
§1 Xbox Authentication Sample INTRODUCTION 1

August 11, 2002 at 01:12

1. Introduction. This document describes the functions available to title developers for the purpose
of online authentication to enable secure online game play. The functionality allows title developers to
establish their own secure online gaming infrastructure and user account system worry-free. The functions
described here are only used to achieve authentication and to provide enough infrastructure for the titles
to communicate securely with other online services. The functions used to communicate with other online
services, such as match-making and content download, are not discussed. here.

2. Using the Xbox Live Account and Authentication APIs. First, we must include the required header
files. The online functions are contained in xonline.h
#include <xtl.h> /∗ Standard Title Library functions ∗/
#include <xonline.h> /∗ Xbox Live functions ∗/

3. For demonstration purposes we will now show the details of signing on. The main function below
demonstrates the steps that a title would typically follow:
〈Global Variables 16 〉
〈Function Prototypes 58 〉
VOID cdecl main ()
{

HRESULT hr = S_OK;
BOOL bSignedIn ;
〈 Initialize Devices 53 〉
〈Wait for Memory Units to mount 54 〉
〈Start up the Xbox Live APIs 4 〉
〈Sign in to the Xbox Live Service 6 〉
if (bSignedIn) GameLoop();
Print (L"Signing off...");
〈Sign off of the Xbox Live Service 52 〉
〈Shut down the Xbox Live APIs 5 〉
BootToDash (XLD_LAUNCH_DASHBOARD_MAIN_MENU);

}

4. Before using the XBox Live APIs, a title must first call XOnlineStartup . XOnlineStartup will auto-
matically call XNetStartup and WSAStartup with reasonable defaults in order to initialize the Xbox Secure
Networking Libary and Winsock respectively. If you require special parameters for those functions your title
should can call them first before calling XOnlineStartup .
〈Start up the Xbox Live APIs 4 〉 ≡

hr = XOnlineStartup(Λ);
This code is used in section 3.

5. When a title is through with the XBox Live APIs, it can call XOnlineCleanup to perform final cleanup
for the online functions.
〈Shut down the Xbox Live APIs 5 〉 ≡

XOnlineCleanup();
This code is used in section 3.

2 SIGNING IN TO XBOX LIVE SERVICE Xbox Authentication Sample §6

6. Signing in to Xbox Live Service. To sign in, we call the SignIn function.
〈Sign in to the Xbox Live Service 6 〉 ≡

bSignedIn = SignIn ();
This code is used in section 3.

7. Signing In. The SignIn function is the backbone of this example. The SignIn function attempts to
logon the first account onto the first controller, and a guest of that account on the second controller.

BOOL SignIn ()
{
〈SignIn Local Variables 8 〉
〈Enumerate User Accounts 10 〉
〈Check if the first user account has a passcode 12 〉
〈Assign accounts to controllers 14 〉
〈Specify Services required by the title 17 〉
〈 Initiate the authentication process 18 〉
〈Loop until authentication is complete 22 〉
〈Verify that Xbox authentication was successful 23 〉
〈Verify that user authentication was successful 30 〉
〈Verify that service authentication was successful 40 〉
〈Set Presence 45 〉 /∗ If we made it this far, we are in... ∗/
return TRUE;

}

8. For error checking, we will need an HRESULT
〈SignIn Local Variables 8 〉 ≡

HRESULT hr ;
See also sections 9 and 13.

This code is used in section 7.

§9 Xbox Authentication Sample USER ACCOUNTS 3

9. User Accounts. Each user account is represented as an XONLINE USER structure. The
maximum number of user accounts returned during an enumeration is XONLINE_MAX_STORED_ONLINE_USERS.
We will store the enumerated accounts in StoredUsers and the number of accounts found during the
enumeration in dwNumStoredUsers .
〈SignIn Local Variables 8 〉 +≡

XONLINE USER StoredUsers [XONLINE_MAX_STORED_ONLINE_USERS];
DWORD dwNumStoredUsers ;

10. The XOnlineGetUsers function will enumerate both the hard disk and any attached memory units
looking for user accounts.
〈Enumerate User Accounts 10 〉 ≡

hr = XOnlineGetUsers (StoredUsers ,&dwNumStoredUsers);
assert (SUCCEEDED(hr));
(VOID) hr ; /∗ avoid compiler warning ∗/

See also section 11.

This code is used in section 7.

