CITI Technical Report 00-4

Scalable Network I/O in Linux

Niels Provos, University of Michigan
<provos@iti.um ch. edu>

Chuck Lever, Sun-Netscape Alliance
<chuckl @et scape. conr

ABSTRACT

Recent highly publicized benchmarks have suggested that Linux systems do not
scale as well as other systems, such as Windows NT, when used as network servers.
Wndows NT contains features such as /O completion ports that help boost network
server performance and scalability. In this paper we focus on improving the Linux
implementation of pol | () to reduce the expense of managing large numbers of
network connections. We also explore the newer Posix RT signal API that will help
network servers scale into the next decade. A comparison between the two inter-
faces shows that a server using our / dev/ pol | interface scales better than a server
using RT signals.

May 2, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, Ml 48103-4943

This document was written as part of the Linux Scalability Project. The work described in this paper was supported
via grants from the Sun-Netscape Alliance, Intel, Dell, and IBM. For more information, see our home page.

If you have comments or suggestions, email <l i nux-scal ability@iti.um ch. edu>

Copyright © 2000 by the Regents of the University of Michigan, and by AOL-Netscape Inc. All rights reserved.
Trademarked material referenced in this document is copyright by its respective owner.

Scalable Network I/O in Linux

Niels Provos, University of Michigan
<provos@iti.um ch. edu>

Chuck Lever, Sun-Netscape Alliance
<chuckl @et scape. con»

1. Introduction

Many traditional web server benchmarks have fo-
cused on improving throughput for clients attached to
the server via ahigh-speed locd area network [13].
Recent studies have shown, however, that the differ-
ence between 32 high performance dients conneded
via gigabit Ethernet, and 32000 high latency, low
bandwidth connedions from aaoss the Internet, is
extremely important to server scaability [8]. Connec-
tions that last only seconds do not place the same
load on a server that slow error-prone mnnedions do,
due to resources consumed by error recovery, and the
expense of managing many connections at once, most
of which areidle.

Experts on server architedure have agued that serv-
ers making wse of a cmmbination of asynchronous
events and pol | () are significantly more scdable
than today’s srvers in these environments [2, 3, 5].
In Linux, signals can deliver 1/0O-completion events.
Unlike traditional UNIX signals, Posix Red-Time
(RT) signals carry a data payload, such as a spedfic
file descriptor that recently changed state. Signals
with a payload enable network server applicaions to
respond immediately to network requests, as if they
were event driven. An added benefit of RT signalsis
that they can be queued in the kernel and delivered to
an applicaion one & atime, in order, leaving an ap-
plicaion free to colled and process events when
convenient.

The RT signal queue is a limited resource When it is
exhausted, the kernel signals a server to switch to
palling, which delivers multiple completion events at
once Normally in a server like this, pallingis smply
an error recovery medanism. However, the size of
the RT signal queue might also be used as a load

This paper will appea in the FREENIX tradk Proceadings of
the Usenix Annual Technicd Conference, San Diego, CA,
June 2000

threshold to help network servers determine whether
RT signals or the pol | () interfaceis more ficient.

We have identified two areas of study. First, we dem-
onstrate several modifications that improve pol | ()’s
scdability and performance when a large propartion
of a server’s connedions are inadive. Seoond, find-
ing the right combination of RT signals and pdling
might allow network servers to leverage the latency
advantages of completion notification against the
throughput boasts of using pol | ().

In this paper, we outline several improvements to the
pol I () interfface and measure the performance
change of applicaion using the improved pol | ().
We describe atest harnessthat simulates loads con-
sisting of many inadive mnnedions. We use this test
harnessto measure changes in applicaion throughput
as we vary the server’s event model. Finally we re-
port on our experiences using the new Posix RT sig-
nals.

2. Using Posix RT Signals: Introducing
phht t pd

Phhtt pd is a static-content cading front end for
full-service web servers such as Apade [2, 10].
Brown created phhtt pd to demonstrate the Posix
RT signal medhanism added to the Linux kerndl start-
ing in the late 2.1.x kernel development series, and
completed during the 2.3.x series. Posix RT signals
provide an event delivery system by allowing an ap-
plicdion to assgn urique signa numbers to eat
open file descriptor using fcnt!l (fd, F_SETSIG
signum). The kernel raises the adgned signal
whenever aread(), wite(), or cl ose() opera
tion completes.

Provos & Lever

struct pollfd {
int fd;
short events;
short revents;
}s

Figure 1. Standard pol | f d struct

struct siginfo {
int si_signo;
int si_errno;
int si_code;

uni on {
/* other nenbers elided */
struct {
int _band;
int _fd;
} _sigpoll;
} _sifields;
} siginfo_t;

Figure 2. Simplified si gi nf o struct.

To avoid complexity and race onditions, the chosen
RT signals are masked during rormal server opera-
tion. An application usessi gwai ti nfo() to pick up
pending signals from the RT signal queue. Si gwai t -
i nfo() returns a si gi nf o struct (see FIG. 2) for a
singe event. The _fd and _band fields in this gruct
contain the same information asthe f d and r event s
fieldsinapol | f d struct (seeFiG. 1).

