/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using Lucene.Net.Support; namespace Lucene.Net.Util { // from org.apache.solr.util rev 555343 /// A variety of high efficiencly bit twiddling routines. /// /// /// $Id$ /// public class BitUtil { /// Returns the number of bits set in the long public static int Pop(long x) { /* Hacker's Delight 32 bit pop function: * http://www.hackersdelight.org/HDcode/newCode/pop_arrayHS.cc * int pop(unsigned x) { x = x - ((x >> 1) & 0x55555555); x = (x & 0x33333333) + ((x >> 2) & 0x33333333); x = (x + (x >> 4)) & 0x0F0F0F0F; x = x + (x >> 8); x = x + (x >> 16); return x & 0x0000003F; } ***/ // 64 bit java version of the C function from above x = x - ((Number.URShift(x, 1)) & 0x5555555555555555L); x = (x & 0x3333333333333333L) + ((Number.URShift(x, 2)) & 0x3333333333333333L); x = (x + (Number.URShift(x, 4))) & 0x0F0F0F0F0F0F0F0FL; x = x + (Number.URShift(x, 8)); x = x + (Number.URShift(x, 16)); x = x + (Number.URShift(x, 32)); return ((int) x) & 0x7F; } /// Returns the number of set bits in an array of longs. public static long Pop_array(long[] A, int wordOffset, int numWords) { /* * Robert Harley and David Seal's bit counting algorithm, as documented * in the revisions of Hacker's Delight * http://www.hackersdelight.org/revisions.pdf * http://www.hackersdelight.org/HDcode/newCode/pop_arrayHS.cc * * This function was adapted to Java, and extended to use 64 bit words. * if only we had access to wider registers like SSE from java... * * This function can be transformed to compute the popcount of other functions * on bitsets via something like this: * sed 's/A\[\([^]]*\)\]/\(A[\1] \& B[\1]\)/g' * */ int n = wordOffset + numWords; long tot = 0, tot8 = 0; long ones = 0, twos = 0, fours = 0; int i; for (i = wordOffset; i <= n - 8; i += 8) { /* C macro from Hacker's Delight #define CSA(h,l, a,b,c) \ {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l = u ^ v;} ***/ long twosA, twosB, foursA, foursB, eights; // CSA(twosA, ones, ones, A[i], A[i+1]) { long b = A[i], c = A[i + 1]; long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, A[i+2], A[i+3]) { long b = A[i + 2], c = A[i + 3]; long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursA, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(twosA, ones, ones, A[i+4], A[i+5]) { long b = A[i + 4], c = A[i + 5]; long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, A[i+6], A[i+7]) { long b = A[i + 6], c = A[i + 7]; long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursB, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursB = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(eights, fours, fours, foursA, foursB) { long u = fours ^ foursA; eights = (fours & foursA) | (u & foursB); fours = u ^ foursB; } tot8 += Pop(eights); } // handle trailing words in a binary-search manner... // derived from the loop above by setting specific elements to 0. // the original method in Hackers Delight used a simple for loop: // for (i = i; i < n; i++) // Add in the last elements // tot = tot + pop(A[i]); if (i <= n - 4) { long twosA, twosB, foursA, eights; { long b = A[i], c = A[i + 1]; long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } { long b = A[i + 2], c = A[i + 3]; long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 4; } if (i <= n - 2) { long b = A[i], c = A[i + 1]; long u = ones ^ b; long twosA = (ones & b) | (u & c); ones = u ^ c; long foursA = twos & twosA; twos = twos ^ twosA; long eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 2; } if (i < n) { tot += Pop(A[i]); } tot += (Pop(fours) << 2) + (Pop(twos) << 1) + Pop(ones) + (tot8 << 3); return tot; } /// Returns the popcount or cardinality of the two sets after an intersection. /// Neither array is modified. /// public static long Pop_intersect(long[] A, long[] B, int wordOffset, int numWords) { // generated from pop_array via sed 's/A\[\([^]]*\)\]/\(A[\1] \& B[\1]\)/g' int n = wordOffset + numWords; long tot = 0, tot8 = 0; long ones = 0, twos = 0, fours = 0; int i; for (i = wordOffset; i <= n - 8; i += 8) { long twosA, twosB, foursA, foursB, eights; // CSA(twosA, ones, ones, (A[i] & B[i]), (A[i+1] & B[i+1])) { long b = (A[i] & B[i]), c = (A[i + 1] & B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+2] & B[i+2]), (A[i+3] & B[i+3])) { long b = (A[i + 2] & B[i + 2]), c = (A[i + 3] & B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursA, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(twosA, ones, ones, (A[i+4] & B[i+4]), (A[i+5] & B[i+5])) { long b = (A[i + 4] & B[i + 4]), c = (A[i + 5] & B[i + 5]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+6] & B[i+6]), (A[i+7] & B[i+7])) { long b = (A[i + 6] & B[i + 6]), c = (A[i + 7] & B[i + 7]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursB, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursB = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(eights, fours, fours, foursA, foursB) { long u = fours ^ foursA; eights = (fours & foursA) | (u & foursB); fours = u ^ foursB; } tot8 += Pop(eights); } if (i <= n - 4) { long twosA, twosB, foursA, eights; { long b = (A[i] & B[i]), c = (A[i + 1] & B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } { long b = (A[i + 2] & B[i + 2]), c = (A[i + 3] & B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 4; } if (i <= n - 2) { long b = (A[i] & B[i]), c = (A[i + 1] & B[i + 1]); long u = ones ^ b; long twosA = (ones & b) | (u & c); ones = u ^ c; long foursA = twos & twosA; twos = twos ^ twosA; long eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 2; } if (i < n) { tot += Pop((A[i] & B[i])); } tot += (Pop(fours) << 2) + (Pop(twos) << 1) + Pop(ones) + (tot8 << 3); return tot; } /// Returns the popcount or cardinality of the union of two sets. /// Neither array is modified. /// public static long Pop_union(long[] A, long[] B, int wordOffset, int numWords) { // generated from pop_array via sed 's/A\[\([^]]*\)\]/\(A[\1] \| B[\1]\)/g' int n = wordOffset + numWords; long tot = 0, tot8 = 0; long ones = 0, twos = 0, fours = 0; int i; for (i = wordOffset; i <= n - 8; i += 8) { /* C macro from Hacker's Delight #define CSA(h,l, a,b,c) \ {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l = u ^ v;} ***/ long twosA, twosB, foursA, foursB, eights; // CSA(twosA, ones, ones, (A[i] | B[i]), (A[i+1] | B[i+1])) { long b = (A[i] | B[i]), c = (A[i + 1] | B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+2] | B[i+2]), (A[i+3] | B[i+3])) { long b = (A[i + 2] | B[i + 2]), c = (A[i + 3] | B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursA, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(twosA, ones, ones, (A[i+4] | B[i+4]), (A[i+5] | B[i+5])) { long b = (A[i + 4] | B[i + 4]), c = (A[i + 5] | B[i + 5]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+6] | B[i+6]), (A[i+7] | B[i+7])) { long b = (A[i + 6] | B[i + 6]), c = (A[i + 7] | B[i + 7]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursB, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursB = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(eights, fours, fours, foursA, foursB) { long u = fours ^ foursA; eights = (fours & foursA) | (u & foursB); fours = u ^ foursB; } tot8 += Pop(eights); } if (i <= n - 4) { long twosA, twosB, foursA, eights; { long b = (A[i] | B[i]), c = (A[i + 1] | B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } { long b = (A[i + 2] | B[i + 2]), c = (A[i + 3] | B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 4; } if (i <= n - 2) { long b = (A[i] | B[i]), c = (A[i + 1] | B[i + 1]); long u = ones ^ b; long twosA = (ones & b) | (u & c); ones = u ^ c; long foursA = twos & twosA; twos = twos ^ twosA; long eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 2; } if (i < n) { tot += Pop((A[i] | B[i])); } tot += (Pop(fours) << 2) + (Pop(twos) << 1) + Pop(ones) + (tot8 << 3); return tot; } /// Returns the popcount or cardinality of A & ~B /// Neither array is modified. /// public static long Pop_andnot(long[] A, long[] B, int wordOffset, int numWords) { // generated from pop_array via sed 's/A\[\([^]]*\)\]/\(A[\1] \& ~B[\1]\)/g' int n = wordOffset + numWords; long tot = 0, tot8 = 0; long ones = 0, twos = 0, fours = 0; int i; for (i = wordOffset; i <= n - 8; i += 8) { /* C macro from Hacker's Delight #define CSA(h,l, a,b,c) \ {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l = u ^ v;} ***/ long