

A Framework for Open Source
Projects

Master Thesis in Computer Science

submitted by

Gregor J. Rothfuss
rothfuss@abstrakt.ch

of Zurich, Switzerland
Register No. 97-711-915

Supervisor:
Prof. K. Bauknecht

Department of Information Technology
University of Zurich

Zurich, November 12, 2002

2

Abstract

The historical roots of Open Source are outlined. A comparison between Open Source
projects and classical projects highlights strengths and weaknesses of both, and defines
their attributes. Existing Open Source theories are evaluated, and the requirements for a
framework for Open Source projects are determined. The framework introduces the
notions of actors, roles, areas, processes and tools, and depicts their interrelationships in a
matrix. Each aspect of the framework is then further developed to serve both as a
conceptual foundation for Open Source and a help for organizing and managing Open
Source projects.

Die Geschichte von Open Source wird aufgezeigt. Ein Vergleich zwischen Open Source
und klassischen Projekten beleuchtet Stärken und Schwächen beider Ansätze, und
definiert deren Atribute. Existierende Open Source Theorien werden evaluiert, und die
Anforderungen für ein Rahmenwerk über Open Source ermittelt. Das Rahmenwerk führt
die Begriffe Akteur, Rolle, Bereich, Prozess und Werkzeug ein und illustriert deren
Zusammenspiel in einer Matrix. Die einzelnen Aspekte des Rahmenwerks werden
vertieft und dienen als konzeptuelle Grundlage für Open Source sowie helfen bei der
Organisation und dem Management von Open Source Projekten.

3

Acknowledgements

I would like to thank Prof. Dr. Kurt Bauknecht, head of the “Information Management”
research group at the Department of Information Technology at the University of Zurich
who made this master thesis possible.

I would like to thank for valuable discussions and suggestions Carl P. Corliss, Curtis
Hays, Steven McGregor, Daniel Mettler, Andrew Vogel, Benjamin Voigt and Eric
Wiseman. Special thanks to the participants in the PostNuke and OSCOM Open Source
projects who inspired me to write this thesis in the first place, and to the University of
California Berkeley for hosting me during the writing of this thesis.

A special thanks to Carl P. Corliss for careful spell checking and helping with the layout.

4

Table of Contents

Abstract .. 2
Acknowledgements ... 3
Table of Contents... 4
List of Figures .. 7
List of Tables ... 8
List of Tables ... 8
1. Introduction.. 9

1.1 Why Open Source is relevant ... 9
1.2 Goals of this paper... 10

2. The Open Source Phenomenon .. 11
2.1 Historical Overview .. 11

2.1.1 The early days .. 11
2.1.2 The rise of UNIX ... 11
2.1.3 The GNU Project ... 14
2.1.4 Linux... 15
2.1.5 To the mainstream.. 16

2.2 Fundamentals... 16
2.2.1 Intellectual Property Concepts .. 16
2.2.2 The significance of Contracts.. 19
2.2.3 Definitions of Open Source... 19
2.2.4 Open Source Software Licenses.. 23

2.3 Theories about Open Source... 26
2.4 The Open Source Community .. 27

2.4.1 Sociology.. 28
2.4.2 Software Engineering .. 29
2.4.3 Economy... 33

2.5 Open Source Projects .. 35
2.5.1 Developers.. 36
2.5.2 Project Lifecycle .. 37
2.5.3 Example OSP ... 40

3. Open Source Projects versus Classical Projects .. 42
3.1 Underlying Trends... 43

3.1.1 New Communication Technologies.. 43
3.1.2 More powerful Hardware .. 44
3.1.3 Higher-level Languages... 44
3.1.4 Ubiquitous Standards... 45

3.2 Defining Open Source Projects .. 46
3.2.1 Resources.. 47
3.2.2 Coordination... 51
3.2.3 Structures .. 55

3.3 Defining Classical Projects... 61
3.3.1 Resources.. 61
3.3.2 Coordination... 63

5

3.3.3 Structures .. 66
3.4 Strengths of Open Source Projects... 71

3.4.1 Release frequency .. 71
3.4.2 Customer Input... 72
3.4.3 Scalability ... 72

3.5 Weaknesses of Open Source Projects .. 73
3.5.1 Communication .. 73
3.5.2 Redundant Efforts .. 73
3.5.3 Lack of Priorities.. 74
3.5.4 Lack of Conventions.. 74
3.5.5 Lack of focus.. 74
3.5.6 Dependency on key persons.. 74
3.5.7 Leadership .. 75

3.6 Strengths of Classical Projects ... 75
3.6.1 Predictability .. 75
3.6.2 Standards .. 76
3.6.3 Documentation ... 76
3.6.4 Accountability.. 76

3.7 Weaknesses of Classical Projects... 76
3.7.1 Customer Input... 76
3.7.2 Scalability ... 77
3.7.3 Bureaucracy.. 77
3.7.4 Skill levels .. 77

3.8 The Properties Matrix ... 78
4. Towards a unified Open Source Theory .. 80

4.1 Limitations of existing theories.. 80
4.1.1 The cathedral and the Bazaar .. 80
4.1.2 Open Source as academic Research.. 88
4.1.3 Economic Approaches ... 90
4.1.4 Virtual Decentralized Networks.. 94
4.1.5 Psychological Models.. 98

4.2 Challenges for Theory Formulation ... 99
4.2.1 Data Collection... 99
4.2.2 Subject of Study...100
4.2.3 Theory Validation ..101

4.3 A framework approach ...101
4.3.1 Framework Goals...101
4.3.2 Framework Inputs ..102
4.3.3 Framework Assumptions...103
4.3.4 Framework Methodology ..105

5. A framework for Open Source Projects ...106
5.1 Overview of the framework..106

5.1.1 Framework Components..106
5.1.2 The Framework Matrix..107

5.2 Actors and Roles ...109
5.2.1 Actors..109

6

5.2.2 Roles ...111
5.3 Areas ..116

5.3.1 Marketing ...116
5.3.2 Human Resources ..117
5.3.3 Systems Management ..117
5.3.4 Software Engineering ..117
5.3.5 Project Management ..118

5.4 Processes..118
5.4.1 Marketing ...118
5.4.2 Human Resources ..120
5.4.3 Systems Management ..125
5.4.4 Software Engineering ..128
5.4.5 Project Management ..135

5.5 Tools...137
5.5.1 Marketing ...137
5.5.2 Human Resources ..139
5.5.3 Systems Management ..142
5.5.4 Software Engineering ..144
5.5.5 Project Management ..147

6. Conclusion ...148
6.1 Areas for further Research..149

Appendix A: Using the OSP framework..151
Project Success ..151
Personal Success/Outcomes..152
Factors contributing to project success ..152

Bibliography...153

7

List of Figures
Figure 1: A typical TCO Calculation (Source: UNISYS Corporation).............................. 34
Figure 2: Relations between roles in OSP (Source: [Evers00]).. 59
Figure 3: Relations within an OSP ... 59
Figure 4: Social Network Analysis (Source: [Krebs02]) .. 60
Figure 5: Relations between roles in CSP (Source: [Evers00]).. 70
Figure 6: Relation of CSP with their environment (Source: [Evers00]) 71
Figure 7: The Virtual Roof (Source: [Dafermos01])... 96
Figure 8: Knowledge exchange in a virtual organization (Source: [Dafermos01]) 97
Figure 9: Visualization of Usenet postings ..100
Figure 10: CSP versus OSP change process (Source: [Asklund01])114
Figure 11: Mozilla Roadmap ..135
Figure 12: Affero online fundraising system...139
Figure 13: Radio Userland news aggregation..141
Figure 14: Sourceforge skill matrix..142
Figure 15: Trillian Multi-Protocol Instant Messaging Client ...144
Figure 16: Request Tracker...145
Figure 17: TortoiseCVS integration into the Windows explorer......................................146
Figure 18: JUnit framework..147
Figure 19: Calendaring across platforms ...148
Figure 20: Modularity of the Linux kernel ..150

8

List of Tables
Table 1: Software Licenses compatibility.. 26
Table 2: Open Source projects by lifecycle stage.. 39
Table 3: OSP versus CSP properties .. 79
Table 4: The OSP framework matrix ...108
Table 5: CMM Levels (Source: [Curtis95])...121

9

1. Introduction
This paper aims to shed light on the hardly understood phenomenon of Open Source
software development. Open Source has only gained widespread popularity as a term as
recently as 1998, but is in fact far older. In the course of the appearance of Open Source
in the public mind, many notions about its meaning have been formed, but few
conclusions have been reached. Companies have been founded with great fanfare to
exploit this new concept, and have since long gone bankrupt. Despite those business
failures, Open Source is not a trend. It is here to stay. A casual Internet search reveals
thousands of Open Source projects (OSP), with hundreds of thousands of participants.
Academic knowledge of Open Source is in its very early stages, with few breakthrough
papers to account for.

1.1 Why Open Source is relevant
Open Source has several properties that make it interesting for academic study, and
relevant for the discipline of computer science.

Software Engineering
Open Source eschews many traditional software engineering concepts such as
careful planning and prototyping in favor of a more organic approach. Some Open
Source projects reach very high levels of quality while others linger along in the
planning stages forever. Engineering feats like the Linux Kernel, one of the
biggest software engineering projects ever seem impossible according to the
notions of software engineering, and yet have been accomplished.

Economics
Participation in OSP defies common wisdom about economic principles. What
makes highly skilled software engineers and programmers1 participate in a project
that they will not be paid for? Yet a COCOMO analysis of widely distributed
Open Source programs derived a replacement value of $1 billion if they were
recreated by conventional means.2

Social Sciences
OSP are a product of the Internet. Without the enormous advances in
communication technologies and their widespread use around the world, such
immense collaborative efforts would not be possible. The social sciences have
discovered the Internet has a research medium, and OSP are interesting subjects
of study because they produce tangible results from a process of discourse. OSP
do present new opportunities to test theories of reputation, research trust relations
between strangers and explore motivational behaviors.

1 Empirical evidence suggests that OSP participants are among the most qualified software engineers in the
world. One possible explanation is that the intense competition in OSP attracts the most talented in greater
numbers than lesser skilled persons.
2 http://www.dwheeler.com/sloc/

10

1.2 Goals of this paper
This paper presents a new attempt at a unified theory for Open Source. Building upon
earlier theories, it brings together diverse areas of research (Software Engineering,
Human Resources, Economics and Social Sciences) because existing theories fail to
address Open Source as the interdisciplinary issue it is. The paper first puts Open Source
into historical context in chapter 2 to try to understand the forces that led to its inception,
and that will likely influence it in the future. The term Open Source is then examined in
chapter 3 by looking at various aspects, and comparing Open Source projects to classical
projects. The goal of this comparison is ultimately to arrive at a matrix that highlights the
differences and similarities between the two approaches. A look at existing theories in
chapter 4 reveals both their strengths and their deficiencies, and allows formulating the
requirements for a new theory of OSP. This theory is designed to be extensible, and
offers advice beyond explanation of the various aspects that are involved in OSP. Chapter
5 is devoted to the Open Source framework. The central organizing concept of the
framework is the framework matrix, which ties together all the various aspects of Open
Source under one roof. Each area of the framework is then discussed in detail. Finally,
open areas of research are identified with the hope to include some of their results in a
future version of the framework.

Besides being an academic treatise of Open Source, this paper also attempts to be
readable by any interested individuals. Theoretical considerations are enriched with case
studies, examples and advice. Readers with little time on their hands will find the
comparison matrix at the end of chapter three helpful, and may want to explore the
framework selectively. An extensive bibliography provides further resources.

It is assumed that the reader has a basic knowledge of Information Technology. Having
encountered or worked in software engineering projects before helps greatly to relate to
the case studies and terminology used, but is not a requirement.

11

2. The Open Source Phenomenon
Open Source goes back at least to the early 1960s. Yet as a term, the “Open Source
Initiative” only coined it in 19983. The history of Open Source is closely tied to the
history of UNIX. Open Source needs legal prerequisites to make it work, like copyright
and contract law. This in turn leads to a discussion of Open Source Licenses, a look at
various theories of Open Source, and an examination of exemplary projects.

2.1 Historical Overview
When people talk about Open Source software, they normally refer to the operating
system GNU/Linux and its applications. Linux has a long history that goes back to the
creation of UNIX (1969) and further. This rich historical context is relevant to understand
Open Source, because many of the philosophical issues involved were first encountered
in the context of UNIX, and the tradition of UNIX permeates the Open Source
community to this day.

2.1.1 The early days
Traditionally, hardware vendors like International Business Machines (IBM) delivered
the source code for the operating systems and applications of their early computers with
the shipment of the machine, because it was impractical to do otherwise. It was a strongly
held belief that the value of a computer was contained in the hardware. Computer
hardware was prohibitively expensive, and little thought was given to software.
Operating systems and applications were necessary ingredients for the operation of a
computer, but they were not seen as valuable in their own right. Furthermore, the users of
computer technology were few and far between, and computer manufacturers actively
encouraged users to share improvements to the software out of a belief that it would help
save support costs. This belief changed only gradually with the advent of UNIX.

2.1.2 The rise of UNIX
4In 1965, the Massachusetts Institute of Technology (MIT), General Electric (GE) and
Bell Telephone Labs (BTL) started the MULTICS (Multiplexed Information and
Computing Service) project that had the objective to develop a new interactive, multi-
user operating system. In 1969, BTL withdrew their resources from the MULTICS
project, as success seemed to get out of reach.

“The problem was the increasing obviousness of the failure of MULTICS to deliver
promptly any sort of usable system” [Ritchie79].

Even though the project was a failure, many lessons were learned from it, and
subsequently applied to other projects. Among them:

• A file system with a tree structure

3 http://www.opensource.org
4 The following quotations, if not stated otherwise, are taken from the book “A Quarter Century of UNIX”,
by Peter H. Salus [Salus94]. Salus gives an excellent overview of UNIX history.

12

• A program to do command interpretation: the ’shell’
• The structure of files
• The semantics of “everything is a file”

Some of the BTL researchers which participated in the declined project did not want to
give up the entire comfortable computing environment that was promised by MULTICS.

“They didn’t want to lose the pleasant niche they occupied, because no similar ones were
available” [Ritchie79].

Therefore, they began trying to find alternatives. They proposed the purchase of a new
medium-scale computer, promising to write the operating system for it. The request was
denied. They also developed the basic design for a file system and Ken Thompson5
started to write some programs for a computer that was available at that time, a GE645.
When it became clear that the machine would be removed from BTL within the following
months, he stopped that work [Ritchie79]. Ken Thompson had developed a game called
‘Space Travel’ that was originally written for MULTICS6 and then ported to GECOS7,
the operation system used on the GE645. ‘Space Travel’ did not run very well on the
GE645 and was expensive to run. One game cost $75 US for CPU time. These facts
prompted him to get it running on another machine. Dennis Ritchie8 and Ken Thompson
rewrote the game on the DEC PDP-79. Thompson implemented the already designed file
system soon after and continued to address all other requirements for a working operating
system [Ritchie79]. Ken Thompson commented on how he started writing UNIX: “I
allocated a week each to the operating system, the shell, the editor, and the assembler…
Yeah, essentially one person for a month.”10 By promising to develop a text-processing
tool for the system, they got a new PDP-11 computer in 1970 but had to share it with
others.

“With several BTL staff members from outside the research group using the typesetting
facilities of the PDP-11, the need to document the operating system grew. The result was
the first UNIX Programmer’s Manual by Thompson and Ritchie, which was dated
November 3, 1971.” [Salus94].

The manual11 gave the first complete release of UNIX its name: “First Edition”. It
introduced most of the fundamental ideas. Many commands like ’mv’, ’su’ or ’find’ had
been invented at that time, and are still used today. Between 1971 and 1973, UNIX
became a success inside certain parts of Bell Telephone Laboratories. The main
improvements during that time were the invention of the C programming language, the
port of the operating system to C and the invention of pipes. The result of these efforts

5 Ken Thompson’s biography is available at http://www.bell-labs.com/history/unix/thompsonbio.html
6 http://www.multicians.org/
7 http://www.tuxedo.org/~esr/jargon/html/entry/GCOS.html
8 Dennis Ritchie maintains a biography at http://cm.bell-labs.com/cm/cs/who/dmr/bigbio1st.html
9 http://www.montagar.com/dfwcug/VMS_HTML/timeline/1964-3.htm
10 http://www.osdata.com/kind/unix.htm
11 The manual is at http://cm.bell-labs.com/cm/cs/who/dmr/1stEdman.html

13

was the ’Third Edition’, released in February 1973. With the rewrite in C, UNIX was the
first operating system that was portable to other hardware architectures. The “UNIX
Philosophy” which Doug McIlroy12, an early UNIX contributor, formulated as follows:

1. Write programs that do one thing and do it well
2. Write programs to work together
3. Write programs that handle text streams as the universal interface

led to a set of powerful tools, further increasing the appeal of UNIX. The third edition
had been installed on 16 sites (all within AT&T/Western Electric) in 1973 and the
development work had been going on for four years at that time. However, it was not
known much outside AT&T. When Thompson submitted a paper at the “Symposium on
Operating Systems Principles” in Yorktown Heights, NY, in October 1973 UNIX became
popular in the field of computer science. Within six months of the paper’s delivery, the
number of installations trebled. A revised version of the paper was published in the July
1974 issue of Communications of the ACM which “caused an explosion in demand for
the fledgling operating system” [Salus94][Ritchie78]. AT&T had been convicted of
antitrust violations in 1956, prohibiting it to start any other business than telephone or
telegraph services. This had a very special effect on the development of UNIX. After
people outside the company had started to get interested in the operating system AT&T
had to avoid any conflict with the decree. Their policy was to license the software
(allowed by the decree) but not to pursue software as a business. UNIX was provided
“[a]s is, no support, payment in advance” Without support and bug fixes the growing
community of UNIX users was forced to help themselves. They started to share ideas,
information, programs, bug fixes, and hardware fixes. User groups were created wherever
UNIX was introduced. Among them were universities in Australia, the United Kingdom,
Germany and Japan. At ten years of age, UNIX was genuinely being used worldwide.
The researchers at BTL had invented a great operating system, but the company’s
management could not legally enter the business nor let the copyrights go. On the other
hand, there was a growing community of users that wanted to use the system and the
spirit that bonded UNIX users together in the 1970s and which continues today had its
roots in an ’us-against-them’ attitude combined with a sense of humor. In the following
years, users and developers of UNIX cooperated very closely:

“Something was created at BTL. It was distributed in source form. A user in the UK
created something from it. Another user in California improved on both the original and
the UK version. It was distributed to the community at cost [mainly for the distribution
effort]. The improved version was incorporated into the next BTL release. There was no
way the AT&T’s patent-and-licensing office could control this, and the system just got
better and more widely used all the time.” [Salus94]

The “Seventh Edition” dated January 1979 was the first portable UNIX that ran on
computers produced by DEC, IBM and Interdata. “Portability was born” [Salus94].
Unfortunately, the new license “prohibited the source code from being studied in
courses” [Salus94] and many universities simply dropped the study of UNIX.

12 A biography can be found at http://cm.bell-labs.com/cm/cs/who/doug/biography

14

Additionally, the development became more and more divergent. The Berkeley Software
Distribution V3 (3BSD) emerged out of this situation.13

Over the years, many UNIX derivates followed. Some of them were based on original
AT&T versions, others on the BSD line, but all of them required costly licenses from
AT&T. In the beginning of the 1990s other systems like BSDI, 386/BSD and NetBSD14
emerged that did not require these licenses. All this was accompanied by long-lasting
legal battles and the users were confused and annoyed by the dozens of incompatible
UNIX versions and an uncertain future. Today, most of these systems have disappeared
from the market.

2.1.3 The GNU Project
The following quotations are taken from [DiBona99, The GNU Operating System and the
Free Software Movement]. Starting his job at the MIT Artificial Intelligence Lab in 1971,
Richard Stallman joined a “software sharing community that had existed for many
years”: Anytime you stumbled over an interesting program you asked the creator for the
source code and read it, changed it or used parts of it to write a new program. They used
the Digital PDP-10 series as their computer system at the time. Unfortunately, the model
was discontinued in the early 1980s, all the created programs were unusable as they were
written in assembler language and computers of that era had their own proprietary
operating systems. “[Y]ou had do sign a nondisclosure agreement even to get an
executable copy” A cooperative community was not possible anymore. According to
Stallman, the rule behind proprietary software was “If you share with your neighbor, you
are a pirate. If you want any changes, beg us to make them.” The given situation forced
Stallman to make “a stark moral choice” between the following three options:

1. He could “join the proprietary software world, signing nondisclosure agreements
and promising not to help [his] fellow [programmer]”. This would mean to spend
his life “building walls to divide people”.

2. Another option was to “leave the computer field” to avoid the misuse of his skills,
but they would be wasted, too, and someone else would ‘build the walls’.

3. Looking for a possibility to be a programmer and work on the establishment of a
new cooperative community.

Stallman chose the last option and decided that the crucial component was an operating
system, as you cannot use a computer without it. Fortunately, he had already been an
operating system developer and therefore was the right person to do this job. Stallman
describes the spirit behind this decision with the words of Rabbi Hillel:

“If I am not for myself, who will be for me?
If I am only for myself, what am I?
If not now, when?”

He chose to make his new system compatible with UNIX, which was owned and

13 A more detailed account can be found at http://www.usenix.org/publications/login/1999-4/20years.html
14 NetBSD http://www.netbsd.org

15

controlled by AT&T at the time. Therefore, he called his new project “GNU” which
stands for the recursive acronym “GNU is Not UNIX” and coined the term “free
software” in opposition to proprietary software. In order to speed up the project he
decided to adapt existing components of free software wherever it was possible, e.g. TEX
as text formatter and X as window system.

In January 1984, he gave up his job at MIT and focused entirely on the GNU project. To
his delight, other people started to help him with his first project, the GNU Emacs15 text
editor, soon after. It became clear that simply producing software for the public domain
would not serve the primary goal of the project to “give users freedom” as the programs
could be slightly modified (e.g. by porting it to a specific machine) and turned into
proprietary software. This led to the ’GNU General Public License’ (GPL). This license
is based on a method that is called “Copyleft16”. It uses copyright law to keep software
free.
In 1985, Stallman and other people engaged with the GNU project decided to found a
tax-exempt charity called “Free Software Foundation” (FSF)17 to handle the business area
of the project like donations, selling copies of free software or offering other related
services. Although the original intention was to complete the system first and then release
it as a whole, people started using single finished components on the various compatible
UNIX systems. This process had the advantage of improving the software and extending
the user community, but “probably delayed completion of a minimal working system by
several years”. Another problem was the projects choice to base Hurd, the ’heart’ of the
system (the kernel), on the Mach18 microkernel architecture because they had to wait for
the Mach technology to be finished and their own part of implementation turned out to be
much more difficult than expected. “[b]y 1990, the GNU system was almost complete;
the only major missing component was the kernel.” The Hurd remains unfinished to this
day.

2.1.4 Linux
Fortunately, Linus Torvalds, a Finnish university student, started to develop his own
UNIX-compatible kernel “Linux” in 1991. Torvalds based the design on his kernel on a
monolithic architecture, which was considered obsolete by Tannenbaum19 and others.
Torvalds provided Linux under copyleft and invited anyone to help him develop and
improve the kernel. The developer community grew quickly and advances were made
very fast. Thanks to his open development model and the growing role of the Internet,
Linus Torvalds was able to work together with hundreds of developers. “Around 1992,
combining Linux with the not-quite-complete GNU system resulted in a complete free
operating system.” Heavily improved and extended versions of the Linux kernel and the
GNU software tools have been released since then, millions of people have joined the
GNU/Linux community and today it is the fastest growing operating system.

15 GNU Emacs http://www.gnu.org/software/emacs/emacs.html
16 The concept of Copyleft is explained in http://www.gnu.org/copyleft/copyleft.html
17 FSF http://www.fsf.org
18 The Mach project can be found at http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html
19 http://alge.anart.no/linux/history/linux_is_obsolete.txt

16

2.1.5 To the mainstream
The year 1998 started with a splash when Netscape Corporation announced to open
source their flagship product Communicator in January. In the wake of this
announcement, interest in Open Source soared, and mass media began to take notice. In
May 1998, one of the first large-scale installations of Linux went live with the startup
Google Inc. announcing their search engine. In June, Linux was offered certification from
The Open Group to allow it to carry the UNIX name. In the same month, IBM announced
its support for the Apache project, a web server software. Oracle and Informix pledged
Linux support in early July, and Linus Torvalds appeared on the cover of Forbes
magazine. In September 1998, Microsoft admitted Linux as a competitor for the first
time. 1999 saw many Open Source companies going public, with spectacular stock rises
after their IPO’s. Open Source companies seemed to defy gravity for a while, and
expectations towards open source skyrocketed. At various times Open Source was hyped
as the solution to cure all ills in software engineering. It took the tech downturn of 2000
to reset expectations to a sensible level. Many of the former Open Source companies
failed in the marketplace, and declared bankruptcy. Meanwhile, Open Source projects
continue to be maintained, and new projects are being started every day. Reports of the
death of Open Source have hence been premature.

2.2 Fundamentals
Open Source uses legal concepts to enable the special provisions it needs to encourage
the unrestricted distribution of source code. It is therefore sensible to introduce these
legal concepts. In addition, Open Source is a very broad term, and means different things
to different people. The Open Source Definition elaborates on the central tenets of Open
Source, and a look at various Open Source licenses highlights the crucial differences.

2.2.1 Intellectual Property Concepts
Intellectual property is defined as “intangible property that is the result of creativity, such
as patents, copyrights, etc.” [Oxford98, intellectual property] and grants individuals or
groups certain control over valuable information. Due to the volatile nature of intellectual
property, especially the ease with which it can be reproduced, it is granted special
protection. The intent of these intellectual property laws is to protect the creator against
unfair use of his material. The cost of copying a video tape is relatively small compared
with several million dollars for the production of the actual movie. However, it still takes
some resources. You need the equipment and the storage media for the transfer, which is
normally significant compared with the regular price of a legal copy. Besides, the
duplication process normally has some undesired side effects like a loss of quality. This
is not the case with digital information. The duplicate normally cannot even be
distinguished from the original, and the cost is often negligible. For this reason,
intellectual property laws have an important effect on software value and thereby its
development. There are no consistent international laws about intellectual property but
most countries have treaties with each other in order to provide a minimum protection for
their citizens. There are roughly four legal instruments to protect intellectual property.

17

2.2.1.1 Patents
“a government grant of the exclusive right to make, use, or sell an invention, usually for a
limited period. Patents are granted for new and useful machines, manufactured products,
and industrial processes and for significant improvements of existing ones. Patents are
also granted for new chemical compounds, foods, and medicinal products, as well as to
the processes for producing them. Patents can even be granted to new plant or animal
forms developed through genetic engineering.” [Britannica, patents] Governments grant
patents as a payback for the disclosure of an invention. Therefore, patent law protects
ideas, not specific expressions of ideas, as copyright law does. The usage of similar,
independently achieved inventions is a violation of patent law. Patents are a powerful
instrument to protect ideas. However, patents are threatening when they are misused,
especially in the area of software. Let us assume that someone would be granted a patent
on the basic arithmetical operations of addition and subtraction. Every calculation using
these operations would be subject to the patent. Therefore, there are requirements and
regulations for patents. In order to be granted a patent, the invention must be new, useful
and non-obvious. An application must be filed, followed by a complex process to decide
whether the patent should be granted. Once the patent is granted, the owner has the right
to exclude others from making, using or selling his idea for a certain period in the country
the patent was granted in. A patent remains valid between sixteen and twenty years in
most countries. A patent has to be filed separately in each country although there are
some treaties to simplify this process. [Britannica, patent]. While some software patents
have been granted, their validity has been repeatedly challenged. [LPF91] argues that
software patents are invalid, because software is based on mathematical ideas, which do
not enjoy patent protection. Others have taken exception to the length of the patent
period, which is considered too long for the software industry, as it hampers innovation.
Opposing views hold that patents provide incentives to invent and allow the inventor to
capitalize on the invention and recoup his investment.

2.2.1.2 Copyright
“the exclusive, legally secured right to publish, reproduce, and sell the matter and form of
a literary, musical, dramatic, or artistic work.” [Britannica, copyright] Copyright law was
originally created for books. The purchase of a book buys you the actual physical
medium (the paper) but not its contents. Instead, you obtain the legal right to use the
contents with the purchase of the information media. Copyright laws that make it illegal
to produce duplicates protect the text printed in the book. Copyright laws give the creator
five exclusive rights over his work:

• Reproduction Right: The right to duplicate the work in fixed form.
• Modification Right: The right to modify the work to create something new. The

result is called ’derivative work’
• Distribution Right: The right to distribute copies of the work to the public (e.g.

sale or rental).
• Public Performance Right: The right to play, dance, act, or show the work at

public place or to transmit it to the public.
• Public Display Right: The right to show a copy of the work at a public place or to

transmit it to the public.

18

These rights have certain limitations.

• Idea: The idea that is expressed by the creative work is not protected. Copyright
laws only cover a specific expression, not the ideas themselves. For instance, the
recipes in a cookbook can be used without permission, but copying the text is
prohibited.

• Facts: Analogous to ideas, the facts of copyrighted material are not protected
either.

• Independent Creation: If an exact duplicate of the work is produced independently
by someone else, it is not considered a copy and thereby does not violate
copyright laws.

• Fair Use: The ’fair use’ of creative work is not a violation of copyright laws even
when it includes some duplication. Although the term is not precisely defined, it
covers news reporting, research and criticism.

Several treaties guarantee international protection. The two most important ones are the
Berne Convention (1886) and the Universal Copyright Convention (1952). Both
agreements automatically grant foreign authors the same copyrights in the participating
countries as local citizens. Today, most countries are members of at least one of these
conventions [Britannica, copyright]. Copyright law has steadily increased the term of
protection granted to rights holders, and efforts are underway to make the term unlimited.
These laws are sponsored by the American record industry, and are challenged on
constitutional grounds by [Lessig00] and others.

”We have entered a time when the code of our time can be written such that people who
own intellectual property have the power — through law and through this code — to
close off, to stop, to own an idea, and to make criminal, or at least extremely difficult, any
use of that idea beyond the owners permission. We have entered a time when we can
construct the world against nature.”20

2.2.1.3 Trade Secrets
“information, including a formula, pattern, compilation, program, device, method,
technique, or process that derives independent economic value from not being generally
known and not being readily ascertainable and is subject to reasonable efforts to maintain
secrecy.” (Uniform Trade Secrets Act) Software source code is usually considered a trade
secret and the binary code resulting from its compilation is protected by special copyright
laws for computer programs like the Software Act of 1980 in the USA. Trade secrets are
often invoked in the case of reverse engineering. Reverse engineering21 determines the
functions of hardware or software without access to the original source code or blueprints
to allow for interoperability, and is often used to write drivers for hardware devices
where no Open Source driver exists.22

20 http://cyberlaw.stanford.edu/lessig/content/articles/works/lessigkeynote.pdf
21 http://whatis.techtarget.com/definition/0,289893,sid9_gci507015,00.html
22 http://www.troubleshooters.com/ucita/opensrc.htm outlines the dangers for Reverse Engineering with
recent legislation in the United States.

19

2.2.1.4 Trademarks
 “any visible sign or device used by a business enterprise to identify its goods and
distinguish them from those made or carried by others. Trademarks may be words or
groups of words, letters, numerals, devices, names, the shape or other presentation of
products or their packages, color combinations with signs, combinations of colors, and
combinations of any of the enumerated signs.” [Britannica, trademark] While software
cannot be protected by trademarks, packaging and slogans for commercial off the shelf
software (COTS) are often trademarked. Trademarks have been used to fight Open
Source alternatives to commercial software because the Open Source programs violated
the trademarks of the commercial package.23

2.2.2 The significance of Contracts
Contracts as an enforceable promise are a very important instrument of the economic
system. Two forms of contracts are especially relevant in the context of software.

2.2.2.1 License
Producers of creative work wanting to go beyond the provisions of copyright law provide
special licenses for their work. In most cases, licenses place more restrictions on the use
of the creative work than copyright law does. Licensing is a very important vehicle for
regulating acceptable uses of software. It will be revisited later.

2.2.2.2 Non-Disclosure Agreement
The subject of non-disclosure agreements (NDA) are trade secrets. An NDA is the
promise to keep the provided information secret. Non-disclosure agreements can be very
complex, and are usually not acceptable for Open Source projects because the publication
of source code would violate the terms of the non-disclosure agreement. The usual route
being taken to accommodate both NDA and Open Source is to provide parts of Open
Source software as binary modules only. Examples of this include driver software for
advanced 3D functionality in the Linux kernel, and software to interface with software-
based modems. Another reason for NDA is protection of trade secrets until a given date.
Intel Corporation used this approach to protect its trade secrets for their new Itanium
processor while a small group of programmers that had signed NDA’s was preparing
Linux support.
Most Open Source software is not written under explicit contracts, but rather started by
individuals out of a need, or out of curiosity. The question of contracts, and especially
licenses, only matters once a piece of software is distributed beyond its initial creator.
Many OSP find it hard to settle on a license, because there are so many Open Source
licenses to choose from, and they often only differ marginally. Choosing a license means
to revisit ones notions about what Open Source means. What is Open Source?

2.2.3 Definitions of Open Source
To discuss Open Source, it is necessary to define the term Open Source in detail.
Interestingly there is a broad variety of meanings attached to the term, and the discussion

23 http://zdnet.com.com/2100-11-528438.html?legacy=zdnn

20

on definitions of Open Source is conducted ferociously. Two main camps can be
identified within the Open Source community. Free Software, led by Richard Stallman,
the creator of the GPL, and Open Source Software, led by the Open Source Initiative.
While both movements share most of their practical goals, they differ philosophically.
The Free Software movement believes it is unethical to use anything other than Free
Software, while the Open Source movement is willing to accommodate proprietary
software.

2.2.3.1 Free Software
The term Free Software was coined by Richard M. Stallman. Free Software requires the
following four freedoms to be present [FSF01]:

1. The freedom to run the program, for any purpose.
2. The freedom to study how the program works, and adapt it to your needs.
3. The freedom to redistribute copies so you can help your neighbor.
4. The freedom to improve the program, and release your improvements to the

public, so that the whole community benefits.

Stallman further clarifies the term:

Since "free" refers to freedom, not to price, there is no contradiction between selling
copies and free software. In fact, the freedom to sell copies is crucial: collections of free
software sold on CD-ROMs are important for the community, and selling them is an
important way to raise funds for free software development. Therefore, a program which
people are not free to include on these collections is not free software. Because of the
ambiguity of "free", people have long looked for alternatives, but no one has found a
suitable alternative. The English Language has more words and nuances than any other,
but it lacks a simple, unambiguous, word that means "free," as in freedom--"unfettered,"
being the word that comes closest in meaning. Such alternatives as "liberated",
"freedom" and "open" have either the wrong meaning or some other disadvantage.

2.2.3.2 Open Source Software
Open Source software as a term is both an informal term to refer to software where the
source code is available, and a precise definition established by the Open Source
Initiative [OSD02].

1. Free Redistribution
”The license shall not restrict any party from selling or giving away the software
as a component of an aggregate software distribution containing programs from
several different sources. The license shall not require a royalty or other fee for
such sale.”

Rationale: By constraining the license to require free redistribution, the
temptation to throw away many long-term gains in order to make a few short-term
gains is eliminated. Without this clause, there would be a lot of pressure for
cooperators to defect.

21

2. Source Code
”The program must include source code, and must allow distribution in source
code as well as compiled form. Where some form of a product is not distributed
with source code, there must be a well-publicized means of obtaining the source
code for no more than a reasonable reproduction cost – preferably, downloading
via the Internet without charge. The source code must be the preferred form in
which a programmer would modify the program. Deliberately obfuscated source
code is not allowed. Intermediate forms such as the output of a preprocessor or
translator are not allowed.”

Rationale: Obfuscating (disguising) source code defies the purpose of having
access to the source code. Source code needs to be easily accessible and
modifiable.

3. Derived Works
”The license must allow modifications and derived works, and must allow them to
be distributed under the same terms as the license of the original software.”

Rationale: The mere ability to read source code is not enough to support
independent peer review and rapid evolutionary selection. For rapid evolution to
happen, people need to be able to experiment with and redistribute modifications.

4. Integrity of The Author's Source Code
”The license may restrict source-code from being distributed in modified form
only if the license allows the distribution of "patch files" with the source code for
the purpose of modifying the program at build time. The license must explicitly
permit distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the
original software.”

Rationale: Encouraging improvement of the original code is advantageous, but
users have a right to know who is responsible for the software they are using.
Authors and maintainers have reciprocal right to know what they are being asked
to support and protect their reputations. Accordingly, an open-source license must
guarantee that source be readily available, but may require that it be distributed as
pristine base sources plus patches. In this way, "unofficial" changes can be made
available but readily distinguished from the base source.

5. No Discrimination Against Persons or Groups
”The license must not discriminate against any person or group of persons.”

Rationale: In order to get the maximum benefit from the process, the maximum
diversity of persons and groups should be equally eligible to contribute to Open
Source. Therefore, the Open Source Definition (OSD) forbids any open-source
license from locking anybody out of the process. Some countries, including the

22

United States, have export restrictions for certain types of software. An OSD-
conformant license may not incorporate such restrictions itself.

6. No Discrimination Against Fields of Endeavor
”The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.”

Rationale: The major intention of this clause is to prohibit license traps that
prevent open source from being used commercially.

7. Distribution of License
”The rights attached to the program must apply to all to whom the program is
redistributed without the need for execution of an additional license by those
parties.”

Rationale: This clause intends to forbid closing up software by indirect means
such as requiring a non-disclosure agreement.

8. License Must Not Be Specific to a Product
”The rights attached to the program must not depend on the program's being part
of a particular software distribution. If the program is extracted from that
distribution and used or distributed within the terms of the program's license, all
parties to whom the program is redistributed should have the same rights as those
that are granted in conjunction with the original software distribution.”

Rationale: This clause prevents yet another class of license traps, which would
prevent the reuse of source code outside the original product.

9. The License Must Not Restrict Other Software
”The license must not place restrictions on other software that is distributed along
with the licensed software. For example, the license must not insist that all other
programs distributed on the same medium must be Open Source software.”

Rationale: Distributors of open-source software have the right to make their own
choices about their own software. The GPL, arguably one of the most restrictive
Open Source licenses, is conformant with this requirement. Software linked with
GPL-licensed libraries only inherits the GPL if it forms a single work, not any
software with which they are merely distributed. [FSF01a]

2.2.3.3 Licenses as a contentious issue
The philosophical differences between the Free Software and Open Source movements
can ultimately be boiled down to different opinions about what constitutes a proper
license for Open Source software24. Open Source implies a development methodology

24 http://www.fsf.org/philosophy/free-software-for-freedom.html

23

that is shared by factions. Free Software implies a license designed to ensure the four
freedoms noted above. The division between the two is often bitterly contested, both
from inside and outside the communities. The holiest of holy wars are not fought over
word processors, operating systems, or compilers. They are all about software licenses. In
the end, it is up to the individual software author to pick a software license.

