/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using Lucene.Net.Support;
using DocIdSet = Lucene.Net.Search.DocIdSet;
using DocIdSetIterator = Lucene.Net.Search.DocIdSetIterator;
namespace Lucene.Net.Util
{
/// An "open" BitSet implementation that allows direct access to the array of words
/// storing the bits.
///
/// Unlike java.util.bitset, the fact that bits are packed into an array of longs
/// is part of the interface. This allows efficient implementation of other algorithms
/// by someone other than the author. It also allows one to efficiently implement
/// alternate serialization or interchange formats.
///
/// OpenBitSet is faster than java.util.BitSet in most operations
/// and *much* faster at calculating cardinality of sets and results of set operations.
/// It can also handle sets of larger cardinality (up to 64 * 2**32-1)
///
/// The goals of OpenBitSet are the fastest implementation possible, and
/// maximum code reuse. Extra safety and encapsulation
/// may always be built on top, but if that's built in, the cost can never be removed (and
/// hence people re-implement their own version in order to get better performance).
/// If you want a "safe", totally encapsulated (and slower and limited) BitSet
/// class, use java.util.BitSet.
///
/// Performance Results
///
/// Test system: Pentium 4, Sun Java 1.5_06 -server -Xbatch -Xmx64M
///
BitSet size = 1,000,000
///
Results are java.util.BitSet time divided by OpenBitSet time.
///
///
/// | cardinality | intersect_count | union | nextSetBit | get | iterator |
///
///
/// 50% full | 3.36 | 3.96 | 1.44 | 1.46 | 1.99 | 1.58 |
///
///
/// 1% full | 3.31 | 3.90 | | 1.04 | | 0.99 |
///
///
///
/// Test system: AMD Opteron, 64 bit linux, Sun Java 1.5_06 -server -Xbatch -Xmx64M
///
BitSet size = 1,000,000
///
Results are java.util.BitSet time divided by OpenBitSet time.
///
///
/// | cardinality | intersect_count | union | nextSetBit | get | iterator |
///
///
/// 50% full | 2.50 | 3.50 | 1.00 | 1.03 | 1.12 | 1.25 |
///
///
/// 1% full | 2.51 | 3.49 | | 1.00 | | 1.02 |
///
///
///
/// $Id$
///
[Serializable]
public class OpenBitSet:DocIdSet, System.ICloneable
{
protected internal long[] internalbits;
protected internal int wlen; // number of words (elements) used in the array
/// Constructs an OpenBitSet large enough to hold numBits.
///
///
///
///
public OpenBitSet(long numBits)
{
internalbits = new long[Bits2words(numBits)];
wlen = internalbits.Length;
}
public OpenBitSet():this(64)
{
}
/// Constructs an OpenBitSet from an existing long[].
///
/// The first 64 bits are in long[0],
/// with bit index 0 at the least significant bit, and bit index 63 at the most significant.
/// Given a bit index,
/// the word containing it is long[index/64], and it is at bit number index%64 within that word.
///
/// numWords are the number of elements in the array that contain
/// set bits (non-zero longs).
/// numWords should be <= bits.length, and
/// any existing words in the array at position >= numWords should be zero.
///
///
public OpenBitSet(long[] bits, int numWords)
{
this.internalbits = bits;
this.wlen = numWords;
}
public override DocIdSetIterator Iterator()
{
return new OpenBitSetIterator(internalbits, wlen);
}
/// This DocIdSet implementation is cacheable.
public override bool IsCacheable
{
get { return true; }
}
/// Returns the current capacity in bits (1 greater than the index of the last bit)
public virtual long Capacity()
{
return internalbits.Length << 6;
}
/// Returns the current capacity of this set. Included for
/// compatibility. This is *not* equal to
///
public virtual long Size()
{
return Capacity();
}
/// Returns true if there are no set bits
public virtual bool IsEmpty()
{
return Cardinality() == 0;
}
/// Expert: Gets or sets the long[] storing the bits
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance", "CA1819:PropertiesShouldNotReturnArrays")]
public virtual long[] Bits
{
set { this.internalbits = value; }
get { return internalbits; }
}
/// Expert: gets or sets the number of longs in the array that are in use
public virtual int NumWords
{
get { return wlen; }
set { this.wlen = value; }
}
/// Returns true or false for the specified bit index.