The kernel raises SI G Oif the RT signal queue over-
flows. An application then flushes pending signals by
changing their signal handler to SI G DFL, and to
recover, it uses pol | () to dscover any remaining
pending adivity.

Events queued before an applicaion closes a mnnec-
tion will remain on the RT signal queue, and must be
processed and/or ignored by applicaions. For in-
stance, when a socket closes, a server applicaion
may recave and try to process previously queued
read or write events before it picks up the dose event,
causing it to attempt inappropriate operations on the
closed socket.

3. pol I () Optimizations

There ae two motivations for improving pol | ().
First, many legacy applications can benefit, with littl e
or no modification, from performance and scdability
improvements in pol | (). While the changes neces-
sary to take avantage of a new interface might be
few, an overall architecura update for legacy appli-
caionsis usualy unrecessary. Yet updating an appli-
cdion to use Posix RT signals is a mgjor overhaul
with a cmncomitant increase in complexity. A second
purpose for improving pol | () is that even with
Posix RT signals, pol | () is dill required to handle
spedal cases auch as RT signa queue overflows. An

efficient pol I () implementation helps performance
and scdability of the new paradigm.

For the pol I () interface to maintain performance
comparable to the newer Posix RT signa interfaces,
it needs a facelift. We've enhanced pol | () by mak-
ing the foll owing optimizations:

 We provide an interface that maintains gate in
the kernel, so state doesn't have to be passed in
during every pol | () invocaion

e We dlow device drivers to past completion
events to pol | (), reducing the need to invoke
device-spedfic padl operations when scanning
for events

 We diminate result copying when pol | () re-
turns by creding a spedal address pace map-
ping that is sared between the kernel and the
applicaion

In this £dion we describe these dhanges and evalu-
ate their respedive performanceimplicaions.

3.1 Maintaining Statein the Kernel

To invoke pol | () an application must build a set of
interests, where an interest is a file descriptor that
may have /O ready, then notify the kernel of all in-
terests by passing it the complete set of interests via
pol | (). As the number of interests increases, this
mecdhanism becomes unwieldy and inefficient. The
entire set must be apied into the kernel upon system
cdl entry. The kernel must parse the entire interest set
to cary out the request. Then ead interest must be
chedked individualy to assessits realiness

Banga, Druschel, and Mogul have described new
operating system feaures to miti gate these overheads
[4]. They suggest that the pol | () interfaceitself can
be broken into one interface used to incrementally
build an applicaion’s interest set within the kernel,
and another interfaceused to wait for the next event.
They refer to the first interfface & de-

clare_interest (), while the seoond is much like
today’s pol | (). Using decl are_interest (), an
applicaion can build its interest set inside the kernel
as connedions are set up and torn down. The mm-
plete interest set is never copied between user space
and kernel space completely eliminating unrecessary
data apies (for instance, when there is no change in
the interest set between two pol | () invocaions).

Recent versions of Solaris include asimilar interface
cdled / dev/ pol | [6]. This charader device dlows
an application to notify the kernel of event interests
and to build a (potentialy) very large set of interests
whil e reducing data opying between user space ad

kernel space As far as we know this is the first red
implementation of declare_interest(). We
chose to implement this because, if it is effedive, it
will alow easier portability of high-performance
network appli cations between Solaris and Linux.

An applicaion opens / dev/ pol | and receves afile
descriptor. The kernel associates an interest set with
this file descriptor. A process may open / dev/ pol |
more than onceto build multi ple independent interest
sets. An applicaion uses write() operations on
/ dev/ pol | to maintain ead interest set.

Writing to / dev/ pol | alows an applicaion to add,
modify, and remove interests from an interest set.
Applications construct an array of standard pol | fd
structs, one for ead file descriptor in which it isin-
terested (see Figure 1). Enabling the POLLREMOVE
flag in the event s field indicaes the removal of an
interest. Spedfying a file descriptor the kernel al-
ready knows about allows an applicaion to modify
its interest. The ntents of the events field replace
the previous interest, unlike the Solaris implementa-
tion, where the event s field is OR’d with the airrent
interest. If complete Solaris compatibility is desired,
this behavior can be aljusted with a minor modifica-
tion to the devicedriver.

struct dvpoll {
struct pollfd* dp_fds;
i nt dp_nfds;
int dp_timeout;

}

Figure3.dvpol | struct

To wait for 1/O events, an applicdion isaes an
ioctl() with a dvpol | struct (see FIG. 3). This
struct indicaes how long to wait, and spedfies a re-
turn areafor the results of the poll operation. In gen-
eral, only a small subset of an application’s interest
set becomes ready for /O during a given poll request,
so thisinterfacetendsto scde well.

A hash table cmntains ead interest set within the ker-
nel. On average, hash tables provide fast lookup, in-
sertion, and deletion. For simplicity, when the aver-
age bucket size is two, the number of buckets in the
hash table is doubled. The hash table is never shrunk

3.2 Device Driver Hints

When an applicaion registers interest in events on
file descriptors with the pol | () system cdl, the ker-
nel pases this information to device drivers and puts
the process to dee urtil a relevant event occurs.
When an applicaion process wakes up, the kernel
must scan al fil e descriptors in which the gplication
has registered interest to chedk for status changes.
This is the cae even though the status of only one

Scdable Network 1/0 in Linux

file descriptor in hurdreds or thousands might have

changed.