11. Next, check if there were any user accounts. If no accounts were found, a tile must give the player the
option of going to the online dash to create new account. In addition, it is possible for a player to actually
insert/remove an MU while the title account selection UI is active. A title must call XOnlineGetUsers
repeatedly to account for this. For demonstration purposes, we just boot to the account signup section of
the online dash if no accounts are found
〈Enumerate User Accounts 10 〉 +≡

if (dwNumStoredUsers ≡ 0) {
Print (L"No user accounts found.");
BootToDash (XLD_LAUNCH_DASHBOARD_NEW_ACCOUNT_SIGNUP);
return FALSE; /∗ Should never get here ∗/

}

12. Before signing on, the title must check accounts for passcodes. The dwUserOptions member of the
XONLINE USER structure will have the XONLINE_USER_OPTION_REQUIRE_PASSCODE bit set if the account
has a passcode. Furthermore, the passcode field of the XONLINE USER structure will contain the actual
passcode. If an account has a passcode, the player must be prompted for it. Passcodes are for client-side
authentication only, and the Xbox online service does not use them for authentication. For demonstration
purposes, we check the first user account, make a note of any passcode, and continue.
〈Check if the first user account has a passcode 12 〉 ≡

if (StoredUsers [0].dwUserOptions & XONLINE_USER_OPTION_REQUIRE_PASSCODE)
Print (L"%S has a passcode",StoredUsers [0].szGamertag);

This code is used in section 7.

13. The Xbox Live signon API XOnlineLogon requires a list of exactly 4 XONLINE USER accounts
(1 per controller) to login in a single call. The list must be a one-to-one match of controller to player in
order for the online system to recognize which player is using which controller. Any unused entries must be
zeroed out. This sample shows how to authenticate a single user and a guest. First, we will need an array,
LogonUsers , which will be assigned the two accounts. Initially, LogonUsers is zeroed out.
〈SignIn Local Variables 8 〉 +≡

XONLINE USER LogonUsers [XONLINE_MAX_LOGON_USERS] = {0};

4 USER ACCOUNTS Xbox Authentication Sample §14

14. Start off by assigning the first account to the first controller
〈Assign accounts to controllers 14 〉 ≡

LogonUsers [0] = StoredUsers [0];
See also section 15.

This code is used in section 7.

15. Next, add a guest player on the second controller. A guest account is specified by first copying
the sponsor account information into the controller array and then setting one of the guest bits in the
dwUserFlags of the account XUID, by calling XOnlineSetUserGuestNumber . The second parameter to
XOnlineSetUserGuestNumber indicates the guest number for the sponsor. It can be 1, 2, or 3, since there
can be up to three guest accounts. It actually doesn’t matter which of these values we use, only that no two
players use the same guest number for the same sponsor. We arbitrarily chose the value 1 .
〈Assign accounts to controllers 14 〉 +≡

LogonUsers [1] = StoredUsers [0];
XOnlineSetUserGuestNumber (LogonUsers [1].xuid .dwUserFlags , 1);

§16 Xbox Authentication Sample INITIATING THE AUTHENTICATION PROCESS 5

16. Initiating the authentication process. When a title calls XOnlineLogon to sign in, instead of
blocking until the authentication completes, an asynchronous task handle is returned. This task handle can
be passed to XOnlineContinue to perform a unit of work when the title has some spare cycles (e.g. when
waiting for the next flip or for the graphics push buffer to clear). As you’ll discover later, asynchronous tasks
handles are returned by many of the Xbox Live APIs. Since we will be signing on, we will need a to declare
a task handle:
〈Global Variables 16 〉 ≡

XONLINETASK HANDLE g hLogonTask ;
This code is used in section 3.

17. As part of the authentication process a title must specify which services it will be using. You should
specify the services that are appropriate for your title, but no more. Each service requires additional
authentication time and network traffic. For demonstration purposes, the matchmaking service is specified.
Additional services ids are specified in xonline.h.
〈Specify Services required by the title 17 〉 ≡

const DWORD Services [] = {XONLINE_MATCHMAKING_SERVICE};
const DWORD dwNumServices = sizeof (Services)/sizeof (Services [0]);

This code is used in section 7.

18. The authentication process first authenticates the Xbox. Next, it authenticates each user, and finally
authenticates against the requested services specified by Services and dwNumServices validating that both
the users and the Xbox have access to them. All three stages are handled by the client APIs, though the
title is required to check for errors and handle them appropriately.
〈 Initiate the authentication process 18 〉 ≡

hr = XOnlineLogon (LogonUsers ,Services , dwNumServices ,Λ,&g hLogonTask);
〈Verify XOnlineLogon 19 〉;

This code is used in section 7.

19. A title should check the return code of the call to XOnlineLogon . A return code of S_OK indicates that
the call succeeded, and the task handle returned should be pumped to complete the authentication process.
〈Verify XOnlineLogon 19 〉 ≡

switch (hr) {
case S_OK:

break;
See also sections 20 and 21.

This code is used in section 18.