public virtual bool Get(int index)
{
int i = index >> 6; // div 64
// signed shift will keep a negative index and force an
// array-index-out-of-bounds-exception, removing the need for an explicit check.
if (i >= internalbits.Length)
return false;
int bit = index & 0x3f; // mod 64
long bitmask = 1L << bit;
return (internalbits[i] & bitmask) != 0;
}
/// Returns true or false for the specified bit index.
/// The index should be less than the OpenBitSet size
///
public virtual bool FastGet(int index)
{
int i = index >> 6; // div 64
// signed shift will keep a negative index and force an
// array-index-out-of-bounds-exception, removing the need for an explicit check.
int bit = index & 0x3f; // mod 64
long bitmask = 1L << bit;
return (internalbits[i] & bitmask) != 0;
}
/// Returns true or false for the specified bit index
public virtual bool Get(long index)
{
int i = (int) (index >> 6); // div 64
if (i >= internalbits.Length)
return false;
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
return (internalbits[i] & bitmask) != 0;
}
/// Returns true or false for the specified bit index.
/// The index should be less than the OpenBitSet size.
///
public virtual bool FastGet(long index)
{
int i = (int) (index >> 6); // div 64
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
return (internalbits[i] & bitmask) != 0;
}
/*
// alternate implementation of get()
public boolean get1(int index) {
int i = index >> 6; // div 64
int bit = index & 0x3f; // mod 64
return ((bits[i]>>>bit) & 0x01) != 0;
// this does a long shift and a bittest (on x86) vs
// a long shift, and a long AND, (the test for zero is prob a no-op)
// testing on a P4 indicates this is slower than (bits[i] & bitmask) != 0;
}
*/
/// returns 1 if the bit is set, 0 if not.
/// The index should be less than the OpenBitSet size
///
public virtual int GetBit(int index)
{
int i = index >> 6; // div 64
int bit = index & 0x3f; // mod 64
return ((int )((ulong) (internalbits[i]) >> bit)) & 0x01;
}
/*
public boolean get2(int index) {
int word = index >> 6; // div 64
int bit = index & 0x0000003f; // mod 64
return (bits[word] << bit) < 0; // hmmm, this would work if bit order were reversed
// we could right shift and check for parity bit, if it was available to us.
}
*/
/// sets a bit, expanding the set size if necessary
public virtual void Set(long index)
{
int wordNum = ExpandingWordNum(index);
int bit = (int) index & 0x3f;
long bitmask = 1L << bit;
internalbits[wordNum] |= bitmask;
}
/// Sets the bit at the specified index.
/// The index should be less than the OpenBitSet size.
///
public virtual void FastSet(int index)
{
int wordNum = index >> 6; // div 64
int bit = index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] |= bitmask;
}
/// Sets the bit at the specified index.
/// The index should be less than the OpenBitSet size.
///
public virtual void FastSet(long index)
{
int wordNum = (int) (index >> 6);
int bit = (int) index & 0x3f;
long bitmask = 1L << bit;
internalbits[wordNum] |= bitmask;
}
/// Sets a range of bits, expanding the set size if necessary
///
///
/// lower index
///
/// one-past the last bit to set
///
public virtual void Set(long startIndex, long endIndex)
{
if (endIndex <= startIndex)
return ;
int startWord = (int) (startIndex >> 6);
// since endIndex is one past the end, this is index of the last
// word to be changed.
int endWord = ExpandingWordNum(endIndex - 1);
long startmask = - 1L << (int) startIndex;
long endmask = (long) (0xffffffffffffffffUL >> (int) - endIndex); // 64-(endIndex&0x3f) is the same as -endIndex due to wrap
if (startWord == endWord)
{
internalbits[startWord] |= (startmask & endmask);
return ;
}
internalbits[startWord] |= startmask;
for (int i = startWord + 1; i < endWord; i++)
internalbits[i] = -1L;
internalbits[endWord] |= endmask;
}
protected internal virtual int ExpandingWordNum(long index)
{
int wordNum = (int) (index >> 6);
if (wordNum >= wlen)
{
EnsureCapacity(index + 1);
wlen = wordNum + 1;
}
return wordNum;
}
/// clears a bit.
