
Ruminations of a Mavenite
Architecture, Design and Implementation

Bob McWhirter
bob@eng.werken.com

The Werken Company

http://www.werken.com/

February 13, 2003

Abstract

Maven, a project management tool created by Jason van Zyl in early
2002 has seen rapid evolution with an increase in both features and inad-
equacies. I have worked with Maven for only a few weeks, but is obvious
that in order to survive and thrive, certain changes must occur. Weather
these changes are evolutionary or revolutionary in terms of the current
Maven code-base is still to be decided. Herein, I address various good and
bad points that I have observed while using Maven on several projects.

1 Origins, History & Future

1.1 Motivation

Jason van Zyl, attempting to get a hold on the recently decoupled Turbine
components, decided to start the Maven project. Turbine had initially been a
mostly monolithic project, but over the course of time various components were
shed from the core project into other projects such as jakarta-commons. As
such, to develop on Turbine, a developer must have all dependencies up-to-date
and managing these dependent jars was a hassle. Maven is Jason’s attempt to
provide a consistent mechanism for building multi-project code-bases. Maven
was initially announced on February 25 on the turbine-dev mailing list.

1.2 The Early Years

The initial development was performed by Jason van Zyl, while documentation
was produced by Pete Kazmier. The current incarnation of Maven is basically
an add-on to widely-used jakarta-ant Java build-system.

Fairly quickly, Maven developed a good-sized base of developers, docu-
menters, testers and users. People immediately saw the beauty behind maven,
of isolating logic into an abstract project descriptor instead of directly coding

1

actions within ant. Maven grew quickly and now supports many J2EE com-
ponents, documentation-generator of several types, and advanced inter-project
dependency management.

The maven developer community is active on the #maven channel of Jon
Scott Steven’s IRC server irc.whichever.com.

1.3 The Future

The general consensus is that Maven could some day be an ant-killer, obviat-
ing the need for ant. While it may be politically incorrect within the jakarta
community, many of the maven developers believe there are fundamental flaws
with the design an implementation of ant, and hold little hope for improvement
in ant-2.

2 Features and Capabilities

2.1 Network-Enabled

2.1.1 Shared Dependency Repositories

Maven makes extensive use of the network when managing inter-project de-
pendencies. This is considered one of the most important features of Maven.
When building a project, and dependent libraries may be pulled from a com-
mon network repository and placed into a local cache. Maven itself manages
the classpath issues in order to allow building of the target project. No longer
must a user explicitly download dependencies and manually install them into
the correct locations for building, testing and deploying.

Maven currently resolves all project dependencies through a local cache
which may be populated from multiple other local or remote repositories.

The one main issue with regards to the remote repositories is administration.
Currently, the remote repository is simply an HTTP accessible directory. For ex-
ample, the main maven repository is locate at http://jakarta.apache.org/turbine/jars/.
Some sort of repository-management scheme needs to be implemented. Cur-
rently, the owner of the directory on the server is responsible for maintaining
the repository using normal file-system commands.

I propose that a repository management tool be created that will either
accept built jars from the responsible projects or provides some mechanism for
the repository itself to build releases of jars. In the common case, a project
could notify the repository, possibly through email or an HTTP request, that
a new version of a project is available. The repository is then responsible for
syncing out the correct version of the code from a revision-control system and
building an official build.

One issue with the method is that “official” builds will not actually come
from the project itself, but rather from the repository itself.

If each project were allowed to submit versions of their deliverables, strict
security must be in place. Potentially public-key signatures could be used while

2

submitting deliverables in order to prevent spoofing and the possibility of in-
troducing malicious code. This issue is extreme important with the central
repository because any bogus code propagates quickly to many other projects
and users. The downside of using signatures is that each project must establish
a relationship with each repository in order to verify public key fingerprints,
adding to administrative overhead.

As a complete departure, each project could possibly maintain their own
repository, under their own control, and simply register the repository itself with
a central repository-manager, instead of registering the actual deliverables.

