

CITI Technical Report 00-4

Scalable Network I/O in Linux

Niels Provos, University of Michigan
<provos@citi.umich.edu>

Chuck Lever, Sun-Netscape Alliance

<chuckl@netscape.com>

ABSTRACT

Recent highly publicized benchmarks have suggested that Linux systems do not
scale as well as other systems, such as Windows NT, when used as network servers.
Windows NT contains features such as I/O completion ports that help boost network
server performance and scalability. In this paper we focus on improving the Linux
implementation of poll() to reduce the expense of managing large numbers of
network connections. We also explore the newer POSIX RT signal API that will help
network servers scale into the next decade. A comparison between the two inter-
faces shows that a server using our /dev/poll interface scales better than a server
using RT signals.

May 2, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

This document was written as part of the Linux Scalability Project. The work described in this paper was supported

via grants from the Sun-Netscape Alliance, Intel, Dell, and IBM. For more information, see our home page.

If you have comments or suggestions, email <linux-scalability@citi.umich.edu>

Copyright © 2000 by the Regents of the University of Michigan, and by AOL-Netscape Inc. All rights reserved.
Trademarked material referenced in this document is copyright by its respective owner.

Scalable Network I/O in Linux

Niels Provos, University of Michigan
<provos@citi.umich.edu>

Chuck Lever, Sun-Netscape Alliance

<chuckl@netscape.com>

1. Introduction

Many traditional web server benchmarks have fo-
cused on improving throughput for clients attached to
the server via a high-speed local area network [13].
Recent studies have shown, however, that the differ-
ence between 32 high performance clients connected
via gigabit Ethernet, and 32,000 high latency, low
bandwidth connections from across the Internet, is
extremely important to server scalabilit y [8]. Connec-
tions that last only seconds do not place the same
load on a server that slow error-prone connections do,
due to resources consumed by error recovery, and the
expense of managing many connections at once, most
of which are idle.

Experts on server architecture have argued that serv-
ers making use of a combination of asynchronous
events and poll() are significantly more scalable
than today’s servers in these environments [2, 3, 5].
In Linux, signals can deliver I/O-completion events.
Unlike traditional UNIX signals, POSIX Real-Time
(RT) signals carry a data payload, such as a specific
file descriptor that recently changed state. Signals
with a payload enable network server applications to
respond immediately to network requests, as if they
were event driven. An added benefit of RT signals is
that they can be queued in the kernel and delivered to
an application one at a time, in order, leaving an ap-
plication free to collect and process events when
convenient.

The RT signal queue is a limited resource. When it is
exhausted, the kernel signals a server to switch to
polli ng, which delivers multiple completion events at
once. Normally in a server like this, polli ng is simply
an error recovery mechanism. However, the size of
the RT signal queue might also be used as a load

threshold to help network servers determine whether
RT signals or the poll() interface is more efficient.

We have identified two areas of study. First, we dem-
onstrate several modifications that improve poll()’s
scalabilit y and performance when a large proportion
of a server’s connections are inactive. Second, find-
ing the right combination of RT signals and polli ng
might allow network servers to leverage the latency
advantages of completion notification against the
throughput boosts of using poll().

In this paper, we outline several improvements to the
poll() interface, and measure the performance
change of application using the improved poll().
We describe a test harness that simulates loads con-
sisting of many inactive connections. We use this test
harness to measure changes in application throughput
as we vary the server’s event model. Finally we re-
port on our experiences using the new POSIX RT sig-
nals.

2. Using POSIX RT Signals: Introducing
phhttpd

Phhttpd is a static-content caching front end for
full -service web servers such as Apache [2, 10].
Brown created phhttpd to demonstrate the POSIX
RT signal mechanism added to the Linux kernel start-
ing in the late 2.1.x kernel development series, and
completed during the 2.3.x series. POSIX RT signals
provide an event delivery system by allowing an ap-
plication to assign unique signal numbers to each
open file descriptor using fcntl(fd, F_SETSIG,
signum). The kernel raises the assigned signal
whenever a read(), write(), or close() opera-
tion completes.

This paper will appear in the FREENIX track Proceedings of
the USENIX Annual Technical Conference, San Diego, CA,
June 2000.

Provos & Lever

 - 2 -

struct pollfd {
int fd;
short events;
short revents;

};

Figure 1. Standard pollfd struct

struct siginfo {
 int si_signo;
 int si_errno;
 int si_code;
 union {
 /* other members elided */
 struct {
 int _band;
 int _fd;
 } _sigpoll;
 } _sifields;
} siginfo_t;

Figure 2. Simplified siginfo struct.