twosA, twosB, foursA, foursB, eights; // CSA(twosA, ones, ones, (A[i] & ~B[i]), (A[i+1] & ~B[i+1])) { long b = (A[i] & ~ B[i]), c = (A[i + 1] & ~ B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+2] & ~B[i+2]), (A[i+3] & ~B[i+3])) { long b = (A[i + 2] & ~ B[i + 2]), c = (A[i + 3] & ~ B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursA, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(twosA, ones, ones, (A[i+4] & ~B[i+4]), (A[i+5] & ~B[i+5])) { long b = (A[i + 4] & ~ B[i + 4]), c = (A[i + 5] & ~ B[i + 5]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+6] & ~B[i+6]), (A[i+7] & ~B[i+7])) { long b = (A[i + 6] & ~ B[i + 6]), c = (A[i + 7] & ~ B[i + 7]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursB, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursB = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(eights, fours, fours, foursA, foursB) { long u = fours ^ foursA; eights = (fours & foursA) | (u & foursB); fours = u ^ foursB; } tot8 += Pop(eights); } if (i <= n - 4) { long twosA, twosB, foursA, eights; { long b = (A[i] & ~ B[i]), c = (A[i + 1] & ~ B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } { long b = (A[i + 2] & ~ B[i + 2]), c = (A[i + 3] & ~ B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 4; } if (i <= n - 2) { long b = (A[i] & ~ B[i]), c = (A[i + 1] & ~ B[i + 1]); long u = ones ^ b; long twosA = (ones & b) | (u & c); ones = u ^ c; long foursA = twos & twosA; twos = twos ^ twosA; long eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 2; } if (i < n) { tot += Pop((A[i] & ~ B[i])); } tot += (Pop(fours) << 2) + (Pop(twos) << 1) + Pop(ones) + (tot8 << 3); return tot; } public static long Pop_xor(long[] A, long[] B, int wordOffset, int numWords) { int n = wordOffset + numWords; long tot = 0, tot8 = 0; long ones = 0, twos = 0, fours = 0; int i; for (i = wordOffset; i <= n - 8; i += 8) { /* C macro from Hacker's Delight #define CSA(h,l, a,b,c) \ {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l = u ^ v;} ***/ long twosA, twosB, foursA, foursB, eights; // CSA(twosA, ones, ones, (A[i] ^ B[i]), (A[i+1] ^ B[i+1])) { long b = (A[i] ^ B[i]), c = (A[i + 1] ^ B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+2] ^ B[i+2]), (A[i+3] ^ B[i+3])) { long b = (A[i + 2] ^ B[i + 2]), c = (A[i + 3] ^ B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursA, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(twosA, ones, ones, (A[i+4] ^ B[i+4]), (A[i+5] ^ B[i+5])) { long b = (A[i + 4] ^ B[i + 4]), c = (A[i + 5] ^ B[i + 5]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } // CSA(twosB, ones, ones, (A[i+6] ^ B[i+6]), (A[i+7] ^ B[i+7])) { long b = (A[i + 6] ^ B[i + 6]), c = (A[i + 7] ^ B[i + 7]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } //CSA(foursB, twos, twos, twosA, twosB) { long u = twos ^ twosA; foursB = (twos & twosA) | (u & twosB); twos = u ^ twosB; } //CSA(eights, fours, fours, foursA, foursB) { long u = fours ^ foursA; eights = (fours & foursA) | (u & foursB); fours = u ^ foursB; } tot8 += Pop(eights); } if (i <= n - 4) { long twosA, twosB, foursA, eights; { long b = (A[i] ^ B[i]), c = (A[i + 1] ^ B[i + 1]); long u = ones ^ b; twosA = (ones & b) | (u & c); ones = u ^ c; } { long b = (A[i + 2] ^ B[i + 2]), c = (A[i + 3] ^ B[i + 3]); long u = ones ^ b; twosB = (ones & b) | (u & c); ones = u ^ c; } { long u = twos ^ twosA; foursA = (twos & twosA) | (u & twosB); twos = u ^ twosB; } eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 4; } if (i <= n - 2) { long b = (A[i] ^ B[i]), c = (A[i + 1] ^ B[i + 1]); long u = ones ^ b; long twosA = (ones & b) | (u & c); ones = u ^ c; long foursA = twos & twosA; twos = twos ^ twosA; long eights = fours & foursA; fours = fours ^ foursA; tot8 += Pop(eights); i += 2; } if (i < n) { tot += Pop((A[i] ^ B[i])); } tot += (Pop(fours) << 2) + (Pop(twos) << 1) + Pop(ones) + (tot8 << 3); return tot; } /* python code to generate ntzTable def ntz(val): if val==0: return 8 i=0 while (val&0x01)==0: i = i+1 val >>= 1 return i print ','.join([ str(ntz(i)) for i in range(256) ]) ***/ /// table of number of trailing zeros in a byte // public static readonly byte[] ntzTable = new byte[] { 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; /// Returns number