
Apache Karaf in the enterprise

APACHECON North America Sept. 24-27, 2018

JB Onofré

jbonofre@apache.org

@jbonofre

1

Who am I ?

Jean-Baptiste Onofré <jbonofre@apache.org>

● Software Architect/Fellow at Talend
● Member of the Apache Software Foundation
● PMC member and committer for ~ 20 Apache projects (Karaf, Camel, ActiveMQ, Felix,

Aries, Beam, Incubator, …)

mailto:jbonofre@apache.org

Apache Karaf ?

● Application runtime
● Lightweight & modular
● Very customisable
● Several packaging (standalone, custom distribution, docker)
● Static (immutable) or dynamic (mutable) bootstrapping
● Executable on premise, on cloud (docker, cellar)
● Bunch of features and extensions (including Karaf subprojects)

Apache Karaf in the enterprise

Different perspectives and needs:

● Developers
○ Features
○ Easy & fun
○ Tools (debugging, profiling, …)

● DevOps
○ Packaging
○ Management (installing/updating containers, runtime, applications) & monitoring
○ Scaling
○ Integration in the ecosystem

● End users
○ Business ready tools
○ Insight in the business activity

Karaf for the devs

● Business applications
● Programming models
● Packaging
● Specifications & features
● Tools (debug, watcher, …)
● Examples, documentation, karaf-boot
● Active user mailing list

Devs: business applications

● Backend, service/microservice approach
● Frontend
● IoT & Integration (with Apache Camel)

Devs: programming models

● WebApp/WAR
karaf@root()> feature:install war

karaf@root()> bundle:install -s webbundle:mvn:my/app/1.0/war?Web-ContextPath=my

● Spring (any version from 3 to 5)
karaf@root()> feature:install spring

karaf@root()> bundle:install -s wrap:mvn:my/app/1.0

● CDI (OpenWebBeans & Weld)
karaf@root()> feature:install pax-cdi-weld

karaf@root()> bundle:install -s wrap:mvn:my/app/1.0

● OSGi (pure & native)
karaf@root()> bundle:install -s mvn:my/bundle/1.0

● Blueprint (Aries & Gemini)
karaf@root()> feature:install aries-blueprint

karaf@root()> bundle:install -s mvn:my/bundle/1.0

● SCR
karaf@root()> feature:install scr

karaf@root()> bundle:install -s mvn:my/bundle/1.0

Devs: artifacts packaging

● Regular jar (wrapping)
karaf@root()> bundle:install -s wrap:mvn:my/app/1.0

● Regular war
karaf@root()> bundle:install -s webbundle:mvn:my/app/1.0/war?Web-ContextPath=my

● OSGi bundles
karaf@root()> bundle:install -s mvn:my/app/1.0

● Blueprint XML
karaf@root()> bundle:install -s blueprint:mvn:my/app/1.0/xml

● Features
karaf@root()> feature:repo-add mvn:my/app/1.0/xml/features

karaf@root()> feature:install my-feature

● KAR
karaf@root()> kar:install mvn:my/app/1.0/kar

● Custom artifacts (deployer and URL services)

Devs: specifications & features
● JNDI service (InitialContextFactory as service, names on services)

karaf@root()> feature:install jndi

● JDBC service (DataSource as service, pooling DBCP, C3P0, transx, narayana, ...)
karaf@root()> feature:install jdbc

● JMS service (ConnectionFactory as service, pooling DBCP, C3P0, transx, narayana, ...)
karaf@root()> feature:install jms

Possible to install ActiveMQ broker directly in Karaf
karaf@root()> feature:repo-add activemq

karaf@root()> feature:install activemq-broker

● JPA service (EntityManager as service, abstracting OpenJPA, Hibernate, EclipseLink)
karaf@root()> feature:install jpa

karaf@root()> feature:install openjpa

● JTA (TransactionManager as service, abstracting Narayana, …)
karaf@root()> feature:install transaction

● JMX (MBean whiteboard pattern or MBean services)
karaf@root()> feature:install management

