
Apache Stonehenge : Stonehenge Interoperability Walk-through

This page last changed on May 08, 2009 by bendewey.

Overview

This document is meant to serve as a guide for exploring the interoperability of the Apache Stonehenge
project. This document will walk the developer through the process of configuring the different modules
to consume business services and order processing services on different frameworks.

This document assumes an environment based on a single Windows 2008 Server running all the
components of the Stonehenge project. In a real world environment this application would most likely be
distributed across multiple servers. Throughout this document we will refer to the services using their
localhost:{port number} addresses; if your configuration is distributed over several machines, or differs
otherwise, please change the localhost designation to the proper machine/host name.

Prerequisites

In order to perform the tasks in this guide, you will need to have the different components installed.
Please make sure that you completed the guides on the StoneHenge wiki.

• Stonehenge .NET StockTrader Installation Guide
• Stonehenge PHP and WSAS Stocktrader Installation Guide

Service Configuration Overview

.NET Configuration

The .NET Services are managed through the web and service configuration files. In the root directory of
the StockTrader client website there is a web.config file. In the appSettings section you will see an
ACCESS_MODE setting, the following table shows a list of available options for the ACCESS_MODE
setting:

ACCESS_MODE Description

InProcess Communicates directly with the database. In this
access mode no external services are invoked.

DotNet_Http_WcfService Communicates with the .NET Business WCF
Service using BasicHttpBinding at
http://localhost:9000/TradeBusinessService

DotNet_WsHttp_WcfService Communicates with the .NET Business WCF
Service using WsHttpBinding and Secure
Messaging at

Document generated by Confluence on May 17, 2009 20:35 Page 1

http://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+.NET+StockTrader+Installation+Guide
http://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+PHP+and+WSAS+Stocktrader+Installation+Guide
http://localhost:9000/TradeBusinessService


http://localhost:9000/TradeBusinessService/msec

PHP_Http_WebService Communicates with the PHP Web Service using
http at
http://localhost:8080/php_stocktrader/business_service/business_svc.php

WSAS_Http_WebService Communicates with the WSAS Web Service using
http at
http://localhost:9763/services/TradeServiceWsas

After a buy/sell operation is sent to the Business Service it will be routed to the OrderProcessing Service.
The OrderProcessingService is configured using the Trade.BusinessServiceConsole.exe.config file in the
business_service\bin\Debug directory. In the appSetting section you will see a setting for
ORDER_PROCESSING_MODE. Below is a table that describes the different options for the order
processing mode. With the exception of the InProcess mode, the order is processed asynchronously, the
call will return immediately and the user will see the Closed Order Alert after visiting a subsequent page.

Note:
If you change the order processing mode you will have to restart the console application for the
changes to take effect. This is not the case for the .NET StockTrader website, any changes to the
config will be reloaded on the next page request.

ORDER_PROCESSING_MODE Description

Sync_InProcess Communicates directly with the database. In this
order processing mode the business service will
process the order synchronously and will return
with the order has processed

ASync_DotNet_Http Communicates with the .NET Order Processing
WCF Service using BasicHttpBinding. The default
order processor address for this mode is
http://localhost:8000/tradeorderprocessor

ASync_DotNet_WsHttp_MSecurity Communicates with the .NET Order Processing
WCF Service using WsHttpBinding and Secure
Messaging. The default order processor address
for this mode is
http://localhost:8000/tradeorderprocessor/msec

ASync_PHP_Http Communicates with the PHP Order Processing
Service using http. The default order processor
address for this mode is
http://localhost:8080/php_stocktrader/order_processor/order_processor_svc.php

ASync_PHP_WsHttp_MSecurity Communicates with the PHP Order Processing
Service using WsHttp and Secure Messaging. The
default order processor address for this mode is
http://localhost:8080/php_stocktrader/order_processor/order_processor_svc_msec.php

ASync_WSAS_Http Communicates with the WSAS Order Processing
Service using http. The default order processor
address for this mode is
http://localhost:9763/services/OrderProcessor