To avoid complexity and race conditions, the chosen
RT signals are masked during normal server opera-
tion. An application uses sigwaitinfo() to pick up
pending signals from the RT signal queue. Sigwait-
info() returns a siginfo struct (see FIG. 2) for a
single event. The _fd and _band fields in this struct
contain the same information as the fd and revents
fields in a pollfd struct (see FIG. 1).

The kernel raises SIGIO if the RT signal queue over-
flows. An application then flushes pending signals by
changing their signal handler to SIG_DFL, and to
recover, it uses poll() to discover any remaining
pending activity.

Events queued before an application closes a connec-
tion will remain on the RT signal queue, and must be
processed and/or ignored by applications. For in-
stance, when a socket closes, a server application
may receive and try to process previously queued
read or write events before it picks up the close event,
causing it to attempt inappropriate operations on the
closed socket.

3. poll() Optimizations

There are two motivations for improving poll().
First, many legacy applications can benefit, with littl e
or no modification, from performance and scalabilit y
improvements in poll(). While the changes neces-
sary to take advantage of a new interface might be
few, an overall architectural update for legacy appli-
cations is usually unnecessary. Yet updating an appli-
cation to use POSIX RT signals is a major overhaul
with a concomitant increase in complexity. A second
purpose for improving poll() is that even with
POSIX RT signals, poll() is still required to handle
special cases such as RT signal queue overflows. An

efficient poll() implementation helps performance
and scalabilit y of the new paradigm.

For the poll() interface to maintain performance
comparable to the newer POSIX RT signal interfaces,
it needs a face li ft. We’ve enhanced poll() by mak-
ing the following optimizations:

• We provide an interface that maintains state in
the kernel, so state doesn’t have to be passed in
during every poll() invocation

• We allow device drivers to post completion
events to poll(), reducing the need to invoke
device-specific poll operations when scanning
for events

• We eliminate result copying when poll() re-
turns by creating a special address space map-
ping that is shared between the kernel and the
application

In this section we describe these changes and evalu-
ate their respective performance implications.

3.1 Maintaining State in the Kernel

To invoke poll() an application must build a set of
interests, where an interest is a file descriptor that
may have I/O ready, then notify the kernel of all i n-
terests by passing it the complete set of interests via
poll(). As the number of interests increases, this
mechanism becomes unwieldy and inefficient. The
entire set must be copied into the kernel upon system
call entry. The kernel must parse the entire interest set
to carry out the request. Then each interest must be
checked individually to assess its readiness.

Banga, Druschel, and Mogul have described new
operating system features to mitigate these overheads
[4]. They suggest that the poll() interface itself can
be broken into one interface used to incrementally
build an application’s interest set within the kernel,
and another interface used to wait for the next event.
They refer to the first interface as de-

clare_interest(), while the second is much like
today’s poll(). Using declare_interest(), an
application can build its interest set inside the kernel
as connections are set up and torn down. The com-
plete interest set is never copied between user space
and kernel space, completely eliminating unnecessary
data copies (for instance, when there is no change in
the interest set between two poll() invocations).

Recent versions of Solaris include a similar interface
called /dev/poll [6]. This character device allows
an application to notify the kernel of event interests
and to build a (potentially) very large set of interests
while reducing data copying between user space and

 Scalable Network I/O in Linux

 - 3 -

kernel space. As far as we know this is the first real
implementation of declare_interest(). We
chose to implement this because, if it is effective, it
will allow easier portabilit y of high-performance
network applications between Solaris and Linux.

An application opens /dev/poll and receives a file
descriptor. The kernel associates an interest set with
this file descriptor. A process may open /dev/poll
more than once to build multiple independent interest
sets. An application uses write() operations on
/dev/poll to maintain each interest set.

Writing to /dev/poll allows an application to add,
modify, and remove interests from an interest set.
Applications construct an array of standard pollfd
structs, one for each file descriptor in which it is in-
terested (see Figure 1). Enabling the POLLREMOVE
flag in the events field indicates the removal of an
interest. Specifying a file descriptor the kernel al-
ready knows about allows an application to modify
its interest. The contents of the events field replace
the previous interest, unlike the Solaris implementa-
tion, where the events field is OR’d with the current
interest. If complete Solaris compatibilit y is desired,
this behavior can be adjusted with a minor modifica-
tion to the device driver.

struct dvpoll {
struct pollfd* dp_fds;
int dp_nfds;
int dp_timeout;

}

Figure 3. dvpoll struct

To wait for I/O events, an application issues an
ioctl() with a dvpoll struct (see FIG. 3). This
struct indicates how long to wait, and specifies a re-
turn area for the results of the poll operation. In gen-
eral, only a small subset of an application’s interest
set becomes ready for I/O during a given poll request,
so this interface tends to scale well .

