Lucene.Net
3.0.3
Lucene.Net is a .NET port of the Java Lucene Indexing Library
Main Page
Packages
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Properties
contrib
Analyzers
Compound
Hyphenation
TernaryTree.cs
Go to the documentation of this file.
1
/*
2
* Licensed to the Apache Software Foundation (ASF) under one or more
3
* contributor license agreements. See the NOTICE file distributed with
4
* this work for additional information regarding copyright ownership.
5
* The ASF licenses this file to You under the Apache License, Version 2.0
6
* (the "License"); you may not use this file except in compliance with
7
* the License. You may obtain a copy of the License at
8
*
9
* http://www.apache.org/licenses/LICENSE-2.0
10
*
11
* Unless required by applicable law or agreed to in writing, software
12
* distributed under the License is distributed on an "AS IS" BASIS,
13
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
* See the License for the specific language governing permissions and
15
* limitations under the License.
16
*/
17
18
//using System;
19
//using System.Collections;
20
//using System.Text;
21
22
//namespace Lucene.Net.Analysis.Compound.Hyphenation
23
//{
24
// /*
25
// * <h2>Ternary Search Tree.</h2>
26
// *
27
// * <p>
28
// * A ternary search tree is a hybrid between a binary tree and a digital search
29
// * tree (trie). Keys are limited to strings. A data value of type char is stored
30
// * in each leaf node. It can be used as an index (or pointer) to the data.
31
// * Branches that only contain one key are compressed to one node by storing a
32
// * pointer to the trailer substring of the key. This class is intended to serve
33
// * as base class or helper class to implement Dictionary collections or the
34
// * like. Ternary trees have some nice properties as the following: the tree can
35
// * be traversed in sorted order, partial matches (wildcard) can be implemented,
36
// * retrieval of all keys within a given distance from the target, etc. The
37
// * storage requirements are higher than a binary tree but a lot less than a
38
// * trie. Performance is comparable with a hash table, sometimes it outperforms a
39
// * hash function (most of the time can determine a miss faster than a hash).
40
// * </p>
41
// *
42
// * <p>
43
// * The main purpose of this java port is to serve as a base for implementing
44
// * TeX's hyphenation algorithm (see The TeXBook, appendix H). Each language
45
// * requires from 5000 to 15000 hyphenation patterns which will be keys in this
46
// * tree. The strings patterns are usually small (from 2 to 5 characters), but
47
// * each char in the tree is stored in a node. Thus memory usage is the main
48
// * concern. We will sacrifice 'elegance' to keep memory requirements to the
49
// * minimum. Using java's char type as pointer (yes, I know pointer it is a
50
// * forbidden word in java) we can keep the size of the node to be just 8 bytes
51
// * (3 pointers and the data char). This gives room for about 65000 nodes. In my
52
// * tests the english patterns took 7694 nodes and the german patterns 10055
53
// * nodes, so I think we are safe.
54
// * </p>
55
// *
56
// * <p>
57
// * All said, this is a map with strings as keys and char as value. Pretty
58
// * limited!. It can be extended to a general map by using the string
59
// * representation of an object and using the char value as an index to an array
60
// * that contains the object values.
61
// * </p>
62
// *
63
// * This class has been taken from the Apache FOP project (http://xmlgraphics.apache.org/fop/). They have been slightly modified.
64
// */
65
// [Serializable]
66
// public class TernaryTree : ICloneable
67
// {
68
69
// /*
70
// * We use 4 arrays to represent a node. I guess I should have created a proper
71
// * node class, but somehow Knuth's pascal code made me forget we now have a
72
// * portable language with virtual memory management and automatic garbage
73
// * collection! And now is kind of late, furthermore, if it ain't broken, don't
74
// * fix it.
75
// */
76
77
// /*
78
// * Pointer to low branch and to rest of the key when it is stored directly in
79
// * this node, we don't have unions in java!
80
// */
81
// protected char[] lo;
82
83
// /*
84
// * Pointer to high branch.
85
// */
86
// protected char[] hi;
87
88
// /*
89
// * Pointer to equal branch and to data when this node is a string terminator.
90
// */
91
// protected char[] eq;
92
93
// /*
94
// * <P>
95
// * The character stored in this node: splitchar. Two special values are
96
// * reserved:
97
// * </P>
98
// * <ul>
99
// * <li>0x0000 as string terminator</li>
100
// * <li>0xFFFF to indicate that the branch starting at this node is compressed</li>
101
// * </ul>
102
// * <p>
103
// * This shouldn't be a problem if we give the usual semantics to strings since
104
// * 0xFFFF is guaranteed not to be an Unicode character.