2.2.4 Open Source Software Licenses
In the course of the last few years, a multitude of Open Source licenses has been created.
Most of the newer licenses are modified licenses to support a particular business model.
Open Source licenses from Sun, IBM and Netscape Corporation belong to this category.
It has become increasingly difficult to keep an overview on the various licenses, and to
note their subtle differences. Both the GNU project and the Open Source Initiative have
compiled extensive lists of licenses that qualify for the Open Source criteria. The list of
licenses is steadily increasing25. Some of the better-known licenses include:

• GNU General Public License (GPL)
• GNU Library or ‘Lesser’ Public License (LGPL)
• BSD license
• MIT license
• Artistic license
• Mozilla Public License (MPL)
• Q Public License (QPL)
• IBM Public License
• MITRE Collaborative Virtual Workspace License (CVW License)
• Ricoh Source Code Public License
• Python license
• zlib/libpng license

At the time of this writing (June 2002) there were 43 different Open Source licenses
acknowledged by the GNU project, and 32 acknowledged by the Open Source Initiative.
A closer examination of selected licenses provides a good overview of the issues
surrounding software licensing. Each license has their champions, as the examples
indicate.

2.2.4.1 GNU Public License – GPL26
“The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software–to make sure the software is free for all its
users.” [FSF91] The GPL is the most important open source license as most open source
software is distributed under its terms. A major reason for its popularity is its viral effect,
called Copyleft.

25 news://news.gmane.org/gmane.comp.licenses.open-source.general conducts an ongoing debate about
new Open Source licenses.
26 http://opensource.org/licenses/gpl-license.php

24

Copyleft is a general method for making a program free software and requiring all
modified and extended versions of the program to be free software as well. Copyleft says
that anyone who redistributes the software, with or without changes, must pass along the
freedom to further copy and change it. Empirical evidence suggests that Copyleft
provides an incentive for programmers to add to free software. Important free programs
such as the GNU C++ compiler exist only because of this. To Copyleft a program, first
state that it is copyrighted; then add distribution terms, which are a legal instrument that
gives everyone the rights to use, modify, and redistribute the program's code or any
program derived from it, but only if the distribution terms are unchanged. Thus, the code
and the freedoms become legally inseparable. Using the same distribution terms for many
different programs makes it easy to copy code between various different programs. Since
they all have the same distribution terms, there is no need to think about whether the
terms are compatible. The Lesser GPL includes a provision that lets you alter the
distribution terms to the ordinary GPL, so that you can copy code into another program
covered by the GPL. Examples of software licensed under GPL include the Linux kernel
and the K desktop environment (KDE).

2.2.4.2 GNU Lesser General Public License – LGPL27
This license differs from the GPL in one important aspect: it permits linking with non-
free modules. It was originally designed for standard libraries to speed up the adoption of
free software since such licensed libraries provide an opportunity for proprietary software
to run in a free software system. It has since been argued by the Free Software
Foundation that providing libraries under the terms of the LGPL weakens the cause of
Free Software, and is discouraged by the FSF. [FSF99]

2.2.4.3 BSD License28
The BSD license and its relatives the X and Apache licenses are very different from the
GPL and LGPL. These licenses let you do nearly anything with the software licensed
under them. This is because the software that the X and BSD licenses originally covered
was funded by monetary grants of the U.S. Government. Since the U.S. citizens had
already paid for the software with their taxes, they were granted permission to make use
of that software as they pleased. The most important permission, and one missing from
the GPL, is that you can make BSD-licensed modifications private. In other words, you
can get the source code for a BSD-licensed program, modify it, and then sell binary
versions of the program without distributing the source code of your modifications, and
without applying the X license to those modifications. This is still open source, however,
as the Open Source Definition does not require that modifications always carry the
original license. The BSD license and its variants, including the X license and the Apache
license, are used in the FreeBSD operating system, the Apache web server, and the
XFree86 window manager.

27 http://opensource.org/licenses/lgpl-license.php
28 http://opensource.org/licenses/bsd-license.php

25

2.2.4.4 Mozilla Public License29
The Mozilla Public Licenses (MPL) was developed by Netscape Corporation when it
made its browser Netscape Navigator open source The MPL allows you to make
modifications private. Many companies have adopted a variation of the MPL for their
own programs. Among them are the Netscape Public License (NPL), the Interbase
License, the Nokia Open Source License, and the IBM Public License.

2.2.4.5 Content Licenses
A recent development is the application of the Open Source licensing model to other
forms of intellectual property. Adjustments have been made to deal with specific issues
posed by other mediums. The creative commons30 site lists the Design Science License,
EFF Open Audio License, Free Art License, Free Music Public License, Open Content
License, Open Music License, Open Publication License, Public Library of Science Open
Access License, and the GNU Free Documentation License. Some book publishers have
started to license books under the GPL, such as New Riders31 and SAMS32.

2.2.4.6 License Compatibility
Software systems consist of many components produced by different persons. As these
modules are often distributed under different licenses, it is sometimes impossible to
legally use them in combination. The problem is proliferating as many new companies
start to participate in the Open Source community and create their own license instead of
using an existing one. Since these conflicts only serve the opponents of Open Source
software, such incompatibilities should be avoided as far as possible. Therefore, it is
normally much better for all participating parties to use an existing license than to create
yet another one. The GPL or LGPL provide the best protection against misuse and are
compatible with most Open Source software already released as they are the most
common licenses. Table 1 gives an overview of the various discussed licenses.

Can be
mixed with

non-free
software

Modifications can be
taken private and not

returned to you

Can be
re-

licensed
by anyone

Contains special
privileges for the original

copyright holder over
your modifications

GPL

LGPL X

BSD X X

NPL X X X

MPL X X

Public
Domain X X X

29 http://opensource.org/licenses/mozilla1.1.php
30 http://www.creativecommons.org/concepts/
31 http://www.newriders.com/
32 http://www.samspublishing.com/

26

Table 1: Software Licenses compatibility

Underlying the notions expressed in the various Open Source licenses are fundamental
assumptions about the nature of Open Source both as a movement and as a software
engineering phenomenon. Software licenses are not the only legal issue facing Open
Source. Software patents pose a host of issues.33 Numerous approaches have been made
to explain Open Source with a consistent theory. These theories are important tools for
understanding Open Source.34

2.3 Theories about Open Source
No consistent, generally agreed on model for Open Source software exists yet. However,
there are many theoretical approaches that try to explain the phenomenon of Open
Source. Eric Raymond describes the Open Source community and its method of writing
software in his book “The Cathedral & the Bazaar” [Raymond99b]. The title is an
allegory: proprietary software production as the carefully planned building of a cathedral,
Open Source software production as the chaotic interactions of the participants in an
oriental bazaar. Strong, centralized management versus loosely related developers
organized in several thousand seemingly independent projects. The following quotes
from Raymond’s book are helpful to understand the process of Open Source software
development:

1. “Quality was maintained not by rigid standards or autocracy but by the naively
simple strategy of releasing every week and getting feedback from hundreds of
users within days, creating a sort of rapid Darwinian selection on the mutations
introduced by developers.” [Raymond99b, page 24]

2. “Linus Torvalds’ style of development [is:] release early and often, delegate
everything you can, be open to the point of promiscuity” [Raymond99b, page 30]

3. “Users are wonderful things to have, and not just because they demonstrate that
you’re serving a need, that you’ve done something right. Properly cultivated, they
can become co-developers.” [Raymond99b, page 36]

4. “It is not only debugging that is parallelizable; development and (to a perhaps
surprising extent) exploration of design space is, too. When your development
mode is rapidly iterative, development and enhancement may become special
cases of debugging–fixing ‘bugs of omission’ in the original capabilities or
concept of the software.” [Raymond99b, page 51]

5. “I don’t think it’s a coincidence that the gestation period of Linux coincided with
the birth of the World Wide Web, and that Linux left its infancy during the same
period in 1993-1994 that saw the takeoff of the [Internet service provider]
industry and the explosion of mainstream interest in the Internet. Linus Torvalds
was the first person who learned how to play by the new rules that pervasive
Internet made possible.” [Raymond99b, page 63]

33 http://petition.eurolinux.org/reference/economy.html
34 Eric Raymond’s seminal paper “The Cathedral and the Bazaar” has been mentioned as a decisive factor
by many companies for their embrace of Open Source ideas.

27

6. “The [Open Source] world behaves in many respects like a free market or an
ecology, a collection of selfish agents attempting to maximize utility which in the
process produces a self-correcting spontaneous order more elaborate and efficient
than any amount of central planning could have achieved.” [Raymond99b, page
64]

7. “[I]n a world of cheap PCs and fast Internet links, we find pretty consistently that
the only really limiting resource is skilled attention. Open Source projects [...] die
only when the developers themselves lose interest. That being the case, it’s
doubly important that Open Source [developers] organize themselves for
maximum productivity by self-selection–and the social milieu selects ruthlessly
for competence.” [Raymond99b, page 71]

8. “A happy programmer is one who is neither underutilized nor weighed down with
ill-formulated goals and stressful process friction. Enjoyment predicts efficiency.”
[Raymond99b, page 75]

9. “It may well turn out that one of the most important effects of Open Source’s
success will be to teach us that play is the most economically efficient mode of
creative work.” [Raymond99b, page 75]

Raymond draws heavily on sociology and psychology to explain Open Source. Nikolai
Bezroukov considers Raymond’s bazaar model as “a too simplistic view of the Open
Source software development process”. Instead, he “tries to explore links between open
source software development and academic research as a better paradigm [...]” and thinks
it “should be better viewed as a special case of academic research.” [Bezroukov99b]
Considering the Open Source phenomenon as academic research leads to the wide field
of philosophy of science. Additionally, the combination of the “rapid Darwinian
selection” mentioned in quote one and Bezroukov’s parallel to scientific research might
lead to advances in the theory of software development, scientific research or creative
work in general. Quote two epitomizes the belief that software should be released in short
intervals, tested by as many users as possible. Quote four asserts that Brook’s law may be
wrong, and five illustrates the importance of cheap and ubiquitous communication.
Arguments six and seven produce economic explanations for Open Source, and eight and
nine focus on psychological motivations. While “The Cathedral and the Bazaar” feels a
bit like a hodgepodge of wildly different areas of science, wittily mixed together, it is by
far the most popular and influential theory of Open Source. Other theories have been
proposed, and will be revisited in chapter four. So far, we have lumped together the
legalistic definition of Open Source with the meaning of Open Source as a community. It
is not sufficient to look at software licenses to understand Open Source. The Open Source
community is a vital part of Open Source, and has unique characteristics.

2.4 The Open Source Community
The Open Source community is influenced by mix of sociological, software engineering
and economic forces. Open Source is a way of life, a way to develop software, and a new
economic model. Each aspect of Open Source influences the others, and they are hard to
separate. Some factors stand out though.

28

2.4.1 Sociology
Software does have an increasing impact on society. With the advent of the Internet,
many things that used to take place in the real world are now ’moving’ into cyberspace.
People are trading, communicating, studying and being entertained on the Internet.
Software not merely provides the capabilities to connect to the Internet; it controls it
completely. This level of importance to completely control the experience for a software
user is unprecedented. Recent developments like “Browser Wars35”, “Spyware36” and
“Censorware37” illustrate the leverage software has on the lives of individuals. The use of
software thus raises new questions, especially the questions of observation and
independence.

2.4.1.1 Observation
Software controls many valuable goods. It is essential that it operate correctly. Software,
or rather its actions, needs to be observed to make sure it performs the desired operation
without undesired side effects. Using software means placing trust in the intentions of the
entity that wrote the software. It is usually infeasible to audit software for its actions.
Most users of software do not have the necessary skills to do so, nor does software
complexity lend itself to effortless observation. Some of these considerations include:

1. if the software does exactly what it should do
2. if the software only does what it should do
3. if all appropriate precautions are taken to control potentially dangerous processes
4. if data and resources are sufficiently protected against undesired actions of

’hostile’ attackers, or data loss

Source code availability enables these observations, and is therefore an important
consideration. [Stoltz99] argues that many government organizations require source code
access to be able to verify the security of software. Closely related to the issue of
observation is independence.

2.4.1.2 Independence
Independence means keeping full control over application data and information systems.
As long as there are many different compatible software systems to choose from,
application data can be migrated to other systems as required. Unfortunately,
compatibility of software systems has turned out to be very weak. The replacement of
installed software systems and successful data migration is difficult. The increasing
complexity of software will make this process more difficult still. Choosing a software
system is a far-reaching decision. Dependence on a software company and its future
products means a loss of sovereignty. This dependence poses large business risks in the
event of technical difficulties with software or the bankruptcy of the software vendor.

35 The intense competition between Netscape Corporation and Microsoft Corporation for the control of the
web browser market.
36 Spyware is software installed by advertising companies that reports statistical data. This is often done
without the knowledge or consent of the user.
37 Censorware is software which is designed and optimized to prevent another person from sending or
receiving information. Censorware has been known to infringe on civil liberties.

29

Open Source software and companies do not naturally provide better technology.
However, sovereignty is preserved as you can leave your service provider at any time and
keep using the same software. Availability of the source code allows for outsourcing of
maintenance in the event that the original vendor ceases to maintain a product. Iceland
and other nations with too few inhabitants for a profitable software market have already
experienced such problems when they were looking for native language support, even
though they were willing to pay for the translation effort38. Many countries and
companies do not like to depend that much on private companies and therefore look for
alternatives. Open Source software might turn out to be the best choice.39

2.4.2 Software Engineering
There are several thousand Open Source projects (OSP)40, with widely varying levels of
sophistication. Some projects use sophisticated strategies of software engineering while
others just start working without any planning at all. Although there is no general method
of producing software in OSP, their special open distribution policy raises several
interesting questions. The special considerations for software engineering are far
reaching, and will be revisited later in more detail. For now, an overview of how Open
Source influences various software engineering aspects will provide an introduction.

2.4.2.1 Security
It has been claimed that Open Source software is inherently insecure due to the openness
of the source code.41 The question if Open Source software is more secure than
proprietary software has never been settled with proof. It will most likely never be settled
because both the notion of security is vague, and it is hard to gather relevant data. A few
issues are worth consideration though.

1. Security by obscurity is a flawed concept, and has been repeatedly dismissed by
the scientific community42.

2. Trusting the creating party without appropriate observation of the result requires a
large amount of trust in each single person and party that has access to the (secret)
source code. Only one defector would destroy the protection provided by secrecy.
Besides, the loss of protection might not become known for a long time.

3. The scientific process has long relied on peer review for quality control.
[Bezroukov99b] establishes that the Open Source process can be seen as a special
type of academic research.

2.4.2.2 Reliability
[Schmidt01] argues that “Open Source projects make it easier to address... quality
assurance, end-user confidence and good will, and the coherency of system-wide

38http://www.menntamalaraduneyti.is/mrn/mrn-engAfrit/mrn-
eng.nsf/888deacc045556e80025664300576c77/7f8f562e9fa1a40a002566ff0065cee0?OpenDocument
39 A new development, TCPA (Trusted Computing Platform Alliance) might seriously undermine these
choices. http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
40 Sourceforge contains thousands of projects alone: http://sourceforge.net
41 See http://www.linuxworld.com/linuxworld/lw-1998-11/lw-11-ramparts.html&e=42
42 http://www.counterpane.com/crypto-gram-0205.html#1

30

software and usability properties .. compared with traditional closed-source approaches to
building software.” A study by the University of Wisconsin about the “Reliability of
UNIX Utilities and Services” remarks: “[T]he reliability of the freely distributed GNU
and Linux software was surprisingly good, and noticeably better than the commercially
produced software.43” Open Source software is not more reliable in general, but evidence
suggests it can be, and often is.

2.4.2.3 Reusability
The evolutionary process that is made possible by permissive licenses helps to shape
reusable software components. It is reasonable to consider the distribution of the source
code and the granted right to modify the software as a stimulating factor for the
reusability of software components. [Price99]: “Other Open Source software provide
frameworks for interprocess communication and networking (Linux, Bind and Sendmail)
which allow programs such as Ghostview to be coupled with Web browsers and servers
(Mosaic, Lynx and Apache) to enable the rapid initial growth of the World Wide Web.
Programs such as TeX and Gimp aid creation of Web documentation and images. Since
most of these packages were never intended as Web components, the argument could be
advanced that the Web constitutes the world's most successful example of software reuse
in the large.”

2.4.2.4 Compatibility and Standards
Why should developers use provided standards? The members of OSP tend to choose the
most effective option they can find without much effort in advance. Standards are very
handy for this strategy as they contain a lot of theoretical work and developers can
concentrate on the actual task instead of spending most of their time thinking about
theoretical frameworks and a fundament to provide consistency and compatibility.
[Spangler01]: “Reconciliation of different interpretations of the standard, clarifications
and extensions can be realized by discussion systems and some generally accepted
conciliators of Open Source projects. As long as companies have a commercial interest
in selling solutions based on the protocol, it makes economic sense for them to jointly
support its common implementation.” Examples for standards work in the Open Source
world abound..

Free Standards Group44
“A non-profit corporation organized to accelerate the use and acceptance of open
source technologies through the application, development and promotion of
standards.”

Linux Standard Base45
“The goal of the Linux Standard Base is to develop and promote a set of standards
that will increase compatibility among Linux distributions and enable software
applications to run on any compliant Linux system. In addition, the LSB will help

43 Barton P. Miller et al.: ’Fuzz Revisited: A Reexamination of the Reliability of UNIX
Utilities and Services’, February 2000, ftp://grilled.cs.wisc.edu/technical_papers/fuzz-revisited.ps
44 http://www.freestandards.org/
45 http://www.linuxbase.org

31

coordinate efforts to recruit software vendors to port and write products for
Linux.” Current members are Caldera Inc., Corel Corporation, the Debian Project,
delix Computer GmbH, Enhanced Software Technologies Inc., IBM, LinuxCare,
Linux for PowerPC, Mandrake Soft, Metro Link Inc., Turbolinux Inc., Red Hat
Software, Software in the Public Interest Inc., SuSE GmbH, VA Linux, WGS
Inc., and SGI.

Linux Internationalization Initiative46
“Li18nux is a voluntary working group, consisting of Linux and Open Source
related contributors who are working on Globalization, a combination of
Internationalization and Localization. The organization was formed in August
1999. The ultimate goal of the organization is to achieve software/application
portability and interoperability in the International context for Linux and other
Open Source projects. Its activities are focused on the internationalization of a
core set of APIs and components of Linux distributions to achieve a common
Linux environment. This will allow an internationalized Linux application to be
executed regardless if different flavors of distributions are used. The results of the
working group will be open to everyone, and be proposed for adoption to the Free
Standards Group”

X Desktop Group47
“The X Desktop Group is a free software project to work on interoperability and
shared technology among desktop environments for the XWindow System. The
most famous X desktops are GNOME and KDE.”

Filesystem Hierarchy Standard48
“FHS defines a common arrangement of the many files and directories in UNIX-
like systems (the filesystem hierarchy) that many different developers and groups
have agreed to use. [...] The implementors of Linux distributions and other UNIX-
like operating systems, application developers, and Open Source writers use the
FHS specification. In addition, many system administrators and users have found
it to be a useful resource. FHS [...] is currently implemented by most major Linux
distributions, including Debian, RedHat, Caldera, SuSE, and more.”

Austin Common Standards Revision Group49
“The Austin Common Standards Revision Group (CSRG) is a joint technical
working group established to consider the matter of a common revision of
ISO/IEC 9945-1, ISO/IEC 9945-2, IEEE Std 1003.1, IEEE Std 1003.2 and the
appropriate parts of the Single UNIX Specification. The approach to specification
development is ’write once, adopt everywhere’, with the deliverables being a set
of specifications that will carry both the IEEE POSIX designation and The Open
Group’s Technical Standard designation, and if adopted an ISO/IEC designation.

46 http://www.li18nux.net
47 http://www.freedesktop.org
48 http://www.pathname.com/fhs/
49 http://www.opengroup.org/austin/

32

The new set of specifications will form the core of the Single UNIX Specification
Version 3, with delivery in [the second quarter] 2001”

Debian Policy Manual50
“This manual describes the policy requirements for the Debian GNU/Linux
distribution. This includes the structure and contents of the Debian archive,
several design issues of the operating system, as well as technical requirements
that each package must satisfy to be included in the distribution.”

50 http://www.debian.org/doc/debian-policy/

33

2.4.3 Economy
The economic motivations of OSP have been the subject of many studies. [Bessen02],
[Ghosh98], [Goldhaber97], [Hippel02], [Iannicci02], [Il-Hom02], [Lancashire01],
[Lerner01], [Weber00], [Wegberg00]. Many of these studies involve new notions of
economic activity, and their conclusions are tentative at best. That said, economic
consequences due to the use of Open Source can be observed.

2.4.3.1 Total Cost of Ownership
Total Cost of Ownership (TCO51) is a type of calculation designed to assess both direct
and indirect costs and benefits related to the purchase of any IT component. Calculation
of TCO includes the factors as outlined by figure 1.

System Preparation
Several additional components are usually required in order to get new software
running, e.g. hardware devices, infrastructure or other software.

Operation Efficiency
All phases in the life cycle of a software component require additional resources
like time of human actors or hardware devices. The efficiency by which these
resources perform operations strongly influence total costs. Degradations in
efficiency could be caused by non-intuitive or too complex user interfaces,
incompatibility of data formats or software defects.

Failures
Software failures can be very costly. Consider the case of software that controls
machinery in a factory, or air traffic control software.52

Training
Most software is complex enough to require training, either through printed
documentation, classes or hands-on coaching.

Service
Service includes support, helpdesk and other complimentary processes.

Updates
Software updates correct errors or enable new functionality. Most software
vendors charge a fee for updates.

Purchase
The purchase grants permission to use a copy of the software. It usually does not
grant ownership.

51 For notes on the origin of the term, consult
 http://search390.techtarget.com/sDefinition/0,,sid10_gci342316,00.html
52 http://catless.ncl.ac.uk/Risks contains many accounts of software failures.

34

Figure 1: A typical TCO Calculation (Source: UNISYS Corporation)

2.4.3.2 Giving Away Software For Free
One of the economic incentives for giving software away is the “Loss-Leader” model.
[Raymond00] In this model, Open Source software is used to create or maintain a market
position for proprietary software that generates a direct revenue stream. In the most
common variant, Open Source client software enables sales of server software, or
subscription/advertising revenue associated with a portal site.53

2.4.3.3 Making Money with Open Source Software
Many companies have tried to make money with Open Source, despite claims about the
“gift culture as a result of material abundance” [Raymond98b] that try to negate the
economic interests of Open Source participants. Open Source success stories, [Miller02]
being a good example, lead the way. Successful business models for Open Source are
based on one or several of the following components:

Software Distribution
Distributors simply sell copies of Open Source software. This business is based
on the idea that the regular user of Open Source software is willing to pay a small
amount for convenient access to the software. These businesses sell the
packaging, not the software, and are protected by trademark and copyright laws
from copycats.54

Service

53 Netscape Communications, Inc. was pursuing this strategy when it open-sourced the Mozilla browser in
early 1998.
54 Examples include RedHat (http://www.redhat.com) or SuSE (http://www.suse.com)

35

There are many different services in the software field as described in the section
about TCO above. Examples are support, training or simply paid bug fixing.55
International Business Machines (IBM) reportedly recouped its investment of $1
billion into Linux within one year with service contacts.56

Hardware
As hardware devices cannot be used without appropriate software, vendors
usually spend a remarkable amount of financial resources on the production of
driver software. It is the usual procedure to make this software available for free,
but without source code. However, more and more companies also start to
participate in Open Source projects to assure the compatibility and support for
their products.57

Information
Books, magazines and news services provide information about Open Source
software for a reasonable price, e.g. nicely printed manuals.58

Another way to look at Open Source is to look at the output of the community, Open
Source software. Software is built in projects, and it makes sense to take a closer look at
how Open Source Projects (OSP) operate.

2.5 Open Source Projects
The Open Source community is very hard to investigate as an abstract social
phenomenon. It is difficult to determine who is a part of it and who is not.59 Fortunately,
OSP can be observed and analyzed due to their presence on the Internet and their publicly
available communication. Clearly, there are as many ways to run an OSP as there are
projects, but some common threads emerge nevertheless. What is an OSP?

Definition
Any group of people (or sole individuals) developing software and providing their results
to the public under an Open Source license constitute an Open Source project (OSP).60

The major productive assets of OSP are developers. Developer is a wide term, and need
not be confined to programmers, but can also include documentation writers, graphic
artists and others. To understand Open Source means to understand developers. Who are
those developers?

55 Sendmail Inc (http://www.sendmail.com) and CodeWeavers (http//www.codeweavers.com)
56 http://www-1.ibm.com/services/e-business/linux_8.html
57 Adaptec Inc. (http://www.adaptec.com) and Nvidia Inc. (http://www.nvidia.com)
58 O’Reilly and Associates (http://www.oreilly.com) employs several world class Open Source developers,
like Larry Wall (Perl).
59 [Edwards00] provides a nice overview of the community.
60 The Open Source Definition [OSD02] is used here to define Open Source licenses.

36

2.5.1 Developers
Open Source developers come from a wide variety of backgrounds [Ghosh00]. Some of
the major groups are educational institutions, companies, governments and individuals.

2.5.1.1 Educational Institutions
Universities and other institutions produce a lot of software for educational and research
purposes. Although some parts of it become proprietary software, many developments
are released under legal terms that conform to the Open Source definition.61 Universities
produce a steady supply of talented programmers that have not yet entered the work
force, and are thus able to devote significant amounts of time to Open Source. Some of
the best-known OSP started in academia, such as Linux, BSD and Apache.

2.5.1.2 Research Institutions
Research is often closely associated with educational or public institutions by their work,
personnel or financing. Additionally, many projects are based on intensive collaboration
between many different organizations. Therefore releasing the research results under a
permissive license is often a natural choice because it allows any involved party to use
them. Besides, such a license is sometimes also a condition for financial sponsorship.62
Research and Open Source do have an affinity for each other, as [Bezroukov99a] points
out.

2.5.1.3 Software Distributors
The producers of Open Source software distributions normally participate in various
capacities in several OSP. Their motivation is normally increases in their user base, as
users often demand specific features that are not yet available, e.g. sound support or a
word processor.63 Another scenario is consulting engagements where software
distributors develop targeted functionality for a client and integrate the work back into
their main product line.

2.5.1.4 Commercial Companies
Aside from distributors, any other business based on Open Source software might
participate in some capacity in OSP. Today, this includes most of the large information
technology companies, e.g. IBM, Intel or Hewlett Packard. Those companies are often
motivated by a desire to commoditize infrastructure, such as the operating system. In the
1980s many of those companies had produced their own variant of UNIX, which resulted
in a fragmented market for UNIX, and allowed Windows NT to gain market share. Over
the years, Linux has started to displace HP-UX, Ultrix, AIX, Irix and SCO Unix, and
today all UNIX versions do support Linux binaries.64

61 Not all universities have a sensible open source policy though.
 http://www.fsf.org/philosophy/university.html discusses the issues in more detail.
62 IBM AlphaWorks releases many research projects as Open Source. http://www.alphaworks.ibm.com/
63 RedHat Inc. founded its Advanced Development Labs for this purpose. http://www.labs.redhat.com/
64 http://www.atai.org/softwarewar.png provides a humorous account.

37

2.5.1.5 Corporate Users
Considering the enormous financial resources that many companies or governmental
administrations spend on their software systems (usually several million dollars for
licenses alone), sponsoring OSP is often much cheaper than paying the license fees for
proprietary software. [Dinkelacker01] defines Corporate Source as “the application of
Open Source concepts, perspectives and methodologies within the corporate environment
– i.e. “open” to all developers behind the firewall.” Another important element for
corporations is the business risk of running critical infrastructure on software without
source code access. Interestingly, this requirement is increasingly being heard and
answered by proprietary software companies, too.65

2.5.1.6 Private Users
Anyone using Open Source software is interested in improving it as it gives him a direct
benefit. For this reason, many users participate one way or another in OSP. Since many
of them are also working in the IT business [BCG02], their participation is often essential
for a project. Most OSP are primarily run by volunteers who invest an average of 14
hours a week of their time on it. [BCG02] Open Source was started by talented
individuals, and is overwhelmingly run by persons with programming skills to this day.
Integrating non-programmers has always been a challenge, and will become ever more
important, as the user base for Open Source grows.66

2.5.1.7 Governments
Many governments have started to encourage Open Source for critical infrastructure. A
good example is the sponsoring of GNU Privacy Guard (GPG), an Open Source
implementation of the PGP protocol, by the German Ministry of Economics67. The case
for Open Source in government is one of national security, sovereignty, and a willingness
to foster local software engineering talent. In particular, countries of the third world have
realized that Open Source makes sense. For instance, the author is involved in a project to
create a software industry in Bahrain, a country of the Persian Gulf. Faced with the
prospect of oil reserves that will run out, Bahrain is looking into ways to start new
industries. It has settled on software as a promising avenue, lacking natural resources or
industry. To jumpstart the industry, Bahrain has decided to embrace Open Source. Their
first foray was to run their national elections (the first ever) with PostNuke.68

Another defining aspect of OSP is life cycles. The range of projects reaches from the
planning stage to mature projects that have been stable for decades, but are still being
maintained. What defines OSP life cycles?

2.5.2 Project Lifecycle
OSP are organic. They do not follow strict pattern for releases, and oscillate between
different cycles. For the purposes of illustration, a typical life cycle would be:

65 http://www.microsoft.com/licensing/sharedsource/default.asp
66 http://www.creativecommons.org is an interesting approach to foster much broader contribution.
67 http://www.gnupg.org
68 http://www.bahraintoday.net

38

1. Someone has an unmet need and tries to devise solutions for it. [Raymond99b]

calls this “scratching an itch”
2. That person asks some friends and colleagues what they know about the issue.

Some of them may have similar problems, but probably no solution either.
3. All interested persons start to exchange their knowledge on the topic and thereby

create a vague picture about the central issue of the group.
4. Interested people who are willing to spend some resources on finding a solution

for the issue create an informal project.
5. The project members work on the issue until they achieve some satisfactory

result.
6. They make their work publicly available at a place where many people are able to

access it. They may announce their project at places like mailing lists, newsgroups
or online news services.69

7. Other persons recognize some of their own concerns in the project and are
interested in a convenient solution, too. Therefore, they review the projects result
(e.g. by using it). As they look at the issue from a different perspective, they
suggest improvements and even might join the project.

8. The project grows and a lot of feedback helps to get a better understanding of the
issue, and possible strategies to solve it.

9. New information and resources are integrated into the research process. The
solution grows, and addresses the issue in ever better ways.

10. The research cycle is closed and returns to stage five.
11. The project’s community is established and will react to future changes the same

way it emerged originally.

A common classification of the various stages of an OSP is Planning, Pre-Alpha, Alpha,
Beta, Stable, Mature.

Planning
No code has been written, the scope of the project is still in flux. The project is
but an idea. As soon as tangible results in the form of source code appear, the
project enters the next stage.

Pre-Alpha
Very preliminary source code has been released. The code is not expected to
compile, or even run. Outside observers may have a hard time to figure out the
meaning of the source code. As soon as a coherent intent is visible in the code that
indicates the eventual direction, the project enters the next stage.

Alpha
The released code works at least some of the time, and begins to take shape.
Preliminary development notes may show up. Active work to expand the feature

69 The Linux project started with such a message.
http://groups.google.com/groups?selm=1991Oct5.054106.4647%40klaava.Helsinki.FI

39

set of the application continues. As the amount of new features slows down, the
project enters the next stage.

Beta
The code is feature-complete, but retains faults. These are gradually weeded out,
leading to software that is ever more reliable. If the number of faults is deemed
low enough, the project releases a stable version, and enters the next stage.

Stable
The software is useful and reliable enough for daily use. Changes are applied very
carefully, and the intent of changes is to increase stability, not new functionality.
If no significant changes happen over a long time, and only minor issues remain,
the project enters the next stage.

Mature
There is little or no new development occurring, as the software fulfills its
purpose very reliably. Changes are applied with extreme caution, if at all. A
project may remain in this final stage for many years before it slowly fades into
the background because it has become obsolete, or replaced by better software.
The source code for mature projects remains available indefinitely, however, and
may serve educational purposes.70

The distribution of project stages among thousands of OSP is interesting. As of July 3,
2002 the two biggest sites for OSP displayed this distribution of project stages:

Stage / Project Sourceforge.net Freshmeat.net

Planning 9006 (33%) 75 (1%)

Pre-Alpha 6003 (22%) 380 (3%)

Alpha 5329 (20%) 1510 (14%)

Beta 6318 (23%) 3385 (31%)

Stable 4813 (18%) 4952 (47%)

Mature 530 (2%) 781 (7%)

Table 2: Open Source projects by lifecycle stage

Most OSP on Sourceforge.net are in the planning stage. This can be explained by the ease
of setting up a project. A new project can be set up in minutes, and very often, little
thought is given into the repercussions of starting an OSP. Success rates do seem very
low. Assuming the Stable stage means success, only 20% of Sourceforge.net project are
successful. On the other hand, most OSP are leery to label themselves Stable or Mature
due to their focus on “getting it right.” Some projects take this view to a silly extreme by

70 The original UNIX source is still used to study operating system design around the world, after 30 years.

40

remaining at version .99 for years, as if the magical 1.0 could only be reached
asymptotically, or not at all.

Every OSP is different. What does a typical OSP look like? No one knows, as there is no
such thing as a typical OSP. There are some well-known OSP that must be doing
something right, considering they are in use all over the world, by millions of people.
What do these projects look like?

2.5.3 Example OSP
The following examples of large OSP show the breadth and depth of efforts in the Open
Source community. The project descriptions originate from the projects themselves.

2.5.3.1 XFree8671
“XFree86 is a freely redistributable implementation of the X Window System that runs
on UNIX(R) and UNIX-like operating systems (and OS/2). The XFree86 Project has
traditionally focused on Intel x86-based platforms (which is where the ‘86’ in our name
comes from), but our current release also supports other platforms. One of our current
goals is to increase the range of platforms that XFree86 runs on.“

2.5.3.2 KDE72
“KDE is a powerful graphical desktop environment for UNIX workstations. It combines
ease of use, contemporary functionality and outstanding graphical design with the
technological superiority of the UNIX operating system. KDE is an Internet project and
truly open in every sense. Development takes place on the Internet [...]. No single group,
company or organization controls the KDE sources. [...] All KDE sources are [...] subject
to the well-known GNU licenses. [...] KDE has developed a high quality development
framework for UNIX, which allows for rapid and efficient application development.
Applications developed with this framework include KOffice, a full-featured Office
Suite, KDevelop, a C/C++ IDE (Integrated Development Environment), and many
others.“

2.5.3.3 The Gimp73
“The GIMP [...] is a freely distributed piece of software suitable for such tasks as photo
retouching, image composition and image authoring.[The GIMP home page] contains
information about downloading, installing, using, and enhancing GIMP [and] serves as a
distribution point for the latest releases, patches, plugins, and scripts. We also try to
provide as much information about the GIMP community and related projects as
possible.”

71 XFree86 Project, Inc http://www.xfree86.org
72 K Desktop Environment http://www.kde.org
73 GNU Image Manipulation Program http://www.gimp.org

41

2.5.3.4 Apache74
“The Apache Project is a collaborative software development effort aimed at creating a
robust, commercial-grade, featureful and freely-available source code implementation of
an HTTP (Web) server. The project is jointly managed by a group of volunteers located
around the world, using the Internet and the Web to communicate, plan, and develop the
server and its related documentation. These volunteers are known as the Apache Group.
In addition, hundreds of users have contributed ideas, code, and documentation to the
project.”
“In February of 1995, the most popular server software on the Web was the public
domain HTTP daemon developed by [NCSA].” Development of that software had stalled
and a small group of webmasters gathered together for the purpose of coordinating their
private changes. They put together a mailing list and shared information space for the
core developers. “By the end of February, eight core contributors formed the foundation
of the original Apache Group”. “[W]e added all of the published bug fixes and
worthwhile enhancements we could find, tested the result on our own servers, and made
the first official public release (0.6.2) of the Apache server in April 1995.” After a new
design for the server architecture, extensive beta testing, many ports to several platforms,
new documentation, and many additional features, Apache 1.0 was released on December
1, 1995. “Less than a year after the group was formed, the Apache server passed NCSA’s
[software] as the [number one] server on the Internet. The survey by Netcraft shows that
Apache is today more widely used than all other web servers combined.75”

2.5.3.5 Linux76
One of the most famous OSP is the Linux kernel. Linus Torvalds started Linux in 1991
and has been leading it since then. The source code has a size over 100 Megabytes, and
its growth rate is increasing. [Wheeler01] did a source code analysis of a popular Linux
distribution (RedHat)77 that concluded. “In particular, it would cost over $1 billion to
develop this GNU/Linux distribution by conventional proprietary means in the U.S. (in
year 2000 U.S. dollars). Also, Red Hat Linux 7.1 includes over 30 million physical
source lines of code (SLOC), compared to well over 17 million SLOC in version 6.2.
Using the COCOMO cost model, this system is estimated to have required about 8,000
person-years of development time (as compared to 4,500 person-years to develop version
6.2). Thus, Red Hat Linux 7.1 represents over a 60% increase in size, effort, and
traditional development costs over Red Hat Linux 6.2“. Linux is a clone of the operating
system UNIX. It aims for POSIX compliance, having all the features of a modern fully-
fledged UNIX, including true multitasking, virtual memory, shared libraries, on-demand
loading, shared copy-on-write executables, memory management, and TCP/IP
networking. Linux was first developed for x86-based PCs (386 or higher). It has been
ported to Alpha AXP, Sun SPARC, Motorola 68000, MIPS, PowerPC, ARM, PA-RISC,
IA-64, SuperH and dozens of embedded processors.” The size of the Linux project is
unprecedented in the history of software development. At times, thousands of

74 Apache HTTP Server http://www.apache.org
75 http://www.netcraft.co.uk/survey/
76 Linux Kernel http://kernel.org
77 RedHat is one of the largest Linux distributions. It can be found at http://www.redhat.com

42

programmers have volunteered their time and effort in the daily development of
numerous components and functions that comprise the operating system. According to
one estimate, the project has involved over 40000 people worldwide.78

2.5.3.6 Mozilla79
On January 23rd, 1998 Netscape Communications announced that they would release a
version of their product ’Netscape Communicator’ as free software and the source code
was released to the public on March 31st. They named the new project ’Mozilla’.
“Mozilla is an Open Source web browser, designed for standards compliance,
performance and portability. [Netscape Communications] coordinate the development
and testing of the browser by providing discussion forums, software engineering tools,
releases and bug tracking.”

2.5.3.7 PostNuke80
The PostNuke project was founded in May 2001 to develop an excellent content
management system (CMS) with a focus on community features. The project grew very
quickly to several hundred active contributors. In its first year, it was downloaded over
500’000 times, and tens of thousands of sites operate on PostNuke. “PostNuke is a free
multi-lingual CMS written in PHP81 and licensed under the GNU General Public License.
PostNuke software dynamically manages website content submitted through browsers.
PostNuke allows administrators to work dynamically within a structured environment to
rapidly deliver diverse content including articles, links, news, job boards, frequently
asked questions, resume listings, dynamic headlines, weather, file download areas, and
much more. PostNuke reduces web site development costs by introducing sophisticated
administration tools and services which separate form, function, content, and design.”

