
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2011; 4:871–887

Published online 2 February 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.217

RESEARCH ARTICLE

Security enhancements for UDDI
Alexander J. O’Ree and Mohammed S. Obaidat*,†

Department of Computer Science and Software Engineering, Monmouth University, West Long Branch, NJ 07764, U.S.A.

ABSTRACT

The universal description, discovery, and integration (UDDI) OASIS standard, was designed for storing, publishing, and
advertising information about XML web services. Commonly used in service oriented architecture (SOA) infrastructures,
the security of UDDI is often overlooked. Embedded within the specification are “optional” security measures that are
commonly not implemented or enforced. In this paper we describe the UDDI security model, potential security related
concerns, and mitigation strategies. Preliminary performance evaluation results are presented to show the merits of our
proposed scheme. Finally, an example of the registry with additional security constraints is analyzed and evaluated for
performance. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS

security of web services; UDDI; service oriented architecture; ebXML; REST; service discovery

*Correspondence

Mohammed S. Obaidat, Department of Computer Science and Software Engineering, Monmouth University, West Long Branch, NJ
07764, U.S.A.
E-mails: obaidat@monmouth.edu,spyhunter99@gmail.com
†Fellow of IEEE and Fellow of SCS.

1. INTRODUCTION

Universal description, discovery, and integration (UDDI) is
one of the major extensible markup language (XML) web
service based standards for providing a number of different
functions related to the storing, retrieving and advertising of
information related to web services. The UDDI standard is a
set of web service description language (WSDL) files, XML
schema definition (XSD) files, and the associated docu-
mentation defining the behaviors, security mechanisms and
usage of the seven web service interfaces that define the
specification. Governed by organization for the advance-
ment of structured information standards (OASIS), UDDI
v3.0.2 currently enjoys wide adoption by many businesses
and organizations. Based on XML SOAP, the simple object
access protocol (SOAP) [1], the UDDI web service inter-
faces enable consumers to search for services by a number
of different methods, publish new services, and validate
custom extensions (technical models (tModels)) as well
as facilitates the federation of registry data by replica-
tion. There are many concepts, terms, specifications and
acronyms referred to in this document. The following sub-
sections describe some of the key areas of interest related
to UDDI and web services.

1.1. Web service

This work is strongly tied to web services and thus important
to properly define the term, web service. There are many
different definitions of both services in general and web
services. One author states: “Web services define a stan-
dardized mechanism to describe, locate, and communicate
with online applications. The Web services framework is
divided into three areas: communication protocols, service
descriptions, and service discovery” [2]. This definition is
accurate but leaves a bit of ambiguity. For the purposes
of this document, a “web service,” unless noted other-
wise, refers directly to XML services based on the SOAP
over the hypertext transfer protocol (HTTP) or HTTP-
secure (HTTPS) transport protocol [3]. Services can also
run on a variety of other transport protocols and were
specifically designed to be transport protocol independent.
These web services are considered distributed computing
and come in several different flavors and specifications,
thus the importance to properly define the term. Typi-
cally, a web service represents some kind of functional
portion of an application. Often, these services provide
indirect interfaces to databases or perform some kind of
task.

Copyright © 2011 John Wiley & Sons, Ltd. 871

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

1.2. Service oriented architecture (SOA)

SOA is an application and system development paradigm
that involves the use of interoperable, standards based,
language independent portions of functionality that are
exposed as distributable web services [4]. One of the pri-
mary goals is to reduce cost by reusing existing web services
and to decrease the time to market for new products and
applications. This increase in agility and decrease in devel-
opment time are two of the primary driving factors for
SOA adaptation. These web services create a network of
distributed XML applications [5]. SOA itself represents
a concept of design and development; however an SOA
Infrastructure is slightly different. An SOA Infrastructure
typically consists of various supporting services or capa-
bilities in order to facilitate these web services. Example
of capabilities may include security services, service reg-
istries, user directory services, and service management.
One of the more information capabilities of an SOA infras-
tructure is the ability to register, advertise, and discovery
web services via a service registry. This important corner-
stone of SOA is an enabler for service discovery.

1.3. Service discovery

The concept of service discovery is a very important step for
both services and service consumers in an SOA-based soft-
ware lifecycle. Service discovery is the ability or process
of finding information about a web service. This infor-
mation typically includes the interface description for the
service, its location, binding information, documentation,
and so on. This process can happen at design time of either
a service or a consumer and at run time when a consumer
actively discovers the location of the target service. Without
this important function, consumers of web services simply
would not know of the existence of a given web service or
have to rely on manual configuration of service consumers.
The discovery functionality is not unique to web services.
It functions similarly to the Domain Name System (DNS).
Computers use DNS to translate unique identifiers (domain
names) into an Internet Protocol (IP) address (location).

1.4. Service registries

The Service Registry is a core part of a SOA infrastructure.
This allows for a centralized or federate location for stor-
ing, categorizing, and advertising information about web
services. Another term commonly used to describe the ser-
vice registry is the “yellow pages.” As found in telephone
books, the yellow pages act as a registry of services that
business offer, as well as contact information and locations.
There are several standardized interfaces for service reg-
istries and several more unique interfaces that are discussed
further in this document.

1.5. Universal description discovery, and
integration (UDDI)

OASIS is a not-for-profit consortium that drives the devel-
opment, convergence and adoption of open standards for the
global information society. The consortium has worked on
countless XML based standards and many non-XML based
standards since its inception in 1993 [6]. The UDDI stan-
dard is an OASIS ratified standard that is widely adopted and
implemented both by commercial and open source products.

UDDI is used for storing and retrieving information about
web services and services. As of the time of this writing, the
current version, 3.0.2, of UDDI is in a state of “committee
draft.”

Figure 1 describes a few of the many cases of UDDI
including a developer looking for an appropriate service to
consume and a service consumer dynamically obtaining a
service’s location at run time. UDDI, SOAP, and WSDL are
commonly referred to as the corner stone of web services
and SOA architecture. UDDI has seven main interfaces or
Application Programming Interfaces (APIs) listed below in
Table I along with a brief description.

These APIs contain all of the necessary functions to
support a UDDI Service Registry along with a number of
additional options such as federation.

1.6. Service repositories

Registries are often coupled with service repositories to
provide for the storage of related documentation. A repos-
itory in general, is a storage place for online resources.
These resources may include everything from WSDL files
to source code to documentation. Virtually any kind of
file can be stored within a repository. Each file can be
categorized and associated with a particular user, project,
resource, or web service. Permissions and access control
can be enforced, and finally the resource or document can
be made external accessible via a simple uniform resource
locator (URL) in a browser or via a web service API.

One such repository standard is the Electronic Business
using eXtensible Markup Language (ebXML) Reg-
istry/Repository which is defined in the ebXML Registry
Information Model specification. This is discussed in fur-
ther detail in the next section.

1.7. Electronic business XML(ebXML)
services registry and repository

EbXML is an ISO 15000 standard set defining a number
of common characteristics for web services to follow in
order to guarantee interoperability based on SOAP XML
web services. By definition, it provides a number of dif-
ferent capabilities, including secure, reliable messaging,
interoperability, a business process language, and a service
registry and repository. EbXML started out as a joint project
between the United Nations Centre for Trade Facilitation

872 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

Figure 1. OASIS UDDI usage diagram [25].

and Electronic Business (UN/CEFACT) and OASIS [7].
One of the standards within ebXML is the registry and
repository. Often referred to as the ebXML RegRep, the
official name is the “ebXML Registry Information Model”
and the “ebXML Registry Services and Protocols.” Figure
2 depicts the overall feature set of the protocol. The ebXML
RegRep contains web service definitions and an information
data model for storing web service data.