● CDI (possible to use OSGi services as CDI injection)
● HTTP (HttpService service, servlet whiteboard pattern)
● JAXRS (CXF or Aries JAXRS whiteboard)
● JAXWS (CXF)
● Integration (Camel)

Devs:additional features & tooling

● Scheduler (executable runnable service or command as a cron)
karaf@root()> feature:install scheduler

● Instances (create/clone Karaf instances)
karaf@root()> instance:create myinstance

● Logging (abstract logging frameworks, centralized and dynamic configuration)
● Configuration (dynamic and centralized configuration)
● Hot deployment & deployer (extensible)
● Shell console (extensible)
● Maven plugin

○ Build and verify distribution
○ Run a distribution
○ Client and deploy on a running instance
○ Create docker image (WIP)

Devs: runtime tooling

● Remote debugging
bin/karaf debug

● Developer commands
karaf@root()> bundle:diag

karaf@root()> bundle:load-test

karaf@root()> bundle:tree-show

karaf@root()> system:framework -debug

...

● Artifacts watcher (automatically update SNAPSHOT)
karaf@root()> bundle:watch *

● Shell scripting
● Complete dump on demand (heapdump, threaddump, log, env, …)

karaf@root()> dev:dump-create

Devs: easy start and support

● Turnkey examples directly in the distribution
https://github.com/apache/karaf/tree/master/examples

● Very active community
● Commercial support available
● Towards karaf-boot (WIP) providing annotations

Karaf for DevOps

● Packaging, provisioning & custom distribution
● Docker (image & feature)
● Security (JAAS, Syncope)
● Cellar cluster and distributed configuration
● Decanter for monitoring & alerting
● Cave for artifacts repository
● Cave for farm deployer
● Administration over SSH
● Toolkit for administration like auto diagnostic and dump creation

DevOps: Packaging, provisioning,
custom distributions

● Mutable runtime provisioning options:
○ Hot deployment (deployer services)
○ Installing single artifact & bundle
○ Installing features
○ Installing KAR

● Immutable runtime provisioning options:
○ Static profile
○ Custom distribution (boot features, configuration; …)

● Hybrid runtime provisioning options:
○ Custom distribution
○ Update the custom distribution on the fly

DevOps: docker

● Create docker image with provided tool
vanilla: assembly/docker/build.sh --from-release --karaf-version 4.2.1 --image-name karaf
custom: assembly/docker/build.sh --from-local-dist --archive /path/mykaraf.tar.gz --image-name my-karaf

● docker feature to manipulate Docker daemon from Karaf
○ docker:search, docker:ps, docker:run, docker:pull, docker:push, docker:tag

● docker feature can create a Docker image using your running Karaf instance
karaf@root()> docker:provision mykaraf

● Karaf HTTP proxy service to proxy Docker container port in Karaf
karaf@root()> http:proxy-add /elasticsearch http://localhost:9200

● Official Apache Karaf Docker image (WIP)

DevOps: security

● Dynamic keystore loading
● Complete RBAC for commands, MBeans, services
● Auditing of all actions performed in Karaf
● JAAS Realms with dedicated commands
● Provided LoginModules
● Support Apache Syncope

DevOps: Karaf Cave

● Artifacts repository
○ Bundles Repository
○ Maven Repository
○ Docker hub (WIP)

● Easy to install
● Karaf Features Gateway
● Deployer to manage Karaf instances farm
● REST API

Karaf

Karaf

DevOps: Karaf Cave architecture

Repositories Features
Gateway Deployer

Karaf
KarafKaraf

Karaf Karaf

Karaf
Karaf

Karaf

mvn/OBR
resolution

resolve/download manage/provision

deploy/upload

DevOps: Karaf Cellar

● Clustering deployment solution
● Distributed configuration
● Distributed administration (bundles, features, …)
● Replication policies (no SPOF)
● Cluster HTTP Load balancing
● Cluster log service
● Distributed OSGi & Cluster RPC

Karaf CellarKaraf Cellar

DevOps: Karaf Cellar architecture

Distributed
&

Replicated
DataGrid

Cluster Event Handler

Cluster Service

Distributed
&

Replicated
DataGrid

Cluster Event Handler

Cluster Service

cluster events

sync

DevOps: management

● SSH
● Remote management (MBean server with RBAC)
● Remote debugging
● WebConsole

