which you will build your own recommendation engine.
That's it! For the academically inclined, Taste supports both memory-based and item-based
recommender systems, slope one recommenders, and a couple other experimental
implementations. It does not currently support model-based recommenders.

2. Architecture

This diagram shows the relationship between various Taste components in a user-based
recommender. An item-based recommender system is similar except that there are no
PreferenceInferrers or Neighborhood algorithms involved.

2.1. Recommender

A Recommender is the core abstraction in Taste. Given a DataModel, it can produce
recommendations. Applications will most likely use the
GenericUserBasedRecommender implementation or
GenericItemBasedRecommender, possibly decorated by CachingRecommender.

2.2. DataModel
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A DataModel is the interface to information about user preferences. An implementation
might draw this data from any source, but a database is the most likely source. Taste provides
MySQLJDBCDataModel to access preference data from a database via JDBC, though
many applications will want to write their own. Taste also provides a FileDataModel.

Along with DataModel, Taste uses the User, Item and Preference abstractions to
represent the users, items, and preferences for those items in the recommendation engine.
Custom DataModel implementations would return implementations of these interfaces that
are appropriate to the application - maybe an OnlineUser implementation that represents
an online store user, and a BookItem implementation representing a book.

2.3. UserSimilarity, ItemSimilarity

A UserSimilarity defines a notion of similarity between two Users. This is a crucial
part of a recommendation engine. These are attached to a Neighborhood implementation.
ItemSimilaritys are analagous, but find similarity between Items.

2.4. UserNeighborhood

In a user-based recommender, recommendations are produced by finding a "neighborhood"
of similar users near a given user. A UserNeighborhood defines a means of determining
that neighborhood — for example, nearest 10 users. Implementations typically need a
UserSimilarity to operate.

3. Requirements

3.1. Required
• Java / J2SE 5.0

3.2. Optional
• Apache Ant 1.5 or later, if you want to build from source or build examples.
• Taste web applications require a Servlet 2.3+ container, such as Jakarta Tomcat. It may in

fact work with older containers with slight modification.
• MySQLJDBCDataModel implementation requires a MySQL 4.x (or later) database.

Again, it may be made to work with earlier versions or other databases with slight
changes.

4. Demo
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To build and run the demo, follow the instructions below, which are written for Unix-like
operating systems:

1. Download the "1 Million MovieLens Dataset" from http://www.grouplens.org/.
2. Unpack the archive and copy movies.dat and ratings.dat to

src/main/examples/org/apache/mahout/cf/taste/example/grouplens
under the Taste distribution directory.

3. Navigate to the directory where you unpacked the Mahout distribution, and navigate to
trunk/core.

4. Build Mahout with ant.
5. Build the example web application with ant -f taste-build.xml

build-grouplens-example.
6. Download and install Tomcat.
7. Copy taste.war to the webapps directory under the Tomcat installation directory.
8. Increase the heap space that is given to Tomcat by setting the JAVA_OPTS environment

variable to "-server -da -dsa -Xms1024m -Xmx1024m", to allow 1024MB of
heap space and enable performance optimizations. Using bash, one can do this with the
command export JAVA_OPTS="..."

9. Start Tomcat. This is usually done by running bin/startup.sh from the Tomcat
installation directory. You may get an error asking you to set JAVA_HOME; do so as
above.

10.Get recommendations by accessing the web application in your browser:
http://localhost:8080/taste/RecommenderServlet?userID=1
This will produce a simple preference-item ID list which could be consumed by a client
application. Get more useful human-readable output with the debug parameter:
http://localhost:8080/taste/RecommenderServlet?userID=1&debug=true

Incidentally, Taste's web service interface may then be found at:
http://localhost:8080/taste/RecommenderService.jws
Its WSDL file will be here...
http://localhost:8080/taste/RecommenderService.jws?wsdl
... and you can even access it in your browser via a simple HTTP request:
.../RecommenderService.jws?method=recommend&userID=1&howMany=10

5. Examples

5.1. User-based Recommender

User-based recommenders are the "original", conventional style of recommender system.
They can produce good recommendations when tweaked properly; they are not necessarily
the fastest recommender systems and are thus suitable for small data sets (roughly, less than a
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million ratings). We'll start with an example of this.