ASync_WSAS_WsHttp_MSecurity Communicates with the WSAS Order Processing
Service using WsHttp and Secure Messaging. The
default order processor address for this mode is

Document generated by Confluence on May 17, 2009 20:35 Page 2

http://localhost:9000/TradeBusinessService/msec
http://localhost:8080/php_stocktrader/business_service/business_svc.php
http://localhost:9763/services/TradeServiceWsas
http://localhost:8000/tradeorderprocessor
http://localhost:8000/tradeorderprocessor/msec
http://localhost:8080/php_stocktrader/order_processor/order_processor_svc.php
http://localhost:8080/php_stocktrader/order_processor/order_processor_svc_msec.php
http://localhost:9763/services/OrderProcessor


http://localhost:9763/services/OrderProcessorMsec

PHP/WSAS Configuration

The PHP and WSAS Services are managed through the StockTradeDB database. After you run the PHP
database scripts you will have four new tables (DbConfig, ClientToBs, BsToOps, and Service), which are
used to configure the services for PHP/WSAS.

Before you change the ClientToBs and BsToOps configuration open the Service tables and verify that the
endpoint addresses are accurate for your environment. For this walk-through you will need to have the
following endpoints.

Service Name Default Value

DOTNET_BS http://localhost:9000/TradeBusinessService

DOTNET_OPS http://localhost:8000/TradeOrderProcessor

DOTNET_OPSSEC http://localhost:8000/TradeOrderProcessor/sec

JAVA_BS http://localhost:9763/services/TradeServiceWsas

JAVA_OPS http://localhost:9763/services/OrderProcessor

JAVA_OPSSEC http://localhost:9763/services/OrderProcessorMsec

PHP_BS http://localhost:8080/php_stocktrader/business_service/business_svc.php

PHP_OPS http://localhost:8080/php_stocktrader/order_processor/order_processor_svc.php

PHP_OPSSEC http://localhost:8080/php_stocktrader/order_processor/order_processor_svc_msec.php

Note:
In the above service names BS stands for Business Service, OPS stands for Order Processing
Service, and OPSSEC stands for Order Processing Service with Secure messaging. Throughout the
remainder of this document the abbreviations BS and OPS will refer to the Business Service and
Order Processing Service respectively. OPS will be used to refer to OPS or OPSSEC depending on
your configuration.

Note 2:
In this edition of the interop guide WSAS is the only JAVA implementation and the two terms may
be used interchangeably.

To configure the PHP Client

1. Open the ClientToBS table
2. Locate the PHP_CLIENT row
3. Change the BS value to the corresponding BS service name from the table above.

To configure the PHP Business Service

1. Open the BsToOps Table
2. Locate the PHP_BS row
3. Change the OPS value to the corresponding OPS or OPSSEC service name from above.

Document generated by Confluence on May 17, 2009 20:35 Page 3

http://localhost:9763/services/OrderProcessorMsec
http://localhost:9000/TradeBusinessService
http://localhost:8000/TradeOrderProcessor
http://localhost:8000/TradeOrderProcessor/sec
http://localhost:9763/services/TradeServiceWsas
http://localhost:9763/services/OrderProcessor
http://localhost:9763/services/OrderProcessorMsec
http://localhost:8080/php_stocktrader/business_service/business_svc.php
http://localhost:8080/php_stocktrader/order_processor/order_processor_svc.php
http://localhost:8080/php_stocktrader/order_processor/order_processor_svc_msec.php


To configure the WSAS Business Service

1. Open the BsToOps Table
2. Locate the JAVA_BS row
3. Change the OPS value to the corresponding OPS or OPSSEC service name from above.

In addition to the Business Service and the Order Processing Service the PHP StockTrader website has a
Configuration Service. This configuration service is used to pull the data from the database and determine
which services to use in real-time. To setup the Configuration Service you will need to ensure that the
resources\conf\database_config.xml file has the proper database connection information. Additionally,
you will need to set the configuration service endpoint address under the Config tab of the PHP website.
The default is http://localhost:8080/php_stocktrader/config_service/config_svc.php. For more
information on setting up the PHP configuration see the install guide in the Prerequisites section.