A look at Open Source is incomplete and misleading without comparing it to classical
methods of software engineering. Open Source is by far no panacea, and its advantages
are often offset by disadvantages. What are the areas where Open Source may open new
venues for software development, and where could it learn from classical ways? How
does Open Source stack up to classical approaches, and when is it appropriate to use
Open Source methodologies? When are you better advised to stick to traditional
methods?

3. Open Source Projects versus Classical Projects
What is an OSP? What is a classical project? The lines between them are blurry. Both
OSP and classical projects are heavily influenced by technological advances, new forms
of collaboration, and changing work ethics. It is helpful to name these trends, as they will
likely be influential in the future, and may lead to entirely new forms of software
projects. A definition of both OSP and classical projects needs to take their contributing
resources, their means of coordination and their structures into account. Equipped with

78 [Raymond99b]
79 Mozilla.org http://www.mozilla.org
80 PostNuke http://www.postnuke.com
81 PHP http://www.php.net

43

such a definition, one may then attempt to compare these two approaches, and identify
their strengths and weaknesses. It is ultimately helpful to contrast the major attributes of
OSP versus classical projects in a matrix for a convenient overview.

Why do OSP exist? Are OSP a logical result of advances in technology, or did they
happen due to social forces at work? If trends influenced the emergence of OSP, what
were those trends?

3.1 Underlying Trends
Technological trends have influenced computer science since its beginnings, and there is
no reason to believe these trends will not play influential roles in the future.
Technological innovation happens on many fronts at once, and on many levels. Out of
many forces that continue to shape the field of computer science, new communication
technologies, advances in computer hardware, the move to increasingly higher-level
languages and the emergence of ubiquitous standards seem to be particularly fruitful for
the field of software engineering.

3.1.1 New Communication Technologies
In 1945, Vannevar Bush wrote a very influential paper: “As We May Think”82 Bush
argued for the creation of a memex: “A memex is a device in which an individual stores
all his books, records, and communications, and which is mechanized so that it may be
consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to
his memory.” The invention of the Internet, and later on applications running on top of it,
laid the groundwork for realizing the “memex”. The first innovation with widespread
appeal to come out of the Internet was email.83 Email enabled researchers to quickly and
inexpensively exchange scientific arguments. What began with work-related subjects
soon reached out into personal matters as well, with scientists establishing discussion
groups for thousands of topics. Thusly, newsgroups were born.84 In 1991, the invention
of the worldwide web by a researcher at CERN, Tim Berners-Lee enabled the publication
of research materials with pictures and, most importantly, hyperlinks. Hyperlinks are
elements in an electronic document that link to another place in the same document or to
an entirely different document. Hyperlinks are essential for Hypertext85. Hypertext, a
term coined by Ted Nelson, is the implementation of the ideas first articulated by Bush.
The emergence of hypertext, albeit in a much more primitive form than envisioned by
Nelson86, enabled new forms of online collaboration. For the first time in history, it
became feasible to access a large part of human knowledge at low cost, and independent
of location. Originally conceived by Berners-Lee to facilitate scientific exchange, the
web soon outgrew its initial focus on academia, and spread to become a mass medium. In
its wake, it invigorated economic growth in countries that used web technology to

82 http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm
83 A history of email is given at http://www.vicomsoft.com/knowledge/reference/email.history.html
84 More information about newsgroups can be found at
http://www.learnthenet.com/english/html/26nwsgrp.htm
85 Hypertext is a term created to describe non-linear writing in which you follow associative paths through
a world of textual documents. The most common use of hypertext are the links on World Wide Web pages.
86 http://ted.hyperland.com/buyin.txt

44

increase productivity. So great were the expectations that a new economy was declared
and, fueled by an infusion of trillions of dollars, thousands of new companies were
formed to capitalize on the web. The initial excitement about the web turned out to be
premature, but neither is the web obsolete. The original vision of Berners-Lee has since
been expanded to encompass the notion of the Semantic Web.87
“The Web was designed as an information space, with the goal that it should be useful
not only for human-human communication, but also that machines would be able to
participate and help. One of the major obstacles to this has been the fact that most
information on the Web is designed for human consumption, and even if it was derived
from a database with well defined meanings (in at least some terms) for its columns, that
the structure of the data is not evident to a robot browsing the web. Leaving aside the
artificial intelligence problem of training machines to behave like people, the Semantic
Web approach instead develops languages for expressing information in a machine
processable form.”

3.1.2 More powerful Hardware
Concurrent with the rise of communication technologies, computer hardware made very
large leaps. Computing power rose roughly in accordance with Moore’s Law88, i.e.
doubled every twelve months for the past two decades. This led to a democratization of
computing, as more and more computing resources became available for individuals.
Hobbyists formed clubs to tinker with computers. This in turn led to many innovations
from outside the traditional academic communities. Computer science was arguably one
of the few disciplines in recent history where amateurs were able to contribute to a
significant extent. Advances in hardware technology spurred growth in new fields of
application. While early usages of computers were limited to computation, the focus
shifted to communication as the most important application for computers in the last
decade. Computing power has become cheap and plentiful, so plentiful that it is
increasingly embedded in everyday devices. It is no longer feasible to understand a
computer system in all its details. Growing complexity is met with ever-increasing levels
of abstractions. What used to be specified explicitly is generalized, and ultimately
abstracted away. New hardware at affordable prices simplifies costly processes.
Producing movies in a basement becomes feasible, and the scope of computer technology
increases constantly. More and more individuals are subjected to computers every waking
minute, making them more familiar, and allowing easier entry into the field of computer
science that used to be dominated by mathematically minded persons. Advances in
hardware create new demand for software that utilizes the new capabilities.

3.1.3 Higher-level Languages
As computing power grew, programmer time was substituted by CPU time. Programmer
time had become scarce. It was no longer reasonable to optimize applications for
maximum performance at the expense of additional efforts by programmers. The ever-
increasing complexity led to the introduction of higher and higher levels of abstraction.
Each new generation of languages sacrificed some execution efficiency for gains in

87 http://www.w3.org/DesignIssues/Semantic.html
88 Gordon Moore predicted in 1965 that computing power would double every 12 months. His prediction
was astonishingly accurate. http://www.intel.com/update/archive/issue2/feature.htm

45

expressive power. As computing power continued to rise, compiled languages made
room for interpreted languages. Interpreted languages were far slower, but allowed for
easy changes in the source code of a program and immediate execution of the changes.
The concept of virtual machines abstracted the hardware itself to insulate dependencies
and make software run on a wide variety of hardware platforms. Programming languages
also became easier to master, introducing more and more individuals to programming.
Scripting languages89 were developed to harness the facilities of operating systems, and
making them available to casual programmers. A notable example of scripting languages
is Visual Basic90. Conceived by Microsoft, it allowed millions of non-programmers to
write simple applications, while making computer science professionals squeal at the
horrible code and sloppiness it produced. Scripting languages became very popular
despite all their weaknesses, and most OSP are based on scripting languages such as
Perl91, Python92, PHP93, and Bash94.

3.1.4 Ubiquitous Standards
Standards were the laughingstock of the information technology industry for the longest
time. Andrew Tanenbaum95 once remarked. “The nice thing about standards is that there
are so many of them to choose from.” The growth of a worldwide communication
infrastructure, especially the Internet, placed a new emphasis on standards though.
Standards were no longer optional, but critically required to enable full participation in
the economies of scale the Internet offered. [Chuang98]: “With the digitization and
networking of information, many herald the arrival of the era where the marginal cost of
information dissemination is virtually zero. The ease with which data may be duplicated
and transported over the global Internet leads pundits to proclaim that ‘bandwidth is free’
and ‘distance is dead’” The Internet established a new approach to standardization.
Instead of designing standards in a lengthy process that often took years (the traditional
method used by the ISO96 and others), Internet standards would often evolve to a useable
state in mere months. Chiefly responsible for this remarkable success are the IETF97 and
W3C98 committees. The process of RFC (Request for Comment) favors incremental
approaches. “In outline, the process of creating an Internet Standard is straightforward: a
specification undergoes a period of development and several iterations of review by the
Internet community and perhaps revision based upon experience, is adopted as a Standard
by the appropriate body, and is published.” Strong and ubiquitous standards play into the
hands of OSP, as [Vallopillil98] notes. The widespread use of standards has allowed for
the rapid spread of new applications across millions of appliances, and created enormous
markets overnight. To target a standard means to reach millions, or hundreds of millions
of potential users, increasing the potential rewards for successful software manifold.

89 http://compilers.iecc.com/comparch/article/95-03-064 has an interesting discussion on the term.
90 http://www.iessoft.com/scripts/vbhistry.asp gives a historical account.
91 Perl http://www.perl.org
92 Python http://www.python.org
93 PHP http://www.php.net
94 Bash http://www.gnu.org/software/bash/bash.html
95 Andrew Tanenbaum http://www.cs.vu.nl/~ast/
96 International Standards Organization http://www.iso.ch
97 Internet Engineering Task Force http://www.ietf.org
98 Worldwide Web Consortium http://www.w3.org

46

These technological trends were reinforced by societal changes that happened in parallel.
As access to information became universal and cheap, barriers to entry evaporated in
many knowledge-based industries, intensifying competition. Consumers were able to
make informed decisions, and a single Internet search could reveal potentially sensitive
information about any entity. Openness was no longer an option, it became increasingly
the norm. The public appreciation for being open grew, and Open Source software
entered many new areas. At the same time, open access to information threatened
traditional cartels founded on scarcity of information. Empires built on exclusive
distribution of information (the recording industry, for instance) began to crumble, and
the incumbents fought technological progress by introducing new legislation designed to
stop innovation. This legislation increasingly threatens Open Source.99

Open Source manifests itself through the actions of OSP. What are characteristics for
OSP? Which elements need to be present for OSP to prosper? How would a definition of
OSP look like?

3.2 Defining Open Source Projects
Open Source has many characteristics, and remains poorly understood. It makes sense to
attempt a definition by looking at major characteristics such as resources, coordination
and structures. These arguably appear in all OSP, and are broad enough to apply. First,
why is Open Source called Open Source?

Open Source as a way of life
To understand OSP, one should ponder the significance of the term “Open
Source” first. For many participants, Open Source is a philosophy100. Open
Source participants adopt a rationale for their actions different from that of their
peers in the proprietary software world. Open Source participants as well as
researchers into the phenomenon often bring up the concepts of community, gift,
shared ideals and so forth101. The motives that drive Open Source participants
clearly determine the development of the phenomenon. Unfortunately, monetary
data is not available for Open Source communities except at the anecdotal level,
such as the salary levels for “star programmers”102. The main reason for this lack
of data is the fact that monetary transactions are largely non-existent within the
Open Source production process.

Open Source as a way of work
There are people who make a living not being paid for software they write. This
raises many questions. What sort of a living do such people make; who pays them
and why; what benefits accrue to employers of such people who pay for what may

99 The website of the Electronic Frontier Foundation (http://www.eff.org/) contains about a dozen such
laws.
100 http://www.fsf.org/philosophy/philosophy.html
101 Refer [Hannemyr99],[Kishida01],[Weber00]
102 Several well-known open source personalities report economic benefits stemming from their status.
Examples include Linus Torvalds, who went to work for chip design company Transmeta, or Alan Cox,
who works from home for RedHat Corporation.

47

be freely available. Another set of questions is related to the non-monetary
economy that results from the production of goods without payment – if they are
not receiving cash for their software, what, if anything, do they receive instead?
Moreover, how much? What do they give for access to other free software? The
value of money as a measuring tool is immeasurable. Lacking this, alternatives
must be found in order to identify power structures; ownership and effective
control of systems; vulnerabilities and dependencies in the “economy”
surrounding Open Source systems. To illustrate: Microsoft’s position in the
economy is easy enough to analyze, since its property and influence is quantified
in monetary terms. The position of Linus Torvalds or the Apache team is hard to
quantify even within the Open Source community (let alone in the economy at
large), even if a system of definable reputation is accepted as a way of doing
so103. The further development of measurement and modeling methods is,
therefore, crucial to the understanding and better functioning of Open Source, and
its integration into the monetary economic system.

Open Source as a way of software development
Finally, Open Source is a method of developing software. It is often quite
different from the formal development methodologies of proprietary software
companies. The element of collaborative authorship is much discussed104; less so
is the element of competition between programmers.105 Open Source faces several
challenges as a software development technique: intellectual property rights106;
software quality and reliability107; version control and responsiveness to
environmental changes108; credit and liability management. Open Source as a
development technique has been studied in far better detail than other approaches
based on economic or sociologic models. This is only to be expected, as most
people whose expertise lies closest to Open Source software development (as
participants themselves) do not have a significant expertise in economics, but can
share their development experiences.

OSP need resources to function. What constitutes OSP? Which resources are critical?
Given these resources, how are they coordinated? Which structures emerge in OSP?

3.2.1 Resources
Although OSP differ from classical projects in their resource needs, they still do require
them, despite overblown accounts of “virtual organizations”. OSP do not exist in the
void, but rather use the infrastructure of the Internet (both hardware and software),
require people to staff the project and funding to keep the services and infrastructure
running.

103 [Goldhaber97] and [Kaisla01] attempt such a measure of reputation.
104 See [Feller00], [Jones00], [Mockus02],
105 [Hippel02], [Lerner01]
106 [FSSF02b], [Kelsey99], [Rasch01]
107 [Halloran02],[Kuan02], [Schach02],[Schmidt01]
108 [Asklund01],[Cubranic99], [Hippel02]

48

3.2.1.1 Software
Very few OSP start from scratch by developing all the required software themselves.
Reuse is the norm. [Price99]:” Open Source tools represent both reuse in the small and
reuse in the large. Examples of reuse in the small include Emacs and Perl (which provide
the custom languages for creation of reusable libraries and channels for their distribution)
and flex (which provides generative reuse).” This introduces dependency problems for
these projects, but allows them to leverage existing work. Three types of software reuse
can be distinguished:

Tools
Software developers use tools to produce software. Tools used in the creation of
software are not required at runtime. Examples include compilers, editors, linkers,
configuration management packages and issue tracking software.

Components
Components are necessary for the operation of a software package but are
developed separately. Examples include the C libraries, windowing toolkits,
header files and binary data for hardware drivers.

Integrated Code
This category comprises source code that is directly integrated, usually by
copying. This kind of reuse is affected by the license that the originating software
is released under, and is unique to OSP as intellectual property laws usually forbid
the inclusion of copyrighted material.

Most OSP rely on freely available tools for their work, as licensing fees would be an
impediment for large groups of developers. Individuals may use commercial tools for
their own use though. Some commercial tools have a liberal licensing so that they can be
used for Open Source work.109 An example of a restricted tool that is nevertheless used in
the Open Source world is Java. The Java license does not conform to the Open Source
Definition, but allows free distribution. OSP do prefer to use Open Source software both
for their toolset, their components and especially for integrated code. While this rule does
not hold universally, it is still a useful characterization. [Ghosh02] conducts a fascinating
empirical study that looks at authorship information, clusters of authorship and code
dependency between packages: “Dependencies can be identified through automatic
scanning. This provides a high level of detail regarding dependencies (i.e. at a function
call level) well beyond the present purposes of analysis. Such detailed analysis would be
computationally exceptionally hard to perform for 30,000 software packages!” An earlier
survey by [Ghosh00] found 12706 developers authoring OSP, a size of 1.04 Gigabytes
for the source code of the projects (roughly 25 million lines) and 3149 identifiable OSP.

109 The BitKeeper configuration management system is now being used for Linux kernel development,
although the decision remains controversial. http://www.bitkeeper.com/

49

3.2.1.2 Hardware
There are no special hardware characteristics for OSP beyond what is required for remote
collaboration over the Internet. Thus, only hardware that has Internet connectivity is of
interest for OSP. In essence, there are hardware resources at the edge of the network
(individual resources) and at the center (shared resources). Central, shared resources
require funding by some entity. Many OSP rely on individuals or corporations to provide
them with hardware resources. A notable example is Sourceforge.net, which as of July
5th, 2002 hosts 42835 projects with 448’419 developers.110 The wide availability of
cheap and powerful hardware has allowed individuals to provide servers for OSP that
would have been prohibitively expensive a few years ago.

3.2.1.3 People
OSP participation is voluntary in almost all cases. Very few persons are paid to develop
Open Source software, and traditional chains of command do not apply. This has serious
implications for OSP. No one can be forced to work on tasks that do not interest him.
Correspondingly, tiring work such as fixing bugs or writing documentation is often
neglected in favor of writing new code (which is considered more rewarding by most
developers). Project leaders will occasionally ask for specific tasks to be completed, and
rely on the motivation of individuals to take on these tasks. It is considered more
important that tasks are being done at all than them being done perfectly or within a given
time. However, failures and irresponsible actions always have consequences for
participants as they lose social status. Scheduling, or indeed any form of project
management, is hard to do in OSP, and is faced with many challenges. [Welch00]
mentions that “laziness, ignorance, fear and denial prevent using good management,
because people can get by for awhile using bad management and learning good
communication skills to avoid accountability for reliance on bad management.” Co-
dependant tasks often stall because a precursor task is not yet completed. This leads to
duplication of effort and frustration within a project team. Cynical observers could claim
that nothing gets ever done in an OSP unless someone is bothered enough to fix it.
Sometimes this pain is actively used to steer the course of a project. Linus Torvalds, the
project leader for the Linux kernel, repeatedly stalled large parts of kernel development to
increase the pain level just enough for someone to step up and assume responsibility.111.
A crucial element of OSP is motivation. Lacking financial incentives, OSP participants
are driven by motivational factors such as peer esteem, a sense of wonder, a desire to gain
new skills, and to have fun. OSP should work to foster these motivations by recognizing
contributions, creating a learning environment, and making it easy for new participants to
get accustomed with the culture of an OSP. Epistemic communities [Edwards00] are a
good model for the social and psychological interactions between OSP participants, and
will be revisited in chapter five.

3.2.1.4 Funding
Most OSP do not have financial resources at their disposal. Instead, they get by with
donations of resources from their participants. Money is usually not an important

110 http://sf.net
111 http://www.wideopen.com/reprint/573.html contains an account of Torvalds leadership.

50

resource. Those OSP that do have income, be it through donations or the sale of related
products like T-shirts do have trouble disbursing the funds. The distributed nature of OSP
makes it very hard to establish a fair division of funds among participants, and this in turn
means that only the most active contributors to an OSP benefit from funding. Potential
uses for funding are exhibitions, congresses, project meetings in real life or hardware
resources. Various funding models for OSP have been proposed. [Bessen02] argues that
Open Source is a more efficient way to provide customized software, and attracts
investments from companies. [Roberts00] and [Rasch01] describe markets where
companies can pay for the development of functionality, and [Schmidt02] argues for
government subsidies for OSP. All proposals have in common that they make the case for
efficiency gains through Open Source. It is argued that OSP allow harnessing economies
of scale to a larger degree than proprietary software because their openness makes it
easier for standards to spread. Public funding for Open Source is a very recent concept,
and remains poorly understood. The European Commission commissioned a study in
2002 [EC02] that concluded that funding Open Source made sense given that a few
conditions were met.

• A reasonable number of persons “sharing the same problem”
• Initial but flexible repartition of “ownership / leadership” between diverse

persons, from diverse organizations;
• Documentation everywhere;
• A roadmap (navigate into the code as in a web site);
• A common trunk easily understandable + functional modules / no monolithic

code;
• Software organized in many relatively small pieces of code (in order to facilitate

individual ownership);
• Clearly identify (and declare) what parts are “mature/stable” and what parts are

“to improve” (according to the “release often” principle);
• Launch permanent discussion forums on requirements, objectives, and priorities

for further development.

As it turns out, these conditions are prerequisites for successful OSP anyway, and thus
place no additional hurdles for public subsidies.

3.2.1.5 Service and Infrastructure
Members of OSP are usually spread all over the world. They depend on a communication
infrastructure, in most cases, the Internet. Collaboration requires central infrastructure.
Fortunately, many participants do have access to such infrastructure in order to
subsequently donate that infrastructure to their OSP. Examples of central infrastructure
include email accounts, home pages, storage capacity or entire computer systems. OSP
rely on such donated services to a large degree, and are liable to the loss of that donation
if the responsible person decides to withdraw his donation. One glaring liability is
Sourceforge.net, which hosts almost 40’000 projects. The impact of a termination of
service by Sourceforge.net is probably the single biggest liability for OSP. OSP are lean
in the sense that they piggyback on existing infrastructure. Very often, OSP participants
use Internet access for their OSP that they had anyway. OSP infrastructure and required

51

services are thus very much falling through the cracks, and it is exceptionally hard to
account for these hidden costs. As long as OSP are able to leverage devices at the edge of
the Internet and avoid excessive centralized resources, they do not create significant
costs. The biggest cost for centralized infrastructure is very often the bandwidth cost for
the downloads of popular projects. Future peer-to-peer file sharing networks may be able
to mitigate these costs.112
Assuming the necessary resources for an OSP are in place, they need to be coordinated
somehow. The distributed nature of most OSP presents special challenges for
coordination.

3.2.2 Coordination
Poor coordination is one of the main factors inhibiting the growth of a successful OSP.
Only very few individuals in any given project are knowledgeable enough about the finer
points of a project to assist with the coordination of work. These persons are usually
overwhelmed with work. Empirical evidence suggests that OSP participants value the
coordination efforts of the project leadership (assuming for a moment that there is a
leadership113) as it allows them to apply their work more effectively. [Malone93]
developed a framework for studying coordination that will be used in this section.
Coordination tries to resolve dependencies, which can be categorized into shared
resources, producer-consumer relationships, simultaneity constraints and task
dependencies. [Malone93]

3.2.2.1 Shared Resources
“Whenever multiple activities share some limited resource (e.g., money, storage space, or
an actor’s time), a resource allocation process is needed to manage the interdependencies
among these activities.” [Malone93] The resources of OSP can be roughly categorized
into human actors, support systems and information.

Human Actors
Unlike paid employees, no one can force OSP participants to perform a task.
There is no authority with these powers. All project members decide for
themselves how they spend their time and their resources. Nevertheless, OSP
need coordination. All coordination efforts rely on persuasion and are therefore
complex social interactions. These social interactions can take on many forms,
and it is hard to generalize them. Coordination happens by social conventions that
are particular to a project and need to be learned as they are usually not
documented.114. Social interactions are crucial for OSP, and require closer
attention. They will be revisited later.

Support Systems
It may be necessary to allocate the limited resources of support systems (e.g.
storage space on a OSP web server). Fortunately, most OSP mainly utilize the
resources at the edge of the network, i.e. personal computing equipment of OSP

112 http://www.openp2p.com/
113 [Raymond99b] essentially argues that most management is a waste of time.
114 [Edwards00] provides a good account of these hidden conventions and rules.

52

participants. To the extent that OSP use centralized resources, their usage must be
monitored and excessive utilization prevented. This can be achieved by
replicating critical infrastructure.115

Information
Ensuring timely access to information is crucial for project success. While
information is an unlimited resource, provisions need to be taken to emphasize
important information. Often, there is too much information that demands
attention, and participants are overwhelmed116. Another area that requires
coordination efforts is sensitive information, such as information about security
vulnerabilities.117

3.2.2.2 Producer/Consumer Relationships
“[...] a situation where one activity produces something that is used by another activity.”
[Malone93] Producers may be part of a different project, or other team members within
the same project. All OSP are both consumers (of third party functionality, or services)
and produce services and goods for other projects to consume. These interactions are very
complex, and resemble the food chain observed in nature. [Ghosh02] studies these
relationships by a survey of a large body of source code (over 1 Gigabyte), and
determining producers and consumers.

Relations to other projects
Many OSP utilize many components produced by other projects. Usually such
reuse is based on stable releases, and involvement with the producing project is
kept to a minimum. Reuse may introduce additional dependencies and can lead to
delays when the producer has not yet released an important release. The
consuming project has little influence over the producer, and cannot usually
demand target dates for releases. Nevertheless, many developers participate in
several projects over time and much information and experience is exchanged.
These relations have been called the Open Source community. Most producer-
consumer relationships are transient though. A typical OSP may rely on dozens of
other projects, and profound relations are just not feasible.118

Relations inside the project
As a project grows sufficiently large, dependencies develop within the project.
Bottlenecks arise because tasks have interrelationships. Due to the voluntary
nature of most OSP work, these bottlenecks cannot be resolved with orders, but
need persuasion. Peer pressure is a strong motivator to resolve such bottlenecks.
OSP take architectural precautions to reduce these dependencies. Code is kept as
modular as possible, and project contributors often work fairly independently,
without a large amount of communication with other project members.

115 http://kernel.org/ set up a sophisticated international mirroring system.
116 The term ”data smog” has been coined to describe the phenomenon.
http://www.valt.helsinki.fi/comm/argo/anet00/data.htm
117 CERT has a vulnerability disclosure policy: http://www.kb.cert.org/vuls/html/disclosure
118 [Cubranic99],[Ghosh02] and [Mockus02] analyze project interactions.

53

Additionally, the users of a project are consumers, and often do not contribute
anything back to the project. When the balance between consumers and producers
gets out of hand, ugly discussions break out in OSP. Key contributors often feel
that they produce far more than they consume. This leads to burnout and
frustration, and may endanger the future of OSP if they are unable to reconcile
these differences in their project. The author found that the project he was
involved in, PostNuke, had many demanding consumers, and few producers. The
consumers felt entitled to the fruits of the producers’ labor without contributing
themselves, and were very vocal about their wishes. After a reassessment of the
situation, he felt that to comply too much with the wishes of random users meant
risking his own motivation, and subsequently worked only on areas of the project
he had a personal interest in. It had been established that most of the tens of
thousands of users of the project only cared for the result, and that by producing
results without worry for the cries of vocal users, he could actually deliver more
value to the project, and maintain his motivation.

3.2.2.3 Simultaneity Constraints
“Another common kind of dependency between activities is that they need to occur at the
same time (or cannot occur at the same time).” [Malone93] Simultaneity constraints
happen daily in OSP. Two prominent examples are real-time communication, and
document modification.

Real-Time Communication
Meetings, conferences, phone calls, discussions on Internet relay chat channels119
and other kinds of real-time communication must take place at the same time for
all participants. This can be very challenging for projects that span 20 time zones.
It is also hard for participants in these online meetings to maintain a high
concentration because they are subjected to their individual environments during
the meeting.

Document Modification
Most OSP use configuration management software to avoid conflicts arising from
simultaneous edits of their source code. Configuration management can be very
simple, like a locking system for files that are being edited. They can also be very
complex, like the distributed configuration management system used for the
Linux kernel.120

3.2.2.4 Task Dependencies
“[...] a group of activities [that] are all ’subtasks’ for achieving some overall goal.”
[Malone93] Several persons working on the same task must coordinate their activities to
make sure that the results of their activities integrate. Three different methods to handle
this dependency can be identified. Not all are equally suitable for OSP.

119 IRC provides a way of communicating in real time with people from all over the world.
http://www.irchelp.org/
120 [Asklund01] discusses configuration management for OSP

54

Top-Down Goal Decomposition
“[...] an individual or group decides to pursue a goal, and then decomposes this
goal into activities (or subgoals) which together will achieve the original goal.”
[Malone93] This approach uses significant resources to produce a plan of future
actions; subtasks are assigned to team members. This approach is often used in
classical projects, but poses problems for OSP.

1. There is no real management with enforcement power.
2. Plans become outdated quickly (persons leaving a project, new

technologies, etc.).
3. Many problem domains have no clear-cut solutions
4. Team members have little knowledge about the skills of their coworkers.

Bottom-Up Goal Identification
“[...] several actors realize that the things they are already doing (with small
additions) could work together to achieve a new goal.” [Malone93] Considering
the large number of OSP in the world and the philosophy of free knowledge
exchange they are based on, it is only natural that new projects emerge from
already existing ones and new goals are achieved by combining ideas and
approaches from different projects. This is one of the fundamental ideas of the
Open Source philosophy. Sometimes, developers discover that they are working
on the same problem as another project is, and merge their projects.

Concurrent Task Processing
Another possibility to coordinate goals and their subtasks is to let people work
concurrently. This method is similar to the bottom-up method. The advantage of
concurrent task processing is that participants have a lot of freedom, keep the
control over their resources and still improve their productivity by collaboration.
A common procedure is the following: Everyone starts working, produces some
results, the group compares achieved (partial) solutions, discusses them and starts
a new concurrent working cycle with the parts they agreed on as the most
promising ideas. Configuration management software supports this approach with
the concept of branches that allow parallel changes to the same files with the
prospect of a merge at a later time.

Most OSP start with ad hoc coordination. As they grow, this becomes increasingly
unwieldy, and poses a barrier to entry for new participants who might not be familiar
with the informal ways of coordination and information exchange in a particular project.
Interestingly, larger OSP are often closer to the cathedral model than the bazaar model.
Freewheeling chaos is a very nourishing ground for an initial exchange of ideas, but
shows deficiencies once a project enters the Alpha or Beta stage. Thus, OSP do have
structures.

55

3.2.3 Structures
Analyzing the structure of OSP provides many insights into their mode of operation.
Structure may be the area where OSP diverge most from classical projects, as research by
[Dafermos01], [Kishida01], [Kuwabara00] and [Madey02] indicates. Structure appears
on multiple levels. OSP conduct activities, its members assume roles, activities are
related to each other, and can be subsumed into larger processes.

3.2.3.1 Activities
While activities in OSP are varied, they broadly fall into the categories of
communication, coordination, documentation, decision-making and software production.

Communication
Project information is distributed among its participants. In order to work together
and to achieve results, participants need to exchange a lot of information between
each other. This creates a strong need for efficient communication facilities.
Efficient and effective communication needs to answer these questions:

1. Which knowledge should be transferred?
2. Who should provide the knowledge?
3. Who should receive it?
4. How should knowledge be transferred?

Knowledge should be transferred by communication. Communication means to
share the relevant knowledge of the project between all participants to support
their work. Questions one to three are very hard to answer generically. Every OSP
handles these questions somewhat differently. All OSP do share the results of
their work, inviting peer review. The source code of their project often constitutes
the most reliable knowledge store. In addition to results, knowledge about the
process to achieve results is often exchanged. This knowledge could be
preliminary ideas, requests for comments, or observations. Requested knowledge
should be transferred (first question) from everyone who thinks to have something
to contribute to the specified topic (second question) to the participant who
announced the information request (third question). Active requests for
information indicate which areas of a project draw interest and help to filter the
amount of knowledge available. Documentation efforts on the other hand are
more driven by a goal to be complete rather than to answer specific questions.
Writing documentation tries to answer anticipated questions, and does not pay off
immediately. Often, documentation is compiled from answers to frequently asked
questions (FAQ).121

Decision-Making
Setting up goals or priorities for the future, choosing between contradicting ideas,
changing a project’s policies are all part of decision making. One person, a group
or all members of a project might be involved in the decision making process.

121 http://www.faqs.org/faqs/ contains thousands of FAQ documents.

56

Decisions can be taken formally following rules the members agreed on before or
informally by a simple conversation. Decisions might be considered final or
provisional. Collecting good data to make informed decisions is a time-
consuming task. Decision-making draws heavily on other activities. For instance,
the collection of required information is part of the communication activity. Many
decisions are made subconsciously because the number of decisions each
individual makes every day is enormous. These inherent decisions and hidden
assumptions can lead to communication problems within a project. On the other
hand, it is impractical to decide minor issues in the group. Balancing individual
and collective decisions is therefore critically important. Several projects have
evolved sophisticated decision-making processes. Due to the chatty nature of
online communication, it is sometimes hard to reach conclusions. The Apache
project has developed a voting mechanism122 that boils down decisions to a choice
of +1 and -1.

Coordination
All activities of an OSP need some kind of coordination as they all depend on
their context including other activities. Many of these dependencies are hidden.
Coordination and communication are very closely related activities, and
communication is the major means available to OSP for coordination. Since OSP
are usually staffed by volunteers, they normally do not have a strong management
authority that is capable of a centralized coordination process. Most dependencies
are resolved by social conventions and interactions. OSP participants are usually
aware of the coordination bottleneck and take action to prevent dependencies
wherever possible. This may mean that only high-level objectives are coordinated,
and individuals set sub-goals on their own. [Cubranic99]: “Developing ‘social
contracts’ among participants in computer-mediated communication is often more
effective than looking for a technological solution”

Documentation
The goal of documentation is to provide any interested party with a detailed
description of the development process and the product. Documentation is a sort
of asynchronous communication. The primary goal of a project is to produce
software. Documentation activities decrease productivity at first, but become
valuable in the long term. Documentation of the development process should not
be confused with documentation of the product. Process documentation provides
insight into the development process and rationales for decisions. Process
documentation is especially valuable for OSP as is provides common ground for
new team members and establishes enough contexts to make communication
more effective. Some benefits of process documentation include:

• Manuals: It is much easier to write manuals for a product if you have
access to some of the assumptions that went into the software. In addition,
many OSP have a rather technical audience, which is interested in
extending the software and adapting it to their needs. For these users,

122 http://httpd.apache.org/dev/voting.html

57

process documentation is more valuable than documentation about the
product itself.

• Bugs: It is helpful to have a detailed change history to track down bugs.

Additional documentation can be used to investigate less obvious bugs.

• Compatibility: Good process documentation helps to enforce consistency.
Established processes make it easier for contributors to develop additions
to a project, and make it easier to integrate it later.

Process documentation is usually longer-lived than the underlying source code
because implementations may change, but fundamental ideas stay the same.
Documentation is a scarce resource in any software project, so any little piece of
it helps, even simple log messages. Successful OSP have established policies that
make the best use of process documentation. The Linux kernel project now has
facilities to collect author commentary into release notes. This has made the
release notes much more informative.

Software Production
Software production is the most important activity and all others only serve to
optimize it. Software production can be described as a Meta activity, as it
encompasses other activities. Some projects have their software production
activity defined precisely; others only have vague goals. Some people like to
collaborate on software production without splitting the activity into smaller sub-
tasks, which requires more communication, others want to work more
independently and have clear boundaries between their responsibilities.
Depending on perspective, whole OSP may be activities within still larger OSP.
Software production happens in groups that vary from one to several hundred or
thousands of participants. Some OSP take an engineering approach to software
production, others advance their software more due to brownian motion than any
discernible design decisions. That said, software production is at the very center
of OSP activity, and warrants a closer look later.

As part of performing activities, OSP participants assume various roles. These roles are
helpful to understand why activities occur, and reveal the decision-making structures in a
project.

3.2.3.2 Roles
The activities of OSP are normally not planned much in advance, and there is no central
authority with the power to assign responsibilities to participants. Therefore it is rather
difficult to identify abstract roles in specific projects and even harder to find suitable
roles for OSP in general. Most projects have very fluid boundaries between roles.
Developer, Manager, Maintainer, Administrator and Commenter are roles that appear in
most projects in some form.

58

Developer
A developer is responsible for implementing the projects goals. He participates
mostly in the production and documentation activities.

Manager
A manager directs a project. Decision-making and coordination are his major
activities. A manager leads by virtue of competency, not fiat, and is therefore very
often a developer.

Maintainer
A maintainer keeps track of issues with released components of a project and is
responsible for their resolution. His major activities are coordination and
communication. Being a maintainer entails having profound knowledge about a
project, its components and its architecture, and is therefore mostly a job for
seasoned developers.

Administrator
An administrator is responsible for a smooth operation of the project by
maintaining project resources like centralized servers, communication facilities,
and configuration management systems. Administrators may not have a glorious
role, but they are essential for keeping a project running. Often, administrative
roles are filled by less technical people for whom these tasks are a very good
venue to contribute in a project.

Commenter
Anyone who provides some kind of feedback and does not implement it himself
in the production activity is a commenter. Developers usually working on a
different part of the same project, other participants, and maintainers of other
projects or regular users are possible commenters.

Participants are somewhere in between these abstract roles and perform actions that
belong to several different roles. In turn, most roles are occupied by several participants.
Developers and maintainers provide the required software, managers manage a project
and commenters review all activities and give feedback. The administrator is the invisible
agent who supports all these activities. Figure 2 illustrates these roles.

59

Figure 2: Relations between roles in OSP (Source: [Evers00])

Relations are important elements of the social fabric that constitutes OSP. Probably the
most elusive structural element, relations are the conduits for decisions and information
flow. By studying the relations in a project, it is possible to learn much about the driving
forces behind a project.

3.2.3.3 Relations

Figure 3: Relations within an OSP

OSP have very complex relations between their various cknstituents, and with their
environment. [Kaisla01] mentions that “OSP conventions are based on fairness,
nondiscrimination and equal treatment of all parties” Looking at OSP, one discovers that
rules, social conventions and behaviors guide OSP to a very large degree. Relations are
typically somewhere between full connectivity (Figure 3, left), and hierarchical
connectivity, (Figure 3, right). These two relation models lie at opposite ends; one could
call them cathedral and bazaar, respectively. [Krebs02] researches relations between
individuals in his social network analysis. “[SNA] is the mapping and measuring of
relationships and flows between people, groups, organizations, computers or other
information/knowledge processing entities. The nodes in the network are the people and
groups while the links show relationships or flows between the nodes. SNA provides both
a visual and a mathematical analysis of complex human systems.”

60

Figure 4: Social Network Analysis (Source: [Krebs02])

Social Network Analysis uses three measures to determine relations, degrees,
betweenness and closeness. Krebs illustrates these concepts with an illustration (figure 4).

Degrees
Network activity for a node is measured by using the concept of degrees -- the
number of direct connections a node has. In figure 3, Diane has the most direct
connections in the network, making hers the most active node in the network. She
is a 'connector' or 'hub' in this network.

Betweenness
While Diane has many direct ties, Heather has few direct connections -- fewer
than the average in the network. Yet, in many ways, she has one of the best
locations in the network -- she is between two important constituencies. She plays
a 'broker' role in the network.

Closeness
Fernando and Garth have fewer connections than Diane, yet the pattern of their
direct and indirect ties allow them to access all the nodes in the network more
quickly than anyone else. They have the shortest paths to all others -- they are
close to everyone else.

Social network analysis is a largely unexplored science.123 Many organizations, OSP and
CSP alike, would benefit from mapping out the information flows and connections
among their members. Such an analysis has applications for human resources
(recognizing and fostering crucial nodes and links), project management (monitoring
information flows) and marketing (identifying efficient information conduits). Even

123 http://www.sfu.ca/~insna/ is a good resource for Social Network Analysis.

61

without the benefit of social network analysis it is apparent that relations within OSP are
varied, and their importance for the health of a project is often underappreciated.

Now that OSP have been defined, what are classical projects? What are their properties?

3.3 Defining Classical Projects
To better understand OSP it is beneficial to define the notion of classical projects and
work out the differences and similarities between these two approaches. Therefore, it
makes sense to apply the same structural elements to classical projects.

3.3.1 Resources
It is a safe bet to assume that classical projects utilize many of the same resources that are
used in OSP. Classical projects might be more limited in the software they can use due to
licensing issues, but they do have financial resources that OSP do not have. Classical
projects have almost the same hardware requirements as OSP, but have other
requirements for their staff.

3.3.1.1 Software
Classical projects try to reuse code to speed time-to-market, increase quality and reduce
costs. Commercial off the shelf (COTS) software has been available to fill this demand
for quite some time. However, it appears that reuse is still lacking: [Price99] “some
organizations have an over-abundance of programmers who do not know how to estimate
savings in reusing a piece of software let alone how long it will take to develop and test a
piece of software from scratch." Often, licensing issues prevent easy customization of
COTS.

