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Surface Interpolation from Sparse Cross
Sections Using Region Correspondence

G. M. Treece*, R. W. Prager, A. H. Gee, and L. Berman

Abstract—The ability to estimate a surface from a set of cross
sections allows calculation of the enclosed volume and the display
of the surface in three-dimensions. This process has increasingly
been used to derive useful information from medical data.
However, extracting the cross sections (segmenting) can be very
difficult, and automatic segmentation methods are not sufficiently
robust to handle all situations. Hence, it is an advantage if the
surface reconstruction algorithm can work effectively on a small
number of cross sections. In addition, cross sections of medical
data are often quite complex.Shape-based interpolationis a simple
and elegant solution to this problem, although it has known
limitations when handling complex shapes. In this paper, the
shape-based interpolation paradigm is extended to interpolate
a surface through sparse, complex cross sections, providing a
significant improvement over our previously published maximal
disc-guided interpolation. The performance of this algorithm is
demonstrated on various types of medical data (X-ray computed
tomography, magnetic resonance imaging and three-dimensional
ultrasound). Although the correspondence problem in general
remains unsolved, it is demonstrated that correct surfaces can be
estimated from a limited amount of real data, through the use of
region rather than objectcorrespondence.

Index Terms—Object correspondence, shape-based interpola-
tion, surface from cross sections.

I. INTRODUCTION

T HREE-DIMENSIONAL (3-D) data is now available in
many medical imaging modalities. One of the ways of dis-

playing such data is by rendering a surface within it. In order
to do this, the position of the surface has to be determined by
some means. This is often achieved by segmenting many planes
through the data, resulting in a set of cross sections from which
the surface can be estimated. If the data is sufficiently dense,
and the segmentation is performed over all of it, a surface can
be rendered directly from these cross sections.

In practice, there are many situations where this is not the
case. In X-ray computed tomography (CT) data, for instance,
the resolution of the pixels in each plane is typically greater
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than the spacing of these planes, and it is desirable to interpolate
new data between them. The simplest interpolation technique is
linear, using the original grey scale values, however, this can
generate artifacts in subsequent surface renderings [1]. Hence,
object-based interpolation methods are often used, which inter-
polate the object cross section rather than the grey scale values.

Segmentation of medical data is nontrivial, and although
there are many techniques which exist for automatically seg-
menting specific data, they are not sufficiently robust for generic
use. Consequently, manual segmentation, or computer-assisted
manual segmentation [2], [3] is often necessary. In typical
applications, the resolution of the data is 256256 256 or
so—which implies manual segmentation is required in several
hundred planes. Hence, even where the data is sufficiently
dense that surface interpolation is not strictly necessary, it can
be helpful in reducing the number of planes which have to be
segmented.

In freehand 3-D ultrasound, the original data is acquired on
planes which are not parallel. Although it is possible to inter-
polate this data to a uniform array and segment this array, it is
easier to segment the original images (B-scans). This leads to
cross sections which are themselves not parallel. In addition,
ultrasound B-scans are particularly difficult to segment auto-
matically, due to the various artifacts present in these images.
It is, therefore, important to have a robust surface interpolation
algorithm which can handle nonparallel cross sections. It is also
important for this algorithm to be fast, so that the surface estima-
tion can be used iteratively to refine the manual segmentation.

II. RELATED WORK

A. Surface from Cross Sections

There are two distinct approaches for constructing a surface
from cross sections of an object. Both approaches can be used
to generate a triangular mesh of the surface, which is useful for
rendering using standard graphics hardware. The first approach
directly triangulates the set of points making up each of these
cross sections, such that they become the vertices of the trian-
gular mesh. The alternative is to use the cross sections to esti-
mate a 3-D function which represents some measure of distance
from any point to the surface. Once this function has been cre-
ated, the zero iso-surface can be triangulated to reveal the object
surface. This approach was originally suggested by Levin for the
interpolation of CT data [4].