2.2 Extensible Components

2.2.1 Action & Plug-In Extension

Maven, at the core, relies on elemental actions. Various elemental actions may
be used in concert to produce an extension, which is implemented as a run-time
plug-in. Elemental actions consist of things such as:

• Compilation of a source tree.

• Documentation generation of a source tree.

• Processing a set of templates and data.

• Compressing a file.

In the original version of Maven, based upon ant, these element actions
were simply ant’s own Task objects. Maven simply built the work already done
by the ant team. An ant Task is simply a parameterizable process. The ant
<javac> task, for example, takes srcDir, destDir, classpath and other flags
and parameters.

Larger-grain activities aggregate several elemental actions and parameterize
them with information from the project descriptor. A project to simply defines
the location of the source tree along with a set of external dependencies, and
Maven will determine the necessary invocation of <javac> to perform compila-
tion correctly.

Maven’s current reliance upon ant is proving to be one of its biggest faults.
Ant’s build-file language was never intended for the type of programming the
Maven developers are using it for. In order to implement the initialization, call-
backs and other features of Maven, many ant targets are required, drastically
slowing down even a small incremental build. Additionally, the passing of in-
formation in various forms to various targets in various build-files is sometimes
tenuous at best. Ant seems to basically be making the goals of Maven more dif-
ficult to attain than they should be. Several replacement options are described
below.

3

2.2.2 Project-Defined Callbacks

While Maven attempts to always Do The Right Thing, there are times that
a project will require the ability to augment and otherwise affect the normal
execution of a Maven build. Currently, this is implemented using a callback
mechanism. Before and after each Maven activity, the project is given an op-
portunity to fire a callback routine. This is currently also implemented as a
project-define ant target. By implementing project-defined callbacks in the ant
build-file language, Maven is accessible to the large body of ant-knowledgeable
developers.

3 Architectural & Design Issues

3.1 Elemental actions: Ant, Jelly or Otherwise

Internally, Maven implements the project descriptor as a normal graph of Jav-
aBeans known as the Project Object Model (POM). In the current implemen-
tation, information from the POM is extracted and made available to the ant
process in order to parameterize various elemental actions. Ant itself is cur-
rently the driver of Maven. A user must explicitly invoke maven capabilities
from his own ant build-file. It is this aspect of Maven being secondary to ant,
instead of being in control the creates hardships for the Maven developers.

We propose to, at the bare minimum, invert this relationship so that ant is
a slave to Maven. Maven would become a full application, instead of simply a
collection of ant tasks. This would allow each project to actually exist without
a build.xml file, unless required for implementation of callbacks.

Developers are finding it less-than-friendly to perform the complex logic
necessary for maven in ant’s XML language. Many feel that XML is not an
appropriate scripting language for these tasks. Several participants (including
the author) feel that for elemental tasks, a pure JavaBeans interface may be ap-
propriate. While ant has walked partially down their path by implementing the
Task interface, this interface is not generic and is dependent upon the rest of the
ant components. A developer may not simply use the Javac task independently
of the rest of ant.

I therefore propose that Maven uses independent elemental action JavaBeans
that do not rely upon other Maven components, necessarily (Figure 1).

Notice that this class contains absolutely nothing from the Maven project
itself. It is imminently re-usable in many places without maintaining complex
relationships to other components. At run-time, Maven would simply use re-
flection to invoke the execute() method.

This would be the basic building-block for Maven.
A middle mediator layer would be used to extract the necessary information

from the POM to parameterize the elemental actions.
The mediator layer may somehow be implemented using James Strachan’s

Jelly (Figure 2), or may simply be done using properties files and XPaths to
walk the POM (Figure 3).

4

import java.io.File;

public class Javac {

public Javac() {
....

}

public void setSourceDirectory(File sourceDirectory) {
....

}

public void setDestinationDirectory(File sourceDirectory) {
....

}

public void execute() throws Exception {
....