EbXML-based services typically utilize a number of
WS-Security standards including security assertion markup
language (SAML) for message level security and HTTP
secure sockets layer (SSL) for encryption. These stan-
dardized services are unique by requiring a standardized
message body for all messages with the payload of the
message being transferred via an SOAP Attachment (SWA)
[8].

Table I. UDDI Interface APIs.

Inquiry---used for reading and searching for information in
the registry

Publishing---used for making changes within the registry,
update, add, delete

Security---used for issuing tokens for authentication
purposes

Custody Transfer---used for federated UDDI clusters
Replication---used for federated UDDI clusters
Subscription---used for subscribing to updates on UDDI

data elements
Value Set---used for validating custom tModels

The ebXML Registry Information Model is currently
at version 3.0.1. Dated 2007, it is still being revised and
expanded to support new protocols and standards, such as
the Web Ontology Language (OWL) and REpresentational
State Transfer (REST) [7].

1.8. Other repository standards and
specifications

OASIS has a new upcoming specification, the content man-
agement interoperability services (CMIS). CMIS is targeted
to provide greater interoperability and support for enterprise
content management (ECM) systems [9]. Since a service
repository could be implemented using a more generic
ECM, the CMIS specification is a promising way to provide
a standards-based approach. CMIS is still under develop-
ment but has already been announced by Microsoft to have

Figure 2. EBXML registry repository feature.

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 873
DOI: 10.1002/sec

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

direct support for their online collaborative web portal and
content management system, SharePoint 2010. This speci-
fication is not yet considered a standard.

1.9. Alternate service discovery approaches

There are several other approaches available for performing
the same function as a service registry without using SOAP,
UDDI, or ebXML. Two of them are REST and DNS.

REST is a software architecture style for creating web
services with minimal overhead without using SOAP. It
is based on the doctoral dissertation of Roy Fielding and
is not currently considered a standard [10]. REST primar-
ily utilizes straight XML over HTTP(S), utilizing HTTP
verbs such as GET or POST to describe the actions the
service performs. For example, an REST consumer would
use an HTTP GET message for obtaining information in
a read only fashion and use POST, DELETE, or PUT
for changing the state of the server. Integrity, encryption,
and authentication are all specifically handled by HTTP,
SSL, and HTTP based authentication mechanisms. It is
not protocol independent like SOAP. Both SOAP- and
ebXML-based services are transport protocol independent
and utilize XML-based standards for performing message
integrity, encryption, authentication, and so forth. SOAP
and ebXML only use POST HTTP messages for all trans-
actions, read or write.

As far as service discovery is concerned, there are a
few REST-based service registries in development such as
WS02, which is an open source project and an attempt at
creating a service registry and repository specification and
implementation [11]. REST is significantly different than
SOAP and is not a standard but an architectural style. It
is an important upcoming technology that should not be
ignored.

There is also relevant research into the area of using spe-
cialized DNS records, endpoint discovery (EPD) records,
to identify web service locations [12]. In this scenario, one
of the oldest and well-known infrastructures is reused in a
different way. The DNS provides translation to and from
domain names and IP addresses, as well as providing basic
information lookups and pointers. It was created in the early
1980s by the Internet Engineering Task Force (IEFT). This
research is significant; however, it does not address some of
the other more interesting areas of service discovery. These
areas include providing information about the classification,
categorization, documentation, security requirements, and
ownership of a service.

2. RELATED WORK AND
LITERATURE REVIEW

UDDIe is an extended registry that supports the notion of
“blue pages” to record user defined properties associated
with a service and to enable discovery of services based
on these. UDDIe enables a registry to be more dynamic,
by allowing services to hold a time lease, a time period
describing how long a service description should remain in

the registry [13]. The “blue pages” can be easily translated
into a folksonomy. A folksonomy, also referred to as social
tagging, is a commonly used method of categorizing items
on the web through the use of weighted keywords that are
supplied by end users. The concept is that the more users
that visit a particular web page, resource or in this case,
service descriptions, the higher the ranking for the page’s
content for a given set of related web pages or resources.
In an UDDI context, this can actually be used as a ranking
system for services.

Another interesting publication involves a new XML
markup language to aggregate search results from one
or more UDDI registry. The primary idea of Advanced
UDDI Search Engine (AUSE) is to aggregate search results
from different UDDI registries based on the USML (UDDI
Search Markup Language) request and its supporting intel-
ligent search facilities [14]. Upon further research, USML
is actually part of an IBM project called Business Explorer
for Web Services, BE4WS which provides a standardized
search interface for UDDI registries. UDDI only offers
searches of the local registry node. This can be expanded
however through the use of federation of multiple reg-
istries via UDDI’s replication APIs. In this scenario, all
federated registry entries are copied and synchronized from
remote registries to the local instance. Due to synchroniza-
tion schedules, the data available at the local UDDI node
may not always be up to date. The ability to use a real time
aggregated searches to remote registries is an important step
for expanding the search capabilities of the UDDI search
inquiry APIs.

In the commercial market place, SOA Governance is
one of the major buzz phrases. This means that through
the use of some tooling or products, rules can be enforced
for web services before making them publically or orga-
nizationally available. These rules can govern items such
as documentation, namespaces, performance requirements,
interface specifications, coding practices, approval work-
flows, etc. One group of researchers have investigated using
a customized UDDI Registry to perform these types of tasks
before publishing the entry by adding check-in and check-
out features to the registry. They also were able to mandate
testing scripts for both client and service in order to ver-
ify the functionality of the web service before adding it
to the registry for publication [15]. Individually, these bits
of functionality are common in many pieces of software
across a wide range of solution spaces such as unit testing,
but applied together, they can greatly enhance the integrity,
data quality, and the usefulness of a UDDI registry.

Web service management is a large problem space in
SOAs which contain all but a few commercial solutions
and even fewer open source solutions. Management in this
context includes the monitoring and measuring of the per-
formance of web services. This can also include tracking
exceptions or service faults and enforcing service level
agreements. The next logical question to answer regard-
ing web service management is, what to do with this data
and where should it be stored? One approach is to store this
information in a UDDI registry.

874 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

One method is to use the extensibility of UDDI tModels to
publish additional metadata into the registry. Metadata such
as usage statistics, performance metrics, and security poli-
cies (WS-Policies) are examples of this. In reference [16],
methods were proposed to enable metadata publishing into
UDDI through the use of extensions and lightweight client
side mechanisms. Additional metadata types mentioned in
the reference include availability, reliability, response times,
and exceptions.

The publishing of this additional data presents a few prob-
lems. The first is that since tModels are completely user
extendible and by definition, of type xs-string‡. This pre-
vents the ability for the UDDI consumer to make range
value based queries. For example, if a client performs an
EPD using UDDI and more than one relevant endpoint is
returned, a useful method to decide which endpoint to use
is to examine the metadata. Provided that performance met-
rics could be made available in UDDI on both endpoints,
the client can then choose the fastest or the more reliable
service to execute.

The second issue is that any UDDI consumer would have
to know about the specific tModel ahead of time and would
have customized code to match that particular tModel in
order to provide any additional post processing. The usage
of additional published performance data, although it could
be parsed and used programmatically, it is more likely to
be used in a non-programmatic fashion, such as an end user
being presented with the data and then selecting the target
endpoint.

This is a great capability, however programmatically
performing this task is going to be specific to each
implementation of UDDI and the corresponding tModels
describing the performance data which are vendor depen-
dent in some cases. Although several commercial products
have the capability to publish these metrics, they are not
standardized or published within similar tModel definitions.
A few standards exist for this type of data, such as Web Ser-
vice Distributed Management, WSDM. The third issue is
that in order for any of this to work properly, this configu-
ration would be specific to a particular implementation and
instance of a registry. This defeats the point of having a
standard.