/// The index should be less than the OpenBitSet size.
///
public virtual void FastClear(int index)
{
int wordNum = index >> 6;
int bit = index & 0x03f;
long bitmask = 1L << bit;
internalbits[wordNum] &= ~ bitmask;
// hmmm, it takes one more instruction to clear than it does to set... any
// way to work around this? If there were only 63 bits per word, we could
// use a right shift of 10111111...111 in binary to position the 0 in the
// correct place (using sign extension).
// Could also use Long.rotateRight() or rotateLeft() *if* they were converted
// by the JVM into a native instruction.
// bits[word] &= Long.rotateLeft(0xfffffffe,bit);
}
/// clears a bit.
/// The index should be less than the OpenBitSet size.
///
public virtual void FastClear(long index)
{
int wordNum = (int) (index >> 6); // div 64
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] &= ~ bitmask;
}
/// clears a bit, allowing access beyond the current set size without changing the size.
public virtual void Clear(long index)
{
int wordNum = (int) (index >> 6); // div 64
if (wordNum >= wlen)
return ;
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] &= ~ bitmask;
}
/// Clears a range of bits. Clearing past the end does not change the size of the set.
///
///
/// lower index
///
/// one-past the last bit to clear
///
public virtual void Clear(int startIndex, int endIndex)
{
if (endIndex <= startIndex)
return ;
int startWord = (startIndex >> 6);
if (startWord >= wlen)
return ;
// since endIndex is one past the end, this is index of the last
// word to be changed.
int endWord = ((endIndex - 1) >> 6);
long startmask = - 1L << startIndex;
long endmask = (long) (0xffffffffffffffffUL >> - endIndex); // 64-(endIndex&0x3f) is the same as -endIndex due to wrap
// invert masks since we are clearing
startmask = ~ startmask;
endmask = ~ endmask;
if (startWord == endWord)
{
internalbits[startWord] &= (startmask | endmask);
return ;
}
internalbits[startWord] &= startmask;
int middle = System.Math.Min(wlen, endWord);
for (int i = startWord + 1; i < middle; i++)
internalbits[i] = 0L;
if (endWord < wlen)
{
internalbits[endWord] &= endmask;
}
}
/// Clears a range of bits. Clearing past the end does not change the size of the set.
///
///
/// lower index
///
/// one-past the last bit to clear
///
public virtual void Clear(long startIndex, long endIndex)
{
if (endIndex <= startIndex)
return ;
int startWord = (int) (startIndex >> 6);
if (startWord >= wlen)
return ;
// since endIndex is one past the end, this is index of the last
// word to be changed.
int endWord = (int) ((endIndex - 1) >> 6);
long startmask = - 1L << (int) startIndex;
long endmask = (long) (0xffffffffffffffffUL >> (int) - endIndex); // 64-(endIndex&0x3f) is the same as -endIndex due to wrap
// invert masks since we are clearing
startmask = ~ startmask;
endmask = ~ endmask;
if (startWord == endWord)
{
internalbits[startWord] &= (startmask | endmask);
return ;
}
internalbits[startWord] &= startmask;
int middle = System.Math.Min(wlen, endWord);
for (int i = startWord + 1; i < middle; i++)
internalbits[i] = 0L;
if (endWord < wlen)
{
internalbits[endWord] &= endmask;
}
}
/// Sets a bit and returns the previous value.
/// The index should be less than the OpenBitSet size.
///
public virtual bool GetAndSet(int index)
{
int wordNum = index >> 6; // div 64
int bit = index & 0x3f; // mod 64
long bitmask = 1L << bit;
bool val = (internalbits[wordNum] & bitmask) != 0;
internalbits[wordNum] |= bitmask;
return val;
}
/// Sets a bit and returns the previous value.