}
}

Figure 1: Javac Elemental Action

<maven:javac>

<sourceDirectory>${project.sourceDirectory}</sourceDirectory>
<destinationDirectory>${project.destinationDirectory}</destinationDirectory>
<classpath>${project.buildTimeDependencies}</classpath>
....

</maven:javac>

Figure 2: Jelly Mediator Example

sourceDirectory = /project/sourceDirectory

destinationDirectory = /project/destinationDirectory

classpath = /project/buildTimeDependencies

....

Figure 3: XPath Mediator Example

5

3.2 Composition and Inheritance

By implementing elemental actions simply as generic JavaBeans, all normal
Java constructs for inheritance and composition are available. I personally sug-
gest that Java is the method for constructing both elemental actions and the
larger-grained activities. Ant’s use of an interpreted XML scripting language
is important because every developer on every project was required to write
his own build-file. Since Maven makes this mostly unneeded, where only the
Maven developers have to create actions, binding ourselves directly to Java does
not seem bad. Through the use of aspect-oriented programming (AOP) or post-
compilation byte-code processing (possibly as class resolution time), we can add
dependency-checking advice before each invocation of an action’s execute()
method.

There is still a need for project-defined callbacks, and this is an area where
I believe we need many options. Maintaining the familiar ant build-file for
project-specific callbacks (a form of extension) is necessary. Though, I propose
that the callback mechanism include an abstraction layer so that callbacks may
be implemented as Java code, ant targets, jelly scripts, or others.

3.3 XML, JavaBeans and Testing

By implementing elemental actions are mere JavaBeans without dependency
upon Maven components, unit-testing will be much easier. We currently have
issues with attempting to test the ant-based Maven targets. By converting the
targets to JavaBeans, this will be alleviated. If we bind ourselves to an XML
scripting language or any sort as the only method for controlling the elemental
activities, the testing process becomes much more difficult and cross-cutting.

3.4 Dependencies

Dependencies between projects is accounted for through the repository mech-
anism described above. Dependencies between elemental actions and larger-
grained activities must also be accounted for. Each activity may also include
version specifiers. It may be possible to simply utilize the normal inter-project
dependency repository for the Maven-extension dependencies also. This could
be accomplished by tagging each project dependency as a build-time or run-time
dependency, possibly. More is discussed below in sections 4.1 and 4.2.

4 Implementation Issues

4.1 Dependencies

While the notion of dependencies seems simple enough, there are many complex-
ities involved, several of which have been directly experienced by the jakarta-ant
project team.

6

4.1.1 Maven Dependencies

Maven itself, as a project, has dependencies. When building Maven, it is no
different than building any other project. The complexity comes during the
execution of Maven, and maintain the correct classpaths. The classpath issue
is discussed below in section 4.2.

4.1.2 Extension Dependencies

Since Maven can load, at run-time, various extensions to provide more capabil-
ities, the dependencies (and possibly conflicts) between these extensions must
also be managed at run-time. Luckily, this is simply considered a subset of
the afore-mentioned maven dependencies when considering classpaths. Unlike
the run-time dependency mechanism, below, this requires a run-time loading of
dependent jars into Maven’s own process-space.

4.1.3 Build-Time Dependencies

Build-time dependencies can be considered a sub-set of the extension dependen-
cies above. There may exist an extension that provides an interface to javacc or
antlr through Maven. In addition to the dependency on those elemental activi-
ties, those activities themselves required the javacc or antlr tools to be available
within Maven’s process-space.

4.1.4 Run-Time/Deploy-Time Dependencies

Run-time/deploy-time dependencies are the simplest dependencies to manage.
These are not required to be present within Maven’s own process-space. Instead,
the list of them must be provided to activities and elemental actions executed
within Maven. For example, during compilation, Maven is not required to have
the dependent libraries within its process space, but it must provide to the Java
compiler a list of locations for the dependencies. The compiler uses this list
internally.