With web services, the objective is to reuse web ser-
vices, sometimes even for unintended purposes. This can
be accomplished through using XML translations, ser-
vice orchestrations, or through workflows. Workflows
offer an interesting perspective on web services. One
or more web services, interactions with other compo-
nents, and human interaction can all take place within a
workflow. There are several workflow standards such as
OASIS’s Business Process Execution Language (BPEL)
and Wf-XML/ASAP. Wf-XML is an XML standard for
executing workflows created by the Workflow Manage-
ment Coalition and is an extension off of the OASIS

‡ In xs-string, xs stands for XML Schema, part of the official W3C
definition for XML Schema definitions

standard of ASAP, or Asynchronous Service Access
Protocol [17].

Often found is SOA infrastructures, a business process
or workflow is a combination or compilation of multiple
web services and supports direct human interaction, such
as decision making, approval process, etc. Business pro-
cesses, in the context of web services and workflows, often
directly mimic how the actual business operates such as
order processing, help desk ticketing systems, personnel
on boarding, etc. Depending on the execution environment,
these workflows can actually be exposed as web services
through an SOAP interface. Because of the additional com-
plexity involved with a composite business process service
or workflow, it is challenging to properly identify it within
a UDDI registry.

In reference [17], several other extensions to UDDI were
proposed, including the ability to represent domain depen-
dent or user defined relationships between model elements,
such as dependencies, functional relationships, delegation,
and other relationships between UDDI service entries. Web
services, due to their distributed nature, can often have com-
plex relationships and dependencies with other services.
This can create a house of cards in which when one par-
ticular service fails, many other services which depend on
it will also fail to operate. To make matters more difficult,
troubleshooting this complex arrangement of dependencies
can be very difficult unless proper documentation, man-
agement, and auditing of these dependencies are in effect.
This is an unfortunately consequence of any distributed plat-
form and thus highlights the importance of identifying these
complex relationships. An extended UDDI using tModels
or some other specification change would be able to store
this information and perhaps with the help of commercial
products, such as Amberpoint’s SOA Management System
(SMS), discovery the dependencies can happen automati-
cally at runtime and then the corresponding UDDI record
can be updated.

These relationships between services closely tie back to
the ideas of taxonomy, ontology, and folksonomy in which
categorization and classification are used to increase the
availability of data by grouping or linking similar items [18].
Folksonomy, also commonly referring to as social indexing
or tagging, is the process of adding tags to categorize content
by end users.

In the web service development world, it is common to
run into security related problems. There are so many stan-
dards for securing the message level security of an SOAP or
generic XML transaction that integrating a client and ser-
vice can be a challenging task. To make matters worse,
SOAP runtime environments often have different inter-
pretations of these standards, which can create additional
confusion. This security mismatch has been recognized and
a solution has been designed that may help alleviate this
problem. A negotiation protocol was designed for enabling
easier security protocol integration on the fly by enabling
both the client and service to adjust as necessary without
user intervention [19]. If implemented, this can help reduce
integration time and cost of using SOA and secured web

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 875
DOI: 10.1002/sec

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

Figure 3. Architecture for secure web service container.

services. In the standards world, however, there were
already a number of existing standards and specifications
that can be used to publish security related data for web ser-
vices. WS-MetadataExchange, WS-Policy both from W3C,
and WS-Discovery from Microsoft are three of the com-
monly supported specifications that are typically used at
development time. These protocols enable a semi automated
method to configure a web service client to conform to the
security protocols specified by the service’s requirements.
This research provides a new way to performing the same
task at runtime.

In a reference [20], a message level security framework
was proposed that utilizes a number of standards in order
to facilitate a secure message transaction with authorization
policies based on XACML, the eXtensible Access Control
Markup Language (XACML). The usage of open standards
to secure communication and perform access control is
an excellent use case for access control to services. The
example architecture is depicted in Figure 3.

In another related article, researchers created a Context-
Aware Security Policy, which when implemented, used
OWL and XACML based reasoning policies to control
access to UDDI resources [21].

There is no question that UDDI can be and should be
extended in order to expand the capabilities provided by the
specification and subsequent implementations. Many of the
noted features or extensions to UDDI could and should be
included directly within UDDI specification. The remainder
of this paper builds on a subset of these extensions.

3. UDDI ENDPOINT DISCOVERY
In terms of discovering the endpoint or access point to a
web service, UDDI offers this ability through a few meth-
ods in the Inquiry API. In order to obtain an access point
for a web service, an UDDI client must be executed via one
of the following methods: find binding, get bindingDetail,
and get serviceDetail. This is graphically depicted in
Figure 4. All of these require the client knowing a unique

Figure 4. Service EPD procedure.

identifier ahead of time. This identifier can also be discov-
ered via another Inquiry API such as find service. All of
these methods return a significant amount of data, most of
which is discarded during runtime discovery.

In many real world scenarios, UDDI is extended via the
tModel, a key, name, value triplet that can be associated
with a particular registry entry. The majority of these data
is returned.

Web service management is a large problem space in
SOAs, which contain all but a few commercial solutions
and even fewer open source solutions. Management in this
context includes the monitoring and measuring of per-
formance of web services including tracking exceptions
and enforcing service level agreements. The next logical
question to answer regarding web service management is,
what to do with this data and where should it be stored? One
approach is to store this information in an UDDI registry.

One valid use case of an UDDI registry is to use the
extensibility of tModels to publish additional metadata
into the registry. Metadata such as usage statistics, per-
formance metrics, and security policies (WS-Policies) are
prime examples. “UDDI enhancements for Dependabil-
ity” enables metadata publishing into UDDI through the

876 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

use of extensions and lightweight client side mechanisms
[16]. Additional metadata types mentioned in the research
includes availability, reliability, response times, and
exceptions.

The publishing of this additional data presents at least
three problems. The first problem is that since tModels are
completely user extendible and are yet by definition, of type
string, this prevents the ability for the UDDI consumer to
make range value-based queries. The second issue is that
any UDDI consumer would have to know about a specific
tModel and have customized code to match that particular
tModel in order to provide any additional postprocessing.
The usage of additional published data, although it could
be parsed and used programmatically, it is more likely to
be used in a nonprogrammatic fashion. For example, if a
client performs an EPD using UDDI and more than one
relevant endpoint is returned, a useful method to decide
which endpoint to use is to examine the metadata. Pro-
vided that performance metrics are available in UDDI on
both endpoints, the client can then choose the fastest or the
more reliable service to execute. This is a great capability;
however, programmatically performing this task is going
to be specific to each implementation of UDDI and the
corresponding tModels describing the performance data.
Although several commercial products have the capabil-
ity to publish these metrics, they are far some standardized
or published within similar tModel definitions. The third
issue is that in order for any of this to work properly,
this configuration would be specific to a particular imple-
mentation and instance of a registry. For example, several
commercial products offer the ability to publish metadata
in the form of tModels to an UDDI registry. One such
product is Layer7’s XML Networking Gateway, which pub-
lishes URLs to WS-Policy files associated with the service.
This aids in client side integration by providing security
requirements and related information. Another product is
Amberpoint’s SMS, which has the capability to monitor
the performance and throughput of web services. This data
can then be published into UDDI tModels and then associ-
ated with service’s record. Since tModels are defined only
as strings, clients wishing to make use of this data program-
matically will have to first obtain all records that need to be
compared, convert the string data into an appropriate data
type and then perform the comparison.

4. WEB SERVICE SECURITY AND
SERVICE DISCOVERY

Since UDDI is based on web service interfaces, web server
and web service security should be of concern, either when
developing or deploying an UDDI node. Web services are
based on XML messages and are typically sent over HTTP
transport protocol, although services can also communicate
over SMTP§ and JMS‖ These transactions are designed to go

§ Simple Mail Transfer Protocol.
‖ Java Messaging Service.

through network firewalls and often pass through intermedi-
ate devices such as XML translators or security appliances¶.
Securing the transactions of web services therefore must be
implemented via other mechanisms. There are a number
of identified security issues with web services as well as
key parameters that are often used to describe the security
profile of a web service. These security concerns can be
mitigated at the transport, message level, or a combination
of both.

