Apache Lucene - Index File Formats

Table of contents

1 INAEX FIlE FOMMELS.....eviiiiiiieiieie ettt ettt bbb s s 3
2 DEFINITIONS. ...ttt bbb bbbt e bbbt e enes 4
2.1 INVEITEA TNOEXING.eeueeieeieiesiete sttt sttt b e bbb 4
2.2 TYPES OF FHEIUS.......eieeieeeeeeee ettt sr e 4
2.3 SEOIMENES. ...c.eeeteietee ettt ettt et e sae e et e s he e e e e e aheesaeeaabeesaeeaneeeaeeebeesaneeneesnneereennneans 4
2.4 DOCUMENE NUMDEIS.......oiiiieie ettt e 5
B OVEIVIBIN ...ttt bbbt bttt e et e b e b e b b e bt e bt e Rt et et et b nb e ne e 5
O = AN = 0 o SRS 6
5 SUMMArY Of Fil@ EXIENSIONS......ccciiiiiiiiiesiesie st 6
B PrIMITIVE TYPES.... .ottt bbbttt e et b e enis 7
e300 = Y1 (= PO 7
S U 11 o1 7RSS PRS 7
S T U 101 RS 7
SV 1 | OSSR SRPSPR 8
ST O =SS 8
RIS L1 0T USSP PPV 8
7 COMPOUNG TYPES....eieeeiieesteeieetee st etesee st e e st te e e s beebesaeesbeeeesseesseebesneesaeensesneensennsans 9
R\ =10 0 RS] T USSR 9
8 PEr-INUEX FIIES......eiee ettt b et 9
8.1 SEOMENES FilE.. .ottt e b e e sre e re e e 9
I ool 1 S 11
8.3 DEEADI@ Fle.....coeeeeeeeeee s 11

8.4 COMPOUNT FIES........eiiiiieeie ettt nb e e sns 11

Apache Lucene - Index File Formats

9 Per-SEgmMENt FlES......cceececeee et nre s 11
T I T Lo ST 12
0.2 TEIM DICHONANY....cuiitiriieiieieeeee ettt sttt st sae b nne s 13
0.3 FTEOUENCIES...... ettt sttt ettt b et b e b bt e e e e e s e b e st e nneeneenea 15
0.4 POSITIONS......eeeteeieeiie st e et e sttt s ae e bt e e e s beesbe e e e s beenbe e st e sbeebeeaeesbeebesneenreeeeenee e 17
9.5 NOrmMali ZatioN FACLOIS......cc.eiiuiiieiesieeie e e 17
9.6 TEIM VEBCHOIS. ...ttt s e n e s me e e s e e s nneereesnneeneennnens 18
0.7 Deleted DOCUMENLS.......coueiuirieriieieieite sttt st b et a e b e b 20

0T 0 1 0 S 20

Page 2

Apache Lucene - Index File Formats

1 Index File Formats

This document defines the index file formats used in this version of Lucene. If you are using
adifferent version of Lucene, please consult the copy of docs/ fil ef ormats. ht m that
was distributed with the version you are using.

Apache Lucene iswritten in Java, but several efforts are underway to write versions of
Lucene in other programming languages. If these versions are to remain compatible with
Apache Lucene, then alanguage-independent definition of the Lucene index format is
required. This document thus attempts to provide a complete and independent definition of
the Apache Lucene 3.2 file formats.

As Lucene evolves, this document should evolve. Versions of Lucene in different
programming languages should endeavor to agree on file formats, and generate new versions
of this document.

Compatibility notes are provided in this document, describing how file formats have changed
from prior versions.

In version 2.1, the file format was changed to allow lock-1ess commits (ie, no more commit
lock). The changeis fully backwards compatible: you can open apre-2.1 index for searching
or adding/deleting of docs. When the new segmentsfile is saved (committed), it will be
written in the new file format (meaning no specific "upgrade” process is needed). But note
that once acommit has occurred, pre-2.1 Lucene will not be able to read the index.

In version 2.3, the file format was changed to allow segments to share asingle set of doc
store (vectors & stored fields) files. This allows for faster indexing in certain cases. The
change is fully backwards compatible (in the same way as the lock-less commits change in
2.1).

In version 2.4, Strings are now written as true UTF-8 byte sequence, not Java's modified
UTF-8. Seeissue LUCENE-510 for details.

In version 2.9, an optional opague Map<String,String> CommitUserData may be passed to
IndexWriter's commit methods (and later retrieved), which is recorded in the segments N
file. Seeissue LUCENE-1382 for details. Also, diagnostics were added to each segment
written recording details about why it was written (due to flush, merge; which OS/JRE was
used; etc.). Seeissue LUCENE-1654 for details.