Direct triangulation of points on the cross sections is a diffi-
cult (though well studied) problem in cases where the cross-sec-
tional shape varies between planes. Additional vertices must be
created if the topology changes, for instance a saddle point for
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a branching structure. It is also impossible to constrain the as-
pect ratios of the generated triangles, since the vertices are de-
fined by the positions of the cross sections. This can lead to poor
quality surface displays if Gouraud shading (which is the fastest
effective shading technique) is used. Much effort is required to
detect and correct special cases where the triangulation of com-
plex shapes might otherwise fail [5]–[8]. In addition, there have
been very few examples in the literature of triangulation of non-
parallel cross sections [9].

In contrast, the functional approach applies the same criteria
to simple and complex shapes. Once the function has been cre-
ated, the iso-surface can be triangulated simply and quickly by
a variety of algorithms, marching cubes [10] being the most
widely used, although other algorithms can give better quality
meshes [11]. In some cases, extracting the iso-surface at some
nonzero value (i.e., at a constant distance from the actual sur-
face) can also provide useful information [12].

Shape-based interpolation [1], [13] is probably the simplest
form of distance function creation. In this method, binary im-
ages defining the object cross section are first transformed, such
that each pixel in the image is replaced by the minimum dis-
tance to the cross section. The distance transform can be esti-
mated most efficiently by an algorithm introduced by Borgefors
[14]. Pixels inside the object are assigned positive distances,
and those outside negative. These two-dimensional (2-D) dis-
tance functions can then be interpolated using linear interpola-
tion, to give a continuous 3-D distance function, where the
zero iso-surface represents the estimated surface.

Shape-based interpolation gives good results for cross sec-
tions which do not differ significantly between slices, but per-
forms poorly when the cross sections do not have significant
overlap, or have very different shapes. This is demonstrated in
Fig. 1, which shows some (near) parallel cross sections from a
freehand 3-D ultrasound scan of a part of the hepatic system.
Fig. 1(a) and (b) shows the actual anatomy, whereas Fig. 1(d)
shows the result of applying shape-based interpolation to every
other cross section. Since this is a linear interpolation, normal to
the scan planes, the surface can only exist within the projection
of the original cross sections—where these do not overlap, the
cross sections are not connected.

This problem has been addressed to some extent by moving
the cross sections to align the centroids of each objectbeforein-
terpolation (then using the inverse transform on the interpolated
cross sections) [15], as in Fig. 1(e). This works well for tree-like
shapes which have been scanned transverse to the main axis, like
the top three cross sections in Fig. 1(e). However, disastrous re-
sults can ensue when the shape of each cross section changes
dramatically, even if the original shape is still a tree-like struc-
ture, as can be seen from the other cross sections in the figure.
Scaling each cross section such that the bounding rectangles are
the same size, in addition to aligning the object centroids, can
help in some cases [16]—but makes the situation worse in the
case of Fig. 1(f). An implementationally more complicated, but
practically very similar approach based on mathematical mor-
phology, which aligns objects on each cross section using an it-
erative minimization of distance transform values, is presented
in [17].

Fig. 1. Part of the hepatic system. The cross sections were manually outlined
on the original images (B-scans) of a freehand 3-D ultrasound investigation. (a)
and (b) shows the original cross sections, (d)-(h) shows the surface interpolated
from the selected cross sections shown in (c).

Where there is some definition of connectivity in all of the
above algorithms, it is based onwhole contours, but it can be
seen from Fig. 1(e) and (f) that this is not always appropriate: the
small contours only correspond to a small part of the longer con-
tours. An alternative object-based interpolation approach, dy-
namic elastic interpolation, begins to address this problem [18].
Here, a force field is constructed which iteratively deforms one
cross section toward the other. The initial formulation produced
similar results to centroid-guided shape-based interpolation for
complex objects. However, this behavior was improved by im-
posing an upper threshold on the forces at each point on the
contour. This prevents far portions of the cross section having
a detrimental effect on the deformation, but also adds further
complexity, and an additional parameter to be estimated.