Now that we have an efficient mechanism for appli-
cations to indicae their interests, it would be useful if
device drivers could indicate dficiently which file
descriptors changed their status. We etend the
/ dev/ pol | implementation to make file descriptor
information available to device drivers. The
/ dev/ pol | implementation maintains this informa-
tion in a badkmapping list. When an event occurs, the
driver marks the gpropriate file descriptor for eah
processin its badkmapping list. When pol | () scans
an interest set to pick up new work, it uses this hint to
avoid an expensive cdl to the device driver’s pall
cdlbadkk. When managing a large number of high
latency connections, this grealy reduces the number
of driver poll operations that show that nothing hes

changed.

Hints allow pol | () to determine if a caded result
from a previous pall cdl is dill valid. Spedficdly, a
hint indicates a thange in the socket’s datus, so it is
time to invoke the device driver’s pall cdlbadk. This
also erases the aurrent hint. We cade the result re-
turned by the device driver, in the hope that we can
reuse it without having to invoke the pall cdlbadk
again soon. We do not receve hints that indicae the
change from ready to not-ready, however. This means
that a caded result indicaing readiness has to be
reevaluated eadt time.

To prevent the hinting system from requiring every
device driver to be modified, device drivers indicate
whether they suppart hinting. In this way, only essen-
tial drivers must be modified, e.g. network device
drivers.

At this paint, al badkmapping lists are proteded by a
single read-write lock. Hints require only aread lock,
so the lock itself is generally not contended. The lock
is held for writing only when the interest set is modi-
fied. Each socket gets its own badkmap, so idedly the
badkmap lock should be added in a per-socket struc-
ture to reduce lock contention and improve cade line
sharing charaderistics on SMP hardware. Each per-
socket lock requires an extra 8 bytes.

3.3 Reducing Result Copy Operations

As the list of file descriptors passed to poll ()
grows, the overhead to copy out and parse the results
also increases. To reduce this overheal, we need to
improve the way the kernel reports the results of a
pol | () operation. The safest and most efficient way
to dothisisto cregde amemory map shared between
the gplicaion and kernel where the kernel may de-
posit the results of the pol | () operation.

Provos & Lever

We alded this feaure to our / dev/ pol | implemen-
tation. The @plicaion invokes nmap() on
/ dev/ pol | to creae the mapping. Results from
pol I () for that processare reported in that areaurtil
it ismunmap() 'd by the gplication. Usualy, the size
of the result set is snall compared to the size of the
entire interest set, so we do not exped this modifica-
tion to make & dgnificant an impad as / dev/ pol |

and devicedriver hints.

To crede the result areg an applicaion invokes
ioctl (DP_ALLOC) to alocae room for a spedfic
number of file descriptor results. This is followed by
an mmap() cdl on a previously opened / dev/ pol |

file descriptor to share the mapping between the ker-
nel and the gplication. When palling, an application
usesioct! (DP_POLL) and spedfies a NULL in the
dp_fds field (see FIG. 2). When the gplicaion is
finished, it uses nunmap() to dedlocae the aea
then it closes/ dev/ pol I normally.

4. Posix Real-Time Signalsv. pol | ()

A fundamental question is how grea a server work-
load is required before padling is amore dficient way
to gather requests. Are there any times when palli ng
is a better choice? In this sdion we aldressthe fol-
lowing questions:

 How big is the difference in performance be-
tween Posix RT signals and pol | (). Naturaly
this depends on the gplicaion implementation,
but something as crude as an order of magnitude
number would still be useful. What are the fac-
tors that determine this difference in perform-
ance— inefficiencies in pol | () itself, argument
copying, and so on?

 How important is an efficient pol | () imple-
mentation for good overall performance of an
implementation based on Posix RT signals?

e How complete is the Posix RT signal interface
and implementation? Is it easy to use? Are there
races or performance isaues? Is it easy to use in
combination with threads and badk-box librar-
ies?

To study these questions, we mmpare the perform-
ance of padlling and event-driven architedures with a
benchmark. The benchmark indicates which parts of
the performance airve ae served better by a particu-
lar event model. Imagine a hybrid server that can
switch between palling and processng incoming re-
guestsviaRT signals.

e To reduce the latencies of pdling models, the
server uses RT signals to process incoming re-
guests and to handle them as ©on asthey arrive.

* To manage resource ehaustion in the kernel, the
server uses RT signals until the signal queue
reades its maximum length.

* To overcome the inefficiencies of one-at-a-time
event handling, the server uses padlling after its
workload beammes heavy.

Such a server might use the RT signal queue maxi-
mum as a aosover point for two reasons. First, it is
built into the RT signal interface When the signd
gueue overflows, the gplicaion receves a signa
indicaing that the overflow occurred. A pol | () is
necessary at this point to make sure that no requests
are dropped. Second, the queue length tradks server
workload fairly well. As srver workload increases,
so dees the RT signal queue length. Thus it becomes
an obvious indicaor to cause a workload-triggered
switch between event-driven and pdli ng modes.