In version 3.0, compressed fields are no longer written to the index (they can still be read,
but on merge the new segment will write them, uncompressed). See issue LUCENE-1960 for
details.

In version 3.1, segments records the code version that created them. See LUCENE-2720 for
details. Additionally segments track explicitly whether or not they have term vectors. See
LUCENE-2811 for details.

Page 3

Apache Lucene - Index File Formats

In version 3.2, numeric fields are written as natively to stored fields file, previously they
were stored in text format only.

2 Definitions

The fundamental concepts in Lucene are index, document, field and term.
An index contains a sequence of documents.

* A document is a sequence of fields.
» A fieldisanamed sequence of terms.
* Atermisastring.

The same string in two different fields is considered a different term. Thusterms are
represented as a pair of strings, the first naming the field, and the second naming text within
the field.

2.1 Inverted Indexing

The index stores statistics about terms in order to make term-based search more efficient.
Lucene'sindex falsinto the family of indexes known as an inverted index. Thisis because
it can list, for aterm, the documents that contain it. Thisisthe inverse of the natural
relationship, in which documents list terms.

2.2 Types of Fields

In Lucene, fields may be stored, in which case their text is stored in the index literally, ina
non-inverted manner. Fields that are inverted are called indexed. A field may be both stored
and indexed.

Thetext of afield may be tokenized into terms to be indexed, or the text of afield may be
used literally as aterm to be indexed. Most fields are tokenized, but sometimesit is useful for
certain identifier fields to be indexed literally.

See the Field java docs for more information on Fields.

2.3 Segments

Lucene indexes may be composed of multiple sub-indexes, or segments. Each segment isa
fully independent index, which could be searched separately. Indexes evolve by:

1. Creating new segments for newly added documents.

2. Merging existing segments.

Searches may involve multiple segments and/or multiple indexes, each index potentially
composed of a set of segments.

Page 4

Apache Lucene - Index File Formats

2.4 Document Numbers

Internally, Lucene refers to documents by an integer document number. The first document
added to an index is numbered zero, and each subsequent document added gets a number one
greater than the previous.

Note that a document's number may change, so caution should be taken when storing these
numbers outside of Lucene. In particular, numbers may change in the following situations:

* The numbers stored in each segment are unique only within the segment, and must
be converted before they can be used in alarger context. The standard technique is
to allocate each segment arange of values, based on the range of numbersused in
that segment. To convert a document number from a segment to an external value,
the segment's base document number is added. To convert an external value back to a
segment-specific value, the segment isidentified by the range that the external valueis
in, and the segment's base value is subtracted. For example two five document segments
might be combined, so that the first segment has a base value of zero, and the second of
five. Document three from the second segment would have an external value of eight.

* When documents are del eted, gaps are created in the numbering. These are eventually
removed as the index evolves through merging. Deleted documents are dropped when
segments are merged. A freshly-merged segment thus has no gaps in its numbering.

3 Overview

Each segment index maintains the following:

* Field names. This contains the set of field names used in the index.

» Stored Field values. This contains, for each document, alist of attribute-value pairs,
where the attributes are field names. These are used to store auxiliary information about
the document, such asitstitle, url, or an identifier to access a database. The set of stored
fields are what is returned for each hit when searching. Thisis keyed by document
number.

* Termdictionary. A dictionary containing all of thetermsused in al of theindexed fields
of all of the documents. The dictionary also contains the number of documents which
contain the term, and pointers to the term's frequency and proximity data.

» Term Freguency data. For each term in the dictionary, the numbers of all the documents
that contain that term, and the frequency of the term in that document if omitTf isfalse.

* Term Proximity data. For each term in the dictionary, the positions that the term occurs
in each document. Note that thiswill not exist if all fieldsin all documents set omitTf to
true.

* Normalization factors. For each field in each document, avalue is stored that is
multiplied into the score for hits on that field.

Page 5

Apache Lucene - Index File Formats

» Term Vectors. For each field in each document, the term vector (sometimes called
document vector) may be stored. A term vector consists of term text and term frequency.
To add Term Vectorsto your index see the Field constructors

» Deleted documents. An optional file indicating which documents are del eted.

Details on each of these are provided in subsequent sections.

4 File Naming

All files belonging to a segment have the same name with varying extensions. The extensions
correspond to the different file formats described below. When using the Compound File
format (default in 1.4 and greater) these files are collapsed into asingle .cfsfile (see below
for details)

Typically, al segmentsin an index are stored in a single directory, although thisis not
required.