• Confidentiality---can a third party read confidential
information as it is sent over the network?

• Integrity---has the inbound or outbound message been
modified in any way while in transit?

• Authenticity---could someone impersonate the con-
sumer or provider and send false information?

• Non-repudiation---can the consumer or provider deny
sending information?

• Replay attacks---can this message be captured by a third
party and resent in order to obtain the data?

• Authorization---does the requestor have permission to
use this service, method, or piece of data?

The majority of these security concerns can be addressed
through the use of standardized XML security protocols,
Public Key Infrastructure (PKI) certificates and HTTP
mechanisms. There are a large number of XML standards,
identity management protocols, and HTTP protocol adap-
tations that can be used to secure a web service. Since
UDDI is a set of web services, it is important to look at
the specification with security in mind.

The National Institute of Standards and Technology
(NIST) has recently published findings on web service secu-
rity and potential security vulnerabilities. It listed a great
number of potential areas of concern for web service secu-
rity and UDDI [22,23]. Even though UDDI is a set of web
service interfaces, it presents additional security concerns
that are only partially addressed within the specification and
accompanying documentation. The following sections will
detail some of the findings and present example mitigation
strategies. Some of these issues are common to just about
any piece of software, but many are not and are clearly web
service and UDDI specific.

Obaidat and Boudriga [24] emphasized the importance
of protecting service registries. The key points outlined
include strong user management with authentication and
authorization policies, auditing and log file protection,
denial of service protection, intrusion detection and finally
overall network protocol security. These parameters pro-
vided an excellent starting point for the remainder of this
discussion as it relates toward enhancing the security profile
of UDDI.

The sections that follow describe how each of these
security issues applies to the UDDI specification and how

¶ Example security appliances: IBM Datapower, Layer7’s XML Gate-
way.

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 877
DOI: 10.1002/sec

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

Table II. UDDI authentication message flow.

Actor Destination Credential Returns Recommended Protection

Client UDDI security API Username/password in SOAP:
envelope/body

Authentication token (string) SSL

Client UDDI inquiry/publish API Authentication token in SOAP:
envelope/body

Requested data None

UDDI Client None Replies with requested data None

the proposed modifications are applied on UDDI to help
mitigate the risks currently found within the specifica-
tion.

5. UDDI SECURITY MODEL

The current UDDI specification leaves it up to the imple-
menter of the registry to decide on which method or
methods to use for securing access to the registry. It does
not mandate any kind of authentication or authorization
on most interfaces. Several key areas of UDDI’s security
model are discussed in the following sections, includ-
ing authentication, authorization, and message transaction
protection.

5.1. Authentication

UDDI’s security model for authentication is via the optional
Security API. If a registry node supports authentication and
the Security API, then in order to access protected resources,
a client must first execute a request to the Security API’s
getAuthToken, passing it the username and “cred” as it
is referred to in the specification. The Security API then
returns an “authToken” which is then included with sub-
sequent callouts to the other UDDI APIs. An important
point is that the “authToken” is included in subsequent call-
outs directly within the SOAP message body of the other
APIs. The drawback to this is that it makes authentica-
tion very not modular or flexible. Each API and method
now needs to have authentication and authorization code
incorporated into it. Ironically, having the UDDI’s security
mechanisms written directly into the WSDL API, especially
as an optional API, is against many of the standards that
OASIS has produced, such as SAML, WS-UsernameToken,
etc. All of these authentication mechanisms are SOAP mes-
sage security headers and purposely cannot be placed within
the body of the SOAP message. Additionally, they all offer
additional protection such as XML signature or encryption
on sensitive data, such as a password. If the Security API
is configured for a non-encrypted channel such as HTTP,
both the username and password will be sent in clear text.

Table II depicts the message flow of an UDDI style mes-
sage transaction with authentication.

In reality, service and data access control mechanisms
are not difficult to implement or enforce. Many application

frameworks include this capability free of charge. There are
several standards that help define ways to do this, such as
SAML, SAML Protocol, and XACML.

The “cred” element for the Security API is supposed to be
some sort of credentials that only the user knows. The spec-
ification states that it really could be anything so long as it is
documented. According to the XSD for UDDI, it is of type
string. In practice, most UDDI implementations, specif-
ically jUDDI, Centrasite, Systinet, and OpenUDDI, use
username/password combination for authentication. The
UDDI specification states the security mechanisms pro-
vided can be extended through the use of the Security API
which is itself, an optional API. The specification explicitly
states that an implementer may extend this functionality. “A
node MAY provide an alternative mechanism for obtaining
authInfo elements” [25]. There is no further clarification on
this from the specification.

One interpretation would be to include the security token
as the “cred” element. This increases the difficulty level
significantly from an implementation perspective. A UDDI
implementer would have to reinvent the security architec-
ture, such as the SAML in order to put the identity markup
up in the body of the message. This goes directly against
the SAML standard of placing the SAML assertion markup
within the Security XML node of the SOAP message header
[26]. Another interpretation of this extension would be to
have a custom version of the Security API, which requires
an SAML or WS-UsernameToken for authentication, which
in turn is used to generate the “authToken”. For clarifica-
tion, the “authToken” is also of type string from the UDDI
XSD.

In contrast, ebXML Registry and Repository standard is
very clear on what is required and recommended. “A reg-
istry MUST enforce all Access Control Policies including
restriction on the READ action when processing a request
to the HTTP binding of a service interface” [7]. This partic-
ular specification is very security conscious and continues
further. “The Registry MUST be able to authenticate the
identity of the User associated with client requests in order
to perform authorization and access control and maintain
an Audit Trail of registry access” [7].

Additionally, the ebXML Registry provides direction for
specifying how users are authenticated and authorized. This
is accomplished via the OASIS standard, SAML. Several
usage scenarios are defined in Section 11.4 of the ebXML
RegRep specification. The advantage to using SAML comes
down to how the SOAP interfaces are implemented and

878 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

how they serialized on the wire in the SOAP message
header. SAML is a widely accepted and implemented
standard.

It is obvious that security enforcement within the UDDI
specification is open ended so that implementers are left
with designing their own approach. This means that creating
a matching UDDI consumer can be challenging considering
the potential for a variety of authentication mechanisms,
which must be specified within the functional code of both
the client and service because of the embedded security
elements. By standardizing on the functional interface of
the service and detaching the authentication mechanisms
from the interface, the security requirements can be added
or enforced after the fact with security handlers.

An example use case would be the usage of WS-
UsernameToken or WS-Trust SAML tokens#, which both
provide a secure authentication method within the secu-
rity header of the message. Both are well-known standards
and can interoperate over a large array of platforms and
applications.

5.2. Authorization

Authorization is another area of concern which asks the
question, “does this authenticated user have permission to
perform a given action on a specific item?” The UDDI spec-
ification leaves it up to the implementer to decide on what,
if anything should have access controls on it.

There is no clear guidance on enforcing access control or
obtaining user credentials aside from the generic authInfo
elements. Typically, when a web service is written, the API
is provided from a WSDL, file which explicitly defines the
message and data contracts for each operation. This turns
into code that implements the interface specifications as
defined with the WSDL and any other accompanying doc-
umentation and requirements. Once the functional portions
are completed, additional security handlers** are added to
the deployment. These security handlers provide a frame-
work for signing and verifying XML digital signatures and
encryption, enforcing access control, and a slew of other
functions that are not functionally specific to the service.
The handler approach normally does not modify the content
of the body of the XML message and only adds elements to
the security header section or provides additional cryptog-
raphy services, such as XML Encryption or XML Digital
Signatures. Since it is separate from the functional body of
the service interface, it enables the security framework to
be modular and easy to migrate from one security model
to the next. The security requirements can even be adver-
tised as metadata in the service’s WSDL and/or WS-Policy
attachment.