We have previously presented an algorithm which guides the
interpolation of a distance transform by using correspondence
of regionsof cross sections [19]. This region correspondence is
determined by representing each cross section by a set of discs
which are contained by the object. The result of this algorithm,
maximal disc-guided interpolation, is shown in Fig. 1(g).
This is clearly an improvement on the previous shape-based
techniques, however, it is still not a faithful representation of
the actual anatomy [Fig. 1(b)]. In addition, in common with the
centroid based techniques, this technique can introduce artifacts
into complicated surfaces which would not be introduced by
shape-based interpolation alone. In contrast, the extension
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of this algorithm presented in this report gives the surface of
Fig. 1(h) which in this case correctly represents the actual
anatomy.

It is important to recognize that no technique can guarantee
to reconstruct the actual anatomy fromany set of cross sec-
tions. It will always be possible to create a set of cross sections
whose connectedness will be misjudged by a given algorithm.
This is simply a consequence of under-sampling: if the inter-
slice spacing is greater than the shortest wavelength present in
the data, fine detail will inevitably be missed in the surface re-
construction. However, it is fair to expect a reconstruction algo-
rithm to produce a “reasonable” surface, in the sense that similar
contours should be connected and the surface should have the
simplest topology given the cross sections (see [20] for further
discussion of this issue)—this is the goal of the algorithm pre-
sented in this paper.

B. Surface from Scattered Points

Algorithms which can create surfaces from scattered point
sets can also be applied to more regular planar cross sections,
by using the vertices of each cross section—although in general
this increases the complexity of the problem. There are several
such algorithms which generate a 3-D distance function from
these points [21]–[23]. These represent very general solutions,
but as a result are not always well constrained, and many points
are required to ensure a correct reconstruction.

In freehand 3-D ultrasound, the cross sections are already
nonparallel and, therefore, this approach becomes more attrac-
tive: indeed it has recently been implemented for reconstructing
the left ventricle of porcine hearts in a water bath [24]. However,
it was noted that the ultrasound data was not sufficiently dense
to constrain the surface, and the method had to be adapted to
include a prior model of the surface, which was then deformed
to represent the data, rather than constructed from the data.

To allow interpolation of more sparse data, the problem can
also be restated in terms of minimizing the curvature of the re-
sulting surface. This can be achieved by using volume splines to
reconstruct the surface from cross sections. In one method [25],
each cross section is first represented by a 2-D carrier function,
whose values are calculated at the vertices of the cross section.
Then a spline function of two variables is used to approximate
the function, which can then be linearly interpolated between
each cross section, once again giving a 3-D distance function
which is then thresholded at zero. Alternatively, a volume spline
can be fitted to all the cross sections simultaneously, generating
the 3-D distance function directly [26]. Since these methods in-
volve the inversion of an matrix, where is the number
of points on each cross section for the former method, or on all
cross sections for the latter, the processing time increases sig-
nificantly with data complexity.

C. Morphing

The idea of constructing a surface between two differing
cross sections is very closely linked with that of “morphing”
one 2-D shape to another, much used in computer graphics
[27]. In fact, distance field interpolation has recently been
used for this purpose [28]. Here, distance transformation is
combined with warping of the original binary images to give a

smoother transition (the technique is also applied to morphing
3-D data). There is, however, a difference between the relative
philosophies in computer graphics and medical imaging, in that
user-definition of the way in which the image is transformed
is considered an advantage in computer graphics, whereas it is
desired that the cross sections should be created automatically
from medical data. In computer graphics, the task is to create
a new surface, whereas the clinician wants to visualise a pre-
existing surface. Nevertheless, the idea of warping a distance
transform is close to that of interpolating it based on region
correspondence, since the warping function is itself an estimate
of local correspondence.

Distance transformation has also been used in conjunction
with field-morphing in order to interpolate the intensity infor-
mation in medical images [29]. Here, shape-based interpolation
is used to determine intermediate cross sections which form
the basis of the control points required by the field-morphing
process.

D. Original Contribution

We present a major extension ofmaximal disc-guided inter-
polation, first presented in [19]. The algorithm has been im-
proved in several important areas.