A hash table contains each interest set within the ker-
nel. On average, hash tables provide fast lookup, in-
sertion, and deletion. For simplicity, when the aver-
age bucket size is two, the number of buckets in the
hash table is doubled. The hash table is never shrunk.

3.2 Device Driver Hints

When an application registers interest in events on
file descriptors with the poll() system call , the ker-
nel passes this information to device drivers and puts
the process to sleep until a relevant event occurs.
When an application process wakes up, the kernel
must scan all file descriptors in which the application
has registered interest to check for status changes.
This is the case even though the status of only one

file descriptor in hundreds or thousands might have
changed.

Now that we have an efficient mechanism for appli-
cations to indicate their interests, it would be useful i f
device drivers could indicate efficiently which file
descriptors changed their status. We extend the
/dev/poll implementation to make file descriptor
information available to device drivers. The
/dev/poll implementation maintains this informa-
tion in a backmapping list. When an event occurs, the
driver marks the appropriate file descriptor for each
process in its backmapping list. When poll() scans
an interest set to pick up new work, it uses this hint to
avoid an expensive call to the device driver’s poll
callback. When managing a large number of high
latency connections, this greatly reduces the number
of driver poll operations that show that nothing has
changed.

Hints allow poll() to determine if a cached result
from a previous poll call i s still valid. Specifically, a
hint indicates a change in the socket’s status, so it is
time to invoke the device driver’s poll callback. This
also erases the current hint. We cache the result re-
turned by the device driver, in the hope that we can
reuse it without having to invoke the poll callback
again soon. We do not receive hints that indicate the
change from ready to not-ready, however. This means
that a cached result indicating readiness has to be
reevaluated each time.

To prevent the hinting system from requiring every
device driver to be modified, device drivers indicate
whether they support hinting. In this way, only essen-
tial drivers must be modified, e.g. network device
drivers.

At this point, all backmapping lists are protected by a
single read-write lock. Hints require only a read lock,
so the lock itself is generally not contended. The lock
is held for writing only when the interest set is modi-
fied. Each socket gets its own backmap, so ideally the
backmap lock should be added in a per-socket struc-
ture to reduce lock contention and improve cache line
sharing characteristics on SMP hardware. Each per-
socket lock requires an extra 8 bytes.

3.3 Reducing Result Copy Operations

As the list of file descriptors passed to poll()
grows, the overhead to copy out and parse the results
also increases. To reduce this overhead, we need to
improve the way the kernel reports the results of a
poll() operation. The safest and most efficient way
to do this is to create a memory map shared between
the application and kernel where the kernel may de-
posit the results of the poll() operation.

Provos & Lever

 - 4 -

We added this feature to our /dev/poll implemen-
tation. The application invokes mmap() on
/dev/poll to create the mapping. Results from
poll() for that process are reported in that area until
it is munmap()’d by the application. Usually, the size
of the result set is small compared to the size of the
entire interest set, so we do not expect this modifica-
tion to make as significant an impact as /dev/poll
and device driver hints.

To create the result area, an application invokes
ioctl(DP_ALLOC) to allocate room for a specific
number of file descriptor results. This is followed by
an mmap() call on a previously opened /dev/poll
file descriptor to share the mapping between the ker-
nel and the application. When polli ng, an application
uses ioctl(DP_POLL) and specifies a NULL in the
dp_fds field (see FIG. 2). When the application is
finished, it uses munmap() to deallocate the area,
then it closes /dev/poll normally.

4. POSIX Real-Time Signals v. poll()

A fundamental question is how great a server work-
load is required before polli ng is a more efficient way
to gather requests. Are there any times when polli ng
is a better choice? In this section we address the fol-
lowing questions:

• How big is the difference in performance be-
tween POSIX RT signals and poll(). Naturally
this depends on the application implementation,
but something as crude as an order of magnitude
number would still be useful. What are the fac-
tors that determine this difference in perform-
ance— inefficiencies in poll() itself, argument
copying, and so on?

• How important is an efficient poll() imple-
mentation for good overall performance of an
implementation based on POSIX RT signals?

• How complete is the POSIX RT signal interface
and implementation? Is it easy to use? Are there
races or performance issues? Is it easy to use in
combination with threads and black-box librar-
ies?

To study these questions, we compare the perform-
ance of polli ng and event-driven architectures with a
benchmark. The benchmark indicates which parts of
the performance curve are served better by a particu-
lar event model. Imagine a hybrid server that can
switch between polli ng and processing incoming re-
quests via RT signals.

• To reduce the latencies of polli ng models, the
server uses RT signals to process incoming re-
quests and to handle them as soon as they arrive.