By studying the behavior and performance a the
crossover point between RT signals and pdling in a
hybrid server, we gain an urderstanding of ead de-
sign's relative alvantages. Before aeaing such an
imaginary hybrid, we can run spedfic tests that show
whether eadh model has appropriate complementary
performance and scdability charaderistics.

Additionally, in red servers using the RT signal
gueue, we'd like to be sure that queue overload re-
covery medhanisms (i.e. invoking pol | () to clean
up) do not make the overload situation worse due to
poa performance. Even better, perhaps pol | () can
perform well enoughrelative to Posix RT signals that
we don't have to relegate it to managing overloads.
Note that the RT signal queue maximum length is
normally set high enough (1024 ty default) that it is
never excealed in today’s implementations.

5. Benchmark

Our test harness consists of two machines runnng
Linux conneded via a 100 Mbit/s Ethernet switch.
The workload is driven by an Intel SC450NX with
four 500MHz Xeon Pentium Ill processors (512Kb of
L2 cade eat), 512Mb o RAM, and a pair of
SYMBIOS 53C896 SCSI controllers managing sev-
eral LVD 10KRPM drives. Our web server runs on
custom-built hardware eguipped with a singe
400MHZ AMD K6-2 processor, 64Mb of RAM, and a
singe 8G 7.2KRPM IDE drive. The server hardware
is gnal so that we ca easily drive the server into
overload. We dso want to eliminate any SMP effeds
on our server, so it ishas only asingle CPU.

The benchmark clients are driven by htt perf run-
ning on the four-way Pentium 11l [7]. The web serv-
ersaret htt pd, a simple single-process event-driven
web server that is easy to modify, and phht t pd, an
experimental server creded to demonstrate the POSIX
RT signal interfacel[9, 2].

The htt perf benchmark client provides repeaable
server workloads. We vary the server implementation
and try ead new ideawith fixed workloads. We ae
most interested in static content delivery as that exer-
cises the system components we ae interested in
improving. A side benefit of these improvements is
better dynamic content service

Scdahility is espedally criticd to modern network
service when serving many high-latency connedions.
Most clients are mnneded to the Internet via high-
latency connedions, such as modems, whereas srv-
ers are usually conneded to the Internet via afew
high bandwidth low-latency connedions. This creaes
resource @ntention on servers becaise mnnedions
to high-latency clients are relatively long-lived, tying
up server resources, and they induce a bursty and
unpredictable interrupt load on the server [8].

Most web server benchmarks don't simulate high-
latency connedions, which appea to cause difficult-
to-handle load on red-world servers [5]. We've
modified the ht t per f benchmark to ssimulate these
slower connedions to examine the dfeds of our im-
provements on more redistic server workloads. We
add client programs that do not complete an hitp re-
guest. To keep the number of highlatency clients
congtant, these dients reopen their connedion if the
server times them out.

There ae severa system limitations that influence
our benchmark procedures. There ae only a limited
number of file descriptors avail able for single proc-
es®s; htt perf asames that the maximum is 1024
We modified htt perf to cope dynamicdly with a
large number of file descriptors. Additionally, we can
have only about 60000 on sockets at a singe point
in time. When a socket closes it enters the TIME-
WAIT dtate for sixty seoconds, so we must avoid
reading the port number limitation. We therefore run
ead benchmark for 35000 connedions, and then
wait for al sockets to leave the TIMEWAIT state
before we @ntinue with the next benchmark run.

Our benchmark configuration contains only a single
client host and a singe server host, which makes the
simulated workload less redistic. However, our
benchmark results are strictly for comparing relative
performance anong our implementations. We believe
the results also give an indicaion of red-world server
performance

Scdable Network 1/0 in Linux

A web server's datic performance depends on the
size distribution of requested documents. Larger
documents cause sockets and their corresponding file
descriptors to remain adive over a longer time pe-
riod. As a result the web server and kernel have to
examine alarger set of descriptors, making the amor-
tized cost of palling on a single file descriptor larger.
In our tests, we request a 6 Kbyte document, a typicd
i ndex. ht ml file from the CITI web site.

5.1/ dev/ pol | benchmark results

Our first series of benchmarks measures the scdabil-
ity of using/ dev/ pol | instead o the stock version
of pol I (). Weuse httperf to drive auniprocessor
web server runningt ht t pd.

We run two series of tests. First, we test stock
thtt pd runnng on stock Linux 2.2.14, varying the
load offered by htt perf by adjusting the number of
inadive wnnedions. The second test is the same, but
replaces the kernel with a 2.2.14 kernel that supparts
/ dev/ pol |, and replaces thttpd with a version
modified to use / dev/ pol | instead of poll (). A
subset of the results of these two series of tests is
shown in FIGS. 4 through 10. Each of these graphs
represents data from a single run of the benchmark.