20. XOnlineLogon can fail for a number of reasons. If no network connection was detected, XONLINE_E_LOGON_NO_NETWORK_CONNECTION
is returned. In this case, the title must give the player the option of accessing the network configuration
section of the online dash. For brevity, we simply note the condition and boot to the dash.
〈Verify XOnlineLogon 19 〉 +≡
case XONLINE_E_LOGON_NO_NETWORK_CONNECTION:

Print (L"No network connection detected.");
BootToDash (XLD_LAUNCH_DASHBOARD_NETWORK_CONFIGURATION);
break;

6 INITIATING THE AUTHENTICATION PROCESS Xbox Authentication Sample §21

21. Here’s a catch-all for other values. This should never be reached since we have just enumerated all
possible return cases.
〈Verify XOnlineLogon 19 〉 +≡
default:

assert (FALSE);
return FALSE;
}

§22 Xbox Authentication Sample SYSTEM AUTHENTICATION 7

22. System Authentication. After calling XOnlineLogon , the next step to repeatedly call XOnlineTaskContinue
with g hLogonTask as long as XONLINETASK_S_RUNNING is returned. This can take up to a minute or more
depending on network conditions. To abort the authentication process, a title can call XOnlineTaskClose .
Note, that in a real title, this would probably appear inside your game loop.
〈Loop until authentication is complete 22 〉 ≡

Print (L"Signing in...");
do {

hr = XOnlineTaskContinue (g hLogonTask); /∗ Do a small amount of work ∗/
} while (hr ≡ XONLINETASK_S_RUNNING); /∗ As long as there is work to do ∗/

This code is used in section 7.

23. Once the task has completed, a title must check the return value to see if system authentication
succeeded. A value of XONLINE_S_LOGON_CONNECTION_ESTABLISHED indicates the system authentication
was indeed successful.
〈Verify that Xbox authentication was successful 23 〉 ≡

switch (hr) {
case XONLINE_S_LOGON_CONNECTION_ESTABLISHED: Print (L"Connection established");

break;
See also sections 24, 25, 26, 27, 28, and 29.

This code is used in section 7.

24. If, during the authentication process, the Xbox loses its network connection, XONLINE_E_LOGON_CONNECTION_LOST
will be returned. If this is the case, the title should allow the player the option of booting into the network
configuration section of the online dash. For brevity, this sample will just boot to the network configuration
section of the online dash.
〈Verify that Xbox authentication was successful 23 〉 +≡
case XONLINE_E_LOGON_CONNECTION_LOST: Print (L"Network connection lost");

BootToDash (XLD_LAUNCH_DASHBOARD_NETWORK_CONFIGURATION);
return FALSE;

25. The XONLINE_E_LOGON_CANNOT_ACCESS_SERVICE error indicates that the console was unable to access
the Xbox Live service. In this case, the title should allow the player the option of booting into the network
configuration section of the online dash. Again, in the intrest of brevity, we just boot to the appropriate
section of the dash
〈Verify that Xbox authentication was successful 23 〉 +≡
case XONLINE_E_LOGON_CANNOT_ACCESS_SERVICE:

UIMsg (L"Your Xbox console cannot connect to Xbox Live.\n"
L"Press A to start the troubleshooter or B to cancel.");
BootToDash (XLD_LAUNCH_DASHBOARD_NETWORK_CONFIGURATION);
return FALSE;

8 SYSTEM AUTHENTICATION Xbox Authentication Sample §26

26. XONLINE_E_LOGON_UPDATE_REQUIRED is returned when an updated version of this title is available on
the server and gameplay must not continue until the title is updated. The title must allow the user the option
of updating the title before continuing. If the user decides to update immediately, the title is required to call
XOnlineTitleUpdate so that the update is downloaded to the hard drive. The XOnlineTitleUpdate function
will boot into an updater application, which performs the actual update. Once complete, the updated title
will be executed. Please note the autoupdate is intended as a means of addressing catastrophic defects or
security holes in a shipping title, and is not a general purpose update mechanism for adding new features.
〈Verify that Xbox authentication was successful 23 〉 +≡
case XONLINE_E_LOGON_UPDATE_REQUIRED:

UIMsg (L"A required update is available for the XBox Live Service.\n"
L"Press A to update or B to cancel. You cannot connect\n"
L"to Xbox Live until the update is installed.");
XOnlineTitleUpdate (0);
assert (FALSE); /∗ Should not reach here ∗/
return FALSE;

27. XONLINE_E_LOGON_INVALID_USER is returned when one or more users has an unrecognized Gamertag
or key. A title should allow the player the option of booting into the account management section of the
online dash. For brevity, we note the condition and boot into the account management section of the dash.
〈Verify that Xbox authentication was successful 23 〉 +≡
case XONLINE_E_LOGON_INVALID_USER: Print (L"Invalid user detected.");

BootToDash (XLD_LAUNCH_DASHBOARD_ACCOUNT_MANAGEMENT);
assert (FALSE); /∗ Should not reach here ∗/
return FALSE;

28. If XONLINE_E_LOGON_SERVERS_TOO_BUSY is returned, the Xbox Live service is too busy at the moment.
A title should indicate this (using the recommended text passed to UIMsg) and give the player the option
of trying again. In the interest of brevity, the sample simply displays the recommended message and bails.
〈Verify that Xbox authentication was successful 23 〉 +≡
case XONLINE_E_LOGON_SERVERS_TOO_BUSY: UIMsg (L"The Xbox Live service is very busy.\n"
L"Press A to try again or press B to cancel.");
return FALSE;