105
// * </p>
106
// */
107
// protected char[] sc;
108
109
// /*
110
// * This vector holds the trailing of the keys when the branch is compressed.
111
// */
112
// protected CharVector kv;
113
114
// protected char root;
115
116
// protected char freenode;
117
118
// protected int length; // number of items in tree
119
120
// protected static readonly int BLOCK_SIZE = 2048; // allocation size for arrays
121
122
// private TernaryTree()
123
// {
124
// Init();
125
// }
126
127
// protected void Init()
128
// {
129
// root = (char)0;
130
// freenode = (char)1;
131
// length = 0;
132
// lo = new char[BLOCK_SIZE];
133
// hi = new char[BLOCK_SIZE];
134
// eq = new char[BLOCK_SIZE];
135
// sc = new char[BLOCK_SIZE];
136
// kv = new CharVector();
137
// }
138
139
// /*
140
// * Branches are initially compressed, needing one node per key plus the size
141
// * of the string key. They are decompressed as needed when another key with
142
// * same prefix is inserted. This saves a lot of space, specially for long
143
// * keys.
144
// */
145
// public void insert(String key, char val)
146
// {
147
// // make sure we have enough room in the arrays
148
// int len = key.Length + 1; // maximum number of nodes that may be generated
149
// if (freenode + len > eq.Length)
150
// {
151
// redimNodeArrays(eq.Length + BLOCK_SIZE);
152
// }
153
// char[] strkey = new char[len--];
154
// key.GetChars(0, len, strkey, 0);
155
// strkey[len] = (char)0;
156
// root = insert(root, strkey, 0, val);
157
// }
158
159
// public void insert(char[] key, int start, char val)
160
// {
161
// int len = strlen(key) + 1;
162
// if (freenode + len > eq.Length)
163
// {
164
// redimNodeArrays(eq.Length + BLOCK_SIZE);
165
// }
166
// root = insert(root, key, start, val);
167
// }
168
169
// /*
170
// * The actual insertion function, recursive version.
171
// */
172
// private char insert(char p, char[] key, int start, char val)
173
// {
174
// int len = strlen(key, start);
175
// if (p == 0)
176
// {
177
// // this means there is no branch, this node will start a new branch.
178
// // Instead of doing that, we store the key somewhere else and create
179
// // only one node with a pointer to the key
180
// p = freenode++;
181
// eq[p] = val; // holds data
182
// length++;
183
// hi[p] = (char)0;
184
// if (len > 0)
185
// {
186
// sc[p] = (char)0xFFFF; // indicates branch is compressed
187
// lo[p] = (char)kv.Alloc(len + 1); // use 'lo' to hold pointer to key
188
// strcpy(kv.GetArray(), lo[p], key, start);
189
// }
190
// else
191
// {
192
// sc[p] = (char)0;
193
// lo[p] = (char)0;
194
// }
195
// return p;
196
// }
197
198
// if (sc[p] == 0xFFFF)
199
// {
200
// // branch is compressed: need to decompress
201
// // this will generate garbage in the external key array
202
// // but we can do some garbage collection later
203
// char pp = freenode++;
204
// lo[pp] = lo[p]; // previous pointer to key
205
// eq[pp] = eq[p]; // previous pointer to data
206
// lo[p] = (char)0;
207
// if (len > 0)
208
// {
209
// sc[p] = kv.Get(lo[pp]);
210
// eq[p] = pp;
211
// lo[pp]++;
212
// if (kv.Get(lo[pp]) == 0)
213
// {
214
// // key completly decompressed leaving garbage in key array
215
// lo[pp] = (char)0;
216
// sc[pp] = (char)0;
217
// hi[pp] = (char)0;
218
// }
219
// else
220
// {
221
// // we only got first char of key, rest is still there
222
// sc[pp] = (char)0xFFFF;
223
// }
224
// }
225
// else
226
// {
227
// // In this case we can save a node by swapping the new node
228
// // with the compressed node
229
// sc[pp] = (char)0xFFFF;
230
// hi[p] = pp;
231
// sc[p] = (char)0;
232
// eq[p] = val;
233
// length++;
234
// return p;
235
// }
236
// }
237
// char s = key[start];
238
// if (s < sc[p])
239
// {
240
// lo[p] = insert(lo[p], key, start, val);
241
// }
242
// else if (s == sc[p])
243
// {
244
// if (s != 0)