To simulate more redistic load on the server, we use
an extra program to creae inadive server connec-
tions. FIGS. 4 through 9 show the results of the
benchmark for stock and modified t htt pd with 1,
251 and 501inadive connections. The graphs on the
left show the results for stock t htt pd using rormal
pol 1 (). The graphs on the right the results for
t htt pd modified to use / dev/ pol | . Each graph
plots the average response rate with error bars ow-
ing standard deviation against the request rate gener-
ated by the benchmark client. Idedly the generated
request rate should match the server’s response rate.
The minimum and the maximum response rate for
ead runare dso provided for comparison.

We observe adeaease in the arerage response rate &
the number of inadive mnnedions increases for both
versions of t ht t pd. Some graphs sow jumps in the
maximum measured response rate while the mini-
mum rate gproaches zero, indicating that the server
starves ome annections.

Provos & Lever

Average !
Min + %
1000 b Max x x
x
800 -
£ 600 [X
>
a
@
400
N
200 - A
N
N
0
500 600 700 800 900 1000 1100

targeted request rate with load 1

FIGURE 4. Normal t htt pd using normal pol | (), with one
extra inactive connection. As expected, the server performs well
when processing only active connections. After reaching a high
enough request rate however, server performance breaks down as
processing latency begins to exceed request rate.

Average
in -+
1000 Max x
x
Xx x
x
M ¥ x
e et
x
Xx
X7 x
i)
g
> ||
a2
5 al
P N
+ "
Ty +
0 . . o4t - + T
500 600 700 800 900 1000 1100

targeted request rate with load 251

FIGURE 6. Normal t htt pd using normal pol | (), with 251
extra inactive connections. As load caused by inactive connec-
tions increases, processing latencies likewise increase. Server
performance breaks down sooner, causing minimum response rates
of zero in severa places.

Average
Min +
1000 Max x

x x x X xx x X
L x Xx
800 F o % x

M x x

X

X xx Xoosex X% [xS0 xx X x Txxxx X xx x

600

reply rate

400 - -l

200 /
I I I I

0 ,
500 600 700 800 900 1000 1100
targeted request rate with load 501

FIGURE 8. Normal t htt pd using normal pol | (), with 501
extra inactive connections. Latency due to processing inactive
connections dominates server performance for all request rates,
causing poor performance and high error rates.

Average
Min +
1000 Max x

800

600

reply rate

400 -

200

0
500 600 700 800 900 1000 1100
targeted request rate with load 1

FIGURE 5. t htt pd modified to use / dev/ pol |, with one
extra inactive connection. With no inactive connections, the
modified server performs well at all request rates. Unlike stock
t htt pd, there does not appear to be any point where processing
latency exceeds request rate.

Average !
in -+
1000 Max x
800
o
k4 600
>
S
1
400
200
4
0 I I I I I
500 600 700 800 900 1000 1100

targeted request rate with load 251

FIGURE 7. t htt pd modified to use / dev/ pol I, with 251
extra inactive connections. With some inactive connections, the
modified server performs almost as well as a server with no inac-
tive connections.

Average
Min +
1000 Max x X

800

600

reply rate

400

200

4

0
500 600 700 800 900 1000 1100
targeted request rate with load 501

FIGURE 9. t htt pd modified to use / dev/ pol I, with 501
extra inactive connections. Despite some response rate anoma-
lies, the modified server manages a high inactive connection load
with ease. Performance begins to break down at extreme high
request rates.

100 £ using devpoll

normal poll ---—---—-

errors in percent

40

|

T T T T T
500 600 700 800 900 1000 1100

targeted request rate with load 251

500 600 700 800 900 1000 1100
targeted request rate with load 501

100 £ using devpoll

normal poll ---—---—-

errors in percent

FIGURE 10. Error rate reported by httperf for stock
thttpd and for thttpd modified to use /dev/poll.
httperf maintains 251 inadive connections during the test
shown in the top graph, and 501inadive connections during the
test shown in the bottom graph. t ht t pd using/ dev/ pol | runs
the test with 251inadive connections with no errors whatsoever.

thttpd using/dev/ pol | fully or partialy achieves
the desired response rate for all offered loads, as indi-
caed by the data points $rowing maximum achieved
response rate. On the other hand, the unmodified
server is unable to maintain its throughput with in-
creasing inadive @nnedion load o increasing re-
guest rate. Its average response rate is snaler in all
cases compared to / dev/ pol | . Banga and Drushel
obtain asimilar result [8].

FIG. 10 fdots the percentage of connedions aborted
due to errors during runs with 251 and 501 inadive
conrections. Connedion errors can result when the
client runs out of file descriptors, when connedions
time out, or when the server refuses connedions for
some reason. For stock thtt pd, the aror rate in-
cresses dowly to 60% of al connedions. thttpd
using / dev/ pol | experiences only sporadic erors.
In fad, when wsing / dev/ pol |, we measured no
connedion errors for benchmarks with fewer than
501inadive mnnedions.

Scdable Network 1/0 in Linux

Both the dfedive reply rate ad the percent of con-
nection errors demonstrate that thttpd using
/ dev/ pol | scdes better than the unmodified version
usingpol | ().