Tools
Classical software developers use tools that are at least as good as their Open
Source counterparts. Some components, like modeling software, are not available
as Open Source. On the other hand, it can be very expensive to put together a
world-class development environment. It is quite common to mix and match Open
Source and proprietary components. Many companies use the GNU C compiler,
for instance.

Components
The classical software industry has developed a large set of components that can
be leveraged to build applications. There are components for graphical user
interfaces, mathematical routines, business logic and many other fields. These
components usually have to be acquired, and come with restrictions. On the other
hand, many classical projects make use of Open Source code that falls under one
of the more permissive BSD-derived licenses, which allows use in closed source
environments. Microsoft, for instance, uses BSD code extensively in their
operating systems. Source code access is still relevant after years of talk about
component-oriented design, frameworks and libraries, because more often than
not, COTS code does not provide what is needed.

62

Integrated Code
Licensing of source code for integration into proprietary products exists, but is not
very common. The usage of such licensed code is heavily regulated and cannot
usually be disclosed to third parties. Such licensing usually covers high-value
source code for, say, video compression technologies where the source code
provider enjoys patents on the techniques used.

3.3.1.2 Hardware
Classical projects tend to be more physically centralized than OSP. Their hardware
requirements thus focus less on online collaboration as project members have the
opportunity to meet in person. Contract work that is outsourced to India, for instance,
shares some characteristics with OSP as it faces the same communication limitations.
Classical projects do have more uniform hardware, because their participants usually
work at the same company. This added compatibility can be an asset for some projects
that develop software that interacts directly with hardware, because the project members
operate in a well-known environment. The diversity in hardware seen in OSP can be a
hindrance, when time and effort is spent to track down obscure technical glitches, or it
can be an asset, when the goal of the project is to operate on a wide variety of hardware
platforms.124

3.3.1.3 People
Classical projects do have all the tools and methods of management at their disposal to
create well-performing teams. Models such as People Capability Maturity Models aim to
improve software engineering by improving its participants. [Curtis95] However,
Brooks’s laws do apply, and as [Raymond99b] notes: “Open Source has been successful
partly because its culture only accepts the most talented 5% or so of the programming
population. My correspondent spends most of her time organizing the deployment of the
other 95%, and has thus observed first-hand the well-known variance of a factor of one
hundred in productivity between the most able programmers and the merely competent.”
The argument is that since classical projects are not self-selective they will not be able to
attract the talent that OSP do. This argument may be true for some select OSP, but a
casual look through some randomly chosen projects on Sourceforge.net will quickly
reveal that Open Source participants are not more talented on average than participants in
classical projects are. Newer methodologies like Extreme Programming try to apply peer
review concepts that have worked so well for OSP to classical projects. As [Welch00]
notes, management of OSP is difficult, more difficult than the management of classical
projects. If an OSP tries to achieve the same level of quality as a classical project without
the benefits of pay, steady resources and clear responsibilities, its management needs to
compensate for these shortcomings. OSP leadership requires leading by example, and
motivating volunteers to undertake tedious tasks. OSP leaders thus need to have very
good social skills in addition to their technical skills, a rare combination indeed.

124 http://www.netbsd.org/Ports/ The NetBSD Operating System has the goal to run on as many platforms
as possible, and supports 52 hardware platforms.

63

3.3.1.4 Funding
Classical projects do have funding for all the resources that are needed for the completion
of a project. Budgets are not unlimited though, and the question of proper allocation of
resources crops up. Funding for a project may be suddenly reduced, which may serve
other goals, but will usually result in delays or project failure. Funding is a mixed
blessing, as it inevitably creates conflicts between the source of the funding, and the
recipients. Projects that are paid for by clients do have to make technical compromises all
the time, which typically irks developers. In fact, many developers are motivated to work
on OSP in their spare time because they feel they can apply their craft without
interference. Clearly, this view is not sustainable in classical projects, but it helps to
know that it is there.

3.3.1.5 Service and Infrastructure
Services and infrastructure are usually available for classical projects (CSP). CSP do rely
on the same services and infrastructure than OSP. Both types of projects require
configuration management and communication infrastructure. CSP have greater liability
for data loss since their resources are usually far more centralized (single point of failure)
and project participants are not allowed to keep personal copies of their work on their
private computing resources. On the other hand, classical projects usually have paid staff
for maintenance and infrastructure, which allows the developers to focus on
development. Classical projects do spend more time on administrative processes than
OSP. Be it accounting for hours spent, attending meetings or performing other corporate
functions, an interestingly large amount of time is spent on issues that do not directly
relate to advancing the project.
With these resources at hand, how are they used? What considerations apply for
coordination? How is work coordinated in classical projects?

3.3.2 Coordination
As in OSP, coordination for CSP is difficult. It is somewhat helped by the more
centralized nature of most CSP. CSP do have less issues with time zone differences and
subtle communication issues due to never having met in person. Still, only very few
individuals in any given project are knowledgeable enough about the finer points of a
project to coordinate it. These persons are usually overwhelmed with work. CSP do have
leadership, and the benefits of coordination are widely accepted. The [Malone93]
Coordination framework will be used for CSP to allow for direct comparison.
Coordination entails shared resources, producer-consumer relationships, simultaneity
constraints, and task dependencies.

3.3.2.1 Shared Resources
“Whenever multiple activities share some limited resource (e.g., money, storage space, or
an actor’s time), a resource allocation process is needed to manage the interdependencies
among these activities.” [Malone93] CSP do exhibit the following shared resources:

64

Human Actors
Coordination for human actors in CSP takes several forms. Besides the informal
coordination and persuasion that is prevalent in OSP, there are also more formal
methods. CSP management does have the authority to enforce tasks and monitor
progress. Despite these additional tools available to CSP managers, most CSP are
behind schedule and over budget. Many approaches for improving project
productivity focus on human resources. [Curtis95] lists those efforts somewhat
mockingly in his introduction to his People CMM:

Organizations have attempted to apply many different techniques in their efforts
to move towards strategic human capital management. They combine downsizing
with restructuring, apply reengineering or process improvement, improve
information sharing, clearly communicate the organization’s mission, institute
employee involvement programs, establish formal complaint resolution
procedures, institute gain-sharing or other incentive plans, emphasize the
importance of training the workforce, formalize performance management and
feedback processes, perform job or work analysis and design, support job
rotation, begin to establish team-based work designs, retrain employees to meet
changing demands, provide flexible work arrangements, address diversity issues,
conduct formal mentoring programs, and align business and human resources
strategies [Mirvis 97, Becker 98, Becker 96]. What many organizations lack is a
framework for implementing these advanced practices.

Clearly, human resources are the most difficult area for project improvement,
both for OSP and CSP. They do hold the biggest promise for advancing project
management and software engineering, however, and merits attention.

Support Systems
CSP tend to be more centralized than OSP, making resource allocation more
important. Many CSP benefit from existing infrastructure and are able to leverage
corporate systems management resources. This frees the CSP participants from
having to worry about the maintenance of support systems. This easy availability
of support systems can lead to heavy processes, where support systems are
introduced that have dubious value for completing a project. Many corporate
environments suffer from an overabundance of support systems. OSP may work
on a shoestring, but they are very wary to introduce new tools and systems for the
sake of it.

Information
Ensuring timely access to information is crucial for project success. While
information is an unlimited resource, provisions need to be taken to emphasize
important information. Often, there is too much information that demands
attention, and participants are overwhelmed125. Within a CSP it is usually easier to
emphasize important information, as participants can meet in person and resolve

125 The term "data smog" has been coined to describe the phenomenon.
http://www.valt.helsinki.fi/comm/argo/anet00/data.htm

65

communication issues much easier. On the other hand distractions are much
larger, and participants may spend a lot of time with informal communication that
is irrelevant to the project.

3.3.2.2 Producer/Consumer Relationships
“[...] a situation where one activity produces something that is used by another activity.”
[Malone93] Producers may be part of a different project, or other team members within
the same project.

Relations to Other Projects
CSP may have relations to other projects within the same organization, or outside
of it. Depending on non-disclosure agreements and licensing issues, CSP
participants may need to take extra care to not leak sensitive information to other
projects. This contrasts starkly with OSP, where sharing of information is
encouraged.

Relations inside the Project
As a project grows sufficiently large, dependencies develop within the project.
Bottlenecks arise because tasks have interrelationships. It is the job of the project
management to resolve these issues. CSP do have much more effective tools for
dependency resolution at their disposal, which would indicate that CSP cope
better with interrelationships than OSP do. Market forces may pressure CSP into
settling with less than satisfactory solutions, though.

3.3.2.3 Simultaneity Constraints
“Another common kind of dependency between activities is that they need to occur at the
same time (or cannot occur at the same time).” [Malone93] Two examples illustrate the
problems with simultaneity constraints:

Real-Time Communication
Meetings, conferences, phone calls and other kinds of real-time communication
must take place at the same time for all participants. Due to the relative ease of
setting up meetings in CSP, there is a tendency to schedule too many meetings
with poorly defined agendas. This can have a major productivity impact.

Document Modification
Most CSP use configuration management software to avoid conflicts arising from
simultaneous edits of their source code. Configuration management can be very
simple, like a locking system for files that are being edited. They can also be very
complex and be integrated with other development tools, like issue tracking
systems.

3.3.2.4 Task Dependencies
“[...] a group of activities [that] are all ’subtasks’ for achieving some overall goal.”
[Malone93] Several persons working on the same task must coordinate their activities to

66

make sure that the results of their activities integrate. Three different methods to handle
this dependency can be identified.

Top-Down Goal Decomposition
“[...] an individual or group decides to pursue a goal, and then decomposes this
goal into activities (or subgoals) which together will achieve the original goal.”
[Malone93] In this method, significant resources are used to produce a plan of
future actions; subtasks are and assigned to team members. This method is often
used in CSP. Nonetheless it has its own problems:

1. Plans become outdated quickly (new requirements, new technologies, etc.).
2. Many problem domains have no clear-cut solutions

Bottom-Up Goal Identification
“[...] several actors realize that the things they are already doing (with small
additions) could work together to achieve a new goal.” [Malone93] CSP usually
do not exhibit this type of goal identification. The concept of a “skunkworks”
project comes closest:126

A ‘skunkworks’ is a group of people who, in order to achieve unusual results,
work on a project in a way that is outside the usual rules. Typically, a skunkworks
has a small number of members in order to reduce communications overhead. A
skunkworks project may be secret

Concurrent Task Processing
Another possibility to coordinate goals and their subtasks is to let people work
concurrently. This method is similar to the bottom-up method. The advantage of
concurrent task processing is that participants have a lot of freedom, keep the
control over their resources and still improve their productivity by collaboration.
A common procedure is the following: Everyone starts working, produces some
results, the group compares achieved (partial) solutions, discusses them and starts
a new concurrent working cycle with the parts they agreed on as the most
promising ideas. This approach is impractical for CSP for the most part since
schedules are unpredictable.

CSP do arguably coordinate their activities much more than OSP. It would thus be logical
to assume that CSP do have better established structures than OSP. What do these
structures look like, and how do they differ from OSP?

3.3.3 Structures
The organizational structure of CSP has been studied extensively. The bottom line of
these studies127 is that no single structure is appropriate for all types of CSP, large or
small. It therefore makes sense to reflect on structural elements more than on complete

126 http://whatis.techtarget.com/definition/0,,sid9_gci214112,00.html
127http://www.informit.com/

67

structures. As in OSP, structure emerges out of activities; participants assume roles and
are related to each other in complex ways.

3.3.3.1 Activities
CSP activities are mostly performed within organizations, and are therefore not generally
available for research purposes. Decades of research into software engineering have
nevertheless produced a rich body of evidence. Major activities in CSP are
communication, decision-making, coordination, documentation and software production.

Communication
Project information is distributed among its participants. In order to work together
and to achieve results, participants need to exchange a lot of information between
each other. This creates a strong need for efficient communication facilities.
Efficient and effective communication needs to answer these questions:

1. Which knowledge should be transferred?
2. Who should provide the knowledge?
3. Who should receive it?
4. How should knowledge be transferred?

Knowledge should be transferred by communication. Communication means to
share the relevant knowledge of the project between all participants to support
their work. As in OSP, the source code of a CSP often constitutes the most
reliable knowledge store. CSP do have more formalized methods of knowledge
dissemination that may or may not work. For instance, CSP usually do make sure
that software is properly documented. CSP may have obstacles for knowledge
dissemination that do not exist in OSP. Participants may withhold information
purposely to “stay one step ahead” of their coworkers. Legal reasons may further
restrict the amount of knowledge that is being circulated broadly.

Decision-Making
Setting up goals or priorities for the future, choosing between contradicting ideas,
changing a project’s policies are all part of decision making. One person, a group
or all members of a project might be involved in the decision making process.
Decisions can be taken formally following rules the members agreed on before or
informally by a simple conversation. Decisions might be considered final or
provisional. Collecting good data to make informed decisions is a time-
consuming task. Decision-making draws heavily on other activities. For instance,
the collection of required information is part of the communication activity. Many
decisions are made subconsciously because the number of decisions each
individual makes every day is enormous. These inherent decisions and hidden
assumptions can lead to communication problems within a project. On the other
hand, it is impractical to decide minor issues in the group. Balancing individual
and collective decisions is therefore critically important. CSP have the advantage
to make harder decisions than OSP, because they can enforce them. On the other

68

hand, OSP are usually less subject to external influences (political, business
influences) and can take decisions based on their merit for the project.

Coordination
All activities of a CSP need some kind of coordination as they all depend on their
context including other activities. Many of these dependencies are hidden.
Coordination and communication are very closely related activities, and
communication is the major means available to CSP for coordination. Even
though CSP do have much better facilities available for solving coordination
problems, their participants should still try to prevent dependencies. Recent
human resources frameworks such as [Curtis95] emphasize the need for
individuals to be empowered, and assuming responsibility for parts of their work.
This helps to reduce dependencies and bottlenecks between project participants.

Documentation
In CSP, documentation has a direct impact on potential profits for the software
vendor. Provide good documentation, and your support infrastructure will be less
taxed by requests. This economic incentive leads to better documentation for CSP
than OSP, on average. Methodologies exist for CSP that focus heavily on process
documentation. These methodologies aim to capture the knowledge that is gained
during a project to reuse it in other projects, and improve quality.128 While some
of those methodologies involve lots of paperwork, they do have tangible benefits:

• Bugs It is helpful to have a detailed change history to track down bugs.
Additional documentation can be used to investigate less obvious bugs.
Over time, it should be feasible to detect patters in the way bugs occur,
and address them methodically.

• Compatibility Good process documentation helps to enforce consistency.

Established processes make it easier for coworkers to develop additions to
a project, and make it easier to integrate it later. In addition, good
documentation lessens the impact of key developers leaving a project, and
makes maintenance of software easier (or even possible).

Process documentation is usually longer-lived than the underlying source code
because implementations may change, but fundamental ideas stay the same.
Documentation is a scarce resource in any software project, so any little piece of
it helps, even simple log messages.

Software Production
Software production is the most important activity and all others only serve to
optimize it. Software production can be described as a Meta activity, as it includes
other activities recursively. Some projects have their software production activity
defined precisely; others only have vague goals. Cynical observers may note that
some CSP do not have a clear purpose, and seem to exist merely for political

128 The Personal Software Process (PSP) is one example.

69

reasons. OSP are more likely to have a purpose, as participants need to weigh
their invested time against other uses of their spare time. This opportunity cost
makes sure that OSP participants are more motivated and interested in their
problem domain than CSP participants. [Raymond99b]:

If the conventional, closed-source, heavily-managed style of software
development is really defended only by a sort of Maginot line of problems
conducive to boredom, then it’s going to remain viable in each individual
application area for only so long as nobody finds those problems really
interesting and nobody else finds any way to route around them. Because the
moment there is open-source competition for a ‘boring’ piece of software,
customers are going to know that it was finally tackled by someone who chose
that problem to solve because of a fascination with the problem itself – which, in
software as in other kinds of creative work, is a far more effective motivator than
money alone.

CSP perform mostly the same activities than OSP do. It is in the roles that participants
play that you will likely find differences between the two approaches. What are those
differences?

3.3.3.2 Roles
Even though CSP do usually plan the activities of their project, it is still difficult to
identify clear-cut roles. Granted, role descriptions may exist for a CSP, even in written
form and approved. Day to day activities are very likely to stray from these defined roles,
however, and it is not uncommon to see CSP participants impersonate different roles over
time. It makes sense to define the same roles that were defined earlier for OSP, namely
developer, manager, maintainer, administrator and commenter.

Developer
A developer is responsible for implementing the projects goals. He participates
mostly in the production and documentation activities. Developer is really a term
that encompasses many functions in a CSP, such as architect, programmer,
analyst and others.

Manager
A manager directs a project. Decision-making and coordination are his major
activities. In CSP, a manager has authority to order other team members to
perform tasks, unlike OSP. While most OSP recruit their managers from technical
staff, CSP may have managers with a non-technical background. This can lead to
acceptance problems when developers do not trust the judgment of a manager.
Having a manager with a non-technical background can broaden the view of a
project, and prevent a project from having an engineering bias.

Maintainer
A maintainer keeps track of issues with released components of a project and is
responsible for their resolution. His major activities are coordination and

70

communication. CSP may have different teams for software under development
and for software being maintained. Thus, maintainers may not have taken part in
the original project.

Administrator
An administrator is responsible for a smooth operation of the project by
maintaining project resources like centralized servers, communication facilities,
and configuration management systems. In CSP, service personnel outside the
project may take this role.

Commenter
Anyone who provides some kind of feedback and does not implement it himself
in the production activity is a commenter. In CSP, this role could more aptly be
named customer. In CSP, the customers assume the most influential role in a
project, as they provide the funding, while as OSP often cater primarily to
themselves, and accept little outside input.

Participants are somewhere in between these abstract roles and perform actions that
belong to several different roles. In turn, most roles are occupied by several participants.
Developers and maintainers provide the required software, managers manage a project
and commenters review some activities and give feedback. The administrator is the
invisible agent who supports all these activities. Figure 5 shows these roles and how they
interact.

Figure 5: Relations between roles in CSP (Source: [Evers00])

CSP are just as varied as OSP. Hence, it is no surprise to find that roles within CSP vary
to a large degree. It could be argued that roles within CSP are usually better defined than
in OSP, and project participants have a better idea what their role is. With roles defined,
how are relations in CSP structured?

71

3.3.3.3 Relations
CSP have very complex relations between their various constituents, and with their
environment. These relations are however far more closely controlled, and often there are
few relations that cross organizational boundaries. Many CSP forfeit a large number of
possible relations by channeling them through points of contact, usually “customer
representatives”. This can help to reduce complexity, but carries the risk of losing
valuable information that would otherwise be shared across organizations. Figure 5
illustrates such an abstracted relationship. Users interact solely with commenters inside
the project, component providers sell ready-made software (COTS) to the project, and
support system providers provide software tools or services for the operation of the
project.

Figure 6: Relation of CSP with their environment (Source: [Evers00])

With CSP and OSP defined, it now makes sense to look at strengths and weaknesses of
both approaches, and ultimately summarize them.

3.4 Strengths of Open Source Projects
Both literature and anecdotal evidence contain many accounts of the advantages and
unique strengths of OSP. Release frequency, customer input and scalability are
mentioned often.

3.4.1 Release frequency
A basic tenet of OSP is “release early, release often” [Raymond99b]. Frequent releases of
software, combined with sensible policies for maintaining stable and experimental
releases concurrently, increase the potential for feedback from a wide variety of users.
OSP utilize their users in the testing process. Users of OSP are expected to report their
findings about faults back to the project. High release frequencies are infeasible for
production environments. For these types of uses, stable releases are provided, leaving
the choice about tracking new releases in the hands of the users. Some OSP go to
extremes to provide up to the minute updates for their project. Infrastructure exists to
synchronize all changes in a project once a day to thousands of testers.129 This process is

129 The FreeBSD operating system project developed a tool CVSup which synchronizes the complete
source tree. http://www.onlamp.com/pub/a/bsd/2001/08/16/Big_Scary_Daemons.html

72

good practice, and is also applied at Microsoft, where the build environment provides a
full compile of the windows operating system once a day,130

3.4.2 Customer Input
OSP do exhibit short feedback loops between users and developers. Often, it is only a
matter of minutes or hours from the point at which a bug is reported from the periphery to
the point at which an official patch is supplied from the developers to fix it. Moreover,
the use of powerful Internet-enabled configuration management tools, such as the GNU
Concurrent Versioning System (CVS)131, allows Open Source users in the periphery to
synchronize quickly with updates supplied by the core. These quick response cycles
encourage an open-source user community to help with the quality assurance (QA)
process since they are “rewarded” by rapid fixes after bugs are identified. Moreover,
because the source code is open for inspection, when users at the periphery do encounter
bugs, they can often either help fix them directly or can provide concise test cases that
allow the core developers to isolate the problem quickly. Thus, the effort of the user
community extends the overall debugging effort and improves software quality
rapidly.132

3.4.3 Scalability
OSP work by exploiting a loophole in Brooks Law that states, “Adding people to a late
project makes it later.” The logic underlying this law is that as a rule, software
development productivity does not scale up as the number of developers increases. The
culprit, of course, is the rapid increase in human communication and coordination costs
as project size grows. Thus, a team of ~10 good developers can often produce much
higher quality software with less effort and expense than a team of ~1,000 developers. In
contrast, software debugging and QA productivity does scale up as the number of
developers helping to debug the software increases. The main reason for this is that all
other things being equal, having more people test the code will identify the defects much
more quickly than having just a few testers. Thus, a team of 1,000 testers should find
many more bugs than a team of 10 testers. QA activities also scale better since they do
not require as much interpersonal communication as software development activities
(particularly design activities) often do. To leverage the loophole in Brooks’s law,
therefore, most successful OSP have a “core” and “periphery” organizational structure. In
this division of labor, a relatively small number of core developers (who may well be
distributed throughout the world) are responsible for ensuring the architectural integrity
of the project. These individuals review user contributions and bug fixes, add many new
features and capabilities, and track day-to-day progress on project goals and tasks. In
contrast, the periphery consists of the thousands of members of the user community who
help with testing and debugging of the software released periodically by the core team.
Naturally, these divisions are informal and individuals may fulfill different roles at
different times during the life cycle of an OSP.

130www.usenix.org/events/usenix-win2000/ invitedtalks/lucovsky.ppt provides a very interesting account of
the Microsoft build environment.
131 http://www.cvshome.org/
132 [Schmidt01] provides more details.

73

Strengths are balanced by weaknesses. OSP have plenty of weaknesses, and being aware
of them can help to avoid false expectations.

3.5 Weaknesses of Open Source Projects
Open Source is no magic bullet, despite claims to the contrary in some popular
explanations of the phenomenon. Most weaknesses ultimately boil down to a lack of
formal organization or clear responsibilities.

3.5.1 Communication
Communication is crucial for all OSP, but the biggest challenge at the same time. The
different cultural backgrounds, never having met in person, time zone differences all
make it harder to communicate clearly and precisely.

Language
Although English is the language of the Open Source community; it is not the
native language of all its members. This results in several problems.
Misunderstandings crop up and people feel offended because communication can
be interpreted in several ways. Aidan M. Humphreys writes,133 “English is, to be
sure, the closest thing we have to a lingua franca for software engineering. One of
my involvements, the PHP-based PostNuke CMS Project, has over 200
developers from -- well, just about everywhere, with English as a common
language. But there are many talented developers who, whilst quite happy to read
the latest W3C spec or RFC, do not feel confident enough of their Franglais,
Singlish, or Ginglish to hold their corner when flame wars break out.”

Irrelevance
The content of messages on discussion groups might lead one to the wrong
impression that the Internet is filled with junk and jerks. It is common for Internet
users to complain bitterly about the lack of cooperation, good manners, and useful
information. This is not completely true, but the signal-to-noise ratio is bad and
getting worse. A casual trip through cyberspace will turn up evidence of hostility,
selfishness, and simple nonsense (much like a random walk in the real world will
yield evidence of hostility, selfishness and nonsense). For many, it is much easier
to be hostile in an email discussion than face-to-face.

3.5.2 Redundant Efforts
OSP coordinate very little. Independent parties sometimes carry out tasks in parallel
without knowing about each other. This consumes additional resources, but it also has the
nice side effect that there are often several solutions to choose from. The choice between
different alternatives helps to improve software quality. [Bezroukov99a] has noted this
similarity between the OSP process and academia. Concurrent research sometimes leads
to conflicts and passionate discussions when someone feels left out.

133 http://www.onlamp.com/pub/a/onlamp/2002/06/12/modelixe.html

74

3.5.3 Lack of Priorities
Where quick, far-reaching decisions are needed, OSP fail. Due to their distributed nature
and their lack of leadership, priorities are either nonexistent or severely skewed towards
the personal biases of influential contributors. One area where this lack of focus is
apparent is usability134. It has been argued that large-scale changes like making security
the top priority at Microsoft135 are not possible in OSP because no one has the authority
to make these calls. In addition, OSP often are dragged down into endless arguments
because no one can force his opinion on others, and end discussions. OSP users often
claim a right to take part in technical decisions even though they neither have the
necessary knowledge nor are they prepared to spend time to consider their requests in
light of other issues.

3.5.4 Lack of Conventions
OSP normally do not have formal rules or written conventions. Instead, newcomers to a
project are expected to gradually learn the hidden rules of the group, and are measured on
their success at reacting to group clues. These tightly knit communities may improve
communications for their members by sharing much cultural context, but make it harder
for new arrivals to integrate themselves into a group. Since every OSP competes for
attention and talent, these barriers to entry are very damaging to a project. [Edwards00]
calls these phenomena “epistemic communities”. “Open source software development is
a learning process where the involved parties contribute to, and learn from the
community.” We will revisit epistemic communities later, as they hold one of the keys
for improving OSP performance.

3.5.5 Lack of focus
According to the FLOSS study, around 70% of the participants in open source projects
spend 10 hours or less per week on project work. This low level of participation
introduces problems with communication as individuals fail to keep up with all
developments in a project. These hours are most often spent on evenings or weekends,
and may be scattered over the course of a workweek. These circumstances make it hard
for contributors to focus on the project at hand. Very often, works is conducted piecemeal
and is drawn out over a long period of weeks. The effort expended to stay on top of
issues is often so great that little time remains for work on contributions. Many
contributors lose interest in a project or are faced with other commitments, leading to
many half finished projects.

3.5.6 Dependency on key persons
Jamie Zawinski136: “If you have a project that has five people who write 80% of the code,
and a hundred people who have contributed bug fixes or a few hundred lines of code here
and there, is that a '105-programmer project?'" [Jones00] argues that the bulk of the work
is done by a few dedicated members or a core team -- what Brooks calls a "surgical
team." This centralization of work and responsibility contrasts with [Raymond98a],

134 http://www.sims.berkeley.edu/~sinha/opensource.html
135 http://news.com.com/2100-1001-816880.html
136 Zawinski is one of the original authors of the Netscape browser. http://www.jwz.org/

75

where he argues that open source projects are self-organizing and very distributed.
Instead, we find that many projects critically depend on a few key persons. There are
several plausible explanations for this phenomenon. The most obvious is the level of
intimate knowledge that is required to understand all parts of a large software system.
The effort to gain this knowledge is usually only undertaken by the most active
contributors. A lack of documentation further reinforces this trend. Another explanation
is the level of recognition individual contributors can expect to receive. The limited
attention span of the Open Source audience dictates that only a very small number of
people will become widely known for their contributions. Again, this tends to strengthen
the role of core contributors. This dependency can become a liability if these key persons
are unable to continue work on the project for some reason. It may be impossible to
reconstruct the implicit knowledge of these persons from their artifacts (source code,
documentation, notes, and emails) alone. This often leads to project failure.

3.5.7 Leadership
Success in OSP is largely dependent on good, charismatic leadership. In addition to the
qualities needed from a software engineering perspective, Open Source leadership needs
to address issues such as communication, marketing, political savvy, and motivation.
Open Source leaders lead by force of persuasion alone. They do not have a mandate to
lead, nor do their coworkers have a mandate to follow. Leaders are judged on their
technical skills, on their vision and their ability to communicate. The Open Source
landscape is much less forgiving with weak leaders. Even though many Open Source
contributors do have a professional background in information technology and are more
skilled than most, these requirements are so selective as to make it very hard to fill all
Open Source leadership positions with qualifying personnel. It has been argued
[Raymond99b] that the success of the Linux project was to a large degree due to the
excellent leadership skills demonstrated by its founder Linus Torvalds. The scarcity of
good leaders is a very serious issue for OSP and one of the factors that inhibit their
growth.

3.6 Strengths of Classical Projects
CSP exhibit many strengths that should not be overlooked in the context of a comparison.
For the purposes of this comparison, it is assumed that a classical project is well run and
uses state of the art knowledge about software engineering and project management
processes. The study of these strengths may lead to insights about projects in general that
can subsequently be applied to OSP to improve them further.

3.6.1 Predictability
It is very often argued that one of the biggest strengths of CSP is their predictability. For
instance, almost all CSP try to deliver results by a deadline. In contrast, open source
projects do rarely feel compelled to achieve goals within a given period. Speaking in
much generalized terms one could say that CSP follow a predictable development path.
This means that they deliver the requested functionality and do not change course
radically in mid-action. OSP, on the other hand, are subject to the whims of their
developers in first approximation. Users do have an influence, but developer interests
often prevail in controversial decisions.

76

3.6.2 Standards
Well-run CSP, (as defined by the capabilities maturity framework) use standardized
methodologies in their software engineering processes. This allows them to operate at
high efficiency levels and makes it easier for new project members to be acquainted with
the mode of operations. Areas for standards include:

• Requirements Analysis
• Testing
• Verification
• Documentation

Standards in and of themselves are no panacea though. They need to be wisely applied,
and sometimes it may be more sensible to forego standards to achieve results.

3.6.3 Documentation
In the case of shrink-wrapped software (admittedly only a very small part of CSP), good
documentation is a major differentiator in the market. Documentation is written with a
non-technical audience in mind. The incentive to reduce support costs by providing well-
written documentation produces results that are far superior to the average quality of OSP
documentation. In the case of internally produced software, standards often require the
creation of documentation. In contrast, no such mandate exists for OSP.

3.6.4 Accountability
Software for specialized domains needs to guarantee the highest levels of availability and
correctness. Clients of CSP use legal incentives to ensure compliance with requirements.
The existence of a corporate body that can be sued if need be is reassuring to the business
world. While end user agreements for shrink-wrapped software disclaim all
responsibility, custom-made software is often accompanied by clauses that demand
compensation payment if a set of conditions is not satisfied. OSP are mostly developed
by informal groups, and accountability is therefore greatly reduced. In most cases, OSP
disclaim all responsibility for possible damages resulting from the use of their software
out of fear of personal liability.

3.7 Weaknesses of Classical Projects
Perceived or real weaknesses of CSP lead to the search for better solutions. OSP need to
address these issues if they want to offer a credible alternative.

3.7.1 Customer Input
In some domains, customers will be or will have access to technical people who are
capable of understanding a software system and contributing to it. Whether it is a library
or framework that is sold to application developers, an operating system and development
environment used by others, or embedded software used by system builders, when these
types of users find bugs or need additional capability, they may indeed be able to make
the change themselves. An open source model for the product would allow these
customers to quickly solve their own problem, and contribute to the product as well. In

77

this scenario, the self-interest motivator in OSP is satisfied because the user will probably
get the fix much sooner than in a normal CSP report-bug-and-wait-for-fix type process.
The philanthropy motivator does not come into play because presumably they bought the
system in the first place. Further monetary rewards could be given for fixes that are
incorporated back into the selling product.137

3.7.2 Scalability
CSP projects are perceived as being hard to scale. This means that it is very difficult to
increase the output of a project linearly with an increase in the number of staff. Brook’s
Law “Adding manpower to a late project makes it later” exemplifies these observations.
CSP do have more formal interactions than OSP, and its participants work much closer
together. OSP projects often have participants that work for weeks without
communicating with other participants, and deliver results afterwards. They do not take
attention away from other participants due to frequent communication. OSP that have
contributors like these are able to scale to much higher numbers without the adverse
effects observed by Brook.

3.7.3 Bureaucracy
In an effort to raise quality, many CSP apply intense processes with much paperwork.
The effectiveness of such overzealous red tape is elusive at best. Additionally, being in
the same physical building increases the likelihood for aimless meetings to be convened,
where every project participant is required to attend. A tendency for micromanagement
destroys productivity. CSP are more prone to these ills because micromanagement is
almost impossible over the Internet.

3.7.4 Skill levels
It is no secret that the biggest single factor in programmer productivity is the individual.
Well-established results point to at least two orders of magnitude difference in
productivity, and some studies have shown that perhaps one out of five programmers
actually produces negative work - that is, the other four would be more productive
without that person. Certainly much of the success of open source software development
is dependent on this fact. There is little doubt that those who undertake and succeed on
the initial construction of an OSP are at the top end of the talent spectrum. Furthermore,
open source software development naturally selects for its contributors the cream of the
talent. It does not have to do this with hire and fire decisions as CSP do - lesser
individuals can submit potential contributions, but only the best contributions will
actually be incorporated. CSP, unfortunately (or not, depending on your viewpoint),
cannot simply rely on the cream for its resources. It has always been a delicate balance
just to get enough individuals interested in pursuing a technical career, much less
eliminating most of them to concentrate on the “cream". The plain fact is that most CSP
will be staffed with a team that reflects the normal distribution of technical talent. Often
there is at least one person who can be a “hero" and lead the project through to success.
Nevertheless, most of the team will be of average productivity. Hoping to magically

137[Schmidt02] discusses one of these potential reward systems.

78

reach the success levels of Open Source software development when using a different
talent pool, is akin to believing in a silver bullet.

With both strengths and weaknesses addressed, it makes sense to directly compare OSP
and CSP. Reducing complex issues to keywords obviously does not lend itself to
subtlety, but it gives the interested reader a quick overview. These one-word summaries
stand for whole concepts, and should be understood as such. What are the properties of
OSP and CSP, in direct comparison?

3.8 The Properties Matrix
To conclude the comparison between OSP and CSP, various properties are directly
compared, and summarized. The properties matrix necessarily reduces the subtleness of
both OSP and CSP realities to a black and white comparison. With the disclaimer that the
matrix does represent idealized states it is, however, a useful primer.

Property CSP OSP

Structure hierarchical networked

Scope internal/closed external/open

Resource focus capital human, information

State stable dynamic, changing

Direction management
commands self-management

Basis of action control empowerment to act

Basis for compensation position in
hierarchy competency level

Business Processes
(development) Linear Parallel

Cost of development High Low

Cost of coordination High (Brook's law
holds) Low (Brook's law doesn't)

Mode of organization Centralized Decentralized

Management Hierarchical Collaborative-community

79

Hierarchical layers
Several

Collaborative-community
Four, but not in a

bureaucratic fashion

Modularity Low High

Knowledge functions
(access, sharing, diffusion,

creation, exploitation)
Low Massive

Organizational learning Linear Parallel

System Closed Open

Users-producers Separated Overlap

Number of participants Limited Unlimited

Product transparency Absent (copyright) Massive (copyleft)

Decision-making transparency Low Massive

Product innovation Low High

Organizational innovation High Massive

Cost of platform High Low

Flexibility of platform Low High

Average Hours / Week 40 14.4

Reuse Low High

Motivation Monetary Non-Monetary

Use of standards Low High

Table 3: OSP versus CSP properties

With the properties of both OSP and CSP defined, the major strengths and weaknesses
outlined, the context is established to embark on a theory of Open Source. Attempts have

80

been made to characterize Open Source with theories before, but all of them remain
flawed. Why is it so hard to arrive at a theory? Where did previous theories fail, and what
areas need special consideration? Finally, how would one approach a unified theory of
Open Source?

4. Towards a unified Open Source Theory
No comprehensive theory about Open Source has emerged in the literature yet. This
chapter discusses the shortcomings of existing theories, looks at challenges that have
prevented the emergence of a comprehensive theory and proposes a new approach that
considers the acknowledged difficulties. First, it is interesting to note that all existing
theories try to describe Open Source from the perspective of whatever notion the author
is fond of, be it sociology [Raymond99b], economics [Goldhaber97], software
engineering [Scacchi02] or psychology [Hertel02]. While all these theories provide
valuable insight into Open Source, none of them bridges disciplines to embark on a
wholesome approach. Where do existing theories succeed, where do they fail?

4.1 Limitations of existing theories
Several authors have developed theories to explain the Open Source phenomenon. Each
of these theories contributes to the general understanding about Open Source, but all
theories are incomplete and focus only on selected aspects. That said, it is always easier
to pick on existing theories and take them apart then to come up with a new theory. The
goal here is not to make fun of these earlier efforts, but rather to distill the core of each
theory, and do away with the weaker parts of a theory. With luck, we will be able to
assemble these pieces to a theory that goes beyond the individual pieces, and adds to the
understanding of Open Source. The most famous theory is of course “The cathedral and
the Bazaar”, and we will give it special attention because it has by its own contributed
more to Open Source theory than all others combined. Also of note is Bezroukov’s
assertion that there are strong parallels between academia and the Open Source
community. Economic approaches to Open Source are plentiful [Nahm02], [Wegberg00],
[Ghosh98], [Kenwood01], [Bessen02], [Hippel02], [Schmidt02], [Lerner01],
[Iannicci02], [Rasch01], and [Edwards00b]. One explanation of this huge economical
interest is that Open Source seems to defy many notions about economic motivations, and
thus raises curiosity. Another promising venue is to look at the participants in Open
Source, and research their motivations, their interactions and discover governing
structures. Management theory has embraced the concept of virtual organizations for a
while, it is thus not surprising to see them being applied to Open Source. Observing a
virtual organization is rather fascinating, however, deducing how it works is an entirely
different matter. To understand their workings, it is necessary to probe deeply into
psychology, to find underlying motives, and levers for influencing project outcomes by
appealing to the psyche of individuals.

4.1.1 The cathedral and the Bazaar
138The ideas represented in the Cathedral and the Bazaar (CatB) became a part of Open
Source folklore; they are reproduced frequently in papers and interviews, and have been

138 I am indebted to [Bezroukov99b] who made many of the observations presented here.

81

instrumental for a communicating the core aspects of the Open Source phenomenon.
Many Open Source authors base their arguments on an implicit assumption that these
ideas are true. Some of the most important ideas in CatB include:

• Brooks' Law does not apply to Internet-based distributed development;
• "Given enough eyeballs, all bugs are shallow";
• Linux belongs to the Bazaar development model;
• The OSP model automatically yields the best results;
• The Bazaar development model is a new and revolutionary model of software

development.

All these ideas are vulnerable to varying degrees. Understanding the weak points of CatB
helps to develop stronger, more comprehensive theories later. The remarks on Brooks'
Law are among the most important statements in CatB.

4.1.1.1 Brooks' Law does not apply to distributed development.
One of the vulnerable ideas of CatB is that Brooks' Law is non-applicable in the Internet-
based distributed development environment as exemplified by Linux. From CatB:

"In The Mythical Man-Month, Fred Brooks observed that programmer time is not
fungible; adding developers to a late software project makes it later. He argued that the
complexity and communication costs of a project rise with the square of the number of
developers, while work done only rises linearly. This claim has since become known as
"Brooks's Law" and is widely regarded as a truism. But if Brooks's Law were the whole
picture, Linux would be impossible."