245
// {
246
// eq[p] = insert(eq[p], key, start + 1, val);
247
// }
248
// else
249
// {
250
// // key already in tree, overwrite data
251
// eq[p] = val;
252
// }
253
// }
254
// else
255
// {
256
// hi[p] = insert(hi[p], key, start, val);
257
// }
258
// return p;
259
// }
260
261
// /*
262
// * Compares 2 null terminated char arrays
263
// */
264
// public static int strcmp(char[] a, int startA, char[] b, int startB)
265
// {
266
// for (; a[startA] == b[startB]; startA++, startB++)
267
// {
268
// if (a[startA] == 0)
269
// {
270
// return 0;
271
// }
272
// }
273
// return a[startA] - b[startB];
274
// }
275
276
// /*
277
// * Compares a string with null terminated char array
278
// */
279
// public static int strcmp(String str, char[] a, int start)
280
// {
281
// int i, d, len = str.Length;
282
// for (i = 0; i < len; i++)
283
// {
284
// d = (int)str[i] - a[start + i];
285
// if (d != 0)
286
// {
287
// return d;
288
// }
289
// if (a[start + i] == 0)
290
// {
291
// return d;
292
// }
293
// }
294
// if (a[start + i] != 0)
295
// {
296
// return (int)-a[start + i];
297
// }
298
// return 0;
299
300
// }
301
302
// public static void strcpy(char[] dst, int di, char[] src, int si)
303
// {
304
// while (src[si] != 0)
305
// {
306
// dst[di++] = src[si++];
307
// }
308
// dst[di] = (char)0;
309
// }
310
311
// public static int strlen(char[] a, int start)
312
// {
313
// int len = 0;
314
// for (int i = start; i < a.Length && a[i] != 0; i++)
315
// {
316
// len++;
317
// }
318
// return len;
319
// }
320
321
// public static int strlen(char[] a)
322
// {
323
// return strlen(a, 0);
324
// }
325
326
// public int find(String key)
327
// {
328
// int len = key.Length;
329
// char[] strkey = new char[len + 1];
330
// key.GetChars(0, len, strkey, 0);
331
// strkey[len] = (char)0;
332
333
// return find(strkey, 0);
334
// }
335
336
// public int find(char[] key, int start)
337
// {
338
// int d;
339
// char p = root;
340
// int i = start;
341
// char c;
342
343
// while (p != 0)
344
// {
345
// if (sc[p] == 0xFFFF)
346
// {
347
// if (strcmp(key, i, kv.GetArray(), lo[p]) == 0)
348
// {
349
// return eq[p];
350
// }
351
// else
352
// {
353
// return -1;
354
// }
355
// }
356
// c = key[i];
357
// d = c - sc[p];
358
// if (d == 0)
359
// {
360
// if (c == 0)
361
// {
362
// return eq[p];
363
// }
364
// i++;
365
// p = eq[p];
366
// }
367
// else if (d < 0)
368
// {
369
// p = lo[p];
370
// }
371
// else
372
// {
373
// p = hi[p];
374
// }
375
// }
376
// return -1;
377
// }
378
379
// public bool knows(String key)
380
// {
381
// return (find(key) >= 0);
382
// }
383
384
// // redimension the arrays
385
// private void redimNodeArrays(int newsize)
386
// {
387
// int len = newsize < lo.Length ? newsize : lo.Length;
388
// char[] na = new char[newsize];
389
// Array.Copy(lo, 0, na, 0, len);
390
// lo = na;
391
// na = new char[newsize];
392
// Array.Copy(hi, 0, na, 0, len);
393
// hi = na;
394
// na = new char[newsize];
395
// Array.Copy(eq, 0, na, 0, len);
396
// eq = na;
397
// na = new char[newsize];
398
// Array.Copy(sc, 0, na, 0, len);
399
// sc = na;
400
// }
401
402
// public int size()
403
// {
404
// return length;
405
// }
406
407
// public Object clone()
408
// {
409
// TernaryTree t = new TernaryTree();
410
// t.lo = (char[])this.lo.Clone();
411
// t.hi = (char[])this.hi.Clone();
412
// t.eq = (char[])this.eq.Clone();
413
// t.sc = (char[])this.sc.Clone();
414
// t.kv = (CharVector)this.kv.Clone();
415
// t.root = this.root;
416
// t.freenode = this.freenode;
417
// t.length = this.length;
418
419
// return t;
420
// }
421
422
// /*
423
// * Recursively insert the median first and then the median of the lower and
424
// * upper halves, and so on in order to get a balanced tree. The array of keys
425
// * is assumed to be sorted in ascending order.