• The traditional “branching” and “correspondence”
problems are combined by determining “region corre-
spondence.” This is achieved by representing the cross
sections as a set of maximal discs, derived from the
distance transformation of the cross section. The distance
transformation is also used to determine the correspon-
dence between discs on neighboring cross sections. This
dramatically improves the estimated surface of complex
objects.

• External discs are used in addition to internal ones. This
means that holes in the object, or external concave fea-
tures, can also be used to determine correspondence.

• An improved combination of the disc correspondences
gives a better point correspondence, resulting in better
treatment of cross sections of multiple objects.

In addition, to the authors’ knowledge, there has previously
been no attempt to compare the surfaces generated by the deriva-
tives of shape-based interpolation across a broad range of data.
This paper contains comparisons of surfaces from 3-D ultra-
sound, CT, and MRI data.

III. M AXIMAL DISC GUIDED INTERPOLATION

A. Overall Strategy

The overall strategy of the surface interpolation algorithm is
displayed in Fig. 2. This differs from shape-based interpolation
in that the interpolation direction is allowed to vary at each point
dependent on the region correspondence. Since shape-based in-
terpolation already requires that a distance transform has been
calculated for each cross section, it is straightforward to extract
a set of maximal discs from these transforms, which loosely
represent the shape of each object. Correspondence is then cal-
culated for these discs, assisted by the original distance trans-
forms. The interpolation direction at any point is then calcu-
lated as a weighted sum of contributions from each disc, where
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Fig. 2. Surface interpolation algorithm. (a) Original cross sections. (b) Distance transformation is first performed on each cross section, then (c) a set
of representative discs can be extracted from these transformations. (d) Region correspondence is estimated for each disc, and this is combined to give a
correspondence direction at any point. (e) This provides the interpolation direction for the distance field interpolation, which can then be triangulated (f) to
reveal the object surface.

the weighting is again derived from the original distance trans-
forms. Thus, the distance function can be found at any point in
space between neighboring cross sections and evaluated on a
grid suitable for zero iso-surface triangulation.

The use of the distance transform to weight both the cor-
respondence and interpolation direction calculations makes up
for the loose representation of the object by only a few discs.
Centers of discs are a useful representation to guide the shape-
based interpolation, since they are independent of the disc radii.
Shape-based interpolation is itself already very good at handling
changes of scale in similar shapes.

B. Processing Steps

1) Segmentation:Binary segmentation of each cross sec-
tion, by any 2-D method, must be performed prior to surface
interpolation. This information is required in the form of a
binary array, but can easily be converted from sets of ordered
contour points, like those shown in Fig. 2(a).

2) Distance Field Transformation:An efficient algorithm to
calculate the distance transformation for a rectangular area is
given in [14]. The distance transform is calculated for each cross
section, as in Fig. 2(b). In addition, a far point distance algorithm
described in [19] is used to provide distance values outside this
rectangular region.

3) Maximal Disc Representation:Extraction of a set of
maximal discs is also described in [19]. The disc centers are
a subset of the peaks and ridges of the distance transform,
the radius in each case being determined by the value of the
distance transform at the center. In this case, we also want to
include external discs (those outside, rather than contained by,
the contours), so the troughs and valleys are also considered,
using the same criteria as for the internal discs. This allows
correspondence of holes, concavities and gaps between objects,
in addition to the objects themselves. The region over which

Fig. 3. Calculation of interpolation direction. Discs 1 and 3 are from one cross
section, and 2 and 4 from another. The regions A, B and C are those nearest
to discs 1 and 2, 2 and 3, and 3 and 4, respectively. Dashed arrows show the
information from each of the top and bottom planes, bold arrows show the
interpolation direction.

external discs are gathered is limited by the size of the distance
transformed area1 . The set of internal and external discs for the
cross sections in Fig. 2(a) is shown in Fig. 2(c).