29. For other, unexpected errors, we simply note the error and bail.
〈Verify that Xbox authentication was successful 23 〉 +≡
default: /∗ Some other error - title is free to allow access to dash ∗/

Print (L"Login failed with error 0x%x", hr);
return FALSE;
}

§30 Xbox Authentication Sample USER AUTHENTICATION 9

30. User Authentication. To check for user authentication errors, we first call XOnlineGetLogonUsers .
This returns a pointer to an array of XONLINE USER structures. This array is similar the XONLINE USER
array we populated and passed into XOnlineLogon , but is updated with error status and permission flags
for each user.
〈Verify that user authentication was successful 30 〉 ≡

PXONLINE USER Users = XOnlineGetLogonUsers ();
assert (Users);

See also section 31.

This code is used in section 7.

31. For each user account assigned to a controller we next check to if that user was successfully signed in.
If no user was assigned to a controller, the corresponding XONLINE USER entry in Users will be zeroed
out. We can test for this by checking to see if the user id Users [i].xuid .qwUserID is zero or not (valid user
account never have an a zero user id). For each valid user, we also test for various user permissions and
make note of them.
〈Verify that user authentication was successful 30 〉 +≡

for (DWORD i = 0; i < XONLINE_MAX_LOGON_USERS; ++i) {
if (Users [i].xuid .qwUserID 6= 0) /∗ A valid user ∗/
{

DWORD dwUserFlags = Users [i].xuid .dwUserFlags ;
BOOL bGuest = XOnlineIsUserGuest (dwUserFlags);
〈Verify user authentication 32 〉
〈Check for user permissions 36 〉

}
}

32. The User array returned by XOnlineGetLogonUsers has the hr field of each element set with a status
code indicating whether or not authentication for that user succeeded. If hr is set to S_OK, then the user
(or guest) was successfully signed in.
〈Verify user authentication 32 〉 ≡

switch (Users [i].hr) {
case S_OK:

if (bGuest) Print (L"Guest %d of %S signed in",XOnlineUserGuestNumber (dwUserFlags),
Users [i].szGamertag);

else Print (L"%S signed in",Users [i].szGamertag);
break;

See also sections 33, 34, and 35.

This code is used in section 31.

33. If hr is set to XONLINE_S_LOGON_USER_HAS_MESSAGE, the user has a message from the Xbox Live
Service. The title must allow the option of booting into the account management section of the online dash
in order view the messages. For brevity, we note the condition, display the recommened user interface mesage
and boot to the account management section of the dash.
〈Verify user authentication 32 〉 +≡
case XONLINE_S_LOGON_USER_HAS_MESSAGE: Print (L"%S signed in, and has messages",

Users [i].szGamertag);
UIMsg (L"You have a new Xbox Live message.\n"
L"Press A to read it now, or B to read later.");
BootToDash (XLD_LAUNCH_DASHBOARD_ACCOUNT_MANAGEMENT);
break;

10 USER AUTHENTICATION Xbox Authentication Sample §34

34. If hr is set to XONLINE_E_LOGON_USER_ACCOUNT_REQUIRES_MANAGEMENT, the authentication failed,
and the user account requires management by user before that user can sign in. For brevity, we note the
condition, display the recommened user interface mesage and boot to the account management section of
the dash.
〈Verify user authentication 32 〉 +≡
case XONLINE_E_LOGON_USER_ACCOUNT_REQUIRES_MANAGEMENT:

Print (L"This %S account requires management",Users [i].szGamertag);
UIMsg (L"You have an important message from Xbox Live.\n"
L"Press A to read the message.");
BootToDash (XLD_LAUNCH_DASHBOARD_ACCOUNT_MANAGEMENT);
return FALSE;

35. Finally, here’s the catch-all case, which should never be reached since we have enumerated all possible
status codes.
〈Verify user authentication 32 〉 +≡
default: /∗ Should never happen ∗/

assert (FALSE);
return FALSE;
}

§36 Xbox Authentication Sample USER PERMISSIONS 11

36. User permissions. The users returned by XOnlineGetLogonUsers also has the dwUserFlags mem-
ber of each user XUID updated with the latest permission bits for that user. Here we examine those flags
checking for various types of user permissions.
〈Check for user permissions 36 〉 ≡
〈Check if user is allowed to use voice 37 〉
〈Check if user is allowed to purchase 38 〉
〈Check if user is nickname banned 39 〉

This code is used in section 31.

37. A title can check if user is allowed to use voice by using the XOnlineIsUserVoiceAllowed macro.
〈Check if user is allowed to use voice 37 〉 ≡

if (XOnlineIsUserVoiceAllowed (dwUserFlags))
Print (L" %S is allowed to use voice",Users [i].szGamertag);

This code is used in section 36.