426
// */
427
// protected void insertBalanced(String[] k, char[] v, int offset, int n)
428
// {
429
// int m;
430
// if (n < 1)
431
// {
432
// return;
433
// }
434
// m = n >> 1;
435
436
// insert(k[m + offset], v[m + offset]);
437
// insertBalanced(k, v, offset, m);
438
439
// insertBalanced(k, v, offset + m + 1, n - m - 1);
440
// }
441
442
// /*
443
// * Balance the tree for best search performance
444
// */
445
// public void balance()
446
// {
447
// // System.out.print("Before root splitchar = ");
448
// // System.out.println(sc[root]);
449
450
// int i = 0, n = length;
451
// String[] k = new String[n];
452
// char[] v = new char[n];
453
// Iterator iter = new Iterator();
454
// while (iter.HasMoreElements())
455
// {
456
// v[i] = iter.getValue();
457
// k[i++] = (String)iter.nextElement();
458
// }
459
// Init();
460
// insertBalanced(k, v, 0, n);
461
462
// // With uniform letter distribution sc[root] should be around 'm'
463
// // System.out.print("After root splitchar = ");
464
// // System.out.println(sc[root]);
465
// }
466
467
// /*
468
// * Each node stores a character (splitchar) which is part of some key(s). In a
469
// * compressed branch (one that only contain a single string key) the trailer
470
// * of the key which is not already in nodes is stored externally in the kv
471
// * array. As items are inserted, key substrings decrease. Some substrings may
472
// * completely disappear when the whole branch is totally decompressed. The
473
// * tree is traversed to find the key substrings actually used. In addition,
474
// * duplicate substrings are removed using a map (implemented with a
475
// * TernaryTree!).
476
// *
477
// */
478
// public void trimToSize()
479
// {
480
// // first balance the tree for best performance
481
// balance();
482
483
// // redimension the node arrays
484
// redimNodeArrays(freenode);
485
486
// // ok, compact kv array
487
// CharVector kx = new CharVector();
488
// kx.Alloc(1);
489
// TernaryTree map = new TernaryTree();
490
// compact(kx, map, root);
491
// kv = kx;
492
// kv.TrimToSize();
493
// }
494
495
// private void compact(CharVector kx, TernaryTree map, char p)
496
// {
497
// int k;
498
// if (p == 0)
499
// {
500
// return;
501
// }
502
// if (sc[p] == 0xFFFF)
503
// {
504
// k = map.find(kv.GetArray(), lo[p]);
505
// if (k < 0)
506
// {
507
// k = kx.Alloc(strlen(kv.GetArray(), lo[p]) + 1);
508
// strcpy(kx.GetArray(), k, kv.GetArray(), lo[p]);
509
// map.insert(kx.GetArray(), k, (char)k);
510
// }
511
// lo[p] = (char)k;
512
// }
513
// else
514
// {
515
// compact(kx, map, lo[p]);
516
// if (sc[p] != 0)
517
// {
518
// compact(kx, map, eq[p]);
519
// }
520
// compact(kx, map, hi[p]);
521
// }
522
// }
523
524
// public IEnumerator keys()
525
// {
526
// return new Iterator();
527
// }
528
529
// public class Iterator : IEnumerator
530
// {
531
532
// /*
533
// * current node index
534
// */
535
// int cur;
536
537
// /*
538
// * current key
539
// */
540
// String curkey;
541
542
// private class Item : ICloneable
543
// {
544
// char parent;
545
546
// char child;
547
548
// public Item()
549
// {
550
// parent = (char)0;
551
// child = (char)0;
552
// }
553
554
// public Item(char p, char c)
555
// {
556
// parent = p;
557
// child = c;
558
// }
559
560
// public Object Clone()
561
// {
562
// return new Item(parent, child);
563
// }
564
565
// }
566
567
// /*
568
// * Node stack
569
// */
570
// Stack ns;
571
572
// /*
573
// * key stack implemented with a StringBuilder
574
// */
575
// StringBuilder ks;
576
577
// public Iterator()
578
// {
579
// cur = -1;
580
// ns = new Stack();
581
// ks = new StringBuilder();
582
// rewind();
583
// }
584
585
// public void rewind()
586
// {
587
// ns.Clear();
588