• To manage resource exhaustion in the kernel, the
server uses RT signals until the signal queue
reaches its maximum length.

• To overcome the inefficiencies of one-at-a-time
event handling, the server uses polli ng after its
workload becomes heavy.

Such a server might use the RT signal queue maxi-
mum as a crossover point for two reasons. First, it is
built i nto the RT signal interface. When the signal
queue overflows, the application receives a signal
indicating that the overflow occurred. A poll() is
necessary at this point to make sure that no requests
are dropped. Second, the queue length tracks server
workload fairly well . As server workload increases,
so does the RT signal queue length. Thus it becomes
an obvious indicator to cause a workload-triggered
switch between event-driven and polli ng modes.

By studying the behavior and performance at the
crossover point between RT signals and polli ng in a
hybrid server, we gain an understanding of each de-
sign’s relative advantages. Before creating such an
imaginary hybrid, we can run specific tests that show
whether each model has appropriate complementary
performance and scalabilit y characteristics.

Additionally, in real servers using the RT signal
queue, we’d like to be sure that queue overload re-
covery mechanisms (i.e. invoking poll() to clean
up) do not make the overload situation worse due to
poor performance. Even better, perhaps poll() can
perform well enough relative to POSIX RT signals that
we don’t have to relegate it to managing overloads.
Note that the RT signal queue maximum length is
normally set high enough (1024 by default) that it is
never exceeded in today’s implementations.

5. Benchmark

Our test harness consists of two machines running
Linux connected via a 100 Mbit/s Ethernet switch.
The workload is driven by an Intel SC450NX with
four 500MHZ Xeon Pentium III processors (512Kb of
L2 cache each), 512Mb of RAM, and a pair of
SYMBIOS 53C896 SCSI controllers managing sev-
eral LVD 10KRPM drives. Our web server runs on
custom-built hardware equipped with a single
400MHZ AMD K6-2 processor, 64Mb of RAM, and a
single 8G 7.2KRPM IDE drive. The server hardware
is small so that we can easily drive the server into
overload. We also want to eliminate any SMP effects
on our server, so it is has only a single CPU.

 Scalable Network I/O in Linux

 - 5 -

The benchmark clients are driven by httperf run-
ning on the four-way Pentium III [7]. The web serv-
ers are thttpd, a simple single-process event-driven
web server that is easy to modify, and phhttpd, an
experimental server created to demonstrate the POSIX
RT signal interface [9, 2].

The httperf benchmark client provides repeatable
server workloads. We vary the server implementation
and try each new idea with fixed workloads. We are
most interested in static content delivery as that exer-
cises the system components we are interested in
improving. A side benefit of these improvements is
better dynamic content service.

Scalabilit y is especially critical to modern network
service when serving many high-latency connections.
Most clients are connected to the Internet via high-
latency connections, such as modems, whereas serv-
ers are usually connected to the Internet via a few
high bandwidth low-latency connections. This creates
resource contention on servers because connections
to high-latency clients are relatively long-lived, tying
up server resources, and they induce a bursty and
unpredictable interrupt load on the server [8].

Most web server benchmarks don’t simulate high-
latency connections, which appear to cause difficult-
to-handle load on real-world servers [5]. We’ve
modified the httperf benchmark to simulate these
slower connections to examine the effects of our im-
provements on more realistic server workloads. We
add client programs that do not complete an http re-
quest. To keep the number of high-latency clients
constant, these clients reopen their connection if the
server times them out.

There are several system limitations that influence
our benchmark procedures. There are only a limited
number of file descriptors available for single proc-
esses; httperf assumes that the maximum is 1024.
We modified httperf to cope dynamically with a
large number of file descriptors. Additionally, we can
have only about 60000 open sockets at a single point
in time. When a socket closes it enters the TIME-
WAIT state for sixty seconds, so we must avoid
reaching the port number limitation. We therefore run
each benchmark for 35,000 connections, and then
wait for all sockets to leave the TIMEWAIT state
before we continue with the next benchmark run.

Our benchmark configuration contains only a single
client host and a single server host, which makes the
simulated workload less realistic. However, our
benchmark results are strictly for comparing relative
performance among our implementations. We believe
the results also give an indication of real-world server
performance.

A web server’s static performance depends on the
size distribution of requested documents. Larger
documents cause sockets and their corresponding file
descriptors to remain active over a longer time pe-
riod. As a result the web server and kernel have to
examine a larger set of descriptors, making the amor-
tized cost of polli ng on a single file descriptor larger.
In our tests, we request a 6 Kbyte document, a typical
index.html file from the CITI web site.

5.1 /dev/poll benchmark results

Our first series of benchmarks measures the scalabil-
ity of using /dev/poll instead of the stock version
of poll(). We use httperf to drive a uniprocessor
web server running thttpd.