Asof version 2.1 (lock-less commits), file names are never re-used (there is one exception,
"segments.gen”, see below). That is, when any fileis saved to the Directory itisgiven a
never before used filename. Thisis achieved using a simple generations approach. For
example, the first segmentsfile is segments 1, then segments 2, etc. The generationisa
sequential long integer represented in apha-numeric (base 36) form.

5 Summary of File Extensions

The following table summarizes the names and extensions of the filesin Lucene:

Segments File segments.gen, segments N Stores information about segments

Lock File write.lock The Write lock prevents multiple
IndexWriters from writing to the
samefile.

Compound File .cfs An optiona "virtua" file

consisting of all the other index
filesfor systems that frequently
run out of file handles.

Fields fom Stores information about the fields

Field Index fdx Contains pointersto field data

Field Data fat The stored fields for documents

Term Infos tis Part of the term dictionary, stores
terminfo

Page 6

Apache Lucene - Index File Formats

Term Info Index tii Theindex into the Term Infos file

Frequencies frq Containsthe list of docswhich
contain each term along with
frequency

Positions .prx Stores position information about

where aterm occurs in the index

Norms .nrm Encodes length and boost factors
for docsand fields

Term Vector Index tvx Stores offset into the document
datafile
Term Vector Documents tvd Contains information about each

document that has term vectors

Term Vector Fields tvf The field level info about term
vectors
Deleted Documents .del Info about what files are deleted

6 Primitive Types

6.1 Byte
The most primitive type is an eight-bit byte. Files are accessed as sequences of bytes. All
other data types are defined as sequences of bytes, so file formats are byte-order independent.
6.2 UInt32

32-bit unsigned integers are written as four bytes, high-order bytesfirst.
Uint32 --> <Byte>4

6.3 Uint64

64-bit unsigned integers are written as eight bytes, high-order bytesfirst.

Uint64 --> <Byte'>8

Page 7

Apache Lucene - Index File Formats

6.4 Vint

A variable-length format for positive integers is defined where the high-order bit of each byte
indicates whether more bytes remain to be read. The low-order seven bits are appended as
increasingly more significant bits in the resulting integer value. Thus values from zero to 127
may be stored in asingle byte, values from 128 to 16,383 may be stored in two bytes, and so
on.

VInt Encoding Example

Value First byte Second byte Third byte
0 00000000

1 00000001

2 00000010

127 01111111

128 10000000 00000001

129 10000001 00000001

130 10000010 00000001

16,383 11111111 01111111

16,384 10000000 10000000 00000001
16,385 10000001 10000000 00000001

This provides compression while still being efficient to decode.

6.5 Chars

L ucene writes unicode character sequences as UTF-8 encoded bytes.

6.6 String

Lucene writes strings as UTF-8 encoded bytes. First the length, in bytes, iswritten asa Vint,
followed by the bytes.

String --> VInt, Chars

Page 8

Apache Lucene - Index File Formats

7 Compound Types

7.1 Map<String,String>

In a couple places Lucene stores aMap String->String.
Map<String,String> --> Count<Stri ng,String>Count

8 Per-Index Files

The filesin this section exist one-per-index.

8.1 Segments File

The active segments in the index are stored in the segment info file, ssgments_N. There may
be one or more segments N filesin the index; however, the one with the largest generation is
the active one (when older segments N files are present it's because they temporarily cannot
be deleted, or, awriter isin the process of committing, or a custom IndexDeletionPolicy isin
use). Thisfile lists each segment by name, has details about the separate norms and deletion
files, and also contains the size of each segment.

Asof 2.1, thereis aso afile segments.gen. Thisfile contains the current generation (the _N
in segments_N) of the index. Thisisused only as afallback in case the current generation
cannot be accurately determined by directory listing alone (asis the case for some NFS
clients with time-based directory cache expiraation). Thisfile simply contains an Int32
version header (Segmentinfos.FORMAT_LOCKLESS = -2), followed by the generation
recorded as Int64, written twice.