// ks.SetLength(0);
589
// cur = root;
590
// Run();
591
// }
592
593
// public Object nextElement()
594
// {
595
// String res = curkey;
596
// cur = up();
597
// Run();
598
// return res;
599
// }
600
601
// public char getValue()
602
// {
603
// if (cur >= 0)
604
// {
605
// return eq[cur];
606
// }
607
// return 0;
608
// }
609
610
// public bool hasMoreElements()
611
// {
612
// return (cur != -1);
613
// }
614
615
// /*
616
// * traverse upwards
617
// */
618
// private int up()
619
// {
620
// Item i = new Item();
621
// int res = 0;
622
623
// if (ns.Empty())
624
// {
625
// return -1;
626
// }
627
628
// if (cur != 0 && sc[cur] == 0)
629
// {
630
// return lo[cur];
631
// }
632
633
// bool climb = true;
634
635
// while (climb)
636
// {
637
// i = (Item)ns.Pop();
638
// i.child++;
639
// switch (i.child)
640
// {
641
// case 1:
642
// if (sc[i.parent] != 0)
643
// {
644
// res = eq[i.parent];
645
// ns.Push(i.Clone());
646
// ks.Append(sc[i.parent]);
647
// }
648
// else
649
// {
650
// i.child++;
651
// ns.Push(i.Clone());
652
// res = hi[i.parent];
653
// }
654
// climb = false;
655
// break;
656
657
// case 2:
658
// res = hi[i.parent];
659
// ns.Push(i.Clone());
660
// if (ks.Length() > 0)
661
// {
662
// ks.SetLength(ks.Length() - 1); // pop
663
// }
664
// climb = false;
665
// break;
666
667
// default:
668
// if (ns.Clear())
669
// {
670
// return -1;
671
// }
672
// climb = true;
673
// break;
674
// }
675
// }
676
// return res;
677
// }
678
679
// /*
680
// * traverse the tree to find next key
681
// */
682
// private int Run()
683
// {
684
// if (cur == -1)
685
// {
686
// return -1;
687
// }
688
689
// bool leaf = false;
690
// while (true)
691
// {
692
// // first go down on low branch until leaf or compressed branch
693
// while (cur != 0)
694
// {
695
// if (sc[cur] == 0xFFFF)
696
// {
697
// leaf = true;
698
// break;
699
// }
700
// ns.Push(new Item((char)cur, '\u0000'));
701
// if (sc[cur] == 0)
702
// {
703
// leaf = true;
704
// break;
705
// }
706
// cur = lo[cur];
707
// }
708
// if (leaf)
709
// {
710
// break;
711
// }
712
// // nothing found, go up one node and try again
713
// cur = up();
714
// if (cur == -1)
715
// {
716
// return -1;
717
// }
718
// }
719
// // The current node should be a data node and
720
// // the key should be in the key stack (at least partially)
721
// StringBuilder buf = new StringBuilder(ks.ToString());
722
// if (sc[cur] == 0xFFFF)
723
// {
724
// int p = lo[cur];
725
// while (kv.Get(p) != 0)
726
// {
727
// buf.Append(kv.Get(p++));
728
// }
729
// }
730
// curkey = buf.ToString();
731
// return 0;
732
// }
733
734
// }
735
736
// public void PrintStats()
737
// {
738
// Console.WriteLine("Number of keys = " + length);
739
// Console.WriteLine("Node count = " + freenode);
740
// // System.out.println("Array length = " + Integer.toString(eq.length));
741
// Console.WriteLine("Key Array length = " + kv.Length());
742
743
// /*
744
// * for(int i=0; i<kv.length(); i++) if ( kv.get(i) != 0 )
745
// * System.out.print(kv.get(i)); else System.out.println("");
746
// * System.out.println("Keys:"); for(Enumeration enum = keys();
747
// * enum.hasMoreElements(); ) System.out.println(enum.nextElement());
748
// */
749
750
// }
751
752
// public static void Main(String[] args)
753
// {
754
// TernaryTree tt = new TernaryTree();
755
// tt.insert("Carlos", 'C');
756
// tt.insert("Car", 'r');
757
// tt.insert("palos", 'l');
758
// tt.insert("pa", 'p');
759
// tt.trimToSize();
760
// Console.WriteLine((char)tt.find("Car"));
761
// Console.WriteLine((char)tt.find("Carlos"));
762
// Console.WriteLine((char)tt.find("alto"));
763
// tt.PrintStats();
764
// }
765
// }
766
//}
Generated on Thu Jan 3 2013 02:12:42 for Lucene.Net by
1.8.3