WS-UsernameToken is an OASIS specification for transmitting user-
names and encrypted passwords.
**The term “security handler” is often interchanged with enforcer,
behavior, or filter.

For comparison purposes, the ebXML Registry speci-
fication is much more specific about authorization. The
registry “. . . MUST perform authorization and subsequently
enforce access control rules based upon the authorization
decision. Authorization and access control is an operation
conducted by the registry that decides WHO can do WHAT
ACTION on WHICH RESOURCE” [8]. The ability to
apply and enforce a fine grained, role based, or attribute-
based access control mechanism to UDDI elements is
critical to maintaining information security. Without it,
potentially sensitive information about web services can
be divulged to unauthorized users. This includes locations,
owners, security mechanisms, etc. Furthermore, there are
several business scenarios in which a business entity would
only wish to share specific registry information with autho-
rized business partners [27]. In these cases, information
security is a fine grained access control mechanism referred
to as role-based access control (RBAC), in which group
membership is used to filter data based on XACML poli-
cies [28]. Access control can also be based off of a simple
list, attributes, group membership, and so on.

In a real world example, in the commercial UDDI imple-
mentation, HP SOA Systinet, automatically registers a large
number of internal services. In the version used for evalua-
tion, there was no authentication or authorization required
for the web user interface or for the Inquiry API, potentially
exposing these internal services to attack. This practice
should be avoided as potentially unsecured endpoints could
be advertised and therefore exploited [23].

5.3. Message and transport level security

The current UDDI standard recommends HTTP transport
for Inquiry and Value set APIs. The remainder of the APIs
are recommended for SSL but not required. Table III is an
excerpt from the UDDI specification.

6. UDDI THREATS

As architected and implemented with the recommended
security model, UDDI v3 still suffers from a number of
security vulnerabilities. The following describes some of
these problems and their potential impacts.

6.1. Registry endpoint replacement

UDDI is often considered the corner stone for SOA infras-
tructures. One of the most common use cases is runtime
service discovery. This process generally occurs when an
application or service requires something from another
downstream service and the location of this target web ser-
vice (TWS) is unknown. The application then attempts to
discover the TWS’s location by another web service callout
to an UDDI server. In this case, UDDI is being used as a
veritable phone book of web service information. This also

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 879
DOI: 10.1002/sec

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

Table III. UDDI v3 Recommend Security Model [25].

API set tModel Recommended
transport

Recommended
security mechanisms
integrity/confidentiality

Authentication

Inquiry uddi-org:inquiry v3 HTTP
Publication uddi-org:publication v3 HTTP SSL V3
Security uddi-org:security v3 HTTP SSL V3
Custody Transfer uddi-org:custody v3 HTTP SSL V3
Replication uddi-org:replication v3 HTTP SSL V3 Mutual authentication
Subscription uddi-org:subscription v3 uddi-

org:subscriptionListener v3
HTTP SSL V3

Value set uddi-org:valueSetValidation v3
uddi-
org:valueSetCaching v3

HTTP

As one can tell from this table, there is no explicit requirement or recommendation for message level protection other than the use of SSL on some of

the interfaces.

presents some unique security concerns that are either not
addressed or only partially addressed within the specifica-
tion.

If a web service consumer participates in service discov-
ery, in which the URL to the service is “discovered” at run
time by an additional web service call to a service registry,
there is the potential for registry endpoint replacement to
occur. This happens when a client requests a web service
endpoint from a registry and either a “man in the middle”
attack occurs or the registry is falsified (entirety or just a
specific data item). This attack returns a false URL end-
point to the service. The client, trusting that the registry has
returned a valid endpoint, then sends a request to a malicious
web service that records the inbound message. Potentially
sensitive information can be disclosed this way, including
the security profile of the actual service. The current UDDI
standard does not mandate or recommend the use of mes-
sage level XML digital signing on the message transaction
level. XML signing of specific registry elements is optional;
however this leads to an implementation related issue. The
validation of this signature is outside the scope of most web
service development and runtime frameworks; thus it is up
to the UDDI client to implement, validate, and optionally
enforce this style of signature. One easy solution would
be to sign all XML messages to and from the registry and
enforce HTTP with SSL by using a PKI certificate issued
by a trusted authority, both of which would successfully
mitigate this vulnerability.

Registry endpoint replacement can also happen if secu-
rity is compromised within the registry itself and it
advertises false information (an unauthorized user changes
entry data). Again, the signing of individual UDDI elements
can be used to mitigate this issue to some degree. This would
not protect against a “man in the middle” attack coupled
with the removal of the digital signature element. Addition-
ally, the digital signature could be replaced by resigning
the falsified element with another certificate. The signature
could also be removed from the registry by an unauthorized
user. Providing that the client does not require the signed
element, this change would not be noticed. Further discus-

sion on unauthorized changes to UDDI data is beyond the
scope of the specification and this document; however, an
implementer of an UDDI registry should understand the
importance of safe guarding information from attack.

6.2. Information disclosure

The information stored within an UDDI server can often
vary. The specification offers an extensibility point called
a tModel, or tModel as it is referred to in the specification.
These tModels have been used for everything from OWL-
S†† semantic tagging [29] to storing service performance
metadata [16]. All of this information can be considered
sensitive information per the particular instance of a service
registry.

For each service and business entry, a service registry can
store data related to the owner, technical, and administra-
tive contacts. There are growing concerns for information
and personal privacy and the risks from social engineering.
This simple contact information could potentially be sen-
sitive. Considering that the UDDI specification does not
require encryption for the most commonly used Inquiry
API, it is obvious that this information can be susceptible
to interception.

There is one gleaming problem with the UDDI v3 rec-
ommendations for security. The specification recommends
SSL for the Security API when a client receives an authenti-
cation token. This token can then be sent over a non-secured
channel. UDDI does not recommend nor require SSL for
the Inquiry API. A malicious user can therefore obtain
this token over unencrypted HTTP transmission and then
impersonate the user. By not requiring authentication and
authorization to an UDDI server or at the very least, sup-
porting access control on specific UDDI elements and
adequately protecting the authentication channel, sensitive
information can be changed or disclosed to unauthorized
persons.

†† Web ontology language for services.

880 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

6.3. Man in middle attacks

Although the “man in the middle” attack has been around for
quite some time, its effects on an UDDI node can be detri-
mental. According to the UDDI specification, all Inquiry
API calls, which includes those used for service EPD, are
recommended to be transmitted in clear text over HTTP.
There is no recommendation for XML digital signatures
(message level), XML encryption, or transport layer encryp-
tion. The specification does at least partially address this by
including an optional XML digital signature on a specific
UDDI data element, such as a business or service. This how-
ever can easily be overcome by simply removing the digital
signature element in transit. Unless the requestor of this data
knew a priori about the signature, the removal of the sig-
nature would most likely go unnoticed. The most common
usage of XML digital signatures is the signing of SOAP
message headers, such as Timestamps or WS-Addressing
headers, and the signing of the entire body element of the
SOAP message envelope. In general, SOAP development
frameworks readily support the signing of the entire body
of the message, not individual items. It is outside of the
norm. Since this is an item level signature and not a mes-
sage level signature, an application developer would either
have to rely on a software development kit provided by
the SOAP framework and/or the UDDI developer, or sim-
ply ignore the signature elements. This places all Inquiry
API message transactions in high risk for several specific
security vulnerabilities. UDDI is used as a corner stone for
finding web services and thus the importance of securing
these message transactions is critical. The simplest thing to
do is to require message level signatures, but still continue
to support item level signatures. This way message integrity
and data integrity can be verified.