4.2 The Many Classpaths

4.2.1 Maven’s Classpath

Maven’s own classpath is comprised of the following:

• Core Maven Components. This includes maven.jar and all other libraries
that maven itself requires in order to operate.

• Extension Components. This includes extensions that bundled into jar
files and deployed within Maven itself.

• Build-time Components. This includes libraries that the extensions them-
selves rely upon.

7

4.2.2 Run-Time Dependency Classpath

The run-time dependency classpath is not actually loaded within Maven’s process-
space, but is simply a list of dependencies on the local drive that is made avail-
able to activities and actions.

4.2.3 Classpath interactions

By far, the most interesting classpath interaction involves junit. A project may
have a source-tree of unit tests written against junit 3.6. Therefore, junit-3.6.jar
is described as a run-time dependency, as it is required in order to actually
execute the unit-tests. Maven’s own junit action, though, may be compiled
against junit 3.7. Here we have a definite version mismatch. Somehow, we must
find a method for aligning run-time dependencies with extension and build-time
dependencies. Otherwise, users of Maven are inherently forced to use the version
of junit (or other libraries that exhibit similar usage idioms) that Maven itself
depends upon. This would be sub-optimal.

4.2.4 Classloaders

We should achieve complete isolation, where possible, between Maven’s own
classpath and the classpath provided to elemental action. For example, while
maven uses log4j 1.2.3 internally, it should not ever be presented to an ele-
mental action in the dependency classpath. There also exists the possibility of
version clashes between Maven extensions, and if possible these should be han-
dled gracefully. A classloader sandboxing mechanism may be necessarily even
with Maven itself, to possibly isolate each extension component’s classpath from
another. Management of the classloader hierarchy will be an important, if not
exciting, task.

5 Bottom Line

To sum up, I feel that the current incarnation of Maven is indeed a wonderful
prototype of a beautiful concept. I feel that we should take a hard look at
massively reworking Maven to support further future development. If we do
not, I fear that Maven will be lost in a quagmire of hacks.

The following things should be well-design and cleanly implemented, the
next time around:

• Maven is an Applications. Maven should be a full-fledged application, and
not simply a collection of ant tasks. Maven should not be subservient.

• Repository Management. Consider either a server component for the
repository to allow each project to update its own libraries, or a distributed
model, like DNS, where registration of a repository allows delegation of
management responsibilities.

8

• Full-Fledge Language. Instead of working primarily in an interpreted
XML-based language such as ant build-files or Jelly, the primary language
for implementing Maven actions and activities should be normal Java.
Avoid anything Maven-specific, and allow the Maven mediator layer pa-
rameterize the JavaBean actions.

• Robust Dependency Management. Being able to manage the many times
of dependencies between Maven, extensions, build-time and run-time is
the utmost importance.

• Correct ClassLoader Sand-boxing. Hand-in-hand with robust dependency
management is correct handling of classloaders within Maven, to avoid
collisions or incorrect behaviour.

I heartily applaud all of the developers who have spent considerable time
bringing Maven to where it is today. I would like to see the same amount of
progress continue into the future and suggest a framework that will hopefully
make this realizable. If a re-engineering of Maven does not occur, I feel that
in the near future, we will hit a wall where every added feature creates more
problems than it solves.

9

	Origins, History & Future
	Motivation
	The Early Years
	The Future

	Features and Capabilities
	Network-Enabled
	Shared Dependency Repositories

	Extensible Components
	Action & Plug-In Extension
	Project-Defined Callbacks

	Architectural & Design Issues
	Elemental actions: Ant, Jelly or Otherwise
	Composition and Inheritance
	XML, JavaBeans and Testing
	Dependencies

	Implementation Issues
	Dependencies
	Maven Dependencies
	Extension Dependencies
	Build-Time Dependencies
	Run-Time/Deploy-Time Dependencies

	The Many Classpaths
	Maven's Classpath
	Run-Time Dependency Classpath
	Classpath interactions
	Classloaders

	Bottom Line