Interop Walk-through

Now that you are familiar with the configuration for the different services we are going to walk through
the different configurations. Since all the services are communicating with the same database you will be
able place an order in the .NET StockTrader website then sell the same order from the PHP website.

Getting Started

In order to get started you should open and run all the services. Please follow these steps to start all the
services and websites.

1. Start the .NET Services
a. %dotnet_root%\RunServices.bat (be sure to Run as Administrator)

2. Start the WSAS server
a. Windows: %wsas_server_root%\bin\wso2server.bat (be sure to Run as Administrator)
b. Linux/Unix: %wsas_server_root%\bin\wso2server.sh

3. Open the .NET StockTrader website
a. http://localhost/trade

4. Open the PHP StockTrader website
a. http://localhost:8080/php_stocktrader/trader_client/

5. Open SQL Management Studio and connect to the StockTraderDB.

Warning
If you have trouble running any of these services or websites please refer back to the installation
guides in the Prerequisite section before continuing.

Placing an order on the .NET Stack

1. From the http://localhost/trade website click Login from the top menu.
2. Enter the StockTrader credentials of:

a. username = uid:0
b. password = xxx

Document generated by Confluence on May 17, 2009 20:35 Page 4

http://localhost:8080/php_stocktrader/config_service/config_svc.php
http://localhost/trade
http://localhost:8080/php_stocktrader/trader_client/
http://localhost/trade


3. Click Login. This will authenticate you using the BS.
4. Click Quotes/Trade from the top menu. This will pull a list of available stocks from the BS
5. Click the Buy link next to one of the stocks
6. Enter 111 for the number of shares and click Buy
7. Under the default configuration the .NET website does the following

a. Sends a message to the BS to buy a stock.
b. The BS creates a record in the database for the order with a status of open
c. The BS then sends an asynchronous call to the OPS.
d. At which point the page is returned with a message stating that the trade has been submitted

for processing.
8. In the background the Order Processing Service performs its processing of the order, when it has

completed it updates the order in the database to closed. The closed orders will be shown to the
customer the next time they request a page from the StockTrader website. Lets view the closed
orders from our PHP StockTrader website

Viewing a closed order from PHP Stack

1. Open the http://localhost:8080/php_stocktrader/trader_client/ page
2. Click the Login button on the top menu
3. Enter the StockTrader credentials of:

a. username = uid:0
b. password = xxx

4. When you login the PHP website will authenticate you using the BS.
5. After you have logged in you will be taken to the Accounts page, where you should be greeted with

a Trade Alert, stating that your order placed in the .NET StrockTrader website has completed.

Creating an order with .NET using the PHP BS and OPS

1. Open the .NET web.config from your Trade root folder
2. Locate the ACCESS_MODE appSetting
3. Change the value to PHP_Http_WebService
4. Save and Close the web.config
5. Switch back to the .NET StockTrader website
6. Click the Quotes/Trade tab from the top menu.
7. Click buy on one of the trades
8. Enter a quantity of 112 for the number of shares and Click Buy
9. You should now receive a submitted for processing message.

10. Click the Account tab on the top menu
11. If the PHP OPS has processed the order you should receive a Trade Alert.

Creating an order with PHP using the JAVA BS and OPS

Document generated by Confluence on May 17, 2009 20:35 Page 5

http://localhost:8080/php_stocktrader/trader_client/


1. Open SQL Management studio.
2. Connect to your StockTraderDB database.
3. Open the ClientToBs table for editing (Right click -> Edit Top 200)
4. Change the BS value for PHP_CLIENT to JAVA_BS
5. Open the BsToOps table for edit
6. Verify that the JAVA_BS is using the JAVA_OPS
7. Click back to the PHP website
8. Click the Quotes/Trade tab from the top menu
9. Choose a stock and click Buy

10. Enter a quantity of 113 for the number for shares
11. Click Buy
12. After the order has been submitted for processing click the Accounts tab to view the Accounts page
13. If the WSAS BS processed your order you should receive a Trade Alert.