6.4. Common web service security issues

Since UDDI is web service based, all known web ser-
vice vulnerabilities should also be concerned. Clearly, there
are web service specific security concerns. Under the US
Department of Commerce, the NISTs have published doc-
umentation that helps identify and describe a large portion
of these concerns [23]. Although several of items listed
are common to any piece of hardware or software, the
majority of them are web service specific. After consol-
idating the several similar finds, over 50 specific issues
were published. Ranging from message replay attacks to
user principle impersonation, all of these issues should be
considered for an implantation of UDDI.

7. PROPOSED SECURITY
ENHANCEMENTS

After considering the potential security risks related to
the UDDI specification, the following defines a number
of recommended changes in order to enhance the secu-
rity structure. Some of these changes can be implemented
with minimal or low impact to existing UDDI implemen-

tations and deployments. Other changes require revision of
the UDDI WSDL and XSD files, as well as the associated
documentation. Moving forward, these recommendations
should be integrated within the next version of the UDDI
specification.

7.1. Transport and message level security

Web service traffic is commonly passed through intermedi-
ate web servers or devices for a number of different reasons,
even with HTTPS SSL. For this reason, it is equally impor-
tant to ensure message level and transport level security.
Commonly, security is defined as a process, not as a some-
thing that is solved and forgotten about. This is for two
reasons:

(1) There are always new security vulnerabilities being
discovered. There are numerous government and
private organizations that actively promote the
awareness and resolutions to security vulnerabilities.

(2) The security of an electric system must always be
thought of in a layered approach. Often, systems are
designed with a single security enforcement point,
such as a network firewall. While this approach pro-
vides a hard outer shell, the components behind the
firewall are soft. For this reason, everything that is
on a network should be properly secured, whether or
not it is directly accessible from an external network
[30].

To mitigate any potential security and risks issues, the
following changes are recommended to the UDDI standard.

Message level:

• Mandate the support and requirement of XML digital
signatures on all message transactions

• Optional support for XML encryption
• Requirement for an authentication token
• Requirement for signed WSU‡‡; Timestamps. By spec-

ifying message creation and expiration timestamps, it
will also help prevent message replay attacks.

• Requirement for signed unique WS-Addressing mes-
sage identifiers.

Transport level:

• Requirement for encryption either via HTTPS
SSL/TLS communication or by XML encryption on
all APIs and applicable GUIs.

Policy level:

• Requirement for authentication and authorization for
all resource access requests

• Requirement for protected audit log.

‡‡ Web service utility.

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 881
DOI: 10.1002/sec

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

These changes will undoubtedly add overhead to UDDI
transactions due to expensive encryption and signing algo-
rithms. The expense of message level security is discussed
in section VIII. This additional overhead outweighs the
threat of information security compromise.

As a general recommendation, message transactions
should be encrypted. UDDI is based on SOAP, which as
defined, is transport protocol independent. Most commonly,
SOAP traffic is transmitted over HTTP-based protocols.
The usage of SSL/TLS§§ satisfies this protection require-
ment, but XML Digital Encryption could also be used.

Additionally, in order to protect again message replays,
unique message identifiers should be used. This is defined
within the WS-Addressing specification.

The usage of SSL/TLS does not always guarantee mes-
sage integrity though. Often, SSL reverse proxies are used in
protection environments for load balancing purposes. These
can also be used for malicious purposes. By requiring XML
digital signatures on both requests and responses, message
integrity can be validated and confirmed by both parties,
especially if an X509 PKI‖‖ Infrastructure is in place and
used for the signatures.

7.2. Access control

UDDI explicitly states that authentication and authorization
are optional. When implemented, the user authenticates to
the Security API, and then uses an issued token (referred to
as authToken in the spec) within the body of all subsequent
request messages. Many of the commonly used XML-based
standards for user authentication and authorization, such
as SAML, XML Digital Signatures, WS-Username, etc.,
are all within the message header. This helps facilitate the
separation of application code and security code. Adoption
for the previously mentioned standards is high both with
the Java and Microsoft based technologies. Therefore, in
order to enhance the UDDI security profile for authentica-
tion, the recommendation is to remove Security API and
all references to the “authToken.” Authentication should be
supported via an implementation or instance specific profile
within the SOAP message header. For example, if WS-
Trust or SAML is to be supported, a Secure Token Service
(STS) should also be included within the implementation
and documented as such [26]. As an added bonus, an STS
can be used to support multiple authentication schemes, all
of which translate user identity to a common SAML format.

All of the previous renditions of UDDI included sup-
port for anonymous access and it should also be optionally
supported with a secured version of UDDI. The difference
is in authorization. The specification leaves authorization
to be optional and even states that describing item level
policies is difficult [25]. A secured UDDI instance should
have a strong authorization policy that utilizes group, role,
attribute, or list-based access control. Anonymous access
should be optional as per site and instance requirements.

§§ Secure socket layer/transport layer security.
‖‖ Public key infrastructure.

The proposed recommendation is to explicitly define the
requirement and usage of a strict access control model that is
capable of applying and enforcing group, user, attribute, or
role-based access that will be applied to data objects for all
API interfaces, as well as any other user interface provided
by the registry¶¶ [31]. The suggested approach is defined in
the following passages.

For web service interactions, authorization should be
optional. If the request that does not include a supported
identity token, the request shall then have the same rights
as an anonymous user which may or may not be allow-
able at the given UDDI node. Such a decision should be
instance specific. Requests with a qualifying token shall be
verified for validity, authenticated, and checked against all
applicable policies and access control mechanisms for the
requested UDDI data (service, business, binding template,
etc.).

In a related work, XACML-based policies were used to
control access to an UDDI registry [27]. This can also be
done using a rules based engine that leverages the SAML
Protocol (SAML-P) specification in which an entity can
execute an Access Decision Query for a particular resource.
This can be directly applied to UDDI in which the resource
name is the UDDI key for the requested element. With this
model, an implementation could be very modular.

If an application GUI is provided, all of the same rules
should also be used for authentication and access con-
trol. This can also aid in supporting federated users via
a single sign on mechanism, such as WS-Federation or
WS-Trust. All GUI components must utilize the web ser-
vice APIs to provide a single point of entry and policy
enforcement. Although the use of usernames and pass-
words is the most common, it should be discouraged with
the recommended approach of using PKI certificates. The
US Department of Defence explicitly states that PKI cer-
tificates are to be used over usernames and passwords for
authentication.

“The use of userids and passwords may lead to compro-
mise of the userid and password, thus providing access to
unauthorized individuals. . . Per the DoDI 8520.2 all private
web servers are required to request a subscriber certificate..”
[32].

In order to maintain compatibility with older clients,
anonymous access should optionally still be supported. This
access would provide access to only information specified
by the owner of the registry instance and the underlying
data.

7.3. Authentication

The problem with exposing data on a network is that it
can become vulnerable to attack and exploitation. The need
for proper authentication and authorization for controlling

¶¶ Many UDDI registry implementations have other web services and
user interfaces outside of the specification. These must also be protected.
‖‖ Apache CXF 2.2.4.

882 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

access to resources, such as a web service, is clear. There
have been a number of other related publications that specif-
ically address authentication and authorization techniques
for general web services.

Authentication for web services can be performed many
different ways. REF Ref246057345 \h MERGEFORMAT
Table IV shows a variety of authentication mechanisms
that are commonly found with web services. All of these
mechanisms are outside of the SOAP message body.