This belief that programmer time scales differently as soon as programmers are
connected to the Internet and are working on OSP is repeated elsewhere in a different
form:

"Perhaps in the end the Open Source culture will triumph not because cooperation is
morally right or software "hoarding" is morally wrong (assuming you believe the latter,
which neither Linus nor I do), but simply because the closed-source world cannot win an
evolutionary arms race with open-source communities that can put orders of magnitude
more skilled time into a problem."

The “Mythical Man Month” is a software engineering classic. Written almost 30 years
ago, its basic ideas remain true. Any claim that its observations are wrong therefore has
to be considered with appropriate caution. The real problem with this CatB statement is
that due to the popularity of the CatB this statement could discourage the open source
community from reading and studying The Mythical Man-Month, one of the few
computer science books that remained current decades after its initial publication.
Actually, the term "Brooks' Law" is usually formulated as "Adding manpower to a late
software project makes it later". The term "mythical man-month" (or "mythical man-
month concept") is used to identify the concept of diminishing output of multiple
developers even if all work on a given project from the very start. Ray Duncan gave one

82

of the best explanations of this concept in his review139 of The Mythical Man-Month:
"What is a mythical man-month anyway? Consider a moderately complex software
application from the early microcomputer era, such as the primordial version of Lotus 1-
2-3, Ashton-Tate dBASE, or Wordstar. Assume that such a program might take one very
smart, highly motivated, expert programmer approximately one full year (i.e., 12 ‘person-
months’), to design, code, debug, and document. Imagine that market pressures are such
that we want to get the program finished in a month, rather than a year. What is the
solution? You might say, "Get 12 experienced coders, divide up the work, let them all
flog away for one month, and the problem will be solved. It is still 12 person-months,
right?

Unfortunately, time cannot be influenced so easily. Dr. Brooks observed that person-
months are not “factorable, associative, or commutative”. One programmer times 12
months does not equal 12 programmers times one month. The performance of
programming teams, in other words, does not "scale" in a linear fashion any more than
the performance of multi-processor computer systems. Dr. Brooks found, in fact, that
when you throw additional programmers at a project that is late, you are only likely to
make it much later. The way to get a project back on schedule is to remove promised-
but-not-yet-completed features, rather than adding more resources. This phenomenon is
easy to understand. There is inescapable overhead having programmers work in parallel.
The members of the team must "waste time" attending meetings, drafting project plans,
exchanging email, negotiating interfaces, enduring performance reviews, and so on. In
any team of more than a few people, at least one member will be dedicated to
"supervising" the others, while another member will be devoted to housekeeping
functions such as managing builds, updating Gantt charts, and coordinating everyone's
calendar. As the team grows, there is a combinatorial explosion such that the percentage
of effort devoted to communication and administration becomes larger and larger.
CatB assumes that Internet connectivity can improve performance for a project in
comparison with, say, LAN connectivity or using the same mainframe. The Internet
allows access to a potentially very large talent pool, but does not guarantee that these
resources will materialize. Moreover, assuming the same level of developers,
geographically compact teams will always have an edge over distributed teams connected
via the Internet. Reducing the effects of distance does not eliminate other constraints
under which OSP operate, but can dramatically increase the quality of the pool of
developers. Brooks' law does not hold only for projects for which a fully functional
prototype already exists and most or all architectural problems are solved. This may have
been the case for Linux, which is essentially an open source re-implementation of UNIX.
[Vallopillil98] points out: "The easiest way to get coordinated behavior from a large,
semi-organized mob is to point them at a known target. Having the taillights provides
concreteness to a fuzzy vision. In such situations, having a taillight to follow is a proxy
for having strong central leadership. Of course, once this implicit organizing principle is
no longer available (once a project has achieved "parity" with the state-of-the-art), the
level of management necessary to push towards new frontiers becomes massive. This is
possibly the single most interesting hurdle to face the Linux community now that they've
achieved parity with the state of the art in UNIX in any respects."

139 http://www.ercb.com/feature/feature.0001.html

83

4.1.1.2 Given enough eyeballs, all bugs are shallow
One of the most important ideas promoted by CatB is the phase attributed to Linus
Torvalds - "Given enough eyeballs, all bugs are shallow". [Raymond99b]: "In the bazaar
view, on the other hand, you assume that bugs are generally shallow phenomena - or, at
least, that they turn shallow pretty quick when exposed to a thousand eager co-developers
pounding on every single new release. Accordingly you release often in order to get more
corrections, and as a beneficial side effect you have less to lose if an occasional botch
gets out the door."

The debugging of a complex system is much more difficult undertaking that simply
getting a huge number of "eager co-developers" to analyze lines of code. For most
complex projects for every second or third bug located and fixed another one may be
introduced. [Schach02] noted that “it seems inevitable that, at some future date, the
dependencies between modules induced by common coupling will render Linux
extremely hard to maintain. It will then be exceedingly hard to change one part of Linux
without inducing a regression fault (an apparently unrelated fault) elsewhere in the
product.” CatB assumes that several talented developers can successfully work on the
same piece of code in parallel without any coordination other than email; one of them
eventually will fix the code quicker than in the commercial environment with specially
trained testers. Certainly, if enough talented developers try to find the same bug
simultaneously it probably will be found eventually. But there are several problems with
this idea of parallel debugging. Several questions arise:

Is this the best way to utilize talented developers?
Why waste their skills on debugging? In some commercial environments,
professional testers provide an important edge. Synergy between volunteer
developers and commercial developers and testers could be beneficial. Talented
developers usually dislike debugging code not their own unless this is absolutely
necessary; they want to create their own code. Moreover, if we assume that ten
talented developers work constantly to isolate one given bug, this seems like a
“water hose” approach. Improved project management could be more beneficial
than assigning ten developers to a single bug could. Talented developers who
understand a given system are extremely scarce and this sort of approach is
extremely wasteful.

A bug is a bug is a bug.
No. There are at least three major types of bugs - code errors, logical errors and
architectural problems. One large subclass is just normal coding bugs that are
easy to find. Another subclass is errors in logic that are approximately one order
of magnitude harder to find and fix. The most complex bugs are consequences of
architectural flaws or limitations of tools used. Numerous architectural flaws of
Linux are widely known and are being corrected over time. From a software
engineering perspective, those flaws are similar to the architectural problems of
any prototype that was converted into a production system. Initially Linux was
expected by many to be a temporary system to be eventually replaced by GNU

84

Hurd140. Hurd has an arguably better architecture than Linux.141 Many OSP
stagnate by debugging software that is architecturally inferior rather than solving
the underlying problems. Debugging does have a higher status in OSP than
software architecture. This is mainly due to the macho roots of many OSP in the
hacker culture.142

Is it easy to force gifted programmers to search for the same bug?
It depends. Usually forcing many talented developers to look at the same piece of
code is like herding cats. It's neither easy, nor a rewarding task, unless the bug is
really critical (technically or politically). Talented developers are first
programmers not testers; they usually prefer making their own bugs to fixing bugs
of others. Any situation where many talented developers actually work on the
same segment of code is more of an exception than a rule. With the increasing
complexity of a given project, this pooling of talent will occur very rarely and
only for the most critical or politically important bugs. For any sufficiently
complex project there will be never be sufficient "eyeballs" to locate and eradicate
all bugs. Many large OSP are far more complex than any individual can handle,
and hence the amount of developers even able to understand a piece of software
with all its dependencies is very small.

Does it make sense to fix bugs in badly written code?
Usually it does not. If the code is badly written (and as Ken Thompson pointed
out, some parts of Linux are143) additional bugs could be easily introduced by
fixing an existing one. Rewriting, not fixing, is a more viable option here. The
open source model, with its over-reliance on debugging, could be at a
disadvantage. In the commercial environment, a talented manager could partially
avoid this problem by exercising his or her judgment and power. In OSP, modules
incorporated at early stages of a given project could outlive their utility in short
order. Thanks to inertia and programming overload on key developers, there may
be no effort to rewrite these modules until serious problems occur that justify the
effort. Sometimes only when a problem becomes visible will you be able to attract
a decent developer to rewrite code - a very unrewarding task indeed, as any
programmer can attest. In this case, the publicity about the bug makes fixing it a
worthwhile investment in the status game (often the situation with security bugs).
The seemingly infinite number of bugs precludes the positive influence of random
bug fixing on the product as a whole.

4.1.1.3 Does Linux belong to the Cathedral or to the Bazaar model?
Many have pointed out that the level of decentralization in the Linux world is open to
review. The model in CatB is too simplistic. The metaphors for high centralization

140 http://www.gnu.org/software/hurd/hurd.html
141 http://www.cs.pdx.edu/~trent/gnu/hurd/hurd-paper.html argues this point.
142 http://www.tuxedo.org/~esr/jargon/html/entry/hacker.html notes: “Hackers consider themselves
something of an elite (a meritocracy based on ability), though one to which new members are gladly
welcome. There is thus a certain ego satisfaction to be had in identifying yourself as a hacker”
143 http://www.computer.org/computer/thompson.htm

85

(Cathedral) and no centralization (Bazaar) do not account for the size of a given project;
its complexity, timeframe and time pressures and its access to resources and tools. They
also do not specify whether a project produced core functionally (like the Linux kernel)
or peripheral parts of the system. For large projects like operating systems, it is especially
important that the core of the system be developed in a highly centralized fashion with a
small core team. Peripheral parts of the system can benefit from a more relaxed, more
decentralized approach. CatB fails to distinguish between these two types of activities, as
the following quote demonstrates:

"In retrospect, one precedent for the methods and success of Linux can be seen in the
development of the GNU Emacs Lisp library and Lisp code archives. In contrast to the
cathedral-building style of the Emacs C core and most other FSF tools, the evolution of
the Lisp code pool was fluid and very user-driven. Ideas and prototype modes were often
rewritten three or four times before reaching a stable final form. And loosely-coupled
collaborations enabled by the Internet, á la Linux, were frequent."

The Emacs C core and the Lisp code are different and should be examined with different
models in mind. There are advantages in using mixed models other than the pure
centralized (Cathedral) or completely decentralized (Bazaar) extremes. It is hardly
surprising that in reality a mixed model dominates or that there is a place for highly
centralized development in the Linux world. Linus Torvalds once noted: "My workload is
lower because I don't have to see the crazy ideas. I see the end point of work done for a
few months or even a year by other people."

One can immediately see elements that are foreign to the Bazaar style in the current stage
of the Linux kernel development as described by the principal author of the kernel. It
looks more like a highly centralized (Cathedral) development model. For example, you
cannot communicate with Torvalds directly but need to supply patches to his trusted
lieutenants. If the patch is rejected, there is no recourse. [Hubbard98] notes: "Despite
what some free-software advocates may erroneously claim from time to time, centralized
development models like the FreeBSD Project's are hardly obsolete or ineffective in the
world of free software. A careful examination of the success of reputedly anarchistic or
"bazaar" development models often reveals some fairly significant degrees of
centralization that are still very much a part of their development process."

Of course, these arguments do not exclude the fact that some activities in Linux can be
classified as belonging to the decentralized (Bazaar) model, especially development of
drivers, utilities and small applications.

4.1.1.4 Does the OSP model automatically yield the best results?
CatB postulates that OSP deliver higher quality results than CSP: "Perhaps this should
have been obvious (it's long been proverbial that "Necessity is the mother of invention")
but too often software developers spend their days grinding away for pay at programs
they neither need nor love. But not in the Linux world - which may explain why the
average quality of software originated in the Linux community is so high."

86

Looking at sourceforge.net, one of the biggest repositories of OSP, one gets a completely
different impression. 95% of all projects are of exceptionally bad quality, or do not even
have any results to show. An anonymous jokester aptly summarized it with it his advice
how to develop open source software: 144

“Open Source Development HOW-TO (Score: 5, Funny)
by Anonymous Coward on Tue July 09, 14:17 (#3851076)

1. Introduction
As everyone knows, Open Source software is the wave of the future. With the
market share of GNU/Linux and *BSD increasing every day, interest in Open
Source Software is at an all time high. Developing software within the Open
Source model benefits everyone. People can take your code, improve it and then
release it back to the community. This cycle continues and leads to the creation of
far more stable software than the 'Closed Source' shops can ever hope to create.

So you are itching to create that Doom 3 killer but do not know where to start?
Read on!

2. First Steps
The most important thing that any Open Source project needs is a Sourceforge
page. There are tens of thousands of successful Open Source projects on
Sourceforge; the support you receive here will be invaluable. OK, so you have
registered your Sourceforge project and set the status to '0: Pre-Thinking About
It', what's next?

3. Don't Waste Time!
Now you need to set up your SourceForge homepage. Keep it plain and simple -
do not use too many HTML tags, just knock something up in VI. Website editors
like FrontPage and DreamWeaver just create bloated eye-candy - you need to get
your message to the masses!

4. Ask for Help
Since you probably cannot program at all you will need to try to find some people
who think they can. If your project is a game, you will probably need an artist too.
Ask for help on your new Sourceforge pages. Here is an example to get you
started:

"Hi there! Welcom to my SorceForge page! I am planing to create a Fisrt Person
Shooter game for Linux that is going to kick Doom 3's ass! I have loads of
awesome ideas, like giant robotic spiders! I need some help thouh as I cant
program or draw. If you can program or draw the tekstures please get in touch! K
thx bye!"

144 http://slashdot.org/comments.pl?sid=35668&op=Reply&tid=99 &pid=3851076

87

Thousands of talented programmers and artists hang out at Sourceforge ready to
devote their time to projects so you should get a team together in no time!

5. The A-Team
So now you have your team together you are ready to change your projects status
to '1: Pre-Bickering'. You will need to discuss your ideas with your teammates
and see what value they can add to the project. You could use an Instant
Messaging program like MSN for this, but since you run Linux, you will have to
stick to e-mail.

Do not forget that YOU are in charge! If your team does not like the idea of giant,
robotic spiders just delete them from the project and move on. Someone else can
fill his or her place and this is the beauty of Open Source development. The code
might end up a bit messy and the graphics inconsistent - but it is still 'Free as in
Speech'!

6. Getting Down To It
Now that you have found a team of right thinking people you are ready to start
development. Be prepared for some delays though. Programming is a craft and
can take years to learn. Your programmer may be a bit rusty but will probably be
writing "hello world" programs after school in no time.

Closed Source games like Doom 3 use the graphics card to do all the hard stuff
anyhow, so your programmer will just have to get the NVidia 'API' and it will be
plain sailing! Giant robot spiders, here we come!

7. The Outcome
So it has been a few years, you still have no files released or in CVS. Your
programmer cannot get enough time on the PC because his mother will not let
him use it after 8pm. Your artist has run off with a Thai She-Male. Your project is
still at '1: Pre-Bickering'...

Congratulations! You now have a successful Open Source project on
Sourceforge! Pat yourself on the back, think up another idea and do it all again!
See how simple it is?

With all these issues that manifest themselves with Raymond’s theory, what parts of it
remain as valid contributions? The observation that debugging can be parallelizable
under some circumstances has merit, likewise for the assumptions made about individual
motivations to contribute to Open Source. Above all though, Raymond’s accessible style
led to a wide dispersal of his ideas, and influenced many companies and individuals in
their thinking towards Open Source. Any theory that aims to appeal and entice its readers
to apply its findings ought to be written in such an attractive style. This runs against the
grain prevalent in academia, where precision stands above all else. It is an illusion to
believe that a precise definition of Open Source will be possible any time soon. Rather, it
makes sense to accept the incompleteness and weakness of any given theory, and instead

88

focus on applying the insights that have been gained to date. It is my belief that a
pragmatic theory, or more precisely, a framework can do more to advance general
understanding about Open Source, and make a contribution to the field than a purely
academic theory.

Interestingly, the Open Source community bears a more than passing resemblance to the
academic community. Many of the same processes that dominate in academia are also
prevalent in Open Source. Peer reviews, status competition, credits as a major currency
are some of the similarities. What does this comparison between the two communities
reveal about Open Source?

4.1.2 Open Source as academic Research
Nikolai Bezroukov developed an alternate theory for Open Source, called “Open Source
as academic research”. [Bezroukov99a] introduces his theory thus:

“First of all I would like to stress that the Internet can significantly reduce the costs of
providing some types of software like OS, compilers or utilities. The Internet makes it
possible to produce an infinite number of remotely accessible perfect copies of a
computer program, multimedia presentations, or interesting e-mail discussions. It is
generally accepted that the fact that the cost of duplicating a computer program is close
to zero creates important differences between computer programs and other consumer
products. These differences are to a certain extent ignored or suppressed in the
conventional "shrink-wrap" software distribution model. I think that the creation of a
program is similar to the creation of applied theory. I would like to classify programming
as a special kind, or at least a close relative, of scientific activities. The second important
difference between software and other consumer products is that minor modifications are
easy. Software can be more adaptable. Here again the important analogy with science
holds. In both science and programming, those involved are not in it for the money. Most
of the Open Source developers are doing it to chase a dream, not to build up their bank
balances. They can be motivated for a variety of reasons but simply there are many with
great programming abilities that often are underutilized in their current (often corporate)
environments. Some want a particular tool and found that is either unavailable or too
expensive so they try to build one themselves. Again, they are chasing a dream, not the
competition.”

This generalization seems too broad. As others have pointed out, economic incentives
play a major role for OSP. In addition, Bezroukov notes the case of shrink-wrap software,
which only accounts for a very small part of software. Most software is produced for
internal use in organizations, and distribution costs do no matter in that context.
Bezroukov claims that minor modifications are easy. That does not necessarily hold,
since most software is not modularized enough to allow modifications without side
effects.

”Due to the Internet, it is now possible to create a virtual team for software development,
parallel to the interests in science where several researchers interested in a particular
phenomenon create a virtual scientific community to resolve a question or problem.

89

Team structure and responsibilities can be a dynamic process. Software will be produced
not by an isolated person or a group of persons, but by a deeply interwoven network of
actors. I would like to stress that virtual teams probably resemble historical informal
communities of scientists that used hand-written letters to share achievements, ideas and
criticism. Yet little is known about how Internet-based virtual teams (IVT) really operate
and what problems develop in that sort of cooperation. Some evident problems are:

• overload and subsequent burnout of leading developers due to excessive load,
with significant loss of interest in a given product;

• a conservative approach to architecture (it's really difficult to change the
architecture of a product after its development has started)

• E-mail based written communication to some degree tends to distort meaning and
invite fights and flame wars.”

Bezroukov fails to draw the parallels to the scientific community here. [Cox99] points out
that most interchanges between developers do have a very low signal-to-noise ratio
because many non-contributors take part in the discussion, but do not offer useful
comments. These “lurkers” can be very damaging for a project to the extent that they
obscure the communication of contributors. The scientific community, by contrast, does
arguably have much less to worry about non-contributors clogging their communication,
as interest in the scientific discourse is usually limited to the scientific community. This
“elitism” of the scientific process has disadvantages, of course. It may preclude feedback
from stakeholders that would participate if they would only understand the language
being used, for one.

”There are several other visible problems with open source projects that were pointed
out by others. Understanding these problems probably can help current and future Open
Source projects. Again, I strongly believe that the problems of Open Source are by and
large the same as those that confront academic culture and are better understood in this
context. From a theoretical point of view, participants in an Open Source project should
probably be considered as a special kind of academic workers. Solutions for typical
problems developed in academic community are directly applicable to Open Source and
its use can probably provide important benefits to the Open Source development
model.”145

The jury is still out on whether these similarities are relevant enough to allow application
of scientific solution to OSP problems. Areas that are not yet well established in OSP are
peer review and a system for giving credits. Peer review does happen, albeit in very
informal ways, and the results are unpredictable. Having ways to solicit peer reviews
would help to increase quality across the board. [Ghosh02] mentions how difficult it is to
attribute credit in OSP. Seeing how credits are the major benefits participants get out of
OSP, this is a major deficiency.

145 See also [Scacchi02b], page 4

90

The financing of OSP is very similar to the financing of applied science. Sometimes
scientific research is funded indirectly, because individuals employed in a particular
institution become interested in a particular phenomenon and research with existing
funds. A considerable number of open source software developers work either in
academic institutions or large corporations. Large corporations usually provide a very
good environment for open source projects as they often contain niches where gifted
developers are partially unemployed or underemployed due to various internal issues.
The initial development of UNIX at Bell Labs is a good example of such possibilities.
Recently several large corporations used a second avenue of financing of open source
projects. When a given open source project can promote a strategically important
hardware component, programmers can be assigned to it. This activity becomes a
standard "loss leader". Digital contributions to Linux seem to belong to this scheme.
Current Intel and IBM interest in Linux seems to fall into this category.

[Raymond00] does have a more extensive treatment of OSP funding models. Raymond
mentions cost-sharing, risk-spreading, loss leader and widget frosting as possible OSP
funding models. To summarize, OSP do have some similarities with the scientific
process, but it is far too early to conclude that they closely follow it. Further areas of
research should include peer review in OSP and attribution of credit.

The notion of giving credit to contributors underlies many economic approaches. In the
absence of monetary flows, economists have tried to discover alternative wealth-
distribution channels to frame Open Source in well-known economic terms. It is
generally assumed that individuals act like the proverbial “homo oeconomicus”, meaning
that they are ultimately motivated by profit. Discovering the source of profit, and ways to
allocate it efficiently are at the center of these economic approaches.

4.1.3 Economic Approaches
Various scholars have attempted to explain OSP with economic theories. While their
theories offer important insights into motivational aspects, they are incomplete, and fail
to explain OSP on their own. The most obvious criticism is that Open Source business
models have largely failed in the marketplace. How can economic theories of Open
Source be sound if they lack empirical evidence (read: thriving businesses) to back them
up? To be fair, this down-to-earth look at economic theories does not do them justice.
Research into economic motivations is very important for the long-term health of the
Open Source community. Most participants would not mind at all if sustainable business
models would emerge eventually.

One of the earliest theories that apply to Open Source is Goldhaber’s notion of the
attention economy.

4.1.3.1 Attention economy
[Goldhaber97] established the notion of the “Attention Economy” which positions
attention as the scarce resource, and builds an economy around it.

91

So, at last, what is this new economy about? Well if the Net exemplifies it, then you might
guess it has less to do with material things than with the kinds of entity that can flow
through the Net. We are told over and over just what that is: information. Information,
however, would be an impossible basis for an economy, for one simple reason:
economies are governed by what is scarce, and information, especially on the Net, is not
only abundant, but overflowing. We are drowning in the stuff, and yet more and more
comes at us daily. That is why terms like "information glut" have become commonplace,
after all. Furthermore, if you have any particular piece of information on the Net, you
can share it easily with anyone else who might want it. It is not in any way scarce, and
therefore it is not an information economy towards which we are moving. What would be
the incentive in organizing our lives around spewing out more information if there is
already far too much?

Well, my title gives it away, of course. There is something else that moves through the
Net, flowing in the opposite direction from information, namely attention. So seeking
attention could be the very incentive we are looking for. Parenthetically, I have now
rejected both parts of the conference title; no economics in the conventional sense, and
not digital information either. You might conclude I am speaking at the wrong
conference. I would rather say it has the wrong title. Except the title did serve its
purpose. It did get your attention, and that was something, in fact a lot.

Ignoring for a while that Goldhaber plays semantic games with his audience, his notion
of “spewing out more information” as an action spurred by the desire for attention is
valid.146 Goldhaber goes on to explain:

Attention, at least the kind we care about, is an intrinsically scarce resource. Consider
yours, right now. You are reading this paper. You have a certain stock of attention at
your disposal, and right now, a large proportion of the stock available to you is going to
me, or to my words. If you are just reading this, assuming it gets printed in a book, the
fact that your attention is going to me and not just to what I write may be slightly less
obvious. Now this might not matter if attention were not desirable and valuable in itself,
but it is. In fact, it is a very nice feeling to have respectful attention from everybody
within earshot, no matter how many people that may include. We have a word to describe
a very attentive audience, and that word is "enthralled." A thrall is basically a slave.
Right now, it should be evident that having your attention means that I have the power to
bend your minds and your bodies to my will, within limits that in turn have to do with
how good I am at enthralling you. This can be a remarkable power. When you have
superb control over your own body, so that you can perform great athletic feats, it feels
great; likewise, it feels good when your mind feels focused and powerful; how much more
wonderful then to be able to have the minds and bodies of others at your disposal! On the
rather rare occasions when I have felt I was holding an audience "in the palm of my
hand, hanging on my every word," I have very much enjoyed the feeling, and of course
others who have felt the same have reported their feelings in the same terms. The elation
is independent of what you happen to be talking about, even if it is to decry something
you think is horrible.

146 [Hannemayr99] researches attention inside the hacker community.

92

Did this account get your attention? In all likelihood, it did. Now what? It is a long way
from getting someone’s attention to use it for your own advantage. The attention
economy may be happening for a select few who are in the public eye, but it fails to
account for countless unknown contributors that stand very slim chances of ever getting
their due recognition. OSP typically only support a handful of participants in a very
public role. Most participants will not partake in the benefits of being recognized, and
“getting attention” cannot compensate them for their efforts.

The attention economy seems far-fetched. Ultimately, it might well come to pass if more
and more of the value creation in society happens in the services sector, and physical
goods lose importance. In such a future scenario, attention gains in value, and indeed,
there are first signs that such an environment is beginning to take shape.147 More
immediately useful is the notion of Cooking-pot markets by Ghosh.

4.1.3.2 Cooking-pot Markets
[Ghosh98] developed the concept of “Cooking-pot Markets” where participants
contribute resources to a “pot” and take out other resources. The model works because
software can be copied without loosing the original, and hence “taking out of the pot”
will not adversely affect other participants.

Unlike the markets of the "real world", where trade is denominated in some form of
money, on the Net every trade of ideas and reputations is a direct, equal exchange, in
forms derivative of barter. This means that not only are there two sides to every trade as
far as the transaction of exchanging one thing for another goes - which also applies to
trades involving money - there are also two points of view in any exchange, two
conceptions of where the value lies. (In a monetary transaction, by definition, both
parties see the value as fixed by the price.) When I buy your book about cats, it's clear
that I am the consumer, you the producer. On the Net, this clear black-and-white
distinction disappears; any exchange can be seen as two simultaneous transactions, with
interchanging roles for producer and consumer. In one transaction, you are buying
feedback to your ideas about cats; in the other, I am buying those ideas. In the "real
world" this would happen in a very roundabout manner, through at least two exchanges:
in one, I pay for your book in cash; in the next, you send me a cheque for my response.

The core idea here is that idea exchanges on the Internet are barters, and hence not
subject to a price in the classical sense.

As soon as you see that every message posted and every Web site visited is an act of trade
- as is the reading or publishing of a paper in an academic journal - any pretense at an
inherent value of economic goods through a price-tag is lost. In a barter exchange, the
value of nothing is absolute. Both parties to a barter have to provide something of value
to the other; this something is not a universally or even widely accepted intermediary
such as money. There can be no formal price-tags, as an evaluation must take place on

147 http://www.metaverselab.org/

93

the spot at the time of exchange. When you barter you are, in general, not likely to
exchange your produce for another's in order to make a further exchange with that.
Unlike the money you receive when you sell something - which you value only in its
ability to be exchanged for yet another thing - in a barter transaction you normally
yourself use, and obviously value, what you receive.

The fallacy of this argument becomes clear when you consider typical producer-
consumer relationships in OSP. The author of software may gain very little from the
feedback a random user is able to provide. In such a case, the barter is very uneven and
unsustainable over time. Barter exchanges may explain incentives for fellow developers
who use software of their peers, but does not address end users who most likely are
unable to contribute back. As tools become more powerful, it might be feasible for less
technically inclined people to contribute back. Often, these people would very much like
to contribute, but they lack the tools to transform their ideas into workable solutions.

Just as the existence of the thousands of independent Linux developers are valuable to the
newspaper because they are also users of the product - and may face similar problems -
other Linux developers welcome the Times of India because how it faces its problems
could help them as Linux users. As Torvalds says, " [t]here are lots of advantages in a
free system, the obvious one being that it allows more developers to work on [Linux], and
extend [Linux]." However, "even more important" is that making Linux free brought "in
one fell swoop ... a lot of people who used it" - not just reporting problems, but also
playing a crucial role in the further development of the system. Torvalds notes that a
single person or organization "doesn't even think of all the uses a large user community
would have for a general-purpose system" - so the large user base of Linux was "actually
... a larger bonus than the developer base."

This again assumes that users are vocal, and take the steps to report their experiences and
wishes back to a project. Collecting feedback does not scale. As the user community for a
project grows, most feature requests tend to be duplicates. The author has been involved
in an OSP. In July 2002, there were 473 open feature requests out of 837148. At least a
third of those were duplicates. Another problem was the very low quality of most feature
requests. They were either too vague, too specific or had other deficiencies, making it
difficult to turn them into requirements, and eventually, working code. Coming back to
the Linux example, there is very little feedback from end users to the authors of the Linux
kernel. Instead, most is filtered through software vendors or other developers before it
reaches the kernel authors. Thus, it is a bit of stretch to claim that a barter is happening
between users and kernel developers. As a project grows, it is less and less appealing for
users to contribute because they figure someone else will contribute instead. Large OSP
fall prey to the tragedy of the commons, with all its symptoms.

A personal experience by the author may help to illustrate this. For the time period from
July 2001 to August 2002, I contributed to the PostNuke project.149 I spent about 40
hours a week helping to develop the core architecture of this community-oriented Content

148 http://sourceforge.net/tracker/?atid=392231&group_id=27927&func=browse
149 http://www.postnuke.com

94

Management System. A very enjoyable experience and I learned a lot in a short amount
of time about software engineering, interacting with large virtual groups and conducting a
dialogue across language barriers and time zones. The project, meanwhile, exploded in
popularity, and attracted thousands of users. To date, the software has been downloaded
over 500’000 times, and been installed on tens of thousands of web sites. This popularity
led to an interesting phenomenon. The more users the project attracted, the more
newcomers that knew little or nothing about the conventions of the Open Source
community assaulted the social fabric that had held the project together. The common
courtesy among fellow developers made room for clamors for more, better, faster, and
appreciation declined. Cries of conspiracies emerged, and many developers grew
increasingly frustrated with the monster that they had created. Andy Varganov, of
Manchester, UK summed the feelings of many longtime contributors up as "users are a
pain in the ass". The situation got so bad that most contributors quit in the same week.
What had led to this rapid burnout?
It turned out that many newcomers to Open Source mistakenly thought that their ideas
would necessarily have to be considered by virtue of them stating these ideas. Open
Source was understood as a “free for all” with mob rule. Technical decisions were
challenged because some constituents felt it was all a big conspiracy, and that their voice
had not been considered. They failed to understand that software engineering needs to
make hard choices, and that an amalgamation of all ideas does not lead to a workable
product. Despite a total lack of understanding how software production works, they felt
compelled to opine. This in turn frustrated the few contributors in the project with actual
software engineering expertise. Rather than submit to the whims of random people, they
preferred to quit the project and rebuild it out of the public view. They had gone through
a very quick maturation process, and after one year, they concluded that the cathedral
style was more appropriate for the future of their project than the bazaar it had started
with. Outlining one of the strongest motivators for developers, Carl Corliss, of Martinez
California, stated, “I am only participating in this project if it is fun again”. It will be
interesting to watch whether the PostNuke project will be able to survive without most of
its contributors, and whether the “band of rebels” that decided to quit PostNuke will be
able to correct the mistake that have been made in the past.

The mechanics of groups undoubtedly play a central role in OSP. It is not astonishing to
find various theories tackling Open Source from this angle. Dafermos establishes the
concept of virtual decentralized networks, and contrasts them with earlier, more rigid
models of organization to arrive at some very interesting conclusions. How and why do
virtual organizations out-compete traditional organizations, and what does that mean for
the Open Source phenomenon?

4.1.4 Virtual Decentralized Networks
[Dafermos01] uses the example of the Linux project to develop a theory of virtual
decentralized networks. His theory aims to explain the phenomenon of the Linux project
by looking at the organization behind it. Some main tenets can be identified, namely that
motivation is a crucial element; that even virtual organizations do have some sort of
boundaries and that virtual organizations may be more successful because they utilize

95

knowledge better. Dafermos arrives at some fairly broad conclusions that, while useful,
do not readily apply to concrete projects.

4.1.4.1 Motivation is the source of sustainability
Traditional organizational structures are based on deadlines, payroll roles, fixed
positions, etc. and this is unlikely to attract creative people [78]. Creative people are
excited by fluid structures that provoke competition among peers. The incentive is to
differentiate yourself by rising above the standard level (through achieving excellence)
and gain the recognition of your peers that regard you as a leader. This is the ultimate
form of this motive and recognition by your boss in a bureaucratic environment is the
least.

Motivation alone sustains nothing, as motivation neither puts food on the table, nor does
it satisfy all intellectual cravings. Motivation is definitely involved in OSP, but it is far
too broad a concept to explain OSP.150

4.1.4.2 The Virtual Roof
The Linux Project is characterized by flow of information within the entire organization,
implying among the thousands of developers, Linus Torvalds and the "trusted
lieutenants". All of them have access, can engage into all occurring conversations and
can communicate directly with every other member-implementer through discussion
forums, mailing lists, and newsgroups. But the flow of information is not restricted only
within implementers but it extends to the global community reaching virtually everyone
interested, including commercial companies (i.e. Cygnus Solutions, SuSe, Red Hat, VA
Linux) that provide support services and packaged distributions, computer scientists that
may have not been involved directly (as implementers), companies that consider adopting
open source software for their own internal use, users that need help from experts and
anyone interested or curious enough to observe or even participate in any given
conversation. Access to the various open source-related Web sites, discussion forums,
etc. is open to the public and all interested parties. Figure 7 shows that communication
and information flow is so pervasive that spreads equally towards all directions and is
diffused throughout the virtual roof. The lines and the arrows represent information flow
and specific project functions (transfer of patches-source code) whereas information flow
pervades the virtual roof and is diffused towards all directions.

The Virtual Roof fails to account for the communication bottlenecks that become
apparent by looking at Figure 7. Communication is not pervasive if it has to be routed
through a small number of individuals. Nevertheless, the virtual roof captures the element
of modularization very nicely. Modularization is the key for scalability. By relaying only
select messages between modules, the strain is limited to the persons intermediating
between modules.

150 [Lancashire01] dismisses motivation as a primary driver of Open Source activity.

96

Figure 7: The Virtual Roof (Source: [Dafermos01])

97

4.1.4.3 Knowledge is the competitive advantage
To date, organizational thinkers had been mainly concerned with how the 'virtual
organization' will carry out the same identical functions-activities with the 'physical
organization'. Literally, how can the virtual organization duplicate exactly what the
physical organization does? This is a wrong question to start with. Perhaps, a more
appropriate question would be what could the virtual organization do that the physical
organization cannot (replicate)? The answer lies on the fact that by bringing the
organization (implementers), the surrounding global community - industry and the end
users - customers together, it can generate massive knowledge and exploit it in the most
effective way (Figure 8).

Figure 8: Knowledge exchange in a virtual organization (Source: [Dafermos01])

It remains to be seen if a virtual organization is superior in collecting and diffusing
knowledge than physical organizations. Physical organizations do have access to the
same knowledge stores that virtual ones do, primarily the Internet. Organizations that are
able to bring their members together face to face are able to circumvent
misunderstandings that online communication would entail. To phrase it differently,
speaking with a person in the same room does have a significantly higher communication
bandwidth than sending an email does.

The Dafermos model is mainly useful to raise awareness for some attributes of the virtual
organization that are beneficial to OSP success. Once familiar with its concepts, it may
seem obvious, but it definitely helps an organization if its members are aware of the
opportunities and pitfalls of their organizational structure. Especially the notion of
channeling information through special conduits to reduce network complexity helps to
understand why some project members are notoriously busy, and can incite responsible

98

behavior in project members. Made aware of these limitations, project contributors tend
to think twice before sending material that is of little interest to the group to these key
persons.

If theories succeed in fostering sensible behavior in project participants, they have
succeeded far beyond their goals. Many OSP are faced with participants that do have few
clues as to how their project runs on a sociological level, or what psychological processes
are contributing to decision-making in OSP. A few researchers have tried to identify the
psychological processes.

4.1.5 Psychological Models
A group at the University of Kiel, Germany conducted a study about the psychological
factors in the development process of the Linux kernel [Hertel02]. The study concluded
with the following results:

• Successful Linux (subsystem) developers consider their project to be important
(valence) for Linux.

• Reward motives are the main reason to further increase efforts.
• “Soft” criteria (social motives and trust) determine the satisfaction and

contribution to organizational issues but not productivity.
• No influence of idealistic collective motives was found.
• The Linux Kernel is a product of a few very hard working developers.
• Developers expect (and receive) rewards from the involvement in Linux

development.

[Hertel02]: “This motivation can be based either on feelings of personal challenges to
improve existing software, on competitive motives to compete with other developers
(either within OSS or between OSS and commercial software projects), on simple fun to
program, or on motives to build a reputation that might be helpful for the further career.
Unfortunately, apart from these (plausible) speculations, there are no empirical data
available that explore the motives of developers in OSS projects more systematically.”

The results of this study contrast sharply with accounts that OSP are motivated by “the
greater good”. Instead, a sense of purpose for individuals seems crucial. These
conclusions seem to strengthen the economic argument that project participants
ultimately act out of egoistic motives, and places emphasis on satisfying these needs.

[Weber00] reflects on the oft-cited reputation as a main currency for Open Source
developers.

Reputation is a powerful motivating force for open source developers. But there are
strong reasons to believe that reputational concerns by themselves cannot explain
successful collaboration. If reputation were the primary motivation, we should be able to
tell some version of the following story. Assume that project leaders like Torvalds receive
greater reputational returns than general programmers do. Then programmers should
compete to become project leaders, particularly on high profile projects, of which there

99

are a limited number. This competition could take at least two forms. We would expect to
see a significant number of direct challenges to Torvald's leadership -- but in fact there
have been few such challenges, none serious. Alternatively, we could see 'strategic
forking'. A strategic forker would fork a project not for technical reasons per se, but
rather simply to create a new project that he or she could lead. The problem of how to
attract other programmers would be managed by credibly promising to maximize other
programmer reputations on the new project -- for example, by sharing some of the gains
with anyone who joins. In that case, a new programmer would be motivated to join the
forked project rather than Linux.

It seems that there are strong forces at play in OSP that prevent such disruptive behavior.
Successful OSP do have very strong shared values, as [Edwards00] points out. Looking
at individual psychology is not sufficient; instead, it is necessary to consider group
dynamics.151

Clearly, existing theories are not able to explain Open Source satisfactorily, nor are they
able to offer much support for the budding OSP manager or participant. A new theory
needs to be constructed, based on the best of existing theories, and with new additions.
Coming up with new theories poses considerable challenges though, especially in an area
like OSP that defies precise measurement. A new theory of Open Source will have to face
the same challenges that all social science theories do. What are these challenges, and do
they explain why relatively few theories have emerged?

4.2 Challenges for Theory Formulation
Developing theories about Open Source is faced with various challenges. Among these
challenges are data collection, a proper determination of the subject of study, and ways to
verify a given theory. Acknowledging these challenges helps to determine proper scopes
and methodologies for describing the Open Source phenomenon.