We run two series of tests. First, we test stock
thttpd running on stock Linux 2.2.14, varying the
load offered by httperf by adjusting the number of
inactive connections. The second test is the same, but
replaces the kernel with a 2.2.14 kernel that supports
/dev/poll, and replaces thttpd with a version
modified to use /dev/poll instead of poll(). A
subset of the results of these two series of tests is
shown in FIGS. 4 through 10. Each of these graphs
represents data from a single run of the benchmark.

To simulate more realistic load on the server, we use
an extra program to create inactive server connec-
tions. FIGS. 4 through 9 show the results of the
benchmark for stock and modified thttpd with 1,
251 and 501 inactive connections. The graphs on the
left show the results for stock thttpd using normal
poll(). The graphs on the right the results for
thttpd modified to use /dev/poll. Each graph
plots the average response rate with error bars show-
ing standard deviation against the request rate gener-
ated by the benchmark client. Ideally the generated
request rate should match the server’s response rate.
The minimum and the maximum response rate for
each run are also provided for comparison.

We observe a decrease in the average response rate as
the number of inactive connections increases for both
versions of thttpd. Some graphs show jumps in the
maximum measured response rate while the mini-
mum rate approaches zero, indicating that the server
starves some connections.

Provos & Lever

 - 6 -

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 1

Average
Min

Max

FIGURE 4. Normal thttpd using normal poll(), with one
extra inactive connection. As expected, the server performs well
when processing only active connections. After reaching a high
enough request rate however, server performance breaks down as
processing latency begins to exceed request rate.

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 1

Average
Min

Max

FIGURE 5. thttpd modified to use /dev/poll, with one
extra inactive connection. With no inactive connections, the
modified server performs well at all request rates. Unlike stock
thttpd, there does not appear to be any point where processing
latency exceeds request rate.

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 251

Average
Min

Max

FIGURE 6. Normal thttpd using normal poll(), with 251
extra inactive connections. As load caused by inactive connec-
tions increases, processing latencies likewise increase. Server
performance breaks down sooner, causing minimum response rates
of zero in several places.

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 251

Average
Min

Max

FIGURE 7. thttpd modified to use /dev/poll, with 251
extra inactive connections. With some inactive connections, the
modified server performs almost as well as a server with no inac-
tive connections.

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 501

Average
Min

Max

FIGURE 8. Normal thttpd using normal poll(), with 501
extra inactive connections. Latency due to processing inactive
connections dominates server performance for all request rates,
causing poor performance and high error rates.

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 501

Average
Min

Max

FIGURE 9. thttpd modified to use /dev/poll, with 501
extra inactive connections. Despite some response rate anoma-
lies, the modified server manages a high inactive connection load
with ease. Performance begins to break down at extreme high
request rates.

 Scalable Network I/O in Linux

 - 7 -

0

20

40

60

80

100

500 600 700 800 900 1000 1100

er
ro

rs
 in

 p
er

ce
nt

targeted request rate with load 251

using devpoll
normal poll

0

20

40

60

80

100

500 600 700 800 900 1000 1100

er
ro

rs
 in

 p
er

ce
nt

targeted request rate with load 501

using devpoll
normal poll

FIGURE 10. Error rate reported by httperf for stock
thttpd and for thttpd modified to use /dev/poll.
httperf maintains 251 inactive connections during the test
shown in the top graph, and 501 inactive connections during the
test shown in the bottom graph. thttpd using /dev/poll runs
the test with 251 inactive connections with no errors whatsoever.

thttpd using /dev/poll fully or partially achieves
the desired response rate for all offered loads, as indi-
cated by the data points showing maximum achieved
response rate. On the other hand, the unmodified
server is unable to maintain its throughput with in-
creasing inactive connection load or increasing re-
quest rate. Its average response rate is smaller in all
cases compared to /dev/poll. Banga and Drushel
obtain a similar result [8].

FIG. 10 plots the percentage of connections aborted
due to errors during runs with 251 and 501 inactive
connections. Connection errors can result when the
client runs out of file descriptors, when connections
time out, or when the server refuses connections for
some reason. For stock thttpd, the error rate in-
creases slowly to 60% of all connections. thttpd
using /dev/poll experiences only sporadic errors.
In fact, when using /dev/poll, we measured no
connection errors for benchmarks with fewer than
501 inactive connections.

Both the effective reply rate and the percent of con-
nection errors demonstrate that thttpd using
/dev/poll scales better than the unmodified version
using poll().

5.2 Comparing event models

Our second series of benchmarks is designed to com-
pare the benefits of an RT signal-based event core
with an event core designed around poll(). If they
scale complementarily, it makes sense to try a hybrid
server that switches between the two, triggered by
server load.