Moving forward, one of the most versatile and flexi-
ble authentication models to use is the SAML, coupled
with the usage of a WS-Trust based STS. This implies the
replacement of the UDDI Security API with an STS-based
web service. The STS can then act as the authentication
point using a variety of authentication mechanisms in a
secure fashion (SSL recommended). The STS then returns
an appropriate formatted SAML Assertion matching the
user identity of the UDDI client. The client then uses the
provided assertion, which is digitally signed by the STS,
as the authentication token to the remaining UDDI APIs.
The remaining UDDI services are then configured to trust
the STS as a token issuer (and only the STS). Through
these mechanisms, a secured transaction can be imple-
mented with flexible authentication mechanisms. As an
added bonus, the WS-Trust specification is well supported
by both Java¶¶ and Microsoft*** based platforms. This is
the recommended approach for a secured UDDI imple-
mentation. Implementers of course, can always choose to
use alternate approaches, authentication mechanisms, and
access control techniques. It is recommended to utilize
WS-Security based mechanisms within the SOAP message
security header for the transmittance of user identity and
security related information, not via the SOAP message
body artifact, “authInfo.” SSL or XML Encryption should
also be used in order to ensure the privacy of message
transactions.

8. PERFORMANCE IMPACTS

Over time, there have been many papers that discuss the
performance impacts of web service security utilizing mes-
sage level and transport level security. During experimental
research, these elements were combined with a real world
commercial UDDI server provided by BEA Systinet v6.5.
Since this particular product only offers the traditional
username/password support via the “authToken,” a proxy
service was created using the Windows Communication
Foundation (WCF) in C#.

This particular proxy service essentially acted as a secu-
rity enforcement point for the UDDI instance. The SAML†††

Token Profile 1.1, a portion of the WS-Trust specification,

¶¶ WCF .NET Framework 3.0 or higher.
***Security assertion markup language.
††† Security assertion markup language.

Figure 5. Message level security overhead in bytes.

was utilized. This added the requirement for clients first
accessing an STS for authentication via X509 Certificate in
order to obtain a qualifying SAML assertion. This assertion
was then included with the request message along with an
XML Digital Signature and an encrypted public key certifi-
cate from the client. The proxy service then validated the
XML signatures and ensured that the SAML assertion was
used by the trusted STS, all of which was performed utiliz-
ing built in features of the WCF framework. In a production
environment, an additional component could be added to
control access to specific resources within UDDI, such as
business elements, data fields, etc. The proxy service then
forwarded the original request to the UDDI server. On the
return trip, responses from UDDI were signed with an X509
certificate and returned to the client and verified.

During this experiment, two key items were recorded via
the use of a TCP/IP‡‡‡ Monitor: message size and latency.
Each of the UDDI Inquiry API methods listed in Figure 6
was executed 100 times for consistency. As depicted in
Figure 5, the TCP/IP Monitor was used to intercept and
record XML SOAP message transactions as recorded on
the wire.

8.1. Message size

It was recorded that on average, the additional security infor-
mation creates a message size increase by approximately
27 KB. This represents the actual messages to and from
the client to the UDDI server, including the Secure Token
Request (STR) messages to and from the STS.

‡‡‡ Transmission control protocol/internet protocol.

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 883
DOI: 10.1002/sec

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

Table IV. Example web service authentication methods.

Layer Authentication Authorization

Transport HTTP basic, HTTP Digest, HTTP NTLM, HTTP
client certificate, Kerberos

Access control lists, PKI certificates (only allow trusted
certificates) Role/group base control lists

SOAP message WS-username, SAML∗, PKI certificate, XML sig-
natures (proof of ownership)

Access control lists, PKI certificates, Attributes, roles,
or group based access control, XACML∗∗, SAML-
protocol

∗Security assertion markup langauge.
∗∗XML access control markup language---OASIS standard.

8.2. Latency of security processing

During our latency test, several unexpected observations
were found. When instantiating the client object that per-
formed the service request and then subsequently executed
the web service API method repeatedly, it was noted that
the WCF framework keeps the connection to the web server
open. This eventually led to the testing of four different
profiles, Secure Persistent, Secure Terminal, Unsecure Per-
sistent, and Unsecure Terminal. The persistent cases were
when the service proxy object within the client’s code was
reused for each iteration of execution. The terminal cases
were when this same object was released from memory and
recreated.

In the Secure Persistent profile, an initial spike in execu-
tion time (approximately 78 ms) was noted. The response
time then averaged a respectable 22 ms. The Secure Ter-
minal profile averaged 68 ms for every execution. The
additional delay for the Secure Terminal profile was later
confirmed to be related to the caching of the SAML token
provided by the STS. This was a significant difference.

The actual data is presented in Figure 7, which clearly
shows the initial spike from the STS transaction. Each
time the connection was terminated and reopened, the
client requested a new token from the STS, thus the addi-
tional 50 ms delay. The unsecure profile averaged 4.8 ms
for persistent connections and 5.25 ms for terminal con-
nections. This was most likely due to the opening and
closing of sockets. In the figure, there is obvious spiking
for all transactions. The source of this spiking was never

accurately determined, but it was most likely caused by
disk I/O.

The most relevant calculation was the comparison of
Secure Persistent to Unsecure Persistent. This scenario rep-
resents a real world use case of UDDI. In many cases,
multiple calls to UDDI may be necessary in order to obtain
the required information. On average, service call outs to
the secured UDDI server took 3.7 times longer than to the
unsecured UDDI server at 22 ms. This was calculated using
the following equation.

Average(Secure Persistent) − Average(Unsecure Persistent)

Average(Unsecure Persistent)

The reason for subtracting the unsecure from the secure
average was because for this evaluation, a proxy service was
used to simulate a real environment, thus the time it took the
UDDI server to respond is not important, only the security
overhead was of interest. Overall, the average latency for the
Secure Persistent profile was 22 ms. This finding is clearly
visible in Figure 8 which depicts the average latency for the
four profiles.

Although there was a clear difference in performance
between the secure and unsecure profiles for UDDI, the
time delay was minimal. The average of 22 ms over 4 ms
was hardly something that an end user would notice. In this
case, the ends justified the means for securing UDDI with
message level security. The performance impacts outweigh
the risk of leaving an important aspect of SOA open to
vulnerabilities.

Figure 6. Evaluation architecture.

884 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

Figure 7. Message security latency comparison, find business.

Figure 8. Message level security latency comparison in bytes.

9. ADDITIONAL ENHANCEMENTS

UDDI is a set of web service definitions (WSDL), data
schemas (XSD), and documentation describing the behav-
iors and usage of an implementation of the specification.
From the documentation, the usage of various data types
such as “findQualifiers” is quite specific. During an Inquiry
callout, the request message can have none or more find-
Qualifiers defined which can only have one of the values
defined in the documentation. The schema, however, defines
a findQualifier as a generic string. This forces developers
to hard code a set of constant strings inside application
code and thus prone to typographic error. A more efficient
approach would be to have an enumerated type defined
matching the set of acceptable values. This same issue can
be seen with other data types within UDDI, such access-
Point’s useType. Simple inconsistencies and poorly defined
schemas greatly increase the amount of effort required for
client integration.

In practice, performing what should be the simplest
of tasks, EPD, can actually be quite difficult in order to
properly handle all cases. For example, for each service
registered within an UDDI registry, the entry can have multi-
ple binding templates. For each binding template can either
have an accessPoint or a hostingRedirector (deprecated).
Each accessPoint has a value, which is typically a URL and
an optional attribute of useType. The useType can either be
an endPoint, bindingTemplate, hostingRedirector, wsdlDe-
ployment, or something else. In a real world instance of
UDDI utilizing the commercial product, HP Systinet, the
value of the accessPoint, although typically is an URL,
can also be a Java classpath. The attribute useType is also

commonly specified as the namespace of the SOAP version
used for the given service which is not one of the recom-
mended types. As one can imagine, trying to parse of all
of these possibilities and correctly processing them can be
challenging.