3.1 Segments --> Format, Version, NameCounter, SegCount, <SegVersion, SegName,
SegSize, DelGen, DocStoreOffset, [DocStoreSegment, DocStorel sCompoundFile],

HasSingleNormFile, NumField, NormGenNUMFEld | scompoundFile, DeletionCount,
HasProx, Diagnostics, HasVectors>SGgC°unt, CommitUserData, Checksum

Format, NameCounter, SegCount, SegSize, NumField, DocStoreOffset, DeletionCount -->
Int32

Version, DelGen, NormGen, Checksum --> Int64
SegVersion, SegName, DocStoreSegment --> String
Diagnostics --> Map<String,String>

IsCompoundFile, HasSingleNormFile, DocStorel sCompoundFile, HasProx, HasV ectors -->
Int8

CommitUserData --> Map<String,String>

Page 9

Apache Lucene - Index File Formats

Format is-9 (Segmentinfos. FORMAT_DIAGNOSTICS).

Version counts how often the index has been changed by adding or deleting documents.
NameCounter is used to generate names for new segment files.

SegVersion isthe code version that created the segment.

SegName is the name of the segment, and is used as the file name prefix for al of the files
that compose the segment'’s index.

SegSize is the number of documents contained in the segment index.

DelGen is the generation count of the separate deletesfile. If thisis-1, there are no separate
deletes. If itisO, thisisapre-2.1 segment and you must check filesystem for the existence of
X.ddl. Anything above zero means there are separate deletes (X_N.del).

NumField isthe size of the array for NormGen, or -1 if there are no NormGens stored.

NormGen records the generation of the separate normsfiles. If NumField is-1, there are no
normGens stored and they are all assumed to be O when the segment file was written pre-2.1
and all assumed to be -1 when the segmentsfileis 2.1 or above. The generation then has the
same meaning as del Gen (above).

| sCompoundFile records whether the segment is written as a compound file or not. If thisis
-1, the segment is not a compound file. If it is 1, the segment is acompound file. Elseit isO,
which means we check filesystem to seeif _X.cfsexists.

If HasSingleNormFileis 1, then the field norms are written as a single joined file (with
extension .nrm); if it is O then each field's norms are stored as separate .fN files. See
"Normalization Factors' below for details.

DocStoreOffset, DocStoreSegment, DocStorel sCompoundFile: If DocStoreOffset is

-1, this segment has its own doc store (stored fields values and term vectors) files and
DocStoreSegment and DocStorel sCompoundFile are not stored. In this case all filesfor
stored field values (*.fdt and *.fdx) and term vectors (*.tvf, *.tvd and *.tvx) will be stored
with this segment. Otherwise, DocStoreSegment is the name of the segment that has the
shared doc store files; DocStorel sCompoundFileis 1 if that segment is stored in compound
fileformat (asa.cfx file); and DocStoreOffset is the starting document in the shared doc
store files where this segment's documents begin. In this case, this segment does not store its
own doc store files but instead shares a single set of these files with other segments.

Checksum contains the CRC32 checksum of all bytesin the segments_N file up until the
checksum. Thisis used to verify integrity of the file on opening the index.

DeletionCount records the number of deleted documents in this segment.
HasProx is 1 if any fieldsin this segment have omitTf set to false; else, it's 0.

Page 10

Apache Lucene - Index File Formats

CommitUserData stores an optional user-supplied opaque Map<String,String> that was
passed to IndexWriter's commit or prepareCommit, or IndexReader's flush methods.

The Diagnostics Map is privately written by IndexWriter, as a debugging aid, for each
segment it creates. It includes metadata like the current Lucene version, OS, Java version,
why the segment was created (merge, flush, addindexes), etc.

HasVectorsis 1 if this segment stores term vectors, elseit's 0.

8.2 Lock File

The write lock, which is stored in the index directory by default, is named "write.lock". If
the lock directory is different from the index directory then the write lock will be named
"XXXX-write.lock" where X XXX isaunique prefix derived from the full path to the index
directory. When thisfileis present, awriter is currently modifying the index (adding or
removing documents). This lock file ensures that only one writer is modifying the index at a
time.

8.3 Deletable File

A writer dynamically computes the files that are deletable, instead, so no file is written.

8.4 Compound Files
Starting with Lucene 1.4 the compound file format became default. Thisis simply a container
for al files described in the next section (except for the .del file).

Compound (.cfs) --> FileCount, <DataOffset, FileName> F116C0UNt Fjjany o4 FileCount

FileCount --> VInt

DataOffset --> Long

FileName --> String

FileData--> raw file data

Theraw file datais the datafrom the individual files named above.

Starting with Lucene 2.3, doc store files (stored field values and term vectors) can be shared
inasingle set of filesfor more than one segment. When compound file is enabled, these
shared fileswill be added into a single compound file (same format as above) but with the
extension .cfXx.

9 Per-Segment Files

The remaining files are all per-segment, and are thus defined by suffix.