38. The XOnlineIsUserPurchaseAllowed macro is used to test if a user is allowed to make purchases.
〈Check if user is allowed to purchase 38 〉 ≡

if (XOnlineIsUserPurchaseAllowed (dwUserFlags))
Print (L" %S is allowed to purchase",Users [i].szGamertag);

This code is used in section 36.

39. Finally, XOnlineIsUserNicknameAllowed macro is used to test if a user is nickname banned.
〈Check if user is nickname banned 39 〉 ≡

if (bGuest) {
if (¬XOnlineIsUserNicknameAllowed (dwUserFlags))

Print (L" Guest %d of %S is nickname banned",XOnlineUserGuestNumber (dwUserFlags),
Users [i].szGamertag);

}
else {

if (¬XOnlineIsUserNicknameAllowed (dwUserFlags))
Print (L" %S is nickname banned",Users [i].szGamertag);

}
This code is used in section 36.

12 SERVICE AUTHENTICATION Xbox Authentication Sample §40

40. Service Authentication. Check that the requested services are available. For each service that
was requested, we call XOnlineGetServiceInfo which returns the connection status for that service
〈Verify that service authentication was successful 40 〉 ≡

for (DWORD i = 0; i < dwNumServices ; ++i) {
hr = XOnlineGetServiceInfo(Services [i],Λ);
〈Verify service availability 41 〉

}
This code is used in section 7.

41. If the return value of XOnlineGetServiceInfo was S_OK, then a successful connection to the service
was made.
〈Verify service availability 41 〉 ≡

switch (hr) {
case S_OK:

Print (L"Service %lu Available",Services [i]);
break;

See also sections 42, 43, and 44.

This code is used in section 40.

42. If the return value was XONLINE_E_LOGON_SERVICE_NOT_AUTHORIZED, then one or more of the logged
on users was not authorized to use the service. An example of this might be a billing service lockout.
〈Verify service availability 41 〉 +≡
case XONLINE_E_LOGON_SERVICE_NOT_AUTHORIZED:

Print (L"Access to service %lu is denied",Services [i]);
return FALSE;

43. A return value of XONLINE_E_LOGON_SERVICE_TEMPORARILY_UNAVAILABLE means the service is tem-
porarily unavailable. The title can proceed with other online functionality that does not use this service.
If the user attempts to perform functions related to this service, the title should inform the user that the
service is temporarily unavailable.
〈Verify service availability 41 〉 +≡
case XONLINE_E_LOGON_SERVICE_TEMPORARILY_UNAVAILABLE:

Print (L"Service %lu is unavailable",Services [i]);
return FALSE;

44. Finally, we treat any other return value as an error.
〈Verify service availability 41 〉 +≡
default:

Print (L"Error 0x%x signing onto service %lu", hr ,Services [i]);
return FALSE;
}

§45 Xbox Authentication Sample SETTING PRESENCE 13

45. Setting Presence. For each user (except guests) set their online notification state so they are
visible to their online friends. The code calls the XOnlineNotificationSetState function passing a controller
index i, and a set of online notification flags to do this. A real title would check for the voice peripheral and
specify the XONLINE_FRIENDSTATE_FLAG_VOICE flag if present. It would also update the notification state
as the user joined or left a game session or when the voice peripheral was inserted or removed.
〈Set Presence 45 〉 ≡

for (DWORD i = 0; i < XONLINE_MAX_LOGON_USERS; ++i) {
if (Users [i].xuid .qwUserID 6= 0 ∧ ¬XOnlineIsUserGuest (Users [i].xuid .dwUserFlags)) {

hr = XOnlineNotificationSetState (i, /∗ Controller index ∗/
XONLINE_FRIENDSTATE_FLAG_ONLINE, XNKID(), 0,Λ);
assert (SUCCEEDED(hr));

}
}

This code is used in section 7.

14 LOGON TASK PROCESSING IN A GAME LOOP Xbox Authentication Sample §46

46. Logon Task Processing in a Game Loop. In addition to performing other game related tasks,
such as rendering, the title will need to perform online task processing. For demonstration purposes, our
game loop will run for about 15 seconds.

VOID GameLoop()
{ /∗ Staring time ∗/

DWORD dwTickStart = GetTickCount ();
const DWORD dwDuration = 15000; /∗ 15 seconds ∗/
while ((GetTickCount ()− dwTickStart) < dwDuration)
{ /∗ Perform game related frame update and rendering ∗/
〈Logon Task Processing in a Game Loop 47 〉

}
}

47. A title must service the logon task, by calling XOnlineTaskContinue with g hLogonTask , inside of its
game loop. Failure to pump the task in a timely manner will result in automatic signoff from the system.
〈Logon Task Processing in a Game Loop 47 〉 ≡

HRESULT hr = XOnlineTaskContinue (g hLogonTask);
〈Verify Logon Task 48 〉

This code is used in section 46.

48. The title should always check the value returned from XOnlineTaskContinue for any errors. If
XONLINE_S_LOGON_CONNECTION_ESTABLISHED is returned, the logon task is still established and there are no
errors.
〈Verify Logon Task 48 〉 ≡

switch (hr) {
case XONLINE_S_LOGON_CONNECTION_ESTABLISHED: break;
See also sections 49, 50, and 51.