FIGS. 11 through 13 ill ustrate the scalabilit y of an
unmodified single-threaded phhttpd server running
on custom-built hardware equipped with a single
400MHZ AMD K6-2 processor, 64Mb of RAM, and a
single 8G 7.2KRPM IDE drive. Our modified
httperf client runs on an Intel SC450NX with four
500MHZ Xeon Pentium III processors (512Kb of L2
cache each), 512Mb of RAM, and a pair of SYM-
BIOS 53C896 SCSI controllers managing several
LVD 10KRPM drives. Both machines are attached to
a 100 Mbit/s Ethernet switch. The web server runs
Linux 2.2.14 with complete support for RT signals
back-ported from the 2.3 kernel series. The bench-
mark client runs stock Linux 2.2.14. Both machines
are loaded with the Red Hat 6.1 distribution.

As with the earlier /dev/poll benchmarks, we vary
offered load by fixing the number of inactive connec-
tions, then we gradually increase the client request
rate and record the corresponding server response
rate. We compare a single-threaded phhttpd con-
figuration against thttpd, a single process web
server. Comparing FIGS. 11 through 13 with FIGS. 4,
6, and 8, clearly phhttpd outperforms the stock ver-
sion of thttpd. However, comparing FIG. 11 to FIG.
5, we see that on the same hardware with few inac-
tive connections, thttpd using /dev/poll responds
more scalably to a higher load of active connections
than does phhttpd.

The disparity between request and response rate in-
creases markedly as more inactive connections are
added to phhttpd’s load.

As FIG. 13 demonstrates, a heavy load of inactive
connections causes phhttpd to perform worse than
thttpd using /dev/poll, even at low request rates.
Because phhttpd is unfinished and experimental, we
believe that further refinements to phhttpd can im-
prove its performance and scalabilit y, but it is not
clear whether it will perform better than thttpd
based on /dev/poll.

Provos & Lever

 - 8 -

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 1

Average
Min

Max

FIGURE 11. phhttpd with 1 extra inactive connection. Per-
formance at lower request rates compares with the best perform-
ance of other servers. Very high request rates cause the server to
falter, however. We believe this is due to the system call overhead
of processing RT signals. During high loads, this overhead slows
the server’s ability to process requests.

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 251

Average
Min

Max

FIGURE 12. phhttpd with 251 extra inactive connections.
With some inactive connections present, the server reaches its
performance knee sooner. Inactive connections appear to increase
the overhead of handling active connections, something that we
didn’ t expect to find in a signals-based server implementation. This
may be a problem with RT signals or with the phhttpd imple-
mentation itself.

0

200

400

600

800

1000

500 600 700 800 900 1000 1100

re
pl

y
ra

te

targeted request rate with load 501

Average
Min

Max

FIGURE 13. phhttpd with 501 extra inactive connections. In
this test, load due to inactive connections appears to affect server
throughput at all request rate levels. Compared to the throughput of
thttpd using /dev/poll, this server scales less well .

An important benefit of using /dev/poll is that it
scales well when a large number of inactive connec-
tions is present. However, even without any inactive
connections /dev/poll scales better for high re-
quest rates compared to either stock thttpd or
phhttpd using RT signals.

Another assumed advantage of RT signals is low la-
tency. FIG. 14 shows median server response latency,
in milli seconds. Median response latency evenly di-
vides all measured responses at that load into half
that are slower than the indicated result, and half that
are faster. This measurement is a good reflection of a
client’s experience of a server’s responsiveness. We
see in FIG. 14 that phhttpd indeed serves requests
with a median latency 1-3 mill iseconds faster than
the /dev/poll-based thttpd server across a wide
range of offered load. After sufficiently high load,
however, phhttpd’s median response latency leaps
to over 120ms per request, while thttpd’s response
increases only slightly.

6. Discussion and Future work

Originally we intended to modify phhttpd to use
/dev/poll for these tests. After examining
phhttpd, however, we saw that it completely re-
builds its poll i nterest set when recovering from RT
signal queue overflow, negating any benefit to main-
taining interest set state in the kernel rather than at
the application level. Each thread that manages an RT
signal queue for a listener socket has a partner thread
that waits to handle RT signal queue overflow. When
an overflow signal is raised, the thread managing the
RT signal queue passes all of its current connections,
including its listener socket, to its poll sibling, via a
special UNIX domain socket. Considering that the
server load is heavy enough to cause a queue over-
flow, the added work and inefficiency of transferring
each connection one at a time and building a pollfd
array from scratch will probably result in server
meltdown.