Page 11

Apache Lucene - Index File Formats

9.1 Fields

Field Info
Field names are stored in the field info file, with suffix .fnm.

Fieldinfos (.fnm) --> FNMVersion,FieldsCount, <FieldName, FieldBits> F1€/dSCount
FNMVersion, FieldsCount --> VInt

FieldName --> String

FieldBits --> Byte

* Thelow-order bit is one for indexed fields, and zero for non-indexed fields.

* The second lowest-order bit is one for fields that have term vectors stored, and zero for
fields without term vectors.

* If thethird lowest-order bit is set (0x04), term positions are stored with the term vectors.

» If thefourth lowest-order bit is set (0x08), term offsets are stored with the term vectors.

» If thefifth lowest-order bit is set (0x10), norms are omitted for the indexed field.

» If the sixth lowest-order bit is set (0x20), payloads are stored for the indexed field.

FNMVersion (added in 2.9) isaways -2.

Fields are numbered by their order in thisfile. Thusfield zero isthefirst field in thefile,
field one the next, and so on. Note that, like document numbers, field numbers are segment
relative.

Stored Fields
Stored fields are represented by two files:
1. Thefield index, or .fdx file.
This contains, for each document, a pointer to itsfield data, as follows:

Fieldindex (.fdx) --> <FieldValuesPosition> 595126
FieldVauesPosition --> Uint64

Thisisused to find the location within the field data file of the fields of a particular
document. Because it contains fixed-length data, this file may be easily randomly
accessed. The position of document n'sfield dataisthe Uint64 at n*8 in thisfile.

2. Thefield data, or .fdt file.

This contains the stored fields of each document, as follows:
FieldData (.fd) --> <DocFieldData> Se95iZ€

DocFieldData --> FieldCount, <FieldNum, Bits, Value> H€ldCount
FieldCount --> Vint

Page 12

Apache Lucene - Index File Formats

FieldNum --> VInt
Bits--> Byte

» |ow order bit is one for tokenized fields
» second bit isone for fields containing binary data

» third bit isone for fields with compression option enabled (if compression is enabled,
the algorithm used is ZLIB), only available for indexes until Lucene version 2.9.x

* 4thto 6th bits (mask: 0x7<<3) define the type of anumeric field:
» al bitsin mask are cleared if no numeric field at all
e 1<<3:Vaueisint
* 2<<3:VaueisLong
* 3<<3:VaueisInt asFloat (as of Integer.intBitsToFloat)
» 4<<3:VaueisLong asDouble (as of Double.longBitsToDouble)

Value--> String | BinaryValue | Int | Long (depending on Bits)
BinaryValue --> VaueSize, <Byte>"VaueSize
ValueSize --> Vint

9.2 Term Dictionary

Theterm dictionary is represented as two files:

1

Theterm infos, or tisfile.

TerminfoFile (.tis)--> TIVersion, TermCount, IndexInterval, Skiplnterval,
MaxSkipLevels, Terminfos

TIVersion --> UInt32
TermCount --> UInt64
IndexInterval --> UInt32
Skiplnterval --> UInt32
MaxSkipLevels --> UInt32

Terminfos --> <Terminfo> | &rmcount

Terminfo --> <Term, DocFreq, FregDelta, ProxDelta, SkipDelta>
Term --> <PrefixLength, Suffix, FieldNum>
Suffix --> String

PrefixLength, DocFreq, FregDelta, ProxDelta, SkipDelta
-->VInt

Page 13

Apache Lucene - Index File Formats

Thisfileis sorted by Term. Terms are ordered first lexicographically (by UTF16
character code) by the term's field name, and within that lexicographically (by UTF16
character code) by the term's text.

TIVersion names the version of the format of thisfile and is equal to
TerminfosWriter. FORMAT_CURRENT.

Term text prefixes are shared. The PrefixLength is the number of initial characters from
the previous term which must be pre-pended to aterm's suffix in order to form the term's
text. Thus, if the previous term's text was "bone" and the term is "boy", the PrefixLength
istwo and the suffix is"y".

FieldNumber determines the term's field, whose name is stored in the .fdt file.
DocFreq is the count of documents which contain the term.

FregDelta determines the position of thisterm's TermFregs within the .frq file. In
particular, it isthe difference between the position of thisterm's datain that file and the
position of the previous term's data (or zero, for the first term in the file).

ProxDelta determines the position of this term’'s TermPositions within the .prx file. In
particular, it isthe difference between the position of thisterm's datain that file and the
position of the previous term's data (or zero, for the first term in the file. For fields with
omitTf true, thiswill be 0 since prox information is not stored.