/// The index should be less than the OpenBitSet size.
///
public virtual bool GetAndSet(long index)
{
int wordNum = (int) (index >> 6); // div 64
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
bool val = (internalbits[wordNum] & bitmask) != 0;
internalbits[wordNum] |= bitmask;
return val;
}
/// flips a bit.
/// The index should be less than the OpenBitSet size.
///
public virtual void FastFlip(int index)
{
int wordNum = index >> 6; // div 64
int bit = index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] ^= bitmask;
}
/// flips a bit.
/// The index should be less than the OpenBitSet size.
///
public virtual void FastFlip(long index)
{
int wordNum = (int) (index >> 6); // div 64
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] ^= bitmask;
}
/// flips a bit, expanding the set size if necessary
public virtual void Flip(long index)
{
int wordNum = ExpandingWordNum(index);
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] ^= bitmask;
}
/// flips a bit and returns the resulting bit value.
/// The index should be less than the OpenBitSet size.
///
public virtual bool FlipAndGet(int index)
{
int wordNum = index >> 6; // div 64
int bit = index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] ^= bitmask;
return (internalbits[wordNum] & bitmask) != 0;
}
/// flips a bit and returns the resulting bit value.
/// The index should be less than the OpenBitSet size.
///
public virtual bool FlipAndGet(long index)
{
int wordNum = (int) (index >> 6); // div 64
int bit = (int) index & 0x3f; // mod 64
long bitmask = 1L << bit;
internalbits[wordNum] ^= bitmask;
return (internalbits[wordNum] & bitmask) != 0;
}
/// Flips a range of bits, expanding the set size if necessary
///
///
/// lower index
///
/// one-past the last bit to flip
///
public virtual void Flip(long startIndex, long endIndex)
{
if (endIndex <= startIndex)
return ;
int startWord = (int) (startIndex >> 6);
// since endIndex is one past the end, this is index of the last
// word to be changed.
int endWord = ExpandingWordNum(endIndex - 1);
/* Grrr, java shifting wraps around so -1L>>>64 == -1
* for that reason, make sure not to use endmask if the bits to flip will
* be zero in the last word (redefine endWord to be the last changed...)
long startmask = -1L << (startIndex & 0x3f); // example: 11111...111000
long endmask = -1L >>> (64-(endIndex & 0x3f)); // example: 00111...111111
***/
long startmask = - 1L << (int) startIndex;
long endmask = (long) (0xffffffffffffffffUL >> (int) - endIndex); // 64-(endIndex&0x3f) is the same as -endIndex due to wrap
if (startWord == endWord)
{
internalbits[startWord] ^= (startmask & endmask);
return ;
}
internalbits[startWord] ^= startmask;
for (int i = startWord + 1; i < endWord; i++)
{
internalbits[i] = ~ internalbits[i];
}
internalbits[endWord] ^= endmask;
}
/*
public static int pop(long v0, long v1, long v2, long v3) {
// derived from pop_array by setting last four elems to 0.
// exchanges one pop() call for 10 elementary operations
// saving about 7 instructions... is there a better way?
long twosA=v0 & v1;
long ones=v0^v1;
long u2=ones^v2;
long twosB =(ones&v2)|(u2&v3);
ones=u2^v3;
long fours=(twosA&twosB);
long twos=twosA^twosB;
return (pop(fours)<<2)
+ (pop(twos)<<1)
+ pop(ones);
}
*/
/// the number of set bits
///
public virtual long Cardinality()
{
return BitUtil.Pop_array(internalbits, 0, wlen);
}
/// Returns the popcount or cardinality of the intersection of the two sets.
/// Neither set is modified.
///
public static long IntersectionCount(OpenBitSet a, OpenBitSet b)
{
return BitUtil.Pop_intersect(a.internalbits, b.internalbits, 0, System.Math.Min(a.wlen, b.wlen));
}
/// Returns the popcount or cardinality of the union of the two sets.
/// Neither set is modified.
