
AltRMI - Overview

by Paul Hammant, Vinay Chandran

1. Introduction
AltRMI is a from-scratch replacement for RMI. It has a number of different features that
make it easier to use. It tries as far as possible to be transparent in use. It is also inspired by
the remoting facility in .NET. This does not mean that it has SOAP capabilty (yet), as it is
more like the proprietary RPC transport for the .NET framework.

The name AltRMI is inspired by the 'alt' usenet newsgroup hierarchy. We have thought about
renaming it especially as alt means old in German. DRMI (Distributed RMI), PMI (Proxied
Method Invocation), ARC (Apache Remote Control) and JRemoting were all considered as
replacements, but for now we stick with AltRMI.

The mail list for this project is 'projects at incubator.apache.org'. Subscribe here. Please mark
your emails with a subject of [altrmi] + your normal subject choice.

2. Feature Differences
Some good, some bad:

• It transports normal Java interfaces (no need to extend java.rmi.Remote)
• None of the remote capable methods have to throw java.rmi.RemoteException.
• Compared to RMI in use for EJB, it does not transport over CORBA (yet).

3. Connection Robustness
Given that there are eight fallacies of distributed computing, we feel it important to show that
AltRMI is not ignoring these issues.
The principal benefit for a developer making beans or an application server is that
RemoteException is missing. That does not mean that communications failure is ignored.
AltRMI still illustrates communication failure via InvocationException which a subclass of
RuntimeException. This basically allows the exception to be thrown, but not specified on
each method (like RemoteException does). Many feel that allowing the bean developer to
ignore the robustness issues is a mistake. We think not given the following.

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.4 $ $Date: 2003/03/15 23:54:39 $

Page 1
Copyright © 2003 The Apache Software Foundation. All rights reserved.

mailto:projects-subscribe@incubator.apache.org
http://java.sun.com/people/jag/Fallacies.html
http://java.sun.com/people/jag/Fallacies.html
http://java.sun.com/people/jag/Fallacies.html
http://java.sun.com/people/jag/Fallacies.html
http://java.sun.com/people/jag/Fallacies.html
http://java.sun.com/people/jag/Fallacies.html
http://java.sun.com/people/jag/Fallacies.html

1. The container could be programmed to know about InvocationException.
2. AltRMI has configurable policies that can help re-establish connection whilst in use.
3. Standard handling of RemoteException sucks.
4. It is difficult in EJB, in terms of coverage, to test your huge amounts of RemoteException

handling code.
5. Most web-app uses of beans have a single "handler" place where pertinent exceptions are

already caught.

3.1. 1. The container could be programmed to know about
InvocationException

A lot of beans coding is 'bean invokes method in bean which invokes method in bean'. In this
case there are several places in the invocation stack where the container's logic is delegating
between beans. Container could easily handle failing connections and take multiple actions:
re-establish report, redirect, abend services or server. If there is a configurable policy for
such events that may include the invoking of methods in, say, 'contingency' beans.

3.2. 2. AltRMI has configurable policies that can help reestablish
connection whilst in use.

AltRMI has a pluggable architecture for re-establishing connections (and reporting timings
etc). Whilst in the middle of an invocation, if the connection is lost, AltRMI can try to
re-establish the connection and complete the method invocation normally. A delay would of
course be encountered, but if administrators are watching the logs, then they can determine
where failures are happening and what to do long term about it. Programmed policies
(configured in the container) could be "try perpetually to reconnect", "try five times only, one
a second", "fail immediately".

3.3. 3. Standard handling of RemoteException sucks.

Referring to the various ways EJB teams handle RemoteException, in the thousands of places
in a typical J2EE solution where it is thrown, different solutions are...

3.3.1. 3.1. Declare throws RemoteException on every applicable method.

That means that it can often arrive back at the container. The container always reports it
verbosely.

3.3.2. 3.2. Have a standard catch block and pass the RemoteException to a standard
handle method that does something with it.

AltRMI - Overview

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.4 $ $Date: 2003/03/15 23:54:39 $

Page 2
Copyright © 2003 The Apache Software Foundation. All rights reserved.

That something can often by turn it into a custom derivative of RuntimeException as well as
reporting it. This strategy makes you wonder why it was not a derivative of
RuntimeException in the first place.

3.3.3. 3.3. Try the failing method call again, or n times.

Clutters your code with reams of retry logic. What if it still fails? Combine this with (1) or
(2) as well?