5.2 Comparing event models

Our second series of benchmarks is designed to com-
pare the benefits of an RT signal-based event core
with an event core designed around pol | (). If they
scde mmplementarily, it makes sense to try a hybrid
server that switches between the two, triggered by
server load.

Figs. 11 through 13 ill ustrate the scdability of an
unmodified single-threaded phht t pd server runnng
on custom-built hardware eguipped with a single
400MHzZ AMD K6-2 processor, 64Mb of RAM, and a
singe 8G 7.2KRPM IDE drive. Our modified
htt perf client runs on an Intel SC450NX with four
500MHz Xeon Pentium Il processors (512Kb of L2
cadte eat), 512Vib of RAM, and a pair of SYM-
BIOS 53C896 SCSI controllers managing severa
LVD 10KRPM drives. Both machines are atached to
a 100 Mbit/s Ethernet switch. The web server runs
Linux 2.2.14 with complete support for RT signals
badk-ported from the 2.3 kernel series. The bench-
mark client runs dock Linux 2.2.14. Both madines
are loaded with the Red Hat 6.1 distribution.

As with the ealier / dev/ pol I benchmarks, we vary
offered load by fixing the number of inadive @mnnec-
tions, then we gradually increase the dient request
rate and record the rresponding server response
rate. We mmpare a single-threaded phhtt pd con-
figuration against thttpd, a singe process web
server. Comparing FIGS. 11 through 13 with FIGS. 4,
6, and 8, clealy phht t pd outperforms the stock ver-
sion of t ht t pd. However, comparing FIG. 11 to FIG.
5, we seethat on the same hardware with few inac-
tive mnnedions, t ht t pd using/ dev/ pol | responds
more scdably to a higher load of adive mnnections
than does phht t pd.

The disparity between request and response rate in-
creasses markedly as more inadive mnnedions are
added to phht t pd’sload.

As FIG. 13 demonstrates, a heary load of inadive
connedions causes phhtt pd to perform worse than
thtt pd using/ dev/ pol | , even at low request rates.
Because phht t pd is unfinished and experimental, we
believe that further refinements to phhtt pd can im-
prove its performance and scdability, but it is not
clea whether it will perform better than thtt pd
based on/ dev/ pol | .

Provos & Lever

T
Average
in

Max x

1000

800

600

reply rate

400 - .

200 +

0
500 600 700 800 900
targeted request rate with load 1

10‘00 1100
FIGURE 11. phht t pd with 1 extra inactive connection. Per-
formance at lower request rates compares with the best perform-
ance of other servers. Very high request rates cause the server to
falter, however. We believe this is due to the system cadl overhead
of procesing RT signals. During high loads, this overhead slows
the server’s ability to processrequests.

Average
in
Max x

1000

800

600

reply rate
+
T

400 - +

0 L L L L
500 600 700 800 900
targeted request rate with load 251

10‘00 1100
FIGURE 12. phhtt pd with 251 extra inactive connections.

With some inadive connections present, the server reades its
performance knee sooner. Inadive connections appear to increase
the overhead of handing adive connections, something that we
didn’'t expect to findin a signals-based server implementation. This
may be a problem with RT signals or with the phht t pd imple-

mentation itself.

T
Average
Min +
Max x

1000

800

XX

reply rate

400 -

200

++

4

R L S SN L R

+
4

4

4

RELE T
.

4+t

4

4

e

4

F +
4
-

0
500

600

700

800

900

L
1000

1100

targeted request rate with load 501

FIGURE 13. phhtt pd with 501 extra inactive connections. In
this test, load due to inadive connections appears to affect server
throughpu at all request rate levels. Compared to the throughpu of
thttpdusing/ dev/ pol | , this ®rver scdes lesswell.

An important benefit of using / dev/ pol | is that it
scdes well when a large number of inadive @nnec-
tions is present. However, even without any inadive
connedions / dev/ pol | scdes better for high re-
guest rates compared to either stock thttpd or
phht t pd using RT sigrals.

Another assumed advantage of RT signalsis low la-
tency. FIG. 14 shows median server response latency,
in milli seconds. Median response latency evenly di-
vides al measured responses at that load into half
that are slower than the indicated result, and half that
are faster. This measurement is a good refledion of a
client's experience of a server's responsiveness We
see in FIG. 14 that phhtt pd indeed serves requests
with a median latency 1-3 milliseconds faster than
the / dev/ pol | -based t ht t pd server aaoss a wide
range of offered load. After sufficiently high load,
however, phhtt pd’s median response latency legs
to over 120ms per request, while t ht t pd’s response
increases only dlightly.

6. Discussion and Future work

Originaly we intended to modify phhttpd to use
/dev/poll for these tests. After examining
phht t pd, however, we saw that it completely re-
builds its pall interest set when recovering from RT
signal queue overflow, negating any benefit to main-
taining interest set state in the kernel rather than at
the gplicaion level. Each thread that manages an RT
signal queue for alistener socket has a partner thread
that waits to handle RT signal queue overflow. When
an overflow signal is raised, the thread managing the
RT signal queue passes all of its current connedions,
including its listener socket, to its pdl sibling, via a
spedal UNIX domain socket. Considering that the
server load is heavy enough to cause aqueue over-
flow, the added work and inefficiency of transferring
ead connedion one & atime and huildingapol | fd
array from scratch will probably result in server
meltdown.