4) Disc Correspondence:Fig. 3 shows the calculation of in-
terpolation direction for the previous and new algorithms. In
Fig. 3(a) and Fig. 3(c), the discs were used to calculate a “local
centroid” vector in each plane, which indicated the direction
to the nearest object contour. Local centroids from each neigh-
boring plane were combined at each point to give the interpo-
lation direction. This results in correspondence between discs 2
and 3 in region B, potentially generating a “spur” in that direc-
tion on the surface, which does not seem appropriate from the
cross sections.

The new algorithm calculates the correspondence direction
for each disc first, then interpolates this, rather than the local
centroid, at each point. This results in a more consistent corre-
spondence (and, hence, interpolation direction) across the plane,
as shown in Fig. 3(b) and (d).

1In reality, there are situations where external discs exist outside this area, but
this has little practical effect on the results.
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Fig. 4. Effect of" and" on correspondence. Discsa . . . a (shown in dark grey) are from one plane, and discb (shown light grey and dashed) is projected
onto this plane from another. (a)-(d) The calculation of “coverage error”" for each pair of discs—the converse error" is not shown, since in this case it is nearly
the same for all disc pairs. (e) The resulting correspondence vector for discb . (f) demonstrates the effect on" of adding discb .

The correspondence for each disc on each cross section is
calculated as the weighted sum of contributions from each of
the discs on the neighboring cross section:

if

otherwise

(1)

where is the correspondence vector for disc is the vector
from the center of disc to disc , and is a weighting indi-
cating the likelihood of correspondence of discsand , which
are from cross sections on neighboring planesand . All dis-
tances and vectors are calculated in either of these planes (it does
not matter which), by projection of the discs from the alternate
plane along the average normal to these planes.

The calculation of correspondence likelihood for each pair of
discc is the most important step in this process. It is estimated
by comparing, in each plane, the difference in distance trans-
form values at the center of each disc with the planar distance
between the disc centers. This gives an error which, if it is small
compared with the radii of each of the discs, is used as the like-
lihood estimate for this pair of discs. If the error is larger than
either of the disc radii, no correspondence is made between these
discs, and the likelihood estimate is set to zero

if and

otherwise
(2)

chamfer

chamfer (3)

is itself simply a combination of the “coverage errors” for
each disc, and , with a small value chosen to be the square
of the chamfer distance represented by one image pixel, which
prevents an infinite weighting. is an estimate of the extent to
which the distance field of planeat the projected center of disc

is affected by disc . Conversely, is an estimate of the extent
to which the distance field of plane at the projected center of

disc is affected by disc. and are the distance field values
at the disc centers, and and are the distance field values
at the projection of each disc on the opposite plane. The func-
tion chamfer is an estimate of , measured along a path
formed entirely from lines parallel or at 45to the image edges.
This is the same estimate as used in the distance transformation
of the cross sections [14].

This way of weighting the contributions from each disc has a
variety of features which make it attractive.

• Discs will only correspond with the nearest discs on the
neighboring cross section if the nearness relationship is
reciprocal. This allows regions to be left unconnected, if
appropriate.

• It is notnecessary for regions (or discs) to overlap in order
to correspond.

• Small discs will only tend to have a local effect on cor-
respondence, unless the contour they represent is itself
small. Larger discs on the same contour will take priority
in the far field.

• The only limiting assumption is that at least one contour
must be connected to one other contour on a neighboring
plane, i.e., at least one object must span the cross sections.

Fig. 4 shows an example of the calculation of coverage error,
given in (3), for one disc from a pair of simple cross sections.
Essentially, is large if there are other discs on the cross sec-
tion which are nearer to the center of the projected disc. This is
equally the case for discs from other contours, as in Fig. 4(a), or
from the same contour, as in Fig. 4(d). The criterion for
there to be any correspondence at all, rather than 0, allows
for the loose representation of the contour by a small number of
discs—in practice will rarely be equal to zero. If thereis cor-
respondence, thenindicates how strong the correspondence is,
so for instance disc in Fig. 4(b) has a lower error than disc

in Fig. 4(c). This leads to a correspondence vector which is
closer to the disc with the lower error, as in Fig. 4(e).