4.2.1 Data Collection
The absence of empirical, factual and verifiable data on a large scale is clearly a major
disadvantage to most kinds of research into the OSP phenomenon. Previous experience
from the very few extensive surveys carried out so far152 suggest that quantitative and
qualitative empirical survey methods can be useful. However, surveys can introduce
biases that can be difficult to calculate. Tools and systems to analyze the traces left
behind by collaborative activity in the form of software source code or discussion
archives can be much more useful in finding hard facts. The OSP community is much
talked about, though little hard data on this community and its activities has been
collected. This is mostly due to the fact that it is very time-consuming to aggregate data
from various online repositories, and normalize them. Each discussion group
unfortunately has its own format, and needs to be handled separately. Some preliminary
tools for analyzing and displaying these relations have been developed. Figure 9 displays
connections between different postings on Usenet, the largest discussion system on the

151 [Kaisla01] explores constitutional dynamics in OSP

100

Internet. Netscan might, with some extensions, be used to map OSP relations in the
future.

Figure 9: Visualization of Usenet postings

Nevertheless, collecting relevant data remains a challenge. Free software and Open
Source are considered competing definitions of this community or phenomenon. For
researchers into this phenomenon, especially economists, the fact that software is
available free is what makes analysis difficult since tools for measurement without the
use of money are not sufficiently advanced.

Even if appropriate tools and techniques were available, the question of what to conduct
research on lingers.

4.2.2 Subject of Study
The sheer number of OSP makes it very difficult to determine any but the most
superficial similarities. Projects have one to several thousand developers, are days old or
have been going on for decades. Projects are in different phases of their live cycle.
Dozens of legal definitions of “Open Source” exist. It is unlikely that a theory will be

152 Among the studies conducted so far are:
BCG02: Survey conducted by the Boston Consulting Group; see www.osdn.com/bcg
FLOSS02: Background/project outline see http://www.infonomics.nl/FLOSS/
WIDI (2001): Who Is Doing It, survey conducted by Technical University Berlin. See http://widi.berlios.de

101

able to encompass all these differences, let alone precisely define what “Open Source”
means. Open Source touches many different fields of academic study, and no one field is
able to represent it on its own. Where should one focus his research? Establishing
terminology for a single discipline is difficult enough, and doing the same for
interdisciplinary studies presents additional difficulties.

Finally, validating a theory in the field of social sciences is not an easy matter either.

4.2.3 Theory Validation
Building up enough evidence to validate any theory is a lot of work. Theories that deal
with human behaviors are notoriously difficult to validate. The necessary statistical
confidence requires extensive and precise data collection. Many of the necessary
techniques for data collection and surveys have had little time to mature and adapt to the
internet environment. It is therefore unlikely at this point that a definitive theory of Open
Source will emerge. It makes much more sense to collect the existing knowledge about
Open Source into a framework, and offer practical advice rather than trying to build a
huge theoretical foundation for Open Source.

With those weaknesses of theory development and validation acknowledged, how does
one approach a framework? What are necessary components, what is a viable
methodology?

4.3 A framework approach
In light of the shortcomings of earlier theories, and the acknowledged challenges for
theory formulation, a new approach is called for. This approach is based on a framework
that will be incomplete as it is started, but will provide facilities to integrate more aspects
as the common knowledge about Open Source increases. Over time, the framework
should grow to integrate newer insights, and add more tips for budding OSP participants.
The framework has its own goals, is fed by various inputs, makes some assumptions, and
follows a methodology.

What goals does the framework strive towards?

4.3.1 Framework Goals
Primarily, the framework aims to be more useful than earlier theories to explain Open
Source, and offer advice in its application. To reach this goal, the following properties
seem helpful.

Expressiveness
The framework should provide new insight into OSP phenomena, and make
useful predictions. It should aim to boil issues down to easily identifiable
concepts and trends.

Extensibility
It is anticipated that the framework will be incomplete. Hence, methods to extend
it need to be provided. This will allow the framework to acquire new knowledge

102

about OSP and integrate it. New knowledge should be added in a controlled
matter to prevent the framework from becoming a hodgepodge of different
theories. The framework needs to be generic enough to allow for a broad range of
concepts to be integrated, yet needs to be rigid enough to set some structure for
the whole framework.

Applicability
The framework aims to offer applicable advice to OSP participants in addition to
being a theoretical foundation for the study of OSP artifacts. Each explanation
should be followed by practical advice. The benchmark for the addition of new
material to the framework should be whether this material adds to the understand
and the application of the framework.

Which inputs would help to achieve these goals? What major areas of previous theories
merit inclusion and what areas have been neglected to date?

4.3.2 Framework Inputs
As outlined earlier, many existing ideas make sense and will be included in the
framework. In addition to prior research, two new inputs enrich the framework. The
People CMM will add a human resources perspective, and the Epistemic Community will
explain group processes that are at work.

4.3.2.1 People CMM
[Curtis95] developed the People Capability Maturity Model as an extension to the CMM
in 1995. The People CMM (P-CMM) is described as follows:

”The People Capability Maturity Model® (People CMM®) is a tool that helps you
successfully address the critical people issues in your organization. The People CMM
employs the process maturity framework of the highly successful Capability Maturity
Model® for Software (SWCMM®) [Paulk 95] as a foundation for a model of best
practices for managing and developing an organization’s workforce. Based on the best
current practices in fields such as human resources, knowledge management, and
organizational development, the People CMM guides organizations in improving their
processes for managing and developing their workforce. The People CMM helps
organizations characterize the maturity of their workforce practices, establish a program
of continuous workforce development, set priorities for improvement actions, integrate
workforce development with process improvement, and establish a culture of excellence.”

The P-CMM promises to address a crucial area of OSP that has been largely neglected:
Its participants. In the absence of most other resources normally associated with CSP,
OSP rely even more on the quality of their participants to achieve results. Improving
these qualities is expected to have immediate repercussions on the quality of OSP results.
That said, OSP are not formal organizations, and many processes do not apply. Care
needs to be taken to ensure only relevant aspects of the P-CMM will be incorporated into
the framework. The large body of research that contributed to the P-CMM will be helpful
to further OSP. It will not be possible to include the full P-CMM into the framework due

103

to its enormous size. Instead, the main concepts of the P-CMM will be integrated into the
framework.

4.3.2.2 Epistemic Communities
Not all OSP participants are alike. Research has found [Jones00] that productivity of
participants varies greatly, and that most projects are heavily dependant on key
contributors. The aim of each OSP should thus be to do everything possible to ensure key
contributors find a supportive environment, and to nurture participants to make them
(future) key contributors. The notion of “Epistemic Communities” and “Situated
Learning” are very helpful to understand this crucial transition from bystanders to lead
developers. [Edwards00] explains the parallels between OSP and “Epistemic
communities” thusly:

”Open Source software projects share the same characteristics as do the definition of
epistemic communities. Contributors in Open Source software projects share a set of
normative and principled beliefs, which provide a value based rationale for contributing
to the project.”

Edwards goes on to note that epistemic communities do not account for the entry of new
members into a community, and proposes a process of “situated learning” to explain the
transition from onlooker to active participant:

”The process of entering and becoming a member of an epistemic community is, as
noted, not readily explained in the epistemic communities approach. This is an important
process as it is the key to understanding the population and reproduction of the epistemic
community. This understanding may also be used to ease the process of becoming a
member. Many ‘wannabe’ developers and newcomers to Open Source development have
difficulties understanding how to contribute to the development.”

Each framework needs to make some basic assumptions to ground itself in a solid base of
theorems. These assumptions form the bedrock for the rest of the framework. What
assumptions need to be made for this particular framework?

4.3.3 Framework Assumptions
This framework tries to formulate current best practice of OSP management. The
following assumptions influenced the framework in many ways.

4.3.3.1 OSP Software Engineering is directed evolution
OSP very rarely follow a clearly laid out plan. More often than not, their features evolve
during the development process. Linus Torvalds153 calls this process directed evolution.

The impressive part is that Linux development could _look_ to anybody like it is that
organized. Yes, people read literature too, but that tends to be quite spotty. It is done

153 http://kerneltrap.org/node.php?id=11

104

mainly for details like TCP congestion control timeouts etc – they are _important_
details, but at the same time we're talking about a few hundred lines out of 20 _million_.

And no, I'm not claiming that the rest is "random". But I _am_ claiming that there is no
common goal, and that most development ends up being done for fairly random reasons -
one persons particular interest or similar. It's "directed mutation" on a microscopic level,
but there is very little macroscopic direction. There are lots of individuals with some
generic feeling about where they want to take the system (and I'm obviously one of them),
but in the end we're all a bunch of people with not very good vision.

And that is GOOD.

Accepting that OSP follow a directed evolution throws away many established software
engineering principles. This is no step to be lightly taken. For the purposes of this
framework, it is therefore assumed that an OSP is large enough to exhibit the features of
directed evolution:

• Many particular interests, no single “true path”
• A diverse development group
• No “design” that specifies every detail
• A constant review of ideas

Projects that exhibit these features are interesting because they are unpredictable. No one
can say what the Linux kernel will look like in five years, and no one can predict the
requirements that new applications and hardware will pose. A design that adapts to new
requirements, as the “directed evolution” model has a longer lifespan. Smaller OSP that
are below this critical mass may find that their development processes do follow
conventional patterns, and in fact single individuals or very small groups develop most
OSP. These groups form because their members have very similar requirements, and the
resulting software is thus very specialized to this task, and may not be reusable.

4.3.3.2 Personal Involvement is crucial
Managing an OSP is much more demanding than a CSP.OSP leaders lead by persuasion,
not by fiat, and therefore require very good interpersonal skills in addition to their
software engineering skills. People who exhibit all these qualities are rare, and most OSP
will not have such outstanding human resources at their disposal. That said, personal
involvement in OSP is crucial. It is assumed that a person that visibly identifies with the
goals of the project is leading an OSP.154 The framework places great emphasis on human
resources by introducing the P-CMM model with its various processes. Earlier theories
and frameworks took staff development for granted, and human resources has thus been
an underappreciated area of OSP.

154 See [Ehresman01]

105

4.3.3.3 Small Teams work: The buddy system
Compared to a conversation that takes place face-to-face, communication bandwidth on
the Internet is limited. Due to limitations of technology, but also written language,
misunderstandings happen much more, and do have much more serious consequences.
Special efforts need to be made to balance the weaknesses of Internet communication.
One way to overcome communications issues is to form small teams that share common
notions and have friendly relations among team members155 It is assumed that an OSP is
fostering such friendly bonds between its participants beyond the duties of the project.
The framework emphasizes the flexibility of roles and actors, and assumes that
participants switch frequently and quite effortlessly between them. This requires a level
of trust which only personal bonds and shared values can provide.

4.3.3.4 Market your Project
OSP participants are a scarce resource. All OSP compete for those same resources, and
for every interest, there are more than likely several projects. As [Vallopillil98] notes, the
winner takes all. Projects that are able to attract attention will drive resources away from
less outspoken projects. It is therefore assumed that a project makes efforts to let the
world know about itself. Granted, not all domains attract the same number of participants,
but vocal projects do have an edge over obscure ones. Marketing is added to the
framework because it plays an important role to reach critical mass for a project. OSP
failures are very often due to an inability of the project to attract an audience.

4.3.3.5 No one likes to administrate
OSP are volunteer-driven. [BCG02] established that most participants are IT
professionals who work on OSP in their spare time. Many of these seek to run things
differently than in their day jobs. Rather than worry about red tape, they would like to get
things done, and solve challenging problems. As soon as a group of people starts to
interact, communication overhead builds up. Some amount of administration is inevitable
for every OSP, but most try to keep it minimal. This rules out the application of
complicated processes for OSP, as no one has the inclination to work on bureaucracy in
their spare time. An OSP framework needs to consider this, and tailor its processes to its
volunteer audience. The tools section of the framework acknowledges the need to
automate as many repetitive tasks as possible to free contributors from these tedious
tasks.

With these assumptions outlined, the framework needs a methodology to develop the
various components, and piece them together in a consistent way.

4.3.4 Framework Methodology
Open Source is influenced by many trends from different areas. Economical, social,
psychological and technical forces each contribute to Open Source identity. It seems
hopeless to unite these different forces under a common metaphor without creating a
metascience. The approach taken maps out the various areas and highlights their
intersections. The central organizing structure of the framework is a matrix that maps

155 [Cavalier98] emphasizes the importance of small teams for review and instant feedback.

106

these intersections explicitly. The matrix is extensible to accommodate yet to be
discovered forces that shape OSP, to integrate additional roles, actors and new tools. The
framework then describes the various roles, actors, areas, processes and tools that are
involved in an OSP. The aim of the framework is to explain these different forces; it is
not a recipe for creating and operating an OSP. Such practical advice is provided in an
appendix.

Formulating theories that pass the test of time is nontrivial. How does the Open Source
framework stack up? What new elements does it add to the academic discussion, what are
its major insights? How do its elements help to understand the many attributes of Open
Source? Does the framework succeed in its aim to offer practical advice to Open Source
practitioners?

5. A framework for Open Source Projects

5.1 Overview of the framework
The OSP framework is quite extensive. Based around the notions of roles, areas,
processes, and tools, it brings together a wide range of topics. The framework draws from
a rich existing literature, and tries to acknowledge as many diverse ideas as possible. This
presents practical difficulties for the integration of these concepts into a coherent whole.
To better integrate these ideas, and highlight relations between them, the framework uses
a matrix as its central organizing element. What elements compose the framework?

5.1.1 Framework Components
Four components make up the OSP framework. Roles, areas, processes, and tools provide
structure for the collection of ideas that make up the framework.

Actors and Roles
Based on the notions described in [Edwards00], Actors are either users or
contributors. As interested people make headway into the epistemic community of
an OSP, their skills increase, and they adapt the social norms of the group. If they
feel inclined, they may start to contribute to the project, which marks their
transformation from user to contributor. As their experience grows, they may take
on more and more roles, and accept additional responsibility. The culmination of
responsibility is the role of project manager.

Areas
OSP have very complex structures. Areas are the coarsest entities in the OSP
framework. They group related processes together. One area might be software
engineering, with processes like requirements engineering, testing, review, and
prototyping. Areas do overlap, and are intended as a simplifying model only.
Existing theories would usually deal only with select areas of OSP. The focus
with this framework is especially to highlight the connections between areas, as
those remain the least understood phenomena.

107

Processes
All work activities within OSP can be abstracted as processes. Processes are not
intended to have the connotation of red tape and formal structure. Formal
structures and written rules are almost non-existent in OSP; instead, processes
signify recurring units of work. Again, it is the interaction of processes from
different areas that provides new insights into the complex structure of OSP.

Tools
Processes are supported by tools. Due to the virtual nature of most OSP, tools take
on a crucial role to facilitate the goals of an OSP. Interestingly, many OSP
concern themselves with the creation of tools for OSP processes. While tools by
themselves do not enable OSP to work, they are indispensable for the day-to-day
operation of all OSP, and have been mostly neglected in previous studies.
Granted, only wisely applied tools with a clear purpose add to the bottom line of a
project, but more often than not OSP are not even aware of the existing tools that
might help their projects.

These components have many interrelationships. While it would be futile to try to
describe all these relations in detail, it is nevertheless important to acknowledge them as
much as possible. A matrix allows one to display many relations in a structured manner,
and gives a good overview at the same time.

5.1.2 The Framework Matrix
As a conceptual aid, the components of the framework are arranged into a matrix. This
allows conceptualizing their interrelationships and allows understanding the major parts
of the framework very quickly. Actors and roles are mapped on the horizontal axis of the
matrix. Both skill level and involvement in the epistemic community increase from left to
right. Areas are mapped on the vertical axis, with areas that have less overlaps on top.
Project management is the area that overlaps with all other areas, and is hence mapped at
the bottom. At the intersection are processes. Processes can appear at more than one
intersection, and are marked with numbers. Tools are marked with letters, and can appear
on multiple intersections as well. Interactions between processes are not being considered
within the matrix, they do however appear in the detailed descriptions.

108

Increasing involvement in OSP > Actors / Roles

 Users Contributors

Areas / Roles
U

se
rs

T
es

te
r

S
up

po
rt

er

A
dm

in
is

tr
at

or

A
na

ly
st

M
ai

nt
ai

ne
r

D
ev

el
op

er

A
rc

hi
te

ct

M
an

ag
er

Marketing
14, 18,
g, c, j

14, 18,
a, j

14 ,18,
a, c, g, j

14, 18,
a, j

14, 18,
a, c, j

14, 18,
a, c, j

14, 18,
a, c, j

14, 18,
a, c, j

14, 18,
a, c, j

Human
Resources

 15, g, k 15, g, k
15, b, c,

k
15, b, c,

g, k
15, b, c,

g, k
15, b, c,

g, k
15, b, c,

g, k

3, 15, a,
b, c, g,

k

Systems Mgmt 5 5 5
1, 2, 3,
5, h, l,

m
5

1, 2, 5,
m

5, m 1,5, m 2,5, m

Software
Engineering

7, f
7, 8, 10,
15, 16,

d, f

7, 10, b,
f

4, 6, 9,
e, f

7, 8, 10,
15, 17,

g, f

3, 4, 6,
9, 16, d,
e, g, f

3, 4, 7,
8, 10,
15, 17,
a, d, e,

g, f

7, 8, 10,
15, 17,
a, d, e,

g, f

7, g, f

 A
re

as

 <

 I
nc

re
as

in
g

in
vo

lv
em

en
t

in
 O

S
P

Project Mgmt h, i h, i
11, 12,
a, b, i

11, a, b,
h, i

13, a, i
11, 12,
13, a, b,
h, i, k

Table 4: The OSP framework matrix

Processes
1) Backup
2) Access Control
3) Logging
4) Version Management
5) Communication
6) Release Management
7) Requirements Analysis
8) Prototyping
9) Deployment
10) Documentation
11) Scheduling
12) Tracking
13) Allocation
14) Project Promotion
15) Staff Development
16) Bug Triaging
17) Reviews

18) Advocacy

Tools

a) Asynchronous communication
b) Real Time communication
c) Web Log
d) Unit Testing Framework
e) Source Configuration

Management (SCM)
f) Bug Tracker
g) Content Management System
h) Issue Tracker
i) Calendaring
j) Online fundraising
k) Skill Matrix
l) Backup
m) Authentication System

109

5.2 Actors and Roles

5.2.1 Actors
Actors are a loosely defined term in this framework. Every individual that interacts with a
project is an actor. For the purposes of this framework, we distinguish between users and
contributors. Users are consumers of the results of an OSP; contributors invest efforts to
improve the product in various ways. The notions used draw heavily upon work done by
[Edwards01], especially epistemic communities and situated learning. All individuals
involved with a project are users, but not all users are contributors.

5.2.1.1 Users
Users are persons who want to use the services provided by a project and do not intend to
contribute to the product. Although users are per definition non-vocal in a project, they
are an important resource. As time goes by some users begin to take an interest in the
project and voice their opinion, and thereby they become contributors. This could happen
in a situation where a new version is released and a user realizes that the new version of
his favorite software no longer runs on his system. This situation often motivates a user to
become a contributor and post error reports to the project mailing lists in order to get the
problem fixed156. The user may also posses programming skills himself, in which case he
may review the source code and fix the bugs. The user has a choice whether to fix the
bugs on his personal system or to send the fixes to the project mailing list for inclusion in
the project code base. The advantages of just fixing the problem on his personal system is
a short term gain, since the problem could be fixed immediately without having to
interact with the project mailing lists. However, if the bug fixes are not included in the
project code base, the user will have to make these fixes again next time the project
releases a new version. The new version may have changed to such a degree that the fix
no longer applies and has to be modified to fit the new version. Thus, there is an
incentive to include the fix in the project code base. Contributing code to a project also
provide status and recognition among peers in the project, which is rewarding in itself.

5.2.1.2 Contributors
Contributors are people who take an interest in a project, follow the discussions on the
mailing lists, and voice their opinion. Contributors need not contribute actual code to the
project; they may just participate in discussions and stimulate debate within the
community. Some contributors answer questions about problems related to general use
and contribute to the community in this manner. Contributors are also persons who ask
questions about a project and by doing so provide valuable information about the
usability of the project software and documentation. Becoming a contributor is a learning
process that spans multiple stages. The learning process itself is crucial for the cultural
context of a project. By learning the notions of a community, and passing them along
among to new members of a community, the community is kept alive and thriving.

156 See also [Hippel02]

110

Learners
Learners are persons who wish to become part of a project and participate in it.
Learners do not receive abstract knowledge de-coupled from any practical use.
Learners become contributors in a project by being part of its community and
acting as apprentices. This requires that active contributors of the community
view apprentices as legitimate peripheral contributors or onlookers. Contributors
must allow learners to participate at a learner’s level. By observing and
participating, the learner acquires knowledge, skill, and understanding of the
social sphere of which he is a part. In short, learners want to become insiders.

Insiders
Insiders are members of the community who are active in the community and
participate in the activities of the community. Insiders are contributors who
function in the community. The process of becoming an insider requires the
learner to learn the ways of the community, how they (inter)act. This is not
something that can be taught, and descriptions of how to enter a community miss
the finer points. The learning process has an individual bias depending on the
learner, which is affected (influenced) by the learners’ relations in the community.
Becoming an insider can only be learned, and this is a situated process where the
learner participates in the actual and practical life of the community.

From Learner to Insider
By participating, the learner observes the practice of the other members of the
community. What is more important is that when the learner participates, he tests
different strategies or ways of interacting with the other members of the
community. In the course of this process, the learner begins to form his own
impression of the inner workings of the community. Completion of this process
and transformation of the learner into an insider requires that the insider must
allow the learner legitimate peripheral participation. Insiders must acknowledge
the fact that learners are just learners. Learners cannot be expected to perform at
the level of the insiders, and insiders must respect their effort. It must be
legitimate for learners to participate in the practice of the community. Learners
are bound to a peripheral position when participating. Learners do not have the
skill of the insiders, and must accept a position where they are allowed to
participate at their own level and observe. The learning process in OSP takes
place in two spheres; the private and the collective sphere.

1) The Private Sphere
Learners spend many hours studying documentation, reading source code,
installing new software releases in an effort to learn the details of an OSP. These
efforts are not noticed by the community and happen completely independently
and on the initiative of the individual.

2) The Collective Sphere

111

After a while, the learner may start to interact with the epistemic community
using mailing lists, chat, news groups, and other means of communication. By
doing so, the learner enters the collective sphere, and becomes noticeable by other
community members. Questions, answers, and discussions are relayed back and
forth between the community and its members.

These two spheres are by no means separate but rather exist side by side. Many
learners and contributors have a keen eye on what is happening on different
mailing lists and in chat rooms while they are working. The author, for instance,
always has his email and chat clients running while working. Every half an hour,
or more often, depending on the level of concentration needed, the author would
interact with others via either email or chat. These means of communication allow
one to stay in touch with the community, and indeed every day acquaintances
would greet the author upon entering a chat room. The learning situations of the
two spheres are different but both require understanding of the inner workings of
a community. The private sphere requires understanding of the practice of coding
- the coding style – in a project. Most projects have a special way of writing code.
Adhering to the project coding style ensures readability of the code by other
members of the community, a crucial property to ensure reviews and lower the
barriers for other contributions. Many of these rules are quite formal and can thus
easily be learned without having to engage in the community.
Becoming a contributor in the collective sphere, on the other hand, cannot be
taught. Situated learning and legitimate peripheral participation are important in
this sphere. Learners engage in the practice of the collective sphere, and by doing
so they become contributors who should be allowed legitimate participation in the
project. Becoming a contributor and going from learner to insider is the process
by which OSP recruit new members, a process that requires the learner to actively
take part in the project and contribute. It is also a process where the learner must
expect that becoming an insider happens gradually. The transition from learner to
insider is subtle, and the learner will often be the last to call himself an insider. In
the process, the learner adopts the language, the coding style, and other social
conventions of the community. The learner has then become an integral part of
the community.

Every member of an OSP, be it a user or a contributor, fills various roles.

5.2.2 Roles
The constituents of OSP do fill widely varying roles. Roles overlap and it is difficult to
assign clear roles to individuals. Therefore it is rather difficult to identify abstract roles in
specific projects and even harder to find suitable roles for OSP in general. The roles
presented here are by no means complete, but they cover major activities. From Tester,
supporter to administrator, analyst and maintainer, to architect and project manager, each
role carries increasingly more responsibility for the project.

112

5.2.2.1 Tester
Tester is a very general term due to the nature of OSP. All users of Open Source software
are testers to varying degrees. It has been argued that testing is the price that has to be
paid for Open Source or free software despite its availability at no charge [Liu01]. In a
more specific sense, testers install and run software to actively look for deficiencies, and
make efforts to report their results in a useable format, usually with the help of bug
tracking software. [Liu01] writes:

In practice, testers' jobs are sometimes more subtle than simply producing bug lists. I
once asked a test lead from a large software company what his most important
responsibility was. The answer was quite surprising to me at that time: the most
important thing was to know the status of the software product at all times. After I
thought about it, the idea became quite reasonable. Clearly, when both the program-
under-test and the description of the problem are changing everyday, it is not feasible to
produce a comprehensive bug list for each daily build. Nor is it necessary. It is more
useful to the development team if testers can provide constant and rapid feedback on the
status of the current builds. Overview information is as important as individual bug
reports. This "service" view of software testing focuses on the need for rapid feedback
and the evolving nature of the program-under-test. Just as with many other services such
as phone services, the need for rapid responses is paramount. When a person picks up a
phone, she expects to talk right away; when a development team gets a build done, they
expect feedback right away.

5.2.2.2 Supporter
A supporter assists users of software by various means. Supporters may answer questions
on mailing lists, on discussion groups, in live chats, or even in person (at a gathering, for
instance). Supporters maintain frequently asked questions, file bug reports, and spread the
word about a project. Hence, supporters are the talent pool from which most eventual
developers are selected. In their quest to help others (and themselves) resolve issues, they
learn more and more details about a project, and may even start small modifications for
customization or to fix a bug. Supporters are crucial for the long-term health of a project,
as [Moorman00] points out:

General project supporters come in many flavors. Some aid in the propagation of the
software, assisting in large implementations of the software or installfests, or providing
inexpensive physical media (such as CDs) containing the software. Others provide
themselves as a support resource for the product, helping new users with the installation
or implementation of the software, responding to concerns on mailing lists, and providing
direct support via IRC for other end-users. Project supporters play an important role
which reduces the amount of time developers and administrators need to invest in
support, the foundation of all good projects.

5.2.2.3 Administrator
OSP are critically dependant on shared resources. Administrators make sure these
resources are operational, concern themselves with security issues, and are in charge of
the supporting tools for a project. Their role is that of an enabler. Their actions may not

113

be obvious at first glance (doing daily backups is not linked with glory), but are
nonetheless essential. Overload and burnout are frequent symptoms with administrators,
and projects need to make sure to not tax their administrators more than necessary since
their departure from a project could often entail serious issues. Many administrators
donate server resources to OSP, and withdraw them once they leave a project.

5.2.2.4 Analyst
Analysts process the feature requests for a project or propose their own. The goal of their
work is to produce useful recommendations for developers (specifications, priorities,
feature lists) to allow developers to focus on developing. As with testers, all users are
analysts to some degree, and many users submit feature requests if given the opportunity.
However, most of these feature requests are badly thought out, unrealistic, or do not fit
well within the scope of the project. The most important function analysts can provide to
a project is to provide reasons to reject proposed functionality. Feature creep is a problem
with OSP as well, as everyone wants their favorite function integrated, and hence it
should be actively counterbalanced. Analysts mainly work with bug tracking software
and may use mailing list and content management systems to organize their work.
Authors such as [Schmidt01] recognize the potential of Open Source for analysis:

Open Source development techniques can also help improve software quality by enabling
the use of powerful analysis and validation techniques, such as white box testing and
model checking. Although this benefit of Open Source is not widely employed today, the
next-generation of testing tools and model checkers will be more effective since they can
instrument and analyze large-scale systems where many components and layers (e.g.,
network drivers, OS, and middleware) are Open Source.

5.2.2.5 Maintainer
Once a project reaches a certain maturity, it may be necessary to pursue multiple parallel
development tracks157. The usual distinction is between a stable track, which contains
ready to use software, and an unstable track which contains the newest changes, and may
run or not run at any given time. Such projects often assign responsibility for the stable
track to a maintainer. This person oversees all changes to the stable track in order to
prevent regressions. The major activities of this role are communication, reviews, bug
tracking and planning. Interestingly, a maintainer does not hold power of other
developers to assign them tasks. Rather, the maintainer is passive until approached with
an (implemented) change [Asklund01]:

In OSS, the evaluation of change proposals is not explicit, if it is there at all. Anyone can
propose a change and most often changes are not even proposed before an
implementation is submitted directly. Change proposals might be prioritized implicitly or
explicitly, but an OSS project cannot assign tasks to developers – everyone works on
what he chooses. Two slightly different processes exist depending on whether
contributions have to be sent to a moderator or if you can apply your changes directly to
the repository through your write access. In both cases, however, it is the same overall

157 [Schach02] outlines the maintenance problems inherent in OSP.

114

process that is followed. An idea for a change is conceived, it is implemented and tested,
it is submitted as a patch or applied directly on the repository, and finally the
implementation (and sometimes the change idea itself) is evaluated through testing,
review and discussion. The final evaluation may result in the patch being rejected by a
moderator or a change to the repository being reverted by a co-coordinator. Usually
write access to the repository is given only to trusted developers, so cases where a
change to the repository is reverted are rare.

Figure 10: CSP versus OSP change process (Source: [Asklund01])

Figure 10 illustrates the difference between CSP and OSP change processes. CSP
evaluate, and then implement; OSP implement, and then evaluate.

5.2.2.6 Developer
Another term for developer might be producer. Developers are primarily concerned with
software engineering. It is through their actions that a project takes shape. Many other
roles solely exist to facilitate the work of developers, like architect, maintainer, analyst
and administrator. Projects with many non-developer contributors may develop conflicts
about the future direction. These conflicts are usually resolved by the actions of
developers, who influence the project by their changes to the software. This “rule of the
developers” contrasts sharply with CSP. Even the manager of an OSP cannot rule by fiat
and has to bow to the accumulated knowledge and judgment of developers. This does not
mean that there are no OSP where a central person has authority to make technical
decisions. [Kuwabara00] describes the position of Linus Torvalds in the Linux Kernel
project:

Torvalds is the undisputed leader of the Linux project. He oversees the project as a
whole, keeping track of major developments and reviewing numerous patches of code
submitted by his developers, from which he builds new versions of the kernel. Torvalds is
also an obvious authority on the Linux system. On any typical day, he receives around
200 e-mail messages directly from Linux developers. His activity on linux-kernel reflects
a small fraction of his presence in the actual project. Torvalds works closely with the so-
called "Inner Circle" of technical advisors, or "lieutenants," immediately around him.
They are core developers who have established their status as competent programmers

115

and proven their expertise valuable to the project through years of involvement. The
Inner Circle is neither handpicked specifically by Torvalds nor clearly defined by the
community. It is a group that formed naturally, without external intervention but simply
by virtue of their involvement and expertise acknowledged by the community. For
example, Torvalds devotes most of his attention to the experimental version of the kernel,
whereas Alan Cox is currently responsible for the maintenance of the stable, non-
experimental version of the kernel for general users.

5.2.2.7 Architect
The architect is responsible for the overall technical vision of a project and its successful
execution. Contrary to popular belief as exemplified by the Bazaar approach, having a
coherent vision for a project strengthens it enormously. Technical debates can often only
be resolved by the decisive power of one individual. Empirical evidence suggests that
design by committee, as practiced by standards bodies like the W3C158, lead to inferior
results due to the desire to accommodate many constituencies, and hence the tendency for
compromises. Large OSP are sometimes impossible to oversee for a single individual. In
that case, the project is divided into smaller modules with well-defined interfaces, and
shared responsibility. The architect can then focus on the interaction of modules and keep
the big picture in mind without getting lost in details. Having at least two levels of
developers within a project is common practice, and allows projects to scale, and key
contributors to focus on the long-term viability of the project. Modularity is one of the
most important architectural features of such OSP, as [Jones00] explains:

"In most Open Source projects," says Zawinski, "there is a small group who do the
majority of the work, and the other contributors are definitely at a secondary level,
meaning that they don't behave as bottlenecks." Zawinski goes on: "Most of the larger
Open Source projects are also fairly modular, meaning that they are really dozens of
different, smaller projects. So when you claim that there are ten zillion people working on
the Gnome project, you're lumping together a lot of people who never need to talk to
each other, and thus, aren't getting in each others' way." Brian Behlendorf of Apache
and of Collab.net agrees. "We don't consciously think about it, but I think that the
philosophy of keeping things simple and pushing out almost anything extraneous or
nonessential to external modules has been followed fairly carefully in Apache. We've also
been fairly successful (I think) in 'federalizing' the Apache process to sister projects."

5.2.2.8 Project Manager
Sufficiently large projects have many contributors besides developers. A project manager
tries to coordinate the efforts of the various roles, may provide a vision for the project
(project managers are often founders and have been with a project since the beginning),
and resolves conflicts. A humble approach works best, as volunteer participants have no
obligation to bow to orders issued by the project manager (or anyone, for that matter). A
project manager may also be involved with advocacy for a project, may try to secure

158 Interestingly, W3C members strongly object to this assessment.
http://www.w3.org/People/Bos/DesignGuide/committee.html has an interesting commentary on the issue.

116

funding for key infrastructure, and serve as a spokesperson for the project. The special
demands placed on a OSP manager are described in [Dafermos01].

It is increasingly the role of management to break free from any restraints related to
bureaucratic regimes, and empower the customers (both internal and external) of the
organization to participate in all crucial decisions. Issuing orders and direct exercise of
control must be replaced by communication of vision and direction. Management
becomes leadership. This explains why a project such as Linux, which operates and
grows organically under no central planning, needs a leader like Linus Torvalds - to
initiate change, communicate vision and "create a organizational mindset" where
network communication is fostered.

No real project will have only these roles, nor will OSP participants exclusively work on
any given role. Instead, roles are blurred, each participant may assume several roles, and
multiple persons may occupy each role. Roles will be revisited in the discussion of
processes, and the contributions of each role to a process will be discussed. OSP are very
heterogeneous. Rather than focusing on software engineering alone, they always exhibit
attributes of other disciplines as well, such as human resources. To fully understand OSP,
it is necessary to outline these broad areas, and then discover the processes at play in each
of them.

5.3 Areas
The OSP framework is composed of various areas that were determined by studying the
existing literature and sampling select OSP. The framework can easily be extended by
introducing additional areas. In fact, it could be argued that some areas of OSP have only
been present for a short time. One example would be marketing, which has taken on a
more prominent role now that Open Source programs are increasingly being used by non-
programmers. In increasing order of relevance to the final product of an OSP there are
marketing, human resources, systems management, software engineering, and project
management.

5.3.1 Marketing
Marketing is not often mentioned in conjunction with software development. Indeed, in
CSP there is often a noticeable rift between marketing and technical personnel. OSP, on
the other hand, depend on marketing to attract volunteers for their project. The first Open
Source programs were written by programmers to solve problems they encountered while
performing their work. The audience of these tools was mostly other programmers, with
the exception of some recreational programs. Later, as more and more non-programmers
began to use Open Source programs, for instance communication programs, it became
more important to market Open Source. Service companies were founded to support
popular Open Source programs159, and the web brought a large influx of designers,
writers, and artists to the Open Source community. The contribution of these individuals
is different from programmers, and to appeal to them and entice them to contribute
requires different approaches than a simple list of the technical features of a program.

159 [Kenwood01] contains an Open Source business case study.

117

5.3.2 Human Resources
Volunteer-based work often overlooks the needs of its constituents in the areas of
personal development, coaching, and training. Preliminary evidence suggests this to be a
major success factor for OSP and attests to its large growth potential. The human
resources area of the framework tries to identify the needs of the participants of a project
and offer advice for improvement in this crucial area. The frameworks draws on the
experience of the People Capabilities Maturity Model and Epistemic Communities to
address issues that have been largely neglected to date. Human resources on the Internet
are still largely taken for granted. People appear seemingly out of nowhere and start to
contribute, and they often disappear just as quickly. Many OSP wrongly assume that
resources are infinite, and that high churn rates are not a problem, since “someone else
will pick up the slack”. This notion is critically flawed. Every experienced participant
that is lost takes a lot of knowledge with him that is not documented anywhere, and each
gap in a project needs to be replaced by other participants. A lot of redundant effort is
thus invested into re-training new volunteers and frantically reshuffling responsibilities
within a project, which could be much better spent by focusing more on the human
resources aspect. Why is the churn rate of OSP often very high? What motivational
measures can be undertaken to increase morale in a project, or “put the fun back” into an
activity that is supposed to be recreational for most participants?

5.3.3 Systems Management
This area is a prerequisite for all other areas. Systems Management makes sure that all
necessary resources for a project are available and is concerned with issues such as data
integrity, communication, and access control. OSP has to take systems management into
account because unlike CSP, its resources cannot be taken for granted. In fact, missing
resources are a key vulnerability for OSP. System management permeates all areas of
OSP due to a heavy reliance on tools. Tools are a necessary, but not sufficient ingredient
of OSP, and systems management is often underappreciated. Most OSP participants
know enough about computers to operate their own infrastructure proficiently, and hence
often assume that the infrastructure requirements of an OSP can be managed with the
same slack that is appropriate for personal systems. This results in downtime for the
project, lost data and frustration. OSP would do good to give full credit to the persons
outside the limelight that keep the servers running.

5.3.4 Software Engineering
OSP concern themselves with software production and are therefore subject to the rules
of software engineering. Not only is success in OSP heavily dependent on the correct
usage of software engineering methodologies, but Open Source has new impulses for the
discipline of software engineering itself. Open Source is no software engineering
panacea, and it is not surprising that most OSP do disregard software engineering best
practice. It is often argued that since OSP are performed in the spare time of the
participants, they should be “fun”, and some of the more formalized software engineering
methods are accordingly being dismissed. Another barrier to software engineering in OSP
is the macho culture that cherishes technical prowess above all else, but has little respect
for careful design. A large part of OSP participants are attending higher education and
their involvement with OSP is often their first exposure to large projects. OSP thus offer

118

a great learning environment to gain real world engineering experience. OSP are not
perfect examples of applied software engineering because they are very much learning
grounds for their participants. Projects with excellent software engineering practice are
often led by very experienced programmers, while junior programmers usually work on
smaller projects with less prestige.

5.3.5 Project Management
Project Management is as crucial for the success of an OSP as it is for a CSP. OSP
project management faces different challenges however. Due to the non-committal nature
of most contributions, planning can only concern itself with short-term goals. Project
management in OSP is leadership foremost. OSP are delicate social structures that need
the right stimulants from their leadership to prosper. An OSP leader does not usually
assign, he rather suggests. [Dafermos01] researched these new challenges for
management, and summarized them:

Management should ensure that the organizational and project design maximizes
organizational learning and empowers big teams to collaborate digitally. The
organizational design must enable the human intelligence that resides within the
organization and its environment to get networked. With creative use of the technology,
knowledge will be disseminated throughout the network towards all the participants
(organizational learning), and not just exchanged among few nodes (individual learning).
As the Linux Project proves, massive parallel learning is not just a matter of technology
but of design and management. The project design must be as modular and simple as
possible to facilitate digital collaboration (between an incredibly big project team). It is
more important that the design is simple and modular than error-free.