///
public static long UnionCount(OpenBitSet a, OpenBitSet b)
{
long tot = BitUtil.Pop_union(a.internalbits, b.internalbits, 0, System.Math.Min(a.wlen, b.wlen));
if (a.wlen < b.wlen)
{
tot += BitUtil.Pop_array(b.internalbits, a.wlen, b.wlen - a.wlen);
}
else if (a.wlen > b.wlen)
{
tot += BitUtil.Pop_array(a.internalbits, b.wlen, a.wlen - b.wlen);
}
return tot;
}
/// Returns the popcount or cardinality of "a and not b"
/// or "intersection(a, not(b))".
/// Neither set is modified.
///
public static long AndNotCount(OpenBitSet a, OpenBitSet b)
{
long tot = BitUtil.Pop_andnot(a.internalbits, b.internalbits, 0, System.Math.Min(a.wlen, b.wlen));
if (a.wlen > b.wlen)
{
tot += BitUtil.Pop_array(a.internalbits, b.wlen, a.wlen - b.wlen);
}
return tot;
}
/// Returns the popcount or cardinality of the exclusive-or of the two sets.
/// Neither set is modified.
///
public static long XorCount(OpenBitSet a, OpenBitSet b)
{
long tot = BitUtil.Pop_xor(a.internalbits, b.internalbits, 0, System.Math.Min(a.wlen, b.wlen));
if (a.wlen < b.wlen)
{
tot += BitUtil.Pop_array(b.internalbits, a.wlen, b.wlen - a.wlen);
}
else if (a.wlen > b.wlen)
{
tot += BitUtil.Pop_array(a.internalbits, b.wlen, a.wlen - b.wlen);
}
return tot;
}
/// Returns the index of the first set bit starting at the index specified.
/// -1 is returned if there are no more set bits.
///
public virtual int NextSetBit(int index)
{
int i = index >> 6;
if (i >= wlen)
return - 1;
int subIndex = index & 0x3f; // index within the word
long word = internalbits[i] >> subIndex; // skip all the bits to the right of index
if (word != 0)
{
return (i << 6) + subIndex + BitUtil.Ntz(word);
}
while (++i < wlen)
{
word = internalbits[i];
if (word != 0)
return (i << 6) + BitUtil.Ntz(word);
}
return - 1;
}
/// Returns the index of the first set bit starting at the index specified.
/// -1 is returned if there are no more set bits.
///
public virtual long NextSetBit(long index)
{
int i = (int) (index >> 6);
if (i >= wlen)
return - 1;
int subIndex = (int) index & 0x3f; // index within the word
long word = (long) ((ulong) internalbits[i] >> subIndex); // skip all the bits to the right of index
if (word != 0)
{
return (((long) i) << 6) + (subIndex + BitUtil.Ntz(word));
}
while (++i < wlen)
{
word = internalbits[i];
if (word != 0)
return (((long) i) << 6) + BitUtil.Ntz(word);
}
return - 1;
}
public virtual System.Object Clone()
{
try
{
OpenBitSet obs = new OpenBitSet((long[]) internalbits.Clone(), wlen);
//obs.bits = new long[obs.bits.Length];
//obs.bits.CopyTo(obs.bits, 0); // hopefully an array clone is as fast(er) than arraycopy
return obs;
}
catch (System.Exception e)
{
throw new System.SystemException(e.Message, e);
}
}
/// this = this AND other
public virtual void Intersect(OpenBitSet other)
{
int newLen = System.Math.Min(this.wlen, other.wlen);
long[] thisArr = this.internalbits;
long[] otherArr = other.internalbits;
// testing against zero can be more efficient
int pos = newLen;
while (--pos >= 0)
{
thisArr[pos] &= otherArr[pos];
}
if (this.wlen > newLen)
{
// fill zeros from the new shorter length to the old length
for (int i = newLen; i < this.wlen; i++)
internalbits[i] = 0L;
}
this.wlen = newLen;
}
/// this = this OR other
public virtual void Union(OpenBitSet other)
{
int newLen = System.Math.Max(wlen, other.wlen);
EnsureCapacityWords(newLen);
long[] thisArr = this.internalbits;
long[] otherArr = other.internalbits;
int pos = System.Math.Min(wlen, other.wlen);