When load subsides, the aurrent phhttpd server
does not switch from polling mode bad to RT signal
gueue mode. Brown never implemented this logic
[11].

devpoll' T T ' i -
160 - normal poll --s--- I o

=} A
phhttpd ---&--- e 05800

140 | ;o
120 | ¥

100

median connection time in ms
©
3
*

&

L L L L L
500 600 700 800 900 1000

targeted request rate with load 251

1100

FIGURE 14. Median latency results of phht t pd with 251 extra
inactive connections. For loads up to 900 concurrent ht t per f
connections, phhtt pd responds dightly faster than t htt pd
using /dev/poll. Above 900 concurrent connections,
phhtt pd’s connection latency jumps to ower 120ms, whereas
t ht t pd’slatency remains fairly steady. Thisis another indicaion
that t ht t pd scaes better than phht t pd.

To use ather pol | () or /dev/ pol | efficiently in
phht t pd, we nedl to re-archited it. The RT signd
gueue overflow recovery mechanism should operate
in the same thread as the RT signa queue handler.
Additionally, RT signal queue processng should
maintain its pol | f d array (or corresponding kernel
state) concurrently with RT signal queue adivity.
This would alow switching between palling and sig-
nal queue mode with very little overheal. Using
/ dev/ pol | without re-architeding this server won't
help it scde unlessit maintains its interest set concur-
rently with RT signal queue adivity. Completely re-
architeding phhttpd is beyond the scope of this
paper. Future work may include areworked server
based on RT signalsand / dev/ pol | .

Thus, modifying applicaions to use the / dev/ pol |
interface éficiently requires more extensive changes
to legacy applicaions than we had hoped. Applica-
tions of this type often entirely rebuild their pol I fd
array ead time they invoke pol | (), as phhttpd
does.

Applicaion developers may be tempted to trea
Posix RT signals like an interrupt delivery system.
When used with signal handlers, signal delivery is
immediate and asynchronous. However, when they
are left masked and are picked up via si gwai t -
info(), Posix RT signas behave much like
pol I (). The information delivered by a siginfo
struct is the same asthat inapol | f d struct, and, like
pol | (), it is provided synchronously when the g-
plicaion asksfor it.

With pol I (), however, the anourt of data stored in
the kernel is always bounded, becaise information

Scdable Network 1/0 in Linux

about current adivity on a file descriptor replaces
previous information. However, managing this data
in the kernel can become @mmplex and inefficient as
an applicdion’sinterest set incressesin size

The Posix RT signal queue receaves a new item for
any connedion state change in a given interest set,
and this item is smply added to the end of a queue.
This necesdtates a maximum queue limit and a spe-
cial mechanism for recovering from queue overflow.
Quite abit of time can passbetween when the kernel
gueues an RT signal and when an application finaly
picks it up. Sources of latency are varied: the kernel
may need to swap in a stadk frame to deliver asignal,
lock contention can delay an application’s response,
or an application may be busy filli ng other requests.
This means that a server picking wp a signal must be
prepared to find the rresponding connedion in a
different state. Later state dhanges that reflea the
current state of the connedion may be farther down
the queue.

So, like the information contained in pol | f d structs,
events generated by si gwai ti nfo() can be treaed
only as hints. Several connedion state changes can
occur before an applicaion gets the first queued
event indicating adivity on a @nnedion. Signals
degueue in order of their asigned signal number,
thus adivity on lower-numbered connedions can
cause longer delays for adivity reports on higher-
numbered connedions.

Another difficulty arises from the fad that the Linux
threading model is incompatible with Posix threads
when it comes to catching signals. PosIX threads run
together in the same processand catch the same sig-
nals, whereas Linux threads are eat mapped to their
own pi d, and receave their own resources, such as
signals. It is not clear how RT signal queuing should
behave in a non-Linux pt hread implementation.
Certainly there ae some interesting portability issues
here.

Several developers have observed that it is difficult to
share athread’'s Posix RT signal queue anong ron-
cooperative or black-box libraries [10, 11]. For in-
stance, glibc’s pt hr ead implementation uses sgnal
32. If an applicaion starts using pthreads after it has
assigned signal 32 to a file descriptor viafcnt! (),
applicaion behavior is undetermined. There gpeas
to be no standard externalized function available to
alocae signa numbers atomicdly in a non-
cooperative environment.

Even when no signal queue overflow happens, the RT
signa model may have an inherent inefficiency due
to the number of system cdls needed to handle an
event on a singe onnedion. This number may not

Provos & Lever

be aiticd while server workload is easily handled.
When the server bemes loaded, system cdl over-
head may dominate server processng and cause
enough latency that events wait a long time in the
signal queue. To optimize signal handling, the kernel
and the gplication can degueue signals in groups
instead of singly (similar to pol | () today). We plan
to implement a sigtinmedwait4() system cdl
which would allow the kernel to return more than one
si gi nf o struct per invocaion.