DevOps: Karaf Decanter (monitoring &
alerting)

● Multipurpose
○ Activity data collection (metrics, log, …)
○ Auditing
○ Alerting
○ BAM (business users)

● Collect data sent to a dispatcher
● Dispatch and check data (alerting)
● Append data to a backend
● Easy to install
● Dynamic
● Extensible

Collector

DevOps: Karaf Decanter architecture

Collector

Collector

Collector

Collector

Appender

Dispatcher / Checker

Collector

Alerter

harvest data
send data to backend

send alerts to backend

DevOps:Karaf Decanter
collectors/appenders/alerters

Collectors Appenders Alerters

Camel Camel Camel

Dropwizard Cassandra Email

EventAdmin Dropwizard Log

File, Log, Log4j Socket Elasticsearch … any appender

JDBC File, Log

JMS, MQTT, Kafka JDBC

JMX JMS, MQTT, Kafka, Redis

System MongoDB, OrientDB

REST, Socket REST, Socket

DevOps:Karaf Decanter

DevOps: cloud ready

● Docker support
● Apache jClouds features supporting several providers (blobstore service, …)
● Karaf Cellar supports jClouds and Kubernetes discovery
● Karaf Cellar is able to distribute applications and configuration on instances located on

premise or on cloud
● Karaf Cave Deployer with jClouds can provision instance on cloud providers (WIP)
● Karaf Cave Deployer with jClouds can provision applications and configurations on a

running Karaf instance on cloud (WIP)

DevOps: cloud management

● SSH/JMX to any cloud instance
● Interact with Docker directly from Karaf
● Use a local Karaf Cellar instance to manage remote cloud instances
● Karaf Decanter can monitor (harvesting JMX, gathering log, …) on premise or cloud

instances

Karaf for business/end users

Karaf provides solution customizable for business/end users

● Karaf Decanter as BAM solution (optionally with big data analytics)
● Karaf Vineyard as API Management solution

Business users: Karaf Vineyard (API
Management)

● API Management
● Gateway, dual API: REST & GraphQL
● Registry (resources, schema, policies)
● Policies (security, QoS, …)
● Discovery (OpenAPI, Swagger, GraphQL, …)

Business users: Karaf Vineyard
architecture

Registry (API, schema, policies)

Gateway (REST & GraphQL)

Discovery Plugin

Discovery Plugin

populate

bootstrap API resources
target endpoints, policies

reporting
metric

Karaf Decanter

Business users: Karaf Decanter as BAM

● Karaf Decanter can use custom data or log to follow business activity
● Easy way do business activity reporting and analytic
● Support alerting on business activity (fraud detection, …)

Karaf

Business users: Decanter with big data
analytics

● Karaf Decanter can collect any kind of data on the fly
● Appender can be used to send data to big data backend (Kafka, HDFS (WIP))
● Marshaller can be used to transform internal data Map as CSV
● Use to distributed execution engines on the collected data (Apache Beam, Apache

Spark, Apache Flink, …)

Collector Appender Kafka Beam

Karaf Community

● WELCOME to Karaf !
● We love contributions and ideas !
● Updated website
● Periodical release cycle (~ every 3 months)

Stories - Powered by Karaf

Apache

http://karaf.apache.org

GitHub mirrors:
https://github.com/apache/karaf
https://github.com/apache/karaf-cellar
https://github.com/apache/karaf-cave
https://github.com/apache/karaf-decanter
https://github.com/jbonofre/karaf-boot
https://github.com/jbonofre/karaf-vineyard

Mailing Lists:
users@karaf.apache.org
dev@karaf.apache.org

http://karaf.apache.org
https://github.com/apache/karaf
https://github.com/apache/karaf-cellar
https://github.com/apache/karaf-cave
https://github.com/apache/karaf-decanter
https://github.com/jbonofre/karaf-boot
https://github.com/jbonofre/karaf-vineyard
mailto:users@karaf.apache.org
mailto:dev@karaf.apache.org