This code is used in section 47.

49. XONLINE_E_LOGON_CONNECTION_LOST is returned when the connection to the XBox Live service has
been lost. A title will need to call XOnlineLogon once again to re-connect (the old task handle should be
closed using XOnlineTaskClose first)
〈Verify Logon Task 48 〉 +≡
case XONLINE_E_LOGON_CONNECTION_LOST:

Print ("Connection Lost.");
return;

50. A title is required to check for the case where a player has been signed out because that same account
has been signed on another Xbox. This is indicated by the XONLINE_E_LOGON_KICKED_BY_DUPLICATE_LOGON
error code.
〈Verify Logon Task 48 〉 +≡
case XONLINE_E_LOGON_KICKED_BY_DUPLICATE_LOGON:

UIMsg (L"You were signed out of Xbox Live because another\n"
L"person signed on using your account.\n"
L"Press A to continue.");
return;

§51 Xbox Authentication Sample LOGON TASK PROCESSING IN A GAME LOOP 15

51. Finally we add a catch-all case, which should never occurr as we have enumerated all possible return
values.
〈Verify Logon Task 48 〉 +≡
default:

assert (FALSE);
return;
}

16 SIGNING OFF OF THE XBOX LIVE SERVICE Xbox Authentication Sample §52

52. Signing off of the XBox Live Service. A title signs off users by calling XOnlineTaskClose on
the task handle returned by XOnlineLogon . Another situation in which users are signed off is if the Xbox
Live Service realizes the task handle returned by XOnlineLogon is not being serviced by the title (e.g. the
user turned the console off).
〈Sign off of the Xbox Live Service 52 〉 ≡

XOnlineTaskClose (g hLogonTask);
This code is used in section 3.

§53 Xbox Authentication Sample XBOX DEVICE HANDLING 17

53. XBox Device Handling. The XInitDevices function initializes the peripheral control software on
the console, and also allows the title to specify the maximum number of devices of each device type that
will ever be used simultaneously. This function must be called before any peripherals (controllers, memory
cards, voice units, and so on) are used or enumerated by the title. We specify zero and NULL so that the
maximum limits for each device type used will apply.
〈 Initialize Devices 53 〉 ≡

XInitDevices (0,Λ);
This code is used in section 3.

54. Before we can enumerate user accounts on any attached Memory Units, we must first allow them
sufficient time to mount. Depending on the number of Memory Units which have been inserted this may
take a few seconds. The XGetDeviceEnumerationStatus function should be called in busy loop until it
returns a value other than XDEVICE_ENUMERATION_BUSY.
〈Wait for Memory Units to mount 54 〉 ≡

while (XGetDeviceEnumerationStatus () ≡ XDEVICE_ENUMERATION_BUSY) { }
This code is used in section 3.

18 MISCELLANEOUS FUNCTIONS Xbox Authentication Sample §55

55. Miscellaneous Functions. The Print sends formatted text to debug output using the OutputDebugString
function. The function accepts a format string and a variable number of arguments. It works much like
printf .

VOID cdecl Print (const WCHAR∗strFormat , . . .)
{

const int MAX_OUTPUT_STR = 80;
WCHARstrBuffer [MAX_OUTPUT_STR];
va list pArglist ;
va start (pArglist , strFormat);
INTiChars = wvsprintfW (strBuffer , strFormat , pArglist);
assert (iChars < MAX_OUTPUT_STR);
OutputDebugStringW (L"\n*** SimpleAuth: ");
OutputDebugStringW (strBuffer);
OutputDebugStringW (L"\n\n");
(VOID) iChars ; /∗ avoid compiler warning ∗/
va end (pArglist);

}

56. The UIMsg function is used for displaying recommended user interface messages. Any call to UIMsg
in this sample is meant to specify text which a real title should use when providing information to a player.

VOID UIMsg (const WCHAR∗strText)
{

OutputDebugStringW (L"\n*** SimpleAuth: UI Message:\n");
OutputDebugStringW (strText);
OutputDebugStringW (L"\n");

}

57. The BootToDash function will boot to a specified section in the dash. It calls XLaunchNewImage ,
which never returns.

VOID BootToDash (DWORD dwReason)
{
LD_LAUNCH_DASHBOARDld ;
ZeroMemory (&ld , sizeof (ld));
ld .dwReason = dwReason ;
XLaunchNewImage (Λ, PLAUNCH_DATA(&ld));
assert (FALSE); /∗ Unreachable ∗/

}

§58 Xbox Authentication Sample FUNCTION PROTOTYPES 19

58. Function Prototypes. Here are the prototypes for the functions in this sample.
〈Function Prototypes 58 〉 ≡

BOOL SignIn ();
VOID GameLoop();
VOID cdecl Print (const WCHAR∗strFormat , . . .);
VOID UIMsg (const WCHAR∗strText);
VOID BootToDash (DWORD dwReason);

This code is used in section 3.