Clearly, the correct path forward is to refine the XSD
of UDDI in order to clearly define what should or should
not be used for a specific data element using enumerated
data types. This is a relatively simple change which will
greatly ease integration and usage issues. Additionally, it
should actually increase the amount of generated code via
some WSDL to code utility such as Java Axis’s wsdl2java or
Microsoft’s svcutil.exe, and decrease the amount of devel-
oper written code which thus reduces development time and
cost.

10. CONCLUSIONS

UDDI offers some great capabilities, but when examining
the specification’s recommended security model, it is clear
that the specification should either be revised or extended
to include new techniques to prevent information assurance
and security related problems. Moving in a forward direc-
tion, the UDDI specification should be changed in order to
meet new needs and capabilities. A stronger, yet more agile
security design is necessary in order to promote wider adap-
tion, implementation, and usage. The preceding referred to
a number of standardized specifications and security adap-
tations that if implemented correctly, would successfully
mitigate many of the inherent security concerns presented
by the UDDI specification. The summation of these changes

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 885
DOI: 10.1002/sec

Security enhancements for UDDI A. J. O’Ree and M. S. Obaidat

should either be proposed as an extension to UDDI or incor-
porated into the specification itself. It is up to the UDDI
Technical Committee to decide upon these recommenda-
tions in order to move the specification forward.

REFERENCES

1. W3C. (2007, April) World Wide Web Consortium.
[Online]. Available at: www.w3.org/TR/soap

2. Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N,
Weerawarana S. Unraveling the Web Service Web: An
Introduction to SOAP, WSDL and UDDI. IEEE Internet

Computing 2002; 6(2): 86--93.
3. World Wide Web Consortium. (2007, April), Sim-

ple Object Access Protocol. [Online]. Available at:
www.w3.org/TR/soap

4. Epstein J, Matsumoto S, McGraw G. Software Security
and SOA. IEEE Security and Privacy 2006; 4(1): 80--83.

5. Robinson SH, Knauerhase RC, Milenkovic M, et al.
Toward Internet Distributed Computing. IEEE -- Com-

puter 2003; 36(5): 38--46.
6. OASIS. OASIS -- Organization for the Advancement of

Structured Information Standards. [Online]. Available
at: www.oasis-open.org/who

7. OASIS. (2007). OASIS Webinars. [Online]. Avail-
able at: www.oasis-open.org/events/webinars/2007-06-
04-ebXML-Registry-and-Repository.wmv

8. OASIS. (Feburary 2007) OASIS. [Online]. Available at:
www.oasis-open.org/committees/download.php/23648/
regrep-3.0.1-cd3.zip

9. OASIS. (2009, September) Content Management Inter-
operability Services (CMIS). [Online]. Available at:
www.oasis-open.org/committees/cmis

10. Fielding RT. 2000; Architectural Styles and the
Design of Network-based Software Architectures.
Doctoral Dissertation, Department of Computer Sci-

ence, [Online]. Available at: www.ics.uci.edu/∼fielding/
pubs/dissertation/top.htm

11. WSO2. WSO2. [Online]. Available at: wso2.org
12. Alor-Hernandez G, Posada-Gomez R, Alberto A.

Aguilar-Lasserre AA, Abud-Figueroa MA. Web ser-
vices discovery and invocation by using DNS-
EPD. In IEEE Electronics, Robotics and Automotive

Mechanics Conference (CERMA 2007), Vol. DOI
10.1109/CERMA.2007.24, September 2007; 695--700.

13. ShaikhAli A, Rana OF, Al-Ali R, Walker DW. “UDDIe:
An Extended Registry forWeb Services. In 2003 IEEE

Symposium on Applications and the Internet Workshops

(SAINT’03 Workshops), 2003; 85.
14. Zhang L-J, Li H, Chang H, Tian C. XML-based

advanced UDDI search mechanism for B2B integration.
In Fourth IEEE International Workshop on Advanced

Issues of E-Commerce and Web-Based Information Sys-

tems (WECWIS’02), 2002; 9.
15. Paul R, Cao Z, Yu L, Saimi A, Xiao B, Tsai WT. Verifi-

cation of web services using an enhanced UDDI server.
In The Eighth IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems, 2003; 1--8.
16. Gorbenko A, Romanovsky A, Kharchenko V. How

to enhance UDDI with dependability capabilities. In
Annual IEEE International Computer Software and

Applications Conference, Vol. 33, 2008; 1023--1028.
17. Spies M, Schoning H, Swenson K. Publishing interop-

erable services and processes in UDDI. In 11th IEEE

International Enterprise Distributed Object Computing

Conference (EDOC 2007), Vol. October, 2007; 503.
18. Mikroyannidis A. Towards a Semantic Social Web. Com-

puter, Vol. November 2007; 113--115.
19. Yee G, Korba L. Negotiated security policies for

E-services and web services. In IEEE International Con-

ference on Web Services (ICWS’05), 2005; 605--612,
20. Peng Q. Secure communication and access control for

web services container. Fifth International Conference

on Grid and Cooperative Computing (GCC’06), October
2006; 412--415.

21. Trabelsi S, Gomez L, Roudier Y. Context-aware security
policy for the service discovery. In 21st Interna-

tional Conference on Advanced Information Networking

and Applications Workshops (AINAW’07), 2007; 477--
482.

22. Singhal A. Web services security: challenges and tech-
niques. In Eighth IEEE International Workshop on

Policies for Distributed Systems and Networks (POL-

ICY’07), 2007; 282.
23. US Dept of Commerce -- National Institute of

Standards and Technology, “Guide to Secure Web
Services,” U.S. Government, Gaithersburg, MD,
Special Publication 800-95, 2007. [Online]. Available
at: csrc.nist.gov/publications/nistpubs/800-95/SP800-
95.pdf

24. Obaidat MS, Boudriga NA. Security of e-Systems
and Computer Networks. Cambridge University Press:
Cambridge, UK, 2007.

25. OASIS. (2004, Oct.) UDDI Version 3.0.2. [Online].
Available at: uddi.org/pubs/uddi v3.htm

26. OASIS. (2005, March) OASIS -- Organization for
the Advancement of Structured Information Standards.
[Online]. Available at: www.oasis-open.org/specs/#
samlv2.0

27. Dai J, Steele R. UDDI access control. In Third Inter-

national Conference on Information Technology and

Applications (ICITA’05), Vol. 2, 2005; 778--783.
28. OASIS. (2004) XACML Profile for Role Based Access

Control. [Online]. Available at: docs.oasis-open.org/
xacml/cd-xacmlrbac

886 Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

A. J. O’Ree and M. S. Obaidat Security enhancements for UDDI

29. Montrose B, Kim A, Khashnobish A, Luo MKJ. Adding
OWL-S Support to the Existing UDDI Infrastructure.
In IEEE International Conference on Web Services,
2006.

30. Howard K, Erickson P. A case of mistaken identity?
News accounts of hacker, consumer, and organiza-
tional responsibility for compromised digital records.
Journal of Computer-Mediated Communication 2007;
12(4). Available at: jcmc.indiana.edu/vol12/issue4/
erickson.html

31. Jiancheng N, Zhishu L, Zhonghe G, Jirong S. Threats
analysis and prevention for grid and web service secu-
rity. In IEEE Eighth ACIS International Conference on

Software Engineering, Artificial Intelligence, Network-

ing, and Parallel/Distributed Computing (SNPD 2007),
2007; 526--531.

32. US Government Defense Information Systems Agency.
(24 April 2009) DISA Field Security Operations
Web Tomcat Site Checklist. [Online]. Available at:
iase.disa.mil/stigs/checklist

Security Comm. Networks 2011; 4:871–887 © 2011 John Wiley & Sons, Ltd. 887
DOI: 10.1002/sec