When load subsides, the current phhttpd server
does not switch from polling mode back to RT signal
queue mode. Brown never implemented this logic
[11].

 Scalable Network I/O in Linux

 - 9 -

0

20

40

60

80

100

120

140

160

500 600 700 800 900 1000 1100

m
ed

ia
n

co
nn

ec
tio

n
tim

e
in

 m
s

targeted request rate with load 251

devpoll
normal poll

phhttpd

FIGURE 14. Median latency results of phhttpd with 251 extra
inactive connections. For loads up to 900 concurrent httperf
connections, phhttpd responds slightly faster than thttpd
using /dev/poll. Above 900 concurrent connections,
phhttpd’s connection latency jumps to over 120ms, whereas
thttpd’s latency remains fairly steady. This is another indication
that thttpd scales better than phhttpd.

To use either poll() or /dev/poll efficiently in
phhttpd, we need to re-architect it. The RT signal
queue overflow recovery mechanism should operate
in the same thread as the RT signal queue handler.
Additionally, RT signal queue processing should
maintain its pollfd array (or corresponding kernel
state) concurrently with RT signal queue activity.
This would allow switching between polli ng and sig-
nal queue mode with very littl e overhead. Using
/dev/poll without re-architecting this server won’t
help it scale unless it maintains its interest set concur-
rently with RT signal queue activity. Completely re-
architecting phhttpd is beyond the scope of this
paper. Future work may include a reworked server
based on RT signals and /dev/poll.

Thus, modifying applications to use the /dev/poll
interface efficiently requires more extensive changes
to legacy applications than we had hoped. Applica-
tions of this type often entirely rebuild their pollfd
array each time they invoke poll(), as phhttpd
does.

Application developers may be tempted to treat
POSIX RT signals like an interrupt delivery system.
When used with signal handlers, signal delivery is
immediate and asynchronous. However, when they
are left masked and are picked up via sigwait-
info(), POSIX RT signals behave much like
poll(). The information delivered by a siginfo
struct is the same as that in a pollfd struct, and, like
poll(), it is provided synchronously when the ap-
plication asks for it.

With poll(), however, the amount of data stored in
the kernel is always bounded, because information

about current activity on a file descriptor replaces
previous information. However, managing this data
in the kernel can become complex and inefficient as
an application’s interest set increases in size.

The POSIX RT signal queue receives a new item for
any connection state change in a given interest set,
and this item is simply added to the end of a queue.
This necessitates a maximum queue limit and a spe-
cial mechanism for recovering from queue overflow.
Quite a bit of time can pass between when the kernel
queues an RT signal and when an application finally
picks it up. Sources of latency are varied: the kernel
may need to swap in a stack frame to deliver a signal,
lock contention can delay an application’s response,
or an application may be busy filli ng other requests.
This means that a server picking up a signal must be
prepared to find the corresponding connection in a
different state. Later state changes that reflect the
current state of the connection may be farther down
the queue.

So, like the information contained in pollfd structs,
events generated by sigwaitinfo() can be treated
only as hints. Several connection state changes can
occur before an application gets the first queued
event indicating activity on a connection. Signals
dequeue in order of their assigned signal number,
thus activity on lower-numbered connections can
cause longer delays for activity reports on higher-
numbered connections.

Another difficulty arises from the fact that the Linux
threading model is incompatible with POSIX threads
when it comes to catching signals. POSIX threads run
together in the same process and catch the same sig-
nals, whereas Linux threads are each mapped to their
own pid, and receive their own resources, such as
signals. It is not clear how RT signal queuing should
behave in a non-Linux pthread implementation.
Certainly there are some interesting portabilit y issues
here.

Several developers have observed that it is difficult to
share a thread’s POSIX RT signal queue among non-
cooperative or black-box libraries [10, 11]. For in-
stance, glibc’s pthread implementation uses signal
32. If an application starts using pthreads after it has
assigned signal 32 to a file descriptor via fcntl(),
application behavior is undetermined. There appears
to be no standard externalized function available to
allocate signal numbers atomically in a non-
cooperative environment.

Even when no signal queue overflow happens, the RT
signal model may have an inherent inefficiency due
to the number of system calls needed to handle an
event on a single connection. This number may not

Provos & Lever

 - 10 -

be critical while server workload is easily handled.
When the server becomes loaded, system call over-
head may dominate server processing and cause
enough latency that events wait a long time in the
signal queue. To optimize signal handling, the kernel
and the application can dequeue signals in groups
instead of singly (similar to poll() today). We plan
to implement a sigtimedwait4() system call
which would allow the kernel to return more than one
siginfo struct per invocation.