First, create a DataModel of some kind. Here, we'll use a simple on based on data in a file:

DataModel model = new FileDataModel(new File("data.txt"));
We'll use the PearsonCorrelationSimilarity implementation of UserSimilarity as our
user correlation algorithm, and add an optional preference inference algorithm:

UserSimilarity userSimilarity = new PearsonCorrelationSimilarity(model); // Optional:
userSimilarity.setPreferenceInferrer(new AveragingPreferenceInferrer());
Now we create a UserNeighborhood algorithm. Here we use nearest-3:

UserNeighborhood neighborhood = new NearestNUserNeighborhood(3,
userSimilarity, model);
Now we can create our Recommender, and add a caching decorator:

Recommender recommender = new GenericUserBasedRecommender(model,
neighborhood, userSimilarity); Recommender cachingRecommender = new
CachingRecommender(recommender);
Now we can get 10 recommendations for user ID "1234" — done!

List<RecommendedItem> recommendations =
cachingRecommender.recommend("1234", 10);

5.2. Item-based Recommender

We could have created an item-based recommender instead. Item-based recommender base
recommendation not on user similarity, but on item similarity. In theory these are about the
same approach to the problem, just from different angles. However the similarity of two
items is relatively fixed, more so than the similarity of two users. So, item-based
recommenders can use pre-computed similarity values in the computations, which make
them much faster. For large data sets, item-based recommenders are more appropriate.

Let's start over, again with a FileDataModel to start:

DataModel model = new FileDataModel(new File("data.txt"));
We'll also need an ItemSimilarity. We could use
PearsonCorrelationSimilarity, which computes item similarity in realtime, but,
this is generally too slow to be useful. Instead, in a real application, you would feed a list of
pre-computed correlations to a GenericItemSimilarity:

// Construct the list of pre-compted correlations
Collection<GenericItemSimilarity.ItemItemSimilarity> correlations = ...; ItemSimilarity
itemSimilarity = new GenericItemSimilarity(correlations);
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Then we can finish as before to produce recommendations:

Recommender recommender = new GenericItemBasedRecommender(model,
itemSimilarity); Recommender cachingRecommender = new
CachingRecommender(recommender); ... List<RecommendedItem>
recommendations = cachingRecommender.recommend("1234", 10);

5.3. Slope-One Recommender

This is a simple yet effective Recommender and we present another example to round out
the list:

DataModel model = new FileDataModel(new File("data.txt")); // Make a weighted
slope one recommender Recommender recommender = new
SlopeOneRecommender(model); Recommender cachingRecommender = new
CachingRecommender(recommender);

6. Integration with your application

6.1. Direct

You can create a Recommender, as shown above, wherever you like in your Java
application, and use it. This includes simple Java applications or GUI applications, server
applications, and J2EE web applications.

6.2. Standalone server

Taste can also be run as an external server, which may be the only option for non-Java
applications. A Taste Recommender can be exposed as a web application via
org.apach.mahout.cf.taste.web.RecommenderServlet, and your
application can then access recommendations via simple HTTP requests and response, or as a
full-fledged SOAP web service. See above, and see the javadoc for details.

To deploy your Recommender as an external server:

1. Create an implementation of
org.apache.mahout.cf.taste.recommender.Recommender.

2. Compile it and create a JAR file containing your implementation.
3. Build a WAR file that will run your Recommender as a web application:

ant -Dmy-recommender.jar=yourJARfile.jar
-Dmy-recommender-class=com.foo.YourRecommender build-server

4. Follow from the "Install Tomcat" step above under Demo.
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7. Performance

7.1. Runtime Performance

The more data you give Taste, the better. Though Taste is designed for performance, you will
undoubtedly run into performance issues at some point. For best results, consider using the
following commad-line flags to your JVM:

• -server: Enables the server VM, which is generally appropriate for long-running,
computation-intensive applications.