Ultimately, all areas are composed of work activities, or processes. It is within those
processes that an OSP takes shape.

5.4 Processes
The activities of OSP are termed processes in this framework. For clarity, processes are
assigned to areas, even though they do overlap just as much as roles do. By focusing on
processes, the framework aims to offer advice for carrying out these activities both
effectively and efficiently. Each process is described, the participating roles mentioned,
and supporting tools listed.

5.4.1 Marketing
Marketing processes involve the broadest subset of OSP participants. It is very easy to
get involved with OSP marketing; all it takes is to spread the word about a particular
project. The boundaries of participation are vague. Marketing is the area that new
participants come in contact with first, usually, and plays a crucial role in attracting initial
attention. Two broad processes can be distinguished: project-specific promotion, and
general advocacy.

119

5.4.1.1 Project Promotion
Involved Roles All
Involved Tools Asynchronous Communication, CMS, Weblogs

The mechanics of popularity are poorly understood. There is no recipe for making a
project popular, but getting the word out about a project is widely understood as a key
ingredient for its success. Most projects do not promote themselves in any way, and wait
for users (and future contributors) to find them instead. This lack of marketing can often
be explained with the technical background of most contributors, and their negative
experiences with corporate marketing. [Vallopillil98] argues that successful projects will
starve other projects out of resources, and that projects should try to become the
“category killer”, meaning that they address most needs for a given problem, and attract
the most users. Project promotion is really a task that all members of an OSP are
responsible for, maybe the one task that they all share.

5.4.1.2 Advocacy
Involved Roles Users, Supporters, Developers and Manager
Involved Tools Asynchronous Communication, CMS, Weblogs

Advocacy, or “the act of pleading or arguing in favor of something, such as a cause, idea,
or policy; active support”160 has taken on a more prominent role in OSP lately. OSP do
not exist in a vacuum, they are very much a product of their environment, and depend on
intellectual property laws, copyright and a host of other regulations. The political climate
for Open Source has recently become more hostile with the introduction of new
legislation that limits usage rights for copyrighted materials and restricts computer usage
to only carry out “allowed” operations.161 With the widespread popularity of the Internet
and file sharing, engineering concepts have entered the realm of legislation, such as
reverse engineering. Open Source has thus become more political, and many OSP feel a
need to take a political stance to defend their rights to carry on with their projects.
Another related issue is government sovereignty. Many governments have launched
inquires into Open Source [EC02] to determine if increased usage of Open Source would
guarantee the sovereignty of a foreign government from (mostly American) companies.
These issues rarely affect OSP directly. Instead, they affect the environment in which
OSP operate, and advocacy thus spans OSP. All members of an OSP are involved in
advocacy, and use the communication channels available to them to spread their message.
More effective, but often neglected, is political action. As Lawrence Lessig, a well-
known law professor notes:

But if you don't do something now, this freedom that you built, that you spend your life
coding, this freedom will be taken away. Either by those who see you as a threat, who
then invoke the system of law we call patents, or by those who take advantage of the

160 http://www.dictionary.com/search?r=67&q=advocacy
161 http://www.chillingeffects.org/

120

extraordinary expansion of control that the law of copyright now gives them over
innovation. Either of these two changes through law will produce a world where your
freedom has been taken away. And, If You Can't Fight For Your Freedom . . . You Don't
Deserve It. But you've done nothing.

5.4.2 Human Resources
Human resources are a largely unresearched area for OSP. While the model of Epistemic
Communities and Situated Learning [Edwards00] explains the human resources aspects
of OSP from the perspective of the individual, the People CMM model
[Curtis95].explains them from the perspective of the collective. Due to these close
interrelationships between human resource processes, they are presented here as one
process rather than many. This allows one to gain an overview of this complex topic
without getting lost in details.

5.4.2.1 Staff Development
Involved Roles All
Involved Tools CMS. Asynchronous communication, Web Logs

OSP are competing for talent, and the talent pool is apparently shrinking. As the
knowledge required to build an OSP increases, the retention of experienced contributors
becomes critical to improving a project. The ability of an OSP to compete is directly
related to its ability to attract, develop, motivate, organize, and retain talented people.
Traditional organizations have attempted to apply many different techniques in their
efforts to better manage their human capital. They apply reengineering or process
improvement, improve information sharing, clearly communicate the organization’s
mission, institute employee involvement programs, establish formal complaint resolution
procedures, institute gain-sharing or other incentive plans, emphasize the importance of
training the workforce, formalize performance management and feedback processes, and
many more initiatives. However most organizations and OSP in particular, lack a
coherent strategy to deal with human resources. Many OSP fail to do any staff
development, citing the transitory nature of most contributors involvement as a reason to
do nothing. While many of the more formal methods for human resources management
may be inadequate for the virtual environment of an OSP, it is still beneficial to apply
some lessons from the rich literature on human resources. The People Capability
Maturity Model [Curtis95] “helps organizations characterize the maturity of their
workforce practices, establish a program of continuous workforce development, set
priorities for improvement actions, integrate workforce development with process
improvement, and establish a culture of excellence.” The People CMM (P-CMM)
consists of five maturity levels that establish successive foundations for continuously
improving individual competencies, developing effective teams and motivating improved
performance. By following the maturity framework, an OSP can avoid introducing
practices that its contributors are unprepared to implement effectively. The application of
the P-CMM to the OSP environment is challenging. With minimal structures present in
most OSP, many of the formalized approaches proposed by the P-CMM do not work. The
core concept of increasing levels of maturity is applicable if the coexistence of these

121

levels is allowed for. OSP may be at multiple levels of maturity simultaneously, with new
contributors joining a project, and veteran ones taking a leave.

Level Processes
Repeatable Work Environment

Communication
Staffing
Performance Management
Training (documentation, one on one)
Compensation

Defined Competency Analysis
Competency Development
Competency-Based Practices
Participatory Culture

Managed Mentoring
Team Building (Network of peers)
Team-Based Practices
Organizational Competency Management
Organizational Performance Alignment

Optimizing Personal Competency Development
Coaching
Continuous Workforce Innovation

Table 5: CMM Levels (Source: [Curtis95])

Table 5 lists the levels of the P-CMM, and the processes that make sense in the context of
OSP.

Work Environment
The purpose of Work Environment is to establish and maintain physical and
virtual working conditions and to provide resources that allow individuals and
workgroups to perform their tasks efficiently and without unnecessary
distractions. An OSP should make the resources for collaboration available, and
try to minimize distractions, for instance by filtering communications by
relevance.

Communication and Coordination
The purpose of Communication and Coordination is to ensure timely
communication across the organization and that the contributors have the skills to
share information and coordinate their activities efficiently. OSP should make
sure that individuals or groups are able to raise concerns and have them addressed
by management. OSP should ensure that activities are coordinated.

Staffing

122

The purpose of Staffing is to establish a process by which committed work is
matched to resources and qualified individuals are recruited, selected, and
transitioned into assignments. Individuals or workgroups are involved in making
commitments that balance the workload with staffing. OSP should base staffing
decisions and work assignments on an assessment of work qualifications and
other valid criteria. Individuals should be transitioned into and out of positions in
an orderly way. Even posting a notice to a mailing list may be appropriate.

Performance Management
The purpose of Performance Management is to establish objectives related to
committed work against which group and individual performance can be
measured, to discuss performance against these objectives, and to continuously
enhance performance. OSP should document performance objectives. These
objectives could be requirements, design standards, deadlines etc. The
performance of committed work should regularly be discussed to identify actions
that can improve it. Code reviews are one way to discuss performance. Poor
performance should be criticized, outstanding performance rewarded. OSP may
feel leery of criticize each other’s work, because it was done voluntarily. In the
interest of the project, and to improve individuals these deficiencies should be
discussed though.

Training
The purpose of Training and Development is to ensure that all individuals have
the skills required to perform their assignments and are provided relevant
development opportunities. OSP should provide individuals with timely training.
Training for OSP may mean encouraging newcomers to read certain
documentation, and answering their questions either by email or in IRC (Internet
Relay Chat).

Compensation
The purpose of Compensation is to provide all individuals with benefits based on
their contribution and value to the organization. Compensation strategies and
activities should be planned, executed, and communicated in the open to prevent
accusation of nepotism. Compensation should be equitable relative to skill,
qualifications, and performance; in essence individuals with the same
performance should receive the same compensation. Compensation in OSP may
mean the respect of peers, special mention162 or endorsements for job applications
or other opportunities. [Raymond98b] lists the many faces of recognition: “First
and most obviously, good reputation among one’s peers is a primary reward.
Secondly, prestige is a good way to attract attention and cooperation from others.
Thirdly, reputation may spill over and earn one higher status in other realms”.

Competency Analysis
The purpose of Competency Analysis is to identify the knowledge, skills, and
process abilities required to perform the organization’s goals. OSP should think

162 The KDE project features a different developer each week. http://www.kde.org/people/people.html

123

about the competencies that they need to perform their goals. This is rarely done
unfortunately, and the thousands of OSP that went nowhere attest to this failure to
formulate a projects needs (and a failure to meet these needs, obviously) As an
OSP evolves, its required competencies change. Correspondingly, OSP should
regularly revisit their competencies to assess if they still possess the necessary
skills to achieve their goals. Due to the very open nature of the open source
ecosystem, it may be possible to attract other contributors which exhibit the
required competencies, or two OSP may decide to collaborate.

Competency Development
The purpose of Competency Development is to constantly enhance the capability
of contributors to perform their assigned tasks and responsibilities. OSP should
provide opportunities for individuals to develop their capabilities, and encourage
them to share their knowledge with others. Besides the traditional means of web
sites and mailing lists, weblogs163 may be a more appropriate tool to support this
activity. The collective knowledge of an organization is arguably its biggest asset.
This holds true especially for OSP, which have few common points of reference
other than their collectively acquired knowledge. The process of knowledge
acquisition in groups is poorly understood, especially for very loose groups
typical in open source. Traditional knowledge management does concern itself
too much with “quality control” to be of practical use for OSP. Instead, a bottom-
up approach, or “Knowledge Sharing” is called for, with much more emphasis on
enticing individuals to share their knowledge than on making sure the knowledge
meets quality standards. Traditional knowledge management has completely
failed because it provides little incentives for contribution, and places far too high
barriers to entry.

Competency-Based Practices
The purpose of Competency-Based Practices is to ensure that all workforce
practices are based in part on developing the competencies of the workforce. This
means that OSP should strive to achieve their goals in ways that provide the
biggest possible learning experience for contributors. One way to do this is to not
only encourage and reward immediate results (source code), but also the efforts of
persons who help others to develop their skills. To capture these efforts which
may often happen in private email conversations, and thus not visible for the
project at large, rating systems could be used that allow recipients to rate the
advice they have received from others.

Participatory Culture
The purpose of a Participatory Culture allows the organization to recognize and
exploit the full capabilities of its participants. OSP should go to great lengths to
encourage information sharing beyond the immediate requirements of the projects
goals. Forming friendly bonds between participants allows making the project
more aware of the capabilities of its participants. Informational exchanges
between individuals tend to be much more revealing and instructive to assess each

163 http://jrobb.userland.com/2001/10/05.html#a405 gives a good definition.

124

other’s skills than formal systems to capture skills. OSP should spread
information that is relevant to all participants in appropriate ways, and not hoard
information. On the other hand, OSP have to make sure that participants are not
overwhelmed with information. A rule of thumb could be to make the information
available to interested parties rather than broadcast it to all project participants.
OSP should delegate decisions as much as possible to avoid bottlenecks. If OSP
fail to do this, they may be prone to micromanagement, and key persons will be
completely inundated with work, while blocking progress for everyone else. OSP
with large user communities should encourage participation and feedback from
the user community while not falling prey to individuals who only want to make
themselves heard without providing useful contributions. This distinction can be
quite challenging, and can result in accusations of elitism if an OSP is perceived
to not listen to its user community to a sufficient degree.

Mentoring
The purpose of Mentoring is to transfer experience from seasoned contributors to
newcomers. OSP should consider setting up mentoring programs that assign
mentors to newcomers. These mentors provide guidance and support to
individuals or teams, and .help them to get on the right track. Furthermore,
mentors can quickly summarize complex issues due to their experience, and thus
provide shortcuts for newcomers. Very often, the knowledge of an OSP is much
cluttered or not available in written form, and mentors are the only way to quickly
gain familiarity with a project.

Organizational Performance Alignment
The purpose of Organizational Performance Alignment is to enhance the
alignment of performance results across individuals and teams with organizational
performance objectives. OSP that reach such high levels of synergies between
contributors are a rare exception, and are usually the results of a stable group of
collaborators that have worked together for years. Such tightly knit OSP should
try to understand how improving the performance of individuals helps the overall
performance, and what specific actions are required to better both individuals and
the group as a whole.164

Continuous Workforce Innovation
The purpose of Continuous Workforce Innovation is to identify and evaluate
improved or innovative workforce practices and technologies, and implement the
most promising ones throughout the organization. OSP should stay alert to new
processes and technologies that may benefit their projects. OSP should also be
welcoming to change instead of falsely insisting on “stick with what works”. Due

164 The OpenBSD project may be such a closely knit group. Oliver Friedrichs illustrated this with an
example: “OpenBSD has been "victim" to one of the most stringent software source code reviews (that is,
looking for and discovering security flaws), that I know of, occurring in any operating system. Many
individuals worldwide have spent much of the last year piling through source code, identifying and fixing
security problems”

125

to the non-commercial nature of OSP, they provide ideal test beds for innovative
forms of collaboration, and OSP should leverage this flexibility.

5.4.3 Systems Management
Operating the infrastructure for an OSP is an unglamorous necessity. Systems
management processes should be automated as much as possible to free resources from
repetitive tasks, and to increase reliability. Backup, access control, logging, and
maintaining the communication infrastructure are the main systems management
processes.

5.4.3.1 Backup
Involved Roles Administrator, Maintainer, Developer
Involved Tools SCM, Mirroring Software, Backup tools

Computer systems are vulnerable to loss of data due to various causes.

System Failures
Computer systems fail. Hardware problems, subtle errors in operating systems
and applications or may occur at any time.

Operator Error
Most data losses are due to accidental actions by the user, either through careless
operation or failure to understand software functionality.

Unauthorized Access
The data of compromised computer systems may be vulnerable, depending on the
intentions of the attacker.

All these problems are not specific to OSP, but to the extent that OSP rely on shared
resources connected to the Internet, they are more vulnerable to data loss. Backups are
thus a very important activity to preserve the work of an OSP. Besides backups of the
shared resources, which are performed by administrators, there is also a second source of
backups. As users and developers download copies of their project, they indirectly hedge
against data loss at the central location. Tools like CVS (to retrieve copies of source
code) and site mirroring (to retrieve copies of web sites) help with this task. Central
backup is usually performed with the tools that come with the operating system.

5.4.3.2 Access Control
Involved Roles Administrator, Manager
Involved Tools Authentication, PKI165

Most information in an OSP is by its nature public, and does not need special protection.
Access control is mostly related with controlling write access to shared repositories for
code and content, and performed by administrators, or the project manager. Some

165 Public Key Infrastructure http://www.pki-page.org/

126

projects have started to build a PKI infrastructure to prevent attacks on their source
code.166

5.4.3.3 Logging
Involved Roles Administrator, Maintainer, Developer, Manager
Involved Tools Facilities of the Operating System

Collaborative work is greatly helped by logging, as it allows the ability to determine
which individual contributed which changes. In the absence of “water cooler”
discussions, logging allows fellow participants to keep track of changes, and exposes
actions that are controversial or damaging for a project. As OSP are meritocracies,
logging also provides raw data to spot the major contributors, and allows the project
manager to reward these individuals with more status.167

5.4.3.4 Communication
Involved Roles All
Involved Tools (A)synchronous Communication, Web Log, CMS

Information in its various forms (software, documents, URLs, etc.) is the most important
resource for OSP. The amount of information grows daily. Distributing it efficiently and
effectively poses some challenges:

1. Who might be interested?
2. What is the best way to notify interested persons?
3. How should information be archived for later retrieval?
4. How should relevant information be separated from noise?

The Internet has evolved several means of communication like email, newsgroups, and
IRC. Nevertheless, most of the four challenges remain unsolved. Better tools and
processes for communication would improve OSP tremendously, as communication is
very often the bottleneck. Some interesting features for future communication systems
would be:

1. To join/leave single discussion threads instead of entire mailing lists
2. To open / close discussions
3. Notification about new discussions
4. The possibility to view all open discussions
5. Easy retrieval from an archive

OSP use many different communication channels. Each channel has its unique properties
and strengths:

166 The Debian project set up a PKI infrastructure to sign all packages. This allows to verify that packages
are unmodified and therefore prevents insertions of malicious code into the Debian system through third
parties. http://lists.debian.org/debian-dpkg/2000/debian-dpkg-200007/msg00044.html
167 The Debian project has developed a karma system that shows the level of contribution for each project
participant. http://master.debian.org/~edd/karma.txt

127

Meetings
OSP participants are spread across the globe, making meetings an expensive and
rare event. Meetings usually happen during conferences, and address major issues
for a project. One notable example is the Kernel summit, which is an invitation-
only event that brings the top 60 Linux kernel developers together to discuss the
future of Linux. Besides being able to resolve difficult issues in hours what would
take weeks or months with mailing lists, it also allows participants to bond.168
Having personal relations helps tremendously with communications, as it reminds
participants that there are humans at the other end of an email.

Documentation
OSP participants and users learn about a project at different times. Having
asynchronous communication is therefore crucial to transfer knowledge to new
contributors. Documentation is the result of informal knowledge exchange, often
collected as FAQ (frequently asked questions) and later refined into
documentation.

Source Code
Due to the openness of OSP, the source code itself is one of the most important
channels of communication. Source code is the canonical document in technical
matters, and reading source code can greatly expedite questions for seasoned
programmers.

Log files, Bug trackers
Investigating the log messages of the version management system (e.g. CVS), bug
reports of bug tracking systems or information archived by some other tools can
be helpful. These log messages contain the complete trail of all changes made to a
project, and are very informative if you are interested in the historical context of
some functionality.

Traditional Communication
The telephone and written letters are rarely used in OSP. Especially telephone
conversations can be a very efficient means of getting to know a fellow
participant, and converging on solutions quickly. Long distance telephone charges
prevent this means of communication from being used more widely. Meanwhile,
some voice chat systems exist that allow for voice communication over the
Internet.

Next Generation Communication
Video-conferencing, shared white boards, and remote access solutions may soon
enter the Open Source scene.

Generally, more advanced tools have too many requirements to allow their widespread
use, and Internet connectivity is still limited to dialup speeds in many parts of the world.

168 http://www.freebsd.org/events/2002/usenix-devsummit.html

128

Until broadband Internet access becomes widely available worldwide, mailing lists
remain the most appropriate communication channel for OSP.

5.4.4 Software Engineering
The various software engineering processes are at the center of OSP activity, and are
heavily dependent on each other and processes from other areas. Ultimately, the degree
of quality with which these processes are performed determines the resulting quality for
the products of an OSP. Requirements analysis, prototyping, testing, version and release
management, bug triaging, deployment, and documentation make up software
engineering in OSP.

5.4.4.1 Requirements Analysis
Involved Roles Testers, Analysts, Developers, Architects
Involved Tools Asynchronous Communication, Bug Tracker, CMS

Requirements Analysis is concerned with collecting and commenting on user
requirements for given software. OSP have strong requirements analysis processes
because it is so easy for users to make their voice heard. The downside of this manifests
itself in the glut of requirements that many projects have, and a lack of priorities to
respond to these requirements. Requirements analysis starts with users submitting feature
requests, or reporting bugs. These requests are of very low quality on average. Since all
feature requests are publicly visible, interested parties can voice their support for a
feature. This allows gauging interest in a feature. Some projects, like the Mozilla project
use voting to assign priorities to features. This collaborative requirements gathering
process may be supported by analysts who aim to combine similar requests, reword
requests to make more sense, and start the thought process about integration of a
particular feature. Developers then use this refined requirements lists to assess feasibility
of features, and assign priorities to them. If they feel so inclined, they may start on the
implementation of some requests, or come up with proposals for farther-reaching
changes. Local changes are usually the domain of individual developers, while global
changes and major additions require the approval of the architect.

5.4.4.2 Prototyping
Involved Roles Testers, Developers, Architects
Involved Tools Asynchronous Communication, SCM

The process of prototyping can be observed in most OSP. Many projects use extreme
programming (XP) methodologies, often unknowingly. The open source mantras
“Release early, release often” and “Show me the code” are good examples of this
behavior. Developers are encouraged to work on experimental approaches, and if testers
provide positive feedback their work may be integrated into the main line of
development. Rapid prototyping is probably one the strongest attributes of OSP.
[Nishinaka01] explains: “We never tried our project in XP style. The word "XP" did not
exist when we started the project. We preceded our project with XP style in consequence.
XP can be a good methodology for Open Source software projects if:

129

• it is not a big project
• there are one or more core members
• there are some contributors
• a project is not for profit
• a project is not for any specific customers”

Others, such as Linus Torvalds169, hold the more radical view that “nobody else
"designed" Linux any more than I did, and I doubt I'll have many people disagreeing. It
grew. It grew with a lot of mutations - and because the mutations were less than random,
they were faster and more directed than alpha-particles in DNA.”

Torvalds argues that software is never designed, but evolves. “And I will go further and
claim that _no_ major software project that has been successful in a general marketplace
(as opposed to niches) has ever gone through those nice lifecycles they tell you about in
CompSci classes. Have you _ever_ heard of a project that actually started off with trying
to figure out what it should do, a rigorous design phase, and a implementation phase?

Dream on.

Software evolves. It is not designed. The only question is how strictly you _control_ the
evolution, and how open you are to external sources of mutations.

Too much control of the evolution will kill you. Inevitably, and without fail. Always. In
biology, and in software.”

5.4.4.3 Testing
Involved Roles Users, Testers, Developers, Architects
Involved Tools Asynchronous Communication, SCM, Bug Trackers

Most OSP do not use formalized methods of testing. This major drawback is only to a
small extent compensated by the large number of testers for popular projects. Notable
exceptions were researched by [Halloran02], who provides this summary:

”We also note unusual project-specific quality practices beyond personnel practices (i.e.,
limiting commit privileges) and the obvious elements of “micro-process” (particularly
the ubiquitous nightly build) .The surveyed projects focus on people as the locus of
Quality Assurance (QA). Clearly, responsibility for quality rests on those who have code
commit privileges. Any code received from a programmer without commit privileges
(usually attached to a bug report in patch format) must be reviewed and accepted by a
programmer with commit privileges. In addition, more elaborate processes such as
Mozilla’s review and super review and NetBeans’ high resistance ensure that lead
programmers review code changes.
All projects use nightly builds. The nightly build ensures the source code still compiles
after the day’s changes. Most projects include some regression testing in the build

169 http://kerneltrap.org/node.php?id=11

130

process, and some projects also generate daily binary builds for public download. The
Mozilla and Perl projects use the Tinderbox tool to help assure portability by building
the code on multiple platforms after any code change; if the build breaks on any
platform, then all subsequent code changes are limited to fixes.
A publicly visible bug and issue tracking tool is used by nearly all the projects we
examined (one of the projects allows bug submission but not public status viewing).
Users post bugs and enhancement requests. Each such post becomes, in effect, a tiny
public mailing list focused solely on that issue. Some of the discussions are resolved
rapidly (e.g., “invalid; not a bug”) while others can last for weeks and include tens of
messages. The bug and issue tracking tools provide the vehicle for contributions of
source code from programmers without source code commit privileges. In addition, the
issue tracking tool has a role in project management and tracking, enabling, for example,
specific issues (performance, functionality, bug repairs) to be linked to a “stable release
issue,” thus setting a threshold for a subsequent release.”

Providing easier and more efficient ways for participants to run tests will improve
software quality tremendously. Many projects hesitate to simplify this process out of
fears that less than able contributors might add many false alarms to their bug tracking
systems. This risk is overrated though. Combined with efforts to regularly prune bogus
bug reports widespread testing does uncover many issues that do not manifest themselves
in the limited tests run by developers. A good testing policy needs to be tied in with
sensible change management policies. Tools like CVS allow a wide range of processes to
be implemented, from the four eyes commits rule up to highly complex review and
approval processes.

5.4.4.4 Version Management
Involved Roles Administrator, Maintainer, Developer
Involved Tools SCM

Version management records all modifications to project data, and is capable of reverting
modifications to any former state. Version management (sometimes also called
Configuration management) does have many uses in OSP. Some of them are:

1) It allows the ability to experiment with source code, and submit changes, since
evolutionary dead ends can easily be corrected by reverting changes.

2) Version management systems normally provide a version history and the
opportunity to store log messages. These logs can be used as documentation for
the development process, and are often the most accurate description of a projects
state.

3) Concurrent revision control systems like CVS help to coordinate and merge
distributed work. Merging changes from dozens or hundreds of contributors by
hand is nearly impossible.

Version management is one of the main activities of developers, and many tools have
evolved to support it. Version management is integrated into most development
environments, and is available on all platforms. CVS is the most used tool for version

131

management, but has its limitations for very large projects. Correspondingly, better
systems have been developed.

5.4.4.5 Release Management
Involved Roles Maintainer
Involved Tools Mirroring Software, SCM

OSP release many versions of their software, heeding the motto “Release early, release
often”. Although it is normally easy to distinguish different versions by their version
number, it is sometimes very hard to figure out what the version number means. For
instance, one release of Linux was described as: “It turns out the 2.4.0-test1 is actually
2.3.99-pre10-pre3 [...]”. Despite the strange numbering schemes adopted by some
projects, some common threads emerged:

Numbers
Most projects use a numbering scheme to name their releases. A number like
2.3.20 usually means major version 2, development branch 3, and point release
20. Many projects do have multiple lines of development happening at the same
time. In that case, even numbers at the second position indicate stable branches
and odd numbers indicate development branches.

Development Branches
Many projects have different branches of development and name their branches
’stable’ (intended for productive usage), ’experimental’ (intended for developers).
Some projects even use three branches, such as the Debian project, which has
stable, testing and unstable branches.

Work Status
OSP often use common terms to indicate the work status of a project: alpha (in
development) beta (feature-complete), pre (possible release candidates), RC
(release candidate), final (official release).

Code Names
Some projects use code names for their major releases, e.g. ’potato’ instead of 2.2.
Code names are a source of entertainment or respect for most projects, and great
efforts are invested to search for suitable code names.

Release Dates
Some projects use the release date as the version number. Due to varying date
formatting conventions, only a scheme like “20020703” will be unambiguous, and
care should be taken to use such a scheme.

Custom versions
Major contributors of some projects sometimes make their own versions available
and mark them with their initials. The purpose of such experimental versions is to

132

pursue side projects that may or may not be integrated with the official release at
some point.

5.4.4.6 Deployment
Involved Roles Administrator, Maintainer, Developer
Involved Tools Mirroring Software, SCM, CMS

Deployment is term that encompasses packaging, dependencies management, upgrades
policy and installation. Many OSP exhibit weaknesses in those processes, often due to
their catering to sophisticated users that are expected to be able to deal with such issues.
Poor deployment is a large barrier to entry for open source software. Projects with make
the extra effort to provide easy installation do attract more users, and in turn, more
developers. Historically, many OSP do have an elitist attitude and would rather not be
bothered with mere users of their product. Instead, they hope for well-designed
contributions to come out of the void. In doing so, these projects forego many potential
users, and a bigger niche in the software ecosystem for their project.

Managing dependencies between packages is a major issue in OSP. Due to the very high
reuse inherent in open source, most packages rely on dozens of others to work correctly.
Various solutions have been developed for these problems, with APT by the Debian
project probably being the most sophisticated. APT defines standard formats to specify
package dependencies, and allows for automated updates of a complete system.170 Due to
the great care taken by the Debian project, it is one of the best managed projects in terms
of dependency conflicts.

5.4.4.7 Documentation
Involved Roles Developers, Supporters
Involved Tools Asynchronous Communication, CMS

Comprehensive and qualitative documentation is a key for adoption of a project by other
volunteers. Even more than in CSP, OSP need to make sure that collective knowledge
about the domain at hand is collected and made accessible in the documentation. Good
documentation can compensate for a lack of access to informal knowledge by new
entrants to a project. Most documentation grows organically, and originates in comments
in the source code, or answers to questions on a mailing list. Many projects do have very
inadequate documentation, or do not make the effort to write documentation that is
actually useful. Non-programmers have very different needs for documentation:

Internal and on-line
Non-programmers insist that context-sensitive, on-line help must be provided
with an application. Non-programmers want screen-shots in the on-line help.
They do not care if it increases an application's file size. Non-programmers utilize
on-line help as a quick reference, so indexes and search functions are important.

170 http://www.debian.org/doc/debian-policy/ch-archive.html contains the full Debian policy, which forms
the backbone of APT.

133

Non-programmers will go through an on-line tutorial, if one is provided as part of
the application. Non-programmers will look at a "Tips and Tricks" dialog box, if
one is provided. Non-programmers ignore the printed manuals bundled with off-
the-shelf software. Non-programmers would never buy a book about an
application. They say technical books are for programmers.

Simple
Non-programmers do not want detailed explanations. They want simple answers.
Non-programmers hate too much detail. Non-programmers prefer short,
systematic instructions. Non-programmers prefer information that answers the
question "How do I do X?" (where X is a common use of the application). Non-
programmers do not want to see information about how a feature was
implemented.

Complete, correct and up-to-date
Non-programmers assume that on-line help will be updated in each new version
of an application. If part of the on-line help is obsolete or missing, non-
programmers will not use any of it. If a non-programmer cannot find an answer in
the on-line help, they will either call tech support or use another application.

That said, there are also voices that advise against spending too much effort on
documentation (considering the scarce resource of able technical writers), because users
do not read the documentation anyway. One of them summarized this sentiment: “Non-
programmers do not read any documentation that contains more than about 5 words.
Non-programmers have arbitrarily weird ideas on how something should be performed.
If it does not work, they will first blame it on the computer, then on the program, then on
the admin. They will not listen to any explanation longer than five words. If you stand
besides them to help them, they want you to do it for them. If you do, they will see no need
to watch what you do, they will rather ask you every time to do it. In no case are they
able to substitute anything in the documentation. If a login documentation contains the
word "insert-your-username-here", they will type exactly that. If a screenshot for "Save
as..." shows the correct image, but the "path" field contains "/home/admin/", they will
detect the difference in their dialog, type the given path into it, and then complain the
computer is broken. Anything written besides, below or onto the screen shot as
explanation is ignored. “

Writing documentation can be a business model, as [Raymond00] points out. Many OSP
fund themselves by selling their documentation. This may seem hypocritical at first,
selling something closed to be able to produce something open, but it works.
Furthermore, special licenses exist that bridge the gap between commercial exploitation
and keeping information freely accessible.171

171 One such license, the GNU Free Documentation license, is described at
http://www.fsf.org/licenses/fdl.html

134

5.4.4.8 Bug Triaging
Involved Roles Testers, Developers, Supporters
Involved Tools Bug Tracker

Most software has far more defects than can be corrected with reasonable amounts of
time and resources. Bug triaging tries to identify the most critical bugs that provide the
most value if they are fixed. Determining the most important bugs can be done in a
variety of ways. Collecting statistics about the most common bugs is the starting point for
a good assessment [Spolsky01] argues that only the bugs with a positive net present value
stemming from their fixing should be fixed. This is a very basic economic argument that
is often overlooked in the open source world. It is often a matter of pride to try to fix all
known bugs, when time would be much better spent on other things, like improving
documentation or adding new features. It is often (incorrectly) argued that open source
software should support every arcane configuration under the sun. This is nonsense.
Economic principles apply to the open source world just as they do to other areas. In fact
it is one of the weaknesses of many open source projects to assume that resources are
unlimited and can therefore be spent at will. Measuring the value of a bug being fixed can
be challenging. One approach is to assess its likelihood and assign a severity to it. Bug
fixing efforts can then start from the likely and critical bugs and fix as many bugs as
possible within the allotted time. The Mozilla project operates a very large bug database;
at the time of this writing, it contained 25899 bugs.172 The following rules have been
established by Mozilla to help triage bugs:173

Can this bug report easily be reproduced?
Or does the bug report lack accurate steps to reproduce, along with clear expected
results and actual results? Is the bug's description ambiguous like, "Mozilla
crashes" or "browser problem", or does it accurately describe an actual problem?

Does the bug report identify one specific problem?
Less experienced bug reporters try to save time by writing a single bug report that
raises many different, unrelated issues. A bug report should contain no more than
one issue, for a multitude of reasons: Distinct bugs enable work to proceed in
parallel. When a bug is fixed, it must be verified against a specific test. Bug
reports that list multiple conditions and problems are difficult to verify. Bug
reports that list multiple bugs may mean that some problems noted do not get
addressed. Bug reports that list a single bug are more likely to be resolved in a
timely fashion.

...and can an engineer actually fix it?
Less experienced bug reporters will submit bugs that are general complaints, and
which do not distill to a fixable bug.

Does a bug look like a duplicate report of a known issue?

172 http://bugzilla.mozilla.org/
173 http://www.mozilla.org/quality/browser/prescreening.html

135

Many bugs are reported many, many times. If you think it might be a duplicate ---
but are not sure --- just add your comments into the bug report. Someone down
the road will be thanking you for your thoughtfulness.

5.4.5 Project Management
Project management processes mainly support the project manager and interested parties
to keep an overview of a project and steer its long-term direction. Most near-term
activities in OSP are performed ad hoc, and it is generally not a good idea to try to fit
those activities into a strict project management framework. In other words,
micromanagement is lethal for OSP. Project managers also have to take the notions of the
project participants into account. If they appear to manage too much they will be met
with a backlash, as most OSP participants prefer to work unencumbered from timesheets
and deadlines. Scheduling, tracking and allocation are to be seen as supporting processes
only.

5.4.5.1 Scheduling
Involved Roles Developers, Manager
Involved Tools Asynchronous Communication, Issue Tracker, Calendaring

It has been argued that OSP are immune to Brook’s law (“Adding manpower to a late
project makes it later”) because the concept of deadlines or schedules does not apply to
them. This is a flawed notion and is only true on a very superficial level. Well-managed
project do you use scheduling to raise effectiveness of their collaborators. The Mozilla
project has used a very sophisticated scheduling for years174. A roadmap specifies target
dates for feature freezes and releases. Special rules apply for the time periods between
releases.

Figure 11: Mozilla Roadmap

In the experience of Brendan Eich, who has managed the Mozilla project for several
years, sticking to a schedule proved to be very challenging: “Just before 2001 began, I
wrote that useful and relevant (defined by the community) extensions are always
welcome, provided that they don't have a high opportunity cost in terms of contributors

174 http://www.mozilla.org/roadmap.html

136

who otherwise could and would have helped hack on 1.0. But by the fall of 2001, as noted
in the Mozilla 1.0 manifesto, the opportunity costs of features and extensions had grown
to the point where such "non-1.0" work jeopardized a 1.0 milestone that fit into any
achievable schedule.”

Contributors to OSP are primarily motivated by seeing their code being included in a
project at the earliest possible time. Imposed schedules conflict with this goal, and are
thus strictly opposed by most contributors. It is the duty of the project manager to impose
deadlines in the interest of the project, while still considering contributor biases.
Interestingly, most work is performed as soon as feature freezes are announced, as
everyone scrambles to include his favorite feature before the freeze is in effect.

5.4.5.2 Tracking
Involved Roles Developers, Manager
Involved Tools (A)synchronous Communication, CMS, Issue Tracker

Closely related to scheduling, tracking concerns itself with the oversight of ongoing and
upcoming work to spot issues as early as possible, and introduce corrective measures.
Tracking in OSP is much complicated by the distributed nature of its contributors, their
voluntary and therefore unreliable commitment and by communications issues.
Nevertheless, many OSP make the effort to track progress, and some formalize the
process by writing weekly newsletters or holding online meetings. One such project
where the author is involved, PostNuke, conducts weekly meetings on IRC (Internet
Relay Chat) to discuss the issues of the week, and set the agenda for the following
week.175

5.4.5.3 Allocation
Involved Roles Manager
Involved Tools Asynchronous Communication, CMS. Calendaring

Most OSP face severe staff shortages during their lifecycle. Even successful, popular
projects find it very hard to allocate resources to specific task. Reasons for these
difficulties include the inability to force assignments on volunteers, lack of knowledge
about the skill sets of contributors, lack of oversight about the open tasks. Improvements
in allocation hold the promise of much better utilization of available resources. One
problem with allocation is that the individuals with the oversight to be able to allocate are
usually inundated with work, and have to decide if they want to spend their time
instructing others, or working on their own task. In the experience of the author, most
contributors like to be given specific tasks instead of vague goals. Specific tasks make it
easier for contributors to “do the right thing;” especially given that many contributors feel
that they do not know enough about a project to contribute more substantially. The need
to provide detailed instructions puts even more of a strain on the key persons in a project.
The PostNuke project, for instance, has seen over 250 developers join the project over the
course of a year. New developers demand attention from senior contributors. Existing

175 http://chaynez.dyndns.org/meetlogs/

137

contributors are faced with a choice: Either spend time introducing new contributors to
the details of the project, or contribute to the project themselves. Pledging help for a
project is quickly done and very non-committal. As a result, only about one out of ten
“contributors” to a project actually comes through and justifies the initial time investment
by other contributors to educate him. The reasons for this very low success rate are
manifold. Many projects do have a very strong culture that may be hard to get into.176
Another reason is that new contributors to a project fail to find instant gratification,
especially with larger projects. It is sometimes almost impossible to make a meaningful
contribution to a project without an extensive study of the projects peculiarities. With so
many projects around, many contributors are not ready to invest the necessary time, and
may start their own projects instead. Case in point, sourceforge.net contains the carcasses
of thousands of such projects that never went anywhere beyond the initial, vague idea. As
projects grow, it becomes harder for individual contributors to gain status within the
project because so many other contributors compete for the glory of widespread
recognition. Most projects sustain only around a dozen key contributors who are in the
public eye. Other contributors are barely noticed.

Many, if not most OSP processes are performed with a variety of tools. While tools might
not be of academic interest on their own, their usage in conjunction with software
engineering and other processes raises many interesting questions. A survey of existing
tools also allows OSP participants to judge for themselves if they use the right tools for a
particular task.

5.5 Tools
OSP without tools are unthinkable. As outlined earlier, OSP have only become feasible
since Internet connectivity is widespread and cheap. It is therefore not surprising that
many OSP concern themselves with developing better tools to conduct OSP, and many of
the Internet innovations started as a small project to improve collaboration or
communication. Tools and processes form a symbiotic relationship. New processes beget
new tools, and new tools beget new processes. The number of tools at the disposal of the
budding OSP contributor is immense. For the purposes of this framework, only a small
number is examined, and their application for OSP is shown. For each tool, a sample is
demonstrated.

5.5.1 Marketing
Tools for marketing are essentially the same tools that are used for communication. The
internet is by far the largest marketing channel, and internet communication tools abound.

5.5.1.1 Content Management System
Tools for managing web sites abound. There are hundreds of tools, from simple news
scripts to full-featured content management. The needs of each project are different, but
some considerations apply to most projects. OSP would want to make sure to follow
guidelines established by Jakob Nielsen.177

176 FreeBSD is a project that is often accused of such elitism. http://bsdvault.net/hubbard.html
177 http://www.useit.com/alertbox/20020512.html

138

Include a One-Sentence Tagline
Start the page with a tagline that summarizes what the site or company does,
especially if you are new or less than famous.