In the previous case, the converse erroris nearly the same
for each pair of discs, and as a result has little bearing on the
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correspondence. In general, both errors must be considered be-
fore correspondence between a pair of discs is determined. The
addition of another contour to planein Fig. 4(f) demonstrates
this. for discs and is now greater than , so even though

has not changed, there is no longer any correspondence be-
tween these discs. The effect on the correspondence vector for

is to move it further away from , thus “sharing out” the
larger contour on plane more equally between and .

The correspondence is calculated for each interior disc,
based on all the other interior discs, and for each exterior disc,
based on all the other exterior discs, such that interior discs do
not correspond to exterior discs, andvice versa. Any discs which
have no correspondence at all are ignored in later processing.
The result of this operation on the cross sections of Fig. 2(a) is
shown in Fig. 2(d)—note that in this case the external discs have
no partners on neighboring planes and, hence, do not contribute
to the correspondence estimate.

5) Point Correspondence:Once the correspondence for
eachdisc has been estimated, the correspondence (and, there-
fore, the interpolation direction) at anypointon each plane can
also be estimated from a weighted sum of the disc correspon-
dences on that plane. This is performed in much the same way
as for disc correspondence, save that now the information from
both internal and external discs must be combined. The point
correspondence at any point on the plane, is as follows:

(4)
where

int implies internal discs;
ext implies external discs;

distance field value at the point.
There are three separate cases in (4). In the first and sim-

plest case, if the geometry is such that there are no external
discs, or no external discs have any correspondence, then the
point correspondence depends solely on the internal discs much
as in (1). Otherwise, the point correspondence is calculated by
a combined weighting of internal and external discs, using a
slightly different equation for points inside ( ) and out-
side ( ) the object cross section. This combined weighting
is further affected by the estimate of the distance to the internal
and external disc sets, and . These estimates are calcu-
lated using a similar weighting to the first case of (4)

(5)

The effect of these values in (4) is to ensure that the use of
internal or external discs is governed by the distance transform
value , i.e., how far the current point is inside or outside the
object cross section. Inside the cross section, the weighting of

internal discs increases as the point moves closer to the nearest
internal disc. Outside the cross section, the weighting of external
discs increases as the point moves closer to the nearest external
disc. At the edge of the cross section ( 0), internal and
external disc correspondences are evenly weighted.

The weighting and coverage error in (4) and (5) are
similar to those in (2) and (3), save that the error is now based
on the distance field at the point position , rather than at the
center of the projected disc

(6)

chamfer (7)

The final correspondence for a pointbetweenneighboring
planes is found from the average of the values offrom each
plane, at the intersection of the average plane normal with these
planes.

6) Interpolation and Iso-Surface Extraction:The point cor-
respondence is a vector lying within the plane of one of the
neighboring cross sections. If the cross sections are parallel, this
can easily be converted to an interpolation direction by adding
it to the vector distance between planes. This operation is essen-
tially the same for nonparallel planes, although care is needed
to constrain the eventual interpolation direction [19].

The distance field values at each point in a regular lattice are
found by first establishing the interpolation direction for that
point, then linearly interpolating the neighboring distance trans-
forms in this direction. We use a body-centered cubic lattice,
which has better sampling efficiency than a simple cubic lattice,
and is appropriate for using regularised marching tetrahedra to
extract the zero iso-surface of the interpolated data [11]. The
resolution of the interpolated surface can be varied by varying
the resolution of the sampling lattice.

IV. RESULTS

Surfaces rather than numerical results are shown since they
convey much more information, and provide an understanding
of the underlying cause of the differences between the algo-
rithms. Volume measures [13] or binary difference measures
[15] can hide gross local changes in topology. Surfaces were
estimated by four variants of shape-based interpolation.

1) Shape-Based:The original algorithm [1] was imple-
mented (for nonparallel planes the interpolation direction
was taken to be the average planar normal to those
planes).