20 INDEX Xbox Authentication Sample §59

59. Index.

cdecl: 3, 55, 58.
assert : 10, 21, 26, 27, 30, 35, 45, 51, 55, 57.
bGuest : 31, 32, 39.
BOOL: 3, 7, 31, 58.
BootToDash : 3, 11, 20, 24, 25, 27, 33, 34, 57, 58.
bSignedIn : 3, 6.
dwDuration : 46.
dwNumServices : 17, 18, 40.
dwNumStoredUsers : 9, 10, 11.
DWORD: 9, 17, 31, 40, 45, 46, 57, 58.
dwReason : 57, 58.
dwTickStart : 46.
dwUserFlags : 15, 31, 32, 36, 37, 38, 39, 45.
dwUserOptions : 12.
FALSE: 11, 21, 24, 25, 26, 27, 28, 29, 34, 35,

42, 43, 44, 51, 57.
g hLogonTask : 16, 18, 22, 47, 52.
GameLoop : 3, 46, 58.
GetTickCount : 46.
hr : 3, 4, 8, 10, 18, 19, 22, 23, 29, 32, 33, 34,

40, 41, 44, 45, 47, 48.
HRESULT: 3, 8, 47.
i: 31, 40, 45.
iChars : 55.
INT: 55.
ld : 57.
LD_LAUNCH_DASHBOARD: 57.
LogonUsers : 13, 14, 15, 18.
main : 3.
MAX_OUTPUT_STR: 55.
OutputDebugString : 55.
OutputDebugStringW : 55, 56.
pArglist : 55.
passcode : 12.
PLAUNCH_DATA: 57.
Print : 3, 11, 12, 20, 22, 23, 24, 27, 29, 32, 33, 34,

37, 38, 39, 41, 42, 43, 44, 49, 55, 58.
printf : 55.
PXONLINE USER: 30.
qwUserID : 31, 45.
S_OK: 3, 19, 32, 41.
Services : 17, 18, 40, 41, 42, 43, 44.
SignIn : 6, 7, 58.
StoredUsers : 9, 10, 12, 14, 15.
strBuffer : 55.
strFormat : 55, 58.
strText : 56, 58.
SUCCEEDED: 10, 45.
szGamertag : 12, 32, 33, 34, 37, 38, 39.
TRUE: 7.
UIMsg : 25, 26, 28, 33, 34, 50, 56, 58.

Users : 30, 31, 32, 33, 34, 37, 38, 39, 45.
va end : 55.
va start : 55.
VOID: 3, 10, 46, 55, 56, 57, 58.
WCHAR: 55, 56, 58.
WSAStartup : 4.
wvsprintfW : 55.
XDEVICE_ENUMERATION_BUSY: 54.
XGetDeviceEnumerationStatus : 54.
XInitDevices : 53.
XLaunchNewImage : 57.
XLD_LAUNCH_DASHBOARD_ACCOUNT_MANAGEMENT: 27,

33, 34.
XLD_LAUNCH_DASHBOARD_MAIN_MENU: 3.
XLD_LAUNCH_DASHBOARD_NETWORK_CONFIGURATION: 20,

24, 25.
XLD_LAUNCH_DASHBOARD_NEW_ACCOUNT_SIGNUP: 11.
XNetStartup : 4.
XNKID: 45.
XONLINE_E_LOGON_CANNOT_ACCESS_SERVICE: 25.
XONLINE_E_LOGON_CONNECTION_LOST: 24, 49.
XONLINE_E_LOGON_INVALID_USER: 27.
XONLINE_E_LOGON_KICKED_BY_DUPLICATE_LOGON: 50.
XONLINE_E_LOGON_NO_NETWORK_CONNECTION: 20.
XONLINE_E_LOGON_SERVERS_TOO_BUSY: 28.
XONLINE_E_LOGON_SERVICE_NOT_AUTHORIZED: 42.
XONLINE_E_LOGON_SERVICE_TEMPORARILY_UNAVAILABLE: 43.
XONLINE_E_LOGON_UPDATE_REQUIRED: 26.
XONLINE_E_LOGON_USER_ACCOUNT_REQUIRES_MANAGEMENT: 34.
XONLINE_FRIENDSTATE_FLAG_ONLINE: 45.
XONLINE_FRIENDSTATE_FLAG_VOICE: 45.
XONLINE_MATCHMAKING_SERVICE: 17.
XONLINE_MAX_LOGON_USERS: 13, 31, 45.
XONLINE_MAX_STORED_ONLINE_USERS: 9.
XONLINE_S_LOGON_CONNECTION_ESTABLISHED: 23,

48.
XONLINE_S_LOGON_USER_HAS_MESSAGE: 33.
XONLINE USER: 9, 12, 13, 30, 31.
XONLINE_USER_OPTION_REQUIRE_PASSCODE: 12.
XOnlineCleanup : 5.
XOnlineContinue : 16.
XOnlineGetLogonUsers : 30, 32, 36.
XOnlineGetServiceInfo : 40, 41.
XOnlineGetUsers : 10.
XOnlineIsUserGuest : 31, 45.
XOnlineIsUserNicknameAllowed : 39.
XOnlineIsUserPurchaseAllowed : 38.
XOnlineIsUserVoiceAllowed : 37.
XOnlineLogon : 13, 16, 18, 19, 20, 22, 30, 49, 52.
XOnlineNotificationSetState : 45.
XOnlineSetUserGuestNumber : 15.