while (--pos >= 0)
{
thisArr[pos] |= otherArr[pos];
}
if (this.wlen < newLen)
{
Array.Copy(otherArr, this.wlen, thisArr, this.wlen, newLen - this.wlen);
}
this.wlen = newLen;
}
/// Remove all elements set in other. this = this AND_NOT other
public virtual void Remove(OpenBitSet other)
{
int idx = System.Math.Min(wlen, other.wlen);
long[] thisArr = this.internalbits;
long[] otherArr = other.internalbits;
while (--idx >= 0)
{
thisArr[idx] &= ~ otherArr[idx];
}
}
/// this = this XOR other
public virtual void Xor(OpenBitSet other)
{
int newLen = System.Math.Max(wlen, other.wlen);
EnsureCapacityWords(newLen);
long[] thisArr = this.internalbits;
long[] otherArr = other.internalbits;
int pos = System.Math.Min(wlen, other.wlen);
while (--pos >= 0)
{
thisArr[pos] ^= otherArr[pos];
}
if (this.wlen < newLen)
{
Array.Copy(otherArr, this.wlen, thisArr, this.wlen, newLen - this.wlen);
}
this.wlen = newLen;
}
// some BitSet compatability methods
//* see */
public virtual void And(OpenBitSet other)
{
Intersect(other);
}
//* see */
public virtual void Or(OpenBitSet other)
{
Union(other);
}
//* see */
public virtual void AndNot(OpenBitSet other)
{
Remove(other);
}
/// returns true if the sets have any elements in common
public virtual bool Intersects(OpenBitSet other)
{
int pos = System.Math.Min(this.wlen, other.wlen);
long[] thisArr = this.internalbits;
long[] otherArr = other.internalbits;
while (--pos >= 0)
{
if ((thisArr[pos] & otherArr[pos]) != 0)
return true;
}
return false;
}
/// Expand the long[] with the size given as a number of words (64 bit longs).
/// getNumWords() is unchanged by this call.
///
public virtual void EnsureCapacityWords(int numWords)
{
if (internalbits.Length < numWords)
{
internalbits = ArrayUtil.Grow(internalbits, numWords);
}
}
/// Ensure that the long[] is big enough to hold numBits, expanding it if necessary.
/// getNumWords() is unchanged by this call.
///
public virtual void EnsureCapacity(long numBits)
{
EnsureCapacityWords(Bits2words(numBits));
}
/// Lowers numWords, the number of words in use,
/// by checking for trailing zero words.
///
public virtual void TrimTrailingZeros()
{
int idx = wlen - 1;
while (idx >= 0 && internalbits[idx] == 0)
idx--;
wlen = idx + 1;
}
/// returns the number of 64 bit words it would take to hold numBits
public static int Bits2words(long numBits)
{
return (int) ((((numBits - 1) >> 6)) + 1);
}
/// returns true if both sets have the same bits set
public override bool Equals(System.Object o)
{
if (this == o)
return true;
if (!(o is OpenBitSet))
return false;
OpenBitSet a;
OpenBitSet b = (OpenBitSet) o;
// make a the larger set.
if (b.wlen > this.wlen)
{
a = b; b = this;
}
else
{
a = this;
}
// check for any set bits out of the range of b
for (int i = a.wlen - 1; i >= b.wlen; i--)
{
if (a.internalbits[i] != 0)
return false;
}
for (int i = b.wlen - 1; i >= 0; i--)
{
if (a.internalbits[i] != b.internalbits[i])
return false;
}
return true;
}
public override int GetHashCode()
{
// Start with a zero hash and use a mix that results in zero if the input is zero.
// This effectively truncates trailing zeros without an explicit check.
long h = 0;
for (int i = internalbits.Length; --i >= 0; )
{
h ^= internalbits[i];
h = (h << 1) | (Number.URShift(h, 63)); // rotate left
}
// fold leftmost bits into right and add a constant to prevent
// empty sets from returning 0, which is too common.
return (int)(((h >> 32) ^ h) + 0x98761234);
}
}
}