• -Xms1024m -Xmx1024m: Make the heap as big as possible -- a gigabyte doesn't hurt
when dealing with millions of preferences. Taste will generally use as much memory as
you give it for caching, which helps performance. Set the initial and max size to the same
value to avoid wasting time growing the heap, and to avoid having the JVM run minor
collections to avoid growing the heap, which will clear cached values.

• -da -dsa: Disable all assertions.
• -XX:+UseParallelGC (multi-processor machines only): Use a GC algorithm

designed to take advantage of multiple processors, and designed for throughput. This is a
default in J2SE 5.0.

• -XX:-DisableExplicitGC: Disable calls to System.gc(). These calls can only
hurt in the presence of modern GC algorithms; they may force Taste to remove cached
data needlessly. This flag isn't needed if you're sure your code and third-party code you
use doesn't call this method.

Also consider the following tips:

• Use CachingRecommender on top of your custom Recommender implementation.
• When using JDBCDataModel, make sure you've taken basic steps to optimize the table

storing preference data. Create a primary key on the user ID and item ID columns, and an
index on them. Set them to be non-null. And so on. Tune your database for lots of
concurrent reads! When using JDBC, the database is almost always the bottleneck. Plenty
of memory and caching are even more important.

• Also, pooling database connections is essential to performance. If using a J2EE container,
it probably provides a way to configure connection pools. If you are creating your own
DataSource directly, try wrapping it in
org.apache.mahout.cf.taste.impl.model.jdbc.ConnectionPoolDataSource

• See MySQL-specific notes on performance in the javadoc for MySQLJDBCDataModel.

7.2. Algorithm Performance: Which One Is Best?

There is no right answer; it depends on your data, your application, environment, and
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performance needs. Taste provides the building blocks from which you can construct the best
Recommender for your application. The links below provide research on this topic. You
will probably need a bit of trial-and-error to find a setup that works best. The code sample
above provides a good starting point.

Fortunately, Taste provides a way to evaluate the accuracy of your Recommender on your
own data, in org.apache.mahout.cf.taste.eval:

DataModel myModel = ...; RecommenderBuilder builder = new
RecommenderBuilder() { public Recommender buildRecommender(DataModel
model) { // build and return the Recommender to evaluate here } };
RecommenderEvaluator evaluator = new
AverageAbsoluteDifferenceRecommenderEvaluator(); double evaluation =
evaluator.evaluate(builder, myModel, 0.9, 1.0);

8. Useful Links

You'll want to look at these packages too, which offer more algorithms and approaches that
you may find useful:

• Cofi: A Java-Based Collaborative Filtering Library
• CoFE

Here's a handful of research papers that I've read and found particularly useful:

J.S. Breese, D. Heckerman and C. Kadie, "Empirical Analysis of Predictive Algorithms for
Collaborative Filtering," in Proceedings of the Fourteenth Conference on Uncertainity in
Artificial Intelligence (UAI 1998), 1998.

B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-based collaborative filtering
recommendation algorithms," in Proceedings of the Tenth International Conference on the
World Wide Web (WWW 10), pp. 285-295, 2001.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl, "GroupLens: an open
architecture for collaborative filtering of netnews," in Proceedings of the 1994 ACM
conference on Computer Supported Cooperative Work (CSCW 1994), pp. 175-186, 1994.

J.L. Herlocker, J.A. Konstan, A. Borchers and J. Riedl, "An algorithmic framework for
performing collaborative filtering," in Proceedings of the 22nd annual international ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 99), pp.
230-237, 1999.

Clifford Lyon, "Movie Recommender," CSCI E-280 final project, Harvard University, 2004.

Daniel Lemire, Anna Maclachlan, "Slope One Predictors for Online Rating-Based
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Collaborative Filtering," Proceedings of SIAM Data Mining (SDM '05), 2005.

Michelle Anderson, Marcel Ball, Harold Boley, Stephen Greene, Nancy Howse, Daniel
Lemire and Sean McGrath, "RACOFI: A Rule-Applying Collaborative Filtering System,"
Proceedings of COLA '03, 2003.

These links will take you to all the collaborative filtering reading you could ever want!

• Paul Perry's notes
• James Thornton's collaborative filtering resources
• Daniel Lemire's blog which frequently covers collaborative filtering topics
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