Monitors

by Paul Hammant

1. Introduction

Both the server and client sides of AItRMI can be monitored. After instantiation, the Server
of Factory have a setMonitor() methods.

2. Server Monitor

The interface for the ServerMonitor is:

public interface ServerMbnitor {
void cl oseError(Cl ass clazz, String s, |OException e);
voi d badConnection(C ass clazz, String s, BadConnecti onException bce);
voi d cl assNot Found(Cd ass cl azz, C assNot FoundException e);
voi d unexpect edException(C ass clazz, String s, Exception e);

voi d stopServerError(C ass clazz, String s, Exception e);

}

You get to choose from a number of implementations. NullServerMonitor consumes all
monitored events. LogEnabledServerMonitor, CommonsLoggingServerMonitor and
Log4JServerMonitor route through to the appropriate logging framework. Y ou do not have to
tie the application you develop (that needs to use AlItRMI) to any particular logging
framework. If you so desire, you do not need any logging jar in your classpath (or classloader
tree for more complex deployments).

3. Client Monitor

The interface for the ClientMonitor is:

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.2 $ $Date: 2003/02/16 21:41:35 $
Page 1

Monitors

public interface CientMnitor

voi d net hodCal | ed(d ass clazz, String nethodSi gnature, |ong duration, String annota

bool ean net hodLoggi ng() ;

voi d servi ceSuspended(C ass clazz, Request altrm Request, int attenpt, int suggeste

voi d servi ceAbend(d ass clazz, int attenpt, |OException cause);

voi d invocationFailure(C ass clazz, String nanme, |nvocati onException ie);

voi d unexpect edCl osedConnection(C ass clazz, String nanme, Connecti onC osedException

voi d unexpectedlnterruption(C ass clazz, String nane, |nterruptedException ie);

}

The ClientMonitor has a couple of novel feautes over ServerMonitor (which just listens). The
first is that timings for method calls can be reported on. As timing costs time, the
ClientMonitor reports whether it wants timing at all. The second is that serviceSuspend() and
serviceAbend() encourages the implementor to join in with whether the pending request will
fail or try again. It does this by throwing InvocationException. Different strategies (fail-fast,
retry-forever) are possible, but clearly they affect the way client code works.

As with the ServerMonitor, you get to choose from a number of implementations.
DumbClientMonitor consumes all monitored events without logging anything and fails-fast
for the two abend() and suspend() methods. DefaultClientMonitor, still logs nothing, but tries
for afew attempts to reestablish a connection.

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.2 $ $Date: 2003/02/16 21:41:35 $

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.2 $ $Date: 2003/02/16 21:41:35 $

Page 2

	Monitors
	1 Introduction
	2 Server Monitor
	3 Client Monitor