Selling a Trade with PHP using the .NET BS and OPS

1. Again, without closing the PHP website, open SQL Management Studio
2. Open the ClientToBs table
3. This time edit the BS value of the PHP_CLIENT to DOTNET_BS
4. You don't need to change anything in the BsToOps, the .NET BS will use whatever Order Processing

Mode is setup in its configuration, which should be .NET OPS.
5. Click back to the PHP website
6. Click the Portfolio tab from the top menu
7. Find the order that we created with a quantity of 111 and choose Sell
8. On the confirmation page click Sell

Selling a Trade with .NET using PHP BS and .NET OPS

1. Open SQL Management Studio
2. Open the BsToOps table
3. Change the OPS value for PHP_BS to DOTNET_OPS
4. Switch back to the .NET Website
5. Click the Portfolio tab from the top menu
6. Find the order that we created with a quantity of 112 and choose Sell
7. On the confirmation page click Sell

Selling a Trade with .NET using PHP BS and JAVA OPSSEC

1. Open SQL Management Studio
2. Open the BsToOps table
3. Change the OPS value for PHP_BS to JAVA_OPSSEC
4. Switch to the .NET StockTrader website
5. Click the Portfolio tab from the top menu
6. Find the order that we created with a quantity of 113 and choose Sell
7. On the confirmation page click Sell
8. This order has just gone from the .NET website, to the PHP BS webservice, which updated the

database with the order, then using an encrypted message channel sent the order to the WSAS OPS
to process the order. After the order was processed the WSAS service updated the order in the
database to closed.

Document generated by Confluence on May 17, 2009 20:35 Page 6



9. If you click the Accounts page, the .NET website will call back to the PHP BS and check for any
closed orders, if any are found you should receive a trade alert.

Selling a Trade with PHP using the .NET BS and JAVA OPSSEC

1. Open SQL Management Studio
2. Open the ClientToBs table
3. Ensure that the PHP_CLIENT is configured to use the DOTNET_BS
4. Open business_process/bin/{debug|release}/Trade.BusinessServiceConsole.exe.config
5. Change the ORDER_PROCESSING_MODE under appSettings to ASync_WSAS_WsHttp_MSecurity.

a. You may want to enable the logging mode of the WSAS Web Service. See the PHP and WSAS
install documentation for logging options.

6. Save and close the config file
7. Open your .NET StockTrader Business Services Host
8. Hit Ctrl+R to restart the service.
9. Open the PHP Website

10. Click the Portfolio tab from the top menu
11. Click Sell on the first order.
12. Confirm the Sale
13. This order will be processed by the .NET Business service, which we just restarted on the fly to use

the JAVA Order Processor. Additionally the order was processed with an encrypted SOAP message .

Conclusion

The Stonehenge application provides, and this paper has documented, a full end-to-end service oriented
application that allows for interoperability between different platforms. With the implementation of the
WS-* Standards, developers get the benefit of distributed applications and platforms, while retaining
reliable and secure messages between systems. This opens the door for technologies to co-exist in
today's enterprise environments.

The Stonehenge project hopes to continue to develop example applications that use the standards
currently defined by the W3C and OASIS protocols. As always, the Apache Foundation encourages
contributions. For more information about the project, please see our proposal at
http://wiki.apache.org/incubator/StonehengeProposal.

Document generated by Confluence on May 17, 2009 20:35 Page 7

http://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+PHP+and+WSAS+Stocktrader+Installation+Guide#StonehengePHPandWSASStocktraderInstallationGuide-InstallingWSAS
http://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+PHP+and+WSAS+Stocktrader+Installation+Guide#StonehengePHPandWSASStocktraderInstallationGuide-InstallingWSAS
http://wiki.apache.org/incubator/StonehengeProposal