Write a Title with Good Visibility in Search Engines and Bookmarks
Begin the TITLE tag with the project name, followed by a brief description of the
site.

Emphasize the Site's Top High-Priority Tasks
Your homepage should offer users a clear starting point for the main one to four
tasks they'll undertake when visiting your site.

Include a Search Input Box
Search is an important part of any big website. When users want to search, they
typically scan the homepage looking for "the little box where I can type," so your
search should be a box. Make your search box at least 25 characters wide, so it
can accommodate multiple words without obscuring parts of the user's query.

Show Examples of Real Site Content
Don't just describe what lies beneath the homepage. Specifics beat abstractions,
and you have good stuff. Show some of your best or most recent content.

Begin Link Names with the Most Important Keyword
Users scan down the page, trying to find the area that will serve their current goal.
Links are the action items on a homepage, and when you start each link with a
relevant word, you make it easier for scanning eyes to differentiate it from other
links on the page.

Offer Easy Access to Recent Homepage Features
To help users locate key items, keep a short list of recent features on the
homepage, and supplement it with a link to a permanent archive of all other
homepage features.

Don't Over-Format Critical Content, Such as Navigation Areas
You might think that important homepage items require elaborate illustrations,
boxes, and colors. However, users often dismiss graphics as ads, and focus on the
parts of the homepage that look more likely to be useful.

5.5.1.2 Online fundraising
Most OSP do not raise funds, but instead rely on the direct donations of individuals to
operate their project. As the scope of OSP increases, many participants find it hard to
contribute due to their skill set that might differ from the one needed in a project. These
supporters often do not know how they could possibly contribute to a project, and many
subsequently do not contribute at all. Online fundraising, combined with a rating system
for contributors, allows participants to express their appreciation by donating to the cause

139

of the project. Affero178 maintains such a system. It allows to track the reputation of
individuals (a very important ingredient of successful OSP), and offers an easy way for
users to contribute to an OSP. Figure 12 illustrates the basic concept of Affero.

Figure 12: Affero online fundraising system

5.5.2 Human Resources
Human resources processes are mostly communication, and communication tools support
staffing and knowledge acquisition. The phenomenon of virtual teams is quite recent, and
tools to support it have only recently sprung up. These include knowledge management
and skill matrices.

5.5.2.1 Knowledge management
OSP produce enormous amounts of data on mailing lists, web sites, repositories, in online
communications, and other media. This data is very often dispersed across multiple sites,
and no one maintains it. At the same time, most OSP suffer from a lack of good
documentation. Several systems to address these problems have been in development.
The major issues are the wide variety of media where content originates, and the widely
varying quality. Traditionally, knowledge management tools have been touted as a
solution for these problems. 70% of knowledge management projects fail179, mostly due
to efforts to “build the grand database in the sky” to house all the knowledge of an

178 http://www.affero.com
179 http://www.computerworld.com/softwaretopics/software/story/0,10801,46693,00.html

140

organization. What works is to entice collaborators to share their information. This is best
done with Weblogs180. “Weblogs are often-updated sites that point to articles elsewhere
on the web, often with comments, and to on-site articles.” John Robb proposes to use
Weblogs for Knowledge Management:181

”What is a K-Log (Knowledge Management Weblog)? This is still a new concept, but it
will be huge. Weblogs will potentially become the first new widely adopted desktop
productivity tool since the browser. Here is the feature set:

1. The ability to post to the Web through a browser.
2. Automatic organization of posts in a time based format.
3. Automatic archiving of posts in a calendar.
4. The ability to post documents and files to the cloud.
5. The ability to develop directories of resources (links and posted documents/files).
6. The ability to subscribe to other people's Weblogs (RSS newsfeeds).
7. The ability to view community stats (top Weblogs by traffic, referrers, search, and

other data).
8. Integration with e-mail (to be able to post via e-mail or forward directory

resources and posts).”

Figure 13 shows one K-Log product, Radio Userland. A list of newsfeeds is collected
from sites across the web, and can be commented on, and posted to the weblog of the
author. The news aggregation, rating and commenting infrastructure of weblogs is
continually being enhanced. As a recent article demonstrates182, weblogs do have a very
high impact on the search results of the number one search engine, Google. Due to their
ability to disperse information much more effectively than other media, weblogs will play
an important role for OSP. OSP depend on a constant influx of talent and ideas, and
weblogs can provide it.

180 http://newhome.weblogs.com/historyOfWeblogs
181 http://groups.yahoo.com/group/klogs/message/33
182 http://www.microcontentnews.com/articles/googleblogs.htm

141

Figure 13: Radio Userland news aggregation

5.5.2.2 Skill Matrices
Most OSP have a very fluctuating base of contributors. This makes it hard to assign tasks
to participants, as the project manager barely knows the skills of volunteers. Skills matrix
software can help. It allows contributors to classify themselves on a wide range of skills,
and optionally allows other participants to rate their skills. Applied consistently and
ideally globally as opposed to single projects, skill matrices are a very valuable tool to
assess and plan volunteer resources. Currently, skill matrices are not very widely
deployed, and no central skill matrix exists. Sourceforge does provide a skill matrix for
projects hosted on its site, as shown in figure 14. While that particular matrix leaves a lot
to be desired such integration with peer ratings, it is a very interesting first step.

142

Figure 14: Sourceforge skill matrix

5.5.3 Systems Management
Traditionally, a rich variety of tools for systems management existed for OSP. This can
be traced back to the common background of many of these projects. Very often, they got
started by people in a systems position to assist them in their daily work routine183.

5.5.3.1 Backup
Backup is probably the most unglamorous task imaginable. Yet it is remarkably
important, as is often found out too late. Backup tools span a range from the very simple,
manual copying of files to highly sophisticated automated continuous processes across
several servers. Backup tools for OSP should leverage automation and the distributed
nature of project participants by mirroring content to various servers around the world.
This is commonly done for the source code of a project (members keep local working
copies), and to some extent for communication (members keep personal archives).

5.5.3.2 Asynchronous communication
Most communication in OSP are performed asynchronously. Project members are
distributed all over the world, and not all project members can participate in the project
on a daily basis. The Internet evolved several tools for asynchronous communication.

Mail Servers
Originally developed for an Internet where shared code of ethics were the norm,
mail servers now suffer from architectural weaknesses that make them vulnerable
in today’s more hostile Internet environment. Beyond reliable mail delivery, mail
servers are now expected to protect against spam and scan incoming mails for
viruses.

183 As Larry Wall, the inventor of Perl, recounts, he developed Perl for personal use at his place of work.
http://history.perl.org/PerlTimeline.html

143

Mail Clients
OSP participants receive far more mails on a daily base than the average Internet
user. Special strategies and techniques are required to handle the increased
load.184 Smart filtering can help to organize large volumes of emails

Mailing Lists
The most common way of communication for OSP are mailing lists. Mailing lists
work like a broadcast medium. They reach a lot of people, but noise increases
with the number of participants. The concept of signal-to-noise ratio is often
mentioned as a key indicator of mailing list quality. Proposals to raise mailing list
quality through collaborative filtering [Greant02] try to address those issues.

News Servers
Conceptually very similar to mailing lists, news servers do have superior
threading support, and can store discussions indefinitely. News (NNTP) is a
mature protocol, and many excellent news clients do exist.

Web Forums
Web forums are another possibility to conduct online discussions asynchronously.
While they might be easier for casual users they do not cope well with heavy
discussion loads, and are cumbersome and slow to operate.

5.5.3.3 Authentication systems
Authentication in distributed environments can be quite a challenge. Most OSP
participants have never seen each other face to face, and still need to work together in a
trust relationship. Projects need to protect themselves against impersonation attacks, must
keep sensitive information private, and must protect their software from being tampered
with. Public key cryptography is a good way to secure the data of a project. The Debian
project uses PGP keys to digitally sign their communication and their software
releases.185

5.5.3.4 Real time communications
Real time communications have proven to be an invaluable tool for OSP. One popular
real time communication program that is widely used is IRC (Internet Relay Chat)186.
OSP participants use IRC to discuss development issues with fellow developers, or
provide support for users. IRC is also used to conduct meetings, and serves an important
role to foster social exchange between project participants. Popular OSP do have
hundreds of participants in a chat room at any one time, around the clock. Besides IRC,
many other instant messaging networks have been established in recent years. Those
networks are usually not interoperable, which makes them less than useful for OSP. One
way around such limitations are multi-protocol instant messaging clients such as

184 http://www.acm.org/sigchi/chi96/proceedings/papers/Whittaker/sw_txt.htm
has many notes on email overload.
185 http://www.debian.org/devel/

144

Trillian.187 Trillian allows connections to five different instant messaging networks
simultaneously. It supports notifications on events, for instance if certain keywords are
detected in a chat room, and detects if a user is idle for extended periods of time.

Figure 15: Trillian Multi-Protocol Instant Messaging Client

5.5.4 Software Engineering
The collection of software engineering tools is very rich because many OSP cater to
fellow programmers and software engineers. Special care should be taken in the selection
of software engineering tools as these tools affect project productivity immediately.
Depending on project goals, technologies used, and the skill sets of its participants a
project may employ more or less software engineering tools. Bug trackers, SCM, and a
unit testing framework make sense for almost all OSP though, and can be considered a
minimal requirement.

5.5.4.1 Bug Tracker
Most OSP employ some form of ticketing system to keep track of open issues, bug
reports, and feature requests. Ticketing systems provide a good framework for assigning
tasks in virtual teams, and allow OSP participants to learn quickly about the state of a
project. Often, ticketing is used extensively in the release process to drive the number of
open issues as far down as possible, and keep track of dependencies between software
defects. Many Open Source ticketing systems exist, and most only support a very

186 http://www.irchelp.org/
187 http://www.trillian.cc

145

rudimentary feature set. Request Tracker188 is a very sophisticated ticketing system. It
supports web, email and command line interfaces, stores its data in a relational database,
allows integration with CVS to query and close open tickets, and has sophisticated access
control.

Figure 16: Request Tracker

188 http://www.bestpractical.com/rt/

146

5.5.4.2 SCM
CVS is a version control system that records the history of source files by only storing the
differences between versions. It is by far the most popular Source Configuration
Management (SCM) tool, and is extensively used for OSP. CVS allows OSP to conduct
work in parallel, and supports conflict resolution if two persons edited the same file at the
same time. CVS has many client implementations, with TortoiseCVS probably one of the
most comfortable.

Figure 17: TortoiseCVS integration into the Windows explorer

5.5.4.3 Unit Testing Frameworks
Unit Testing is a new development style that is part of the extreme programming school
of thought. It postulates that no code goes into a product unless it has associated tests,
that these tests be written before the code, that these test determine what code needs to be
written, and that all tests be maintained and run after each change in the source code of a
product. The goal of unit testing is to catch errors early, and prevent their reappearance at
a later stage. As [Nishinaka01] explains, many OSP could benefit from the principles of
unit testing to raise quality in their projects. Unit testing is only feasible if it is applied
consistently. Various unit testing frameworks have been developed to reduce the manual
labor required to maintain unit tests. JUnit189 is a well-known unit test package for the
JAVA language. JUnit features include assertions for testing expected results, test
fixtures for sharing common test data, test suites for easily organizing and running tests,
and graphical and textual test runners.

189 http://www.junit.org

147

Figure 18: JUnit framework

5.5.5 Project Management
Project management tools for OSP are scarce. This can mostly be traced back to their
questionable usefulness in most projects. Since amateurs run so many OSP in their spare
time, they are usually not run like classical projects, and project participants are wary of
introducing elements that may take the fun out of the project. Often these individuals are
subjected to project management in their professional lives and would rather avoid the
red tape that more often than not comes with project management. It is a widely held
belief that OSP manage themselves and therefore need little tool support. This belief
stems from a rejection of everything that smells “corporate” in OSP circles. Many
participants do not want to submit to the same rigorous management in their spare time
that they do during work hours. There are some tools that help OSP in a non intrusive
way though, such as Calendaring and Issue trackers.

5.5.5.1 Issue Tracker
Issue tracking is very similar to bug tracking, and can be accomplished with the same
tools given that these tools allow the ability to prioritize issues, attach them to a due date,
and send reminders emails to the assignees.

148

5.5.5.2 Calendaring
OSP participants need to juggle their project involvement with their day jobs and many
other activities. Often, a bit of scheduling would actually help to remind participants to
finish some work that others in the group are waiting for. Various Internet-enabled
calendaring tools can help with this task. vCard and vCalendar are two Internet standards
that allow the ability to share appointments ands schedules across programs and
platforms.

Figure 19: Calendaring across platforms

Tools provide valuable services to OSP, but should not be used for their own sake. Many
OSP exhibit a over fondness for tools and try to solve issues with tools that should be
resolved with processes instead. Tools support processes, but cannot replace them. One
pitfall is to set up dozens of data entry tools to gather user comments, bugs, status reports,
summaries, documentation, and then wonder why no one finds anything anymore. It is
often better to use fewer tools more extensively than many tools only superficially. The
ease to setup new tools masks the real problems that only crop up later: duplicate
information, data silos that gobble up information but never release it again.

6. Conclusion
The OSP framework ties together roles, processes and tools to explain Open Source
development both from a software engineering perspective as well as in the context of a
social phenomenon. The major finding of the framework is that OSP cannot be explained
by a singular discipline. Instead, an interdisciplinary approach is being called for. The
knowledge about OSP is advancing rapidly. As a result, current explanations will leave a
lot to be desired in a few years, and the framework considers those by being extensible.
Another goal of the framework is to go beyond explanations, and provide advice for OSP
participants and project leaders. Much work remains to be done in the coming years to
complete the understanding of Open Source.

149

This paper looks at the Open Source landscape as it presented itself during summer 2002.
Starting with a historical overview, the paper then goes on to develop the major concepts
of Open Source, and put them into the context of classical (closed source) projects. Both
strong and weak aspects of Open Source are examined, and the existing literature is
sampled. The comparison leads to a search for theories that are able to explain the
phenomenon, and finds existing theories lacking. Finally, a framework is developed that
draws together the various strands of different theories, and adds in new elements. Over
the course of writing this thesis, some areas showed promise for further research.

6.1 Areas for further Research
At the time of this writing, over 80 Open Source papers have been published. .A
complete treatise of all these papers would far exceed the space allotted for this paper, but
some interesting trends stand out.

Reputation and Trust
As [Raymond98b] has pointed out, reputation among peers is one of the driving
forces behind OSP. Becoming a celebrity among some of the most talented
software engineers worldwide is a goal few reach, but many attain. The
mechanics behind reputation are poorly understood. How are decisions made in
large collaborative groups? Why do some participants have proportionally greater
influence than others do, and what are the factors that contribute to their
reputation? Closely related to reputation is trust. Most OSP participants never
physically meet each other. Yet their social networks are strong enough to place
large amounts of trust into their fellow participants. Most OSP do have at least ten
people talking for every single person doing actual work. How can metrics of
trust, such as the excellent work done by [Levien02] be used to assign relevancy
to information?

Economic Models
Participation in OSP is ultimately motivated by several factors. While a lot has
been said and written about the “Noosphere” and other motivational concepts,
most theories fail to have an economic grounding. At the same time, OSP struggle
for financial support, and most Open Source startups fail to find a sustainable
business model. For OSP to succeed longer term, and grow beyond a pastime for
software engineers, valid economic models for Open Source need to be found.
Finding common ground between Free Software idealists who oppose closed
source software on philosophical grounds and commercial software developers,
who write software for a living, will not be easy. It remains to be seen if the
idealistic culture that permeates the Open Source community will be sustainable
as the financial context becomes more lucrative, and more companies start to
operate under an Open Source model. The commercial nature of Open Source is a
too recent phenomenon to determine its long-term viability. For instance, it is
unclear at this point how and if Open Source can master the tremendous
marketing and development challenges associated with bringing Open Source
products to a mainstream audience. Further research is needed to determine if
individual contributors benefit financially from their participation in OSP, and by

150

which means. For instance, [Il-Hom02] found a correlation between high Open
Source rank and higher wages, apparently due to companies making inferences
about productivity differences based on the rank of a contributor. The author
believes that economic incentives can lead to prevalence of Open Source software
under the right circumstances. This would need a reexamination of patent laws,
copyright laws and other areas of the common commercial code.

Implications for Software Engineering
OSP have succeeded despite (or because?) their defiance of conventional software
engineering wisdom. Acknowledgements by [Torvalds01] that software is not
architected, but grows with directed evolution question fundamental beliefs. Other
authors have noted similarities between OSP and the concepts of extreme
programming. Rapid releases with constant feedback have helped many OSP to
reach very high levels of quality. Can these concepts be applied for projects with
a less technical audience that is unable to provide technical feedback? How can
testing and debugging be “smartened up” from its current colossal waste of
programmer resources? Is requirements engineering parallelizable in the same
way as testing is? Many projects employ massive parallel efforts to find faults in
the software, leading to lots of duplicated work. How can having access to the
source code be made more relevant for less technical users? Could newer, higher
level programming languages allow a broader participation by non-programmers?
Tool support for OSP software engineering is continuously increasing. How does
the availability of new tools affect software engineering best practice in OSP?

Figure 20: Modularity of the Linux kernel

151

Appendix A: Using the OSP framework
The OSP Framework is not a ready-made recipe for conducting Open Source projects.
Each project is different, and no methodology fits the needs of all projects equally well.
The OSP Framework provides the necessary data points for a detailed analysis of existing
or yet to be created projects. The interested reader should therefore understand how to
read the framework matrix, and how to conduct research that is more detailed based on
his findings.

The framework matrix displays an idealized project where all activities, roles and
processes are present. Real projects will likely differ substantially from the matrix. It is
suggested to copy the matrix, and fill out the parts of the matrix that apply to a particular
project. It is educational to compare the resulting matrix with the one provided here to
spot differences, and ask why a project deviates from the idealized project. It is likely that
various archetypal patterns within the matrix could be established by analyzing several
hundred existing projects. Once the matrix for a project is filled out, one can then proceed
to study the individual elements of the matrix that compose this particular project.
Staffing and resource decisions should then be a logical consequence.

It may also be helpful to revisit the matrix periodically, as project maturity influences the
composition of the matrix. More mature projects are more likely to have a solid technical
decision-making structure, and place more emphasis on change and release management
than emergent projects.

The OSP framework remains at a rather abstract level and does not outline the detailed
procedures to start and manage an OSP. The best way to gain implementation experience
is to observe and participate in existing OSP. Large OSP hosts like sourceforge.net
provide a good starting point.

Another interesting area that is not explicitly covered by the OSP framework is the
assessment of existing projects. The following questionnaire from [Kienzle01] might help
in that endeavor.

Project Success
• Growth - of developer/contributor base
• Growth - of user base (non-developers)
• Number of contributors
• Developer activity - and is it visible?
• Openness of project - allows others into the development process
• Openness of project - communicates/indicates progress
• Quality of documentation - web site, changelogs, manuals
• Number of discussion/mailing list posts
• Number of websites discussing/linking
• Number of downloads
• Number of page views

152

• Number of other projects basing their project on it
• Number of commercial entities basing their business on it
• Adoption and support/investment from commercial entities - ranges from lip

service to actual direct support
• Rate of stable release
• Number of bugs reported/resolved - robust under unexpected uses - stability (# of

bugs reported dependent on project popularity)

Personal Success/Outcomes
• Learning - extended programming skills
• Enjoyment/fun - increased
• Employment outcomes
• Reputation outcomes

Factors contributing to project success
• Active marketing/promotion of project -an evangelist is helpful?
• Nice Website
• Willingness of founders to grant commit access to others
• Acceptance of ideas/viewpoints of others - and incorporate if appropriate
• Architecture of the project prevents coordination problems - embedded scripting

language, plug-in architecture
• Leadership - technically proficient (a good programmer?)
• Leadership - personable
• Usefulness of software - fills a niche or is better than current
• Competent technical core of developers
• A sense of community
• Stability
• Documentation and support
• Sex appeal - allows creativity and growth, excitement about the software and end

product, some attraction.
• Ownership by developer community
• Communication among developers
• Communication to user community
• Open Development Cycle
• Low Barrier to entry for developers - easy to get in
• Redundant Developer roles
• Clear dispute resolution mechanism - not a management hierarchy
• No Flat organization
• User base size

153

Bibliography
[Anderson02] Anderson, Ross: How to Cheat at the Lottery
(or, Massively Parallel Requirements Engineering)
University of Cambridge Computer Laboratory, 2002

[Anderson02b] Anderson, Ross: Security in Open versus
Closed Systems - The Dance of Boltzmann, Coase and
Moore
University of Cambridge Computer Laboratory, 2002

[Arief02] Arief, Budi and Bosio, Diana: Dependability Issues
in Open Source Software
Technical Report CS-TR-760 (February 2002), Department
of Computing Science,
University of Newcastle upon Tyne

[Arief01] Arief, Budi and Gacek, Cristina: Software
Architectures and Open Source Software – Where can
Research Leverage the Most?
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Asklund01] Asklund, Ulf and Bendix, Lars: Configuration
Management for Open Soure Software
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Asundi01] Asundi, Jai: Software Engineering Lessons from
Open Source Projects
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Bessen02] Bessen, James: Open Source Software: Free
Provision of Complex Public Goods
Research on Innovation, June 2002
http://www.researchoninnovation.org/opensrc.pdf

[Bezroukov99b]Bezroukov, Nikolai: A Second Look at the
Cathedral and the Bazaar
First Monday, volume 4, number 12 (December 1999)
http://firstmonday.org/issues/issue4_12/bezroukov/index.htm
l

[Bezroukov99a] Bezroukov, Nikolai: Open Source Software
Development as a Special Type of Academic Research
(Critique of Vulgar Raymondism)
First Monday, volume 4, number 10 (October 1999),
http://firstmonday.org/issues/issue4_10/bezroukov/index.htm
l

[Blase02] Blase, Paul: A Software Company’s Dilemma
DiamondCluster International White Paper, 2002
http://www.diamondcluster.com/work/Wpapers/WPSoftware.
asp

[Boldyreff02] Boldyreff, Cornelia and Nutter, David: Open-
Source Artefact Management
2nd Workshop on Open Source Software engineering, May
25, 2002, Orlando, Florida.

[Brusehafer01] Brusehaver, Tom: What's Wrong With The
Way Things Are Done?
Freshmeat.net Editorial, May 31st, 2001

[Capiluppi02] Capiluppi, Andrea and Lago, Patricia:
Characterizing the OSS process
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Cavalier98] Cavalier, Forrest J.: Some Implications of
Bazaar Size
Note, August 11th, 1998
http://www.mibsoftware.com/bazdev/

[Chu-Carroll02] Chu-Carroll, Mark C. and Shields, David:
Version Control: A Case Study in the Challenges and
Opportunities for Open Source Software Development
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Chuang98] Chuang, John: Economies of Scale in
Information Dissemination over the Internet
PhD Dissertation, November 1998

[Connell] Connell, Charles: Open Source Projects Manage
Themselves? Dream On
Sun

[Cook01] Cook, Jonathan E.: Open Source Development: An
Arthurian Legend
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Cox99] Cox, Alan: Cathedrals, Bazaars and the Town
Council
Slashdot.org October 13th, 1999

[Crowston02] Crowston, Kevin and Scozzi, Barbara:
Exploring the Strengths and Limits of Open Source Software
Engineering Processes: A Research Agenda
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Cubranic99] Cubranic, Davor: Coordinating Open-Source
Software Development
Proceedings of the 7th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, 1999

[Cubranic01] Cubranic, Davor: The ramp-up challenge in
open-source software projects
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Curtis95] Curtis, Bill and Hefley, William E. and Miller,
Sally: People
Capability Maturity Model (CMU/SEI-95-MM-002)
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, September 1995.

[Dafermos01] Dafermos, George N.: Management and
Virtual Decentralized Networks: The Linux Project
First Monday, volume 6, number 11 (November 2001),
http://firstmonday.org/issues/issue6_11/dafermos/index.html

[Debian02] Debian: Debian Social Contract
The Debian Proiect, 2002
http://www.debian.org/social_contract

154

[Dinkelacker01] Dinkelacker, Jamie and Garg, Pankaj K.:
Corporate Source: Applying Open Source Concepts to a
Corporate Environment
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Drakos00] Drakos, N. and Driver, M.: Debunking Open-
Source Myths: Origins and Players
Gartner Group Research Note, January 18, 2000

[EC02] European Commission, DG Enterprise: Pooling Open
Source Software
Feasibility Study, June 2002

[Edwards00] Edwards, Kasper: Epistemic Communities,
Situated Learning and Open Source Software Development
Department of Manufacturing Engineering and Management,
Technical University of Denmark, 2000

[Edwards00b] Edwards, Kasper: When Beggars Become
Choosers
First Monday, volume 5, number 10 (October 2000)
http://firstmonday.org/issues/issue5_10/edwards/index.html

[Edwards01] Edwards, Kasper: Towards a Theory for
Understanding the Open Source Software Phenomenon
Department of Manufacturing Engineering and Management,
Technical University of Denmark, 2001

[Ehresman01] Ehresman, Luke: A Year of Learning
Freshmeat.net Editorial, March 10th, 2001

[Evers00] Evers, Steffen: An Introduction To Open Source
Software Development
Diploma Thesis, Technische Universität Berlin, August 13th,
2000

[Feller00] Feller, Joseph; and Fitzgerald, Brian: A
Framework Analysis of the Open Source Development
Paradigm
Proceedings of the 21st Annual International Conference on
Information Systems, Brisbane, Australia, 2000

[FLOSS02] Free/Libre and Open Source Software: Survey
and Study
European Commission
http://www.unimaas.nl/FLOSS/

[Fielding02] Fielding, Roy and Roberts, Jeff: Why Do
Developers Contribute to Open Source Projects? First
Evidence of Economic Incentives
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[FSF91] Free Software Foundation: GNU General Public
License
June 1991
http://www.fsf.org/licenses/gpl.html

[FSF01] Free Software Foundation: The GNU Project
June 2001
http://www.fsf.org/gnu/thegnuproject.html

[FSF01a] Free Software Foundation: GNU General Public
License Frequently Asked Questions
June 2001
http://www.fsf.org/licenses/gpl-faq.html

[FSF02b] Free Software Foundation: Various Licenses and
Comments about them
June 2002
http://www.fsf.org/licenses/licenses.html

[German02] German, Daniel M.: The evolution of the
GNOME Project
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Ghosh98] Ghosh, Rishab: Cooking pot markets: an
economic model for the trade in free goods and services on
the Internet
First Monday Vol.3 No.3 - March 2nd. 1998
http://firstmonday.dk/issues/issue3_3/ghosh/index.html

[Ghosh00] Ghosh, Rishab and Prakash, Vipul Ved: The
Orbiten Free Software Survey
First Monday, volume 5, number 7 (July 2000),
http://firstmonday.org/issues/issue5_7/ghosh/index.html

[Ghosh02] Ghosh, Rishab: Clustering and Dependencies in
Free/Open Source
Open Source Workshop, Toulouse, June 20-21, 2002

[Goldhaber97] Goldhaber, Michael H.: The Attention
economy and the Net
First Monday, volume 2, number 4 (April 1997)
http://firstmonday.dk/issues/issue2_4/goldhaber/

[Halloran02] Halloran, T.J. and Scherlis, William L.: High
Quality and Open Source Practices
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Il-Hom02] Il-Horn, Hann, and Roberts, Jeff: Delayed
Returns to Open Source Participation: An Empirical Analysis
of the Apache HTTP Server Project
Graduate School of Industrial Organization, Carnegie Mellon
University, March 2002

[Hannemyr99] Hannemyr, Gisle: Technology and Pleasure:
Considering Hacking Constructive
First Monday, volume 4, number 2 (February 1999),
 http://firstmonday.dk/issues/issue4_2/gisle/index.html

[Hassan01] Hassan, Ahmed E. and Godfrey Michael W.:
Software Engineering Research in the Bazaar
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Hertel02] Hertel, Guido; and Niedner, Sven: Motivation of
Software Developers in Open Source Projects: An Internet-
based Survey of Contributors to the Linux Kernel
University of Kiel, 2002 (in review)

[Hindle01] Hindle, Stephen: Best Practices for Open Source?
Advogato.org, March 21, 2001

[Hippel02] von Hippel, Eric: Open source software projects
as user innovation networks
MIT Sloan School of Management, June 2002

[Hissam01] Hissam, Scott A. and Weinstrock, Charles B.:
Open Source Software: The Other Commercial Software
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

155

[Hubbard98] Hubbard, Jordan K.: Pulling on one end of the
rope
Freshmeat.net Editorial, July 13th, 1998
http://freshmeat.net/articles/view/114/

[Iannacci02] Innacci, Federico: The Economics of Open-
Source Networks
London School of Economics, Department of Information
Systems, 2002

[Jones00] Jones, Paul: Brooks' Law and open source: The
more the merrier?
IBM DeveloperWorks, May 2000

[Kaisla01] Kaisla, Jukka: Constitutional Dynamics of the
Open Source Software Development
Department of Industrial Economics and Strategy,
Copenhagen Business School, May 2001

[Kelsey99] Kelsey, John and Schneier, Bruce: The Street
Performer Protocol and Digital Copyrights
First Monday, volume 4, number 6 (June 1999),
http://firstmonday.dk/issues/issue4_6/kelsey/

[Kenwood01] Kenwood, Carolyn: A Business Case Study of
Open Source Software
MITRE Corporation, July 2001

[Kienzle01] Kienzle, Rene: Project Success and Project
Success Factors
Queensland University of Technology, 2001
http://www.osstrategy.com/article.php?sid=11

[Kircher00] Kircher, Michael; and Levine, David L.: The XP
of TAO eXtreme Programming of Large, Open-source
Frameworks
1st International Conference on eXtreme Programming and
Flexible Processes in Software Engineering, Cagliari, Italy,
June 21-23, 2000
http://www.cs.wustl.edu/~mk1/xp2000.pdf

[Kishida01] Kishida, Kouichi: Conceptual Sociological
Model for Open Source Software
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Krebs02] Krebs, Valdis: Introduction to Social Network
Analysis
Cleveland, 2002
http://www.orgnet.com/sna.html

[Krishnamurthy02] Krishnamurthy, Sandeep: Cave or
Community? An empirical Examination of 100 Mature Open
Source Projects
First Monday, volume 7, number 6 (May 2002)
http://firstmonday.org/issues/issue7_6/krishnamurthy/index.h
tml

[Krawitz00] Krawitz, Robert: Free Source Project
Management
Advogato.org, November 4th, 2000

[Kuan02] Kuan, Jennifer: Open Source Software as Lead
User’s Make or Buy Decision:
A Study of Open and Closed Source Quality
Stanford Institute for Economic Policy Research, 2002

[Kuwabara00] Kuwabara, Ko: Linux: A Bazaar at the Edge
of Chaos

First Monday, volume 5, number 3 (March 2000),
http://firstmonday.org/issues/issue5_3/kuwabara/index.html

[Lancashire01] Lancashire, David: Code, Culture and Cash:
The Fading Altruism of Open Source Development
First Monday, volume 6, number 12 (December 2001),
http://firstmonday.org/issues/issue6_12/lancashire/index.html

[Lerner01] Lerner, Josh; and Tirole, Jean: Some Simple
Economics of Open Source
Journal of Industrial Economics, July 24, 2001

[Lerner02] Lerner, Josh; and Tirole, Jean: The Scope of Open
Source Licensing
Paper for “Open Source Software: Economics, Law and
Policy”
Toulouse (France), 20-21 June 2002

[Lessig00] Lessig, Lawrence: Code and Other Laws of
Cyberspace
July 2000, IBSN: 0465039138
http://cyberlaw.stanford.edu/lessig/content/books/

[Levien02] Levien, Raphael: Attack resistant trust metrics
Doctoral Thesis, University of California at Berkley, 2002
http://www.levien.com/thesis/thesis.pdf

[Liu00] Liu, Chang: Is Software Testing Production or
Service?
Freshmeat.net Editorial, February 19th, 2000

[LPF91] League for Programming Freedom: Against
Software Patents
February 28, 1991
http://lpf.ai.mit.edu/Patents/against-software-patents.html

[Madey02] Madey, Greg and Freeh, Vincent: Understanding
OSS as a Self-Organizing Process
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Martins00] Martins, Lalo: Why do Free Software projects
fail?
Advogato.org, July 20th, 2000

[Massey02] Massey, Bart: Where Do Open Source
Requirements Come From (And What Should We Do About
It)?
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Miller02] Miller, Robin: The Open Source way to fame and
fortune
Newsforge, July 2002
http://newsforge.com/newsforge/02/06/29/2127239.shtml?tid
=3

[Minnihan02] Minnihan, John: Build and Release
Management
Freshmeat.net Editorial, February 9th, 2002

[Mitchell99] Mitchell, Russ: How to Manage Geeks
Fast Company issue 25, page 174, June 1999

[Mockus02] Mockus, Audris and Herbsleb, James D.: Why
Not Improve Coordination in Distributed Software
Development by Stealing Good Ideas from Open Source?
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

156

[Moglen99] Moglen, Eben: Anarchism Triumphant: Free
Software and the Death of Copyright
First Monday, Volume 4, Number 8 (August 1999)
http://firstmonday.dk/issues/issue4_8/moglen/

[Moorman00] Moorman, Jacob: The Importance of Non-
Developer Supporters in Free Software
Freshmeat.net Editorial, April 22nd, 2000

[Mundie02] Mundie, Craig: Security: Source Access and the
Software Ecosystem
Microsoft Corporation, June 2002

[Nahm02] Nahm, Jae: An open system and its effects on R &
D
Department of Economics, Hong Kong University of Science
and Technology, Clearwater Bay, Kowloon, Hong Kong,
April 2002

[Nakakoji01] Nakakoji, Kumiyo and Yamamoto, Yasushiro:
Taxonomy of Open Source Software Development
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Nishinaka01] Nishinaka, Yoshiyuki: Open Source Software
Developments in XP Style
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd
International Conference on Software Engineering, Toronto,
Canada, May 15, 2001

[OSD02] Open Source Initiative: The Open Source
Definition
Open Source Initiative, 2002
http://www.opensource.org/docs/definition_plain.php

[Port01] Port, Dan: Introducing a “Street Fair” Open source
Practice Within Project Based Software Engineering Courses
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Price99] Price, Eric: Production Models Drive Reuse
Readiness
Position Paper, Ninth Annual Workshop on Software Reuse.
7-9 January 1999. Austin, Texas, USA

[Rasch01] Rasch, Chris: The Wall Street Performer Protocol:
Using Software Completion Bonds To Fund Open Source
Software Development
First Monday, volume 6, number 6 (June 2001),
http://firstmonday.org/issues/issue6_6/rasch/index.html

[Raymond99] Raymond, Eric S.: A Response to Nikolai
Bezroukov
First Monday, volume 4, number 11 (November 1999),
http://firstmonday.org/issues/issue4_11/raymond/index.html

[Raymond00] Raymond, Eric S.: The Magic Cauldron
August 2000
www.tuxedo.org/~esr/writings/magic-cauldron/

[Raymond99b] Raymond, Eric S.: The Cathedral & the
Bazaar - Musings on Linux and Open Source by an
Accidental Revolutionary
1999, O’Reilly & Associates Inc., Sebastopol

[Raymond98b] Raymond, Eric S.: Homesteading the
Noosphere

First Monday, volume 3, number 10 (October 1998)
http://firstmonday.dk/issues/issue3_10/raymond/index.html

[Ritchie79] Ritchie, Dennis: ’The Evolution of the Unix
Time-sharing System’ in ’Lecture Notes in Computer
Science’, 1979
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html

[Robbins02] Robbins, Jason E.: Adopting OSS Methods by
Adopting OSS Tools
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Roberts00] Roberts, Michael: Workflow toolkit: Case study
of an open source project
Sponsoring open source development can benefit everyone
involved
IBM DeveloperWorks, July 2000

[Rosenberg02] Rosenberg, Donald K.: The Coming Software
Revolution
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Salus94] Salus, Peter H.: ’A Quarter Century of UNIX’
1994, Addison-Wesley

[Scacchi02] Scacchi, Walt: Is Open Source Software
Development Faster, Better, and Cheaper than Software
Engineering?
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Scacchi02a] Scachi, Walt: Understanding the Social,
Technological, and Policy Implications of Open Source
Software Development
Position Paper, NSF Workshop on Open Source Software,
Arlington VA, January 2002

[Scacchi02b] Scacchi, Walt: Understanding the
Requirements for developing open source software
IEEE Proceedings on Software, Volume 149, Number 1,
February 2002

[Scacchi01] Scacchi, Walt: Software Development Practices
in Open Software Development Communities: A
Comparative Case Study
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd International Conference on Software
Engineering, Toronto, Canada, May 15, 2001.

[Schach02] Schach, Stephen R. and Offutt, A. Jefferson: On
the Nonmaintainability of Open-Source Software
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

[Schmidt01] Schmidt, Douglas C. and Porter, Adam:
Leveraging Open-Source Communities To Improve the
Quality & Performance of Open-Source Software
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd
International Conference on Software Engineering, Toronto,
Canada, May 15, 2001.

[Schmidt02] Schmidt, Klaus M; and Schnitzer, Monika:
Public Subsidies for Open Source? Some Economic Policy
Issues of the Software Market
University of Munich, CEPR, June 2002

157

[Spangler01] Spangler, Arnold: Open Source Development:
A suitable Method to introduce a standardized
communication protocol?
Position Paper, First Workshop on Open-Source Software
Engineering, 23rd
International Conference on Software Engineering, Toronto,
Canada, May 15, 2001.

[Spolsky00] Spolsky, Joel: Where do These People Get Their
(Unoriginal) Ideas?
Joel on Software, April 2000
http://www.joelonsoftware.com/articles/fog0000000068.html

[Spolsky01] Spolsky, Joel: Hard-assed Bug Fixin’
Joel on Software, July 2001
http://www.joelonsoftware.com/articles/fog0000000014.html

[Spolsky02] Spolsky, Joel: Strategy Letter V
Joel on Software, June 2002
http://www.joelonsoftware.com/articles/StrategyLetterV.html

[Torvalds01] Torvalds, Linus et al: Software Development as
directed Evolution
Linux Kernel Mailing List, Dezember 2001

[Vallopillil98] Vallopillil, Vinod: Open Source Software: A
(New?) Development Methodology
Microsoft Corporation, August 11th, 1998

[Varian02] Varian, Hal R: System Reliability and Free
Riding
University of California, Berkeley, May 2002

[Weber00] Weber, Steven: The Political Economy of Open
Source Software
Department of Political Science, University of Berkeley,
California, June 2000

[Wegberg00] Wegberg, Marc; and Berends, Peter:
Competing communities of users and developers of computer
software: competition between open source software and
commercial software
NIBOR Working Paper, May 2000

[Welch00] Welch, Rod: Management of Open Source
projects is difficult.
Notes, November 1st, 2000

[Werry99] Werry, Chris: Imagined Electronic Community:
Representations of Virtual Community in Contemporary
Business Discourse
First Monday 1999

[White02] White, Terry and Goldberg, Joel: The Open
Source rEvolution - A Pragmatic Approach to Making the
Best of It
Position Paper, 2nd Workshop on Open Source Software
engineering, May 25, 2002, Orlando, Florida.