SkipDelta determines the position of thisterm's SkipData within the .frq file. In
particular, it isthe number of bytes after TermFregs that the SkipData starts. In other
words, it isthe length of the TermFreq data. SkipDeltaisonly stored if DocFreq is not
smaller than Skiplnterval.

Theterm info index, or .tii file.

This contains every IndexInterval th entry from the .tisfile, along with itslocation in the
"tis" file. Thisis designed to be read entirely into memory and used to provide random
access to the "tis' file.

The structure of thisfileisvery similar to the .tisfile, with the addition of one item per
record, the IndexDelta.

Terminfolndex (.tii)--> TIVersion, IndexTermCount, IndexInterval, Skiplnterval,
MaxSkipLevels, Termindices

TIVersion --> UInt32
IndexTermCount --> UInt64
IndexInterval --> UInt32
Skiplnterval --> UInt32

Page 14

Apache Lucene - Index File Formats

Termindices > <Terminfo, IndexDelta> ' NdexTermCount

IndexDelta--> VLong

IndexDelta determines the position of this term’'s Terminfo within the .tisfile. In
particular, it is the difference between the position of thisterm's entry in that file and the
position of the previous term's entry.

SkipInterval isthe fraction of TermDocs stored in skip tables. It is used to accelerate
TermDocs.skipTo(int). Larger values result in smaller indexes, greater acceleration, but
fewer accelerable cases, while smaller values result in bigger indexes, less acceleration
(in case of asmall value for MaxSkipL evels) and more accelerable cases.
MaxSkipLevelsisthe max. number of skip levels stored for each term in the .frqg file. A
low value results in smaller indexes but less acceleration, alarger value resultsin slighly
larger indexes but greater acceleration. See format of .frq file for more information about
skip levels.

9.3 Frequencies
The .frq file contains the lists of documents which contain each term, along with the
frequency of the term in that document (if omitTf isfalse).

FregFile (.frg) --> <TermFreqgs, SkipData> TermCount

TermFregs --> <TermFreg> POCFTed

TermFreq --> DocDeltd], Freq?]

SkipData > <<SkipLevelLength, SkipLevel> NUMSKIPLVEIS1 qin) evel> <SkipDatums

SkipLevel —> <SkipDatum> DocFreg/(SkipInterva™(Level + 1))

SkipDatum --> DocSkip,PayloadL ength?,FreqSkip,Prox Skip,SkipChildL evel Pointer?
DocDelta,Freq,DocSkip,PayloadL ength,FreqSkip,ProxSkip --> Vint

SkipChildL evel Pointer --> VVLong

TermFregs are ordered by term (the term isimplicit, from the .tisfile).

TermFreq entries are ordered by increasing document number.

DocDelta: if omitTf isfalse, this determines both the document number and the frequency.

In particular, DocDelta/2 is the difference between this document number and the previous
document number (or zero when thisisthe first document in a TermFreqs). When DocDelta
is odd, the frequency is one. When DocDeltais even, the frequency is read as another Vint. If
omitTf istrue, DocDelta contains the gap (not multiplied by 2) between document numbers
and no frequency information is stored.

Page 15

Apache Lucene - Index File Formats

For example, the TermFregs for aterm which occurs once in document seven and three times
in document eleven, with omitTf false, would be the following sequence of Vints:

15, 8,3

If omitTf were true it would be this sequence of VInts instead:

7,4

DocSkip records the document number before every Skiplnterval th document in TermFregs.
If payloads are disabled for the term's field, then DocSkip represents the difference from the
previous value in the sequence. If payloads are enabled for the term's field, then DocSkip/2

represents the difference from the previous value in the sequence. If payloads are enabled
and DocSkip is odd, then PayloadL ength is stored indicating the length of the last payload

before the Skipl nterval™ document in TermPositions. FreqSkip and ProxSkip record the

position of every Skiplnterval th entry in FregFile and ProxFile, respectively. File positions
are relative to the start of TermFregs and Positions, to the previous SkipDatum in the
sequence.

For example, if DocFreg=35 and Skiplnterval=16, then there are two SkipData entries,

5 th and 31 S document numbersin TermFregs. The first FreqSkip names
the number of bytes after the beginning of TermFregs that the 16 th SkipDatum starts, and
the second the number of bytes after that that the 32 nd starts. The first ProxSkip names the

th SkipDatum starts, and the

containing the 1

number of bytes after the beginning of Positions that the 16

second the number of bytes after that that the 32 " starts,

Each term can have multiple skip levels. The amount of skip levelsfor atermis
NumsSkipLevels = Min(MaxSkipL evels, floor(log(DocFreg/log(Skiplnterval)))). The number
of SkipData entriesfor askip level is DocFreqg/(Skiplnterval™(Level + 1)), whereas the
lowest skip level is Level=0.