Future work in this area includes the addition of sup-
port in phhttpd for efficiently recovering from RT
signal queue overflow to the signal worker thread. A
closer look at phhttpd’s overall design may reveal
weaknesses that could account for its performance in
our tests. The use of specialized system calls such as
sendfile() might also be interesting to study in
combination with the new RT signal model.

There are several possible improvements to
/dev/poll. Applications wishing to update their
interest set and immediately poll on that set must use
a pair of system calls, write() followed by
ioctl(). A single ioctl() that handles both opera-
tions at once could improve efficiency. Our backmap
scheme could benefit from finer grained locking, as
described earlier in this paper. Sharing the result map
among several threads may make a shared work
queue possible. Also, improving hint caching can
reduce even further the number of device driver poll
operations required to obtain accurate poll() re-
sults.

A careful review of the current poll wait_queue
mechanism might reveal areas for improved perform-
ance and scalabilit y. Brown postulates that expensive
wait_queue manipulation is where POSIX RT sig-
nals have an advantage over poll() [11]. The
wait_queue mechanism is only invoked while no
internal poll operation returns an event that would
cause the process to wake up. Once such an event is
found and it is known that the process will be awak-
ened, the wait_queue is not manipulated further. To
avoid wait_queue operations, file descriptors that
have events pending should be polled first. We plan
to modify our hinting system so that active connec-
tions are checked first during a poll operation. Man-
aging each interest set with more efficient data struc-
tures in the kernel could improve performance even
further. It may also help to provide the option of wak-
ing only one thread, instead of all of them.

7. Conclusion

Because of the amount of work required to poll effi-
ciently in phhttpd, we were unable to directly test

our theories about hybrid web servers for this paper.
However, it is clear that, for our benchmark, thttpd
using /dev/poll scales better than single-threaded
phhttpd using RT signals at both low and high inac-
tive connection loads. Once the number of inactive
connections becomes large relative to the number of
active connections, the difference in performance
between polli ng and signaling exposes itself across
all request rates. Latency results at lower loads favor
phhttpd. As load increases, however, thttpd using
/dev/poll maintains stable median response time,
while phhttpd median response time increases by
more than an order of magnitute. Surprisingly, it may
never be better to use RT signals over a properly
architected server using /dev/poll.

The POSIX RT signal interface is young, and still
evolving. Today’s signals-based servers are compli-
cated by extra processing that may be unnecessary
once developers understand RT signals better, and
when OS implementations have improved. We expect
further work in this area will i mprove their ease of
use, performance, and scalability.

Software enhancements described herein are freely
available. Please contact the authors for more
information.

7.1. Acknowledgements

The authors thank Peter Honeyman and Stephen
Tweedie for their guidance. We also thank the re-
viewers for their comments. Special thanks go to
Zach Brown and Dan Kegel for their insights, and to
Intel Corporation for equipment loans.

8. References

[1] G. Banga and J. C. Mogul, “Scalable Kernel Per-
formance for Internet Servers Under Realistic
Load,” Proceedings of the USENIX Annual Tech-
nical Conference, June 1998.

[2] Z. Brown, phhttpd, people.redhat.com/

zab/phhttpd, November 1999.

[3] Signal driven IO (thread), linux-kernel mailing
list, November 1999.

[4] G. Banga. P. Drushel. J. C. Mogul, “Better Oper-
ating System Features for Faster Network Serv-
ers,” SIGMETRICS Workshop on Internet Server
Performance, June 1998.

[5] J. C. Hu, I. Pyarali , D. C. Schmidt, “Measuring
the Impact of Event Dispatching and Concurrecy
Models on Web Server Performance Over High-
Speed Networks,” Proceedings of the 2nd IEEE
Global Internet Conference, November 1997.

 Scalable Network I/O in Linux

 - 11 -

[6] Solaris 8 man pages for poll(7d).
docs.sun.com:80/ab2/coll.40.6/REFMAN
7/
@Ab2PageView/55123?Ab2Lang=C&Ab2Enc=
iso-8859-1

[7] D. Mosberger and T. Jin, “httperf – A Tool for
Measuring Web Server Performance,” SIGMET-

RICS Workshop on Internet Server Performance,
June 1998.

[8] G. Banga and P. Druschel, “Measuring the Ca-
pacity of a Web Server,” Proceedings of the
USENIX Symposium on Internet Technologies and
Systems, December 1997.

[9] thttpd - tiny/turbo/throttling web server.
www.acme.com/software/thttpd

[10] Apache Server, The Apache Software Founda-
tion. www.apache.org

[11] Z. Brown, personal communication, April 2000.

[12] J. Meyers, personal communication, May 1999.

[13] B. Weiner, “Open Benchmark: Windows NT
Server 4.0 and Linux,” www.mindcraft.com/
whitepapers/openbench1.html