2) Centroid-Guided:This was a combination of techniques
described in [15] and [16], whereby the interpolation was
performed for each pair of corresponding contours along
the direction of linked centroids. The bounding rectan-
gles for each contour were also scaled independently in
the and directions such that they were the same size.
Correspondence of contours was determined manually.
The union of the generated surfaces was used to create
the final object surface. The method of edge-shrinking
interpolation [17] was not implemented since it is much
more complicated, and in practice gives very similar re-
sults to the centroid-guided technique. The results would
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beslightlybetter, due to the more sophisticated alignment
of corresponding contours, but the same gross artifacts
would be present.

3) Previous Disc-Guided:The technique described in our
previous paper [19].

4) New Disc-Guided:The technique described here.
All the surfaces were generated by triangulating the zero

iso-surface of the interpolated distance fields, using regularised
marching tetrahedra [11]. These triangulations were rendered
with Gouraud shading using the Geomview2 visualization
package. Processing was done on a Silicon Graphics Indigo 2
R10000 workstation3 with 256-Mb RAM.

It should be noted that there are many examples of simple
surfaces where the difference between the four techniques de-
scribed above is negligible. The following data have been se-
lected to highlight the properties of each algorithm over a broad
range of surface types, particularly concentrating on surfaces
which produce different results with each algorithm.

In vivo ultrasound data was recorded using a Toshiba Pow-
ervision 70004 ultrasound machine with a 3.75-MHz convex
curvilinear array probe. A magnetic field position sensor was
mounted on this and the position signal, in addition to the video
output of the ultrasound machine, was fed to a Silicon Graphics
Indy workstation. The child’s skull in Fig. 6 is from data pro-
vided with the 3DViewnix5 visualization package [30]. This is
a high resolution (0.41 mm 0.41 mm 1 mm) CT scan. The
female pelvis in Fig. 7 is from CT data provided by the Visible
Human Project6 . In this case, the original CT resolution was
0.9375 mm 0.9375 mm 1 mm. The human liver in Fig. 8 is
from MRI data provided by the Visible Human Project, in this
case from the male data set, the original resolution being 1.875
mm 1.875 mm 4 mm.

Segmentation of the data, and acquisition of the ultrasound
images, was performed using Stradx7 software [31]. The ultra-
sound and MRI data was segmented manually, using 31 and 5
cross sections, respectively. The CT data was segmented by first
thresholding, then manually “tidying up” the cross sections to
remove some of the incorrectly thresholded regions. Every sixth
cross section was segmented for the skull, and every tenth for the
pelvis.

The foetus in Fig. 5 is quite a complex shape—many cross
sections contain only one contour which nevertheless includes
the body and limbs. Centroid-guided interpolation performs
very badly when connecting such contours with simple cross
sections of the torso—thin “webs” are formed between regions
which should not be connected. The previous disc-guided
interpolation improves on this, but still suffers from similar
drawbacks, and in this case shape-based interpolation performs
better than either of them. However, shape-based interpolation
incorrectly connects the upper hand with the head, a connection

2http://www.geom.umn.edu/software/geomview/.
3Silicon Graphics Incorporated, Mountain View, CA.
4Toshiba America Medical Systems, Tustin, CA.
5FromCHILD.IM0 , 3DViewnix v1.1.1 (c) 1993–1996 M I P G University

of Pennsylvania, Philadelphia, PA. All Rights Reserved.
6The Visible Human Project is an initiative from the National Library of

Medicine in Bethesda, MD.
7http://svr-www.eng.cam.ac.uk/~rwp/stradx/

Fig. 5. Foetus at week 22. The cross sections were manually outlined in the
original images (B-scans) of a freehand 3-D ultrasound investigation.

Fig. 6. Child’s skull. The cross sections were automatically segmented by
thresholding CT data. The surface is rendered with a slight transparency, so that
both the inner and outer surfaces can be seen.

which is not made by the new disc-guided interpolation, even
though the contours overlap, due to the use of external discs.
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TABLE I
PROCESSINGTIME. THESEINCLUDE ALL OPERATIONS AFTERCREATION OF THECROSSSECTIONS, UP TO AND INCLUDING

DISPLAY OF THE TRIANGULATED SURFACE

Times were recorded on a Silicon Graphics INDIGO 2 R10000 Workstation.