Example: Skiplnterval = 4, MaxSkipLevels = 2, DocFreq = 35. Then skip level 0 has 8

SkipData entries, containing the 3'd, 711 11t 15t 19t 537 5710 3ng 31 Gocument

numbersin TermFregs. Skip level 1 has 2 SkipData entries, containing the 15th and 31
document numbersin TermFregs.

The SkipData entries on all upper levels > 0 contain a SkipChildL evel Pointer referencing the
corresponding SkipData entry in level-1. In the example has entry 15 on level 1 a pointer to
entry 15 on level 0 and entry 31 on level 1 apointer to entry 31 on level 0.

Page 16

Apache Lucene - Index File Formats

9.4 Positions

The .prx file contains the lists of positions that each term occurs at within documents. Note
that fields with omitTf true do not store anything into thisfile, and if all fieldsin the index
have omitTf true then the .prx file will not exist.

ProxFile (.prx) --> <TermPositions> | ermcount

TermPositions > <Positions> POCFed

Positions --> <PositionDelta,Payload?> €
Payload --> <Payl oadL ength?,PayloadData>
PositionDelta--> VInt

PayloadL ength --> VInt

PayloadData > byteP@!0adLength
TermPositions are ordered by term (the term isimplicit, from the .tisfile).

Positions entries are ordered by increasing document number (the document number is
implicit from the .frq file).

PositionDeltais, if payloads are disabled for the term's field, the difference between the
position of the current occurrence in the document and the previous occurrence (or zero, if
thisisthe first occurrence in this document). If payloads are enabled for the term'sfield, then
PositionDelta/2 is the difference between the current and the previous position. If payloads
are enabled and PositionDelta is odd, then PayloadL ength is stored, indicating the length of
the payload at the current term position.

For example, the TermPositions for aterm which occurs as the fourth term in one document,
and as the fifth and ninth term in a subsequent document, would be the following sequence of
VInts (payloads disabl ed):

4,5, 4

PayloadData is metadata associated with the current term position. If PayloadL ength is stored
at the current position, then it indicates the length of this Payload. If PayloadL ength is not
stored, then this Payload has the same length as the Payload at the previous position.

9.5 Normalization Factors

Theresasingle .nrm file containing al norms:

AlINorms (.nrm) --> NormsHeader,<Norms> NumFieldswithNorms

Norms --> <Byte> SegSize

Page 17

Apache Lucene - Index File Formats

NormsHeader --> 'N','R','M",Version
Version --> Byte
NormsHeader has 4 bytes, last of which isthe format version for thisfile, currently -1.

Each byte encodes a floating point value. Bits 0-2 contain the 3-bit mantissa, and bits 3-8
contain the 5-bit exponent.

These are converted to an |EEE single float value as follows:

If the byte is zero, use a zero float.

Otherwise, set the sign bit of the float to zero;

add 48 to the exponent and use this as the float's exponent;

map the mantissa to the high-order 3 bits of the float's mantissa; and
set the low-order 21 bits of the float's mantissa to zero.

g kr w DN PP

A separate norm file is created when the norm values of an existing segment are modified.
When field N is modified, a separate norm file .sN is created, to maintain the norm values for
that field.

Separate norm files are created (when adequate) for both compound and non compound
segments.

9.6 Term Vectors

Term Vector support is an optional on afield by field basis. It consists of 3 files.
1. The Document Index or .tvx file.

For each document, this stores the offset into the document data (.tvd) and field data (.tvf)
files.

Documentindex (.tvx) --> TV XV ersion<DocumentPosition,FieldPosition> NumbDocs

TVXVersion --> Int (TermV ectorsReader. CURRENT)
DocumentPosition --> UInt64 (offset in the .tvd file)

FieldPosition --> UInt64 (offset in the .tvf file)
2. The Document or .tvd file.

This contains, for each document, the number of fields, alist of the fields with term
vector info and finally alist of pointersto the field information in the .tvf (Term Vector
Fields) file.