Future work in this areaincludes the aldition of sup-
port in phhtt pd for efficiently recovering from RT
signal queue overflow to the signal worker thread. A
closer look at phhtt pd’'s overal design may reved
weaknesses that could account for its performancein
our tests. The use of spedalized system cdls such as
sendfile() might also be interesting to study in
combination with the new RT signal model.

There ae several possble improvements to
/ dev/ pol | . Applicaions wishing to update their
interest set and immediately pall on that set must use
a par of system cdls, wite() followed by
ioctl().Asingeioctl () that handlesboth opera-
tions at once @uld improve dficiency. Our badkmap
scheme uld benefit from finer grained locking, as
described ealier in this paper. Sharing the result map
among severa threads may make a shared work
gueue possble. Also, improving hint cading can
reduce even further the number of device driver pall
operations required to oltain accurate pol | () re-
sults.

A caeful review of the arrent pal wait_queue
medhanism might reved areas for improved perform-
ance and scdability. Brown postulates that expensive
wai t _queue manipulation is where PosIX RT sig-
nals have a advantage over poll () [11]. The
wai t _queue mechanism is only invoked while no
internal pall operation returns an event that would
cause the processto wake up. Once such an event is
found and it is known that the processwill be avak-
ened, the wai t _queue is not manipulated further. To
avoid wai t _queue operations, file descriptors that
have events pending should be paled first. We plan
to modify our hinting system so that adive cnnec-
tions are chedked first during a pall operation. Man-
aging ead interest set with more dficient data struc-
tures in the kernel could improve performance even
further. It may also help to provide the option of wak-
ingonly one thread, instead of all of them.

7. Conclusion

Because of the amount of work required to pdl effi-
ciently in phht t pd, we were unable to diredly test

-10-

our theories about hybrid web servers for this paper.
However, it is clea that, for our benchmark, t ht t pd
using / dev/ pol | scdes better than single-threaded
phht t pd using RT signals at both low and high inac-
tive connection loads. Once the number of inadive
connedions beaomes large relative to the number of
adive mnnrections, the difference in performance
between palling and signaling exposes itself aaoss
all request rates. Latency results at lower loads favor
phht t pd. Asload increases, however, t ht t pd using
/ dev/ pol | maintains gable median response time,
while phhtt pd median response time increases by
more than an order of magnitute. Surprisingly, it may
never be better to use RT signals over a properly
architeded server using/ dev/ pol | .

The Posix RT signal interface is young and till
evolving. Today’'s dgnals-based servers are compli-
cdaed by extra processng that may be unrecessary
once developers understand RT signals better, and
when OS implementations have improved. We exped
further work in this area will i mprove their ease of
use, performance, and scdability.

Software enhancements described herein are fredy
available. Plesse wmntad the aithors for more
information.

7.1. Acknowledgements

The authors thank Peter Honeyman and Stephen
Twedlie for their guidance We dso thank the re-
viewers for their comments. Spedal thanks go to
Zach Brown and Dan Kegel for their insights, and to
Intel Corporation for equipment loans.

8. References

[1] G.Banga ad J. C. Mogul, “Scdable Kernel Per-
formance for Internet Servers Under Redistic
Load,” Proceedings of the UseENix Annual Tech-
nical Conference, June 1998

Z. Brown, phhttpd, peopl e.redhat.conl
zab/ phht t pd, November 1999

(2]

[3] Signa driven 10 (thread), linux-kernel mailing

list, November 1999

G. Banga. P. Drushel. J. C. Mogul, “Better Oper-
ating System Fedures for Faster Network Serv-
ers,” SGMETRICS Workshop on Internet Server
Performance, June 1998

J. C. Hu, I. Pyardi, D. C. Schmidt, “Measuring
the Impaad of Event Dispatching and Concurrecy
Models on Web Server Performance Over High
Speed Networks,” Proceedings of the 2™ Ieee
Global Internet Conference, November 1997.

(4]

(5]

(6]

(8]

(9]

Solaris 8 man pages for poll (7d).
docs. sun. com 80/ ab2/ col | . 40. 6/ REFNVAN
71

@\b2PageVi ew 55123?Ab2Lang=C&Ab2Enc=
i so-8859-1

D. Mosberger and T. Jin, “httperf — A Todl for
Measuring Web Server Performance” SGMET-
RICS Workshop on Internet Server Performance,
June 1998.

G. Banga and P. Druschel, “Measuring the Ca-
padty of a Web Server,” Proceedings of the
UsENIX Symposium on Internet Technologies and
Systems, December 1997.

thttpd - tiny/turbothrotting web server.
www. acrre. coni sof twar e/t htt pd

[10] Apache Server, The Apache Software Founda-

tion. ww. apache. or g

[11] Z. Brown, personal communicaion, April 200Q

[12] J. Meyers, personal communication, May 1999
[13]B. Weiner, “Open Benchmark: Windows NT

Server 4.0 and Linux,” www. mi ndcraft. conl
whi t epaper s/ openbenchl. ht n

-11-

Scdable Network 1/0 in Linux