of trailing zeros in a 64 bit long value. public static int Ntz(long val) { // A full binary search to determine the low byte was slower than // a linear search for nextSetBit(). This is most likely because // the implementation of nextSetBit() shifts bits to the right, increasing // the probability that the first non-zero byte is in the rhs. // // This implementation does a single binary search at the top level only // so that all other bit shifting can be done on ints instead of longs to // remain friendly to 32 bit architectures. In addition, the case of a // non-zero first byte is checked for first because it is the most common // in dense bit arrays. int lower = (int) val; int lowByte = lower & 0xff; if (lowByte != 0) return ntzTable[lowByte]; if (lower != 0) { lowByte = (Number.URShift(lower, 8)) & 0xff; if (lowByte != 0) return ntzTable[lowByte] + 8; lowByte = (Number.URShift(lower, 16)) & 0xff; if (lowByte != 0) return ntzTable[lowByte] + 16; // no need to mask off low byte for the last byte in the 32 bit word // no need to check for zero on the last byte either. return ntzTable[Number.URShift(lower, 24)] + 24; } else { // grab upper 32 bits int upper = (int) (val >> 32); lowByte = upper & 0xff; if (lowByte != 0) return ntzTable[lowByte] + 32; lowByte = (Number.URShift(upper, 8)) & 0xff; if (lowByte != 0) return ntzTable[lowByte] + 40; lowByte = (Number.URShift(upper, 16)) & 0xff; if (lowByte != 0) return ntzTable[lowByte] + 48; // no need to mask off low byte for the last byte in the 32 bit word // no need to check for zero on the last byte either. return ntzTable[Number.URShift(upper, 24)] + 56; } } /// Returns number of trailing zeros in a 32 bit int value. public static int Ntz(int val) { // This implementation does a single binary search at the top level only. // In addition, the case of a non-zero first byte is checked for first // because it is the most common in dense bit arrays. int lowByte = val & 0xff; if (lowByte != 0) return ntzTable[lowByte]; lowByte = (Number.URShift(val, 8)) & 0xff; if (lowByte != 0) return ntzTable[lowByte] + 8; lowByte = (Number.URShift(val, 16)) & 0xff; if (lowByte != 0) return ntzTable[lowByte] + 16; // no need to mask off low byte for the last byte. // no need to check for zero on the last byte either. return ntzTable[Number.URShift(val, 24)] + 24; } /// returns 0 based index of first set bit /// (only works for x!=0) ///
This is an alternate implementation of ntz() ///
public static int Ntz2(long x) { int n = 0; int y = (int) x; if (y == 0) { n += 32; y = (int) (Number.URShift(x, 32)); } // the only 64 bit shift necessary if ((y & 0x0000FFFF) == 0) { n += 16; y = Number.URShift(y, 16); } if ((y & 0x000000FF) == 0) { n += 8; y = Number.URShift(y, 8); } return (ntzTable[y & 0xff]) + n; } /// returns 0 based index of first set bit ///
This is an alternate implementation of ntz() ///
public static int Ntz3(long x) { // another implementation taken from Hackers Delight, extended to 64 bits // and converted to Java. // Many 32 bit ntz algorithms are at http://www.hackersdelight.org/HDcode/ntz.cc int n = 1; // do the first step as a long, all others as ints. int y = (int) x; if (y == 0) { n += 32; y = (int) (Number.URShift(x, 32)); } if ((y & 0x0000FFFF) == 0) { n += 16; y = Number.URShift(y, 16); } if ((y & 0x000000FF) == 0) { n += 8; y = Number.URShift(y, 8); } if ((y & 0x0000000F) == 0) { n += 4; y = Number.URShift(y, 4); } if ((y & 0x00000003) == 0) { n += 2; y = Number.URShift(y, 2); } return n - (y & 1); } /// returns true if v is a power of two or zero public static bool IsPowerOfTwo(int v) { return ((v & (v - 1)) == 0); } /// returns true if v is a power of two or zero public static bool IsPowerOfTwo(long v) { return ((v & (v - 1)) == 0); } /// returns the next highest power of two, or the current value if it's already a power of two or zero public static int NextHighestPowerOfTwo(int v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } /// returns the next highest power of two, or the current value if it's already a power of two or zero public static long NextHighestPowerOfTwo(long v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; v++; return v; } } }