§59 Xbox Authentication Sample INDEX 21

XOnlineStartup : 4.
XONLINETASK HANDLE: 16.
XONLINETASK_S_RUNNING: 22.
XOnlineTaskClose : 22, 49, 52.
XOnlineTaskContinue : 22, 47, 48.
XOnlineTitleUpdate : 26.
XOnlineUserGuestNumber : 32, 39.
xuid : 15, 31, 45.
XUID: 15, 36.
ZeroMemory : 57.

22 NAMES OF THE SECTIONS Xbox Authentication Sample

〈Assign accounts to controllers 14, 15 〉 Used in section 7.

〈Check for user permissions 36 〉 Used in section 31.

〈Check if the first user account has a passcode 12 〉 Used in section 7.

〈Check if user is allowed to purchase 38 〉 Used in section 36.

〈Check if user is allowed to use voice 37 〉 Used in section 36.

〈Check if user is nickname banned 39 〉 Used in section 36.

〈Enumerate User Accounts 10, 11 〉 Used in section 7.

〈Function Prototypes 58 〉 Used in section 3.

〈Global Variables 16 〉 Used in section 3.

〈 Initialize Devices 53 〉 Used in section 3.

〈 Initiate the authentication process 18 〉 Used in section 7.

〈Logon Task Processing in a Game Loop 47 〉 Used in section 46.

〈Loop until authentication is complete 22 〉 Used in section 7.

〈Set Presence 45 〉 Used in section 7.

〈Shut down the Xbox Live APIs 5 〉 Used in section 3.

〈Sign in to the Xbox Live Service 6 〉 Used in section 3.

〈Sign off of the Xbox Live Service 52 〉 Used in section 3.

〈SignIn Local Variables 8, 9, 13 〉 Used in section 7.

〈Specify Services required by the title 17 〉 Used in section 7.

〈Start up the Xbox Live APIs 4 〉 Used in section 3.

〈Verify Logon Task 48, 49, 50, 51 〉 Used in section 47.

〈Verify XOnlineLogon 19, 20, 21 〉 Used in section 18.

〈Verify service availability 41, 42, 43, 44 〉 Used in section 40.

〈Verify that Xbox authentication was successful 23, 24, 25, 26, 27, 28, 29 〉 Used in section 7.

〈Verify that service authentication was successful 40 〉 Used in section 7.

〈Verify that user authentication was successful 30, 31 〉 Used in section 7.

〈Verify user authentication 32, 33, 34, 35 〉 Used in section 31.

〈Wait for Memory Units to mount 54 〉 Used in section 3.

Xbox Authentication Sample

Section Page
Introduction . 1 1
Signing in to Xbox Live Service . 6 2
User Accounts . 9 3
Initiating the authentication process . 16 5
System Authentication . 22 7
User Authentication . 30 9
User permissions . 36 11
Service Authentication . 40 12
Setting Presence . 45 13
Logon Task Processing in a Game Loop . 46 14
Signing off of the XBox Live Service . 52 16
XBox Device Handling . 53 17
Miscellaneous Functions . 55 18
Function Prototypes . 58 19
Index . 59 20

	Introduction
	Signing in to Xbox Live Service
	User Accounts
	Initiating the authentication process
	System Authentication
	User Authentication
	User permissions
	Service Authentication
	Setting Presence
	Logon Task Processing in a Game Loop
	Signing off of the XBox Live Service
	XBox Device Handling
	Miscellaneous Functions
	Function Prototypes
	Index
	Names of the sections
	Assign accounts to controllers
	Check for user permissions
	Check if the first user account has a passcode
	Check if user is allowed to purchase
	Check if user is allowed to use voice
	Check if user is nickname banned
	Enumerate User Accounts
	Function Prototypes
	Global Variables
	Initialize Devices
	Initiate the authentication process
	Logon Task Processing in a Game Loop
	Loop until authentication is complete
	Set Presence
	Shut down the Xbox Live APIs
	Sign in to the Xbox Live Service
	Sign off of the Xbox Live Service
	SignIn Local Variables
	Specify Services required by the title
	Start up the Xbox Live APIs
	Verify Logon Task
	Verify XOnlineLogon
	Verify service availability
	Verify that Xbox authentication was successful
	Verify that service authentication was successful
	Verify that user authentication was successful
	Verify user authentication
	Wait for Memory Units to mount