Document (.tvd) > TVDVersion<NumFields, FieldNums, FieldPositions> NUmMBPocs
TVDVersion --> Int (TermV ectorsReader. FORMAT _CURRENT)

NumFields --> Vint

Page 18

Apache Lucene - Index File Formats

FieldNums > <FieldNumDelta> NUmFields

FieldNumDelta --> VInt

FieldPositions --> <FieldPositionDelta> NUMFields 1

FieldPositionDelta--> VLong

The .tvd fileis used to map out the fields that have term vectors stored and where the
field information isin the .tvf file.
The Field or .tvf file.

Thisfile contains, for each field that has aterm vector stored, alist of the terms, their
frequencies and, optionally, position and offest information.

Field (.tvf) --> TVFVersion<NumTerms, Position/Offset, TermFreqs> NumFields

TVFVersion --> Int (TermVectorsReader. FORMAT_CURRENT)
NumTerms--> VInt
Position/Offset --> Byte

TermFregs --> <TermText, TermFreq, Positions?, Offsets?> NumTerms
TermText --> <PrefixLength, Suffix>

PrefixLength --> Vint

Suffix --> String

TermFreq --> Vint

Positions --> <V Int> | &'MFreq

Offsets —-> <VInt, Vint> | €'MFTeq

Notes:

» Position/Offset byte stores whether this term vector has position or offset information
stored.

o Termtext prefixes are shared. The PrefixLength is the number of initial characters
from the previous term which must be pre-pended to aterm’s suffix in order to form
the term's text. Thus, if the previous term's text was "bone" and the term is "boy", the
PrefixLength is two and the suffix is"y".

» Positions are stored as delta encoded VInts. This means we only store the difference
of the current position from the last position

» Offsets are stored as delta encoded VInts. Thefirst Vint is the startOffset, the second
is the endOffset.

Page 19

Apache Lucene - Index File Formats

9.7 Deleted Documents

The .ddl fileisoptional, and only exists when a segment contains deletions.

Although per-segment, thisfile is maintained exterior to compound segment files.
Deletions (.del) --> [Format] ,ByteCount,BitCount, Bits | DGaps (depending on Format)
Format,ByteSize,BitCount --> Uint32

Bits --> <Byte> ByteCount

DGaps --> <DGap,NonzeroByte> NonzeroBytesCount

DGap --> Vint
NonzeroByte --> Byte

Format is Optional. -1 indicates DGaps. Non-negative value indicates Bits, and that Format is
excluded.

ByteCount indicates the number of bytesin Bits. It istypically (SegSize/8)+1.
BitCount indicates the number of bits that are currently set in Bits.

Bits contains one bit for each document indexed. When the bit corresponding to a document
number is set, that document is marked as deleted. Bit ordering is from least to most
significant. Thus, if Bits contains two bytes, 0x00 and 0x02, then document 9 is marked as
deleted.

DGaps represents sparse bit-vectors more efficiently than Bits. It is made of DGaps on
indexes of nonzero bytes in Bits, and the nonzero bytes themselves. The number of nonzero
bytesin Bits (NonzeroBytesCount) is not stored.

For example, if there are 8000 bits and only bits 10,12,32 are set, DGaps would be used:
(VInt) 1, (byte) 20, (VInt) 3, (Byte) 1

10 Limitations

When referring to term numbers, Lucene's current implementation uses aJavai nt to hold
the term index, which means the maximum number of unique termsin any single index
segment is ~2.1 billion times the term index interval (default 128) = ~274 billion. Thisis
technically not alimitation of the index file format, just of Lucene's current implementation.

Similarly, Lucene usesa Javai nt to refer to document numbers, and the index file format
usesan | nt 32 on-disk to store document numbers. Thisisalimitation of both the index
file format and the current implementation. Eventually these should be replaced with either
Ul nt 64 values, or better yet, VI nt values which have no limit.

Page 20

	Table of contents
	1 Index File Formats
	2 Definitions
	2.1 Inverted Indexing
	2.2 Types of Fields
	2.3 Segments
	2.4 Document Numbers

	3 Overview
	4 File Naming
	5 Summary of File Extensions
	6 Primitive Types
	6.1 Byte
	6.2 UInt32
	6.3 Uint64
	6.4 VInt
	6.5 Chars
	6.6 String

	7 Compound Types
	7.1 Map<String,String>

	8 Per-Index Files
	8.1 Segments File
	8.2 Lock File
	8.3 Deletable File
	8.4 Compound Files

	9 Per-Segment Files
	9.1 Fields
	9.2 Term Dictionary
	9.3 Frequencies
	9.4 Positions
	9.5 Normalization Factors
	9.6 Term Vectors
	9.7 Deleted Documents

	10 Limitations