Fig. 7. Female pelvis. The cross sections were semi-automatically segmented
by thresholding CT data, then manually editing the results of this threshold
operation.

Fig. 8. Human liver. The cross sections were manually outlined from coronal
MRI slices of the abdomen.

The child’s skull in Fig. 6 is a good example of the sort
of complicated cross sections which result from automatically
thresholding medical images. Most cross sections have many
contours, and each contour is complex. The centroid-guided
technique is not appropriate in this case, since there are multiple
contours which are neither simple nor tree-like. Liu’s method
[17] would have given sensible results if the inner skull contour
was separate from the outer. However, this is not the case on
some of the cross sections and, hence, there is no topological
hole in these cross sections. The cross sections in the upper part
of the skull in particular are far from overlapping, which results
in the separate rings constructed by shape-based interpolation.

The previous disc-guided method improves on this result, but
it is still limited by the condition that the discs representing
each cross section must overlap in order for them to correspond.
There is no such constraint in the new disc-guided interpolation
and, hence, the skull can still be correctly reconstructed despite
the lack of overlap.

The female pelvis in Fig. 7 shows the interplay between the
interpolation process and the resolution of the interpolated data
from which the triangulation is created. The hole in the left-hand
side of the pelvis in Fig. 7(b) is the result of under-sampling
of data—the pelvis is very thin in this region. Even though the
other figures are generated at the same resolution, this effect has
been reduced by a better interpolation direction. Fig. 7(c) also
demonstrates the “spurs” which can be generated by the pre-
vious disc-guided interpolation, for instance from the left-hand
femur to the lower part of the pelvis.

The few cross sections segmented from the liver data in Fig. 8
contain enough information to give a reasonable idea of the
shape of the liver and estimate of its volume. However, this
is not enough information for shape-based interpolation to es-
timate the surface; hence, the large invagination in Fig. 8(b).
This sort of shape should be ideally suited to centroid-guided
interpolation, however, the disc-guided interpolation performs
slightly better (particularly noticeable on the sharp upper edge
of the liver). This is because the calculation of centroid position
is dominated by the bulk of the object, hence, small features on
large objects do not contribute and may not be reconstructed
correctly. Disc-guided interpolation uses local information and
can readjust the interpolation direction in the region of the fea-
ture.

A. Processing Time

Processing times for each of the surfaces in this paper are
shown in Table I. The software was designed for nonparallel
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cross sections, and the processing time for the parallel cases (CT
and MRI) would have been significantly less had this not been
the case. However, since this applies equally to all the surface
interpolation algorithms, the times still give a good relative mea-
sure of performance.

Unsurprisingly, the more complex disc-based algorithms take
longer than the centroid-based or standard shape-based algo-
rithms. However, the increase in time is often quite small, since
all algorithms require calculation of the distance transform and
triangulation of the interpolated data. The additional processing
time for the disc-based algorithms scales with the number of
discs involved in the correspondence calculation, hence, long
thin objects (for instance the skull in Fig. 6) take more time to
process than more spherical objects. The new disc-based algo-
rithm takes longer than the previous algorithm, since external
discs are also considered.

V. CONCLUSION

The method of surface interpolation presented in this paper is
capable of improving on the results of shape-based interpolation
in many cases where there are few cross sections or the cross
sections vary significantly between planes. In addition, and un-
like previous methods, it can be relied upon not to generate ad-
ditional artifacts in cases where shape-based interpolation is al-
ready a good surface estimator. This is an important result, since
it indicates that the technique can be safely used on many dif-
ferent types of data.

The technique introduces a processing overhead, which in-
creases with the number of maximal discs required to represent
any cross section, but this overhead is small for many practical
cases. Even where the overhead is large, the reconstruction pro-
cessing time is still small compared with the time required to
segment the data. In addition, the ability of this algorithm to in-
terpolate sparse cross sections reduces the number which need
to be segmented, thus potentiallyreducingthe total time from
scanning to 3-D display.
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