3.4. 4. It is difficult in EJB, in terms of coverage, to test your huge amounts
of RemoteException handling code

Your EJB team has developed a huge amount of code for the business logic, and
consequentually loads of code concerning RemoteException. Question how do they test the
"connection failing" logic? Do they rip out cables while the machine is in use? No that does
not yield good coverage. Do they have test cases and mock beans that throw
RemoteException? Yes probably, but that is an artificial connection outage. However most
teams do not test more than a single case, and are happy for the same RemoteException
handler block to be used all over the place.

3.5. 5. Most web-app uses of beans have a single 'handler' place where
pertinent exceptions are already caught.

Webapps that use multiple beans (assuming a decent MVC separation or a framework like
Velocity) already have a place where central exception handling is going on. With AltRMI,
you can catch InvocationException where you feel is fit. EJB teams that choose to have
throws RemoteException on all methods (percolating it up the stack) probably also choose to
finally handle it centrally. Like so ...

public Template handleRequest(HttpServletRequest req, HttpServletResponse resp, Context ctx) {
Template template = null;
String templateName = null;
HttpSession sess = req.getSession();
sess.setAttribute(ERR_MSG_TAG, "all ok");
try {

try {
// Process the command
templateName = processRequest(req, resp, ctx);
// Get the template
template = getTemplate(templateName);

} catch (InvocationException aie) {
template = getTemplate("commfailure.vm");

}
} catch (ResourceNotFoundException rnfe) {

AltRMI - Overview

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.4 $ $Date: 2003/03/15 23:54:39 $

Page 3
Copyright © 2003 The Apache Software Foundation. All rights reserved.

// blah blah
} catch (ParseErrorException pee) {

// blah blah
} catch (Exception e) {

// blah blah
}
return template;

}

4. Things yet to do
There is an ongoing plan for features to be added to AltRMI. On the transports page, there
are some related future requirements listed. Below are the big features yet to do.

4.1. Callback

We have implemented an experimental callback structure. We have had to make the
communication asynchronous to do this.

4.2. True dynamic creation of Proxies

We curently use javac to compile stubs from source. It feels natuaral to use this technique as
we think in terms of the Java the language. We know that the main interface to Javac is
deprecated in JDK1.4 and feel we should move to some less static and more beanlike tool.
An obvious choice would be BCEL and we are working on an implementation.

4.3. Secure Transports

Some variations on the current transports to allow SSL connections.

5. External uses of AltRMI

5.1. Instrument project - Avalon

The Excalibur Instrument package as part of Avalon.

5.2. Enterprise Object Broker

An EJB replacement, current hosted at SourceForge

5.3. Marathon Man

AltRMI - Overview

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.4 $ $Date: 2003/03/15 23:54:39 $

Page 4
Copyright © 2003 The Apache Software Foundation. All rights reserved.

http://avalon.apache.org/excalibur/instrument/
http://avalon.apache.org/excalibur/instrument/
http://www.enterpriseobjectbroker.org

A functional test runner for Swing applications at SourceForge

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.4 $ $Date: 2003/03/15 23:54:39 $

AltRMI - Overview

Copyright (c) @year@ The Apache Incubator Project. All rights reserved. $Revision: 1.4 $ $Date: 2003/03/15 23:54:39 $

Page 5
Copyright © 2003 The Apache Software Foundation. All rights reserved.

http://marathonman.sourceforge.net/

	AltRMI - Overview
	1 Introduction
	2 Feature Differences
	3 Connection Robustness
	3.1 1. The container could be programmed to know about InvocationException
	3.2 2. AltRMI has configurable policies that can help reestablish connection whilst in use.
	3.3 3. Standard handling of RemoteException sucks.
	3.3.1 3.1. Declare throws RemoteException on every applicable method.
	3.3.2 3.2. Have a standard catch block and pass the RemoteException to a standard handle
	 method that does something with it.
	3.3.3 3.3. Try the failing method call again, or n times.

	3.4 4. It is difficult in EJB, in terms of coverage, to test your huge amounts of
 RemoteException handling code
	3.5 5. Most web-app uses of beans have a single 'handler' place where pertinent
 	 exceptions are already caught.

	4 Things yet to do
	4.1 Callback
	4.2 True dynamic creation of Proxies
	4.3 Secure Transports

	5 External uses of AltRMI
	5.1 Instrument project - Avalon
	5.2 Enterprise Object Broker
	5.3 Marathon Man

